
University of Kentucky University of Kentucky

UKnowledge UKnowledge

Theses and Dissertations--Electrical and
Computer Engineering Electrical and Computer Engineering

2013

FPGA-BASED IMPLEMENTATION OF DUAL-FREQUENCY PATTERN FPGA-BASED IMPLEMENTATION OF DUAL-FREQUENCY PATTERN

SCHEME FOR 3-D SHAPE MEASUREMENT SCHEME FOR 3-D SHAPE MEASUREMENT

Brent Bondehagen
University of Kentucky, brentbondehagen@gmail.com

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Bondehagen, Brent, "FPGA-BASED IMPLEMENTATION OF DUAL-FREQUENCY PATTERN SCHEME FOR 3-D
SHAPE MEASUREMENT" (2013). Theses and Dissertations--Electrical and Computer Engineering. 23.
https://uknowledge.uky.edu/ece_etds/23

This Master's Thesis is brought to you for free and open access by the Electrical and Computer Engineering at
UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Electrical and Computer Engineering by
an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/ece_etds
https://uknowledge.uky.edu/ece_etds
https://uknowledge.uky.edu/ece
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

STUDENT AGREEMENT: STUDENT AGREEMENT:

I represent that my thesis or dissertation and abstract are my original work. Proper attribution

has been given to all outside sources. I understand that I am solely responsible for obtaining

any needed copyright permissions. I have obtained and attached hereto needed written

permission statements(s) from the owner(s) of each third-party copyrighted matter to be

included in my work, allowing electronic distribution (if such use is not permitted by the fair use

doctrine).

I hereby grant to The University of Kentucky and its agents the non-exclusive license to archive

and make accessible my work in whole or in part in all forms of media, now or hereafter known.

I agree that the document mentioned above may be made available immediately for worldwide

access unless a preapproved embargo applies.

I retain all other ownership rights to the copyright of my work. I also retain the right to use in

future works (such as articles or books) all or part of my work. I understand that I am free to

register the copyright to my work.

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE

The document mentioned above has been reviewed and accepted by the student’s advisor, on

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of

the program; we verify that this is the final, approved version of the student’s dissertation

including all changes required by the advisory committee. The undersigned agree to abide by

the statements above.

Brent Bondehagen, Student

Dr. J. Robert Heath, Major Professor

Dr. Zhi David Chen, Director of Graduate Studies

FPGA-BASED IMPLEMENTATION OF DUAL-FREQUENCY PATTERN
SCHEME FOR 3-D SHAPE MEASUREMENT

THESIS

A thesis submitted in partial fulfillment of the
requirements for the degree of Master of Science in Electrical Engineering in the

College of Engineering
at the University of Kentucky

By

Brent Bondehagen

Lexington, Kentucky

Co-Directors: Dr. J. Robert Heath, Associate Professor of Electrical Engineering
and Dr. Daniel L. Lau, Associate Professor of Electrical Engineering

Lexington, Kentucky

2013

Copyright c© Brent Bondehagen 2013

ABSTRACT OF THESIS

FPGA-BASED IMPLEMENTATION OF DUAL-FREQUENCY PATTERN
SCHEME FOR 3-D SHAPE MEASUREMENT

Structured Light Illumination (SLI) is the process where spatially varied patterns are
projected on to a 3-D surface and based on the distortion by the surface topology,
phase information can be calculated and a 3D model constructed. Phase Measuring
Profilometry (PMP) is a particular type of SLI that requires three or more patterns
temporarily multiplexed. High speed PMP attempts to scan moving objects whose
motion is small so as to have little impact on the 3-D model. Given that practically
all machine vision cameras and high speed cameras employ a Field Programmable
Gate Array (FPGA) interface directly to the image sensors, the opportunity exists
to do the processing on camera. This thesis focuses on the design, implementation,
testing, and evaluation of a camera-projector system to implement a PMP dual-
frequency scheme for 3-D shape measurement on a single FPGA chip. The processor
architecture is implemented and tested using the Xilinx Spartan 3 FPGA chip on an
Opal Kelly development board. The hardware is described using VHDL and Verilog
Hardware Description Languages (HDLs).

KEYWORDS: Structured Light Illumination, Phase Measuring Profilometry, 3-D
Shape Measurement, Hardware Description Language, Processor Architecture

Brent Bondehagen

May 3, 2013

FPGA-BASED IMPLEMENTATION OF DUAL-FREQUENCY PATTERN
SCHEME FOR 3-D SHAPE MEASUREMENT

By

Brent Bondehagen

Dr. J. Robert Heath

Co-Director of Thesis

Dr. Daniel L. Lau

Co-Director of Thesis

Dr. Zhi David Chen

Director of Graduate Studies

May 3, 2013

Date

ACKNOWLEDGMENTS

I wish to thank, first and foremost, my parents for their unconditional support, both

financially and emotionally throughout my academic studies.

I would like to thank my advisors, Dr. Daniel Lau and Dr. Robert Heath for their

encouragement, guidance and support throughout the duration of my research work.

In addition, I would like to thank my committee member, Dr. Hank Dietz for his

assistance and expertise.

Last, but not least, I want to thank my wife, Huiyu, for her love and support.

Her encouragement and confidence in me kept me optimistic and motivated.

iii

TABLE OF CONTENTS

Acknowledgments . iii

List of Figures . vii

List of Tables . ix

Chapter 1 Introduction . 1
1.1 PMP Structured Light Illumination 1

1.1.1 Dual Frequency Scheme . 4
1.1.2 Lookup Table Calculations . 6

1.2 Contribution of Thesis . 6
1.3 Previous Research on FPGA Implementation on 3-D Scanning Algo-

rithms . 7
1.4 Thesis Objectives . 8
1.5 Thesis Outline . 9

Chapter 2 FPGA Design . 11
2.1 Spartan 3 . 11
2.2 FPGA Design Flow . 12
2.3 Core Cells . 13
2.4 Binary Data Representation . 14

2.4.1 Fixed Point . 14
2.4.2 Floating Point . 15

Chapter 3 System Overview . 16
3.1 Opal Kelly development board . 17

3.1.1 FPGA . 17
3.1.2 SDRAM . 18

3.2 Leopard Imaging WVGA Camera Board 19
3.3 Digital to Analog Converter . 19

Chapter 4 VGA Module . 21
4.1 VGA Standard . 21
4.2 PCB VGA Board . 22
4.3 VGA HDL Implementation . 23

4.3.1 Sync Signals . 24
4.3.2 Camera Signals . 25
4.3.3 Pixel Output . 25

Chapter 5 Image Acquisition . 27
5.1 System Overview . 27

iv

5.2 Imaging Sensor . 28
5.2.1 Camera Shuttering . 28
5.2.2 Modes of Operation . 29

5.3 Pixel Data . 30
5.3.1 Two-Wire Interface . 31
5.3.2 Alternative Cameras . 32

5.4 Input Image FIFOs . 33
5.5 SDRAM Transfer Controller . 34
5.6 Image Aquisition Controller . 35

Chapter 6 Phase Calculation Pipeline Design 37
6.1 Introduction . 37
6.2 Architecture for N=4 Patterns . 38
6.3 Architecture for N patterns . 40
6.4 State Diagram . 42

Chapter 7 Digital Fourier Transform Module Design 43
7.1 Fast Fourier Transform Theory . 43
7.2 FFT HDL Implementation . 46
7.3 Introduction . 46
7.4 Single Cycle Design . 47
7.5 Pipelined Design . 48
7.6 Pipelining Results . 50

Chapter 8 Inverse Tangent Module Design 52
8.1 Introduction . 52
8.2 CORDIC Theory . 53
8.3 CORDIC Implementation . 55
8.4 Quantization Error . 59
8.5 Comparison of CORDIC and Matlab ATAN2 59
8.6 Results . 61

Chapter 9 Phase Unwrapping . 62
9.1 Introduction . 62
9.2 Implementation of Phase Unwrapping on FPGA 63
9.3 Conversion to Floating Point . 65

Chapter 10 Thresholding of Phase Data . 66
10.1 Implementation . 67

Chapter 11 GUI Application . 68

Chapter 12 System Analysis and Results . 70
12.1 Introduction . 70
12.2 Hardware Prototype . 70
12.3 Results . 70

v

12.4 Timing Analysis . 79
12.4.1 Image Aquisition . 79
12.4.2 Phase Calculation . 79
12.4.3 Improving Performance . 80

12.5 HDL Simulations . 82
12.5.1 Fast Fourier Transform . 82
12.5.2 Phase Calculation Pipeline . 83

Chapter 13 Conclusion . 85
13.1 Contributions . 85
13.2 Future Work . 86

Appendix . 87

Bibliography . 94

Vita . 97

vi

LIST OF FIGURES

1.1 Projected PMP patterns with N = 4, f = 1, Ap = 127.5 and Bp =
127.5 (top) with Corresponding Patterns Shown on Object (bottom) as
Presented in K. Liu. 2

1.2 PMP System as Presented by L. Kai et al. 4
1.3 Cross-section of a Dual-Frequency Pattern (top) and its Corresponding

Pattern (bottom). 5

3.1 An Overall Diagram of the System . 16
3.2 Functional Block Diagram of Opal Kelly Development Board. [20] . . . 18
3.3 The Leopard Imaging LI-VM34LP Board. 19
3.4 ADV7125 Functional Block Diagram. [17] 20

4.1 VGA Display Area and Blanking Regions 22
4.2 Photo of Built VGA board . 23
4.3 VGA HDL Module Data Flow Diagram 24
4.4 Dual-Frequency Patterns for N=4 with fh = 16 26

5.1 Image Aquisition Data Flow Diagram 27
5.2 Interface Signals Between Controller and Image sensor 29
5.3 Frame Valid and Line Valid Signals [16] 30
5.4 Timing Example of Pixel Data [16] . 30
5.5 Example 16-bit Write Sequence for Aptina MT9V034. 32
5.6 OptoMotive Cameleon BaseBoard [19] 33
5.7 Memory Controller Flow Diagram . 35
5.8 Image Acquisition Flow Diagram . 36

6.1 Phase Calculation Dataflow Diagram for N=4 Patterns 38
6.2 Phase Calculation Dataflow Diagram for N Patterns 41
6.3 Phase Data Flow Controller . 42

7.1 2-point FFT . 44
7.2 8-point Radix-2 FFT . 45
7.3 Data Flow Diagram of the Simplified 8-point FFT with Pipeline Registers 49
7.4 Xilinx Multiplier IP Core Settings . 50

8.1 A Diagram Illustrating the Rotations in the CORDIC Algorithm 56
8.2 Xilinx CORDIC Core Block Diagram [14] 57
8.3 Xilinx ArcTan I/O and Ranges [14] . 57
8.4 CORDIC Word Serial Architecture [14] 58
8.5 CORDIC Parallel Architecture [14] . 59
8.6 Comparison of CORDIC Core with Different Output Precisions 60

vii

9.1 Unit Phase Unwrapping a High Frequency Phase. The Unwrapped Phase
is at the Bottom. 64

9.2 Data Flow Diagram Showing the Phase Unwrap Module 65

10.1 Phase Calculation Dataflow Diagram with Thresholding 67

11.1 Screenshot of the GUI Application. 69

12.1 The Hardware Prototype . 71
12.2 Eight Dual Frequency Patterns where Ap = 128 and Bp = 60 72
12.3 Phase Data for N=8 . 72
12.4 Uniformly Distributed Pseudorandom Numbers Test. Difference between

Combined Phase Result from Matlab and FPGA. 73
12.5 Capture of Projected Patterns Showing Crosstalk 74
12.6 Projector-Camera Response Curve . 75
12.7 Projector-Camera Linearized Response Curve 76
12.8 Capture of Projected Patterns . 77
12.9 Magnitude and Phase with and without thresholding 78
12.10 FFT Simulation . 82
12.11 Phase Calculation Pipeline Part 1 . 83
12.12 Phase Calculation Pipeline Part 2 . 84

viii

LIST OF TABLES

4.1 Timing Data for 800x600 resolution running at 60Hz 25

8.1 CORDIC Algorithm Iterations for tan−1(2.5) 54

ix

Chapter 1

Introduction

Three dimensional (3-D) shape measurement is an active area of research [1] where

data of an object’s surface is collected and a digital model with depth data can be

constructed. Such technology has a myriad of potential applications in nearly all

areas of science and industry such as medical imaging, product inspection, security

surveillance, computer vision, entertainment, etc. [3].

There are many different technologies for 3-D measurement purposes. There are

contact techniques, where the object must be physically probed to get the data, and

non-contact techniques where triangulation or time-of-flight are used. This thesis

focuses on the design, development, testing and evaluation of a hardware prototype

and computer architecture implemented in FPGA technology that implements an

algorithm to calculate data for 3-D reconstruction.

1.1 PMP Structured Light Illumination

One such non-contact technique using triangulation is Structured Light Illumination

(SLI) where light patterns are projected on to a 3-D surface and information based on

the distortion by the surface topology is collected. These patterns can be spots, stripes

or other geometric shapes [5]. Phase Measuring Profilometry (PMP) is a popular

1

Figure 1.1: Projected PMP patterns with N = 4, f = 1, Ap = 127.5 and Bp =
127.5 (top) with Corresponding Patterns Shown on Object (bottom) as Presented in
K. Liu.

method of SLI due to its high reliability and high accuracy[4]. In this technique

multiple phase shifted patterns are projected onto a 3-D surface and the depth data

is computed based on the phase distortion observed by the camera. In comparison

to other SLI techniques, PMP is known for its high accuracy, robustness to the

environmental illumination and target texture, simple implementation, and fast point

matching in 3D reconstruction [5]. As explained in Kai et al. [2], the following PMP

patterns are described as

Ipn(x
p, yp) = Ap(xp, yp) + Bp(xp, yp) cos(2πfyp − 2πn

N
) (1.1)

where Ipn is the intensity of the pixel, (xp, yp) is the coordinates of a pixel in the

projector, Ap and Bp are some constants, f is the frequency of the sine wave, n

represents the phase-shift index, and N is the total number of phase shifts. Figure

1.1 shows example PMP patterns.

For the reconstruction, the camera captures each pattern projected on an object

2

and distorted based on the surface topology expressed in the following equation as

Icn(x
c, yc) = Ac(xc, yc) + Bc(xc, yc) cos(φ(xc, yc)− 2πn

N
) (1.2)

where (xc, yc) is the coordinate of a pixel in the camera and Icn(x
c, yc) is the intensity

of the pixel. Pixel coordinates will be removed henceforth for simplification. The

term Ac is the average pixel intensity in the pattern set:

Ac =
1

N

N−1∑
n=0

Icn (1.3)

such that the image of Ac is equal to the intensity of the frame of the scene. The

term Bc is the intensity modulation from a given pixel derived from Icn as:

Bc =
2

N

⎧⎨
⎩
[
N−1∑
n=0

Icn sin

(
2πn

N

)]2

+

[
N−1∑
n=0

Icn cos

(
2πn

N

)]2
⎫⎬
⎭

0.5

(1.4)

where Bc indicates the amplitude of the sinusoid reflecting off of a point on the object

surface. Bc is chosen equal to the magnitude of k=1 Discrete Fourier Transform

(DFT) coefficient. For pixels where Icn is constant or not affected by the projected

sinusoid patterns, Bc will be close to zero so Bc is employed as a shadow or noise

filter. Figure 1.2 shows an example scene with Ac and Bc images.

For reliable pixels with a large Bc, φ represents the phase value of the captured

sinusoid pattern derived as:

φ = tan−1

[∑N−1
n=0 Icn sin

(
2πn
N

)
∑N−1

n=0 Icn cos
(
2πn
N

)
]

(1.5)

With the phase values calculated and triangulation with the projector, depth

information can be calculated. A system diagram can be seen in Figure 1.2.

3

Figure 1.2: PMP System as Presented by L. Kai et al.

1.1.1 Dual Frequency Scheme

In order to minimize the effects of sensor noise while minimizing the expense of

performing phase unwrapping, Kai et al. propose a dual-frequency pattern defined

as:

Ipn = Ap +Bp
1 cos(2πfuy

p − 2πn

N
) + Bp

2 cos(2πfhy
p − 4πn

N
) (1.6)

where Ipn is the intensity of a pixel in the projector, Ap, Bp
1 , and Bp

2 are constants to

make the value of Ipn between 0 and 255 for a 8-bit depth projector, fu is the unit

frequency of the sine wave, fh is the high frequency of the sine wave equal to 1, n

represents the phase-shift index, and N is the total number of phase shifts. A sample

dual frequency pattern and its cross-section is shown in Figure 1.3.

Using the dual frequency patterns, Eq. 1.2 then becomes

Icn = Ac +Bc
1 cos(φu − 2πn

N
) + Bc

2 cos(φh − 4πn

N
) (1.7)

where Icn is the intensity of the pixel in the camera. The term Ac is still the average

pixel intensity across the pattern set as defined by Eq. 1.3. Bc
n is the intensity

4

modulation of a pixel corresponding to φh and derived from Icn as:

Bc
m =

2

N

⎧⎨
⎩
[
N−1∑
n=0

Icn sin

(
m
2πn

N

)]2

+

[
N−1∑
n=0

Icn cos

(
m
2πn

N

)]2
⎫⎬
⎭

0.5

(1.8)

with m = 1 where Bc
1 can be thought of as the amplitude of the sinusoid reflecting

off of a point on the object surface corresponding to φh. Similar to the traditional

PMP described above Bc
1 is used as a noise filter and Bc

2 for m = 2 is the intensity

modulation corresponding to φu. For reliable pixels with a large Bc
1, the phase-pair

(φu, φh) is then derived as :

(φu, φh) =

(
tan−1

[∑N−1
n=0 Icn sin

(
2πn
N

)
∑N−1

n=0 Icn cos
(
2πn
N

)
]
, tan−1

[∑N−1
n=0 Icn sin

(
4πn
N

)
∑N−1

n=0 Icn cos
(
4πn
N

)
])

(1.9)

where φh represents the wrapped phase value of the captured pattern and φu repre-

sents the base phase used to unwrap φh. These are also equal to the phase value of

the k=1 and k=2 DFT coefficients.

0

50

100

150

200

250

Figure 1.3: Cross-section of a Dual-Frequency Pattern (top) and its Corresponding
Pattern (bottom).

The inverse tangent function returns a value within the interval (−π, π]. If the

5

phase exceeds this range, as is the case of frequencies higher than 1, it will be wrapped,

or repeated, around so it remains in this range thereby introducing 2π jumps. There-

fore, the wrapped phase needs to be unwrapped. The high frequency phase is the

robust, noise resilient phase but has phase ambiguity due to the jumps. The unit

frequency phase is the noisy phase but doesn’t have the 2π jump. The higher fre-

quency phase, φh can be unwrapped using the unit-frequency phase φu as a reference

thereby removing wrapped phase ambiguities. Because the high and unit frequencies

are projected together as opposed to being projected separately, the acquisition speed

is faster and more suitable for real-time applications.

With the phase φ, and camera pixels (xc, yc), triangulation can be used and 3-D

world coordinates can be calculated.

1.1.2 Lookup Table Calculations

In addition to the novel dual-frequency pattern scheme described in the subsection

above, Kai et al. introduced the idea of using a lookup table (LUT) for real-time

video reconstruction. The arctangent and square root functions are computationally

expensive so double precision float values were stored into a LUT giving high precision

results and higher frame rates at low computational cost.

1.2 Contribution of Thesis

Given that practically all machine vision cameras and high speed cameras employ a

Field Programmable Gate Array (FPGA) chip interface directly to the image sensors

and that such cameras are used for high-speed capture of PMP patterns, the oppor-

6

tunity exists to move some or all of the the processing from the PC to the FPGA

interfacing the camera. This allows for the ability to read frames from the image

sensor and perform calculations simultaneously. Custom parallel computation logic

can also be implemented in the FPGA .

This thesis focuses on the design and implementation of a camera-projector sys-

tem which implements a PMP dual-frequency scheme for 3-D shape measurement on

a single FPGA chip that could be used in high-speed cameras. The architecture cal-

culates phase and amplitude data. The hardware prototype performance will depend

greatly on the limitations of the FPGA chip, peripherals, and interfaces. Therefore,

the focus of this thesis is to present the computer architecture and design of a working

system with the available hardware.

1.3 Previous Research on FPGA Implementation on 3-D Scanning Algo-

rithms

There have been a number of papers written for implementing 3-D scanning algo-

rithms in FPGA technology. Y. Oike et al. [30] presented a real-time 3-D imaging

system based on the light-section method with VGA pixel resolution. The FPGA

performs the sensor control, the light projection, and range data pre-processing (tri-

angulation). S. Lee et al. [29] present a real-time 3-D camera based on infrared

structured light for robots. An FPGA is used to interface the Digital Mirror Device

(DMD) and CCD camera module. A second FPGA is used to implement the Hier-

archical Orthogonal Coding for depth images. B. Hong et al. [28] present a DMD,

CMOS sensor and FPGA on a single board. The CMOS sensor runs at 500 Hz with

7

range information frame rate of 17 Hz. Gray code structured light is used. A. Peter

et al. [27] present an efficient algorithm for determining phase using the CORDIC

function in a time of flight range imaging system. J. Weingarten, G. Gruener, and R.

Siegwart present a time-of-flight sensor with a FPGA interface that calculates phase

for four phase shifted patterns and filters by amplitude threshold for robot naviga-

tion. S. Bellis and W. Marnane [31] present an FPGA implementation of a pipelined

CORDIC arctangent unit for a 3D camera system with four phase shifted patterns.

Magnitude data is also used to null pixels when the contrast is low.

In the research and developed prototype presented in this paper, the dual-frequency

PMP scheme is presented giving more robust data with little expense due to unwrap-

ping. In previous PMP using FPGA research, four phase shifted patterns are used

for simplicity so a DFT algorithm is not necessary. In this thesis, an architecture for

eight phase shifted patterns using the FFT algorithm is developed with the ability

to easily modify it for a different number of patterns. A simplified algorithm to cal-

culate magnitude is used as well. The prototype system described here allows for an

external projector to be connected via a VGA interface.

1.4 Thesis Objectives

The objectives of this thesis are as follows:

• Study the research done by Kai et al. and describe a hardware architecture

design to implement the calculation of the phase for the dual-frequency algo-

rithm.

8

• Capture frames from a CMOS image sensor and write frames into SDRAM at

60Hz.

• Project Structured Light patterns on to an object by driving a VGA board.

• Design and build a prototype system controlled by a single FPGA that can

calculate dual-frequency pattern phase and magnitude values.

• Use the magnitude data to as a shadow or noise filter for the phase data.

• Compare results of the FPGA implementation with results from a Matlab script.

• Suggest possible improvements to the system and architecture.

1.5 Thesis Outline

This thesis consists of twelve chapters.

Chapter 1 introduced Structured Light Illumination and the algorithm. The con-

tribution and objectives of this thesis were explained.

Chapter 2 explains the FPGA architecture and considerations to take when de-

signing for implementation on an FPGA.

Chapter 3 gives an overview of the hardware system.

Chapter 4 discusses the VGA standard, the built VGA board, and the implemen-

tation of a VGA controller.

Chapter 5 explains how images are captured and written into the SDRAM.

Chapter 6 provides an understanding of the overall phase pipeline architecture

that was designed.

9

Chapter 7 discusses the Fourier Transform and its implementation in the FPGA.

Chapter 8 explains the CORDIC core use and implementation.

Chapter 9 describes how the two phases are combined into one phase.

Chapter 10 deals with the GUI Application developed.

Chapter 11 provides the results and timing analysis of the system.

Chapter 12 concludes the thesis and suggests possible improvements.

10

Chapter 2

FPGA Design

2.1 Spartan 3

The Xilinx Spartan-3 family of FPGAs are designed for high volume applications

with a high price-performance ratio. The Spartan 3 is suited for consumer electronic

applications such as digital televisions, display equipment and home networking [11].

Programmability, low-cost, improved energy efficiency and performance make the

FPGA a viable alternative to ASICs in many applications such as this one.

The Spartan 3 family architecture consists of the following programmable func-

tional elements :

• Configurable Logic Blocks (CLBs) are the primary resource in the FPGA

for implementing combinational and synchronous logic. A CLB consists of four

slices where a slice consists of two Look-up Tables (LUTs) for logic or memory

and storage elements for flip-flops or latches. CLBs are interconnected in a

two-dimensional array. LUTs can be used to implement distributed RAM for

register files and FIFOs.

• Input/Output Blocks (IOBs) provide a programmable input, output and

bidirectional interface between the internal logic and the I/O pins.

11

• Block RAM is synchronous 18Kbit blocks. It can be combined to form RAM

blocks of greater width and depth. It has a lower access latency and stores more

data using less resources compared to distributed RAM.

• Multiplier Blocks have dedicated multipliers that accept two 18-bit binary

numbers.

• Digital Clock Manager(DCM)s utilize a Delay-Locked Loop (DLL). It can

phase-shift output signals with respect to its input and can eliminate clock-skew

by aligning its output clock with an input clock so there is no phase difference.

It can also multiply and divide clocks to create a new frequency. A DCM is

used in the design to phase align the PLL generated clock that is used by the

SDRAM and shared with the FPGA internal fabric clock.

2.2 FPGA Design Flow

When designing a system targeting FPGA technology, Computer Aided Design (CAD)

tools such as the Xilinx ISE Design Suite are used to take a design description and

implement it to an FPGA. The input to the CAD tool is a Hardware Description

Language (HDL) such as the popular Verilog and VHDL (Very High Speed Hard-

ware Description Language) HDLs. With the design in HDL code, the CAD tool

synthesizes the code. Synthesis translates the HDL into a netlist of the primitive

components and their connections. In the Placement step, the primitive components

of the netlist are mapped to a physical logic block. For instance, a NAND gate could

be implemented with one of the thousands of LUTs in the logic blocks in a Spartan

12

3. If the component is placed intelligently, the connection could be faster and easier

for the router tool. In the routing step, decisions on how each signal gets from where

it is to its destination are made. With the large number of possible paths this part

can take the longest. Lastly, a FPGA programming file is generated consisting of a

bit stream controlling every programmable element in the chip.

2.3 Core Cells

Core cells, or cores, are modules that have been designed and tested for a specific

function. There are cores for processors, memory interfaces, signal processing, and

other functionality. Rather than focusing on developing such modules, an core can

be used to speed up development and build larger systems. Cores are divided into

three categories: soft cores, firm cores, and hard cores.

Soft cores are in the form of synthesizable RTL logic or a gate-level netlist. Firm

cores are commonly gate-level netlist for placement and routing. Xilinx offers firm

cores that are mapped to Xilinx macros which the CAD tool can convert to lower level

primitives. Hard cores contain layout information and cannot be changed. [8]. Xilinx

and Altera both provide soft-core processors optimized for their FPGAs. Hard core

processors have performance and power benefits over soft cores. Xilinx incorporated

PowerPC hard cores in its high-end Virtex-4 FPGAs. ARM architecture cores are

now included in some of the latest FPGAs [26]. Often cores are subject to intellectual

property rights such as patents and copyrights so they are licensed to users; these are

called IP cores. Xilinx offers parameterized IP cores with its ISE design software that

are generated using the Xilinx Core Generator Wizard. Such cores are optimized to

13

the specific architecture so they effectively use available resources.

2.4 Binary Data Representation

Two common ways to represent numbers in binary are fixed-point and floating point

numbers. Fixed-point arithmetic is simple so it is often used on systems where re-

sources are limited such as an FPGA. A floating point number can represent a wide

range of numbers with fewer bits than fixed-point but floating point arithmetic uses

more resources.

2.4.1 Fixed Point

Fixed-point numbers make it easy to express fractional numbers. A fixed point num-

ber has a specific number of bits for the integer and a specific number for the fractional

part of the number (to the right of the fixed point). The ‘fixed-point’ is the same as

the decimal point of the base 10 number system and refers to the fact that the binary

point location does not change. One notation to represent a fixed point number is

Qm.f where there is a sign bit, m-1 integer bits and f fraction bits. For example, a

Q3.29 number has one sign bit, two integer bits, and 29 fractional bits in a 32 bit

word. The precision of a fixed point number is based on the number of fractional bits.

With f fractional bits, there is a scaling factor of 2−f and the minimum representable

value is −2m−1/2f and the maximum is (2m−1−1)/2f . A fixed-point number is simply

an integer number that is scaled to a specific factor. For example, a binary number

of ”01110000” is equal to 112 but in Q2.6 form, it is equal to 112/26 = 1.75. The

number is scaled down by 26.

14

2.4.2 Floating Point

Unlike the fixed point number, floating point does not reserve a specific number of

bits for the integer or fractional part. It has a sign bit, a certain number of bits for

the actual number called the mantissa, or significand, and a specific number of bits

for the exponent that tells where within the significand the decimal place is located.

A floating point number is similar to scientific notation in that it is a normalized

number.

15

Chapter 3

System Overview

Structured light illumination systems commonly use a projector to cast patterns on

to an object or scene, a camera to capture the scene, and a PC to read in the frames

from the camera and calculate the data needed to reconstruct a 3-D model. A fully

functional hardware prototype was built with an FPGA that interfaces with a VGA

interface to control the projection of the patterns, a camera sensor running at 60 Hz

to capture frames of a scene, and a USB interface to transfer the calculated data to

a PC. Figure 3.1 shows a high-level diagram of the system.

Figure 3.1: An Overall Diagram of the System

Patterns that are stored in the memory are projected onto a scene by a projector

16

via a VGA interface. The camera captures a specified number of frames of the scene

and writes them to an input First-In First-Out memory (FIFO). When the FIFO has

enough data, a block of data is written to memory. After the frames are captured,

they are processed and phase data for reconstruction is calculated and stored back to

memory. On request, the frames captured and calculated phase data are transferred

over USB to the host computer.

The following sections serve to introduce the hardware that was utilized for the

prototyping of this project. Design decisions relating to the available hardware and

limitations are discussed.

3.1 Opal Kelly development board

An off-the-shelf FPGA development board (XEM3010-1500) from Opal Kelly Incor-

porated was chosen for this project. It provides a complete system for prototype

development with a Spartan 3 FPGA chip. The board includes 32 MByte SDRAM,

PROM for configuration storage, USB 2.0 interface for communication, Multi-PLL

for clock management, and an ample number of user I/O ports in a small form factor.

The board is distributed with libraries for Opal Kelly’s own Application Program-

mer’s Interface (API) in C, C++, C#, Ruby, Python, and Java. The API is used to

communicate with the board, transfer data, and expedite development.

3.1.1 FPGA

The development board has a 1500K gate Spartan-3 Xilinx FPGA chip. It has a

documented 3,328 CLBs with 576Kb block RAM and up to 208Kb of distributed

17

Figure 3.2: Functional Block Diagram of Opal Kelly Development Board. [20]

RAM. The Spartan-3 is a low-cost family and offers just enough resources for this

application. The family has been discontinued and no longer is recommended for

designs. It has been replaced with the Spartan-6 and Artix-7 families [11]. Due to

timing constraints and memory usage, a higher performance FPGA family with more

block RAM and lower fabric latency would be suggested for future improvements.

3.1.2 SDRAM

The Opal Kelly board has a 32-MByte SDRAM (Micron MT48LC16M16). It runs

at a clock rate of 100MHz. The banks are organized as 8192 rows by 512 columns by

16 bits. Read and write accesses to the SDRAM are burst-oriented and a full page

(512 x 16 bits) is written or read during an access [18]. One thing to note is that it

is Single Data Rate (SDR) synchronous SDRAM. This means that only one word of

data is transmitted per clock cycle. The SDR SDRAM reduces system performance.

This is unlike a double data rate (DDR) SDRAM which allows data transfer on the

rising and falling edge of the clock. Using DDR memory in the future would allow

18

for a higher memory bandwidth.

3.2 Leopard Imaging WVGA Camera Board

This board by Leopard Imaging incorporates an Aptina MT9V034 1/3 inch CMOS

digital image sensor which supports CS-Mount or M12 lens. It supports a frame rate

of up to 60Hz with a 752 by 480 resolution. A 60 Hz or higher frame rate is ideal so

as to reduce any motion in the scene as multiple frames must be captured.

Figure 3.3: The Leopard Imaging LI-VM34LP Board.

3.3 Digital to Analog Converter

The ADV7125 is a triple high speed video digital-to-analog converter on a single

monolithic chip. It is designed for applications such as image processing and digital

19

video systems. It has three 8-bit video DACs with complementary outputs, a high

impedance, analog output current source and a standard TTL interface. Additional

video control signals, composite SYNC and BLANK signals, are available and there

is a power save mode.

Figure 3.4: ADV7125 Functional Block Diagram. [17]

20

Chapter 4

VGA Module

This chapter gives overview of the VGA standard, VGA hardware, and HDL modules

are described.

4.1 VGA Standard

Video Graphics Array (VGA) is a video display analog standard that is mostly used

with computer monitors. VGA uses separate wires for the five following signals:

• Vertical Sync (VSYNC): a synchronization signal used to start a new frame

• Horizontal Sync (HSYNC): a synchronization signal used to start a new line

• Red, Green, and Blue: 0.7V peak-to-peak analog level that controls the color.

0.7V is full intensity and 0V is black.

Each frame is made up of a number of horizontal lines and each line is made up of

pixels. VGA is not interlaced so each line is transmitted in order from top to bottom

and the pixels from left to right. The VSYNC signal determines the frame rate and

the HSYNC and VSYNC determine the screen resolution by defining where each line

and frame starts and ends. Lines begin with an active video region where RGB values

for the pixels are output followed by a blanking region where black pixels are output.

21

During the blanking region, a horizontal sync pulse is output. The blanking interval

before the sync is referred to as the front-porch and after the sync interval is the

back-porch. A line consists of pixels controlled by the horizontal sync signal where as

the frame is made up of lines controlled by the vertical sync. The vertical sync signal

is similar to that of the horizontal sync with blanking regions consisting of lines [6].

Figure 4.1 shows a sample timing of sync signals with labeled regions.

Figure 4.1: VGA Display Area and Blanking Regions

4.2 PCB VGA Board

The ADV7125 digital-to-analog converter chip is used to convert the digital signal

from the FPGA to an analog signal for the color signals for video. A PCB board was

22

designed and built for the chip. The board includes multiple decoupling capacitors to

reduce noise pickup and resistors for doubly terminated 75 Ω connections To operate

at VGA voltage levels, a 5V supply, clock input, and the internal 1.23V power supply

are used. The clock input rate is such that refresh rate would be 60 Hz. It has 0.1”

(2.54mm) headers for connection with many prototyping development boards and

holes for a standard VGA connector. A plug-in gray-scale board was also designed

and built so that if required, only 8 data pins are needed instead of 24 data pins for

the RGB colors.

Figure 4.2: Photo of Built VGA board

4.3 VGA HDL Implementation

The VGA module’s tasks are to supply the DAC chip with digital color data and

output horizontal sync, vertical sync, and blank signals. The module has a memory

with discrete value sine wave data that is accessed and outputs the pixel data for the

23

sine-wave patterns to be projected. HDL code was written in VHDL to interface with

the VGA board and output phase-shifted patterns to be projected onto a scene.

Figure 4.3: VGA HDL Module Data Flow Diagram

4.3.1 Sync Signals

The horizontal and vertical sync signals output value is based on the value of syn-

chronous counters. When the counter value is between where the front porch ends

and the sync pulse ends, the polarity of the signal is inverted. Table 4.1 gives timing

information for 800x600 resolution running at 60Hz. The horizontal counter incre-

ments one for every pixel on the rising edge of the clock and will count to 840 pixels

at which the sync pulse will start (inverting the polarity) and lasts 128 pixels until

the back porch region. This is shown in Figure 4.3 as a comparison of the horizontal

counter with the front porch time (greater than 800+40=840 from the Timing Infor-

mation table) and the sync pulse time (less than 800+40+128=968). If the counter is

in this range, then the horizontal sync is logic high, else it is logic low. The horizon-

24

tal counter counts the number of pixels (1 per clock cycle) and the vertical counter

counts the number of horizontal lines (1 per 1056 pixels).

Table 4.1: Timing Data for 800x600 resolution running at 60Hz
Pixel Clk = 40MHz Vertical Timing Horizontal Timing

Resolution (lines/pixels)(uS) 600 15840 800 20
Front Porch (lines/pixels)(uS) 1 26.4 40 1
Sync Pulse (lines/pixels)(uS) 4 105.6 128 3.2
Back Porch (lines/pixels)(uS) 23 607.2 88 2.2

Whole Period (lines/pixels)(us) 628 16579 1056 26.4

4.3.2 Camera Signals

In order to capture the same order of patterns each time, a signal is sent when the

frame number is equal to a specified value. This tells the camera controller that it

can start capturing frames. Also, when there is a new frame projected (as evidenced

by a vertical sync pulse), a trigger signal is sent. If a camera sensor is in snapshot

mode, this will trigger the camera to capture a frame. This signal was delayed for

an experimentally determined number of clock cycles to avoid a frame change during

the exposure period.

4.3.3 Pixel Output

To output the dual-frequency patterns that were introduced in Chapter 1, a dual-port

Block RAM was instantiated with the contents initialized to unit frequency sine wave

data. The pixels of a horizontal line have the same value and for each new line, the

RAM address is increased to display a new pixel value. One port is used to output a

unit frequency sine wave and the other is for the higher frequency sine wave. These

25

pixel values are added together giving a pixel value for the dual-frequency pattern. To

get a higher frequency sine wave using a unit-frequency sine wave, each new horizontal

line increments the pixel pointer by the frequency value where as the unit-frequency

is simply incremented by one. For each new frame, the pointers are set to an offset

for the phase-shift. When an address pointer goes out of bounds by becoming too

large, it is simply wrapped around to the beginning of the periodic sine wave. Figure

4.4 shows an example of dual-frequency patterns generated using Eq. 1.7.

n = 1 n = 2 n = 3 n = 4

Figure 4.4: Dual-Frequency Patterns for N=4 with fh = 16

26

Chapter 5

Image Acquisition

In this chapter, the implementation of HDL modules to interface with the imaging

sensor and data read from it are discussed. Frames can alternatively be sent to the

FPGA from a PC for testing or alternative applications.

Figure 5.1: Image Aquisition Data Flow Diagram

5.1 System Overview

The tasks of this system are to configure the camera sensor’s registers, read pixel data

and store it into RAM and lastly output it to a PC where it can be read. Figure 5.1

27

shows a data flow diagram of the system. The camera employed is an Micron Aptina

MT9V034 752 by 480 CMOS array that runs at a typical 27MHz system frequency

and has up to a 60Hz frame rate. The operation of the sensor is controlled by writing

to registers using a two-wire interface.

5.2 Imaging Sensor

5.2.1 Camera Shuttering

Digital cameras capture images by by converting light that hits a photosensitive

sensor into an electrical signal. The amplitude of that signal depends on the intensity

and duration of light. To control the duration of light, a shutter is used. This can

be mechanically by blocking light to the sensor, using an on-sensor electrical shutter

or both. A rolling shutter in a digital camera does not capture a whole image at one

instant. Rather, different areas of an array are exposed to light at different times.

The process is as follows: a row of an array resets the current values in the array,

the exposure period starts and lastly reads the data out. This time is called the

integration period and allows the simultaneous readout of pixels and exposure. An

issue with this type of shutter is it can introduce distortions motion artifacts when

taking pictures of moving objects due to different exposure times of rows. This is

not acceptable for real-time applications. Also, intensity flicker from the projector

and light sources could result in unexpected pixel values for different areas depending

on when the exposure was. To prevent this, a global, or snapshot, shutter is ideal.

A global shutter exposes all the pixels at one instance and read out happens after

28

exposure [23].

The Micron image sensor has a TrueSnapTM global shutter where the signal charge

is transferred into an analog memory where it is isolated from any photoelectric signals

effectively ending the exposure [16].

5.2.2 Modes of Operation

Figure 5.2: Interface Signals Between Controller and Image sensor

The Aptina MTV9034 comes with three different modes of operation: master,

snapshot, and slave. In master mode, the readout timing is generated by the chip.

Readout can happen during or after the integration time. Readout of the prior frame

during the integration time is the fastest allowing a 60 Hz frame rate. Snapshot

mode is a mode where an input trigger signal initiates the capture of a frame and the

readout happens after. This mode was determined to have a maximum frame rate of

30 Hz. Figure 5.2 shows the signals required for the snapshot mode. Lastly, in slave

mode the exposure and readout timing are provided by external signals.

29

5.3 Pixel Data

The MT9V034 ADC has a resolution of 10-bits per pixel that are output in parallel

every pixel clock period. Pixel data is raw and grayscale so no Bayer filter processing

is required. The pixel clock is an inverted version of the master clock of the system

which is used as the clock to store the data into a FIFO. Frame Valid and Line Valid

signals are asserted when the pixel data output is valid. Figure 5.3 shows an example

of how the timing of the signals. When pixels from a frame are about to be output

the Frame Valid signal is asserted.

Figure 5.3: Frame Valid and Line Valid Signals [16]

When Line Valid is asserted, pixel values are being read out and stored into an

input FIFO on the rising edge of the pixel clock. Although the MT9V034 has a

resolution of 10-bits per pixel, 8-bit pixel data was decided as enough for now so the

two least significant bits of the 10-bit pixel data are truncated.

Figure 5.4: Timing Example of Pixel Data [16]

30

5.3.1 Two-Wire Interface

To change the operation of the chip, registers are written and read through a two-

wire serial interface bus. One wire is the clock and the other is the data line. In this

project, registers for operation mode, gain settings and exposure timing were set.

The protocol to write to the slave device, the CMOS image sensor, from the master

device, the FPGA, is as follows:

1. A start bit is sent by the master by pulling the data line low while the clock is

high.

2. 7 bits of the slave address and 1 bit of direction (read or write) are sent.

3. The slave acknowledges the address by sending back an acknowledgement bit.

4. The master then sends 16 bits of data, 8 bits at a time followed by an acknowl-

edgment from the slave each time.

5. The register address is incremented so the next 16 bits will be written to the

next register or a stop bit is sent by making the data line high while the clock

is high.

Open source code to implement a two-wire protocol for the CMOS sensor was found

and modified for the the specified CMOS sensor which has 8-bit addresses and 16-

bit data with an ack bit between the data. [7]. A ROM (Read-only Memory) is

initialized with the register addresses and values to be written at startup. Each

memory location is read and sent to the I2C state-machine to write the register.

31

Figure 5.5: Example 16-bit Write Sequence for Aptina MT9V034.

When a final acknowledgement is received, the next memory location is read until all

the data in the ROM has been written to the camera registers

5.3.2 Alternative Cameras

For demonstration purposes the above sensor was used chosen for the system. It

should be noted that other CMOS VGA sensors can employed with minimal changes

to the code. One possible alternative is the Cypress LUPA-300 with a 600x400 pixel

resolution, electronic global shutter, and maximum of 250 frames-per-second at full

resolution.

Off-the-shelf high-speed cameras with accessible FPGAs are also available for

purchase. One such company that makes such cameras is OptoMotive, mechatronics

Ltd. which offers high-speed cameras with a FPGA catering to real-time high-speed

image processing applications. The OptoMotive Cameleon camera uses the same

Micron Aptina sensor with a Xilinx Spartan-3E FPGA and 64MB of DDR SDRAM.

It has a USB 2.0 connection with general purpose I/O pins that could be used to

drive a a VGA port. The company offers a range of camera packages with higher

resolution sensors and more capable FPGAs with reference designs and example PC

software.

32

Figure 5.6: OptoMotive Cameleon BaseBoard [19]

5.4 Input Image FIFOs

A FIFO (First-In First-Out) memory is similar to a distributed or block RAM except

that there is no input for the address. The read and write addresses are kept track

of internally. When a write is performed, the data is stored in the memory and the

write counter automatically increments. When a read is performed, the data stored

in the memory is put on the output port and the read address is incremented. In this

way, as the name implies, the first data that is written to the FIFO is the first data to

be read out. Depending on the read and write counter values, it can be determined

if the FIFO is filled or empty.

The FIFO acts as a cache to the SDRAM. When it has enough data (512x16 bits)

for a SDRAM page, a memory write is activated. The SDRAM runs faster than both

PC and camera writes so there is no worry about overrun as long as the FIFO has a

depth greater than 512. Because of this, a 16-bit word FIFO with a depth of 1024 is

used. The depth of the FIFO is equal to the number of elements that can be written

33

to. A depth of 1024 means that the address is 10 bits (210).

Two input FIFOs are instantiated for both the PC input and the camera input.

The FIFOs are dual port allowing for simultaneous reads and writes. Reads and

writes depend on different clock domains. The camera outputs 8-bit pixels so the

FIFO has a read width of 8-bits and the memory has a read width of 16-bit words.

The PC has a read width of 16-bits and a write width of 16-bits. Writes to the FIFO

happen on the positive edge of the separate clocks from the camera and the PC.

Reads happen on the positive edge of the system clock which is running at 100MHz.

5.5 SDRAM Transfer Controller

This module controls the transfers between the FIFOs and the DRAM. The FIFOs

act as a cache to the SDRAM that holds at least a full page, 512 words, of memory

while the camera writes to or the PC reads from the FIFOs. Rather than write a byte

at time, which is slow and inefficient, reads and writes are burst-oriented meaning

a whole row of data is read or written at one time. For example, the SDRAM chip

used has its banks organized as 8192 rows by 512 columns by 16 bits. Therefore,

each memory access touches 512 by 16 bits. The Transfer Controller checks the input

and output FIFO statuses (how much data is in the FIFO). If it finds that an input

FIFO has at least a page of memory, a memory write is initiated and data is read

from the FIFO. If a read is requested and an output FIFO has at least enough space

for a page, then a memory read is initiated. The Transfer Controller also increments

the row address after each write and read and accepts inputs to set the row address

location. The imaging sensor and PC transfers are slower than the DRAM so there

34

is no fear of over or underrun of the FIFO.

Figure 5.7: Memory Controller Flow Diagram

5.6 Image Aquisition Controller

Figure 5.8 shows a flow diagram of the process to acquire frames from the camera

and store them into a FIFO. Each of the rectangular boxes correspond to stages in

the controller state machine. The SDRAM transfer controller is working in parallel

when a FIFO is filled with a page of data, a page is written to the SDRAM. After

each frame, the FIFO is flushed to SDRAM so that the results are block aligned.

This continues until all N frames have been captured and stored in to SDRAM.

35

Figure 5.8: Image Acquisition Flow Diagram

36

Chapter 6

Phase Calculation Pipeline Design

6.1 Introduction

In previous chapters, the design of the architecture to write frames from the imaging

sensor to the on-board SDRAM was discussed. With the frames stored in memory,

they now need to be processed and the phase calculated. This section centers around

Eq. 1.9 which calculates the phase-pair (φu, φh). It is rewritten here for clarity:

(φu, φh) =

(
tan−1

[∑N−1
n=0 Icn sin

(
2πn
N

)
∑N−1

n=0 Icn cos
(
2πn
N

)
]
, tan−1

[∑N−1
n=0 Icn sin

(
4πn
N

)
∑N−1

n=0 Icn cos
(
4πn
N

)
])

where φh represents the wrapped phase value of the captured pattern and φu repre-

sents the base phase used to unwrap φh.

What is apparent is that the inside of the tan−1 function, is the Discrete Fourier

Transform (DFT), second, K=1, and third, K=2, coefficients. Lastly, the inverse

tangent of the imaginary over the real result is taken, giving the phase value. In this

chapter, the overall architecture of the phase calculation operations are discussed. In

the next chapters, the individual modules that perform the DFT and Inverse Tangent

are described in detail.

37

6.2 Architecture for N=4 Patterns

In chapter 1, Equation 6.1 was introduced as the single-frequency PMP phase and

rewritten below.

φ = tan−1

[∑N−1
n=0 Icn sin

(
2πn
N

)
∑N−1

n=0 Icn cos
(
2πn
N

)
]

(6.1)

If we let N=4, this equation can be simplified such that

φ = tan−1

[
Ic1 − Ic3
Ic0 + Ic2

]
= tan−1

[
V

U

]
(6.2)

Now the argument to the inverse tangent is simply made up of a subtraction and

addition operator. Because of its simplicity, this case was first designed. Let the

result of the operation in the numerator be V and the denominator be U . When

reading from the RAM, as long as we keep track of the frame number (determined by

the location in memory) then the data read out can be multiplexed to an Arithmetic

Logic Unit (ALU) to perform the addition, the U ALU, or to perform a subtraction

operation, the ALU V , and then stored in a respective memory.

Figure 6.1: Phase Calculation Dataflow Diagram for N=4 Patterns

Remember that SDRAM reads only happen in pages so it is only possible to

read data from one frame at a time and the FPGA does not have enough resources

38

to form a distributed or block RAM in the FPGA to hold a whole image therefore

calculations are performed one page at a time. A FIFO interface was designed for

Synchronous Write, Asynchronous Read Distributed RAM. The asynchronous read

ability allows feedback of the data in memory to the ALU. The initial block of data

is written directly to the FIFO and then that data is fed back into the ALU for the

next frame data. The designed FIFO also has a address reset so that when the first

block of data is written to the FIFO, the read and write address pointers are reset to

the beginning of the FIFO. This allows the first element of data to be fed back into

the ALU and therefore, the first element is overwritten with the original data ± the

data from the first block of the next frame. The following list explains the process:

1. Read the first block of data from frame 1, Ic0.

2. Because it is the first block, it is passed through the ALU by adding 0 to it.

3. Store the result in the U FIFO.

4. Read the first block of data from frame 2, Ic1 and repeat Step 2

5. Store the result in the V FIFO.

6. Reset the FIFO addresses so the read and write address go back to zero

7. Read the first block of data from frame 3, Ic2

8. The ALU adds the Ic0 data that is present in the FIFO to Ic2 and overwrites the
FIFO memory with the result.

9. Do that above for the V FIFO but subtract.

10. The first block is done and the data transferred to the next module to perform
the inverse tangent operation.

11. Continue the above steps for the next block of memory.

The SDRAM read data width is 16-bits and pixel values are 8-bits so the ALU

hardware is duplicated to allow two pixel operations to be performed in parallel.

39

Although not discussed, the K=2 coefficient for N=4 patterns can be calculated

similarly with addition and subtraction.

This design works and has been implemented and tested. It is implemented using

simple single-cycle operations like addition, subtraction or shifting and is fast because

there is no FIFO on the direct output of the SDRAM. The pixels are processed as

they are output from the RAM. Multiple clock cycle operations like multiplication

and division can be accomplished provided they are pipelined.

There are, however, some limitations with this architecture. This architecture

works for straight line computations with a specific order of operands and operations

but is limited for more advance computation. FPGA on-chip memory is saved by only

using two FIFOs but because asynchronous reads are necessary, distributed RAM is

required. Distributed RAM takes up FPGA resources like look-up tables which also

implement logic. In comparison, Block RAM is faster and is built in to the chip so

even if it is used, it does not affect the utilization of logic resources like CLBs.

6.3 Architecture for N patterns

As discussed in the last section, the design for N=4 has a number of limitations.

Because Block RAM is dedicated and does not affect utilization of CLBs, it is okay

to make use of the FPGA on-chip memory as long as BlockRAM capacity is not

exceeded. According to the Xilinx data sheet, the FPGA chip used has a BlockRAM

storage capacity of 576·1024 bits, or 72 KiloBytes. A block of SDRAM memory takes

up 512·16bits = 1KiloByte so the FPGA has enough to store up to 72 blocks using on-

chip memory. If we increased the number of patterns to N=8 with a block of memory

40

for each frame, then there is still ample space left for input and output FIFOs, VGA

ROM, and other memory structures used in the design. This architecture has an

acceptable latency delay that the previous architecture does not due to the FFT

module.

Figure 6.2: Phase Calculation Dataflow Diagram for N Patterns

Figure 6.2 shows the architecture implemented to perform the phase calculation.

It shows that each frame has a FIFO that can hold a page of SDRAM memory. The

process of reading pages from the SDRAM is similar to the architecture for N=4

patterns where data is processed page by page. So the same page number of each

frame is read to its corresponding FIFO. Once all the FIFOs are filled, then the pixels

are sent in parallel to the FFT to implement the N-point DFT to get the two required

coefficients.

The DFT Logic, Inverse Tangent Logic, Phase Unwrapping and Fixed-Point to

Floating Point modules should be viewed as one pipeline. Each has a input dv (data

valid) and rdy (output data read) signal that feeds into the next. Once data is read

from the FIFO and input to the DFT logic, the pipeline runs without any external

41

control logic or state machine.

6.4 State Diagram

Figure 6.3 shows a flow diagram of the process to take the frames from memory and

send the data to the phase calculation logic. Each rectangular block represents a

state in the state machine. An important thing to keep track of the memory address.

The controller controls reading the first page of each frame, the second page of each

frame, and so on. An offset address of 353 is needed to jump from one frame to the

next. In addition to the offset, the page number needs to be kept. These two numbers

are added making up the memory address.

Figure 6.3: Phase Data Flow Controller

42

Chapter 7

Digital Fourier Transform Module Design

In this chapter, the techniques used to calculate the Discrete Fourier Transform mod-

ule of the Phase Calculation pipeline is described. The FFT algorithm is used to

retrieve the coefficients which are passed to the inverse tangent function to retrieve

the two phases. Lastly, the unit phase is used to unwrap the high frequency phase.

7.1 Fast Fourier Transform Theory

The Fourier Transform is a mathematical transform which allows decomposition of

a signal in its sinusoidal components. It is commonly used in signal processing by

converting the input is a time, or spatial, domain signal into the frequency domain. A

signal can be real-world analog signal that is converted to the digital domain and its

frequency components can be calculated using the Discrete Fourier Transform (DFT).

The DFT of a discrete-time signal x[n] is given by:

X[k] =
N−1∑
n=0

x[n]e
j2πkn

N where k = 0, 1, 2, ..., N − 1 and x(nT) = x[n]. (7.1)

Letting Wn = e
−j2π
N , the equation can be written as

X(k) =
N−1∑
n=0

x[n]W nk
N . (7.2)

The W term is called the twiddle factors.

43

This equation can be written out as

X(0) = x[0]W 0
n + x[1]W 0∗1

N + ...+ x[N − 1]W
0∗(N−1)
n

X(1) = x[0]W 0
n + x[1]W 1∗1

N + ...+ x[N − 1]W
1∗(N−1)
n

X(k) = x[0]W 0
n + x[1]W k∗1

N + ...+ x[N − 1]W
k∗(N−1)
n

To solve the equation requires N2 multiplications and (N −1)∗N additions resulting

in O(N2) arithmetical operations. This algorithmic complexity is very inefficient and

not useful for practical applications.

To improve this a Fast Fourier Transform (FFT) algorithm can be used to reduce

the complexity to O(N log N). The most common FFT algorithm is the Cooley-

Tukey algorithm which works by recursively decomposing a set of data into smaller

sets of data and taking the DFT until a single 2-point DFT is produced (for a radix-2

FFT) [24]. A radix-2 FFT decomposes a power of 2 element set of data in to two

interleaved transforms of size N/2 with each recursive stage.

Figure 7.1: 2-point FFT

This is done by dividing it into even(2n) and odd(2n+1) sequences and rewriting

Eq. 7.3 as:

X[k] =

N/2−1∑
n=0

x[2n]W 2nk
N +

N/2−1∑
n=0

x[2n+ 1]W
(2n+1)k
N (7.3)

With the identity,

W 2nk
N = e

−j2π
N

2nk = e
−j2π
N/2

nk = W nk
N/2 (7.4)

44

then the equation can be rewritten as:

X[k] =

N/2−1∑
n=0

x[2n]W nk
N/2 +

N/2−1∑
n=0

x[2n+ 1]W nk
N/2 (7.5)

where the two sums are N/2 point DFTs of the even and odd sets. Continuing the

process, the equations can be divided into N/4 point DFTs until only 2 point DFTs

are left [22].

A two-point DFT can be shown graphically using a butterfly diagram shown in

Figure 7.1 which is the most simple unit of a radix-2 FFT with two inputs and two

outputs. Each path goes only from left to right and the values along the path are

multiplied by the input, and at the nodes both lines are added together. To form the

individual components of a four-point DFT, two 2-point DFTs are summed together.

Figure 7.2: 8-point Radix-2 FFT

As shown in Eq. 1.3, the second and third coefficients are required to calculate

the unit and higher frequency phase. As a result, the other coefficients can be ignored

45

and the FFT calculations simplified. Figure 7.2 shows the paths required to compute

the second and third coefficient in black for N=8 patterns and the gray paths can

be ignored. Tracing through the stages and calculating the FFT gives the following

equations:

X(1) =
(
x(0)− x(4)

)
+
(
x(2)− x(6)

)
W 2

8+

{(x(1)− x(5)
)
+
(
x(7)− x(3)

)}W 1
8

(7.6)

X(2) =
(
x(0) + x(4)

)− (
x(2) + x(6) + {(x(3) + x(7)

)− (
x(1)− x(5)

)}W 2
8 (7.7)

7.2 FFT HDL Implementation

7.3 Introduction

The Cooley-Tukey FFT is a very common algorithm used in digital signal processing.

As a result, it is not hard to find configurable cores. Xilinx offers an IP Core with

its CORE Generator software to implement the FFT with transform sizes from 2m

where m = 3− 16. The Xilinx core architecture receives a START signal and begins

loading the serially. The results are also output serially [13]. This is reasonable for

an application that takes in a signal at discrete time intervals but is inefficient for

this application where all the data is available from the beginning. Furthermore, with

only two coefficients needed, some of the circuitry is used. To make up for these facts,

an FFT module was designed with parallel 8-point input and parallel output of real

and imaginary values for the second and third coefficient.

46

7.4 Single Cycle Design

The equations to calculate the coefficients, Eq. 7.6 and 7.7, can be simplified by the

following steps. Substituting the values of the the twiddle factors

W 0
8 = W 8

8 = cos(0◦)− jsin(0◦) = 1− j0

W 1
8 = W 9

8 = cos(45◦)− jsin(45◦) = 0.707− j0.707

W 2
8 = W 1

8 0 = cos(90◦)− jsin(90◦) = 0− j1

gives

X(1) =
(
x(0)− x(4)

)
+
(
x(2)− x(6)

)
(−j)+

(
x(1)− x(5)

)
+
(
x(7)− x(3)

)
(0.7− 0.7j)

X(2) =
(
x(0) + x(4)− (x(2) + x(6)

)
+
(
(x(3) + x(7))− ((x(1)− x(5)

)
(−j)

which can be broken into its real and imaginary parts:

Xr(1) = x(0)− x(4) +
(
x(1)− x(5) + (x(7)− x(3)

) · 0.707
Xi(1) = x(6)− x(2)− (

x(1)− x(5)− (x(7)− x(3)
) · 0.707

Xr(2) = x(0) + x(4)− (x(2) + x(6))

Xi(2) = x(3) + x(7)− (x(1) + x(5))

As can be seen, the results of some additions and subtractions can be reused.

The FFT module takes in eight 8-bit inputs and has four 16-bit outputs for the

Xr(1), Xi(1), Xr(2) and Xi(2) terms. When a design is synthesized, the Xilinx ISE

Project Tools give timing reports. These allow a designer to analyze the latency of

the slowest path in the design.

47

Delay: 25.750ns (Levels of Logic = 26)

Source: in1<0> (PAD)

Destination: out1i<15> (PAD)

The above snippet from the timing report shows the path of the module which the

greatest latency which is 25.750ns. The system frequency can be set appropriately to

meet this timing but will lower the performance of the system. A goal of the system

is to keep the system clock frequency at 100MHz, a 10ns period, so in order to meet

this timing, the module was pipelined.

7.5 Pipelined Design

Pipelining breaks the module down into smaller tasks where the output of one task

is the input of the next one. In this way, tasks can be executed in parallel. Also,

when a pipeline is filled and kept that way by a stream of data, valid data is available

every clock cycle leading to higher throughout of the system. For example, the timing

report shows that the operation with the most delay is the multiplication so this is

the focus of the pipelining. Figure 7.3 show a data flow diagram of the design 8-point

FFT. Pipeline registers are placed on the input and output, after the first addition

and after the multiplication. The module takes 8-bit inputs as each pixel is 8-bits.

The initial addition and subtraction gives a 9-bit result. This prevents losing any

data due to overflow when adding. Because the pixel values have a range of 0 to 255,

the subtraction operation will not use the most significant bit but it is kept so that

one module can be used for both addition and subtraction. The second stage adds

and subtract the result of the first stage to give the value that will be multiplied by

the twiddle factor. The twiddle factor equal to 0.707 is converted to a 16 bit number

48

Figure 7.3: Data Flow Diagram of the Simplified 8-point FFT with Pipeline Registers

by multiplying 0.707 · 216 giving a hex value of 0x5a82 which is a Q0.16 number

without the sign bit. The most significant bit is zero so it can be ignored. The 15-bit

twiddle factor is then multiplied by the 10-bit result from the second stage resulting

in a 25-bit Q10.15 number. This number is then truncated to become a Q10.6 fixed

point number. To implement the multiplier, a Xilinx Core generated with its CORE

49

Generator software was used. Figure 7.4 shows a few of the settings for the multiplier.

The estimated resource usage is shown in the left column and the software suggests

to use 3 pipeline stages. With the multiplier broken up in to 3 stages, the resulting

number of total pipeline stages is six.

In this design input data is latched in on the rising edge of the clock when the nd

(new data) signal is asserted. When the data has gone through the pipeline, the dv

(data valid) signal is asserted and the data can be used. The dv signal is implemented

with a simple shift register with a width equal to the clock cycle delay of the pipeline.

At each clock cycle, the contents of the shift register are shifted right and nd signal

is shifted in.

Figure 7.4: Xilinx Multiplier IP Core Settings

7.6 Pipelining Results

By pipelining the design into six stages, a decrease in 80% of the latency was achieved.

It should also be noted that the single cycle design used a Complex Multiplier Xilinx

50

Core which requires three multiplication results as opposed to the one here that

only needs two. Also, the Xilinx Multiplier Core has a configuration option for

multiplication by the constant which further simplifies the implementation of the

multiplier.

Timing Summary:

Speed Grade: -4

Minimum period: 5.042ns (Maximum Frequency: 198.334MHz)

Minimum input arrival time before clock: 4.643ns

Maximum output required time after clock: 7.430ns

Maximum combinational path delay: No path found

This snippet from the timing reports shows that the system frequency of 100MHz is

well under the maximum frequency of the module.

51

Chapter 8

Inverse Tangent Module Design

8.1 Introduction

In the Kai et al. paper, quick and accurate phase calculations like the inverse tangent

are made possible by a look-up table (LUT). It is estimated that for phase values

of the N=3 case of the dual frequency equations, approximately 2MB (512·512·64

bits) of memory is necessary. This is too big to store in the on-chip BlockRAM and

although with a 32 MB RAM a look-up table is a possibility, is actually inefficient on

an FPGA system. The reason is because RAM reads can take many clock cycles. If

we want to get the phase data for even one pixel then we would have to get the phase

values and read a whole page out of memory. This could be mitigated by using a

cache or other technique but if we can find a hardware efficient algorithm with good

enough accuracy and single clock cycle latency, then the performance will increase.

Luckily, there are several hardware efficient algorithms to calculate trigonometric

functions. It is possible to use series or polynomial approximation but even better

is a CORDIC algorithm for low level hardware. CORIC stands for COordinate

Rotation DIgital Computer. The CORDIC algorithm was developed by Jack Volder

in 1959 to replace an analog resolver for measuring degrees of rotation on an B-58

bomber’s navigation computer and what was needed was a real time algorithm with

52

little hardware [9].

What makes the CORDIC algorithm fast and efficient is the fact that it requires

no multiplication hardware. Binary numbers are only multiplied or divided by factors

of 2n which are simply shifts n places to the right or the left, respectively. Also, the

operations are limited to addition and subtraction, comparing two numbers to see if

larger or smaller, shifts, and table look-ups. These are all cheap and fast operations

in comparison to multiplication and division. [10].

8.2 CORDIC Theory

The CORDIC algorithm works by performing a vector rotation as a sequence of

smaller rotations. The vector rotation equation rotates a point P = (x, y) through an

angle of θ degrees. The resulting rotated point in the Cartensian plane has coordinates

where

x
′
= xcosθ − ysinθ (8.1)

y
′
= xsinθ − ycosθ (8.2)

This can be rearranged as:

x
′
= cosθ · [x− ytanθ] (8.3)

y
′
= cosθ · [y + xtanθ] (8.4)

If the each rotation angles are limited to tan(θ) = ±2−i where i is the iteration num-

ber, then the tangent term is expressed as a shift. The cosine term cos(tan−12−1) =

1/
√
1 + 2−2i which is a scale constant ki. The product of these k terms is the gain

53

Table 8.1: CORDIC Algorithm Iterations for tan−1(2.5)

i n x y 2−n Phase Shift ◦ Cum. Angle

2.000000 5.000000 0.000
1 5.000000 -2.000000 -90 -90.000
2 0 7.000000 3.000000 1.000000 45 -45.000
3 1 8.500000 -0.500000 0.500000 -26.565051 -71.565
4 2 8.625000 1.625000 0.250000 14.0362435 -57.529
5 3 8.828125 0.546875 0.125000 -7.1250163 -64.654
6 4 8.862305 -0.004883 0.062500 -3.5763344 -68.230
7 5 8.862457 0.272064 0.031250 1.78991061 -66.440
8 6 8.866708 0.133588 0.015625 -0.8951737 -67.335
9 7 8.867752 0.064317 0.007813 -0.4476142 -67.783
10 8 8.868003 0.029677 0.003906 -0.2238105 -68.007
11 9 8.868061 0.012357 0.001953 -0.1119057 -68.119
12 10 8.868073 0.003697 0.000977 -0.0559529 -68.175
13 11 8.868075 -0.000633 0.000488 -0.0279765 -68.203
14 12 8.868075 0.001532 0.000244 0.01398823 -68.189
15 13 8.868075 0.000449 0.000122 -0.0069941 -68.196
16 14 8.868075 -0.000092 0.000061 -0.0034971 -68.199
17 15 8.868075 0.000179 0.000031 0.00174853 -68.197
18 16 8.868075 0.000043 0.000015 -0.0008743 -68.198
19 17 8.868075 -0.000024 0.000008 -0.0004371 -68.199

of the system. The gain can be calculated in advance by the number of iterations

and accounted for by multiplying the result with the inverse of the gain. Removing

the scale constant ki and introducing a third equation for z which accumulates the

angles gives:

xi+1 = xi − yi · di · 2−i (8.5)

yi+1 = yi + xi · di · 2−i (8.6)

zi+1 = zi − di · tan−1(2−i) (8.7)

where di = ±1 depending on the direction of rotation.

The CORDIC algorithm can easily understood with an example. Let x = 2 and

y = 5 and finding tan−1(5/2). The gain value mentioned above is ignored because we

54

are only interested in phase.

1. Check if y is greater than or less than zero. If less than, rotate by -90◦otherwise

rotate by 90◦.

2. Continue to rotate by tan−1(2−n) from 0 to n. Each time evaluate y and decide

which direction to rotate. Accumulate the degrees rotated in total.

The steps in the process can be seen in Table 8.1. It is clear from the table that

the more iterations completed, decided the number of bits of precision in hardware,

the closer the cumulative angle value gets to the actual phase value while y and θi

approaches zero.

The iterative process is not only simple but it turns out to be accurate with enough

iterations. As proven in [10], the error made in computing n+1 iterations is no more

than 1/2n. For a 32-bit output precision implementation 1/232 = 2.32 × 10−10 or

approximately 8 decimal places of accuracy.

8.3 CORDIC Implementation

The architecture uses a Xilinx IP CORDIC 4.0 core generated using the Xilinx Core

Generator software. A CORDIC core could be designed for this project or an open

source core found online but a fully tested Xilinx IP Core is preferred. Xilinx cores

are optimized for the FPGA architecture so they can have a high performance and

efficiently utilize the resources.

The CORDIC core can implement the following equation types:

• Rectangular and Polar Conversion

55

Figure 8.1: A Diagram Illustrating the Rotations in the CORDIC Algorithm

• Trigonometric

• Hyperbolic

• Square Root

A block diagram of the CORDIC core is presented in Figure 8.2. The inputs used

for the inverse tangent operation are the X, Y, ND and the outputs used are Phase

output and the RDY signal. ND is logic high when new data is on the input ports.

RDY is logic high when data is ready on the output. The coarse rotation option

56

Figure 8.2: Xilinx CORDIC Core Block Diagram [14]

extends the Phase range from the first quadrant, −π/4 to π/4, to the full circle −π

to π .

As the CORDIC core specifications sheet presents, the Inverse Tangent operation

has the following range for inputs and outputs. The input vectors are in Q2.N format

Figure 8.3: Xilinx ArcTan I/O and Ranges [14]

with an implied sign bit and single integer bit. The output angle, expressed in radians

is a fixed-point 2’s complement number in Q3.N format with an implied sign bit and

two integer bits. An example of the input and output is below with a width set to

57

10 bits:

Xin = 0010110000 = 00.10110000 = 0.6875 (8.8)

Yin = 0010000000 = 00.10000000 = 0.5000 (8.9)

Pout = 0001010100 = 000.1010000 = 0.625 (8.10)

The core has two architecture configurations : parallel with single-cycle throughput

and Word Serial. Word Serial uses a single shift-addition/subtraction stage and with

the output feeding back to the input. It minimizes device utilization but has a latency

of N clock cycles for an N bits of accuracy on the output.

Figure 8.4: CORDIC Word Serial Architecture [14]

The architecture configuration that is used is a parallel architecture configuration.

It can perform with single-cycle data throughput but uses more resources because it

has a shift-addition/subtraction operation for each bit of accuracy.

58

Figure 8.5: CORDIC Parallel Architecture [14]

8.4 Quantization Error

The CORDIC core has two sources of quantization error. The Output Quantization

Error due to Input Quantization is from the uncertainty of the 1/2 LSB on the inputs.

Because the inverse tangent depends on the ratio Y/X, a small X input can greatly

affect the phase output. To lessen the effect of this quantization error, values are

scaled up or zero padded. As seen in the FFT module, the multiplication operands

take a 10-bit input and the final result is truncated to a 16-bit output. The result

was not truncated any further to reduce loss of precision and lessen this quantization

error. The other source of quantization error is due to the internal precision. As

we saw in the CORDIC example above, the more angle iterations performed, the

more precise the rotations were and hence the better the accuracy. By increasing the

output result bit precision, this source of quantization error can be minimized.

8.5 Comparison of CORDIC and Matlab ATAN2

To check the accuracy, the output of the CORDIC core was compared to the Four-

quadrant inverse tangent, ATAN2(y,x), function in Matlab.

59

CORDIC cores generated with an 8-bit input (Q1.6) and 8 (Q2.5), 16 (Q2.13),

and 32 (Q2.29) bit outputs were simulated and the results compared. Figure 8.6

shows a section of the results from the simulation where x=32 and y was changed

from -64 to 64. The 8-bit output with its low precision does not have a very accurate

result in comparison to the 16-bit and 32-bit results.

−42 −40 −38 −36 −34 −32 −30 −28 −26 −24

−1

−0.95

−0.9

−0.85

−0.8

−0.75

−0.7

−0.65

y (x = 32)

R
ad

is
n

CORDIC Algorithm Precision Comparison

8 bit
16 bit
32 bit
Matlab Atan2

Figure 8.6: Comparison of CORDIC Core with Different Output Precisions

The mean of the difference of the double-precision floating point result from Mat-

lab and the CORDIC cores gives 0.0141 radians for the 8-bit output, 5.29 × 10−5

radians for 16-bit output and 9.24× 10−10 radians for 32-bit output. These numbers

are roughly equivalent to 2−(nbits−2).The 32-bit output is deemed accurate enough for

this application.

60

During testing, a case where the CORDIC core generates a significantly different

value from the Matlab ATAN2 function was found. When the y value is equal to zero

and x<0, the Matlab result is π and the CORDIC result is −π. This is not an issue

and is discussed in the Results chapter.

8.6 Results

The CORDIC core was generated using the Xilinx Core Generator software. The

CORDIC algorithm takes 16 bit inputs for X and Y and has a 32-bit output. 32-bit

precision on the output means that the minimum fractional representable is 2−29 =

1.86× 10−9 giving log10(2
29) = 8.72 ≈ 8 fractional decimal digits. This is comparable

to single-precision floating number precision with about 7 fractional decimal digits of

accuracy.

61

Chapter 9

Phase Unwrapping

9.1 Introduction

The inverse tangent function will return a value in the range (−π, π] If the phase

exceeds this range, as is the case of frequencies higher than 1, it will be wrapped, or

repeated, around so it remains in this range. This introduces unwanted 2π jumps.

With the pair of frequencies obtained the higher frequency phase φh needs to be

”unwrapped” in order to find an absolute phase thereby getting rid of the remove

ambiguity.

In order to unwrap the high frequency using a spatial approach, an algorithm

needs to count the number of periods from one side to the other and adding or

subtracting multiplies of 2π. Another way is to use a unit frequency as a reference to

unwrap phase with 2π jumps. This method is less computationally intense and does

not suffer the problem of discontinuities. Because the high and unit frequencies are

projected together, as opposed to being projected separately, the acquisition speed is

faster and more suitable for real-time applications.

The following pseudo-code was given to unwrap the higher phase with a unit fre-

quency:

unitPhase = calculated phase between 0 and 2PI from k=1 term

62

highPhase = calculated phase between 0 and 2PI from k=2 term

N = the high frequency value

highPhaseScaled = highPhase/N;

temp1 = N*(unitPhase - highPhaseScaled) / (2PI);

// unit phase is now discrete steps from 0 to N-1

temp2 = round(temp1);

combinedPhase = 2PI * temp2 / N + highPhaseScaled;

As can be seen from the pseudo-code, the unit phase is subtracted from the scaled

down high frequency phase and the result is scaled resulting in discrete steps from 0

to N-1. The round function rounds to the nearest integer which removes the noise

from the unit phase. The robust high frequency phase that is scaled down by N is

then added and the result is scaled down to fit in the range (0, 2π]. Figure 9.1 shows

graphically how the combined phase looks like even with noise or distortion on the

unit frequency. If the input phases are on the range of −π to pi as is the case with

the CORDIC core, then the phases are shifted to range between 0 and 2π.

9.2 Implementation of Phase Unwrapping on FPGA

The pseudo-code has division and multiplication operations and the constant π. Al-

though possible to implement, the pseudo-code performance can be increased by

simplifying the code to only use shifts, addition, subtraction, comparisons, and a

look-up table. The multiplication and division of the N term can be done with shifts

if N = 2n. In the temp1 term, it is not necessary to scale it to 0 to N if the round

function is rewritten.

The division of 2π is removed, making the range of 0 to (N-1)*2PI. To account for

this the round functionality was changed. The round function rounds an integer up if

the fractional component is greater than or equal to 0.5 and rounds down otherwise.

63

Figure 9.1: Unit Phase Unwrapping a High Frequency Phase. The Unwrapped Phase
is at the Bottom.

If the round function is written such that 0.5 is changed to π and the nearest integer

is a multiple of 2π then the removal of the division of 2π is accounted for. This

is implemented by comparing if the value is less than odd multiples of π. If the

comparison evaluates true, the result is rounded down the the even multiple of pi.

For instance, 3.5 is greater than π but less than 3π so it is rounded to 2π. After

the round, the result is divided (shifted) to be between 0 and 2π and added to the

already scaled down high frequency phase value.

64

Figure 9.2: Data Flow Diagram Showing the Phase Unwrap Module

9.3 Conversion to Floating Point

Throughout the phase calculation pipeline, fixed-point numbers have been used.

Fixed-point arithmetic is a simple representation and cheap to compute and therefore

used in a lot of digital signal processors. The phase data needs to be read and a model

constructed by a PC and PCs commonly use the IEEE 754 floating point standard.

Therefore, a core to convert from a 32-bit Q3.29 number to single precision floating

point is instantiated.

The core used is a Xilinx LogiCore IP Floating-Point Operator v5.0 [15]. It

provides floating-point arithmetic on an FPGA. One of the operations it is capable

of is conversion from fixed-point to floating point. The inputs are the fixed point

data, a nd (new data) signal that is connected to the unwrap module’s output data

rdy signal and has a clock. The outputs are a 32-bit single precision floating point

number, which is connected to the Ouput FIFO’s data in port, and an output data

rdy signal, which is connected to the Output FIFOs write enable port.

65

Chapter 10

Thresholding of Phase Data

In the previous chapters, the implementation of an architecture to calculate phase

data was described. As mentioned in the introduction, the magnitude of k=1 DFT

coefficient, Bc, can be used to indicate the amplitude of the sinusoid reflecting off

of a point on the object surface. For pixels where Icn is constant or not affected by

the projected sinusoid patterns, Bc will be close to zero so Bc can be employed as a

shadow or noise filter.

The magnitude of a complex number calculated as
√

X2
r +X2

i where Xr and Xi

are the real and imaginary components of the FFT coefficient. The magnitude can

be complicated to calculate but because magnitude is used as a filter, full precision

is not necessary. To make the calculations considerable simple with a minor loss in

accuracy, a well known technique that is described in [25] was used. The algorithm

estimates the magnitude as:

Mag ≈MAX(|Xr|, |Xi|) + 0.5 ·MIN(|Xr|, |Xi|) (10.1)

Using this equation results in an average error of -0.086 which is acceptable for

filtering. The result is then compared to a set threshold value and if the magnitude

is less than the set threshold, the pixel value is zeroed and shows up as a black pixel.

66

Figure 10.1: Phase Calculation Dataflow Diagram with Thresholding

10.1 Implementation

The absolute value of real and the imaginary parts of k=1 coefficient from the FFT

is first taken by checking if the most significant bit is 1, a negative number. If

so, then the absolute value is taken. The two numbers are then compared. The

minimum number is shifted right one, dividing it by two, and the result is added to

the maximum number. The result is then compared to a set threshold and the binary

result (1 = greater than threshold, 0 = less than threshold) is stored in a first-word

fall-through FIFO. When the phase unwrap data is ready, the FIFO data is read and

the phase data is zeroed if the FIFO output is a 0 before sending phase data to be

converted to a floating-point number. Figure 10.1 shows the phase dataflow diagram

with thresholding modules added.

67

Chapter 11

GUI Application

A GUI application using the Qt libraries and the Opal Kelly C++ API to commu-

nicate with the FPGA board was designed and written. This application recognizes

when any Opal Kelly board is plugged in and will dynamically update a combo-box

with the type of board. It is possible to plug in several boards and then select which

one the user wants to use. The Opal Kelly software ships with their FrontPanel soft-

ware to program the FPGA board but this is not necessary because programmable

capability was built it into the designed Qt application. When the ”Capture” button

is pressed, a sequence of 8 frames from the CMOS image sensor is captured and writ-

ten into the SDRAM. In addition to data from the camera, binary data of images can

be sent from the PC for processing. To send data, the ”Send Image” button is clicked

and up to 8 images can be stored in the SDRAM. The ability to take external data

assists with testing the device and provides an alternative for calculating phase. The

”Show Image” button will read and show the 8 images from the SDRAM. Click the

”Phase Data” button and the frames in memory will be used to calculate the phase

data. The read frame data and phase data is saved as a binary file in the directory of

the application. The sent and captured images are shown in eight boxes on the GUI.

The application can display video data as it receives phase data. The threshold level

68

for filtering of phase data can be set in the application.

Figure 11.1: Screenshot of the GUI Application.

69

Chapter 12

System Analysis and Results

12.1 Introduction

This chapter provides information about the system architecture performance and

results. The modules of the HDL code were tested with simulation test benches

before they were experimentally tested on the FPGA as a system.

The architecture design works as described and is able to calculate the unit and

high frequency phase properly and combine the two into a single phase value. The

results were compared to a Matlab implementation using sample test data. The

system can project patterns and take pictures of the scene.

12.2 Hardware Prototype

Figure 12.1 shows the hardware prototype built for this project. The adapter board

connects the camera board and VGA board to the FPGA breakout board. A pen is

shown for scale.

12.3 Results

To first test if the system is working, dual-frequency images were generated and its

phase calculated with Matlab and the FPGA and the results were compared. Figure

70

Figure 12.1: The Hardware Prototype

12.2 shows eight dual-frequency patterns that were used as test input.

The results of the phase calculation are shown in Figure 12.3 The phase calcula-

tions look identical. To further test the FPGA phase calculation, random data was

generated and the results were compared.

71

Figure 12.2: Eight Dual Frequency Patterns where Ap = 128 and Bp = 60

Figure 12.3: Phase Data for N=8

72

Figure 12.4 shows the difference between the double-precision floating point Mat-

lab phase result and the FPGA phase result on a pseudorandom numbers input test.

Most of the difference results is on the order of 10−7 or smaller. The difference of

-6.28 is due to the difference between the CORDIC result and the ATAN2 function

as discussed in Section 8.5. These pixels are expect to be at the top or bottom edge

of the projected pattern and will often by filtered out. The elements where the dif-

ference of 0.3927 is due to a lower precision (32-bit) in the round function circuitry

for phase unwrapping. These are numbers that are right on the edge of either being

rounded up or down. These differences are deemed acceptable for this application.

Figure 12.4: Uniformly Distributed Pseudorandom Numbers Test. Difference between
Combined Phase Result from Matlab and FPGA.

73

Figure 12.5 shows the results of an actual capture using the built projector-camera

system before calibration. The unit-frequency phase shows crosstalk of the patterns.

The expected result is a smooth gradient like that shown on Figure 12.3.

Figure 12.5: Capture of Projected Patterns Showing Crosstalk

It was hypothesized that this was a result of the non-linear gamma of the projector

which is common on display equipment. To determine the response curve, a set of

256 uniform gray-scale patterns ranging from 0 to 255 were projected on to a surface

and a image captured for each pattern. If Ip(x, y) is the intensity of the pattern to be

74

projected and Ic(x, y) is the value of a given pixel pixel of the captured image then:

Ic(x, y) = H(Ip(x, y)) (12.1)

where H is the non-linear monotonic response function giving the correspondence

of the pixels value and the luminance from the projector. With H determined, a

compensated Ip
′
can be computed with the equation:

Ip
′
(x, y) = H−1(Ip(x, y)) (12.2)

Figure 12.6 shows a non-linear response curve with Ip on the x-axis and Ic on the

y-axis. A small section of each image was sampled and the mean taken giving the

value Ic.

Figure 12.6: Projector-Camera Response Curve

Figure 12.7 shows a fixed linearized response curve. A look-up table ROM was

75

generated with the Xilinx core generator software and initialized with the inverse re-

sponse function H−1 values. The summation of the unit frequency and high frequency

values, is the data input to the ROM and the output is the compensated projector

pixel value.

Figure 12.7: Projector-Camera Linearized Response Curve

With the response curve now linearized, the patterns were captured again giving

a cleaner unit-phase without the crosstalk as shown in Figure 12.8.

76

Figure 12.8: Capture of Projected Patterns

The above images show noise in the areas where the pattern is not being projected.

Setting a threshold value for the magnitude will remove the noise leaving only pixels

with 3-D data. Figure 12.9 shows a scene with an object. The top image is the

magnitude image. This is used as a filter and could also be used as a texture in the

resulting 3-D construction. The second image shows phase data without thresholding

and the third image shows phase data with thresholding.

77

Figure 12.9: Magnitude and Phase with and without thresholding

78

12.4 Timing Analysis

12.4.1 Image Aquisition

The camera module operates at 27MHz with an 8-bit interface. The FPGA system

clock is 100Mhz. A frame is 360960 bytes. If the camera runs at 60 Hz, a frame

is written every 16.7ms to the FIFO. Because the SDRAM runs at 100MHz, faster

than the data coming in, the FIFO is never filled. A frame takes up 352.5 blocks of

memory so the last block of a frame is flushed from the FIFO after a frame is written

so as to keep the frames block aligned in memory. The block aligned frames can

be accessed with an offset of 353 rows. In total, to write 8 frames from the camera

module, it takes about 134ms (7.5Hz).

12.4.2 Phase Calculation

The data from SDRAM first needs to be read into the Frame FIFOs, a page at a

time. The latency between supplying a column address and receiving the data is

specified as 3 clock cycles. To read one page, the FIFOs take 512·8 clock cycles.

With a 100MHz clock, the time it takes to read all pages of 8 frames from SDRAM

to a FIFO is 14.54ms or 69Hz. This is a memory bandwidth of 1.58Gb/s. There is

also the effect of refresh and efficiency that is ignored.

On the phase calculation side, the first block of frame data for each of the eight

frames are read, passed to the Phase Calculation pipeline. Because the memory has

a data bus length of 16-bits, two pixels of data comes out every clock cycle. In

this architecture, the pipeline is duplicated so that both pixels can be processed in

79

parallel. In total, the Phase Processing pipeline has a delay of 51 clock cycles. With

512 words per page, a page takes 563 clock cycles and there are 353 total pages. With

a 100Mhz clock, the data for all 8 frames are processed in 1.987ms or 503Hz.

Once the frames are in SDRAM, all 8 frames are read and phase data is calcu-

lated in 16.5ms giving a rate of 61Hz per 8 frames. The Phase Calculation Pipeline

is significantly faster than image acquisition allowing for a future improvement of

continuous capture of frames.

12.4.3 Improving Performance

With the above timing analysis, this section will discuss what is necessary for a higher

performing system.

Every second, the camera running at 60Hz with 360960 bytes per frame writes

21.6 MB to the RAM. As found in the section above, the memory bandwidth of the

RAM is 1.58Gb/s or 198.7 MB/s, well above the camera bandwidth. It is theoretically

possible to output phase images up to 61 frames per second (assuming the output

USB transfer rate is fast enough). There are, however, several limitations in the

current hardware and architecture. The first is that ideal phase image frame rate

is calculated as the frames rate of the camera divided by the number of patterns.

Therefore, a 60Hz frame rate camera with 8 patterns has a maximum phase image

frame rate of 7.5 Hz. In the current design, frames are captured, then phase is

calculated sequentially, then frames are captured again. It would be ideal to have the

frames from the camera continuously written to RAM so that none are missed. This

requires coordination of writes and reads to RAM. A simple way to do this would

80

be to write N frames to RAM and afterwards read the N frames for processing while

keeping the data coming from the camera in a FIFO memory on the FPGA. With

the current hardware, in the time that it takes to read 8 frames from memory for

processing, 314 kB will be written to the FIFO which is more than is available on the

FPGA. To overcome this, a higher memory bandwidth is necessary. The FPGA only

has 72kB of block RAM space and the majority of it is already being used.

In comparison to the Opal Kelly XEM3010-1500 which is used in this project,

the Opal Kelly XEM6010-LX45 cites a maximum bandwidth of 10Gb/s and 261kB

of on-chip Block RAM. Given the maximum bandwidth and ignoring latency delays,

reading 8 frames of data from RAM drops from 14.54ms to 2.31 ms. This requires

only a 50kB FIFO. This board would allow for simultaneous capture and processing

of the data.

Lastly, the output architecture would need to be rewritten. Currently, when the

phase and magnitude data is calculated, it is written back to the RAM. This would

need to be changed such that the resulting data is sent directly over the USB interface.

Each 8-bit pixel has a 32-bit result for both phase and magnitude resulting in a total

of 2.8 MB per result. For a USB 2.0 interface, Opal Kelly’s test indicate tests up to

38 MB/s although this depends on a number of factors [21]. If 8-patterns are used

at 60Hz resulting in phase and magnitude data every 7.5 Hz then a transfer rate of

atleast 21 MB/s is needed. Opal Kelly also offers USB 3.0 boards with rates of 300

MB/s.

81

12.5 HDL Simulations

12.5.1 Fast Fourier Transform

Figure 12.10: FFT Simulation

82

12.5.2 Phase Calculation Pipeline

Figure 12.11: Phase Calculation Pipeline Part 1

83

Figure 12.12: Phase Calculation Pipeline Part 2

84

Chapter 13

Conclusion

This thesis provided a detailed explanation of hardware and software techniques used

to design, implement, and validate a computer architecture to implement a dual-

frequency structured light illumination algorithm. The research accomplished the

objectives outlined in Chapter 1. Output phase data from the system was tested and

evaluated to be correct. Section 13.2 shows the FPGA device utilization of slices is

85%. The HDL code was designed with Xilinx ISE 13.4 and tested using the Xilinx

ISim software.

13.1 Contributions

• The calculation of the accurate phase and magnitude data for the dual-frequency

algorithm was designed and implemented in a Spartan-3 FPGA chip.

• Able to control the output of a light projector using the VGA standard and

read in frames from a CMOS image sensor. The two are synchronized.

• A prototype FPGA-Camera-Projector SLI system was designed and built De-

sign and build a prototype system controlled by a single FPGA. Performance

was maximized with available hardware.

85

• The entire system was simulated, tested experimentally, and validated with

results from the algorithm running on a PC.

13.2 Future Work

The performance of the system can be improved with architecture and hardware

modifications and upgrades. The architecture can be modified from push-to-start

camera operation to continuous video capture such that reading in frames from the

camera and processing of frames in memory can happen simultaneously. The output

architecture will also have to be modified so that the result is not written back to

RAM but sent directly to a PC via USB interface.

Hardware can be improved with a camera with a higher frame rate, such as a

LUPA-300, will help achieve the goal of making SLI more real-time. A higher per-

formance FPGA will allow for lower latency times, a faster clock, and more logic

resources. A RAM with a higher bandwidth will allow more throughput. Details of

the required hardware specifications are discussed in section 12.4.3.

To achieve a smaller form factor, a board can be built that cuts the size in half

by putting the FPGA prototype board on the back of the adapter board with the

camera and VGA interface on the top.

86

Appendix

FPGA Resources Used

Selected Device : 3s1500fg320-4

Number of Slices: 11347 out of 13312 85%

Number of Slice Flip Flops: 18284 out of 26624 68%

Number of 4 input LUTs: 19976 out of 26624 75%

Number used as logic: 19460

Number used as Shift registers: 324

Number used as RAMs: 192

Number of IOs: 121

Number of bonded IOBs: 119 out of 221 53%

IOB Flip Flops: 91

Number of BRAMs: 23 out of 32 71%

Number of GCLKs: 5 out of 8 62%

Number of DCMs: 1 out of 4 25%

Unpipelined 8 point FFT Timing Report

Speed Grade: -4

Minimum period: No path found

Minimum input arrival time before clock: No path found

Maximum output required time after clock: No path found

Maximum combinational path delay: 25.750ns

Timing Detail:

All values displayed in nanoseconds (ns)

===

Timing constraint: Default path analysis

Total number of paths / destination ports: 11612104 / 64

Delay: 25.750ns (Levels of Logic = 26)

Source: in1<0> (PAD)

Destination: out1i<15> (PAD)

Data Path: in1<0> to out1i<15>

Gate Net

87

Cell:in->out fanout Delay Delay Logical Name (Net Name)

-- ------------

IBUF:I->O 2 0.821 1.216 in1_0_IBUF (in1_0_IBUF)

begin scope: ’x1mx5’

LUT3:I0->O 1 0.551 0.000 U0/xst_addsub/i_baseblox.i_baseblox_

MUXCY:S->O 1 0.500 0.000 U0/xst_addsub/i_baseblox.i_baseblox_

MUXCY:CI->O 1 0.064 0.000 U0/xst_addsub/i_baseblox.i_baseblox_

MUXCY:CI->O 1 0.064 0.000 U0/xst_addsub/i_baseblox.i_baseblox_

MUXCY:CI->O 1 0.064 0.000 U0/xst_addsub/i_baseblox.i_baseblox_

MUXCY:CI->O 1 0.064 0.000 U0/xst_addsub/i_baseblox.i_baseblox_

MUXCY:CI->O 1 0.064 0.000 U0/xst_addsub/i_baseblox.i_baseblox_

MUXCY:CI->O 1 0.064 0.000 U0/xst_addsub/i_baseblox.i_baseblox_

MUXCY:CI->O 0 0.064 0.000 U0/xst_addsub/i_baseblox.i_baseblox_

XORCY:CI->O 14 0.904 1.382 U0/xst_addsub/i_baseblox.i_baseblox_

end scope: ’x1mx5’

begin scope: ’compmult’

begin scope: ’blk00000003’

LUT2:I1->O 1 0.551 0.000 blk000000c1 (sig0000014b)

MUXCY:S->O 0 0.500 0.000 blk000000c0 (sig00000148)

XORCY:CI->O 9 0.904 1.124 blk000000bd (sig0000007f)

MULT18X18:B17->P22 1 4.214 1.140 blk00000007 (sig0000008b)

LUT2:I0->O 1 0.551 0.000 blk00000051 (sig000000fb)

MUXCY:S->O 1 0.500 0.000 blk00000050 (sig000000f8)

XORCY:CI->O 1 0.904 1.140 blk0000004c (pi(14))

end scope: ’blk00000003’

end scope: ’compmult’

begin scope: ’out1radd’

LUT2:I0->O 1 0.551 0.000 U0/xst_addsub/i_baseblox.i_baseblox_

MUXCY:S->O 0 0.500 0.000 U0/xst_addsub/i_baseblox.i_baseblox_

XORCY:CI->O 1 0.904 0.801 U0/xst_addsub/i_baseblox.i_baseblox_

end scope: ’out1radd’

OBUF:I->O 5.644 out1r_15_OBUF (out1r<15>)

--

Total 25.750ns (18.947ns logic, 6.803ns route)

(73.6% logic, 26.4% route)

Pipelined FFT Timing Report

Timing Summary:

Speed Grade: -4

88

Minimum period: 5.042ns (Maximum Frequency: 198.334MHz)

Minimum input arrival time before clock: 4.643ns

Maximum output required time after clock: 7.430ns

Maximum combinational path delay: No path found

Timing Detail:

All values displayed in nanoseconds (ns)

===

Timing constraint: Default period analysis for Clock ’clk’

Clock period: 5.042ns (frequency: 198.334MHz)

Total number of paths / destination ports: 4143 / 781

Delay: 5.042ns (Levels of Logic = 19)

Source: x1mx5_p_x7mx3mult/blk000000bd (FF)

Destination: x1mx5_p_x7mx3mult/blk00000032 (FF)

Source Clock: clk rising

Destination Clock: clk rising

Data Path: x1mx5_p_x7mx3mult/blk000000bd to x1mx5_p_x7mx3mult/blk00000032

Gate Net

Cell:in->out fanout Delay Delay Logical Name (Net Name)

-- ------------

FDRE:C->Q 1 0.720 1.140 blk000000bd (sig00000019)

LUT2:I0->O 1 0.551 0.000 blk00000030 (sig00000035)

MUXCY:S->O 1 0.500 0.000 blk0000002f (sig0000001f)

MUXCY:CI->O 1 0.064 0.000 blk0000002d (sig0000002c)

MUXCY:CI->O 1 0.064 0.000 blk0000002b (sig0000002d)

MUXCY:CI->O 1 0.064 0.000 blk00000029 (sig0000002e)

MUXCY:CI->O 1 0.064 0.000 blk00000027 (sig0000002f)

MUXCY:CI->O 1 0.064 0.000 blk00000024 (sig00000030)

MUXCY:CI->O 1 0.064 0.000 blk00000021 (sig00000031)

MUXCY:CI->O 1 0.064 0.000 blk0000001e (sig00000032)

MUXCY:CI->O 1 0.064 0.000 blk0000001b (sig00000033)

MUXCY:CI->O 1 0.064 0.000 blk00000018 (sig00000034)

MUXCY:CI->O 1 0.064 0.000 blk00000015 (sig00000020)

MUXCY:CI->O 1 0.064 0.000 blk00000012 (sig00000021)

MUXCY:CI->O 1 0.064 0.000 blk0000000f (sig00000022)

MUXCY:CI->O 1 0.064 0.000 blk0000000c (sig00000023)

MUXCY:CI->O 1 0.064 0.000 blk0000000a (sig00000024)

MUXCY:CI->O 1 0.064 0.000 blk00000008 (sig00000026)

MUXCY:CI->O 1 0.064 0.000 blk00000006 (sig00000028)

XORCY:CI->O 1 0.904 0.000 blk00000003 (sig00000059)

FD:D 0.203 blk00000032

89

--

Total 5.042ns (3.902ns logic, 1.140ns route)

(77.4% logic, 22.6% route)

FPGA Pin Mappings

#-------------------------------

FrontPanel Host Interface pins

#-------------------------------

NET "hi_in<0>" LOC = "N10";

NET "hi_in<1>" LOC = "V2";

NET "hi_in<2>" LOC = "V3";

NET "hi_in<3>" LOC = "V12";

NET "hi_in<4>" LOC = "R8";

NET "hi_in<5>" LOC = "T8";

NET "hi_in<6>" LOC = "V8";

NET "hi_in<7>" LOC = "V7";

NET "hi_out<0>" LOC = "V10";

NET "hi_out<1>" LOC = "V11";

NET "hi_inout<0>" LOC = "T7";

NET "hi_inout<1>" LOC = "R7";

NET "hi_inout<2>" LOC = "V9";

NET "hi_inout<3>" LOC = "U9";

NET "hi_inout<4>" LOC = "P11";

NET "hi_inout<5>" LOC = "N11";

NET "hi_inout<6>" LOC = "R12";

NET "hi_inout<7>" LOC = "T12";

NET "hi_inout<8>" LOC = "U6";

NET "hi_inout<9>" LOC = "V5";

NET "hi_inout<10>" LOC = "U5";

NET "hi_inout<11>" LOC = "V4";

NET "hi_inout<12>" LOC = "U4";

NET "hi_inout<13>" LOC = "T4";

NET "hi_inout<14>" LOC = "T5";

NET "hi_inout<15>" LOC = "R5";

NET "hi_muxsel" LOC = "R9";

NET "i2c_sda" LOC = "R13" | PULLUP;

NET "i2c_scl" LOC = "U13" | PULLUP;

#System Clock

90

NET "clk1" LOC = "N9";

NET "sdram_clk" TNM_NET="TNM_clk1";

TIMESPEC "TS_clk1" = PERIOD "TNM_clk1" 7.0 ns HIGH 50%;

#------------

Peripherals

#------------

NET "sdram_cke" LOC = "F8";

NET "sdram_cas_n" LOC = "E11";

NET "sdram_ras_n" LOC = "D12";

NET "sdram_we_n" LOC = "E7";

NET "sdram_cs_n" LOC = "E8";

NET "sdram_ldqm" LOC = "D9";

NET "sdram_udqm" LOC = "A9";

NET "sdram_a<0>" LOC = "A15";

NET "sdram_a<1>" LOC = "A16";

NET "sdram_a<2>" LOC = "B15";

NET "sdram_a<3>" LOC = "B14";

NET "sdram_a<4>" LOC = "D11";

NET "sdram_a<5>" LOC = "B13";

NET "sdram_a<6>" LOC = "C11";

NET "sdram_a<7>" LOC = "A12";

NET "sdram_a<8>" LOC = "A11";

NET "sdram_a<9>" LOC = "D10";

NET "sdram_a<10>" LOC = "A17";

NET "sdram_a<11>" LOC = "B10";

NET "sdram_a<12>" LOC = "A10";

NET "sdram_ba<0>" LOC = "C12";

NET "sdram_ba<1>" LOC = "A14";

NET "sdram_d<0>" LOC = "C4";

NET "sdram_d<1>" LOC = "D5";

NET "sdram_d<2>" LOC = "C5";

NET "sdram_d<3>" LOC = "D6";

NET "sdram_d<4>" LOC = "D7";

NET "sdram_d<5>" LOC = "C7";

NET "sdram_d<6>" LOC = "C8";

NET "sdram_d<7>" LOC = "D8";

NET "sdram_d<8>" LOC = "B9";

NET "sdram_d<9>" LOC = "A8";

NET "sdram_d<10>" LOC = "A7";

NET "sdram_d<11>" LOC = "B6";

NET "sdram_d<12>" LOC = "A5";

NET "sdram_d<13>" LOC = "B5";

NET "sdram_d<14>" LOC = "A4";

NET "sdram_d<15>" LOC = "B4";

91

NET "led<0>" LOC = "V14";

NET "led<1>" LOC = "U14";

NET "led<2>" LOC = "T14";

NET "led<3>" LOC = "V15";

NET "led<4>" LOC = "U15";

#NET "led<5>" LOC = "V16";

#NET "led<6>" LOC = "V17";

#NET "led<7>" LOC = "U16";

NET "uclk" LOC = "P10"; #for projector

NET "uclk_out" LOC = "T16";

NET "VGAR<1>" LOC = "D18" ;

NET "VGAR<0>" LOC = "E15" ;

NET "VGAR<3>" LOC = "D17" ;

NET "VGAR<2>" LOC = "D16" ;

NET "VGAR<5>" LOC = "C18" ;

NET "VGAR<4>" LOC = "C17" ;

NET "VGAR<7>" LOC = "B18" ;

NET "VGAR<6>" LOC = "C16" ;

NET "VGAG<7>" LOC = "G18" ;

NET "VGAG<6>" LOC = "G16" ;

NET "VGAG<5>" LOC = "F17" ;

NET "VGAG<4>" LOC = "G15" ;

NET "VGAG<3>" LOC = "E18" ;

NET "VGAG<2>" LOC = "F15" ;

NET "VGAG<1>" LOC = "E17";

NET "VGAG<0>" LOC = "E16" ;

NET "VGAB<1>" LOC = "H13" ;

NET "VGAB<0>" LOC = "J14" ;

NET "VGAB<3>" LOC = "H14" ;

NET "VGAB<2>" LOC = "J15" ;

NET "VGAB<5>" LOC = "J18" ;

NET "VGAB<4>" LOC = "G14" ;

NET "VGAB<7>" LOC = "J17";

NET "VGAB<6>" LOC = "F14" ;

NET "VGAHS" LOC = "H16";

NET "VGAVS" LOC = "H18";

NET "VGACLK" LOC = "H17";

NET "enableVideoOUT" LOC = "H15";

92

NET "din<2>" LOC = "H2";

NET "din<3>" LOC = "H4";

NET "din<4>" LOC = "G1";

NET "din<5>" LOC = "G3";

NET "din<6>" LOC = "F2";

NET "din<7>" LOC = "G4";

NET "din<8>" LOC = "E1";

NET "din<9>" LOC = "F4";

NET "line_valid" LOC = "F10";

NET "frame_valid" LOC = "E10";

NET "pix_clk" LOC = "E9"; //output from camera

NET "rst" LOC = "D3";

NET "scl" LOC = "E4" | PULLUP;

NET "sda" LOC = "D1" | PULLUP;

NET "triggerCam" LOC = "C2";

NET "cam_clk" LOC = "P9"; //input to cam clock

NET "cam_clk_out" LOC = "F9";

Opal Kelly PLL Settings

Opal Kelly PLL Settings

93

Bibliography

[1] V. Valla, ”Optimal pmp techniques for static and dynamic 3d data acquisi-
tion,” Ph.D. dissertation, University of Kentucky, Lexington, KY, 2006. http:
//uknowledge.uky.edu/gradschool_diss/348/

[2] K. Liu et al., ”Dual-frequency pattern scheme for high-speed 3-D shape measure-
ment,” Opt. Express, vol. 18, no. 5, pp. 5229-5244, 2010.

[3] K. Liu, ”Real time 3-d reconstruction by means of structured light illumina-
tion,” Ph.D. dissertation, University of Kentucky, Lexington, KY, 2010. http:
//uknowledge.uky.edu/gradschool_diss/81/

[4] X. Su, G. von Bally, and D. Vukicevic, ”Phase-stepping grating profilometry:
utilization of intensity modulation analysis in complex objects evaluation,” Opt.
Commun., vol. 98, pp. 141-150, 1993.

[5] Y. Wang, et al. ”Multicamera phase measuring profilometry for accurate depth
measurement,” Proc. of SPIE Sensors and Systems for Space Applications, pp.
655509, May 2007.

[6] M. Hinner, ”VGA Timings”. http://martin.hinner.info/vga/vga.html/

[7] FPGA-Cam. ”Interfacing low cost fpga papilio platform to the ov7670 sensor.”
https://code.google.com/p/fpga-cam/

[8] R. K. Gupta and Y. Zorian, ”Introducing Core-Based System Design,” IEEE
Design and Test of Computers, vol. 14, no. 4, pp 15-25, Oct-Dec 1997.

[9] R. A. Andraka, ”Survey of CORDIC algorithms for FPGA based computers,”
FPGA ’98 Proceedings of the 1998 ACM/SIGDA sixth international symposium
on Field programmable gate arrays, pp 191-200, Feb 1998.

[10] A. Sultan, ”CORDIC: How Hand Calculators Calculate,” The College of Math-
ematics Journal, vol. 40, no. 2, pp 87-92, March 2009.

[11] Xilinx, Inc. ”Spartan-3 FPGA Family Data Sheet DS099,” October 2012.

[12] C. Guan, G. Hassebrook and D.L. Lau. ”Composite structured light pattern for
three-dimensional video,” Optics Express, vol. 11, no. 5, February 2003.

[13] Xilinx, Inc. ”LogiCORE IP Fast Fourier Transform v7.1,” March 2011.

[14] Xilinx, Inc. ”LogiCORE IP CORDIC v4.0,” March 2011.

[15] Xilinx, Inc. ”LogiCORE IP Floating-Point Operator v5.0,” March 2011.
http://www.xilinx.com/support/documentation/ip_documentation/

floating_point_ds335.pdf

94

[16] Aptina Imaging. ”1/3-Inch Wide-VGA CMOS Digital Image Sensor MT9V034,”
October 2008.

[17] Analog Devices. ”CMOS, 330MHz High Speed Video DAC ADV7125,” 2002.

[18] Micron Technology Inc. ”SDR SDRAM 256Mb: x4, x8, x16,” January 2010.

[19] OptoMotive Ltd. ”Cameleon Baseboard.” http://www.optomotive.com/

products/cameleon-baseboard

[20] Opal Kelly Inc. ”XEM3010 User’s Manual,” November 2009. http://assets00.
opalkelly.com/library/XEM3010-UM.pdf

[21] Opal Kelly Inc. ”Front Panel User’s Manual,” January 2013. http://assets00.
opalkelly.com/library/FrontPanel-UM.pdf

[22] N. Dahnoun. ”Fast Fourier Transform (FFT) (Theory and Implementation),”
Texas Instruments, 2004.

[23] Kodak. ”Shutter Operations for CCD and CMOS Image Sensors,” December
2003. http://www.isgchips.com/pdf/Shutter_Operations_Kodak_App_Note.
pdf

[24] dspGuru. ”Fast Fourier Transform (FFT) FAQ.” http://www.dspguru.com/

dsp/faqs/fft

[25] dspGuru. ”DSP Trick: Magnitude Estimator.” http://www.dspguru.com/dsp/

tricks/magnitude-estimator

[26] W. Wong. ”Understanding FPGA Processor Interconnects,” Elec-
tronic Design, July 2012. http://electronicdesign.com/fpgas/

understanding-fpga-processor-interconnects

[27] A. Peter et al. ”Efficient FPGA implementation of homodyne-based time-of-flight
range imaging,” J Real-Time Image Proc, vol. 7, no. 1, March 2010.

[28] B. Hong et al. ”A Real-time Compact Structured-light based Range Sensing
System,” Journal of Semiconductor Technology and Science, vol. 12, no. 2, June
2012.

[29] S. Lee et al. ”A Real-Time 3D IR Camera Based on Hierarchical Orthogonal
Coding,” Proceedings of 2006 IEEE International Conference on Robotics and
Automation, May 2006.

[30] Y. Oike et al. ”Real-Time and High-Resolution 3-D Imaging System Using Light-
Section Method and Smart CMOS Sensor,” Proceedings of Sensors IEEE, vol1,
2003

[31] S. Bellis and W. Marnane. ”A CORDIC Arctangent FPGA Implementation for
a High-Speed 3D-Camera System,” R.W Hartenstein and H. Grunbacher, 2000.

95

[32] J. Weingarten, G. Gruener, and R. Siegwart. ”A State-of-the-Art 3D Sensor
for Robot Navigation,” Proceedings of 2004 IEEE International Conference on
Intelligent Robots and Systems, September 2004.

96

Vita

Brent Bondehagen was born in Louisville, Kentucky. He received his Bachelor of

Science degree in Computer Engineering from the University of Kentucky in 2011.

He worked as a technical intern at General Electric Energy in Louisville, Kentucky

while an undergraduate student. He participated in an engineering exchange program

with Nagoya University in Nagoya, Japan for a year.

97

	FPGA-BASED IMPLEMENTATION OF DUAL-FREQUENCY PATTERN SCHEME FOR 3-D SHAPE MEASUREMENT
	Recommended Citation

	FPGA-Based Implementation of Dual-Frequency Pattern Scheme for 3-D Shape Measurement

