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ABSTRACT OF THESIS 

UNDERSTANDING MULTIDRUG RESISTANCE IN GRAM-NEGATIVE 
BACTERIA--A STUDY OF A DRUG EFFLUX PUMP ACRB AND A PERIPLASMIC 

CHAPERONE SURA 

Multiple drug resistance (MDR) has been a severe issue in treatment and recovery from 
infection.Gram-negative bacteria intrinsically exhibit higher drug tolerance than Gram-
positive microbes. In this thesis, two proteins involved in Gram-negative bacterial MDR 
were studied, AcrB and SurA. 
Resistance-nodulation-cell division pump AcrAB-TolC is the major MDR efflux system 
in Gram-negative bacteria and efficiently extrudes a broad range of substances from the 
cells. To study subtle conformational changes of AcrB in vivo, a reporter platform was 
designed.  Cysteine pairs were introduced into different regions in the periplasmic 
domain of the protein, and the extents of disulfide bond formation were examined.  Using 
this platform, an inactive mutant, AcrB∆loop, was created that existed as a well-folded 
monomer in vivo. Next, random mutageneses were performed on a functionally 
compromised mutant, AcrBP223G, to identify residues that restored the function loss. The 
mechanism of function restoration was examined.  
SurA is a periplasmic molecular chaperone for outer membrane biogenesis. Deletion of 
SurA decreased outer membrane density and bacterial drug resistance. The dependence of 
SurA function on structural flexibility and stability was examined. In addition, the effect 
of molecular crowding on SurA interaction with its outer membrane protein substrates 
was examined. 
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CHAPTER I. INTRODUCTION 

1.1 A Brief History of Antibiotics Development 

Long before the invention of the word “antibiotic”, application of mold and plant extracts have 

been documented in disease treatment in ancient Greek and ancient Egypt.1 In 1928, Alexander 

Fleming discovered the bactericidal property of penicillin in a staphylococcus aureus plate, 

suggesting that a particular group of compounds extracted from microbes could be used to treat 

infection effectively.2 This kind of compounds were later named antibiotic. The urgent need of 

antimicrobials in treating wounded soldiers in World War II stimulated the beginning of the 

antibiotic era.3 Till 1960s, more than 100 antibiotics became commercially available and were 

used extensively in the treatment of infectious disease.4 This period of time was considered as 

the golden age of antibiotics. 

Based on the mechanism of action, antibiotics are categorized into several classes. Antibiotics 

can be bactericidal or bacteriostatic through inhibiting the synthesis of cell wall, DNA, RNA, 

and protein, cell growth, and cell division.5-8 Table 1.1 listed major classes of antibiotics and 

their working mechanisms.5-10 At the beginning, antibiotics were mostly natural products isolated 

from microorganisms. Later compounds derived or synthesized from natural products were used. 

Finally, taking advantage of the structures of known natural products, scientists successfully 

designed and synthesized a great variety of antibiotics by substituting different functional 

groups.11-13 Despite the remarkable success in exploring the natural product scaffolds, the pace of 

the advancement of antibiotic development slowed down in 1960s.14, 15 The pre-existed drug 

resistance of structurally related antibiotics killed most new antibiotics in the cradle. The partial 

to complete failures in the mining of novel antibiotics drove away most pharmaceutical 

companies and financial investments.16-18 As a result, no new class of antibiotics was developed 
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from 1962 to 2002. Since 2002, only four new classes of antibiotics have been approved and are 

available commercially. 19-22 

Table 1.1 List of Antibiotics by their classes and mechanisms of action.5-10 

Classes Examples Mechanism 

Aminoglycosides Gentamicin, Kanamycin, 

Neomycin, Spectinomycin 

Bind to ribosome subunits, inhibit protein 

synthesis, and disrupt bacterial cell membrane 

β-lactam 

antibiotics 

Penicillin, Cephalosporins, 

Carbapenems 

Inhibit bacterial cell wall synthesis 

Glycopeptides Vancomycin, Teicoplanin Inhibit peptidoglycan synthesis in bacterial 

cell wall 

Lincosamides Lincomycin, Clindamycin Bind to 50s subunit of ribosome, inhibit 

protein synthesis 

Lipopeptides Daptomycin, Polymixin B Bind to bacterial membrane, inhibit protein, 

DNA, and RNA synthesis 

Macrolides Erythromycin, 

Azythromycin 

Bind to 50s subunit of ribosome, inhibit 

protein synthesis 

Oxazolidonones Linezolid, Torezolid Inhibit protein synthesis 

Polypeptides Bacitracin, Colistin Alter gram negative bacterial outer membrane 

and cytoplasmic membrane permeability 

Quinolones Ciprofloxacin, Levofloxacin Inhibit DNA replication and transcription 

Sulfonamides Sulfadiazine, Sulfisoxazole Inhibit folate synthesis 

Tetracyclines Tetracycline, Doxycycline Bind to 30s subunit of ribosome, inhibit 

protein synthesis 
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1.2 Current Situation of Multiple Drug Resistances 

Since the discovery of penicillin, antibiotics were considered as “magic bullets” in curing 

infectious diseases. They have been misused and abused in the clinical treatment. For example, 

antibacterial drugs were inappropriately prescribed to patients with viral infection due to 

misdiagnosis. Premature cessation of therapy failed to eradicate the pathogens, instead provoking 

resistance in the surviving bacteria. Additionally, in some countries, especially developing 

countries, antibiotics are sold as over the counter drugs without prescription. Another major 

factor that causes drug resistance is the large scale usage of antibiotics in animal farming which 

later consumed by human and accumulated in food chain.23-26 Consequently, microbes developed 

cross-resistance to a series of structurally and functionally unrelated drugs. In the past decade, 

multidrug resistance (MDR) has been found toward all available antibiotics, presenting one of 

the biggest threats to public health. 

 In the pre-antibiotic era, antibiotic resistance was only identified in a very small portion of 

bacterial strains that have intrinsic and constitutive high drug tolerance, such as Pseudomonas 

aeruginosa.27, 28 Gradually, usage of antibiotics served as an environmental selective pressure to 

select for strains with elevated drug tolerance.  Mutations may first occur as random errors in 

replication. Bacteria with higher drug resistance were able to survive. Those genes who confer 

high antibiotic resistance were amplified and accumulated in pathogens under the selection 

process.29 The horizontal transfer of genetic materials enables the wide spread of resistance. The 

resistant genes can be transferred by naked DNA transformation, phage-mediated transduction 

and cell-to-cell conjugation.30 MDR is often found in organisms that acquired plasmids encoding 

genes for multidrug resistance.  

http://en.wikipedia.org/wiki/Pseudomonas_aeruginosa
http://en.wikipedia.org/wiki/Pseudomonas_aeruginosa
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Undoubtedly, the prevalence of MDR increased the morbidity, mortality of bacteria infection, 

making the treatment more difficult. In 2010, Center of Disease Control reported that bacterial 

infection results approximately 30,000 deaths each year in the United States. It is estimated that 

annual cost to treat infections of six major bacteria was over $1.87 billion.31 nowadays, the 

increasing frequency of communication between countries makes MDR an international 

epidemic problem. Every year, species with new antibiotic resistance are identified and spread 

all over the world, attracting great public concern. The word “superbug” becomes more and more 

prevalent. Methicillin resistant Staphylococcus aureus (MRSA) is one of the most well-known 

examples of superbug.  Surveys conducted in 2006 estimated more than 53 million people were 

carriers of MRSA globally, and the number is increasing each day.32 Another alarming example 

is the fast spread of New Delhi metallo-beta-lactamase-1 (NDM-1) gene in a variety of strains of 

bacteria. It was first detected in colonies of Klebsiella pneumonia in India. Within a year, it has 

been found in more than 30 countries. So far, three years since the detection of the first case, 

effective treatment for infections caused by bacteria harboring NDM-1 gene is still lacking.33, 34 

Most recently, it is reported that another deadly superbug, carbapenem-resistant 

Enterobacteriaceae (CRE) was found in Virginia in December 2012. The mortality of infections 

caused by CRE can be as high as 40%.35 These superbugs present great challenge in the 

treatment of bacterial infection. Unfortunately, under current medical condition, there is still a 

shortage of valid methods to combat superbug infection. Numerous efforts have been devoted in 

conquering this problem. Many strategies have been developed targeting different mechanisms 

of bacterial drug resistance.  

 

1.3 Mechanisms Of Resistance To Antibacterial Agents 
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Multiple biochemical factors contributed to the fast spread of the MDR, presenting tremendous 

challenges in the fight against infectious diseases. There are five major mechanisms from which 

microbes acquire drug resistant. (Figure 1.1)36 First, an organism can gain resistance to a drug 

target via mutation or enzymatic alteration. For example, due to an alteration of the ribosomal 

target, Acinetobacter developed resistance to two aminoglycosides: streptomycin and 

spectinomycin.37 An additional example is MRSA. Acquisition of mecA gene helped express 

penicillin-binding protein 2a which cannot interact with methicillin or other β-lactam antibiotics, 

thereby leading to extremely strong drug tolerance.38 Second, some drugs are inactivated by 

enzymatic degradation and modifications. The inactivation could be achieved by hydrolysis, 

group transfer, and redox mechanism.39 Till now, more than 200 different β-lactamases have 

been identified, which is the major reason for resistance of β-lactam group antibiotics.40 Third, 

bypass of the inhibited mechanism of antibiotics conferred high drug resistance to certain group 

of antibiotics.41  One of the well-studied examples is a glycopeptide, vancomycin. Vancomycin 

inhibits cell wall synthesis by binding to the D-Ala-D-Ala in the pentapeptide of peptidoglycan. 

Vancomycin-resistant Enterococcus reprograms the synthesis pathway to produce D-Ala-D-Lac, 

so that the binding affinity of vancomycin to the peptide is reduced by 1000-fold.42 Fourth, 

overexpression of drug targets exhibits titration effects on antibiotics, leading to reduction of 

drug efficiency. Fifth, drug penetration can be slowed down or inhibited by certain group of 

proteins and cell walls. For instance, multidrug efflux pumps can export a broad spectrum of 

compounds, including antibiotics, dyes, detergents, fatty acids, biocides, and organic solvents.43 

A low permeability barrier can provide a shield in order to decrease the influx of different 

drugs.44 Among these five mechanisms, the first four mechanisms are specific towards a single 

drug or drugs with similar structures, while the last mechanism apply more generally. Therefore, 
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the latter mechanism is more difficult to target, which is my main research focus in this thesis. 

Moreover, microbes may employ more than one mechanism, making it even more challenging to 

combat multidrug resistance. 

 

Figure 1.1 Mechanisms confer antibiotic resistance in bacteria.45 Reprinted by permission from 

Macmillan Publishers Ltd: Nat. Rev. Drug. Discover., ©2002 

 

1.4 Gram Negative Bacterial Infection vs Gram Positive Bacterial Infection 

Bacteria can be grouped into Gram-negative and Gram-positive strains based on Gram staining. 

Gram-negative bacteria are those that do not retain crystal violet dye after staining.  The 



7 
 

difference between the two groups of bacteria lies in their cell walls (Fig. 1.2).46 Gram-positive 

bacteria cells are covered with a thick layer of peptidoglycan, whereas Gram-negative bacteria 

have a more complex cell envelope structure. Gram-negative bacterial cell wall contains two 

phospholipid membranes, between which lies a thin intermediate layer of peptidoglycan.  

Lipopolysaccharide is bound to the outer leaflet of the outer membrane and stablizes the entire 

membrane structure. The non-covalent linkage between lipid A and divalent cations is highly 

polarized, preventing the entrance of hydrophobic molecules. At the same time, the high 

hydrophobicity of the phospholipid bilayer slows down the penetration of hydrophilic 

compounds.47 The extra layer provides such a good protection that 90% of antibiotics effective 

against Gram-positive bacteria showed much lower activity against Gram-negative bacteria.48 

Additionally, a large group of inner and outer membrane proteins embedded in the two 

membranes. The majority of outer membrane proteins (OMPs) served as transportation channels 

for small hydrophilic substances. Some of the outer membrane proteins assemble together with 

inner membrane proteins to selectively pump out a broad range of compounds out of the cells. 

Therefore, these proteins could potentially be drug targets in combating MDR in the bacteria. 
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Figure 1.2 Cell envelope of Gram-negative (left) and Gram-positive (Right) bacteria.46 

Reprinted by permission from Macmillan Publishers Ltd: Nat. Chem. Biol. (1) © 2011 

 

1.5 Bacterial Multidrug Efflux Pump 

Based on sequence homology, bacterial efflux system can be grouped into five classes49: a) The 

major facilitator (MF) superfamily, also known as uniporter-symporter-antiporter family. 

Transporters in the MF family are the dominate substance excluding pumps in Gram-positive 

bacteria. They are responsible for transporting small solutes powered by chemiosmotic ion 

gradient. b) The ATP-binding cassette (ABC) family. Hydrolysis of adenosine triphosphate 

(ATP) provides energy for both the uptake and efflux of small molecules and macromolecules. c) 

The small multidrug resistance (SMR) family. These transporters shared a similar structure 

containing four transmembrane helices and driven by proton motive force. d) The multidrug and 

toxic compound extrusion (MATE) family. The efflux of this group of transporters is mediated 

by sodium gradient. e) The resistance-nodulation-division (RND) family, which is the major 

contributor to drug resistance in Gram-negative bacteria.50 My research is focused on exploring 

structure and assembly of one of the most extensively studied RND pump, AcrAB-TolC.  

 

1.6 AcrAB-TolC Tripartite Efflux Pump 

AcrA, TolC in AcrAB-TolC system  

AcrAB-TolC is one of the most extensively studied Gram-negative RND pump. In the complex, 

AcrA is a membrane fusion protein that facilitates the interaction between AcrB and TolC, and 

assembly of the entire pump. The α-helical hairpin domain of AcrA is the TolC binding domain. 

The exact interface of AcrA and AcrB remains unknown, but the α-β-barrel domain on AcrA is 
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thought to be the AcrB binding domain. AcrA may exist as a trimer or hexamer in vivo, which 

remains controversial .51 

TolC is the outer membrane component of the pump and the final exit of the substrates. It is a 

trimeric protein composed of three 428-residue protomers. TolC trimer forms a long tunnel-like 

structure of 140 Å in length, transversing the entire outer membrane and the majority of the 

periplasmic space (Fig. 1.3). The transmembrane domain of TolC is consisted of 12 anti-parallel 

β-strands. They forms a 40 Å long β-barrel tunnel. The periplasmic part is composed of 12 α-

helices, extending about 100 Å into the periplasm. The internal diameter of TolC is 35 Å. When 

TolC is recruited by an inner membrane complex, conformational rearrangements in the inner 

H7/H8 coiled coils and the outer H3/H4 coiled coils are induced. This opens the tunnel by 

approximately 30 Å, allowing the protein to transport molecules as large as full-length proteins.52 

Besides its role in the AcrAB-TolC tripartite efflux system, TolC is associated with several other 

inner membrane translocase complexes to export a large variety of substrates out of the cell, 

including enzymes, metals, antibiotics and toxins.53, 54  
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Figure 1.3 A) crystal structure of outer membrane protein TolC. Each protomer of TolC trimer is 

marked in different color. The 40 Å β-barrel domain is embedded in the outer membrane, while 

the 100 Å α-helical domain inserted into the periplasm. B) Top view of close-state (Top) and 

open-state confirmation (bottom) of TolC. Open-state of TolC allows passage of substances. 

Crystal structures were obtained from protein data bank. Protein data bank ID of close-state 

structure: 1TQQ, open-state structure: 2VDD. Structures created using Pymol. 

 

AcrB in the AcrAB-TolC system 

The third component in the AcrAB-TolC efflux pump is the inner membrane protein, AcrB. 

AcrB is the engine of the pump. It determines substrate specificity and provides the energy to 

drive the pump. So far, the substrates of AcrAB-TolC include antibiotics, detergents, dyes and 

organic solvents.55 
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The AcrB gene was first discovered during a genomic screen conducted by Nakamura et al. in 

1978. Upon its deletion, the cell became hypersensitive to acriflavine. It was the second protein 

identified which caused elevated cell sensitivity to acriflavine. This is why the protein was 

named AcrB.56 It was not until 1990s that scientists began to realize its crucial role in drug 

resistance. Since then, the protein has been studied extensively. 

The crystal structure of AcrB was first solved by Yamaguchi and his group in 2002. AcrB is a 

trimeric protein, of which each protomer containing 1049 amino acids. The overall shape of 

AcrB is like an asymmetric jellyfish. The scheme of the arrangement of secondary structure 

elements in a single protomer was shown in Fig 1. 4. 57 

 

Figure 1. 4 Topology of a single protomer of AcrB. Secondary structures were indicated by 

cylinder (α-helic) and arrow (β-strand). Pore domain is divided into four regions: PN1, PN2, PC1, 

and PC2. TolC docking domain is composed by two subdomains, DN and DC. Two periplasmic 

loops lies in between TM1 and TM2, TM7 and TM8, respectively. 57 Reprinted by permission 

from Macmillan Publishers Ltd: Nature (419) ©2002 



12 
 

Each monomer AcrB contains 12 transmembrane (TM) α-helices and two large hydrophilic 

periplasmic loops. The two periplasmic loops reside in between TM1 and TM2 and TM7 and 

TM8, respectively. The periplasmic region of AcrB can be divided into two parts, the TolC 

docking domain and the porter domain, based on proposed functionality. The overall length of 

the AcrB periplasmic head piece is approximately 70 Å, of which the porter domain is 40 Å in 

length. The two subdomains between TM1 and TM2 were named PN1 and PN2; while the other 

two subdomains between TM7 and TM8 were PC1 and PC2. In AcrB trimeric state, PC1 and 

PC2 subdomain are at the outside surface. Though how AcrB interacts with AcrA remains 

unknown, it is often believed the cleft between PC1 and PC2 is the AcrA association region. 

Between PN2 and PC2 subdomains there are open vestibules which are later proven to be the 

central cavity for substrate binding. At the top of AcrB structure, 8-stranded β-sheets form TolC 

docking domain. In each monomer, an antiparallel β-sheet loop extends approximately 35 Å and 

inserted into the neighboring AcrB (Fig 1.5).57 Our group demonstrated that this protruding loop 

is essential for the stabilization of AcrB trimer. Deletion of a fragment of the loop led to 

dissociation of trimeric AcrB and accumulation of inactive monomer AcrB, resulting in 

compromised drug resistance.58 The bottom α-helix-turn-α-helix structure of TolC seems to fit 

perfectly with the tip of the TolC docking domain of AcrB through manual fitting.59 The 

transmembrane domain is formed by 12 α-helices of 50 Å.59 Asp407, Asp 408, Lys940 were 

buried in TM4 and TM10. These charged residues formed ion pairs which were involved in 

proton translocation.60 
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C)  

Figure 1.5 A) Crystal structure of a single AcrB monomer. (Protein data bank ID: 1IWG).  B) 

Assembly of AcrB trimer. Based on the function and position, AcrB is divided into three 

domains: TolC-docking domain (30 Å), Pore domain (40 Å), and Transmembrane domain (50 Å). 

Structure was drawn by Pymol from 2GIF in protein data bank.  C) Top view of boundaries 

between each protomer in AcrB oligomer.56 Reprinted by permission from Macmillan Publisher 

Ltd: Nature (419) ©2002 

 

The conformational differences between each protomer were observed in the trimeric AcrB. 

From the observation, a three-stage functional rotation mechanism was postulated by two 

different groups at approximately the same time.61, 62 Each monomer exhibits different 

confirmation upon different substrate activity: Access, Binding and Extrusion, which 

corresponding to Loose (L), Tight (T) and Open (O) in the other literature (Fig. 1.6). The 

transition of each monomer between different states is driven by proton relay. In the access state, 

the vestibule between PN2 and PC2 subdomains is open and accessible to substrates. Substrates 

enter the vestibule from periplasm or the groove at the top of TM8 and TM9, and bind loosely to 

the protein.  In the binding state, the binding pocket expanded so that substrates could further 
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move upwards into the extended deep substrates channel. At this stage, the vestibule remains 

open and the central α-helix tilted approximately 15° towards the PN2 subdomain, which blocks 

the exit pathway. Finally, incline of the central helix in the extrusion state opened the exit and 

allowed the substrate to be excluded from the pump. The confirmation change from binding state 

to extrusion state required energy, which is generated from proton gradient force. 61, 62 

 

Figure 1.6 Schematic illustrations of substrate and proton pathways in the functionally rotation 

mechanism of AcrB.63 When substrate enter AcrB pathway, three states of confirmation is 

induced: access, binding, and extrusion. The top views are from the periplasmic region of AcrB. 

Substrate and proton uptaken process are noted by dotted lines. Reprinted from Curr Opin Struct 
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Biol 18, Murakami, S. Multidrug efflux transporter, AcrB--the pumping mechanism. 459-465 

©2008, with permission from Elsevier. 

 

The pump transports substances from low concentration to high concentration, and hence energy 

is needed for the efflux of AcrAB-TolC. Proton motive force is primary energy source. Three 

amino acids, Asp407, Asp408, and Lys940 are crucial in the proton translocation pathway. 

Substitutions of each of the three residues with alanine lead to complete function loss of the 

pump.57, 64 The three residues exhibit different configuration in each state of substrate efflux. In 

the access and binding states, Asp407 and Asp408 form a salt bridge with Lys940. When the 

protomer shifts to extrusion state, the salt bridge is dissociated and Lys940 forms hydrogen bond 

with another highly conserved residue Thr978. At this time, Asp407 and Asp408 are exposed so 

that they can interact freely with proton. It was proposed that energy released from twisting in 

transmembrane α-helices would lead to further conformational change in porter domains.57 

However; the exact mechanism of how the energy induces structural change is still unknown. 

Exploration of the interaction between AcrB and its substrates is another active topic of research. 

Switching the periplasmic domain of AcrB and AcrD altered the substrate specificity of the two 

pumps, indicating the substrate specificity is determined by the periplasmic loop.65 Next, 

mutagenesis studies identified a phenylalanine rich hydrophobic binding pocket, containing 

Phe178, Phe610, Phe615, Phe617, Phe664 and Phe666.66 The position of the interaction site was 

consistent with Murakami and co-workers’ finding by X-ray crystallography. Using Nile Red 

efflux assay, AcrB substrates are divided into two groups judging by their interacting sites: cave 

binders and groove binders.67 Both sites are located in the binding pocket. This allows the pump 

to accommodate two kinds of substrates at the same time. Recently, the Bodipy-FL-maleimide 
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labeling assay was used to picture the complete substrate transportation pathway. AcrB 

substrates first entered from the lower cleft at TM8/TM9 groove and then bound to the deep 

binding pocket (Fig. 1.7).68, 69 

 

Figure 1.7 Substrate pathways in AcrB periplasmic loop. Residues showed positive results in 

Bodipy-FL-maleimide labeling or CPM/pyrene-maleimide assay were mapped in the AcrB 

protomer as spheres. Deep blue residues are at the exit gate of AcrB, while light blue residues are 

in the binding pocket. Orange and purple indicated residues are in the upper and lower region of 

cleft, respectively.68 Reprinted from Molecular Microbiology, 78, 320-330 © 2010 by John 

Wiley and Sons 

 

Due to the technical difficulty in crystallography, a complete crystallographic structure of the 

AcrAB-TolC complex has not been determined. The interactions between each subunit have 

been investigated by mutagenesis coupled with drug susceptibility assay, crosslinking, and 

computer modeling. An AcrA3-AcrB3-TolC3 model has been proposed.59 The tripartite complex 
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is 610,000 Da, 270 Å long, spanning across the entire cytoplasmic membrane and outer 

membrane. The α-hairpin of AcrA is docked with the coiled-coil helices in TolC. AcrA C-

terminus (residue 315-397) is involved in interaction with AcrB. It is reported both AcrA and 

TolC could interact with AcrB independently with high affinity, which is not affected by the 

third component and substrates.51, 59 However, it has been shown that addition of substrates could 

help stabilize the whole complex.63  

 

Figure 1. 8 Assembly of TolC3-AcrA3-AcrB3 tripartite efflux pump by computer modeling.59 

Positions of outer membrane and inner membrane are indicated. Different colors were used to 

differentiate domains of TolC (Orange, yellow, and grey), AcrA (bright green), AcrB (blue, grey, 

and green). Figure adapted from Symmons, M. F., et al. The assembled structure of a complete 
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tripartite bacterial multidrug efflux pump. Proc Natl Acad Sci U S A 106, 7173-8. Copy right 

(2009) National Academy of Sciences, USA.  

 

1.7 Gram-negative Bacterial Outer Membrane Biogenesis 

As mentioned in section 1.4, the outer membrane of Gram-negative bacteria offers a better shield 

against antibiotics comparing to Gram-positive bacteria. The outer membrane of Gram-negative 

bacteria is an asymmetric lipid bilayer with an outer leaflet made of lipopolysaccharide and an 

inner leaflet of phospholipid. Integral outer membrane proteins reside in this bilayer structure. 

More than sixty OMPs have been identified in Gram-negative bacteria, most of which form 

transportation channels called porins. All OM porins share a β-barrel structure motif formed by 

multiple β-strands. These β-strands form a hydrophilic pore in the center of the protein, which is 

main channel for the translocation of hydrophilic compounds. The hydrophilic pores are very 

narrow.  For instance, the diameter of OmpF channel is approximately 10 Å. Only molecules 

smaller than 600 Da can diffuse across the outer membrane through porins.70 

These integral OMPs are first synthesized in cytoplasm with N-terminal signal peptide. N-

terminus signal sequence directs the unfolded OMP precursors to the Sec translocon in the 

plasma membrane. During or after the completion of the translocation, signal peptide is digested 

by signal peptidase.71 Once the OMP precursors enter the periplasm, several chaperones help 

stabilize and transport the polypeptides to their final destination. Eventually, these nascent 

polypeptide chains fold into functional β-barrel proteins and insert themselves into the cell 

envelope.72 Several periplasmic chaperones assist the folding and translocation process. For 

instance, DsbA and DsbC catalyze the disulfide bond formation and protein oxidation.73 PPIase 

accelerates Proline cis-trans isomerization. Because of the high hydrophobicity of the OMP 
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polypeptides, several chaperones that could prevent the OMP polypeptides from aggregation in 

the hydrophilic environment of periplasm are recruited. SurA, Skp and DegP have been 

identified with this function.74  

 

Figure 1.9 Translocation, folding and assembling of E. coli integral outer membrane protein 

in the assistants of periplasmic chaperones, Sec translocon and Bam complex.75 Adapted 

from Hagan, C. L. et al. Reconstitution of outer membrane protein assembly from purified 

components. Science 328, 890-2. Reprinted with permission from AAAS©2010 

 

The exact roles of these chaperones in OMP biogenesis are still under investigation. One 

hypothesis is based on immunoprecipitation studies in SurA, Skp and DegP deficient strains. 



21 
 

SurA and Skp/DegP are two parallel pathways in assisting OMP biogenesis. SurA is the primary 

chaperone in helping the folding of the majority of OMPs. Those who fall off the SurA pathway 

are rescued by Skp and DegP.76 Recently, another theory was proposed by Zhao et al. based on 

kinetic study of chaperone and unfolded OMP. It is believed SurA and Skp act at the early stage 

of the OMP folding while DegP serves as a final quality control role which helps the unfolded 

OMP precursors at a later stage.77 DegP not only collaborates with Skp, but also with SurA 

which forms a SurA–OMP–DegP ternary complex. 

 

1.8 Periplasmic molecular chaperone SurA 

SurA was first identified as an essential gene in Escherichia coli for stationary phase survival. It 

is required for cells to tolerate the nutritional starvation phase. SurA is composed of 4 domains 

following a signal peptide: an amino terminus domain with the first 150 amino acids, two 

peptidylprolylisomerase domains of 100 residues each (P1 and P2 domain), and a carboxyl 

terminus domain. Crystallographic structure showed that the N, C-terminal domain and the first 

PPIase segment constitute a core module, while the second PPIase segment forms a satellite 

domain about 30 Å away in distance (Fig. 1.10).  

  



22 
 

signal
peptide N-domain C-domainP1 P2

 

 

Figure 1.10 Structure of SurA. The sequence of SurA was color-coded as signal peptide (white), 

N-terminus domain (red), PPIase P1 domain (yellow), P2 domain (blue), C terminus domain 

(green). Protein structure was from protein data bank 1M5Y. Structure created using Pymol. 

 

It has been proven that deletion of SurA in E. coli induces the cell stress factor σE. σE factor 

regulates the expression of OMPs.78 Recently, in a thorough LC-MS/MS analysis of OMP 

abundance, only 8 of the 64 OMPs are negatively affected by SurA deletion. Decreasing levels 

of six of the eight OMPs are caused by suppressed mRNA level. Major OMPs such as OmpF is 

absent when SurA is knocked out. Expression level of LamB was reduced by 4- to 5- fold, while 

the level of OmpC and OmpA dropped by 2- to 3- fold. The abundances of some OMPs, such as, 

TolC and BamA, were elevated in the absence of SurA. Surprisingly, although only a small 

subset of OMPs has been affected, the overall OM density of the cell is drastically reduced. This 

is likely due to the high abundance of OmpF, OmpA, and LamB, which account for a large 

fraction of the OM. The LC-MS/MS study further elucidated the role of SurA in outer membrane 



23 
 

biogenesis.  SurA is important to the folding and assembling of the majority of the OMPs. Most 

OMPs interact with SurA, DegP and Skp, depending on their availability. But OMPs like LptD 

and FhuA can only go through the SurA pathway in the periplasm. Another group of OMPs were 

down regulated by SurA in vivo, the mechanism of which remains unknown. 79 

SurA was first noticed for its sequence homology with the parvulin domain of PPIase. It was 

originally believed to assist protein folding mainly by mediating the cis-trans isomerization of 

proline. However, later experiments showed that the chaperone activity of SurA was independent 

from its PPIase domains.80 Deletion of either P1 or P2 domain showed no effect on the ability of 

cell to survive in the presence of nobobiocin. SurA N-teminus and C-terminus domains (SurA N-

C) are sufficient to restore membrane functionality and complete SurA activity in vivo.81  

Substrate specificity of SurA has also been studied. Mckay et al. used phage display to identify 

several peptides that interact tightly with SurA.82 Klappa and his group also selected multiple 

peptides by enzyme linked immunosorbent assay (ELISA) screening of cellulose-bound library 

peptides representing LamB, OmpF and OmpA.81 All these peptides shared a similar sequence 

stereotype Ar-X-Ar. Ar stands for aromatic amino acids, while X can be any amino acids. Since 

the frequency of Ar-X-Ar was the highest in OMPs among all E. coli cell surface proteins, there 

is no doubt why SurA would preferentially bind with unfolded OMPs. Mckay and coworkers 

further studied the interaction of SurA and the two peptides WEYIPNV (pepN) and 

NFTLKFWDIFRK (pepC) using isothermal calorimeter (ITC).83 Both peptides interacted with 

SurA with a binding affinity in µM range, which is the highest among all peptides tested. Also 

the peptides competed with unfolded OmpF and OmpG in binding to the core structural fragment 

of SurA. However, the co-crystallization of SurA-peptide showed pepN and pepC only interacted 

with the first PPIase segment. Deletion of P1 domain drastically increased the binding affinity 
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between SurA and peptide. Because PPIase domains are unrelated to SurA chaperone function, 

the peptides bound to P1 domain may not be native substrates of SurA. The competition between 

peptides and OMPs could be a result of the steric hindrance effect.  

Later researches have linked SurA to different cellular activities. SurA, in collaboration with 

BamB, is involved in folding of outer membranes exported not only from Sec pathway, but also 

from twin arginine translocation (Tat) pathways.84 The outer membrane biogenesis in different 

Gram-negative bacteria and mitochondria outer surface required SurA and its homologue.85 

Moreover, SurA is essential in helping outer membrane protein folding in reconstituted OMP 

assembling complex.75 Despite of all these progresses in the understanding of the function of 

SurA, how SurA selects and interacts with its substrates remains unknown. 

Immunoprecipitation studies revealed that SurA is highly related to the correct folding and 

assembling of outer membrane proteins. When surA gene is knocked out from E. coli genomic 

DNA, the cells are highly sensitive to hydrophobic drugs and membrane perturbants.80 It is 

universally believed that this drug tolerance change caused by SurA deletion is affected by the 

OMP density. But there is no direct proof that may correlate the two observations. Elucidation of 

the relationship between SurA OM integrity and its role in cell permeability may offer a great 

target in fighting against drug resistance in Gram-negative bacteria. 

 

1.9 Actions In Response To Slow Down the Spread of Multidrug Resistance 

Microbes reproduce at an extreme fast speed, usually with generation times measured in minutes. 

This means that once drug resistance gene is generated, it can be transferred among the pathogen 

species very quickly. Therefore, effective treatments at the onset of the infection are extremely 

important in a clinical setting. The shortage of effective antimicrobials has raised significant 
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concerns and attracted comprehensive research interests. Measurements have been adopted from 

different aspects to address this global epidemic issue.  

Several government agencies are sparing no effort on evoking awareness of the severe situation 

of infection caused by antibiotic resistant pathogens, especially in developing countries. One of 

the most straight forward approaches is to control the usage of antibiotics, not only in clinical 

treatment, but also in farming and aquaculture. Rational use of antibiotics limited the 

unnecessary exposure of microorganisms to antibiotics.86 Another important issue is to improve 

the hygiene conditions in all affected areas. It has shown millions of dollars could be saved 

simply by practicing good hand hygiene by clinicians. 

Currently, cases of drug resistance towards all commercially available antibiotics have been 

reported. Identification of new class of antibiotics is in urgent need. Historically, the majority of 

antibiotics came from natural products extracted from microbes. Because of the limitation of 

cultivation conditions, only 1% of bacteria have been studied. DNA samples from soil and 

marine habitats have been isolated and sequenced, which opens up great opportunities of 

discovering new antibiotics.14 Another direction of genomic hunting is high throughput screening 

for essential genes for bacterial survival or targets in the crucial metabolic pathways.14 For 

example, the key features in bacterium cell walls have been selected as targets. New 

antimicrobial peptides have been tested which bind with lipopolysaccharide (LPS) on the outer 

membrane to induce membrane distortion and increase permeability. However, this could only 

enhance the influx rate of hydrophobic drugs.87 Furthermore, resistance in compliance with these 

antimicrobial peptides has been reported. OMPs are also a group of vital targets in drug 

penetration pathway. To increase the permeability of hydrophilic compounds, mutagenesis 

studies on OMP channels have been reported, but they are specific to structurally related drugs.88 
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In addition, it is impossible to mutate the OMP channels in the pathogen during the treatment. 

There is no effective strategy to deal with drug resistance from this perspective.  

Vaccines against bacteria have also been developed.89 The advantage of vaccines is there would 

not be the resistance problem. However, it is unlikely to have vaccines against all available 

disease related bacterial strains, not to mention the evolved second and third generation of 

existing microbes. And the effects of different vaccines are still under investigation. Phage 

therapy is also an alternative way to treat infection. But the method is relatively expensive since 

multiple bacteriophages may be required at the same time. Additionally, the treatment has to be 

monitored by physicians to ensure safety.90 

 As discussed above, my study in this thesis focuses on two proteins, a multidrug transporter and 

a periplasmic molecular chaperone. Efflux pump has been served as the target for the design of 

inhibitors. New efflux pump inhibitors have been tested as uptake enhancers to elongate the 

retention time of drugs within the cells. MC-207, 110 (Phe-Arg-β-naphthylamide, PaβN) is the 

first inhibitor of RND pump identified through the collaboration of Microcide Pharmaceuticals 

and Daiichi Pharmaceutical Co.91 Because MC-207, 110 is a preferred substrate  for the pump, it 

will compete with other substrates in interacting with the pump. Therefore, when high 

concentration of MC-207, 110 is used, the pump loses its extrusion ability to actively pump out 

other desired antibiotics. Derivatives of this compound haven been used as inhibitors to reverse 

drug resistance caused by mostly RND pumps, as well as particular efflux pumps in Gram-

positive bacteria. Antisense DNA and siRNA provide are an alternative therapy in preventing 

mRNA translation and gene expression. Antisense phosphorothioate oligonucleotide 

encapsulated in novel anion liposome targeting AcrB has successfully restored antibiotic 

susceptibility in fluoroquinolone-resistant E. coli.92 In OMP biogenesis, generally OMPs are 
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targeted in the fight against MDR. Still, little is known about how SurA and other chaperons 

affect cell permeability. As a result, there is no reported inhibitor for OMP biogenesis. 
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CHAPTER II. A REPORTER PLATFORM FOR THE MONITORING OF IN VIVO 

CONFORMATIONAL CHANGES IN ACRB 

2.1 INTRODUCTION 

Despite multiple drug resistant Gram-positive pathogens, such as Methicillin-resistant 

Staphylococcus aureus (MRSA), are in the media spotlight, the lack of new and effective 

antimicrobials against Gram-negative bacteria is the real concern.93-96One of the major 

mechanisms that confer intrinsic drug resistance to Gram-negative bacteria is the active pumping 

of drug efflux systems. Genetic modification of the drug efflux pump could change the drug 

susceptibility level of the bacteria.97Such an observation spurred the interest in searching for 

inhibitors that can block the function of efflux pumps.98-102 A thorough understanding of the 

structure and function of this type of pumps is critical for such endeavors. 

AcrB is one of the most extensively studied MDR efflux pumps.103-115Strains deficient in AcrB 

have been proven to be hyper-sensitive to antimicrobials. AcrB is the inner membrane 

component of the tripartite pump complex AcrAB-TolC. This complex spans the distance across 

the inner membrane, the outer membrane, and the periplasmic space in between. Crystal 

structures of both the apo-AcrB and AcrB-substrate complexes have been determined.61, 62, 116 

AcrB functions as a homo-trimer. The observation that the three promoters in the AcrB trimer 

have slightly different conformations prompts the proposal that this protein functions through a 

mechanism resembling that of a peristaltic pump. 117-120 Each subunit rotates through loose, tight 

and open conformations successively. One molecule of substrate is extruded per cycle. The 

translocation of protons from the periplasmic space provides the energy for the conformational 

change. This mechanism is supported by multiple mutational studies, through which the substrate 

binding sites and proton relay pathway have been identified. In addition, disulfide bonds 
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engineered at the interface of subdomains reduce protein flexibility and prevent each AcrB 

monomer from conformational changing, and consequently blocked the function of AcrB.119 

The activity of AcrB can be monitored conveniently with a drug susceptibility assay. The acrB 

knockout strain is hyper-sensitive to many drugs that have been identified as AcrB substrates. 

This defect can be accommodated by the introduction of a plasmid encoding active AcrB. 

Therefore, the effect of mutations on the function of AcrB can be monitored by measuring the 

susceptibility to certain drugs using an AcrB-deficient E. coli strain expressing a plasmid-

encoded AcrB mutant. Although the effect of a mutation that causes the loss of protein function 

is easy to identify, it is more difficult to attribute such changes to specific aspects of protein 

structure. A mutation may impair the function of AcrB from several different aspects, including 

the substrate binding site, disrupting the proton relay pathway, the interaction with AcrA and 

TolC, changing the conformation of the subunit (tertiary structure level) or the formation of an 

AcrB trimer (quaternary structure level). While extensive mutational studies have been focused 

on the first three aspects, there is not yet a convenient method that can identify if the impact of a 

detrimental mutation is on the tertiary or quaternary structure levels. In this study, I worked with 

Dr. Lu Wei and established a platform to examine the effect of mutations on protein tertiary 

structure (Figure 2.1). Briefly, double Cys mutations were introduced into AcrB at positions that 

can form disulfide bonds under the native conformation. These Cys pairs serve as reporter for the 

examination of the impact of further mutation on protein structure. A sophisticated blocking and 

labeling protocol was also developed to keep track of the disulfide bond versus free thiols in the 

protein. Although the analysis was performed after protein purification, the results actually 

reflected the conformation of AcrB when it was under the native condition in the inner 

membrane.  
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Figure 2.1 Concept of reporters for protein conformational change. Each AcrB reporter construct 

has a single pair of Cys in the periplasmic domain, which form a disulfide bond in the native 

conformation. If an additional mutation (red star) causes a change of local conformation, the 

extent of disulfide bond formation will be affected. The extent of disulfide bond formation can 

be monitored as a reporter for protein conformational change.    

 

2.2 MATERIALS AND METHODS 

Construction of plasmids 

The DNA coding sequence of AcrB was amplified by PCR from E. coli genomic DNA and then 

digested with SphI and BamHI restriction endonucleases. The fragment was inserted in frame 

into the expression vector pQE70 between the restriction sites SphI and BglII to create plasmid 

pQE70-AcrB. A polyhistidine tag was introduced at the C-terminus to facilitate convenient 

protein purification. Plasmid pQE70-AcrB was then used as the template to construct the 

cysteine-less AcrB (CLAcrB) using the Quick-change mutagenesis kit following the protocol 

provided by the manufacturer (Agilent, Santa Clara, CA). AcrB has two intrinsic Cys, Cys493 

and Cys887. To prevent them from interfering with the reporter Cys pairs, these two Cys were 
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substituted by Ala to create AcrBC493A/C887A, which was named CLAcrB in the rest of this study. 

The same protocol was also used to construct all the reporter pairs with CLAcrB as the template. 

In each reporter pair, a different pair of Cys was introduced to create CLAcrBV32C/I390C, 

CLAcrBT44C/T91C, CLAcrBM184C/V771C, CLAcrBT199C/T749C, CLAcrBI335C/A995C, CLAcrBQ726C/G812C, and 

CLAcrBA627C/T574C. To identify the performance of the disulfide trapping protocol developed in 

this study, four additional Cys-pair mutants were constructed with the same protocol to create 

CLAcrBA627C/G570C, CLAcrBA627C/F572C, CLAcrBA627C/V576C, and CLAcrBA627C/L578C. Protein coding 

sequences of all plasmids were confirmed by DNA sequencing.  

 

Drug susceptibility assay 

AcrB activity could be monitored conveniently by a drug susceptibility assay. The minimum 

inhibitory concentrations (MIC) of different stains were measured as described.109 Briefly, an 

acrB deficient E. coli strain (BW25113ΔacrB) was used as the host cell. BW25113ΔacrBstrain 

transformed with plasmid-encoded wild type AcrB (WTAcrB) or pQE70 vector were used as the 

positive and negative controls, respectively. Plasmids encoding different AcrB mutants were 

transformed into BW25113ΔacrB as well. Freshly transformed cells were plated on LB-agarose 

plates containing 100 μg/mL ampicillin and 50 μg/mL kanamycin. The same ampicillin and 

kanamycin concentrations were used throughout the study when noted. A single colony was 

inoculated into a LB media supplemented with ampicillin and kanamycin. The exponential-phase 

cultures of different strains were diluted to an OD600nm unit of 0.1 with LB broth. 5 µL of this 

culture was used to inoculate 1 mL LB media containing the indicated concentration of 

erythromycin or novobiocin. The cultures were incubated under shaking at 37oC for overnight. 

The next morning, the OD600nm of each culture was measured. This activity assay was conducted 
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under the basal AcrB expression condition, which was not supplemented with inducer. Each 

experiment was repeated at least three times.  

 

Protein expression 

To avoid potential contamination from genomic AcrB, all AcrB expression plasmids were 

transformed into BW25113ΔacrB for expression. A single colony from a freshly transformed 

plate was inoculated into 3 mL LB media supplemented with ampicillin and kanamycin and 

cultured overnight at 37°C. The overnight culture was used to inoculate 600 mL fresh LB media 

containing ampicillin and kanamycin. Then this culture was incubated with shaking at 37°C 

overnight. Cells were harvested the next morning by centrifuge. Protein was purified 

immediately without freezing the cell pellet. 

 

Protein purification and blockage of free Cys 

The cell pellet was suspended in a lysis buffer (30 mM iodoacetamide (IAM), 0.5 mM 

phenylmethanesulfonylfluoride (PMSF), 30 mM Tris, 0.5 M NaCl, pH 7.9) and sonicated for 15 

minutes in ice/water bath with 5 s on/off intervals. The cell lysate was centrifuged at 15,317×g 

under 4oC for 20 min. The pellet was then suspended again in a buffer containing 1.5% Triton, 

10 mM IAM, 0.5 mM PMSF, 30 mM Tris, 0.5 M NaCl (pH 7.9) and sonicated gently at low 

amplitude for 10 minutes in ice/water bath with 5 s on/off intervals. The mixture was then 

incubated on ice and kept shaking for 2 hours, followed by centrifugation at 15,317×g under 4oC 

for 20 minutes. The supernatant which contained the detergent solubilized AcrB was collected. 

Imidazole was added to a final concentration of 10 mM to reduce the non-specific binding during 

purification. The supernatant was mixed with Ni-NTA sepharose resin (Qiagen Inc., Valencia, 
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CA) for 40 minutes with rotation at 4°C. The suspension was packed into an empty column and 

subsequently washed with a wash buffer (0.5% Triton, 10 mM IAM, 50 mM imidazole, 30 mM 

Tris, 0.5 M NaCl, pH 7.9). The target protein was eluted with an elution buffer (0.5 M imidazole, 

1% Triton, 10 mM IAM, 30 mM Tris, 0.5 M NaCl, pH 7.9). Compare with the AcrB purification 

protocols in literature, I omitted the step of purifying the membrane vesicles. I found that the 

additional step of purifying the membrane vesicle did not have a significant improvement on the 

purity of the sample under my experimental condition. 

After elution, maleimide (MAL) and SDS were immediately added to protein samples to final 

concentrations of 50 mM and 4% (w/v), respectively. The high percentage of SDS denatured the 

protein and MAL was included to further block any residual free Cys. After incubated for 30 

minutes at room temperature, proteins were precipitated using 15% trichloroacetic acid (TCA). 

After centrifugation, the precipitate was washed with cold acetone and then re-solubilized in a 

buffer containing 4% SDS and 50 mM Tris (pH 8.0). This precipitation and washing step were 

used to remove IAM and MAL from the sample. Protein concentration was determined by 

measuring the absorbance at 280 nm, with the re-solubilization buffer as blank.  

 

Fluorescent labeling 

The protein concentrations of different AcrB mutants were adjusted to the same level by 

measuring the absorbance at 280 nm. Labeling was performed as described bellow. First, 

dithiothreitol (DTT) was added to the samples to a final concentration of 50 mM. Then the 

samples were incubated at 37°C for 1 hour. Second, proteins in these samples were precipitated 

using 15% TCA. After centrifugation, the protein precipitate was washed with ice cold acetone. 

This step removed the extra DTT from the reduced proteins. Finally, a buffer containing 4% SDS, 
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50 mM Tris, pH 8.0, and 5 mM N-(5-fluoresceinyl) maleimide (F-MAL) was added immediately 

to the protein pellet to solubilize and label the freshly reduced free thiol groups. The pellet was 

resuspended with a pipette tip and incubated at room temperature for 30 minutes. After the 

incubation, 10 mM DTT was added to quench the labeling reaction.  

The labeled samples were analyzed with SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

on 8% gels. After the extra fluorescence dye migrated out of the gel, the gel was collected and 

the fluorescence image was taken using the MiniVisionary gel documentation system 

(FOTODYNE Inc., Hartland, WI) under UV light. The same gel was stained with coomassie 

blue R250 and the image of the gel was then taken under normal white light.   

Note: Construction of plasmids, protein purification, fluorescent labeling, protein expression 

level measurement were performed by WL (Dr. Wei Lu) and MZ (Meng Zhong), Drug 

susceptibility assay as performed by MZ  

 

2.3 RESULTS AND DISCUSSION 

2.3.1 Design and construction of double cysteine reporter pairs 

Disulfide bond can not be formed in cytoplasmic proteins, due to the reducing environment in 

the bacterial cytosol. However, disulfide bonds are commonly found in periplasmic proteins, 

outer membrane proteins and the periplasmic domain of inner membrane proteins.74, 121, 122 

Taking advantage of the oxidative environment of periplasm, a series of reporter Cys pairs were 

introduced at different locations of the AcrB periplasmic domain. Based on the crystal structure 

of AcrB, I have selected seven locations where intra-subunit disulfide bond are likely to form. 

The criteria for the selection includes: 1) Residues to be changed need to be far away from 

crucial residues that are related to AcrB backbone and function. In other words, mutation and 
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formation of disulfide bond should not disturb the structure of AcrB or its function. 2) The 

distance between the two Cys residues of each pair should remain constant during the whole 

AcrB function cycle. AcrB functions through a rotary mechanism in which the three subunits 

rotate through three different stages.61, 62, 119, 120 The distances between the two Cys of each 

reporter pair should stay similar in all three states, thus the formation of the disulfide bond is 

unlikely to affect function. After examining the three stages of AcrB structures, I selected seven 

regions to introduce the reporter pairs that meet the above criteria. Their positions are 

highlighted in Figure 2.2 by black circles, T199-T749 (1), Q726-G812 (2), M184-V771 (3), 

T574-A627 (4), T44-T91 (5), V32-I390 (6), and I335-A995 (7). All of the reporter residues exist 

in the the periplasm, the oxidative environment of which will enable the formation of disulfide 

bonds under the natural condition. 119 

 

Figure 2.2 Superposition of the three states of AcrB, open (blue), tight (red) and loose (yellow). 

Positions of the reporter pairs were highlighted by green space-filled models with circles. The 

three domains of AcrB were labeled on the right. 
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Seven reporters were constructed, each containing a Cys pair at the indicated locations on a 

CLAcrB background. Plasmids encoding the reporter AcrB constructs were transformed into 

BW25113∆acrB for protein expression as described in the materials and methods section. All 

experiments were performed under a basal expression condition without induction. The 

expression levels of the reporters were comparable to the wild type AcrB, which were confirmed 

by Western blot analysis of membrane vesicles extracted from BW25113∆acrB transformed with 

plasmids encoding different AcrB mutants (Figure 2.3).  

 

Figure 2.3 Western blot analysis revealed that the reporter constructs had similar expression 

levels as the wild type AcrB. The same numbering system as in Figure 2.1 was used to label the 

lanes. Wild type AcrB (WT) was used as a control. 

 

2.3.2 Drug susceptibility assay of AcrB reporters 

To meet the criteria as a structural reporter, the mutation to Cys and subsequent formation of 

disulfide bonds should not affect the structure and function of AcrB. Plasmids encoding the 

reporter genes were transformed into BW25113∆acrB, and the drug susceptibilities of the strains 

to erythromycin and novobiocin were examined (Table 2.1). Five of the seven reporters were 

fully active. The MICs of two reporters, CLAcrBV32C/I390C and CLAcrBI335C/A995C, were half of the 

value compared with other AcrB constructs. This slightly decreased activity is possibly because 

of the limited flexibility caused by the formation of the disulfide bonds.   
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Table 2.1 MIC of BW25113∆acrB expressing plasmid encoded acrB mutants.  

Plasmid or mutant 
MIC (µg/ml) 

Erythromycin Novobiocin 

Plasmid   

pQE70 4 4 

pQE70AcrB 128 128 

Mutation*   

Cysless 128 128 

V32C/I390C 64 64 

T44C/T91C 128 128 

I335C/A995C 64 64 

M184C/V771C 128 128 

T199C/T749C 128 128 

T574C/A627C 128 128 

Q726C/G812C 128 128 

*All mutations were constructed using CLAcrB as the background.  

 

The drug transporter activity of CLAcrB was examined with a MIC assay as described in the 

materials and methods section. As shown in Table 1, plasmid encoded CLAcrB fully restored the 

drug resistance of an acrB knockout strain, indicating that the replacement of these two Cys did 

not impair the function of AcrB, which is also consistent with results previously reported in 

literature.119 
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2.3.3 Fluorescein maleimide label and purification of AcrB reporters 

CLAcrB and WTAcrB were used as negative controls for the disulfide trapping experiment. The 

protocol was derived from a procedure published for soluble proteins. 123 Several important 

modifications were described in the materials and methods section, which were critical to make 

it useful for membrane proteins. In the first lane, no IAM and MAL were added to block free Cys 

(Figure 2.4A). After purification, DTT was added to reduce the eluted protein samples. After the 

reduction, any Cys in a protein, either free or existed in a disulfide bond, would become reduced 

form and react with F-MAL during the labeling step to generate a bright fluorescent band. In the 

second lane, IAM was added during the protein purification procedure to block free Cys (Figure 

2.4B). No reduction step was performed afterward. Therefore, no fluorescent labeling was 

expected to occur since there would be no free Cys in the protein. Finally, for samples in the 

third lane, protein was purified in the presence of IAM to block free Cys (Figure 2.4C). After 

purification, the extra IAM and MAL were removed, and the sample was reduced with DTT. If 

there was disulfide bond in the protein, the incubation with DTT would generate freshly reduced 

free Cys, which would be labeled and yield fluorescent band. In the case of WTAcrB, the pattern 

of the three lanes was bright, dark, and dark, indicating the presence of free Cys but no disulfide 

bond in this protein, which is consistent with the known structure of AcrB (Figure 2.4D). The 

CLAcrB was used as a negative control. None of the three bands were fluorescent in this case 

indicating the absence of Cys in this protein as expected. 
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Figure 2.4 Controls for the disulfide trapping experiment. A. Purified protein was first incubated 

with DTT, and then labeled using F-MAL. All Cys residues in the protein would be labeled. B. 

Protein was purified in the presence of IAM, and then labeled using F-MAL. None of the Cys 

could be labeled. C. Protein was purified in the presence of IAM, and then reduced using DTT 

and labeled. Free Cys could not be labeled, while Cys protected by a disulfide bond during the 

IAM treatment could be labeled. D. WTAcrB and CLAcrB treated according to the procedures 

described in A (lane 1), B (lane 2), or C (lane 3). WTAcrB contains two free Cys, while CLAcrB 

contains no Cys. The same amount of protein was loaded in each lane as revealed by Commassie 

blue stain. 

After expression, the protein purification procedure was performed as descried in materials and 

methods section. As shown in Figure 2.5, all reporters formed disulfide bonds was revealed by 

the bright, dark, and bright pattern. Samples in lane 1 and lane 2 were served as internal positive 

and negative controls in the quantification of the percentage disulfide formation. The 



40 
 

fluorescence intensities of lane 1 and lane 2 were designated as 100% and 0, respectively. The 

intensity of lane 3 was converted to percentage labeling using equation:  

100
21
23% ×

−
−

=
FF
FFlabeling  

Where F1, F2 and F3 were fluorescence intensities of the band in lane 1, 2, and 3, respectively. 

The calculated percentage labeling for each reporter pair was shown in table 2.2. 

 

Figure 2.5 Labeling results of the Cys pair reporters. Samples in different lanes were treated 

similarly as those in Figure 2D. The similar protein amount was loaded in each lane as revealed 

by the Commassie blue stain. 
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Table 2.2 Percentage disulfide formation in the reporter Cys pairs as revealed by the percentage 

of fluorescence labeling.  

Reporter construct Disulfide bond% 

V32C/I390C 82.5±6.8 

T44C/T91C 100.7±3.0 

M184C/V771C 76.2±4.9 

T199C/T749C 82.7±2.9 

I335C/A995C 51.7±0.8 

T574C/A627C 102.9±6.8 

Q726C/G812C 97.7±5.0 

 

The extents of disulfide bond formation for different reporter pairs were different. Three pairs 

existed as complete disulfide bond, including CLAcrBT44C/T91C, CLAcrBT574C/A627C, and 

CLAcrBQ726C/G812C. Another three pairs, including CLAcrBV32C/I390C, CLAcrBM184C/V771C, and 

CLAcrBT199C/T749C, existed approximately 80% in the form of disulfide bond and 20% as free Cys. 

The last pair, CLAcrBI335C/A995C, existed with 50% in the form of disulfide bond.     

 

2.3.4 Correlation between fluorescence intensity and the extents of labeling 

To figure out the correlation between the fluorescence intensity and extent of labeling while 

using the current protocol, the different extent of labeling was mimicked by mixing purified 

WTAcrB and CLAcrB. The purified WTAcrB and CLAcrB samples were adjusted to the same 

protein concentration and then mixed with different ratios to generate samples containing 100%, 

90%, 80%, 60%, 40%, 20%, 10%, and 0% WTAcrB. In the next step, the samples were reduced 
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with DTT and then labeled using F-MAL as described in the materials and methods section. 

After labeling, samples were analyzed with SDS-PAGE (Figure 2.6). Fluorescent intensities of 

different bands were quantified using software ImageJ124, 125 and plotted against the percentage 

of WTAcrB in the samples. As shown in Figure 2.5, the fluorescence intensities correlated very 

well with the percentages of WTAcrB, indicting that the fluorescent intensity did reflect the extent 

of labeling, which correlated with the quantity of reactive thiols in the labeling step. 

 

Figure 2.6 A. SDS-PAGE analysis of fluorescent labeling results of samples containing the 

indicated percentage of WTAcrB. B. The fluorescent intensities of each band were plotted against 

the percentages of WTAcrB. The experiment was performed three times. The average intensities 

and standard deviations were shown in the plot.  
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These results indicated that all reporter Cys pairs could form disulfide bond, and five out of the 

seven pairs did not significantly affect the transport activity of AcrB. These five pairs, which 

existed at different locations in the periplasmic domain of AcrB, could be used to monitor local 

conformational changes. Purified membrane proteins exist in detergent micelles. Limited by the 

size of the protein and bound detergent, in most cases NMR could not be used to study structures 

of membrane proteins. If the conformational change in the protein is drastic enough to cause a 

change of the secondary structure content or overall stability, then circular dichroism (CD) 

spectroscopy and limited protease digestion can be used to monitor the changes. However, more 

subtle changes are difficult to identify. The method described in this study has the following 

advantages: first, the combined usage of different reporters together could reveal a more detailed 

profile of AcrB conformational changes. Second, while most protein structure characterization 

methods can only tell information about purified proteins, the current method actually reveals the 

conformation of the protein while it is under the native environment in vivo. The presence of 

IAM throughout the protein purification process blocked all free Cys and maintained the profile 

of different Cys pairs at their native conditions.    

The major concern of this study was the potential oxidation of free Cys in the protein purification 

process, as it would yield false positive result indicating higher disulfide bond percentage than 

the actual number. To keep the percentage of disulfide bond unchanged during the protein 

purification process, IAM was added throughout the purification process. IAM is a small 

molecule thiol modifier that can penetrate into protein hydrophobic core and react with 

membrane proteins.123 In addition, proteins from freshly cultured cell is purifed, to avoid the 

possibility that free Cys might form disulfide bond during the freezing and subsequent storage 
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period. After sample was eluted from the affinity purification column, SDS and MAL 

immediately added into the protein samples. High concentration of SDS denatured AcrB to 

prepare it for fluorescent labeling, while MAL further eliminated any residual free Cys that 

might survive through the blocking process.  

 

2.3.5 Study of distance sensitivity of the reporters  

It is known that the formation of disulfide bond is very sensitive to the distance between the two 

Cys residues involved. Such sensitivity was served as the foundation for the reporter platform 

described in this study. The distances between the Cα of the involved Cys pairs in 171 disulfide 

bonds from 28 randomly chosen protein structures from the protein data bank were 

measured(Figure 2.7). According to Figure 2.7, disulfide bond has been observed to occur 

between two residues with Cαs less than 7.5 Å apart. While the distances ranging from 

approximately 4 to 7.5 Å, the majority clustered at 5 to 6.5 Å. This number is consistent with 

values reported in literature, which indicates disulfide bond may form between a pair of residues 

that possess a α-carbon to α-carbon distance ranges from 4 to8 Å.126-128 
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Figure 2.7 Summary of the distance between the Cα of two Cys in 171 disulfide bonds found in 

protein structures randomly chosen from the protein data bank.  

 

To further verify the disulfide trapping protocol, the correlation between the extent of fluorescent 

labeling and the the real distance between the involved Cys was examined. Four additional Cys 

pairs were created. According to the crystal structure of AcrB, T574 and A627 locate in the 

middle of a pair of anti-parellel β-strands that exists in PC1 subdomain (Figure 2.8). Taking 

advantage of this intrinsic “ruler”, the extent of disulfide bond formation between A627C, which 

located in the center of one strand, with five residues were measured. These five residues 

scattered on the other strand, including L578C, V576C, T574C, F572C and G570C. The 

distances between the Cα of A627 and the Cα of the five residues on the other strand are 

summarized in Table 2.3. These distances were obtained by measuring the corresponding 

distances in all independent AcrB crystal structures currently available, including 1IWG, 1OY6, 

1T9T, 2HQC, 2GIF, 2DHH, 2RDD, and 3B5D. The average distances and standard deviations 

were also listed. The distance between the Cα of T574 and A627 is in the optimum range to form 

disulfide bond (which is one of the seven reporters created), while the distance between the Cα 

of A627 and F572 or V576 are slightly beyond the disulfide bonding distance. The distances 

between the Cα of A627 and G570 or L578 are too long to form the disulfide bond.  
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Table 2.3 Summary of the measured Cα distances and percentage of fluorescence intensity. 

Res. 1 Res. 2 C  dist Fluorescence % 

A627C T574C 5.4 ± 0.22 100 

A627C G570C 14.3 ± 0.38 7.7 ± 3.4 

A627C F572C 8.9 ± 0.25 12.5 ±6.0 

A627C V576C 8.1 ± 0.26 65.1 ± 10.4 

A627C L578C 14.5 ± 0.28 3.0 ± 2.7 

 

The extents of disulfide bond formation of these five pairs were compared. After overnight 

expression, proteins were purified in the presence of IAM, and then reduced with DTT before 

labeled using F-Mal. As shown in Figure 2.8B, CLAcrBA627C/T574C formed strong disulfide bond. 

Assuming the extent of disulfide bond formation in CLAcrBA627C/T574C was 100%, the percentages 

of disulfide bond formation in the other four mutants were calculated through comparing their 

fluorescent intensities with that of CLAcrBA627C/T574C in Figure 2.8B (Table 2.3). Two interesting 

observations were obtained. First, although the measured distances between the Cα in C627-

C572 and C627-C576 are both longer than the distance normally observed in existing disulfide 

bonds, there were still significant levels of disulfide bond formation in both cases. Second, while 

the measured Cα distances in C627-C572 and C627-C576 were similar, the extent of disulfide 

bond formation was quite different. These observations may indicate that AcrB structure has a 

certain degree of flexibility, which involves a slight shift of the relative position between the two 

β-strands. The breathing effect of the structure may have temporarily brought the side chains of 

C627 and C572 or C576 within the disulfide bond forming distance. In addition, this movement 
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is asymmetric relative to the location of A627, which favored the formation of C627-C576 

disulfide bond to a greater extent. 

 

Figure 2.8 A. Side chains of 5 pairs of residues that within the β-strands were shown in space-

filled model with labels on the side. B. Labeling results of Cys pairs, CLAcrBG570C/A627C (lane 1), 

CLAcrBF572C/A627C (lane 2), CLAcrBT574C/A627C (lane 3), CLAcrBV576C/A627C (lane 4), and 

CLAcrBL578C/A627C (lane 5). Protein purification was carried in the presence of IAM, and then 

reduced with DTT and labeled using F-MAL. As revealed by the Commassie blue stain, the 

protein loading amount in each lane was the same. 

 

To verify if the extent of fluorescent labeling reflects the distance in the reporter Cys pair under 

the native condition, the extent of disulfide bond formation of five Cys pairs separated by 

different distances was compared. These five Cys pairs locate in two closely spaced anti-parallel 

β-strands in AcrB PC1 subdomain. The results not only confirmed that the fluorescent labeling 

approach can faithfully reflect the distance between the involved Cys pairs, but also suggested 
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that there was certain degree of structural motion in the related region of AcrB. This motion may 

reflect the intrinsic structural flexibility of AcrB. However, it should not be critical for the 

function of AcrB, as the cross-linking between A627C and one of the other Cys did not affect the 

activity of the efflux pump.     

Finally, the activity assay for these mutants was performed to confirm that these mutations did 

not cause a drastic change of AcrB structure (Table 2.4). CLAcrBT574C/A627C had been shown to be 

fully active in earlier experiment. The MICs of the rest four pairs were also similar to that of the 

wild type AcrB. The mutations to Cys and formation of disulfide bonds had no negative effect on 

the activity of the protein.    

Table 2.4 Drug susceptibility of four cysteine pair reporters for distance sensitivity measurement 

Plasmid or mutant 
MIC (µg/ml) 

Erythromycin Novobiocin 

Wild type 128 128 

G570C/A627C 128 128 

F572C/A627C 128 128 

V576C/A627C 128 128 

L578 C/A627C 128 128 

 

The disulfide trapping method is an established technique that has been applied successfully in 

the detection of conformational change in membrane proteins.126-133 Usually Cys pairs introduced 

at strategic positions in the protein are first induced to form disulfide bond with a chemical 

catalyst, and then various methods are used to determine the formation of disulfide bond. The 

most commonly method used to detect the presence of disulfide bond is SDS-PAGE.134 Under 
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reducing or non-reducing conditions, proteins containing disulfide bond may migrate differently 

in the gel. Nevertheless, the presence of intra-molecular disulfide bond may not always generate 

a detectable shift in migration. Another popular method in the detection and quantification of 

disulfide bond and free cysteine is mass spectrometry.135This method is more accurate, but is 

also more time consuming, expensive, and requires specific instrumentation. An alternative 

method is to use sulfhydryl-specific labeling reagents, including biotin, fluorescence dye, and 

radioactive probes.123, 135 These labeling reagents can react with free thiols. However, cysteine in 

the form of free thiol may suffer from oxidation by ambient oxygen during the protein 

purification process, which may cause artifact in the estimation of the percentage of free cysteine 

in the protein. The procedure developed here is more reliable because all cyeteine in the protein 

were first blocked to prevent the formation of new disulfide bond during the detergent extraction 

and protein purification process. After purification, the protein was denatured in the presence of 

the blocking reagent, which could further eliminate residual free thiols that might not be 

accessible by the blocking reagent under native state. Finally, disulfide bond that presented in the 

protein before the purification process was reduced and immediately labeled with a thiol-reactive 

fluorescent probe. The experimental design included internal positive and negative controls, 

which could compensate for potential differences in chemical reactivity of Cys placed at 

different regions of the protein sequence. Through comparing the fluorescence intensity of the 

sample with those of the negative and positive controls, I could estimate the percentage labeling 

of the sample, which reflected the portion of the Cys pair that existed in the form of disulfide 

bond in the protein. The experimental results were highly reproducible due to these proactive 

experimental designs.  
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The establishment of multiple reporter Cys pairs in the AcrB periplasmic domain has set the 

stage for the investigation of AcrB conformational changes under various experimental 

conditions. For example, while the effect of detrimental mutations that disrupt know mechanisms 

such as substrate binding or proton relay are easy to interpret, mutations that disrupt AcrB 

function through interfering protein structure or folding are more difficult to pin down. Now the 

structural impact of such mutations can be assessed by the reporter constructs.   

 

2.4 CONCLUSION 

AcrB and its homologues are major players in conferring multidrug resistance to Gram-negative 

pathogens. Its structure is strongly connected to its function as an efflux pump. Study of AcrB 

conformational changes helps understand which residues are important to the protein activity and 

identify potential inhibitors as drugs for clinical treatment. Herein, a disulfide-trapping based 

reporter system was developed. Cysteine pair reporters can be labeled by fluorescein maleide to 

different extents which is highly related to its distance and local environment. These reporters 

could be used as a fast, convenient and sensitive method to probe local conformational changes 

in AcrB. Later this method has been used by my group to detect subtle conformational difference 

upon further mutagenesis studies. I expect that such a design might be applicable to other 

membrane proteins as well. 

 

 

 

 

Copyright © Meng Zhong 2013
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CHAPTER III. STUDY OF ACRB FOLDING AND TRIMERIZATION 

3.1 INTRODUCTION 

Oligomerization is a common feature in protein structure. The majority of oligomers are homo-

oligomers.136-140 Obligate oligomers exist and function exclusively in one oligomeric state. The 

assembly of obligate oligomers is an interesting and yet poorly understood process. Studies with 

soluble oligomeric proteins indicated that oligomerization may occur via a two-stage or a three-

stage pathway.141-144 In the two-stage pathway individual monomers remain unfolded in the 

absence of oligomerization, while in the three-stage pathway individual monomers fold into an 

independently folded structure, which may be different from the final conformation in the 

oligomer.145 

It is not well defined how proteins oligomerize in the plasma membrane of a cell. Of all the 

proteins encoded in sequenced genomes, approximately 20-30% are predicted to be membrane 

proteins, many of which function as oligomers.146 However, the mechanism of the oligomer 

assembly in the cell membrane of integral membrane proteins is still not clear, mainly due to the 

difficulty of characterizing protein tertiary and quaternary structures separately in the cell 

membrane under native condition. The anchoring of the subunits in the membrane restricts the 

movement of the subunits to two dimensions, which may increase local concentrations of the 

subunits and therefore the chance of encountering among them. Thus, the oligomerization of 

membrane-associated proteins may occur more efficiently.   

In the case of obligate oligomers, it is not well defined how each subunit exist before they 

assemble into the final oligomeric state. In Gram-negative bacteria, the membrane insertion of 

inner membrane proteins occurs co-translationally. It is still unclear to what extent each 

individual subunit folds before the onset of the assembly. It still remains elusive whether it 
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occurs through a two-stage or three-stage pathway. The assemblies of heteropentameric 

membrane proteins have been shown to be sequential by several studies. For example, Green and 

Claudio studied the sequential folding and assembly of the heteropentameric Acetylcholine 

receptor (AChR).147 Taking advantage of the temperature sensitive assembly of Torpedo AchR 

subunits in the mouse cell line, they first expressed the subunits at 37oC, and then triggered the 

assembly by lower down the temperature to 20oC. With this method, they found that within first 

few minutes the αβγ trimer was assembled, followed by the sequential addition of a δ, and finally 

a second α subunit. The authors concluded that the subunit folding events contribute to subunit 

recognition site formation during assembly. One factor that was not addressed in their study is, 

how close are the structure of each individual subunit to their final structure in the functional 

heteroligomer.   

In this study, the relation between the subunit folding and oligomer assembly in a trimeric 

membrane protein, AcrB, was investigated. The rationale is, since the major difference between 

the two-stage and three-stage pathway is the existence of well folded, independent monomers 

under native condition, the observation of  well folded monomeric AcrB in the cell membrane 

would support the three-stage pathway. To make this research possible, it is crucial to have a 

method to probe the structure of AcrB in the membrane under the native condition, as detergent 

extraction and purification may affect the conformation and oligomeric state of AcrB. For this 

purpose, a folding reporter platform has been constructed that can be used as a research tool to 

reveal the tertiary structure of individual subunits in the cell membrane.148 In the current study, a 

well-folded monomeric AcrB mutant, AcrB∆loop, was created. Part of a protruding loop was 

deleted in AcrB∆loop (Figure 3.1). Since AcrB is a structural and functional obligate trimer, 

monomeric AcrB has not been found in the cell membrane before. AcrB∆loop existed in the cell 
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membrane in a folded conformation highly similar to that of the final structure in the obligate 

trimer. In other words, the folding of each individual subunit does not need assistance from 

neighboring subunits. These results indicated that the trimerization of AcrB may occur through a 

three-stage pathway.  

 

 

Figure 3.1 A. Side view of an AcrB trimer. Different domains were marked. The position of the 

inner membrane was marked between the grey bars. B. Head view of an AcrB trimer. The 

contour of each subunit was highlighted using a transparent envelope to illustrate the protruding 

loop.  

3.2 MATERIALS AND METHODS 

Cloning, expression and purification of AcrB and its mutants 

The pQE70-AcrB plasmid was used as the template to construct the AcrB∆loop Mutant. (13) In 

this mutant the N211-G227 was deleted and the Quikchange mutagenesis kit (Agilent 

Technologies, Santa Clara, CA) was used to generate this deletion mutation (Figure 3.2).  
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Figure 3.2 Structure of a single AcrB subunit. The part of the protruding loop that was removed 

in this study was highlighted in green. The structure was created using pdb file 2DHH.  

 

Complementary primers used to construct of AcrB∆loop are as follows: 5’- 

CATTACCGCCATCAAAGCGCAGCAACAGCTTAACGCCTCTATTATTGC-3’ and 5’-

GCAATAATAGAGGCGTTAAGCTGTTGCTGCGCTTTGATGGCGGTAATG-3’.  

With the same method, loop deletion mutation was also introduced into AcrB reporter constructs 

CLAcrB, 32-390-AcrB, 44-91-AcrB, 184-771-AcrB, 199-749-AcrB and 726-812-AcrB. The 

coding sequences of all plasmids used in this study were confirmed by DNA sequencing. AcrB 

and all the mutants were expressed in an E. coli strain deficient in gene acrB (BW25113ΔacrB) 

and purified as described.148 

Drug susceptibility assay of AcrB∆loop mutant 

AcrB activity could be measured with a drug resistance assay. The minimum inhibitory 

concentrations (MIC) of different strains were measured using the protocol described 
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previously.148 Briefly, E. coli strain deficient in gene acrB (BW25113ΔacrB) was used as the 

host cell. The plasmid encoding wild type AcrB (WTAcrB) or empty pQE70 vector was 

transformed into the BW25113∆acrB strain separately. These two transformed strains were used 

as the positive and negative controls, respectively. Plasmids encoding different AcrB mutants 

were also transformed into BW25113∆acrB strain. Freshly transformed cells were plated on LB-

agarose plates containing 100 μg/mL ampicillin and 50 μg/mL kanamycin. The same ampicillin 

and kanamycin concentrations were used throughout the study. A single colony was inoculated 

into a LB media containing ampicillin and kanamycin. The strains were cultured to the 

exponential-phase and then were diluted to an OD600nm unit of 0.1 using LB broth. 5 µL of this 

culture was used to inoculate 1 mL LB media containing the indicated concentration of 

erythromycin or novobiocin. The cultures were incubated with shaking under 37oC for overnight. 

The OD600nm of each sample was measured the next morning. The activity assay was conducted 

under the basal expression condition. Each experiment was repeated in triplicates. 

 

Expression, purification, and labeling of AcrB and its mutants 

Labeling of AcrB reporters was performed as described in Chapter II. (13) Briefly, AcrB reporter 

mutants freshly expressed in BW25113ΔacrB was treated with iodoacetamide (IAM) and 

purified with Ni-Sepharose. IAM could block free thiols in the protein but it would not affect 

disulfide bonds. After purification, dithiothreitol (DTT) was added into the protein samples to 

reduce disulfide bonds and generate free thiols. These freshly generated thoils were immediately 

labeled with 5-Maleimido-fluorescein (Flu-MAL) and analyzed by SDS-PAGE. With this 

method, disulfide bonds existing in the protein can be quantified.   
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Blue Native PAGE analysis of wild type AcrB and AcrB∆loop 

BN-PAGE was performed as previously described.149, 150 Briefly, purified protein samples were 

mixed with blue native loading buffer to reach a final concentration of 0.1M 6-aminoocaproic 

acid, 6% sucrose, 10mM 2-[bis(2-hydroxyethyl)amino-2-(hydroxymethyl) propane-1,3-diol-HCl, 

1% Coomassie brilliant blue G-250, pH 7.0. Protein samples were load to a 4–20% gradient 

polyacrylamide gel . The electrophoresis was performed at 60 V in the 4°C refrigerator for 5 

hours using a running buffer (25 mM Tris-HCl, 192 mM glycine, 0.01% Coomassie brilliant blue 

G-250, pH 8.3) . Then Coomassie Blue stain was used to visualize the protein bands. Band 

intensity was quantified with the software ImageJ. (44) 

 

Limited Trypsin digestion of WT-AcrB and AcrB∆loop 

Purifed AcrB samples were dialyzed with a reaction buffer containing 20 mM phosphate buffer, 

0.1M NaCl, 0.03% n-dodecyl-β-maltoside, 10% glycerol. Then trypsin was added into each 

sample at a molar ratio of 1:200. The samples were incubated at room temperature for the 

indicated period of time before phenylmethylsulfonyl fluoride (PMSF) (final concentration was 2 

mM) and SDS-loading buffer (final concentration was 1X) was added to quench the digestion 

reaction. The samples were then heated at 95ºC for 2 minutes and analyzed using SDS-PAGE.  

 

Analysis of expression levels of wild type AcrB and AcrB∆loop by immunoblotting 

Freshly transformed colonies of BW25113ΔacrB strain containing plasmid-encoded wild type 

AcrB or AcrBDloop were inoculated into LB medium containing ampicillin and kanamycin. 

After overnight culture at 37°C, cells were harvested, resuspended in 10 mM HEPES-KOH 

buffer (pH 7.5) to an OD600 of 15. Then the cells were ruptured with French Press in the 
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presence of PMSF. Unbroken cells of the sonicated suspensions were removed by low-speed 

centrifugation and the membrane vesicle was collected by ultracentrifugation at 150,000 g for 1 

hour under 4°C. The pellet was resuspended in 10 mM HEPES-KOH (pH 7.5) buffer containing 

2% (wt/vol) SDS to solubilize the inner membrane proteins. The solubilization was enhanced by 

sonication and then incubated at 37°C for 2 hours. Then SDS-Loading buffer was added and the 

samples were separated on 8% SDS-PAGE and transferred to a nitrocellulose membrane 

(Millipore, Bedford, MA) for Western blot analysis with polyclonal rabbit anti-AcrB as primary 

antibody and an alkaline phosphatase-conjugated anti-rabbit (Abcam, Cambridge, MA) as 

secondary antibody. Then the protein-antibody conjugates were visualized with nitroblue 

tetrazolium chloride and 5-bromo-4-chloro-3’-indoyl phosphate p-toluidine. (Sigma-Aldrich, St. 

Louis, MO).  

 

CD analysis of the structure and heat stability of WT-AcrB and AcrB∆loop 

CD analysis was performed on a JASCO J-810 spectrometer (JASCO, United Kingdom) with 1 

nm bandwidth. Protein samples were dialyzed overnight against a low salt buffer (10 mM 

sodium-phosphate, 50 mM NaCl, 10% glycerol, 0.05% DDM, pH 7.5) before the CD 

measurement.  Blank scans were performed with the exterior dialysis buffer. For far-UV CD 

spectra of secondary structure, samples in 1 mm path length cuvettes were scanned in the 

wavelength range 250–190 nm. Spectra were then corrected for background by subtraction of a 

blank curve obtained from the dialysis buffer. For the near-UV CD analysis, the scanning was 

performed in the wavelength range 350-250 nm using a 1cm path-length cuvette. Protein 

concentrations were determined with Bradford assay. 
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Chemical crosslinking 

The WT-AcrB and AcrB∆loop were freshly expressed in BW25112∆acrB strain and the bacteria 

cells were harvested and lysed by sonication in a buffer containing 50 mM phosphate, 0.15M 

NaCl and 0.5 mM PMSF (pH 7.5). After sonication the suspensions were centrifuged and the cell 

pellets were collected and re-suspended in a buffer containing 50mM phosphate, 0.15M NaCl, 

0.5mM DSP (pH=7.5). The suspension was incubated under 37°C for 40 minutes. Tris-HCl (pH 

8.0) was added to a final concentration of 50 mM to quench the crosslinking reaction. Then 

TritonX-100 was added to a final concentration of 1% to extract the inner membrane proteins 

and AcrB was purified as described above.  

Purified WT-AcrB and AcrB∆loop samples were analyzed by non-reducing SDS-PAGE. Later, 

western blot analysis was performed with polyclonal rabbit anti-AcrB primary antibody and 

alkaline phosphatase-conjugated anti-rabbit secondary antibody. 

Note: Cloning, expression and purification of AcrB mutants, fluorescence labeling, limited 

protease digestion, blue native analysis, CD analysis were performed by Dr. Wei Lu and Meng 

Zhong. Drug susceptibility was performed by MZ. Chemical crosslinking was performed by WL. 

 

3. 3 RESULTS AND DISCUSSION 

3. 3. 1 Construction of pQE70-AcrB∆loop 

The goal of this study is to determine if monomeric AcrB mutant can exist in the cell membrane, 

and if so, how does the structure of this mutant compare with that of wild type AcrB. The answer 

of this question may shed light on the oligomerization pathway of AcrB. The capability of AcrB 

monomer to fold independent from the neighboring subunits in the cell membrane would suggest 
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a three-stage oligomerization pathway, which involves well-folded monomer intermediate state. 

AcrB is an obligate trimer. No monomeric or dimeric AcrB has ever been observed in cell 

membrane. After extracted from the membrane using detergent, AcrB predominantly exists as a 

trimer. 61-63 Change of the sample buffer condition or prolonged storage may cause AcrB trimers 

to dissociate into monomer, but no evidence has been reported concerning if these monomers 

could re-assemble into trimer.151 

To create monomeric AcrB in the cell membrane, we predict that the inter-subunit interface 

between neighboring subunits would be interrupted while at the same time the intra-subunit 

interactions should not be interrupted. Through examination of the AcrB structure, we speculated 

that mutations in the protruding loop as revealed in Figure 3.1 might generate monomeric AcrB 

mutant. It is far away from the bulk of the protein structure and is not expected to be important 

for the overall tertiary structure packing. While at the same time, it should be critical for the 

inter-subunit interactions. With the site directed mutagenesis kit, 17 residues were deleted in the 

loop which corresponds to half of the overall length of the loop. The loop deletion mutation was 

also introduced into five of the AcrB reporters described in Chapter II. The disulfide trapping 

method was used to investigate how loop deletion would affect AcrB conformation. 

 

3. 3. 2 Drug susceptibility of AcrB∆loop 

The activity of AcrB∆loop was measured by a drug susceptibility assay. Plasmids encoding wild 

type AcrB or AcrB∆loop were transformed into BW25112ΔacrB strain. In parallel, vector pQE70 

was also transformed into BW25112ΔacrBto serve as a negative control. Minimum inhibitory 

concentrations of these strains were measured for two established AcrB substrates, erythromycin 

and SDS (Table 3.1). The MIC of the strain containing plasmid-encoded AcrB∆loop was much 
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lower than the plasmid-encoded wild type AcrB, and was similar to the MIC of the same strain 

with the empty pQE70 vector. This result indicated that the mutant was completely non-

functional, as it could not increase the resistance level of the host strain to those AcrB substrates. 

Table 3.1 MICs of BW25113∆acrB expressing plasmid encoded acrB gene 

Plasmid or mutant 
MIC (µg/ml) 

Erythromycin Novobiocin 

BW25113∆acrB 4 4 

pQE70 4 4 

pQE70AcrB∆loop 4 4 

pQE70AcrB 128 128 

 

Normally, the drug efflux ability of AcrB can be disrupted by disrupting the substrate binding or 

proton relay pathway, the folding of each subunit, the assembly of a functional AcrB trimer, or 

the interaction between AcrB and its functional partners AcrA and TolC. Since the site of 

mutation is distant from the substrate binding, proton relay, and AcrA/TolC docking interface, 

the lack of function is more likely to be a result of disrupting subunit folding or trimerization.59, 

104, 107, 109, 110, 112, 113, 152 

 

3. 3. 3 Expression levels of AcrB∆loop and wild type AcrB 

To evaluate how the truncation of the protruding loop will affect the overall structure and 

stability of the protein, the expression level of the mutant was examined. If a mutation 

dramatically reduced the overall stability of a protein, it could cause the mutant protein to fail the 
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quality control mechanism of the cell and result in a drastic decrease of the protein abundance. In 

this case, BW25113∆acrB was used to express wild type AcrB and AcrB∆loop to prevent the 

interference from intrinsic AcrB expression. Membrane vesicles were extracted and then 

analyzed by immunoblot. The same samples were diluted 10 and 100 fold to further compare the 

expression levels of the two proteins in the cell (Figure 3.3). The densities of the blotting bands 

were very similar for both proteins, indicating AcrB expression levels in two strains are fairly 

close.  

 

Figure 3.3Comparison of the expression levels of wild type AcrB and AcrB∆loop. A. Western blot 

analysis of membrane vesicles extracted from BW25113∆acrB expressing the wild type AcrB or 

AcrB∆loop. Each sample was diluted 1, 10 and 100 fold. 

 

3.3.4 Structural study of AcrB∆loop by circular dichroism 

Next, circular dichroism was used to characterize AcrB∆loop and wild type AcrB structures in 

detail. AcrB∆loop and wild type AcrB were first purified by Ni-NTA beads. The mutant protein 

can be purified following the same protocol as the wild type AcrB with comparable yield (Figure 

3.4).  
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Figure 3. 4 SDS-PAGE of purified wild type AcrB (lane 2) and AcrB∆loop (lane 3) samples. Both 

proteins can be purified to near homogeneity. The positions of protein molecular weight markers 

were marked respectively. 

 

Far UV CD spectroscopy provides valuable information about protein secondary structure. The 

“far UV” region in the CD spectra (190nm-250nm) of the two proteins superimposed well, 

suggesting deletion of the protruding loop did not change protein secondary structure. Both 

proteins showed two distinct peaks of α-helices (Figure 3.5A).  

Thermal stability of the proteins was also compared. When protein is heated to certain 

temperature, it would slowly lose its secondary structure. In this case, the changes in α-helix 

signal were monitored. The wavelength was set at 222 nm with the increase of temperature from 

4 to 98 °C (Figure 3. 5B).  

If the truncation of the loop does affect the folding and internal packing of the AcrB subunit, 

then most likely there would be a change in the melting temperature. The change in the ellipticity 

at 222nm reflected the change in protein secondary structure upon heat denaturation. Residual 

helical structure maintained even when the proteins were heated to 98 ºC, which is consistent 

with previous observations that helices in helical membrane proteins are very stable and a 
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portion of them exist even in the unfolded stage.153 The melting curves of the two proteins 

almost overlap, indicating a lack of significant difference in the thermal stability between 

AcrB∆loop and wild type AcrB. 
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Figure 3.5 A. Far UV CD spectra of wild type AcrB (open squares) and AcrBloop (filled 

squares) superimpose well onto each other, indicating the two proteins had similar secondary 

structure contents. B. Temperature denaturation curves of wild type AcrB (open diamond) and 

AcrB∆loop (filled squares). The ellipticity values monitored at 222 nm against the temperature was 

normalized to the reading at 4 oC. The thermal stabilities of the two proteins were very similar.   

 

The near UV CD spectrum (260-350 nm) of both proteins was collected (Figure 3.6).  The signal 

of near UV CD comes from aromatic residues including tryptophan, tyrosine, and phenylanine, 

which is related to protein’s tertiary and quaternary structure. When protein confirmation 

changes, there is likely to be a change in the microenvironment of these aromatic residues, which 

will affect their UV absorption and the CD spectrum. Also, the near UV CD is sensitive to the 

intramolecular and intermolecular interaction of oligomeric proteins. The spectrums of the wild 

type and mutant proteins were different, proving there is a difference in the local structure of 

these residues (Fig. 3.6). This change may be at the tertiary structure or the quaternary structure 

level, as both may potentially change the microenvironment of the residues. 
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Figure 3.6 Near UV CD spectra of wild type AcrB (grey diamonds) and AcrBloop (black 

squares). 

 

3. 3. 5 Structural study of AcrB∆loop by limited protease digestion 

Limited protease digestion is another well established method that has been used extensively to 

probe a protein’s structure.154-158 A well folded protein is more resistant to protease digestion 

than a poorly folded one. The pattern of the resultant peptide fragments may also reveal the  

disordered portion of a protein. I compared the digestion results of AcrB∆loop and wild type AcrB 

at different time points of trypsin treatment. As shown in Figure 3. 7. After 15 min of incubation, 

90% of full length AcrB was preserved. Under the same experimental condition, AcrB∆loop was 

digested much faster. A clear decrease of the full length protein was obvious within 5 min into 

digestion, and at 15 min a large portion of the protein was digested into smaller fragments. This 

result showed wild type AcrB was more resistant to trypsin digestion. This difference, again, can 
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be explained by the structural differences of wild type AcrB and AcrB∆loop at the tertiary and/or 

quaternary structure level. Difference in trypsin digestion rates elucidated the difference in the 

accessibility of Lys and Arg to the enzyme. Two factors might cause the observed difference in 

trypsin digestion rate: First, AcrB∆loop is a monomer. The inter-subunit interface in the trimeric 

wild type AcrB provides better protection to potential trypsin recognition site from digestion. 

Second, the tertiary structure of AcrB∆loop is different from that of wild type AcrB. Since 

AcrB∆loop was digested faster, its tertiary packing might be “looser” than the tertiary structure 

packing in wild type AcrB.       

 

Figure 3.7 Limited trypsin digestion of purified wild type AcrB and AcrB∆loop. Under the current 

experimental condition, wild type AcrB is highly resistant to the digestion. No apparent 

degradation could be observed. AcrB∆loop is much more sensitive to digestion. Degradation of the 

full length protein was apparent after 5 min of incubation. The grey arrow on the right pointed 

out a compact fragment resulted from trypsin digestion of AcrB∆loop. Molecular weight marker 

was on the right of the gel.  

3.3.6 Structural study of AcrB∆loop by cysteine pair reporters 
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To determine which factor is the cause of the digestion difference, the thiol trapping method 

described in chapter II was used to examine protein tertiary structure under the native condition. 

Most current protein structure characterization methods, such as CD spectroscopy and protease 

digestion discussed above, require the extraction of the target membrane protein from the cell 

membrane followed by purification. The sample preparation process may cause protein 

oligomers to dissociate, thus cannot present protein native state in vivo. Substitution of the two 

intrinsic Cys in AcrB with Ala has been shown to have no impact on AcrB activity.115 Seven 

reporter cysteine pairs were introduced in the cysless AcrB (CLAcrB). All seven pairs formed 

disulfide bond, and none of them affect the drug efflux activity of AcrB. The extent of disulfide 

bond formation in the protein under native condition, that is, before the cell membrane was 

disrupted, was probed using a blocking-reducing-labeling scheme as described in the materials 

and methods section. Although the protein was eventually purified and analyzed using SDS-

PAGE, the blocking step helped to capture the state of the protein before it suffered from the 

stress of protein purification.  

 

First, loop deletion was introduced into the cysless AcrB (CLAcrB), the results were similar to 

what had been observed in wild type AcrB. Later, 5 reporter Cys pairs were introduced in the 

periplasmic domain of AcrB∆loop. If the protein tertiary or quanternary structure changed, the 

distance between cysteine pairs would be affected and the change in disulfide bond formation 

can be detected by the fluorescence labeling method. The extents of disulfide bond formation in 

five reporter pairs were used to reflect potential structural change in AcrB∆loop. The profile of 

disulfide bond formation in these reporter pairs with the AcrB∆loop mutation was shown in Figure 

3.8.  
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Figure 3.8 Disulfide bond formations in conformation reporters. The extents of sidulfide bond 

formation were very similar in AcrB∆loop as compared to the wild type AcrB. Therefore, the 

overall conformation, or tertiary structure, of AcrB∆loop is very close to that of the wild type AcrB.   

 

The truncation of the protruding loop had no significant effect on the extents of labeling for all 

reporter pairs, suggesting that the tertiary structure of AcrB in the cell membrane was not 

affected by this mutation.  

 

3.3.7 AcrB∆loop exists as a well-folded monomer 

Finally, to investigate how the deletion of the loop eliminated transport activity, the oligomeric 

state of AcrB was examined using blue native PAGE (BN-PAGE). BN-PAGE is a method 

widely used in the determination of membrane protein oligomeric states and has been used to 

confirm that wild type AcrB is a trimer.149, 150 The results of the BN-PAGE showed that 

AcrB∆loop migrated as a monomer. also It has been confirmed that under the same experimental 
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conditions wild type AcrB migrated as atrimer, consistent with the result in literature (Figure 3. 

9).  

 

Figure 3.9 After detergent purification, freshly prepared wild type AcrB samples migrated as a 

trimer in the BN-PAGE. Under the same condition, purified AcrB∆loop migrated as a monomer. 

 

The observation that AcrB∆loop migrated as a monomer in BN-PAGE after purification does not 

completely rule out the possibility that the protein may associate weakly as a dimer or trimer in 

the cell membrane, but dissociate during the process of purification and electrophoresis analysis. 

To further investigate the impact of the mutation on the quaternary structure of the protein, cross-

linking experiments were conducted using membrane vesicles and di(N-succinimidyl) 3,3′-

dithiodipropionate (DSP) as the crosslinker. DSP cross-links two -NH2 groups. Crosslinking was 

performed using membrane vesicles extracted from BW25113∆acrB cells expressing wild type 

AcrB or AcrB∆loop. Immunoblotting with an anti-AcrB antibody was used to detect the protein 

bands after SDS-PAGE analysis. As shown in Figure 3. 10, the wild type AcrB trimer was 
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clearly visible, while AcrB∆loop only migrated as a monomer. Some wild type AcrB monomers 

were also visible, presumably due to the incompleteness of the cross-linking reaction. In the 

absence of cross-linking, wild type AcrB also migrated only as a monomer under the same 

experimental conditions. This result further confirms that AcrB∆loop exists as a monomer in the 

inner membrane of E. coli.  

 

Figure 3.10 Western blot analysis of membrane vesicles extracted from BW25113∆acrB 

expressing the wild type AcrB or AcrB∆loop after chemical cross-linking. 

 

3.3.8 Impact of expressing AcrB∆loop in a wild type E. coli strain on AcrB activity 

To examine if the expression of AcrB∆loop interferes with the wild type AcrB subunit, I 

transformed plasmid encoded AcrB∆loop into a wild type AcrB strain and examined the drug 

susceptibility level of the resultant strain. Earlier study has shown that when another functionless 

AcrB mutant, AcrBD408A, was overexpressed in a wild type E. coli strain, the drug susceptibility 

monomer 

 trimer 
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level of the strain is drastically reduced.111 D407 and D408 in AcrB are two highly conserved 

acidic residues in the transmembrane domain that are critical for proton relay, which provides the 

energy to drive the protein conformational change critical for the function of AcrB. The crystal 

structure of AcrBD407A has been determined, which forms a trimer similarly as the wild type 

AcrB.159 The exact reason that causes the observed dominant negative effect when AcrBD408A is 

expressed in the wild type E. coli strain remains elusive. AcrBD408A could potentially interrupt 

the normal function of genomic AcrB in the wild type strain through competing for binding with 

AcrA and TolC, or co-assembling with the genomic AcrB. In order for AcrB to function properly 

all three subunits in an AcrB trimer need to be active.  

 

The MIC of the wild type strain BW25113 transformed with plasmids encoding wild type AcrB 

or AcrB∆loop were shown in Table 3.2. BW25113 transformed with the empty vector pQE70 was 

used as a control. Other than several established AcrB substrates, a non-AcrB substrate 

kanamycin was also included as a control for nonspecific effect. Expression of membrane 

proteins may cause stress in the cell and lead to a non-specific reduction of MIC. The MIC for 

kanamycin was monitored as a control for this non-AcrB specific effect. The expression of 

AcrB∆loop causes a small change of MIC at 2 folds or less for all substrates and kanamycin. This 

result indicates that the expression of AcrB∆loop does not specifically affect the function of the 

genomic AcrB.    

 

 

Table 3.2 Minimum inhibitory concentration of BW25113 expressing plasmid encoded acrB 

mutant genes.  
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Plasmids 
MIC (µg/ml) 

Erythromycin Novobiocin 

pQE70 128 128 

pQE70AcrB∆loop 64 64 

pQE70AcrB 128 128 

 

Folding of membrane proteins is an intriguing and yet poorly understood biological process.160 In 

terms of α-helical membrane proteins, the research community has acquired a decent 

understanding of the identification of transmembrane helices and the prediction of their topology 

in the membrane. However, how membrane proteins achieve their tertiary and quaternary 

structures remains largely elusive. Here, we demonstrated, using AcrB as an example, that for 

proteins in which a soluble domain contributes significantly to inter-subunit interactions, a three 

stage oligomerization pathway is more likely to be the case, as recognition between folded 

domains is required prior to oligomerization. For proteins containing only transmembrane 

domains, folding and oligomerization may happen co-translationally with membrane insertion 

following a two-stage model. 

 

3.4 CONCLUSION 

AcrB and its homologues are major players in the efflux of antimicrobials out of Gram-negative 

bacteria. The structural and functional unit of AcrB is a homotrimer. The assembly process of 

obligate membrane protein oligomers, including AcrB, remains elusive. It is not clear if an 

individual subunit folds into a monomeric form first followed by association (three-stage 

pathway), or if association occurs simultaneously with subunit folding (two-stage pathway). To 
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answer this question, the feasibility of creating folded monomeric AcrB mutant was investigated. 

The existence of folded monomers in the cell membrane itself would be an evidence of a three 

step pathway. A monomeric AcrB mutant, AcrB∆loop, was created through the truncation of a 

protruding loop that appeared to contribute to the stability of AcrB trimer. AcrB∆loop expressed at 

a similar level as wild type AcrB. The secondary structure content and tertiary conformation of 

AcrB∆loop were very similar to that of the wild type AcrB. However, when expressed in an acrB 

deficient strain, AcrB∆loop failed to complement its defect in drug efflux. Results from Blue 

native polyacrylamide gel electrophoresis (BN-PAGE) and cross-linking experiments indicated 

that AcrB∆loop existed as a monomer. The expression of this monomeric mutant in a wild type E. 

coli strain did not have a dominant negative effect, suggesting the mutant could not efficiently 

co-assemble with genomic AcrB. AcrB∆loop is the first monomeric mutant reported for the 

intrinsically trimeric AcrB. The structural characterization results of this mutant suggest the 

oligomerization of AcrB might occur through a three-stage pathway involving folded monomers.    
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CHAPTER IV. INVESTIGATION OF MUTATIONS THAT RESTORE P223G ACRB 

ACTIVITY 

4. 1 INTRODUCTION 

AcrB and its homologues are the inner membrane component of the Resistance-Nodulation-

Division (RND) family transporters in Gram-negative bacteria.  AcrB forms a tripartite pump 

system with membrane fusion protein AcrA and outer membrane TolC.161 In the AcrAB-TolC 

complex, AcrB plays a dominant role in determining substrate specificity and drives the 

operation of the complex.61, 62, 162 A broad range of structurally unrelated antibiotics, detergents, 

organic solvents and dyes are substrates of the AcrAB-TolC pump.161 Hence, the pump plays a 

major role in Gram negative bacterial drug resistance. The energy necessary to drive the active 

transport of substrates against their concentration gradient by AcrAB-TolC efflux pump comes 

from the proton motive force. Protons flow across the cytoplasmic membrane through a pathway 

in the transmembrane domain of AcrB, which drives the conformational rotation that enables the 

uptake of substrates from the outer leaflet of cytoplasmic membrane or periplasm and the 

subsequent efflux of these substrates through TolC.163 In the process of substrate efflux, each 

AcrB monomer rotates through three comformations, access, binding, and extrusion.62, 119 

Several groups have successfully solved the AcrB crystal structure.61, 62, 108, 119 AcrB consists of 

12 transmembrane (TM) domain and two large periplasmic loops which spans 70 Å in the 

periplasm. Mutations at the TM domains, D407A, D408A, K940A, and T978A disrupted the 

electrostatic network and disabled the pump.163, 164 It was believed the TM domains were only 

responsible for the proton translocation.162 The two loops served as the linkers between TM helix 

1 and TM helix 2 and TM helix 7 and TM helix 8, repesctively. Based on the structure and 

functionality, the periplasmic region is divided in to a porter domain and a TolC-docking 
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domain.165 (Figure 4.1) Exchange of AcrB and AcrD periplasmic loops altered the substrate 

preference of the proteins, suggesting that residues important for substrate specificity 

determination reside in the porter domain.65 Further mutational studies and AcrB-ligands 

cocrystallization identified a deep binding pocket.66, 117, 166, 167 Depending on where they interact, 

substrates were divided into two groups: groove binder and cave binder.67, 168  Using the Bodipy-

FL-maleimide labeling method, Nikaido et al. elucidated the full substrate pathway in vivo.68, 69 

Substrates first bind to the lower entrance of the cleft region, then go through the hydrophobic 

binding pocket, finally to the AcrB funnel. Because the top part of the protein fits with the 

periplasmic tip of TolC, this region of the protein is widely believed to be the TolC docking 

domain. In each of the AcrB monomer, a hairpin like loop inserts into the neighboring chain 

helps stabilize the whole trimer structure.58, 169 

My group has studied the role of protruding hairpin loop extensively.170 AcrB is only functional 

at its trimeric state. Deletion of the loop led to stability and activity loss of trimeric AcrB. 

Further characterization showed mutation of proline 223 to glycine had the biggest impact on 

drug tolerance. AcrBP223G existed as a weakly associated trimer in vivo.170 Here we conducted 

random mutagenesis studies on AcrBP223G and identified nine mutants with restored protein 

activity. The mutants were characterized from four aspects: protein expression level, trimer 

stability, AcrA/TolC-AcrB interaction, and substrate binding. 

 

4. 2 MATERIALS AND METHODS 

Cloning, expression and purification of AcrBP223G and its mutants 

Plasmid pQE70-AcrB was used as the template in the construction of AcrBP223G.
170 The Quick 

Change mutagenesis kit (Agilent Technologies, Santa Clara, CA) was used to create AcrBP223G. 
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Complementary primers used for the construction of AcrBP223G are as follows: 5’- 

CTCGGTGGTACGGGGCCGGTGAAAGGCCAAC-3’ and 5’- 

GTTGGCCTTTCACCGGCCCCGTACCACCGAG-3’. Additional site-directed mutations were 

created using the same method with primers accordingly. Protein coding sequences in all 

plasmids used in this study were confirmed by DNA sequencing. (Eurofins MWG Operon, AL) 

AcrB and its mutants were expressed in an E. coli strain deficient in gene acrB (BW25113ΔacrB) 

and purified as described.21   

 

Drug susceptibility assay of AcrB mutants 

AcrB activities were studied by a drug resistance assay. The minimum inhibitory concentrations 

(MIC) of different strains were measured as described.115  Briefly, E. coli strain deficient in gene 

acrB (BW25113ΔacrB) was used as the host cell. Plasmids encoding different AcrB mutants 

were used to transform BW25113∆acrB as well. Freshly transformed cells were plated on LB-

agarose plates containing 100 μg/mL ampicillin and 50 μg/mL kanamycin. The same ampicillin 

and kanamycin concentrations were used throughout the study when noted. A single colony was 

used to inoculate a LB media supplemented with ampicillin and kanamycin. The exponential-

phase cultures of different strains were diluted to an OD600nm unit of 0.1 using LB broth.  2 µL of 

this culture was added to LB-agar plate containing the indicated concentration of antibiotics. The 

plates were incubated with shaking at 37oC overnight and the MICs were recorded the next 

morningBW25113∆acrB strains transformed with plasmid-encoded wild type AcrB (WTAcrB) or 

AcrBP223G were used as the positive and negative controls, respectively. Each experiment was 

repeated at least three times.  
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Random mutagenesis of AcrB and mutants screening 

Random mutagenesis of AcrB was achieved by two methods, hydroxylamine hydrochloride 

treatment and error-prone PCR. Chemical mutagenesis by hydroxylamine hydrochloride was 

performed as described with some modifications.171 Plasmid pQE70-acrBP223G was incubated in 

44 mM potassium phosphate buffer (pH 6.0), 5 mM EDTA and 0.46 M hydroxylamine 

hydrochloride at 70°C for 40 mins. To quench the reaction, Tris-HCl (pH 8.0) and EDTA were 

added to the mixture to final concentrations of 90 mM and 9 mM, respectively. DNA was 

purified by gel extraction kit (Qiagen, CA) and later used for transformation.  

Error prone PCR was carried out using GeneMorph II EZClone domain mutagenesis kit (Agilent, 

CA). First, 500 ng of pQE-AcrBP223G was amplified by Mutazyme II DNA polymerase with two 

pairs of primers.  Primer RM1 (5’-ATGCCTAATTTCTTTATCGATCGC-3’) and primer RM2 

(5’-AACGGCGTGGTGTCGTATGG-3’) were used to generate mutations in the first 

periplasmic loop of AcrB. Primer RM3 (5’-CGTTGATCCTGACTCCAGCTC-3’) and RM4 (5’- 

ATCGACCAGCTCTCGTACAG-3’) were used for the second periplasmic region of AcrB. PCR 

products were separated and quantified using agarose gel, purified by gel extraction kit. Next, 

500ng PCR products were used as mega-primers to amplify AcrBP223G using EZClone reaction. 

DpnI was added to digest DNA template at 37ºC for 1 hour. PCR products from the second step 

were purified by gel extraction kit. 

E. coli BW25113∆acrB was electroporated with purified hydroxylamine mutagenesis and error-

prone PCR mutagenesis of plasmids pQE70-AcrBP223G. 1 mL LB broth was added, and the 

culture was shaken at 37ºC for 1 hr without addition of selective antibiotics. Then the 

electroporated cells were plated on LB agar plates containing 100 µg/mL ampicillin, 50 µg/mL 

kanamycin, and 16-32 µg/mL erythromycin. Plasmids were extracted from colonies that were 
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able to grow on the erythromycin plates and retransformed into BW25113∆acrB strain. Drug 

susceptibility of each mutant was tested. Those who showed both increased activity were sent to 

DNA sequencing (Eurofins MWG Operon, AL). 

 

Blue Native PAGE analysis of AcrB mutants 

BN-PAGE was performed as described.149 Briefly, purified protein samples were mixed with 

blue native loading buffer to reach a final concentration of 0.02M 6-aminoocaproic acid, 1% 

dodecylmaltoside, 5% glycerol, 0.1% Coomassie brilliant blue G-250, pH 7.0. Protein samples 

were loaded to a 4-15% polyacrylamide gradient gel (Bio-rad, CA). The electrophoresis was 

performed using a running buffer (50mM Tricine, 7.5mM imidazole, 0.02% Coomassie brilliant 

blue G-250, pH 7.0) at 150mA, in the 4°C refrigerator for 4 hours. The protein bands were 

visualized after Coomassie Blue stain. Band intensity was quantified using the software ImageJ.  

 

AcrA-AcrB, TolC-AcrB interaction assay 

pQE70 histidine-tagged AcrB and its mutations were engineered into BW25113∆acrB strain to 

study in vivo interaction of AcrB, AcrA and TolC.  Co-purified AcrA and TolC after crosslinking 

with AcrB-His on Ni-NTA beads were quantified by immunoblot. DSP crosslinking and co-

purification were performed as described with modifications.172 Briefly, BW25113∆acrB 

harboring pQE70-acrB-his and mutant plasmids were cultured overnight in 100 mL LB 

supplemented with ampicillin and kanamycin. Cells were harvested, washed with 5 mL 50 mM 

Na-phosphate buffer (pH 7.2) twice. The pellet was resuspended in 5 mL Na-phosphate buffer 

containing 4 mM cross-linking agent Dithiobis(succinimidylpropionate) (DSP) (Pierce), and 

incubated at 37ºC for 30 mins. Tris was added to a final concentration of 50 mM to quench the 
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reaction.  Cell membrane vesicles was collected and extracted with 25 mM Tris buffer, 0.2M 

NaCl, 2% Triton X-100 (pH=8.0) for 2 hrs on ice. Soluble fractions were incubated with Ni-

NTA resins for 45 mins on ice. 10 bed volumes of 10 mM and 50 mM imidazole were used to 

wash impurities off the resin. Bound AcrB-His were then eluted with 25 mM Tris buffer, 0.2 M 

NaCl, 0.03% DDM, 0.5 M imidazole (pH 8.0). Dithiothreitol (DTT) was added to a final 

concentration of 50 mM to the samples in order to break crosslinks. Finally, the samples were 

analyzed by SDS-PAGE and immunoblotted with AcrA antibody and TolC antibody.   

 

Analysis of expression levels of AcrB mutants by immunobloting 

Freshly transformed colonies of BW25113ΔacrB strain containing plasmid-encoded wild type 

AcrB, AcrBP223G and mutants were used to inoculate LB medium containing ampicillin and 

kanamycin. Cells were harvested after overnight culture and ruptured using French Press in 10 

mM HEPES-KOH buffer (pH 7.5) and 0.5 mM PMSF. Unbroken cells were removed by low-

speed centrifugation and the membrane vesicle was collected after ultracentrifugation at 150,000 

g for 1 hour at 4°C. The pellet was resuspended in 10 mM K-HEPES (pH 7.5) buffer containing 

2% (wt/vol) SDS for solubilization of inner membrane proteins. Then after adding SDS-Loading 

buffer the samples were separated on 8% SDS-PAGE and immunoblotted using polyclonal rabbit 

anti-AcrB antibody.  

 

Fluorescent labeling  

Bodipy-FL-maleimide labeling was conducted following the published method.68 Briefly, 

BW25113ΔacrB cells harboring plasmids encoded AcrB mutants were cultured overnight at 

37ºC.  10 mL culture were harvested by centrifugation at 4,000×g for 5 min, washed twice using 
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10 ml of buffer A (50 mM potassium phosphate, 0.5 mM MgCl2, pH 7.0), and finally 

resuspended in 5 mL of the same buffer containing 0.4% glucose and 6 µM Biodipy-FL-

maleimide. Final cell density was adjusted to OD660 of 3.5. The mixture was shaken at room 

temperature for 1 hr. Next, Cells were harvested by centrifuge, washed with 5 ml buffer A with 

0.4% glucose, and then washed again with 5 ml buffer A.  AcrB was then purified following as 

described with some modifications. Cells were lysed by sonication and centrifuged at 16,000×g 

for 15 minutes. Buffer B (50 mM sodium phosphate, 0.2 M NaCl, pH 8.0) containing 10 mM 

imidazole 2% DDM was used to solubilize the pellets for 2 hours on ice. The samples were then 

collected by centrifugation at 16,000×g for 20 minutes. The supernatant was incubated with Ni-

NTA beads at 4°C for 2 hrs. Resins were then washed with buffer B containing 50 mM 

imidazole, and 0.03% DDM. Finally the protein was eluted with buffer B containing 500 mM 

imidazole, and 0.03% DDM (pH 8.0). 

Samples after purification were resolved by SDS-PAGE. Fluorescence signal were collected by 

Typhoon Phosphorimager at the excitation wavelength of 488 nm. The gel was then stained with 

Coomassie blue stain and imaged under white light. Bands from both gels were quantified by 

ImageJ and relative labeling content was calculated. 

 

4.3 RESULTS AND DISCUSSION 

4. 3. 1 Random mutagenesis screening of repressor mutants that can restore AcrBP223G 

activity 

P223G mutation decreases AcrB oligomer stability and compromises efflux activity.170 In this 

study, random mutagenesis and positive screening were used to identify mutations that recover 

AcrB activity caused by P223G mutation. This could potentially help us identify residues and 



81 
 

regions which are important for AcrB oligomerization and improve our understanding about the 

mechanism of the AcrAB-TolC pump.  

We used LB agar plate containing erythromycin to screen for high activity colonies. The reason 

erythromycin was used as the screening substrate was that the difference of MIC between WT 

AcrB and AcrBP223G is significant. MIC of erythromycin of AcrBP223G was 8 µg/mL. The 

erythromycin concentrations in our screenings were 16 µg/mL and 32 µg/mL.  

Here, we used two methods to introduce random mutations into the gene of AcrBP223G, chemical 

mutagenesis and error-prone PCR. Using hydroxylamine hydrochloride chemical mutation, we 

were only able to identify two mutations, T199M and D256N, which showed higher 

antimicrobial resistance. Error-prone PCR was also used to achieve uniform spectrum of 

mutation with equivalent mutational rates. Two pairs of primers, RM1/RM2 and RM3/RM4 were 

designed, so that we could confine the random mutations to two periplasmic regions: residue 30 

to 332 and residue 494 to 889.  We focused our mutation studies in the periplasmic region, since 

it is likely that the periplasmic domain play a more important role in substrate binding, 

trimerization, and interacting with AcrA/TolC.  

Two random mutagenesis methods were used to search for mutations that could restore 

AcrBP223G activity. Hydroxylamine hydrochloride treatment showed a low mutational rate. The 

reason was that the method is biased, as it would only result in transition from C to T and G to 

A.173 In this way, the method itself limited the possibilities of some codon transition. Compare to 

chemical mutation, error-prone PCR has several advantages. First, the method largely reduced 

mutational bias. Second, mutational rate can be controlled by modification of buffer condition. 

Third, primer design could help us control the mutational sites. Despite all the advantages, due to 

the limitations of codon similarities, the method still wasn’t completely random. With this design, 
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we identified nine mutants in AcrB periplasmic loop region with increased susceptibility to 

erythromycin, T199M, A209V, D256N, G257V, M662I, Q737L, D788K, P800S, and E810K.  

To ensure that the increased activity did not come from bacterial strain evolution or mutations in 

the plasmid vector, all mutations were constructed by site-directed mutation, retransformed into 

BW25113∆acrB strains. Five AcrAB-TolC pump substrates were tested to confirm the mutants 

drug susceptibilities, erythromycin, novobiocin, tetracycline, tetraphenylphosphonium, and 

rhodamine 6G.  MICs of the nine mutants were shown in Table 4. 1. All of the mutants showed 

increased MIC comparing to AcrBP223G for all five AcrB substrates. Locations of these mutations 

were mapped onto AcrB structure. (Figure. 4.1)  

Table 4.2 showed the conservations of these nine residues in AcrB and 13 homologues. Although 

overall the sequence of AcrB is highly conserved in Gram-negative bacteria, only three residues 

here were conserved. This is a reasonable observation since mutation of highly conserved sites 

might by itself cause function loss.  Highly conserved residues are likely to be structural or 

functional related.  
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Table 4. 1 Conservation in inner membrane component of RND type efflux pump of amino acid 

residues who restored AcrBP223G activity. 

Organism Protein 199 209 256 257 662 737 788 800 810 

E.coli AcrB 
 

T A D G M Q D P E 

E.coli AcrD 
 

T S D G V I Y S G 

E.coli AcrF T V D G V A I F Y 

P. Aeruginosa MexB 
 

T A D G M A W F Y 

H. pylori AcrB 
 

D V I G V Q E R P 

Y. pestis AcrB 
 

T I D G V A W F Y 

V. cholera AcrB 
 

T E N G V A W F Y 

K. pneumonia AcrB 
 

T A D G V A W F Y 

A.baumannii AdeB 
 

L R T N P D G Q R 

A. tumefaciens AmeB T Q G A I D N S S 

P. Putita TtgB T A D G M Q D P E 

C. jejuni CmeB G V N E G M N T V 

B. pseudomallei AmrB A H G G N M E K I 

N. gonorrhoeae MtrD A N S N V G V T T 

 

To figure out by which means these mutations increase AcrBP223G activity, we characterized the 

mutants from four aspects: 1) protein expression level; 2) oligomer stability; 3) AcrA/TolC 

interaction; 4) drug binding. 
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Table 4. 2 MIC (µg/mL) of BW25113∆acrB harboring the corresponding plasmids. Drugs tested 

were Erythromycin (Ery), Novobiocin (Nov), Rhodamine 6G (R6G), Tetraphenylphosphonium 

(TPP), and Tetracycline (Tet). 

plasmids MIC (µg/mL) 

Ery Nov Tet TPP R6G 

pQE70-AcrB 128 320 2.56 320-640 >640 

pQE70-AcrB
P223G

 8 40-80 0.64 20-40 40-80 

pQE70-AcrB
P223G/T199M

 128 160 2.56 320-640 >640 

pQE70-AcrB
P223G/A209V

 64 80 1.28 40-80 >640 

pQE70-AcrB
P223G/D256N

 32-64 160-320 2.56 320 >640 

pQE70-AcrB
P223G/G257V

 64 160 2.56 80-160 >640 

pQE70-AcrB
P223G/M662I

 64-128 80 1.28 160 160 

pQE70-AcrB
P223G/Q737L

 64 160 2.56 160-320 >640 

pQE70-AcrB
P223G/D788K

 128 160 2.56 160-320 160-320 

pQE70-AcrB
P223G/P800S

 64 80 1.28 40-80 >640 

pQE70-AcrB
P223G/E810K

 128 160 2.56 160-320 >640 
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Figure 4. 1 Structure of AcrB (created using protein data bank file 1IWG by Pymol). Proline 223 

at the protruding loop was marked in yellow. Mutations were marked in red.  

 

4. 3. 2 Expression Levels Of AcrBP223G Mutants 

To determine the effects of additional mutations on AcrBP223G expression level, we extracted 

membrane vesicles from BW25113∆acrb expressing AcrB mutants, and analyzed with 

quantitative western blot. (Figure. 4. 2) 
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Figure 4.2 Western blot analysis of membrane vesicle extracted from BW25113∆acrB 

expressing AcrBP223G and mutants. 

 

 Eight of the nine mutations, T199M, A209V, G257V, M662I, Q737L, D788K, P800S, E810K 

showed no significant difference in expression level when comparing to AcrBP223G. Interestingly, 

one of the mutations, D256N drastically increased AcrB level, approximately by 20 fold. Also, 

as revealed in figure 4.3, cells expressing AcrBP223G/D256N grow much slower than AcrBP223G. The 

growth rates of all other mutants were similar to that of WT AcrB and AcrBP223G. Previous result 

has shown that the expression level of AcrBP223G is comparable with that of WT AcrB.  However, 

the trimer stability of AcrBP223G in vivo was much lower than WT AcrB. Introduction of D256N 

increase the overall amount AcrB number, therefore more active form of AcrB trimer could have 

provided more efficient drug extrusion and increased pump activity. D256N is the only mutation 

that increased AcrB expression level drastically. Gene expression is related to several global 

cellular parameters, such as gene and plasmid copy number, abundance of tRNA and ribosomes, 

and growth rate.174 Our group has shown that when expressing in a low copy number plasmid 

pBAD, AcrB expression level could be raised by three fold. In this case, we speculate the growth 
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differences between mutants are due to the tRNA abundance. The relative content of tRNA of 

amino acid Asp is twice as high as that of Asn. The real-time codon frequency of “GAT” (Asp) 

is three times higher than “AAT” (Asn).175 The lower abundance of tRNA may contribute to the 

lower growth rate of AcrBP223G/D256N and higher expression level. This observation has also been 

verified by Rand et al. using medium with iron, glucose, and nitrogen limitations.176 The up-

regulation of AcrB is inversely proportional to cell growth rate. Additionally, the feedback 

mechanism induced cell’s self-defense system could also stimulate AcrB expression and 

promotes higher drug resistance.174 
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Figure 4.3 Cell density OD600 of AcrBP223G (black) and AcrBP223G/D256N (Grey) in five hours. The 

start culture cell density for both strains was 0.100. 

 

4. 3. 3 BN-PAGE Analysis Of AcrB Mutant Oligomerization States 

To evaluate the impacts of the mutations on AcrB oliogomerization states, we used BN-PAGE to 

study AcrB mutant trimer stability. BN-PAGE is a widely used technique in characterizing 

protein complex from biological membrane, homogenates of cell and tissue, and studying 

protein-protein interaction. The technique has been used extensively in studies of MDR 
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transporter oligomerization.177, 178 Freshly purified AcrB mutants were separated by BN-PAGE. 

(Figure 4. 4 A & B) Protein band intensities in the gel were quantified using ImageJ and trimer 

percentage was calculated using the following equation: 

Trimer% = T

T M

I
I I

=
+

 

IT = intensity of trimer band, IM = intensity of monomer band 

Both gels used AcrBP223G as a control. After the calculation, trimer percentage of all mutants 

were normalized by that of AcrBP223G and showed in Figure 4. 4C.  

A)  

B)  
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C)  

Figure 4. 4 A) & B) BN-PAGE analysis of purified AcrB constructs. Positions of monomer and 

trimer bands were marked. AcrBP223G was loaded into both gels as control for quantification. C) 

Trimer percentage of mutants normalized by trimer percentage of AcrBP223G. The experiment 

was repeated three times, average value and standard deviation were shown. 

 

The majority of AcrBP223G existed as monomer which makes it incompetent to perform AcrB 

function. In five of the mutants, AcrBP223G/T199M, AcrBP223G/A209V, AcrBP223G/D256N, AcrBP223G/M662I, 

AcrBP223G/D788K showed approximately 1.5 to 2 fold increase in trimer percentage. The trimer 

percentage of AcrBP223G/E810K was increased by 1.3 fold. 

 

4. 3. 4 In Vivo AcrA-AcrB Interaction 

The majority of mutations occurred at the TolC docking domain of AcrB. To verify if these 

mutations have any impact on AcrA/TolC-AcrB interaction, DSP crosslinking and copurification 

were performed. Images of Western blot membrane and gel after Coomassie blue staining were 

showed in Figure 4. 5. Coomassie blue gels were used to quantify AcrB. Ratio of intensity of 

AcrA or TolC bands to AcrB bands were compared between WT AcrB, AcrBP223G, and mutants. 
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In each case, BW25113∆acrB transformed with pQE70 vector were used as a negative control to 

confirm that the signal was not from non-specific interaction of AcrA and TolC with Ni-NTA 

resin. No signal could be visualized for negative control, suggesting AcrA and TolC could not 

retain on Ni-NTA resin without cross-linked with AcrB. AcrBP223G/T199M and AcrBP223G/G257V, and 

AcrBP223G/P800S showed higher AcrA signal than AcrBP223G. It is possible that these mutations 

improved AcrA/AcrB interaction, which could help stabilize the AcrAB-TolC tripartite complex. 
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Figure 4.5 A) Top: Western blot analysis of co-purified AcrA after DSP crosslinking from 

BW25113∆acrB expressing WT AcrB, pQE70, AcrBP223G, AcrBP223G/T199M, AcrBP223G/A209V, 

AcrBP223G/D256N, AcrBP223G/G257V, and AcrBP223G/M662I. Bottom: Coomassie blue staining of co-

purification samples after DSP crosslinking. Each lane is in accordance to AcrA western blot 

membrane. B) Top: Western blot analysis of co-purified AcrA after DSP crosslinking from 

BW25113∆acrB expressing WT AcrB, pQE70, AcrBP223G, AcrBP223G/Q737L, AcrBP223G/D788K, 

AcrBP223G/P800S, and AcrBP223G/E810K. Bottom: Coomassie blue staining of co-purification samples 

after DSP crosslinking. Each lane is in accordance to AcrA western blot membrane. 

 

To examine if these mutations affect AcrB interaction with other components in the pump, DSP 

crosslinking was used to study the interaction between AcrA and AcrB in vivo. First, much less 

AcrA was copurified with AcrB∆loop than with WT AcrB (data not shown), suggesting AcrA 

prefers interacting with trimeric AcrB. However, there was no difference between the level of 

AcrA copurified with WT AcrB and AcrBP223G. This, along with MIC test, further proved that 

instead of existing as monomer in vivo, AcrBP223G existed as a loose trimer which is partially 

active. Four of the mutants, T199M, A209V, G257V, and P800S, lead to higher AcrA co-

purification  than AcrBP223G. AcrA existed as an oligomer in vivo.105 These results indicate that 

oligomeric AcrA has a higher affinity towards these mutants. The interaction with AcrA may 

help strengthen AcrB trimer. 

 

4. Bodipy-FL-maleimide labeling of AcrBP223G/M662I 

Of all mutations, AcrBP223G/M662I is especially interesting. This is the only mutant that resides in 

AcrB porter domain. It is unlikely that this mutation could have any effect on AcrA or TolC 
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interaction. Studies have shown that conversion of Phe664 and Phe666 to alanine drastically 

decreased MICs.66 Nikaido and coworkers have used Bodipy-FL-maleimide labeling method to 

prove that Phe664 and Phe666 were at the substrate pathway.61 Therefore, we speculate that Met 

662 was involved in substrate binding. To prove the hypothesis, we introduced a cysteine as Met 

662, and did Bodipy-FL-maleimide labeling. (Figure 4. 6) There were two cysteines in WT AcrB, 

none of which is in substrate binding pocket. Thus, WT AcrB was used as negative control, 

while AcrBF664C was used as positive control. AcrBM662C could be labeled by Bodipy-FL-

maleimid, suggesting Met662 is accessible to AcrB substrate. It is likely that Met662 is in the 

drug extrusion pathway. However, AcrBM662C stained less strongly than AcrBF664C, which may 

indicate substrate interaction at this site is much weaker. 

 

A)  

 



93 
 

B)  

Figure 4. 6 A) Structure of AcrB from a different angle (created using protein data bank file 

1IWG). Met 662 was highlighted in red. B)  Top: covalent label of WT AcrB, AcrBM662C, and 

AcrBF664C by 6 µM Bodipy-FL-maleimide. Bottom: Coomassie blue staining of the 

corresponding gel after Bodiphy-FL-maleimide labeling.   

 

Only one mutation, M662I, happened at AcrB substrate binding pocket. As we know, the drug 

binding site of AcrB is highly phenylalanine rich.66 Drugs mainly interact with the protein 

through hydrophobic interaction.  Conversion from Met to Ile increased the hydrophobicity, 

which may increase the mutants-ligand affinity.179 Also, AcrB is more stable in its trimeric states 

with this mutation, suggesting that interaction with substrates could help hold the oligomer 

together. This ligand-induced oligomerization has been observed in several receptor proteins.180, 

181  

Three residues were identified at the inter-subunit interface in an AcrB trimer (Table 4).  Ala209, 

Gln737, Glu810 and the residues within 6Å of each amino acid in the neighboring chain were 

120kDa 
90kDa 
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marked in Figure 6. Residues close to Ala 209 and Gln 737 were both hydrophobic. Thus, 

mutations to valine and leucine increase the hydrophobic interaction between chains and 

strengthen the trimer. Percentage interface assecible surface area (ASA) of Glu 810 is much 

lower than the other two residues. The mutation might have a minor impact on the association 

between chains of AcrBE810K. However, Glu 810 is exposed, which makes it possible to be 

related to AcrA or TolC interaction.  

Table 4.3 Interface property of Ala 209, Glu 737, and Gln 810. Interface between each AcrB 

subunit calculated using online server PROTORP 

Residue 

Number 

Residue 

Name 

Interface 

ASA 

% Interface 

ASA 

Segment 

209 ALA 31.24 1.15 5 
737 GLN 43.94 1.61 17 
810 GLU 9.53 0.35 20 

 

 

A)  
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B)  

C)  

Figure 4. 7 Zoom in view of neighboring residues of amino acids Ala 209 (A), Gln 737 (B) and 

Glu 810 (C) at interface between AcrB monomers. The residues at the interface were shown in 

green, neighboring residues were marked in cyan. The three chains in AcrB trimer were marked 

in red, blue and yellow, respectively. 

 

4. 4 CONCLUSION 

AcrB and its homologous are the inner membrane components of the major multidrug transporter 

in Gram-negative bacteria. It assembles with AcrA and TolC to form a tripartite pump system. 

AcrB recognizes and exports a broad range of functionally and structurally unrelated substrates, 

and therefore decreases the drug susceptibility of the bacteria. AcrB harvests the proton motive 

force to drive the conformational change required by function and determines the substrate 

specificity of the pump. AcrB exists and operates as a homotrimer in vivo. Previous mutational 

studies showed when a Pro (P223) at the inter-subunit interface was replaced by a Gly, the trimer 
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stability was reduced, leading to drastically compromised protein activity. Using hydroxylamine 

treatment and error prone PCR, random mutagenesis was performed and  nine mutants were 

identified that restored the activity loss in AcrBP223G. The mechanism of activity restoration was 

analyzed based on current understanding of AcrB function. Nine mutants were identified with 

higher efflux activity. The mechanisms of restoration were evaluated and summarized from four 

aspects (Table 4.4). We found that while some mutations recover the function of AcrBP223G 

through directly increase the cellular abundance of AcrB trimer, others work indirectly through 

affecting substrate binding or AcrA-AcrB interaction.  

Table 4.4 Summary of effects of mutations on protein expression, trimer stability, AcrA 

interaction, and substrate binding. 

Mutation T199M A209V D256N G257V M662I Q737L D788K P800S E810K 

Expression level          

Trimer percentage          

AcrA interaction          

Substrate affinity          

 

 

 

 

Copyright © Meng Zhong 2013
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CHAPTER V. HETEROLOGOUS EXPRESSION OF H. PYLORI ACRB IN E. COLI 

5. 1 INTRODUCTION 

In 1982, Helicobacter pylori (H. pylori) was first identified from the stomach of patients with 

gastritis and peptic ulceration in Western Australia. It is a unipolar, spiral-shaped gram-negative 

bacterium, about 0.5-1.0 µm in width and 2.5-4.0 µm in length. At least 50% of the world’s 

population is infected by H. pylori.182 Infection by H. pylori causea chronic gastric inflammation, 

which slowly develops into peptic ulcer and duodenal ulcer.183 Recently, it has been established 

that infection with H. pylori is associated with atrophic gastritis, leading to a higher occurrence 

of gastric cancer.184 

Routine H. pylori diagnosis can be done by testing blood antibody, stool antigen, carbon urea 

breath, and endoscopy.185-187 These tests do not need microbial culture. Because H. pylori culture 

is time consuming, labor intensive and expensive, it is not practical to be used as a diagnosis 

technique. However, it is sometimes required to culture the bacterium in research labs and for 

epidemiologic purpose.  For instance, antibiotic susceptibility, bacterium metabolism, growth 

factor studies have to be performed in plate or broth culture. The growth of H. pylori requires a 

micro-aerobic environment with high humidity.188 Normally, H. pylori is incubated in 30-37ºC 

CO2-rich shaker. Subtle change in environment, such as addition of antibiotics, glucose and lipid, 

nutritional deficiency, pH change, abnormal temperature may induce the formation of coccoid.189 

Coccoid is a viable, metabolically active but non-cultivable form of H. pylori. To prevent 

coccoid growth, numerous efforts have been made to optimize H. pylori culture. It has been 

shown when particular supplements were added to medium, H. pylori growth can be improved 

and accelerated.190  The supplements can be whole animal whole blood, serum, corn starch, egg 

yolk emulsion, and charcoal. Nevertheless, growth of H. pylori takes 3-5 days with the optimum 
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condition, which is much longer comparing to the growth of other bacterium species. Moreover, 

cultivation of H. pylori increases the risk of exposing the researcher to a pathogenic organism. 

Therefore, the alternative path involving heterologous expression has been widely employed in 

studies of H. pylori proteins.191, 192  

Long before the discovery of H. pylori, H2-receptor antagnoists has been successfully used to 

cure patients with ulcer gastritis.193 Later, acid pump inhibitor has been used in clinical 

treatment.194 Both drugs decrease gastric acid secretion of parietal cells in the stomach. However, 

due to the spread of multidrug resistance, it is becoming more and more difficult to eradicate H. 

pylori infection. Since 1990s, several antibiotics have been prescribed routinely for gastric 

disease treatment. Today, tetracycline, metronidazole, amoxicillin, clarithromycin, bismuth, and 

H+/K+-ATPase inhibitors are commonly used. Two or three antimicrobials are generally needed 

to completely eradicate the bacterium.195 Unfortunately, an effective approach to cure H. pylori 

in all patients has not been developed. According to geographical distribution, drug resistance is 

usually caused by variable mechanisms.  

Triple antimicrobial therapy (proton pump inhibitor, amoxicillin, and clarithromycin) are 

recommended for clinical eradication of H. pylori infection in many countries. When the cocktail 

therapy was first introduced in 1990s, the successful rate is over 80%.196 However, in a recent 

summary, only 18% of the hospital reported over the 85% successful H. pylori eradication rate 

due to multidrug resistance.  Several factors contributed to antibiotic resistance in H. pylori, 

including point mutation, enzyme inactivation, and drug efflux. Using RT-PCR, site-directed 

mutagenesis study, and efflux pump inhibitor, the link between RND efflux pump system and 

MDR in H. pylori is emerging.197 However, so far, no other research group has explored the role 

of the AcrA-AcrB-TolC efflux system in H. pylori. Due to the restrictions in the growth 
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conditions, H. pylori is much more difficult to culture than E. coli. Hence, I tried to 

heterologously express H. pylori AcrB in E. coli system using recombinant DNA techniques. 

Different growth conditions and different vectors were evaluated. 

 

5.2 MATERIALS AND METHODS 

Construction of plasmids 

The genes encoding H. pylori AcrB and AcrA were amplified from Helicobacter pylori 26695 

genomic DNA (ATCC, VA). The primers used for the PCR reactions were listed in table 5.1. 

Table 5.1 Primers used for the amplification of AcrB and AcrA from H. pylori 

Primers Sequence 

HPacrBFW 5’-ATTCCATATGTATAAAACAGCGATTAATCGTCC-3’ 

HPacrBRV 5’-AACCCTCGAGAGTTTTTTGGTTTTGATAAAACC-3’ 

HPacrAFW 5’-AGCATATGATACGAAAAATTTTAATAG-3’ 

HPacrARV 5’-TGAAGCTTATTTCGTTTGGATAAACC-3’ 

 

After amplification, PCR product containing H. pylori AcrB gene was digested using NdeI and 

XhoI. Product containing H. pylori AcrA gene was treated with NdeI and HindIII. Digestion 

products were separated by agarose gel electrophoresis and extracted from gel extraction kit. 

Purified DNA fragments were inserted into pET-22b (New England Biolabs, MA) and pBAD-33 

vector (Addgene, MA). 

 

Preparation of competent cell 

Three kinds of competent cells were prepared.198 For E. coli BW25113∆acrB preparation, first 
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E.coli BW25113∆acrB was streaked on a LB plate containing 50 µg/mL kanamycin, and 

incubate at 37ºC overnight.  A single colony was used to inoculate 3 mL LB medium and grow at 

37ºC overnight.  A 200 mL LB media culture inoculated with 2 mL overnight BW25113∆acrB 

culture was shaken vigorously till OD600 gets to 0.4. No selection marker was added at this step. 

Cells was cooled and centrifuged at 3,000 rpm for 15 mins at 4ºC. The pellets were resuspended 

in 12 mL of cold 0.1 M CaCl2, and incubate on ice for 45 mins. Cells were collected by 

centrifuge at 3,000 rpm for 15 mins. Supernatant was discarded and cells were resuspended in 

3.2 mL cold 0.1M CaCl2 containing 15% glycerol. Competent cells were aliquoted into cold 

Ependorff tubes, frozen in liquid nitrogen, and stored at -80ºC. E. coli BW25113∆acrB harboring 

pBAD33-HPacrB or pET22-HPacrB competent cells were prepared the same way with addition 

of chloramphenicol and ampicillin to the LB agar plate, respectively. 

 

Transformation, co-transformation and colony screening 

1 µL 50 ng/µL plasmids was added to 60 µL competent cell, and incubate on ice for 30 mins. 

The plasmid-cell mixture was heat-shocked at 42ºC for 1 min, followed by immediate incubation 

on ice for 5 mins. 1 mL LB medium was added to the cell. The cells were incubated at 37ºC for 

45 mins, and plated on LB agar plates containing antibiotics.  

For co-transformation, pBAD33-HPacrB/pET22-HPacrA and pBAD33-HPacrA/pET22-HPacrB 

were each transformation into BW25113∆acrB competent cells, respectively. Ampicillin, 

kanamycin and chloramphenicol were all added in the LB plates. In addition, 8 µg/mL 

novobiocin or erythromycin was added to the plates. The colonies that are able to grow in 

substrate containing plates were further analyzed.  
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Drug susceptibility assay 

AcrB activity was monitored using a drug susceptibility assay as described in chapter 2.  

 

Western blot analysis of AcrB expression in active colony 

Western blot analysis was performed as described in chapter 2.  

 

Plasmid loss 

Active colonies were first cultured in LB media containing ampicillin, kanamycin and 

chloramphenicol overnight. 5 µL of overnight culture were used to inoculate 5 mL LB medium 

containing only kanamycin. The cultures were shaken at 37°C for 24-96 hours continuously. 1 

mL culture were taken out at 24, 36, 48, 72, and 96 hrs, and diluted 10,000 times. 10 µL cultures 

were plated on LB agar plate with kanamycin and incubated overnight. 10 colonies were picked 

from each plate and cultured in LB medium with kanamycin. After the growth, each culture of 

the colonies was diluted with LB medium containing ampicillin and chloramphenicol. Colonies 

that failed to grow in the presence of ampicillin and chloramphenicol were studied. 

 

5. 3 RESULTS AND DISCUSSION 

5.3.1 Sequence Alignment Of AcrB From H. pylori and E. coli 

AcrB is highly conserved in Gram-negative bacteria. Previously, Srikumar and co-workers 

showed when expressing in E. coli strain, MexB from Pseudomonas aeruginosa increased drug 

resistance of E. coli AcrB deficient strain.199 This result indicates that AcrB from a different 

organism expresses and functions in E. coli. I used online server T-coffee to align amino acid 

sequences of AcrB from H. pylori and E. coli. The results demonstrated H. pylori AcrB was 86% 
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similar to E. coli AcrB (Figure 5. 1). The high similarity score offered potential for heterologous 

expression of H. pylori AcrB in E. coli. 

Ecoli           MPNFFIDRPIFAWVIAIIIMLAGGLAILKLPVAQYPTIAPPAVTISASYP 
Hpylori         MYKTAINRPITTLMFALAIVFFGVMGFKKLSVALFPKIDLPTVVVTTTYP 
                * :  *:*** : ::*: *:: * :.: **.** :*.*  *:*.::::** 
 
Ecoli           GADAKTVQDTVTQVIEQNMNGIDNLMYMSSNSDSTGTVQITLTFESGTDA 
H 
pylori         GASAEIIESKVTDKIEEAVMGIDGIKKVTSTSSKNVSI-VVIEFELEKPN 
                **.*: ::..**: **: : ***.:  ::*.*... :: :.: **  .   
 
Ecoli           DIAQVQVQNKLQLAMPLLPQEVQQQGVSVEKSSSSFLMVVGVINTDGTMT 
Hpylori         EEALNDVMNKISSV-RF--DDSNIKKPSINKFDTDSQAIISLFVSSSSVP 
                : *  :* **:. .  :  :: : :  *::* .:.   ::.:: :..::. 
 
Ecoli           QEDISDYVAANMKDAISRTSGVGDVQLFGS-QYAMRIWMNPNELNKFQLT 
Hpylori         ATTLNDYAKNTIKPMLQKINGVGGVQLNGFRERQIRIYADPTLMNKYNLT 
                   :.**.  .:*  :.: .***.*** *  :  :**: :*. :**::** 
 
Ecoli           PVDVITAIKAQNAQVAAGQLGGTPPVKGQQLNASIIAQTRLTSTEEFGKI 
Hpylori         YADLFSTLKAENVEIDGGRIVN------SQRELSILINANSYSVADVEKI 
                 .*:::::**:*.:: .*:: .      .* : **: ::.  *. :. ** 
 
Ecoli           LLKVNQDGSRVLLRDVAKIELGGENYDIIAEFNGQPASGLGIKLATGANA 
Hpylori         -----QVGNHVRLGDIAKIEIGLEEDNTFASFKDKPGVILEIQKIAGANE 
                     * *.:* * *:****:* *: : :*.*:.:*.  * *:  :***  
 
Ecoli           LDTAAAIRAELAKMEPFFPSGLKIVYPYDTTPFVKISIHEVVKTLVEAII 
Hpylori         IEIVDRVYEALKRIQAISPN-YEIRPFLDTTSYIRTSIEDVKFDLILGAI 
                :: .  :   * :::.: *.  :*    ***.::: **.:*   *: . * 
 
Ecoli           LVFLVMYLFLQNFRATLIPTIAVPVVLLGTFAVLAAFGFSINTLTMFGMV 
Hpylori         LAVLVVFAFLRNGTITLVSAISIPISIMGTFALIQWMGFSLNMLTMVALT 
                *..**:: **:*   **:.:*::*: ::****::  :***:* ***..:. 
 
Ecoli           LAIGLLVDDAIVVVENVERVMAEEGLPPKEATRKSMGQIQGALVGIAMVL 
Hpylori         LAIGIIIDDAIVVIENIHKKL-EMGMSKRKASYEGVREIGFALVAISAML 
                ****:::******:**:.: : * *:. ::*: :.: :*  ***.*: :* 
 
Ecoli           SAVFVPMAFFGGSTGAIYRQFSITIVSAMALSVLVALILTPALCATMLKP 
Hpylori         LSVFVPIGNMKGIIGRFFQSFGITVALAIALSYVVVVTIIPMVSSVVVNP 
                 :****:. : *  * :::.*.**:. *:*** :*.: : * :.:.:::* 
 
Ecoli           IAKGDHGEGKKGFFGWFNRMFEKSTHHYTDSVGGILRSTGRYLVLYLIIV 
Hpylori         R--------HSRFYVWSEPFFKALESRYTKLLQWVLNHKLIIFIAVVLVF 
                         :. *: * : :*:    :**. :  :*. .   ::  :::. 
 
Ecoli           VGMAYLFVRLPSSFLPDEDQGVFMTMVQLPAGATQE-RTQKVLNEVTHYY 
Hpylori         VGSLFVASKLGMEFMLKEDRGRFLVWLKAKPGVSIDYMTQKS--KIF--- 
                **  ::  :*  .*: .**:* *:. ::  .*.: :  ***   ::     
 
Ecoli           LTKEKNNVESVFAVNGFGFAGRGQNT--GIAFVSLKDWADRPGEENKVEA 
Hpylori         QKAIEKHAEVEFTTLQVGY-GTTQNPFRAKIFVQLKPLKERKKEHQLGQF 
                 .  :::.*  *:.  .*: *  **.  .  **.**   :*  *.:  :  
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Ecoli           ITMRATRA-FSQIKDAM-VFAFNLPAIVELG---TATGFDFELIDQAGLG 
Hpylori         ELMRVLRKELRSLPEAKGLDTINLSEVTLIGGGGDSSPFQTFVFSHSQEA 
                  **. *  : .: :*  : ::**. :. :*    :: *:  ::.::  . 
 
Ecoli           HEKLTQARNQLLAEAAKHPDMLTSVRPNGLEDTPQFKIDIDQEKAQALGV 
Hpylori         VDKSVENLKKFLLESPELKGKVESYHTSTSESQPQLQLKILRQNANKYGV 
                 :* .:  :::* *:.:  . : * :..  *. **:::.* :::*:  ** 
 
Ecoli           SINDINTTLGAAWGG-SYVNDFIDRGRVKKVYVMSEAKYRMLPDDIGDWY 
Hpylori         SAQTIGSVVSSAFSGTSQASVFKEDGKEYDMIIRVPDDKRVSVEDIKRLQ 
                * : *.:.:.:*:.* * .. * : *:  .: :    . *:  :**     
 
Ecoli           VRAADGQMVPFSAFSSSRWEYGSPRLERYNGLPSMEILGQA--APGKSTG 
Hpylori         VHNKYDKLMFLDALVEITETKSPSSISRYNRQRSVTVLAEPNRNAGVSLG 
                *:   .::: :.*: .     ... :.***   *: :*.:.   .* * * 
 
Ecoli           EAMELM-EQLASKLPTGVGYDWTGMSYQERLSGNQAPSLYAISLIVVFLC 
Hpylori         EILTQVSKNTKEWLVEGANYRFTGEADNAKESNGEFLVALATAFVLIYMI 
                * :  : ::  . *  *..* :** : : : *..:     * :::::::  
 
Ecoli           LAALYESWSIPFSVMLVVPLGVIGALLAATFRGLTNDVYFQVGLLTTIGL 
Hpylori         LAALYESILEPFIIMVTMPLSFSGAFFALGLVHQPLSMFSMIGLILLIGM 
                *******   ** :*:.:**.. **::*  :   . .::  :**:  **: 
 
Ecoli           SAKNAILIVEFAKDLMDKEGKGLIEATLDAVRMRLRPILMTSLAFILGVM 
Hpylori         VGKNATLLIDVANEE-RKKGLNIQEAILFAGKTRLRPILMTTIAMVCGML 
                 .*** *:::.*::   *:* .: ** * * : ********::*:: *:: 
 
Ecoli           PLVISTGAGSGAQNAVGTGVMGGMVTATVLAIFFVPVFFVVVR------R 
Hpylori         PLALASGDGAAMKSPIGIAMSGGLMISMVLSLLIVPVFYRLLAPIDDKIK 
                **.:::* *:. :..:* .: **:: : **::::****: ::       : 
 
Ecoli           RFSRKNEDIEHSHTVDHH 
Hpylori         RFYQNQKAL--------E 
                ** :::: :        . 
 

Figure 5.1 Sequence alignment of AcrB from E.coli and H. pylori using online alignment server 

T-COFFEE 

 

5.3.2pMal-HP AcrB And pBAD33-HP Did Not Confer Drug Resistance To BW25113∆acrB 

Drug susceptibility test was conducted using BW25113∆acrB strains transformed with pMal-HP 

acrB or pBAD33-HP acrB (Table 6.2). None of the strains showed increased activity for any 

drug tested comparing to negative control. This result indicated that either H. pylori AcrB cannot 

be expressed in E. coli or cannot functionally replace E. coli AcrB. Two vectors were tested here. 
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The main difference between pMal-pIII vector and pBAD 33 vector is the copy number. pMal-

pIII is a high copy number vector generally leading to high protein expression yield. But some 

proteins, especially membrane proteins, are reported to be toxic when expressed at high level. An 

alternative low copy number vector pBAD33 was also used. However, neither high nor low copy 

number vectors yielded any colonies with increased drug resistance when transformed into 

BW25113∆acrB. 

 

5. 3. 3 Co-transformation Of H. pylori AcrB And AcrA Into BW25113∆acrB Strain 

The efflux pump required all three components, AcrB, AcrA and TolC, to properly assemble to 

be functional. AcrB from H. pylori might not be compatible with E. coli AcrA. The sequence 

similarity of E. coli AcrA and H. pylori AcrA was much lower than that of AcrB (Figure 5.2). I 

co-transformed both AcrB and AcrA from H. pylori into BW25113∆acrB. This time I directly 

plated transformed cells on LB agar plates containing kanamycin, ampicillin, chloramphenicol 

and specific antibiotic substrates. Any colonies that could grow on these plates would harbor the 

high drug tolerance. Two colonies, HPA/B-1 and HPA/B-2, were able to grow on LB agar plates 

containing novobiocin after two days’ incubation at 37ºC. These were the only two colonies that 

were ever obtained to grow on agar plates that contained both substrate and antibiotics. No other 

transformation effort was successful. I characterized these two colonies to determine the 

mechanism of increased drug resistance.  
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Figure 5.2 Sequence alignment of AcrA from H. pylori (HP) and E. coli (Ecoli) with online 

server T-COFFEE. 

 

5. 3. 4 Restriction Enzyme Treatment Of HP A/B-1 And HP A/B-2 

First, to clarify whether the resistance was from H. pylori AcrB expression, I used restriction 

enzyme digestion to verify the plasmids and Western blot analysis to examine AcrB expression. 
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Two vectors with ampicillin and chloramphenicol resistance gene, respectively, were used in this 

study. Thus, the plasmids extracted were a mixture of pBAD-HPacrB and pET22b-HPacrA 

Enzymatic digestion using NdeI/XhoI and NdeI/HindIII were used to verify the plasmids (Figure 

5. 3). 

              

Figure 5.3 Restriction enzyme digestion of plasmids extracted from HPA/B-1 and HPA/B-2. 

From left to right: 1 kb protein ladder, 100 bp protein ladder (New England Biolabs, MA),     

HPA/B-1 digested with NdeI/XhoI, HPA/B-2 digested with NdeI/XhoI, HPA/B-1 digested with 

NdeI/HindIII, and HPA/B-2 digested with NdeI/HindIII. The positions of 3 kb and 1 kb bands 

were marked, respectively. 

 

In both colonies, a band of approximately 3kb showed up when treated with NdeI/XhoI, which 

was in accordance to the size of H. pylori AcrB. When treating with NdeI/HindIII, the DNA was 

excised mainly into two fragments of approximately 5 kb and 1.2 kb in size. The 5 kb band was 

consistent with the vector size. The band around 1.2 kb was consistant with the size of H. pylori 

acrA gene. The difference in the intensity of the band was due to the efficacy of the treatment. 

1      2              3      4              5      6 

3kb 

1kb 
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The restriction enzyme digestion results indicated that plasmids of H.pylori acrB and acrA did 

exist in both colonies.  

 

5. 3. 5 Western Blot Analysis Of AcrB Expression In HPA/B-1 And HPA/B-2 

Next, Western blot was used to examine the protein expression level of H. pylori AcrB in the 

membrane vesicle. Two kinds of E. coli AcrB antibodies were used, antibody one was raised 

against full sequence E. coli AcrB and antibody two recognizes the last 14 amino acids of E. coli 

AcrB. It was first used by Nikaido et al. and displayed a strong affinity to E. coli AcrB.  

According to the sequence alignment result, the 1032-1045th amino acids of E. coli and H. pylori 

AcrB are quite different (Figure 6.1). As a result, the peptide antibody was not expected to 

recognize H. pylori AcrB. Membrane vesicles from both colonies were extracted and 

immunoblotted (Figure 6.4). BW25113ΔacrB expressing E. coli AcrB, pMal-pIII HPacrB, 

pBAD33 HPacrB, both pET22b HPacrA and pBAD33 HPacrB (inactive colonies) were used as 

controls. 
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Figure 5. 4 Western blot analysis of membrane extract from different AcrB strains with AcrB 

antibody (top) and peptide antibody (bottom). From Left to right: 1) BW25113 strain; 2) HPA/B-

1; 3) HPA/B-1 with 1 mM IPTG; 4) BW25113∆acrB with HPacrA and HPacrB plasmids, 

inactive colonies; 5) BW25113∆acrB with pBAD33 HPacrB 6) BW25113∆acrB with pMal 

HPacrB; 7) BW25113∆acrB with pBAD33 HPacrB in the presence of 3.2 µg/mL novobiocin; 8) 

purified E. coli AcrB. 

 

Only in the active colonies, an extra band can be detected by E. coli AcrB antibody. In some of 

the Western blot results with full length antibody, two bands were detected. Only the lower band 

was proved to be related to AcrB (data not shown). No bands showed up in those colonies with 

low drug resistance. This implied the MIC difference between colonies was result from the extra 

bands. At the same time, this band cannot be recognized by peptide antibody, indicating this 
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band is not E. coli AcrB. MoreoverAcrB substrate novobiocin (3.2 µg/mL) was added to induce 

additional protein expression.  However, no induction was observed. 

 

In the original design of the gene, a poly-histidine tag was introduced at the end of H. pylori 

AcrB. Protein purification was attempted taking advantage of the tag. Unfortunately, no protein 

could be obtained. This suggested the band on the western blot membrane, which was previously 

assumed to be H. pylori AcrB was possibly some other proteins. 

 

5. 3. 6 MIC Analysis Of HPA/B-1 And HPA/B-2 After Plasmids Loss 

 A plasmid loss method was used to probe the mechanism behind the observed decrease of drug 

susceptibility in the two colonies. First, the colonies were cultured for several days in the 

absence of selective markers to stimulate the growth of bacterial strains harboring no exogenous 

plasmids.  Cultures were then plated onto LB agar plates containing only kanamycin. Single 

colony was picked to ensure the homogeneity of the culture. Colonies who cannot survive in 

chloramphenicol and ampicillin were selected. Next, drug susceptibility assay were performed 

for the colonies with no plasmid (Table 5.2). Since the substrate of H. pylori AcrB is still 

unknown, multiple antibiotics have been tested, including erythromycin, novobiocin, nalidixic 

acid, tetracycline, and neomycin. BW25113∆acrB containing only H. pylori AcrA plasmid or 

AcrB plasmid were used as negative controls. The MIC of the colony without plasmids was the 

highest among all strains, suggesting the drug resistance of HP A/B-1 and HP A/B-2 was solely 

from the bacterial strains. During the culturing period, introduction of foreign antimicrobials 

stimulated the evolution of bacterial strains. However, HPA/B-1 and HPA/B-2 showed no 

enhanced drug tolerance to tetracycline, which is an E. coli AcrB substrate. The observation and 
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Western blot result confirmed that there was no E. coli AcrB contamination in HP A/B-1 and 

HPA/B-2.  Furthermore, the neomycin MICs of HPA/B-1, HPA/B-2, and plasmid loss strain 

were increased to larger than 64 µg/mL, which greatly exceeded the reported MIC of E. coli 

straining expressing AcrD, 12 µg/mL. Therefore, I speculated that it was not AcrD that affected 

the drug resistance either. It was reported AcrF level was elevated by 80 folds in ∆acrAB strain 

[ref]. It is possible that the high drug susceptibility was the effect of the AcrF. Since tetracycline 

is substrate of AcrF. The result that the bacterial strain cannot extrude tetracycline proved that 

the AcrF was not the determine factor in HPA/B-1 and HPA/B-2. In conclusion, the reason 

caused enhanced susceptibility in HPA/B-1 and HPA/B-2 was still unknown. The Western blot 

analysis result using full length AcrB antibody suggested the higher drug tolerance might come 

from the elevated expression of another protein with a sequence similar to AcrB. 

 

  Table 5. 2 Drug susceptibility of BW25113∆acrB expressing different plasmids. 

Plasmids nalidixic acid erythromycin novobiocin tetracycline neomycin 

HPacrA <1.25 <4 32 <1.25 >64 

HPacrB <1.25 32 16 <1.25 >64 

HP A/B-1 10 128 >256 <1.25 >64 

HP A/B-2 10 128 >256 <1.25 >64 

No plasmid 10 128 >256 <1.25 >64 

WT E.coli AcrB 5 128 >256 10 >64 
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5. 4 CONCLUSION 

Due to the technical difficulties in culturing H. pylori, heterologous expression of proteins in a 

foreign host such as E. coli became a convenient approach in protein engineering. Expression of 

H. pylori AcrB and AcrA in E. coli was attempted. Under the conditions tested, AcrB from H. 

pylori failed to express in E. coli. In the two colonies with high drug tolerance, the increased 

drug susceptibility was resulted from induced evolution during long culturing time. Addition of 

antibiotics in the culture stimulated the expression of an unknown protein which is similar to 

AcrB in protein sequence. This protein was unlikely to be neither AcrD nor AcrF. 
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CHAPTER VI. SURA STRUCTURAL FLEXIBILITY AND ACTIVITY—INSIGHT 

INTO MECHANISM OF PERIPLASMIC MOLECULAR CHAPERONE FUNCTION 

6.1 INTRODUCTION 

Gram-negative bacteria cells have two layers of membranes. The outer membrane of the gram-

negative bacteria consists of lipoproteins, lipopolysaccharides, phospholipids, and proteins. The 

outer membrane proteins (OMPs) family is large. There are more than sixty OMPs in Gram-

negative bacteria. Most of these proteins form porins, mainly for transportations of substances in 

and out of cell.200 All porins share a β-barrel structure assembled by multiple anti-parallel β-

strands. The center of porins is a hydrophilic pore. As a result, in general porins serve as the 

major channels in the outer membrane for the translocation of small hydrophilic compounds. The 

size of the central pore in porins is normally quite small. In E. coli only moleculessmaller than 

600 Da can pass through the channel.201 

OMPs are first synthesized in the cell cytoplasm. Later the nascent protein is recognized by 

signal recognition particles and released from ribosome. After it is translocated through the inner 

membrane by the Sec machinery, the N-terminus signal peptide is digested by the N-signal 

peptidase.202 Then the β-barrel protein presursors are delivered through the periplasmic space 

and finally inserted into the outer membrane. Due to the high hydrophobicity of the protein 

sequence, periplasmic molecular chaperones are required to assist the OMP folding process and 

prevent them from aggregation.76 

So far, three major periplasmic molecular chaperones have been discovered in Escherichia coli. 

They are SurA, Skp, and DegP.76 They share redundant chaperone activities in helping folding 

and maturing of OMPs. According to the current understanding, among the three chaperones, 

SurA is the primary chaperone that is involved in most OMPs’ biogenesis. Those OMP 
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intermediates that fall off the SurA pathway are saved by Skp and DegP.203 Recently Zhao and 

Coworkers studied the kinetics of OMPs interaction with the three chaperones. Their hypothesis 

is that because of the much faster kinetics of OMP interaction with SurA and Skp than with 

DegP, SurA and Skp may function at the early stage of OMP biogenesis, while DegP acts at a 

later time.77 It has also been found that OMPs density dropped drastically in SurA deficient strain, 

while little has been affected in the Skp and DegP deficient strain.80, 204, 205 Two potential 

explanations have been proposed for the drastic change of OMP density. First, in SurA deficient 

strain, σE transcription factor is induced, which subsequently down regulates mRNA level of 

several OMPs and leads to a decrease of OMP synthesis rate.204-207 Second, without SurA, large 

amounts of nascent OMPs in the periplasm cannot be stabilized and thus aggregate.80, 208 

Furthermore, depletion of SurA leads to an increased sensitivity to hydrophobic drugs and 

detergents. However, no direct evidence has been discovered to show correlation between a 

change of OMP density and outer membrane permeability.209, 210 

SurA was first identified as an essential gene in Escherichia coli for stationary phase survival.207 

Crystal structure of SurA showed four domains: an N- terminus domain with the first 150 amino 

acids, two peptidyl prolyl isomerase (PPIase) domains of approximately 100 residues each, and a 

C- terminus domain. The N, C-terminal domains and the first PPIase domain assemble into a 

core structure, with the second PPIase segment forms a satellite domain about 30 Å 

away.82Deletion of the two PPIase domains has been shown to have no impact on SurA 

chaperone activity. A truncated SurA construct containing only the N-terminal and C-terminal 

(NCt) domains is sufficient to restore SurA activity in a surA gene knockout strain in vivo.209 The 

mechanism of interaction between SurA and OMPs has been the subject of many studies.81-

83,211,212 However, how SurA recognizes and binds to nascent OMPs still remains unclear. It is 
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generally acknowledged that peptides containing an A-X-A fragment would preferentially 

interact with SurA, in which A is an aromatic and X is a random residue. Such fragments appear 

in a high frequency in OMPs. Using phage display, Mckay and coworkers identified several 

peptides that showed strong affinity towards SurA. Through an isothermal calorimeter study, two 

of the peptides have been shown to compete with unfolded OMPs to bind with SurA. However, 

the co-crystallization of SurA and these peptides demonstrated that both peptides interacted with 

the first PPIase segment of SurA, which is known to be irrelevant to the chaperone function.213 In 

terms of the SurA-OMP interaction, neither the binding site(s) nor potential structural 

rearrangement during the interaction has been elucidated. Herein, we conducted extensive 

mutagenesis studies to identify critical residues and site(s) on SurA for its activity. In addition, I 

limited the structural flexibility of SurA through the introduction of four individual disulfide 

bonds. I found that SurA was highly tolerant to mutations and not likely to undergo large scale 

conformational change while conducting its function cycles.   

 

6. 2 MATERIALS AND METHOD 

Cloning, Protein Expression and Purification.   

SurA has been expressed in both periplasm and cytoplasm. For cytoplasmic SurA expression, 

surA gene lacking the signal peptide sequence was amplified from the genomic DNA of E. coli 

strain K-12 with primer csurAFW and csurARV and cloned into vector pET22b in frame 

between NdeI and XhoI sites. For periplasmic SurA, full length surA gene was amplified using 

primer psurAFW and psurARV and cloned into vector pMal-pIII in frame between NdeI and 

EcoRI sites. A polyhistidine tag was introduced into the C-terminus of both proteins to facilitate 

purification. pMal-pIII SurA N-C was amplified from constructed pMal-pIII SurA using 
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overlapping PCR. First, psurAFW and P2, P3 and psurARV were used to amplify SurA N- and 

C- domain, respectively. Later, psurAFW and P4 were used to add linker and poly-histidine tag 

to amplified SurA N-domain. Finally, psurAFW and psurARV were used to connect SurA N- 

and C- domains. Site directed mutagenesis was conducted following the manufacturer’s manual 

using the QuikChange II XL Site-Directed Mutagenesis Kit (Agilent Technologies, USA). All 

primers used were listed in table 6.1. All sequences were confirmed by DNA sequencing 

(Operon, USA).   

 

Table 6.1 DNA primers used for the construction of cytoplasmic SurA, periplasmic SurA and 

periplasmic SurA N-C. 

Primer Sequence 

csurAFW 5’-TTAACATATGGCACCACAGGTAGTCGATAAAGTCG-3’ 

csurARV 5’-TTAACTCGAGGTTGCTCAGGATTTTAACGTAGG-3’ 

psurAFW 5’-TTAACATATGAAGAACTGGAAAACGCTGCTTC-3’ 

psurARV 5’-ATAGAATTCAGTGATGGTGGTGATGATGAGAACCACCGTTG-3’ 

P2 5’-ATGATGATGATGGCTTCCGTTCAGCTCAGTGCTG-3’ 

P3 5’-CACCACCATCACAGTGGT CGTAATGTCGATAAAACCGAC-3’ 

P4 5’-CGACCACTGTGATGGTGGTGATGATGATGATGGCTTCCGTTC-3’ 

 

For SurA expression, plasmids were used to transform E. coli BW25113∆surA strain. Cells were 

grown at 37°C in LB medium supplemented with 100 μg/mL ampicillin and 50 µg/mL 

kanamycin to an OD600 of 0.6, and then induced with 1 mM isopropyl-D- 

thiogalactopyranoside (IPTG). Cytoplasmic SurA was purified as described.212 For 
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periplasmicSurA, the periplasmic fraction was prepared by osmotic shock and later purified 

using metal affinity chromatography as described (pMal Protein Fusion and Purification System 

manual, Qiagen literature, Qiagen Inc., Chatsworth, CA). A phosphate buffer (25 mM Na-

phosphate, 10% glycerol, 200 mM NaCl) supplemented with 20 or 250 mM imidazole was used 

in the washing and elution steps, respectively. Purified SurA was dialyzed against the phosphate 

buffer to remove excess imidazole.  The same phosphate buffer was used throughout the study 

unless otherwise noted.  Purified proteins were analyzed using SDS-PAGE with a 12% 

homogeneous polyacrylamide gel and visualized after Coomassie Blue stain.  Protein 

concentrations were determined using the BCA protein assay.   

OmpF gene was amplified from E. coli genome without N-terminus signal peptide by PCR. PCR 

product was digested with NdeI and HindIII, and inserted into pET22b vector. A poly-histidine 

tag was added at the C-terminus of the protein. The protein was expressed under IPTG (1mM) 

induction for 4 hours at 37ºC. Cells were harvested and lysed by sonication. The supernatant was 

discarded and the pellet was dissolved using 30 mM Tris buffer, 100 mM NaCl, 8 M urea 

(pH=8.0). The soluble part was incubated with urea pretreated Ni-NTA resin for 45 mins. Next, a 

buffer containing 30 mM Tris, 100 mM NaCl, and 8 M urea supplimented with 10mM or 40mM 

imidazole was used to wash the resin. Finally, a buffer containing 20 mM NaAc-HAc and 8 M 

urea buffer (pH=4.0) was used for protein elution. After elution,  Tris was added immediately to 

adjust the pH to 8.0.  

Expression level of SurA 

Freshly transformed colonies of BW25113ΔsurA containing plasmid-encoded SurA were used to 

inoculate LB medium supplemented with ampicillin and kanamycin. After cultured at 37°C for 6 

h, cells were harvested and subjected to osmosis shock as mentioned above in the purification of 
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periplasmic SurA. The supernatant containing periplasmic SurA was analyzed using SDS-PAGE 

on a 12% gel, and then transferred to a polyvinylidene difluoride membrane (Millipore, Bedford, 

MA) for Western blot analysis using a polyclonal rabbit anti-SurA primary antibody and 

analkaline phosphatase-conjugated anti-rabbit (Abcam, Cambridge, MA) secondary antibody, 

and then protein-antibody conjugates were visualized using nitroblue tetrazolium chloride and 5-

bromo-4-chloro-3’-indoyl phosphate p-toluidine  (Sigma-Aldrich, St. Louis, MO) as substrates.   

 

SurA activity assay 

surA gene knockout E. coli strain (BW25113ΔsurA) was used as the host cell. 

BW25113∆surAstrains harboring plasmids encoding wild type (WT) surA (pMal-SurA) or the 

empty vector pMal-pIII were used as the positive and negative controls, respectively. Plasmids 

encoding different SurA mutants were used to transform BW25113ΔsurA as well. SurA activities 

in different strains were tested using two methods, a drug susceptibility assay and an OMP 

expression level assay.   

 

Drug susceptibility assay 

A single colony was used to inoculate a LB media supplemented with 100 μg/mL ampicillin and 

50 μg/mL kanamycin. Exponential-phase cultures of different strains were diluted to OD600nm 

of 0.1 using LB broth. 10 µL of this culture was used to inoculate 1 mL LB media containing the 

indicated concentration of novobiocin. The cultures were incubated overnight at 37°C. The next 

morning, the minimum inhibitory concentration (MIC) was determined as the lowest 

concentration that inhibited the growth of the bacteria. Each experiment was repeated at least 

three times.   
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FimD and OmpA expression level assay 

Different strains of E. coli cells were grown in LB media, at 37ºC to an OD600nm of 0.8. Outer 

membrane fractions were extracted as described with some modifications.214 Briefly, cells were 

collected by centrifugation, lysed using French press, followed by ultracentrifugation at 

100,000g for 1.5 h. The pellet was resuspended in buffer A (50 mM Na-phosphate, 100 mM 

NaCl, 1% N-lauryl sarcosinate, pH 7.5) and incubated at 4ºC for 1 h. The outer membrane 

fraction was then further isolated by ultracentrifugation at 100,000g for 1.5 h. The pellet was 

then resuspended in a denaturing buffer B (4 M urea, 2% SDS, 50 mM Na-phosphate, 100 mM 

NaCl, pH 7.5, 10 mM EDTA) and sonicated for 5 min. All samples were centrifuged for 5 min at 

16,000g and the soluble component was analyzed using SDS-PAGE. Next, proteins on the gel 

were transferred to a polyvinylidene difluoride membrane and detected using Western blot as 

described above except that an anti-FimD antibody (a kind gift from Dr. Luis Angel Fernandez) 

was used as the primary antibody. 

 

Circular Dichroism (CD) Spectroscopy 

CD Spectra were collected using a JASCO J-810 spectrometer (JASCO, United Kingdom) with 1 

nm bandwidth. Blank scans were performed using phosphate buffer. Spectra were then corrected 

for background by subtracting the blank scan.   

 

Fluorescence Spectroscopy 

Fluorescence emission spectra were collected using a Perkin Elmer LS-55 fluorescence 

spectrometer (PerkinElmer, Waltham, MA) at 4°C. Tryptophan emission of SurA was monitored 
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at an excitation wavelength of 280 nm. Blank scans were collected and subtracted from the 

spectra. 

 

Protease Accessibility Assay 

A trypsin to SurA molar ratio of 1:200 was used in the experiments. The reaction was performed 

in phosphate buffer at room temperature for the indicated period of time, and then 

phenylmethylsulfonyl fluoride (PMSF) was added to a final concentration of 2 mM to stop the 

reaction. SDS loading dye was then added and the samples were immediately heated at 95°C for 

5 min before analyzed using SDS-PAGE.   

 

Fluorescent labeling   

SurA Cys pair mutants were freshly expressed in BW25113ΔsurA as described above. Cell was 

harvested by centrifuge at 4,000g for 20 min at 4oC and then resuspended in ice cold Buffer A 

(30 mM Tris buffer, 20% sucrose, 1 mM EDTA). After incubated for 10 min on ice, cells were 

collected using centrifugation at 8,000g for 20 min at 4oC. Cell pellet was resuspended again in 

ice cold water containing 5 mM MgSO4 and 1 mM PMSF. 10 mM iodoacetamide (IAM) was 

added to block all the free thiol groups. Periplasmic extraction was then separate from the cell 

debris through centrifugation and applied to a Ni-NTA column. All subsequent wash and elution 

buffers contained 5 mM IAM. After purification, maleimide (MAL) and SDS were immediately 

added to protein samples to final concentrations of 50 mM and 4% (w/v), respectively. SurA and 

its mutants were then precipitated, reduced using DTT and labeled using a thiol specific 

fluorescence probe fluoroscein-maleimide (Sigma-Aldrich, St. Louis, MO) as described.58 
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Quantification of levels of disulfide bond formation 

Extent of disulfide formation was quantified as described.58 Briefly, I included IAM during the 

protein purification process to prevent the formation of disulfide bond during protein purification. 

After purification, Ireduced the disulfide bond in the sample using DTT and then labeled the 

sample using excess fluorescein-maleimide. To quantify the extent of disulfide bond formation, I 

included two internal control samples: for the positive control sample, I did not add IAM during 

protein purification. Therefore, all Cys in the protein was labeled after reduction (100% labeling). 

For the negative control, IAM was used during protein purification, but the sample was not 

reduced using DTT before labeling. Therefore, there should not be any labeling (0% labeling). 

The extent of disulfide bond formation could then be calculated as a ratio of (Isam-Ineg)/(Ipos-Ineg), 

in which Isam, Ineg, and Ipos were band intensities of the sample, and negative and positive controls, 

respectively.   

 

Fluorescence polarization study of SurA and OMPs interaction under macromolecular 

crowding condition 

SurA was incubated with FITC with a ratio of 1:2 in 20 mM PBS buffer (pH=7.4) at room 

temperature for 1 hr. Tris-HCl was added to quench the reaction for 0.5 hr. Excessive dyes were 

dialyzed overnight. The concentration of the protein was determined by Bradford assay. 

Fluorescence polarization based titration was performed on a Perkin-Elmer LS-55 fluorescence 

spectrometer (Perkin-Elmer, Waltham, MA) at 20 ºC. FITC-SurA was first diluted into 400 µL 

Tris buffer to a final concentration of 2 µM. Purified OmpF was added into FITC-SurA, 

fluorescence polarized was recorded. The excitation and emission wavelengths of FITC-SurA 

were 479 and 515 nm, respectively.  
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6.3 RESULTS AND DISCUSSION 

6.3.1 Identification of residues critical for SurA function 

The aim of our research is to identify amino acids that are important to SurA chaperone function. 

Potential residues critical for function could be identified through sequence alignment. SurA is 

highly conserved in most Gram-negative bacteria.213, 215-217I aligned  the sequence of SurA from 

E. coli with its homologues from six different organisms using the online sequence alignment 

tool T-coffee (Figure 6. 1).218 

 

 

Figure 6.1 Sequence alignment of SurA from E. coli (EC) with homologues from Pantoea 

ananatis (PA), Pseudomonas stutzeri (PS), Zymomonas mobilis (ZM), Vibrio vulnificus (VV), 

and Nitrobacter hamburgensis (NH). The numbers indicate positions of the starting and ending 

residues in the sequence of E. coli SurA. Asterisks, colons and periods indicate identical, 

conserved and semi-conserved residues, respectively. 
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The majority of conserved amino acids resided in SurA N, P1, and C-terminal domains. Since 

SurA chaperone activities are proved to be independent from the PPIase domains, our mutations 

were focused on conserved residues in N- and C-terminal domains (NCt). In these two domains, 

4 residues are invariable, and 48 residues are conserved, which is 26% of total amino acids in 

NCt module. All the the invariable and conserved residues were mappedonto the crystal structure 

of SurA. The focus of our study was SurA chaperone function. Residues that contributed to intra-

molecular interactions and were mostly likely to be important for maintaining the structural 

integrity of SurA were eliminated from our mutational studies.  Mymutation studies were 

focused on conserved residues that were exposed to the surface, whose side chain appeared not 

to be making critical intra-molecular interaction. Drug susceptibility assay of BW25113ΔsurA 

containing plasmids encoding different SurA mutants was used as an initial tool to examine the 

effect of the mutations. The same strains containing plasmid encoded wild type (WT) SurA or 

the empty vector were used as the positive and negative controls, respectively.  Twenty three 

residues were mutated individually, and only one mutation, Val-37 to Gly, showed a dramatic 

decrease of SurA activity (Table 6. 2).   
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Table 6.2 Novobiocin MIC of BW25113∆surA expressing plasmid encoded surA mutants.  

Mutants MIC 
(µg/mL) Mutants MIC 

(µg/mL) 
BW25113 128 Y398A 128 
pMal-pIII 16 N403A 128 

V32G 64 K405A 128 
V37G 16 E408A 64 
D41K 128 W413G 128 
V42C 128 Q415A 128 

M114G 128 E416A 128 
Y120A 128 R418G 128 
Y125A 128 Y422A 128 
Y128A 128 I425A 128 
Q131G 128 M136G 128 
I132G 128 Deletion of L153-Q163 128 
E135G 128   

 

 

6.3.2  SurAV37G has decreased expression level and structural stability 

To determine what caused the reduction of  MIC level in SurAV37G, I first examined the 

expression level of the mutant as compared to that of the WT SurA in BW25113∆SurA (Figure 6. 

2).  
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Figure 6.2 SurA expression levels in different strains. Western blot analysis of osmotic fluid 

from BW25113, BW25113ΔsurA, and BW25113ΔsurA containing plasmid-encoded WT SurA, 

SurAV37G and SurAV37G/A30C/I425C (SurAV37G CC).  An anti-SurA antibody was used. The 

molecular masses of bands in the molecular mass marker were marked on the left of the gels.  

 

It appeared that SurA was not stable in vivo, since a large amount of SurA degraded fragments 

could be observed. In the case of SurAV37G, only fragments were observed. Full length SurA 

could barely been detected. It was likely that the mutation drastically decreased the stability of 

the protein, which led to insufficient amount of SurA in the periplasm to carry out the chaperone 

function.  

To further compare the structure and stability of WT SurA and SurAV37G, I characterized both 

proteins purified from the cytoplasm. Studies have shown that SurA purified from the cytoplasm 

has the same structure and function as those purified from the periplasm.82 

I first examined the structure of SurAV37G and WT SurA by CD. Far-UV CD spectra of 

SurAV37G and WT SurA superimposed well, suggesting both proteins had similar secondary 

structure. Both proteins are approximately 50% alpha-helical, which is consistent with solved 

SurA crystal structure (Figure 6. 3A).  
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Figure 6.3 Characterization of SurAV37G (grey) and WT SurA (black). A) Far-UV CD spectra.B) 

Tryptophan emission spectra. Excitation wavelengths were 280 nm. 

 

I also compared tryptophan fluorescence spectrum of WT SurA with that of the mutant (Figure 6. 

3B). The fluorescence of SurAV37G was slightly higher than WT SurA, indicating that the local 

microenvironment was different, possibly a consequence of mutation. In summary, the data from 

CD and fluorescence spectroscopy indicated that while the secondary structure compositions of 

the two proteins were very similar, there was some change in the global structure as revealed by 

the fluorescence difference.  

The low level of full length SurAV37Gin vivo suggested that the mutation affected SurA stability. 

To further examine protein stability, Iperformed limited trypsin digestion on both SurAV37G and 

WT SurA using purified proteins (Figure 6. 4). Protease digestion hasbeen used extensively in 

studies of protein stability and rigidity.156-158 SurAV37G and WT SurA were treated with trypsin 

and the progress of digestion was monitored over time using gel electrophoresis. Approximately 

90% of SurAV37G was digested within 5 min while 60% of WT SurA remained intact after 30 

min of trypsin treatment. The mutation did decrease SurA stability drastically. 
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Figure 6.4 Limited trypsin digestion of purified WT SurA and SurAV37G. Typsin and protein 

molar ratio is 1:200. Wild-type SurA was highly resistant to protease digestion, 63.3% remained 

after trypsin treatment for 30 min. SurAV37G was more sensitive to trypsin digestion, with less 

than 10% of SurAV37G left after 5 min. The molecular masses of bands in the molecular mass 

marker were marked on the left of the gel.  

 

6.3.3 V37G mutation affects the anti-parallelβ-sheet network of the N- and C-termini 

A close examination of SurA structure showed that Val-37 locates in an N-terminal β strand, 

which was involved in a three stranded anti-parallel β sheet involving the last few amino acids at 

the C-terminus (Figure 6. 5B). Our hypothesis is that the β-sheet locks the N- and C-termini 

together and thus plays an important role in stabilizing SurA tertiary structure. A mutation to Gly 

might have disrupted the formation of the β-strand and/or its interaction with the neighboring 

strands, and therefore destabilized the three-stranded β sheet. To examine if Val-37 to Gly 

affected the local structure of the β sheet, I introduced a pair of Cys to monitor the formation of 

disulfide bond (Figure 6. 5C).  
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Figure 6.5 Structure of SurA. A. SurA N- (blue) and C- domain (red). Residues that are replaced 

by Cys to introduce disulfide bond were highlighted, A30-I425 (1), V42-I70 (2), V89-I137 (3), 

and V146-A410 (4). B. The same structure as in A, but rotated 90 degree along a vertical axis. 

The black oval indicated the location a three-stranded antiparallel β-sheet formed by two stands 

from the N-terminus and one strand from the C-terminus. C. A zoom in view of the β-sheet. Side 

chains of Ala30, Val37, and I425 are shown in ball-and-stick model.  

 

I introduced two Cys at positions 30 and 425 in SurA sequence as a reporter Cys pair. According 

to the crystal structure of SurA, these two cysteines should be close enough to form disulfide 

bond. If the Val-37 to Gly mutation caused a significant change of the β-sheet structure, then the 

distance between the reporter Cys pair would be affected. Since disulfide bond formation is very 

sensitive to distance, I should be able to see a difference in the level of disulfide bond formation. 

I have developed an effective thiol trapping and fluorescent labeling protocol as reporters for 

protein structural change.58 Using this method, I found that in SurAA30C/I425C, disulfide bond 

formed completely between A30C and I425C (Figure 6. 6A). 
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However, when Val37Gly mutation was introduced to create SurAA30C/I425C/V37G, the extent of 

disulfide bond formation was estimated to be approximately 50% (Figure 6. 6B). Therefore, 

Val37Gly did affect the local structure of the β-sheet.   

 

Figure 6.6 Characterization of SurAV37G/A30C/I425C (SurAV37G CC). A. Fluorescent image (F) and 

Commassie Blue (CB) stain of SurAA30C/I425C (SurA CC) after fluorescent labeling. Lane1 and 

lane3 were positive and negative controls, which were used to quantify the extent of disulfide 

bond formation (see text). B. Fluorescent image (F) and Commassie Blue (CB) stain of 

SurAA30C/I425C (SurA CC), SurAV37G CC, and WT SurA after fluorescent labeling.  WT SurA was 

used as a control to confirm the absence of non-specific labeling under the current experimental 

condition. 

 

6.3.4 Function loss in SurAV37G can be restored by a disulfide bond 

When Ala30Cys/Ile425Cys mutations were introduced into SurAV37G, the disulfide bond 

partially formed. I speculate that the disulfide bond may have stabilized SurA structure, and thus 
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partially compensated for the function loss caused by V37G mutation.  To examine if this was 

actually the case, I performed drug susceptibility assay of SurAV37G/A30C/I425C. Consistent with our 

expectation, MIC of SurAV37G/A30C/I425C toward novobiocin increased to 256 µg/mL, indicating 

that the disulfide bond did improve SurA stability and activity (Table 6. 1). Furthermore, to 

confirm that this increase of activity was actually caused by the formation of a disulfide bond, I 

also measured the MIC of SurAV37G/A30C/I425C toward novobiocin in the presence of 5 mM DTT, 

and found that the MIC reduced to a level comparable to SurAV37G (Table 6. 3). Under the same 

condition, 5 mM DTT had no effect on the MIC of SurAV37G or wild type SurA. If the disulfide 

bond improved the stability of SurA, there should be more full length SurA in the periplasm.  

 

Table 6. 3 Novobiocin MIC of BW25113∆surA expressing plasmid encoded surA mutants.  

Mutation MIC (µg/mL) 

A30C/I425C 256 

A30C/I425C/V37G 256 

A30C/I425C/V37G + 5 mM DTT 16 

V37G + 5 mM DTT 16 

WT SurA + 5 mM DTT 128 

 

I measured the expression level of SurA in BW25113∆surA containing plasmid-encoded 

SurAV37G/A30C/I425C and SurAV37G (Figure 6. 2). Similar to SurAV37G, SurAV37G/A30C/I425C was 

partially degraded in vivo. However, there was still a significant fraction of full length protein in 

the case of SurAV37G/A30C/I425C, which was clearly sufficient to maintain the wild type level SurA 

activity. Using quantitative Western blot analysis, I estimated that there were approximately 
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1,500 molecules of SurA per cell in BW25113 strain (Fig 5. 7).  

 

Figure 6.7 Quantitative western blot analysis of SurA expression level in BW25113∆0052 strain 

expressing different plasmids. Western blot analysis of osmotic fluid from BW25113ΔsurA 

containing empty pMal-pIII, plasmid encoded WT SurA, SurAV37G, SurAV37G/A30C/I425C 

(SurAV37G CC), 30 ng, 90 ng, 270 ng, 810 ng, 2430 ng purified SurA (lane 1-lane 9). 

 

When BW25113∆surA was transformed using the plasmid created in this study that encoded 

wild type SurA, under basal expression condition there were ~3,500 molecules of SurA per cell. 

However, this increase of SurA expression level did not further increase the MIC of the strain as 

compared to that of the BW25113. When BW25113∆surA was transformed with plasmid 

encoding SurAV37G/A30C/I425C, the copy number of full length SurA was approximately 1,000. 

However, the MIC of the strain was twice the level of the wild type strain or surA knockout 

strain transformed with plasmid encoded wild type SurA. This result revealed that E. coli need as 

little as 1,000 or fewer SurA per cell for normal SurA activity and maintaining membrane 

integrity. It is not clear why the MIC of BW25113∆surA containing SurAV37G/A30C/I425C was twice 

as much as the MIC of the same strain containing wild type SurA. I have also tested the MIC of 

BW25113∆surA containing SurAA30C/I425C and it was also twice as much at that of the wild type 
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strain (Table 6. 3).   

 

As an alternative method to examine the activity of SurA, I measured the expression level of 

FimD in BW25113∆surA expressing plasmid encoded WT SurA, SurAV37G, or  

SurAV37G/A30C/I425C (Figure 6. 8). Studies have shown that the FimD expression level in the outer 

membrane depends on the function of SurA.219 Consistent with the MIC assay, while the levels 

of FimD in cells containing WT SurA or SurAV37G/A30C/I425C were similar, the expression level in 

cells without SurA or SurAV37G were significantly lower. 

A)  

B)  

Figure 6.8 FimD and OmpA expression levels in different strains. Western blot analysis of outer 

membrane vesicles extracted from BW25113ΔsurA strain containing the empty vector (/) or 

plasmids encoding WT SurA, SurAV37G, or SurAV37G CC. Anti-FimD and anti-OmpA primary 

antibody were used. The positions of FimD and OmpA were marked by an arrow, respectively. 

OmpA 
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6.3.5 Mutational Studies Of Hydrophobic Residues 

Interaction between SurA and OMP precursors in the periplasm is reversible and non-covalent in 

nature. The interaction between SurA and OMPs is poly-specific, in which SurA interacts with 

various OMP precursors with different sequences and possibly various partially folded structures. 

Therefore, I expect SurA to function according to one or both of the following mechanisms: 1) 

The recognition and binding between SurA and OMPs rely heavily on hydrophobic interactions. 

Hydrophobic interaction has been shown to play critical roles in poly-specific binding scenarios, 

such as in the interaction between multidrug transporters and regulators and their array of diverse 

substrates.110, 116 It has also been proposed as a major player in SurA-OMP interaction.217, 218 2) 

The structure of SurA is very flexible and therefore can adapt to bind to different substrates. To 

investigate the role played by hydrophobic interactions in SurA-OMP interaction, I mutated all 

aromatic residues in the NCt domain individually and examined the effect of such mutations on 

SurA function. Aromatic residues have bulky hydrophobic moieties that are usually abundant at 

sites of low specificity binding.220  There are one Trp (W413), five Tyr (Y120, Y125, Y128, 

Y398, Y422), and one Phe (F406) in the NCt domain (Figure 6. 9).  
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Figure 6. 9 Structure of the SurA NCt domain showing the side chains of aromatic residues. 

 

I replaced each residue individually with Ala. When introduced into BW25113∆surA, none of 

these mutations caused a significant decrease of MIC values. In addition, I have mutated Y120, 

Y125, and Y128 simultaneously to create a triple mutant SurAY120A/Y125A/Y128A. This 

triple mutant has similar activity as WT SurA as well. These results suggested that none of the 

aromatic residues investigated in this study played a dominant role in OMP binding. OMPs 

might interact with SurA at multiple sites.   

 

6.3.6 SurA structure flexibility is not required for its chaperone function 

I next examined the relationship between SurA function and its structure flexibility. I have 

shown earlier that a pair of Cys placed at positions 30 and 425 formed disulfide bond and the 

formation of the disulfide bond had no negative impact on the function of SurA. To investigate if 

disulfide bond introduced into other locations of SurA affect its activity, I introduced three 

additional cysteine pairs strategically placed at different locations in the NCt domain (Figures 6. 
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6A). According to SurA crystal structure, the distances between the α carbons of each Cys pair 

are within 6 Å, which allows the formation of disulfide bonds.24 As shown in Figure 5. 10, Lanes 

1 and 3 were positive and negative controls for the quantification of disulfide bond percentage. 

The extents of disulfide bond formation were calculated as described in Experimental and 

showed in Table 6. 4.  Formation of disulfide bond was close to completion in all three pairs of 

Cys. Next, I tested the activity of these mutants using the drug susceptibility assay and found that 

they had similar activity as the WT SurA (Table 6. 5).   

 

 

Figure 6.10 Secondary structure scheme of the NCt domain of SurA with theposition of 

disulfide bonds shown. Arrows and rectangles denote β-strandsand α-helices, respectively 

(Top).Fluorescent image (F) and Commassie Blue (CB) stain of three SurA cysteine pair mutants 

after fluorescent labeling (Bottom). Lane1 and lane3 were positive and negative controls, which 

were used to quantify the extent of disulfide bond formation 
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Table 6.4 Percentage disulfide formation in Cys pairs as revealed by the percentage of 

fluorescence labeling 

Cysteine pair Disulfide bond% 

A30C-I425C 95.1±4.4 

V42C-I70C 98.1±4.9 

V89C-I137C 96.5±2.1 

V146C-A410C 97.4±6.3 

 

Table 6.5 Novobiocin MIC of three additional cysteine pair SurA mutants 

Mutations MIC (µg/mL) 

V89C/I137C 128 

V42C/I70C 128 

V146C/A410C 128 

 

 

Many chaperones, such as HSC70 and SecB, have been shown to undergo conformational 

changes upon binding with their substrates. 221, 222 Here I introduced a disulfide bond at four 

different locations in the functionally relevant NCt domain. To our surprise, while all four 

disulfide bond formed in vivo, none of them had a negative impact on SurA function. Therefore, 

SurA does not seem to undergo global conformational changes during its operation. Moreover, 

SurA may function more effectively with a rigid structure, as one disulfide bond containing 

mutant, SurAA30C/V425C, was even more active than the wild type SurA.  However, the exact 



136 
 

mechanism that caused the increase of MIC of cells containing this SurA mutant remains to be 

determined.   

 

6.3.7 Outer Membrane Protein Level In Different Strains Containing SurA Mutations 

SurA affects bacterial drug susceptibility by changing the outer membrane permeability. The 

outer membrane permeability is generally considered to be related to OMP level. However, there 

is no direct evidence indicating that a reduced OMP level is associated with compromised cell 

permeability. A reduced OMP level and decreased drug tolerance were observed simultaneously, 

whether there is a connection in between remains unknown. 

 

Western blot analysis was performed to examine OmpA level in strains containing different 

SurA mutants. It has been demonstrated in a previous study that the two PPIase domains P1 and 

P2 could be deleted without changing SurA function in maintaining outer membrane integrity. 

Therefore, in this study, the  SurA N-C construct was used. The antiparallel β-sheet has been 

shown to be important to SurA stability in vivo. A SurA mutant, SurA10delN-C, has been identified 

to confer poor drug tolerance when introduced into surA gene knockout strain [cite Brent’s 

thesis]. However, Western blot analysis showed that the level of SurA10delN-C was comparable to 

that of WT SurA. It is most likely that deleting the last ten amino acids caused SurA misfolding, 

which eventually leads to defective cell membrane. This was the first AcrB mutant that has been 

discovered with proper expression level and no activity. The discovery offered possibility to 

establish the relationship between SurA chaperone activity and cell permeability. 

 

OmpA expression level was compared in four mutants, BW25113∆surA strain expressing WT 
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SurA, pMal-pIII vector, SurA10delN-C, and SurAM2-9 (Figure 6.11). SurAM2-9 was  an active SurA 

mutant identified in a separate study.223 First, MICs of novobiocin of the four strains were 

measured (Table 6. 6). 

Table 6. 6 Novobiocin MIC of SurAM2-9 and SurA10delN-C 

Plasmids MIC (µg/mL) 

WT SurA 128 

pMal-pIII 16 

SurAM2-9 128 

SurA10delN-C 16 

 

 

 

 

  

 

 

Figure 6. 11 OmpA expression level in BW25113∆surA strain expressing WT SurA, pMal-pIII 

vector, SurAN-C, SurAM2-9 

 

BW25113ΔsurA transformed with the empty vector pMal-pIII exhibited a lower OmpA level in 

the outer membrane than cells expressing WT SurA. This finding is in agreement with published 

result. However, OmpA level was supposed to increase in SurAM2-9 since it has the wild-type 

MIC level. My results proved the opposite. The mutant with the lowest MIC, SurA10delN-C, had 
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the highest OmpA level among the three mutants. The observation implied that there might not 

necessarily be a connection between SurA chaperone activity and cell permeability. OMP levels 

might not be directly correlated with membrane permeability. It is possible that SurA could also 

be related to the biogenesis of some other components in cell membrane. 

 

6.3.8 Interaction of SurA and OMPs under macromolecular crowding condition 

An easy, sensitive, and convenient method to study SurA and OMPs binding is highly desirable. 

Mckay and coworker used ITC to investigate the interaction. However, this method requires 

large amount of proteins. here a fluorescence polarization based method was established in the 

study of SurA and OMPs interaction. First, OmpF was titrated into FITC-SurA, fluorescence 

polarized signal was collected. To prove the signal change does not result from non-specific 

binding, titration of BSA to SurA was used as a control (Figure 5.12). Kd of OmpF to SurA is 

1.23±0.16 µM. 
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Figure 6. 12 Fluorescence polarization titration of OmpF (Black) and BSA (Red) into FITC 

labeled SurA. 
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The primary location of SurA activity is in the periplasm, which is filled with macromolecules 

such as proteins and sugars. It is often important to evaluate the chaperone function in the 

macromolecular crowding environment. I investigated whether the crowding condition affect 

SurA-OMP interaction. Two macromolecular crowding reagents were used, Ficoll and Dextran. 

The addition of Ficoll and Dextran increased the viscosity of the solutions. Consequently, the 

signal change was much smaller. However, it seemed that the crowding condition had little effect 

on the binding affinity between the two proteins. The Kds of SurA and OmpF in PB buffer, PB 

buffer containing 30% ficoll, and 30% Dextran were 4.59, 5.13, 3.29 µM (Figure 6.13) OmpF is 

dissolved in 8M urea, titration into PB buffer cause precipitation. The difference of Kd in Figure 

6.12 and 6.13 might be resulted from the inaccurate concentration in buffer condition. In 

summary, a simple method was established to examine SurA and unfolded OMPs interaction. 

And this method can be used to measure the interaction under a crowding condition that 

resembles the real situation in the periplasm. 
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Figure 6. 13 Fluorescence polarization titration of OmpF in phosphate buffer (black) with the 

addition of 30% Ficoll (red) and 30% Dextran (blue) into FITC labeled SurA. 
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6. 4 CONCLUSION 

SurA is the primary periplasmic molecular chaperone that facilitates the folding and assembling 

of the outer membrane proteins of Gram-negative bacteria. Deletion of SurA in Escherichia coli 

leads to a decrease in outer membrane density and an increase in bacterial drug susceptibility. In 

this study, the roles of structural flexibility and stability of SurA on its function were examined. 

Through mutagenesis studies, a single V37G mutation was first identified that drastically 

decreased the in vivo function of SurA. Further characterizations indicated that this mutation 

disrupted the interaction between two anti-parallel β-sheets located at the N- and C- terminus of 

SurA, respectively, which decreased the stability of the protein. SurA has no intrinsic cysteine. 

The loss of activity in V37G could be restored through the introduction of a pair of cysteine and 

the subsequent formation of a disulfide bond, which stabilized the interaction between the β-

sheets and therefore the structure of SurA. To further investigate the mechanism of SurA 

function, I introduced four additional cysteine pairs distributed at different locations into the 

SurA structure and confirmed that they all formed disulfide bonds. Next, the function of SurA 

was examinedand the presence of disulfide bond was found to have no observable impact on 

SurA function. These results indicated that the drastic decrease of structural flexibility, as a result 

of disulfide bond formation, has little effect on SurA activity. Therefore, the function of SurA 

appears to not require large scale conformational change. Additionally, the investigation of OMP 

level and cell permeability further suggested that SurA affected cell permeability possibly by 

other mechanisms other than by OMP abundance. 

 

 

Copyright © Meng Zhong 2013
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CHAPTER VII. SITE SPECIFIC AND REVERSIBLE PROTEIN IMMOBILIZATION 

BY A DNA BINDING FUSION TAG 

7.1 INTRODUCTION 

Protein immobilization is the crucial first step for many applications including the construction 

of biosensors and protein microarrays, development of immunoassay methods, and employment 

of enzymes in biotechnology procedures.224-227 Protein immobilization methods can be 

categorized as nonspecific and site-specific.  Normally, nonspecific immobilization is achieved 

by physical adsorption or direct chemical reactions with amine, carboxyl, or thiol groups in the 

protein.228, 229  It is difficult to control the extent of immobilization and orientation of the 

immobilized proteinsince there is usually more than one single functional group in the target 

protein. In addition, chemical modification of functional groups within a protein might change 

protein structure, leading to protein function loss.  This effect has been demonstrated by the 

decrease of protein activities upon immobilization in many cases.230, 231  On the other hand, 

physical adsorption is facilitatedbythe van der waals, electrostatic and hydrophobic 

interactions.232 However, suchinteractions are weak, which can cause protein leaching.  

A procedure that can produce a homogenous, stable, and active protein layer on a specific 

surface is highly desirable.  Affinity tags and fusion proteins are widely used in order to achieve 

site-specific and oriented protein immobilization. After being modified with specific binding 

domains and tags, proteins can be captured by the corresponding affinity matrixes.  Poly-

histidine tag (histag) is a popular choice and has been used in the immobilization of proteins on 

the nickel nitrilotriacetic acid (Ni-NTA) resins.233-235 However, there are several limitations of 

the binding specificity of the Ni-NTA resin.  At least threeE. coli endogenous proteins has 

showed certain degree of affinity to the resin.236 Also, if a protein is rich in histidine, it could 
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interact with the resin nonspecifically; therefore compete with the target protein and complicate 

the immobilization procedure.  Other fusion domains have also being used to immobilize target 

proteins, including the glutathione S-transferase, maltose binding protein, chitin binding protein, 

streptag and metal binding peptide .237-239   

Compared to protein, oligonucleotides are easier to be modified and specifically immobilized 

due to its simpler structure and chemical composition.For example, DNA microarray is awell-

established and commercialized routine technique.  It has been used extensively to direct the 

assembly of proteins.  In most of these studies, a ssDNA-target protein conjugation was first 

created whichthen was attached to a matrix modified with the complementary strand of the 

ssDNA.239-243These DNA-protein conjugates have been obtained through direct covalent links244-

249,a biotin-streptavidin bridge250, or the expressed protein ligation251.RNA-protein fusions have 

also been constructed for site specific protein immobilization252, 253.However, there could be 

some negative impacts on protein activity caused by the chemical modification in formation 

process of the DNA/RNA-protein conjugate. In a more recent study, protein capture by a DNA 

functionalized matrix was accomplished through the coiled-coil association of an engineered pair 

of heterodimeric leucine zippers.  One helix of the zipper was chemically linked to the DNA, and 

the other helix was expressed as a fusion tag to the protein.254 

To prevent the negative effects of chemical modification to the target protein, Iinvestigatedthe 

incorporation ofa DNA binding protein as the fusion tag to direct the immobilization of the 

protein of interest. Recently Gang and coworkers had shown that surface-bound DNAs could 

serve as anchoring sites to immobilize DNA binding proteins.255Herein, I constructed a fusion 

protein containing an N-terminus super-folder green fluorescent protein (sfGFP) and a C-

terminus single-strand DNA binding protein (SSB).  In this work, sfGFP was used as a reporter 
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group to facilitate convenient characterization of immobilization, while SSB facilitated high 

affinity binding toward single-stranded DNA.  The fusion protein sfGFP-SSB retained the 

properties from both domains, being fluorescent and binding to single stranded DNA.  In this 

work, I have also demonstrated that SSB could be used as a fusion tag to facilitate fast and 

convenient protein immobilization through the coupling with an ssDNA modified surface.   

 

7.2 MATERIALS AND METHODS 

Cloning, Protein Expression and Purification 

The SSB and sfGFP gene was amplified by PCR. For SSB, the E. coli genomic DNA was used 

as the template.  The gene encoding sfGFP was obtained from Theranostech Inc. (Albuquerque, 

NM, USA). The PCR products weregel purified, digested and inserted into similarly digested 

pET28a expression vector to generate plasmid pET28a-SSB and pET28a-sfGFP, which 

introduced a histag at the N-terminus of the proteins.  Next, the gene of sfGFP was cloned into 

the plasmid pET28a-SSB to generateplasmid pET28a-sfGFP-SSB. All sequences were 

confirmed by DNA sequencing (Retrogen, CA, USA). 
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Figure 7.1 Vector map of sfGFP-SSB, pET28a vector was used. Gene encoding sfGFP and SSB 

were inserted between BamHI/NdeI and BamHI/XhoI restriction enzyme sites, respectively. 

 

Plasmids pET28a-sfGFP-SSB, pET28a-sfGFP and pET28a-SSB were used to transform E. coli 

strain ER2566 for protein production. The cells were grown at 37°C in LB medium containing 

100 μg/mL kanamycin to an OD600nm of 0.6, and then induced with 1mM IPTG. Three hours 

after induction, the cells were harvested by centrifugation at 7,000rpm for 10 min. The cell 

pellets were resuspended in a binding buffer (100 mM Tris-Cl, 0.5 M NaCl and 10% glycerol, 

pH 8.1) and lysed by sonication on ice for 10 mins with 10s on-off intervals. The cell debris was 

removed by centrifugation at 12,000rpm for 15 min. DNaseI was added to the cleared lysate to 

digest DNA at room temperature for 30 min.  The cleared lysate was incubated with Ni-NTA 

resin (Qiagen, Huntsville, AL) with shaking at room temperature for 45 min and afterward 

loaded to an empty column.  The resin was then washed witha buffer containing 100 mM Tris-Cl, 

0.5 M NaCl, 10% glycerol and 50 mM imidazole (pH 8.1). Finally the protein was eluted with a 

buffer containing 100 mM Tris-Cl buffer, 0.5 M NaCl, 10% glycerol and 500mM imidazole (pH 

8.1). Purified sfGFP-SSB, sfGFP and SSB weredialyzed extensively against the binding buffer to 

remove excess imidazole.  

The purified proteins were analyzed using the SDS-PAGE with a 10% homogeneous 

polyacrylamide gel and visualized with Coomassie Blue stain.  Protein concentrations were 

determined using the Bradford protein assay. 

 

Fluorescence Spectroscopy 
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Fluorescence emission spectra were collected using a PerkinElmer LS-55 fluorescence 

spectrometer (PerkinElmer, Waltham, MA) at 20°C.  The buffer used for all fluorescence 

measurements contains 100 mM NaCl and 100 mM Tris-Cl (pH 8.1).  

Fluorescence quenching titration was used to measure binding affinity between sfGFP-SSB, SSB, 

and ssDNA dT37.  All oligonucleotideswere obtained from Integrated DNA Technology (San 

Diego, CA), including dT37, dA35,the 5’ amine-derivatized dT37 (H2N-dT37), and the 5’ thiol-

derivatized dT37 (RSS-dT37).  dT37was titratedinto the protein solution and the tryptophan 

fluorescence weremonitored at excitation and emission wavelengths of 282and 355nm, 

respectively.  

 

Protein immobilization 

H2N-dT37 was attached to the NHS-resin (Sigma-Aldrich, St. Louis, MO).  The NHS-resin was 

first washed with 100 mM sodium-phosphate buffer (pH 7.4),and then incubated with H2N-

dT37(25μmol/L) at room temperature for 2 hours.  Finally, Tris-HCl buffer was added to a final 

concentration of 20 mM to quench the unreacted NHS groups.  The modified resin was washed 3 

times with 10 times the bed volume using 100mM Tris-HCl buffer (pH 8.1). 

RSS-dT37 was attached to the DVS-A activated resin (Adar Biotech LTD, Rehovot, Israel). The 

resin was washed using 100mM sodium phosphate buffer (pH 7.4).  RSS-dT37 was first reduced 

to form free thiols using 10mM TCEP in 100mM HAc-NaAc buffer(pH 5.4), and thenincubated 

with the DVS-A resinat room temperature for 2 hours in 100mM sodium phosphate buffer (pH 

7.4).  The reaction was then quenched using 20mM DTT.  The DNA modified resin was 

washedusing the same phosphate buffer.  
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To examine site-specific protein immobilization, sfGFP-SSB or sfGFP was incubated with the 

DNA modified resins for 15 minutes, in which sfGFP was used as a negative control.  Then the 

resin was collected through centrifugation and washed3 times with 10 bed volumes of thesame 

Tris-Cl buffer each time. Protein bound to the resin was quantifiedby subtracting the amount of 

protein left unbound from the total amount of protein added.  After protein immobilization and 

washing, the resins were also examined directly under a fluorescent microscope (Nikon Eclipse 

55i, Nikon Instrument Inc., Elgin, IL). 

 

Reversibility of protein immobilization 

After sfGFP-SSB was immobilized on NHS-dT37 and DVS-A-dT37 activated resins in a Tris-Cl 

buffer (pH 8.1), the effect of different pHs on protein-substrate dissociation was examined.  

HAc-NaAc buffer was used for pHs 4, 4.5 and 5.0. Sodium phosphate buffer was used for pHs 

5.5, 6, 6.5 and 7. Tris-HCl buffer wasused for pHs 7.5, 8, and 8.5. Sodium-glycine buffer was 

used for pHs 9, 9.5, 10 and 10.5.  The indicated buffer (100 mM) was added to sfGFP-SSB 

modified resin and incubated at room temperature for 30 min.  The fluorescence intensity in the 

supernatant was determined to estimate the quantity of protein dissociated from the beads.   The 

effect of pH on the intrinsic fluorescence of sfGFP-SSB was characterized and adjusted for. 

 

7.3 RESULTS AND DISCUSSION 

7.3.1 Construction of fusion protein sfGFP-SSB 

Aiming at developing a reversible and site specific method for protein immobilization, I 

examined the prospect of immobilizing proteins through a DNA binding fusion tag.  I created a 
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fusion protein containing the protein of interest and a ssDNA binding module.  To facilitate 

convenient detection and characterization, I have chosen sfGFP as the model target protein.  

sfGFP was fused with SSB at the C-terminus.  Furthermore, a histag was introduced at the N-

terminus of the fusion protein to facilitate convenient purification. As controls, pET28a-histag-

sfGFP and pET28a-SSB were also constructed. 

 

 

Figure 7.2 The construct of the fusion protein, which contains a N-terminus histag, followed by sfGFP, 

and a C-terminus SSB. 

 

7.3.2 Purification and activity assay of sfGFP-SSB 

I was able to express and purify the fusion protein as well as individual modules, sfGFP and SSB, 

in high yield.  Both sfGFP and SSB will be used as controls in future experiments. Figure 7.3 

showed the SDS-PAGE analysis of all three proteins.  The calculated molecular weights of the 

proteins using amino acid sequence are 29.0 kDa (sfGFP), 22.5 kDa (SSB) and 48.1 kDa 

(sfGFP-SSB).   

 

Histag sfGFP    SSB 
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Figure 7.3 SDS-PAGE analysis of purified sfGFP (lane 1), SSB (lane 2) and the sfGFP-SSB 

fusion protein (lane 3).  The molecular weight of the three proteins are 29.0 (sfGFP), 22.5 (SSB) 

and 48.1 (sfGFP-SSB) kDa.  Positions of the molecular weight markers are indicated by arrows. 

 

It is critical to prove SSB is a tetramer, which is responsible for its interaction with ssDNA.  I 

examined the quaternary structure of the fusion protein using the size exclusion chromatography 

(Figure 7. 4).  The retention time of the fusion protein is around 20.4 min, close to the second 

peak of molecular weight standard (20.7 min). The shorter retention time indicated the size of 

protein is slightly larger than the molecular weight of the second standard, which is 158 kDa. 

Since the molecular weight of each sfGFP-SSB subunit is 48.1, this result suggests that the 

fusion protein is likely to be a tetramer.   

 

Figure 7.4 Size exclusion chromatography analysis of the fusion protein (black trace).  The grey 

trace is the molecular weight standard.  From left to right, the peaks correspond to 670, 158, 44, 

and 17 kDa, respectively.  
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To examine the influence of fusing on properties of each individual module, I measured the 

fluorescence emission as well as the ssDNA binding affinity of the fusion protein.  I first 

compared the fluorescent emissions of sfGFP and sfGFP-SSB.  There is a red shift of the 

emission peak, from 509 nm for sfGFP to 512 nm for sfGFP-SSB (Figure 7.5).  The peak shift is 

likely due to the local environmental change with the addition of SSB at the C-terminus. 

 

Figure 7.5 Fluorescent emission spectra of sfGFP (open square) and sfGFP-SSB (filled triangle) 

measured with the excitation wavelength of 490 nm.  The concentration of both proteins is 45 

nM.  The maximum emission wavelengths of sfGFP-SSB and sfGFP are 512nm and 509nm, 

respectively.   

 

Figure 7.6 shows the plots of fluorescent intensity of each protein at increasing concentrations.  

Linear fitting of the plots for sfGFP and sfGFP-SSB yielded slopes of 0.752 and 1.436, 

respectively.  The linear range of fluorescence vs. protein concentration was from 1 nM to 1 μM.  

Slopes of the two lines show that the fluorescent intensity of the fusion protein is enhanced by 

approximately one fold compared to that of the sfGFP.   
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Figure 7.6 Fluorescent intensity of different concentration of  sfGFP-SSB and SFGFP 

concentration. Linear curve for sfGFP is Y=0.752[sfGFP]-16.205, linear curve for sfGFP-SSB is 

Y=1.436[sfGFP-SSB]-8.850.  

 

I then examined the ssDNA binding affinity of sfGFP-SSB, SSB was used as a control.  Previous 

studies showed that when SSB bound to dT37,the tryptophan fluorescence of the protein 

decreased.256Based on the percentage of fluorescent quenching, the binding affinity between SSB 

and dT37 could be determined.  sfGFP has one tryptophan, W57.  Intrinsic tryptophan 

fluorescence emission of sfGFP is very small compared to that of SSB, which won’t interfere 

with the SSB tryptophan fluorescence titration (Figure 7.7a).  The excitation and emission 

wavelengths were 282 and 355 nm, respectively.  Under our experimental condition, the intensity 

of sfGFP emission was about 3% of the intensity of SSB emission. Furthermore, the addition of 

dT37 had no effect on the emission of sfGFP (Figure 7.7b).   

Finally, I compared the effect of dT37 on sfGFP-SSB and SSB tryptophan fluorescence (Figure 

7.7c).  The fluorescence quenching curvesof the two proteins superimposed well in the 

concentration range examined (between 10-9.5M to 10-7M), and matched the result from the 
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literature for SSB.257  This result indicates that the ssDNA binding affinity of SSB was not 

affected in the fusion protein. 

 

Figure 7.7 a) Tryptophan fluorescence spectra of sfGFP (grey) and SSB (black) when excited at 282 nm.  

b) Tryptophan fluorescence spectra of sfGFP before (black) and after adding 3.75*10-7 dT37 (gray).  b) 

Fluorescence quenching of sfGFP-SSB (grey) and SSB (black) in the presence of dT37.  The excitation 

and emission wavelengths are 282 and 357 nm, respectively.  The concentrations of both proteins are 

4.2×10-7 M.    

 

 

7.3.3 Cation, pH dependent sFGFP-SSB and resin binding 
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Interaction between SSB and ssDNA was highly dependent on pH and cation concentration.258-

260 I expect the binding of sfGFP-SSB to dT37 to be sensitive to changes of pH and cationic 

concentration as well.  Therefore, Icharacterized their interaction at different pHs (pH 8.1 and pH 

10) and NaCl and MgCl2 concentrations, aiming at identifying conditions that could enable 

reversible protein immobilization.  There were two major binding modes between SSB and dT37, 

named (SSB)35 and (SSB)65. The subscripts refer to the length of the oligonucleotides 

interactingwithone SSB tetramer (35).  In the (SSB)35 binding mode, ssDNA only interacts with 

two of the four SSB subunits in a tetramer.  On the other hand, in the (SSB)65 binding mode, all 

four subunits participate in DNA binding. The switch between the two binding modes is 

sensitive tochanges in pH, temperature, andcation concentrations.  For example, when the 

concentration of Na+ is less than 10mM, the main binding mode is the (SSB)35 mode. And, 

(SSB)65 mode is the main binding mode when Na+ concentration is higher than 200mM. For 

MgCl2, such a switch happens at a much lower Mg2+ concentration, usually the switch to (SSB)65 

mode occurs at 5 mM MgCl2. I examined the effect of NaCl and MgCl2 on the ssDNA binding of 

the fusion protein.  I found that sfGFP-SSB behaved very much like the free SSB.  ssDNA 

titration experiment using dT37 showed that fluorescence quenching reached a plateau at 60% in 

1 mM NaCl.  While in the presence of 2.5mM MgCl2, 90% of the tryptophan emission was 

quenched (Figure 7.8A). 
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Figure 7.8 A) sfGFP-SSB and dT37 binding monitored as tryptophan fluorescence quenching in the 

presence of 1 mM NaCl, 25 mM Tris-Cl, pH 8.1 (triangle) or 1 mM MgCl2, 25 mM Tris-Cl, pH 8.1 

(diamond).  The concentration of sfGFP-SSB is 1.4×10-7 M.  B) sfGFP-SSB and dT37 binding at pH 6.9 

with 2.5 mM MgCl2 (square) or pH 10 with 1 mM NaCl (triangle).  

 

 These results indicate that the fusion protein also has two binding modes, similar to the two 

binding modes of SSB.  There are two binding sites per SSB tetramer (each binding site contains 

two SSB subunits). A negative cooperation exists between bindings at these two sites.260As salt 
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concentration decreases, this negative cooperation increases. This explains why the percentage 

fluorescence quenching upon binding was different in the presence of 1mM NaCl or 2.5 mM 

MgCl2. 

Next, I examined a series of pH and cation concentrations and their combinations to identify 

conditions that maximize or minimize the interaction between sfGFP-SSB and dT37.  These two 

conditions could be used potentially as the binding and elution conditions during protein 

immobilization experiments.  I found that pH6.9, 2.5mM MgCl2 was the best condition for 

sfGFP-SSB and dT37 binding, while pH 10, 1mM NaCl minimized this binding (Figure 7.8 B). 

 

7.3.4 Reversible immobilization of sfGFP-SSB on NHS- and DVS-A activated resin 

To examine the binding of sfGFP-SSB with immobilized ssDNA, I first covalently attached 

chemically derivatized dT37 to a solid matrix.  Two kinds of chemical reactions were tested for 

the attachment: amine-derivatized ssDNA to NHS functionalized resin and thiol-derivatized 

ssDNA to DVS-A activated resin.  After the modification, the resins were washed extensively to 

remove the unreacted ssDNA.  Next, sfGFP-SSB or sfGFP were incubated under the same 

experimental condition in the presence of the modified resins.  I used sfGFP as a negative control 

to examine the effect of non-specific interaction between the protein and the beads.  After 

incubation, the resins were separated from excess proteins by centrifugation and washed 

extensively using the binding buffer.  The white color of the modified resins indicated that 

nonspecific binding of sfGFP was very weak compared to the SSB facilitated specific binding 

(Figure 7.9).   
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a)                           b)  

Figure 7.9 Protein immobilization on NHS-dT37 (a) or DVS-A-dT37 (b) resins.  In each panel, the resins 

in the microcentrifuge tubes were incubated with sfGFP-SSB (left) or sfGFP (right), and then washed 

extensively.   

Next, fluorescent microscope was used to further characterize both types of resins incubated with 

sfGFP or sfGFP-SSB (Figure 7. 10).  The control resins were not fluorescent, further confirming 

the lack of nonspecific interaction.  The amount of sfGFP-SSB immobilized was determined to 

be around 2.6or 1.8 mg protein per ml of drained NHS or DVS-A activated resins. 

 

Figure 7.10 Protein modified NHS-dT37 (a, b and c) and DVS-A-dT37 (d, e and f) imaged using 

fluorescent light (a, b, d and e) or normal white light (c and f).  Resins in panels a and d were treated with 

sfGFP-SSB.  Resins in panels b, c, e and f were treated with sfGFP.   

An immobilization method that is reversible is highly desirable as it introduced an additional 

level of flexibility to the process.  I evaluated twoapproaches to elute the protein off the resins: 

addition of the complementary dA35 oligonucleotideand change of pH/salt concentration.  I first 
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examined the reversibility of sfGFP-SSB interaction with the immobilized dT37 through the 

addition of dA35.  Binding of the two oligonucleotides generated double stranded DNA, which 

did not bind to SSB.  Eluted sfGFP-SSB was quantified through its fluorescence emission.  In the 

presence 125μM dA35, 82.4% of bound protein was eluted within the first 10 min of incubation 

(Figure 7.11). 

 

 

Figure 7.11 Effect of incubation time on protein elution by dA35 and glycine buffer (pH=10).  

82.4% and 68.4% of protein could be eluted by dA35 and glycine buffer in 10 minutes, 

respectively. 
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In addition, the resin could be regenerated by the treatment of free dT37, which competitively 

bound to dA35 and removed them from the resin.  Addition of fresh sfGFP-SSB changed the 

color of the resins from white to green again (Figure 7.12). 

 

Figure 7.12 Reversible immobilization of sfGFP-SSB on NHS-resin. NHS-dT37 resins modified 

with sfGFP-SSB (left), elutedusing dA35 (middle), and then regenerated and incubated with fresh 

sfGFP-SSB (right). 

 

To identify a more cost effective and convenient method to release the fusion protein from the 

resin, I examined the effect of pH/salt concentration on the elution of the fusion protein.  I found 

that 68.4% of sfGFP-SSB could be eluted by the condition identified above (Na-glycine buffer, 1 

mM NaCl, pH 10).  To examine the reversibility of binding, the pH value of the protein eluate 

was adjusted to 8.1 and mixed with fresh resins.  In parallel, fresh sfGFP-SSB was added to the 

resinafter pH mediated elution and re-equilibration.  In both cases, sfGFP effectively bound to 

the resin.   

7.7 CONCLUSION 

In summary, I have demonstrated that SSB could serve as a versatile fusion tag to facilitate 

ssDNA-mediated protein immobilization.  SSB is very stable and shows no negative effect of the 

overall expression and stability of the fusion protein.  The binding between SSB and ssDNA is 

very tight, with nM affinity.  And yet such interaction can be attenuated through the change of 

pH/salt concentration, which could serve as a convenient method to elute the immobilized 
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protein and regenerate the surface without denaturing the fusion protein.  Compared to other 

DNA- or RNA-mediated protein immobilization methods, our approach has the advantage of not 

requiring additional chemical modification.  And thus, an array of potential complications related 

to chemical modifications is avoided, including selectivity, specificity, extent of chemical 

reaction, purification of the modified protein, and protein denaturation issues.          
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