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ABSTRACT OF THESIS 

 

 

EQUINE PROTOZOAL MYELOENCEPHALITIS: INVESTIGATION OF GENETIC 
SUSCEPTIBILITY AND ASSESSMENT OF AN EQUINE INFECTION METHOD 

 

Equine protozoal myeloencephalitis (EPM) is a progressive neurological disease of 
horses caused by Sarcocystis neurona. Two projects were conducted to identify factors 
involved in the development of EPM. The first study explored a possible genetic 
susceptibility to EPM by attempting a genome-wide association study (GWAS) on 
formalin-fixed, paraffin-embedded (FFPE) tissue from 24 definitively-positive EPM 
horses. DNA extracted from tissues older than 14 months was inadequate for SNP 
analysis on the Illumina Equine SNP50 BeadChip probably due to degradation and 
formalin cross-linking. Results were inconclusive as analysis was not possible with the 
small sample set. The second study evaluated an artificial infection method in creating a 
reliable equine EPM model. Five horses were injected intravenously at 4 time points with 
autologous blood incubated with 1,000,000 S. neurona merozoites. Challenged horses 
progressively developed mild to moderate clinical signs and had detectable S. neurona 
serum antibodies on day 42 post challenge. Horses appeared to have produced a Th1 
immune response and cleared the infection by the conclusion of the study on day 89. No 
histopathological evidence of S. neurona infection was found within central nervous 
system tissue. This artificial infection method was not effective in replicating the severe 
clinical EPM seen in natural infections. 

 

KEYWORDS: Equine protozoal myeloencephalitis, Sarcocystis neurona, Genome-wide 
association study, Experimental infection, Immune response 
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CHAPTER ONE 

Literature Review 

 

1.1. Introduction 

Equine protozoal myeloencephalitis (EPM) is an equine neurological disease. The disease 

was first described in 1970 (Rooney et al., 1970), and protozoa were identified within 

lesions from EPM horses in 1974 (Beech and Dodd, 1974; Cusick et al., 1974; Dubey et 

al., 1974). The apicomplexan parasite Sarcocystis neurona is the etiologic agent of EPM 

(Dubey et al., 1991). Following the range of the definitive host, the opossum (Didelphis 

virginiana, Didelphis albiventris) (Dubey and Lindsay, 1998; Dubey et al., 2001a), EPM 

is only found in the western hemisphere. Horses are aberrant hosts, and become infected 

by ingesting feed or water that is contaminated with opossum feces (Dubey and Lindsay, 

1998). The disease displays clinical signs ranging from mild lameness to recumbency, 

and even death. Classic EPM clinical signs are asymmetrical ataxia with focal muscle 

atrophy (Dubey et al., 2001b). 

Currently, the most accurate antemortem diagnosis of EPM is based on neurological 

signs consistent with EPM and a positive ELISA test for S. neurona antibodies in the 

serum and CSF (Furr et al., 2002; Yeargan and Howe, 2011). A definitive diagnosis can 

only be made during a postmortem examination when S. neurona is located histologically 

within the CNS (Furr et al., 2002). Over half of the horses in the United States are 

seropositive for S. neurona (MacKay, 1997b), while only 0.5-1% actually develop the 

disease (Dubey et al., 2001b). 
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1.2. History 

A neurologic disease, referred to as “focal myelitis-encephalitis,” was first described in 

52 Kentucky and Pennsylvania horses in 1970 (Rooney et al., 1970). Protozoa were first 

witnessed within central nervous system (CNS) lesions of affected horses in 1974 (Beech 

and Dodd, 1974; Cusick et al., 1974; Dubey et al., 1974). Initially, the disease-causing 

protozoa was misidentified as Toxoplasma gondii (Cusick et al., 1974), but subsequent 

evidence determined it was a Sarcocystis spp. due to its morphology and antigenic 

properties (Simpson and Mayhew, 1980). In 1976, Mayhew et al. were the first to name 

the disease, equine protozoal myeloencephalitis (EPM) (Mayhew et al., 1976). Studies of 

previous EPM cases indicated that a single parasitic agent was located within the lesions 

(Dubey et al., 1991). In 1991, an organism was isolated from a naturally infected horse 

with EPM (Davis et al., 1991b), given the name Sarcocystis neurona based on the 

location of the parasite within the horse and identified as the causative agent of EPM 

(Dubey et al., 1991).  An immunohistochemical study of past EPM cases determined that 

most cases were caused by S. neurona (Hamir et al., 1993). There have been some reports 

of rare EPM cases caused by Neospora spp (Hamir et al., 1998; Marsh et al., 1996). This 

organism was isolated from a diseased horse in 1998 and established as a new species, 

Neospora hughesi (Marsh et al., 1998). 

 

1.3. Phylogeny and Life Cycle of Sarcocystis neurona  

Sarcocystis neurona is a parasite belonging to the phylum Apicomplexa and family 

Sarcocystidae (Beck et al., 2009), along with other cyst-forming coccidians, such as T. 
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gondii and Neospora caninum (Fenger et al., 1994) (Figure 1.1). Apicomplexan parasites 

are responsible for several major human and animal diseases (i.e., cryptosporidiosis, 

malaria, coccidiosis, toxoplasmosis, neosporosis) (Beck et al., 2009). They are relatively 

host specific, unicellular eukaryotes that contain an apical complex, consisting of unique 

cellular organelles that aid the parasite in penetrating host cells (Levine, 1970).  

 

 

Figure 1.1. Phylogenic tree of Sporozoea (Apicomplexa/Alveolata). Sarcocystis 

neurona belongs to the family Sarcocystidae, along with Toxoplasma, and Neospora. 

Many apicomplexan parasites have human and veterinary medical importance. Modified 

from Beck et al., 2009.   
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Sarcocystis neurona has a two host predator-prey life cycle, consisting of a definitive and 

intermediate host (Dubey, 1976) (Figure 1.2). The definitive host is the North American 

opossum (Didelphis virginiana) (Fenger et al., 1995) and the South American opossum 

(Didelphis albiventris) (Dubey et al., 2001a). The S. neurona life cycle begins with the 

definitive host (opossum) ingesting sarcocysts from muscle tissue of an infected 

intermediate host. Within the gastrointestinal tract of the definitive host, the organism 

undergoes sexual reproduction to form oocysts, each containing two sporocysts. 

Sporocysts are excreted in the feces, being immediately infective (Dubey, 1976). 

Intermediate hosts ingest the sporocysts via contaminated food and/or water sources. 

Within the intestines of the intermediate host, the sporocysts excyst, releasing sporozoites 

that penetrate intestinal epithelial cells. After undergoing asexual reproduction 

(schizogony), merozoites are released into the bloodstream and mature into sarcocysts in 

skeletal muscle tissue (Dubey, 1976). 

 

 



5 
 

 

Figure 1.2. Life cycle of Sarcocystis neurona. The opossum, the definitive host, excrete 

sporocysts in feces. The intermediate host (IH) ingest sporocysts, which develop into 

sarcocysts within muscle tissue. The horse is an aberrant host ingesting sporocysts 

through contaminated feed. (Saville et al., 2002) 

 

Completion of the S. neurona life cycle was accomplished using the domestic cat as an 

experimental intermediate host (Dubey et al., 2000). Several species have since been 

recognized as natural intermediate hosts, including the nine-banded armadillo (Dasypus 

novemcinctus) (Cheadle et al., 2001a), the striped skunk (Mephitis mephitis) (Cheadle et 

al., 2001b), the raccoon (Procyon lotor) (Stanek et al., 2002), the domestic cat (Felis 
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domesticus) (Stanek et al., 2003), and the sea otter (Enhydra lutris) (Dubey et al., 2001c). 

The horse is considered an aberrant or dead-end host, since S. neurona does not mature 

into sarcocysts in the muscles of infected horses (Dubey et al., 2001b). Therefore, horses 

are unable to infect a definitive host, resulting in an incomplete life cycle (MacKay, 

1997a).  

 

1.4. Pathogenesis 

The pathogenesis of EPM in the horse is not thoroughly understood. Horses ingest food 

and/or water sources contaminated with S. neurona sporocysts, which travel to the 

intestine. The sporocysts excyst, releasing sporozoites, which invade the intestinal 

epithelium, progressively moving into the endothelium of blood vessels. The organisms 

asexually reproduce to form meronts, causing the endothelial cell to rupture, releasing 

merozoites into the bloodstream (Furr, 2006). The merozoites migrate to the CNS 

(MacKay et al., 2000), although the actual mechanism of transport into the CNS has yet 

to be determined. It is proposed that S. neurona passes through the blood-brain barrier via 

leukocytes or the cytoplasm of endothelial cells (Furr, 2006). By invading the leukocyte, 

S. neurona is not only provided access to the CNS, but protection from antibodies 

(Lindsay et al., 2006). Once inside the CNS, S. neurona invades neurons and microglial 

cells, and slowly undergoes additional asexual reproduction to form schizonts. 

Eventually, the structures rupture, releasing merozoites, each of which can repeat the 

reproductive process (Simpson and Mayhew, 1980).  
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Several factors likely affect the progression of the disease, including the number of 

organisms (Sofaly et al., 2002), length of time before treatment (Saville et al., 2000a), 

location of lesion (Dubey et al., 2001b), and stressful events during infection (Saville et 

al., 2001).  

 

1.5. Clinical Signs 

The clinical signs of EPM are extremely variable due to the possibility of S. neurona 

causing lesions anywhere in the CNS. Some horses present with clinical signs that appear 

gradually over time, while others display a much faster progression (Reed, 2008). Early 

signs of EPM are frequent stumbling and unexplainable lameness of the thoracic or 

pelvic limbs. The classic EPM clinical signs are asymmetrical ataxia (incoordination) 

with focal muscle atrophy (Dubey et al., 2001b). 

Horses with an affected spinal cord exhibit gait abnormalities, manifested as ataxia of the 

limbs, generally affecting one side more than the other. This leads to asymmetrical 

muscle atrophy of the shoulder or rump (Reed, 2008). Damage to the grey matter results 

in focal muscle atrophy and severe muscle weakness; white matter damage manifests as 

ataxia and weakness in limbs caudal to the site of damage (MacKay et al., 2000). 

Additional signs may include dragging of the hoof especially while turning, hypometria 

of forelimbs, and reluctance to back up. Some clinical signs may only be witnessed while 

the horse is in training, such as head tossing, inability to maintain a lead, and a sore back 

(MacKay, 1997a). In rarer EPM cases involving an affected brain, clinical signs may 

include behavioral changes, blindness, seizures, drooping lip or ear, head tilt, and atrophy 
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of the tongue and the muscle of mastication (Furr et al., 2002). The disease can progress 

to the point of recumbency (MacKay, 1997a). 

 

1.6. Pathology 

Lesions associated with EPM are limited to CNS tissue (Beech and Dodd, 1974; Cusick 

et al., 1974; Dubey et al., 1974). The most commonly affected area of the brain is the 

brain stem, however, the majority of affected tissue is found in the spinal cord (Dubey et 

al., 2001b). Gross lesions are often visible in the grey matter of the spinal cord (MacKay 

et al., 2000). Histologically, characteristic lesions are easily recognizable (Beech and 

Dodd, 1974). Lesions are multifocal asymmetrical areas of hemorrhage, nonsuppurative 

inflammation, and necrosis (Dubey et al., 2001b). Inflammation of tissue is extremely 

variable with a mixture of cell types present, including lymphocytes, neutrophils, 

eosinophils, multinucleated giant cells, and gitter cells (Dubey et al., 2001b). Other 

common findings include perivascular cuffing of blood vessels with mononuclear cells, 

phagocytosis of axons with gitter cell formation, and astrocyte proliferation (MacKay et 

al., 2000). The white matter of diseased spinal cord tissue is often vacuolated due to the 

swelling and degeneration of axons (Beech and Dodd, 1974).  

Histologically, S. neurona merozoites are difficult to distinguish from nuclear debris 

within areas of necrotic tissue with the use of hematoxylin and eosin (H&E) staining 

(Beech and Dodd, 1974). Immunohistochemical (IHC) staining, however, has been 

shown to aid in locating and positively identifying S. neurona (Hamir et al., 1993). 

Schizonts and merozoites can be located in neurons, giant cells, neutrophils, and 
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macrophages, with some merozoites found free in the tissue (Dubey et al., 2001b; 

MacKay et al., 2000).  

 

1.7. Diagnosis 

Diagnosis of EPM is often challenging. Not only do clinical signs mimic those of other 

diseases, but antemortem diagnostic tests are not always conclusive. Positive serum tests 

indicate that a horse has been exposed to S. neurona. A positive cerebrospinal fluid (CSF) 

test implies that the parasite has crossed the blood-brain barrier and is suggestive of an 

active infection (Furr, 2006).  

1.7.1. Differential Diagnosis  

Due to the wide range of potential clinical signs, EPM can present as other neurological 

diseases (MacKay et al., 2000). A thorough clinical and neurologic exam is necessary to 

rule out other neurological conditions (Furr et al., 2002). Cervical vertebral malformation 

(CVM) and Equine herpesvirus-1 myeloencephalopathy often result in symmetrical 

neurological signs (Mayhew, 1999). Ancillary testing can provide additional information 

to rule out other diseases. For example, if cervical spinal cord damage is suspected, 

cervical radiographs can aid in diagnosing other possible abnormalities, such as CVM, 

cervical fracture, or cervical osteoarthritis (Mayhew, 1999). If cervical spinal cord 

compression is suggested, a myelogram would definitively rule out CVM (Furr et al., 

2002). Analysis of CSF is useful in distinguishing between viral and bacterial 

meningoencephalitis, as well as CNS trauma (Furr, 2006). The CSF can be tested for red 
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blood cell concentration, as well as for cytologic evaluation (Furr, 2006). An EPM horse 

has a normal CSF cytology, while West Nile Virus infected horses have abnormal CSF 

cytologies (Furr et al., 2002).  

 

1.7.2. Antemortem Diagnosis 

Several antemortem diagnostic tests recognize antibodies against S. neurona. The 

immunoblot (Western Blot) was the first test developed for detecting S. neurona-specific 

antibodies in the serum and CSF (Granstrom et al., 1993). In 2000, the Western blot was 

modified, increasing the sensitivity and specificity by using a bovine serum to block 

proteins nonspecific for S. neurona (Rossano et al., 2000). Another diagnostic test, the 

Indirect Fluorescent Antibody Test (IFAT) (Duarte et al., 2003; Duarte et al., 2004), is 

unable to differentiate between S. neurona and Sarcocystis fayeri infections. This is not 

problematic for diagnosis if clinical signs are taken into account, as S. fayeri is 

nonpathogenic in the horse (Saville et al., 2004a). Another diagnostic tool is the enzyme-

linked immunosorbent assay (ELISA) for detection of antibodies to the S. neurona 

surface antigen-1 protein (SnSAG1) (Ellison et al., 2003). Studies show that the SnSAG1 

ELISA has low sensitivity and is not a useful diagnostic tool (Hoane et al., 2005; Johnson 

et al., 2010). This is understandable because not all strains of S. neurona express 

SnSAG1 (Howe et al., 2008). The development of an ELISA for SnSAG2, SnSAG3, and 

SnSAG4 are much more promising and have increased sensitivity and specificity 

(Yeargan and Howe, 2011). While the Western blot only detects the presence of 

antibodies, the IFAT and ELISA have increased diagnostic value since they are able to 
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quantify the amount of antibody present in samples with end-point titers (Duarte et al., 

2003; Hoane et al., 2005). 

Testing paired samples of serum and CSF is useful in the diagnosis of EPM (Furr, 2006). 

Passive transfer of antibodies from the blood through the blood-brain barrier results in the 

presence of antibodies in the CSF (Furr et al., 2011). Normally, the amount of antibody in 

the CSF is proportionate to the amount in the serum (Furr, 2002). However, during an 

active CNS infection, antibodies will be produced resulting in a higher amount of 

antibody in the CSF than would be proportionally expected (Furr et al., 2011). However, 

blood contamination of the CSF can produce a false-positive test result (Finno et al., 

2007; Miller et al., 1999). Two CSF indices used to determine the CSF/serum proportions 

are the Goldman-Witmer coefficient (C-value) and the antigen-specific antibody index 

(AI) (Furr et al., 2011).  

An additional tool for EPM diagnosis is the horse’s response to anti-protozoal treatment. 

If the horse responds favorably to treatment, it potentially suffered from EPM. With this 

said, even in the event of diagnosis of EPM it is inconclusive as other diseases may 

respond to this type of treatment (Bentz et al., 1999). 

  

1.7.3. Postmortem Diagnosis 

The “gold standard” (Duarte et al., 2003) and only definitive diagnosis of EPM is a 

postmortem microscopic identification of S. neurona in the brain or spinal cord (Furr et 

al., 2002). Unfortunately, organisms can be easily overlooked, as usually only a small 

number of organisms are located in areas of inflammation and tissue necrosis (Dubey et 
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al., 2001b). The use of IHC staining with S. neurona antibody has been shown to aid in 

the detection of S. neurona by increasing the identification of organisms by 31% (20% 

identification with H&E staining; 51% with IHC staining) (Hamir et al., 1993). Prior 

treatment for EPM with anti-protozoal drugs decreases the likelihood of identifying S. 

neurona organisms in tissues (Boy et al., 1990). Due to these complicating issues, an 

EPM diagnosis is often based on the presence of characteristic lesions indicative of EPM, 

regardless of identification of S. neurona (MacKay et al., 2000).  

 

1.8. Treatment 

Time is the most crucial factor in the treatment of EPM. Earlier treatment will reduce the 

amount of CNS damage, which can be permanent (Dubey et al., 2001b). Medication will 

kill the protozoa, but will not repair the damage to the nervous tissue. If too severely 

damaged, the horse may need to be euthanized (Morley et al., 2001). Treatment is fairly 

expensive (Saville et al., 2000a), but usually leads to recovery in 70-75% of horses 

(Dubey et al., 2001b). There are several treatment options available for EPM. 

1.8.1. Anti-protozoal Treatment 

The Food and Drug Administration (FDA) has approved several treatments for EPM. 

Beginning in the 1970s, sulfadiazine/pyrimethamine was the traditional treatment 

(Mayhew et al., 1976). The drug, ReBalance, a combination of sulfadiazine and 

pyrimethamine (25%:1.25% suspension), has since been approved by the FDA (MacKay, 

2006). ReBalance requires a prolonged administration of 90 to 270 days (Animal Health 

Pharmaceuticals, 2004). The drug limits the protozoan’s ability to synthesize folic acid, 
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unfortunately, reducing the host animal to do so as well (MacKay et al., 2000). Long term 

treatment may cause anemia. Supplementation with folic acid is rarely necessary if the 

horse has access to high quality green forage (i.e., alfalfa hay) (MacKay, 1997a). The 

drug should not be administered to pregnant mares, as it has been known to cause 

abortions (MacKay, 2006).  

The anticoccidial drug, Marquis, a 15% ponazuril paste, is another drug option. This drug 

targets S. neurona, while leaving the host tissue unaffected (Bayer Corporation, 2001). 

Marquis is administered orally, once daily, for 28 days and appears to be a safe course of 

treatment when used at the recommended dosage (Bayer Corporation, 2001). A third 

drug, Navigator, a 32% nitazoxanide paste, is administered orally for 28 days (IDEXX 

Pharmaceuticals, 2003). Navigator is FDA-approved, but the manufacturer, IDEXX 

Pharmaceuticals, stopped production of this drug in 2009. This drug has a broad spectrum 

of activity against parasites, bacteria and viruses, including the natural bacterial flora of 

the horse’s gastrointestinal system (MacKay, 2006). Consequently, a horse on Navigator 

needs to be closely monitored for signs of toxicity, such as colic and diarrhea (MacKay et 

al., 2000). The newest drug option is Protazil, a 1.56% pellet of diclazuril (Schering-

Plough Animal Health, 2007). This drug is an anticoccidial and considered relatively safe 

for the host tissue (MacKay, 2006). These top-dress pellets are administered for 28 days 

(Schering-Plough Animal Health, 2007). 

  

1.8.2. Ancillary Treatment 

Additional therapies are sometimes recommended to reduce inflammation and minimize 

further CNS damage (MacKay, 1997a). As S. neurona merozoites rapidly die in response 



14 
 

to anti-protozoal therapy, an inflammatory response can occur within the CNS. 

Nonsteroidal anti-inflammatory drugs (NSAIDs) (i.e., flunixin meglumate) and dimethyl 

sulfoxide (DMSO) are recommended during the first 1-2 weeks of treatment (MacKay, 

2006). Corticosteroids are usually avoided, as they may increase neurologic symptoms 

(Cutler et al., 2001). However, some horses exhibit increasingly severe clinical signs at 

the onset of treatment, and the use of a corticosteroid may help control the inflammatory 

response initiated by the anti-protozoal drug (MacKay et al., 2000). Vitamin E can be 

given throughout the course of anti-protozoal therapy to prevent further oxidative damage 

of the CNS and to promote healing (MacKay, 1997a). Previous research suggests that 

EPM horses exhibit a decreased cell-mediated immunity, in particular a Th-1 response 

(Tornquist et al., 2001). Thus, non-specific immune stimulants, such as levamisole, killed 

Propionibacterium acnes, and Mycobacterium wall extract are sometimes used in 

addition to anti-protozoal therapy (MacKay, 2006).  

 

1.9. Prognosis  

The prognosis of a horse diagnosed with EPM is dependent upon the severity of clinical 

symptoms and the response to treatment (Saville et al., 2000a). Sixty percent of 

moderately to severely affected horses usually improve after treatment, with 10-20% 

recovering completely and are highly prone to relapse. Eighty percent of mildly affected 

horses will improve, with 50% recovering completely and being less prone to relapse 

(MacKay, 2006).  
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Horses treated earlier are more likely to recover completely (Saville et al., 2000a). 

Treated horses are 10 times more likely to improve than are horses left untreated 

(MacKay et al., 2000). A relapse, or the reoccurrence of clinical signs once treatment has 

ended, is estimated to occur in 10% of horses within 3 years of discontinuing treatment 

(MacKay, 2008).  

 

1.10. Epidemiology 

Prevalence of EPM is dependent upon the geographic distribution of the opossum (D. 

virginiana and D. albiventris), which is limited to North, Central, and South America 

(Dubey et al., 2001a; Fenger et al., 1995). Reports of EPM cases in the eastern 

hemisphere are occasionally identified in horses that originated from the Americas (Lam 

et al., 1999; Mayhew and Greiner, 1986; Ronen, 1992). The United States Department of 

Agriculture (USDA) reports that only 14 of 10,000 horses are actually diagnosed with 

EPM each year in the United States (US) (National Animal Health Monitoring System 

(NAHMS), 2001). This number is significantly smaller than the estimated 50% exposure 

rate of horses in the US (MacKay, 1997b). Seroprevalence of S. neurona varies 

throughout the country: 89.2% in Oklahoma (Bentz et al., 2003), 53.6% in Ohio (Saville 

et al., 1997), 45.3% in Chester County, Pennsylvania (Bentz et al., 1997), 45% in Oregon 

(Blythe et al., 1997), and 33.6% in Colorado (Tillotson et al., 1999). Variation of 

seroprevalence within each region is affected by different climatic factors. Oregon 

exhibited a higher seroprevalence in wetter coastal regions than in more arid regions 
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(Blythe et al., 1997). Ohio showed an association between a decrease in seroprevalence 

and the number of days the temperature was below freezing (Saville et al., 1997).  

Several risk factors have been associated with the development of EPM. While 

seroprevalence increases with the age of the horse (Bentz et al., 2003; Bentz et al., 1997; 

Blythe et al., 1997; Saville et al., 1997; Tillotson et al., 1999), younger horses (1-5 years 

old) are at a higher risk for actually developing EPM (Boy et al., 1990; Cohen et al., 

2007; Saville et al., 2000b). Certain breeds, such as Standardbred and Thoroughbred, 

appear to have a higher incidence of EPM (Boy et al., 1990; Rooney et al., 1970). These 

breeds are often associated with intense training at an early age, which could compromise 

their immune system. Horses involved in racing or competitions have an increased risk 

for EPM (Cohen et al., 2007; Saville et al., 2000b). Other stressful events that may be 

associated with EPM include injury/accident, surgery, and parturition (Saville et al., 

2000b). The occurrence of EPM increases during the spring, summer and fall (Saville et 

al., 2000b), which may be due to a climatic effect (Saville et al., 1997) or an increased 

amount of travel and competitions during these months. The presence of the opossum 

directly correlates with EPM cases, as the incidence of EPM is greater in areas that 

contain higher populations of opossums (MacKay et al., 2000). The risk of EPM is 

greater if wooded areas surround the farm and lower if a creek or river is close to the 

property (Saville et al., 2000b). 
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1.11. Prevention 

Certain management practices can be followed to decrease horse exposure to S. neurona. 

Trapping or keeping opossums away with specialized fencing (MacKay, 1997a) will 

prevent them from accessing the food and water sources of the horse (Saville et al., 

2000b). Keeping grain in securely closed containers and cleaning up any spilled grain, 

fallen fruit, or bird seed will eliminate the opossums’ food sources (MacKay, 2006), as 

well as storing forage (hay) in a facility that excludes wildlife (MacKay et al., 2000). 

Providing water sources for horses, such as water troughs, that are separate from ponds or 

creeks removes them from access to wildlife. Removing carcasses from the property and 

disposing of them properly prevents scavenging by opossums (Saville et al., 2002).   

The use of an anti-protozoal drug as a daily preventative has been proposed (Saville et 

al., 2002). Protazil (diclazuril) appears promising, as it easily dispenses as a top-dress to 

horse feed (Schering-Plough Animal Health, 2007). However, it is unknown how a daily 

preventative affects the horse’s natural immune response to S. neurona. Ultimately, this 

option is not cost-effective (MacKay, 2006). Another preventative option is the use of the 

drug, Marquis (ponazuril), intermittedly or during times of stress (Furr et al., 2006).    

Fort Dodge Animal Health manufactured a vaccine from killed, cultured S. neurona 

merozoites in a MetaStim® adjuvant (MacKay, 2006). The USDA gave the vaccine a 

conditional license in 2000. The efficacy of the vaccine remained to be determined, as 

there was little data to support the effectiveness of the vaccine in preventing EPM (Marsh 

et al., 2004). As a result, the vaccine was removed from the market in 2009.   
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1.12. Cell-mediated Immunity 

Cell-mediated immunity (CMI) is important for the elimination of intracellular parasites 

(Gazzinelli et al., 1994; Khan et al., 1997). To understand the role of the immune system 

in S. neurona infection, studies were initially conducted on mice. When injected 

subcutaneously with S. neurona merozoites, immunocompetent mice did not develop 

neurologic disease, nor were there any lesions in CNS tissue (Witonsky et al., 2003b). 

While there was an initial increase in the percentage of CD8+ peripheral blood 

lymphocytes and CD8+ splenocytes, levels returned to normal by the end of the 28 day 

study. This suggests that the immune response from a healthy immune system can 

prevent disease. CD8+ T cells seem to be involved in preventing disease in mice, as CD8 

cell knockout (KO) mice inoculated with S. neurona merozoites developed 

meningo/encephalomyelitis (Witonsky et al., 2005).  

Interferon-gamma (IFN-γ), a cytokine secreted by T cells (CD8+ and CD4+), natural 

killer (NK) cells, and IFN-γ producing non-T cells (Suzuki, 2002), has been shown to 

play a role in preventing neurologic infection. When infected with S. neurona, IFN-γ KO 

mice quickly developed meningo/encephalitis (Dubey and Lindsay, 1998; Witonsky et 

al., 2003a). Neurologic disease did not occur when severe combined immunodeficiency 

(SCID) mice were infected with S. neurona (Marsh et al., 1997). SCID mice lack 

adaptive immune responses from specific B and T cells, but have functioning NK cells. It 

is thought that the NK cells in SCID mice produce enough IFN-γ to protect them from 

neurologic disease (Sellon et al., 2004a). SCID mice treated with anti-IFN-γ antibody 

rapidly developed severe neurologic disease, highlighting the importance of this cytokine 

(Sellon et al., 2004a). 
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Limited research has been conducted on the CMI response in EPM horses. Studies used 

both naturally and experimentally infected horses. Initial research has shown that EPM 

horses have reduced cell-mediated responses to antigen-specific mitogens (Spencer et al., 

2005; Spencer et al., 2004; Tornquist et al., 2001). It is difficult to determine if the 

immunosuppression is a result of the parasite suppressing the horse’s immune response, 

or rather if the condition existed prior to the infection and is essential for the development 

of the disease (Tornquist et al., 2001). Both naturally and experimentally infected horses 

showed a suppressed response to the non-antigen specific mitogen, phorbol myristate 

acetate/ionomycin (PMA/I), in vitro (Witonsky et al., 2008; Yang et al., 2006). Compared 

to normal horses, EPM horses have increased interleukin (IL)-4 expression (Spencer et 

al., 2005) and suppressed IFN-γ mRNA expression in lymphocytes (Spencer et al., 2004). 

Studies show contrasting results regarding immune cell subsets. When compared to non-

EPM horses, Tornquist et al. (2001) saw a decrease in CD4+ cells, while Yang et al. 

(2006) documented an increase in CD4+ cells. Witonsky et al. (2008) was the only study 

to note a decreased percentage of CD8+ cells. As these studies were completed in vitro, 

they likely do not represent the actual immune response within the horse.  

 

1.13. Infectious Disease Susceptibility 

The interaction between environmental and genetic factors is responsible for the 

development of infectious disease (Casanova and Abel, 2005). Exposure to infectious 

pathogens is critical for the progression of disease, while genetic factors affect an 

individual’s susceptibility to disease (Kwiatkowski, 2000). Genetic predisposition to 
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infectious disease is considered to be either monogenic or polygenic (Alcais et al., 2009). 

Monogenic, or primary immunodeficiencies (PID), predisposition results from a single 

gene mutation causing susceptibility to a single disease (Casanova and Abel, 2007). 

Monogenic diseases have rare susceptibility alleles, display a high penetrance with a 

severe phenotype, and follow a Mendelian inheritance pattern (Casanova and Abel, 

2005). Examples of PIDs include Mendelian susceptibility to Mycobacterial disease 

(MSMD) and pyogenic bacterial infections. Children suffering from MSMD are 

susceptible to weakly virulent Mycobacteria, but show resistance to most other infectious 

agents (Alcais et al., 2005). These children have a mutation in the IL-12-IFN-γ pathway 

(Dorman and Holland, 2000; Newport et al., 1996). Pyogenic bacterial infections result 

from a susceptibility to Streptococcus pneumoniae due to an interleukin-1 receptor-

associated kinase (IRAK)-4 deficiency (Picard et al., 2003). 

The majority of infectious diseases are complex. A combination of multiple genes are 

involved in polygenic predisposition with each gene contributing slightly to the overall 

susceptibility (Alcais et al., 2009). Complex diseases have common susceptibility alleles 

and do not follow the Mendelian pattern of inheritance (Casanova and Abel, 2005). 

Schistosomiasis was the first infectious disease to have mapped a susceptibility locus. 

This locus controls the level of infection with the parasite Schistosoma mansoni (Marquet 

et al., 1996). Diseases, such as leprosy (Abel and Demenais, 1988) and pulmonary 

tuberculosis (Alcais et al., 2005), display a polygenic predisposition. Variants in the 

regulatory region of PARK2 and PACRG have been associated with leprosy 

susceptibility (Mira et al., 2004). Pulmonary tuberculosis susceptibility has been linked to 

the chromosomal region 8q12-q13 (Baghdadi et al., 2006), as well as a mutation in the 
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promoter region of the monocyte chemoattractant protein-1 (MCP1) (Flores-Villanueva 

et al., 2005). 

The genetic background of mouse strains affects their susceptibility to disease. Thus, 

Balb/c mice are resistant to the coccidium Eimeria ferrisi, while C57BL/6 mice are 

susceptible to this infection (Klesius and Hinds, 1979). Different susceptibility of mice 

strains was also evidenced with T. gondii infection. At a high dose (1 x 105 T. gondii 

trophozoites), Balb/c and DBA/2 mice were most susceptible to infection, while DBA/1 

and white SW/SIM strains were the most resistant. However, a lower dose (1 x 103 T. 

gondii trophozoites), Balb/c mice became one of the more resistant strains (Araujo et al., 

1976). The variation of survival between the mice strains seems to be dependent upon 

genes of the major histocompatibility complex (MHC), as well as non-MHC genes 

(Deckert-Schluter et al., 1994; Williams et al., 1978).  

 

1.14. Genome-wide Association Study 

Genome-wide association studies (GWAS) have become a powerful approach in 

identifying genes involved with monogenic and complex traits (McCarthy et al., 2008). 

Genome-wide association studies scan the entire genome for common variants, and 

usually compare a group that has a certain trait (i.e., disease) with a control group that 

does not exhibit the trait (Pearson and Manolio, 2008).  

Single nucleotide polymorphisms (SNP) are the most common sequence variant (Collins 

et al., 1998), and are used as markers throughout the genome (Pearson and Manolio, 

2008). These variants create diversity in populations, as well as being responsible for an 
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individual’s disease susceptibility. Most SNPs do not affect the function of the gene, 

instead they aid in locating other mutation(s) that are impacting gene function. SNPs that 

do modify functionality of the gene are usually located in the regulatory or coding 

regions of the genome (Collins et al., 1998). SNP chips are tools that can rapidly analyze 

the genome for SNPs and map them to specific regions on chromosomes (Chowdhary et 

al., 2008). These arrays have probes that target thousands of SNPs, which uniformly span 

the entire genome. This high-throughput genotyping technology is now commercially 

available (Chowdhary and Raudsepp, 2008).  

 A GWAS typically employs four steps. First, a sample set is chosen, consisting of 

individuals displaying a specific trait or disease. A comparison group is necessary that 

does not exhibit the trait or disease of interest (Wellcome Trust Case Control Consortium, 

2007). For all individuals, DNA is extracted and genotyped. Statistical tests are used to 

assess for any association between SNPs and the trait or disease of interest (Pearson and 

Manolio, 2008). Finally, a technical validation is necessary, as well as a replication of the 

study in an independent population, to ensure that the results represent valid associations 

(McCarthy et al., 2008).   

Through the use of GWAS, loci have been identified that implicate predisposition to 

disease (McCarthy et al., 2008). Such diseases include type 1 (Hakonarson et al., 2007) 

and type 2 diabetes (Steinthorsdottir et al., 2007), inflammatory bowel disease or Crohn’s 

disease (Hampe et al., 2007), rheumatoid arthritis (Begovich et al., 2004), and behavioral 

disorders, such as schizophrenia and bipolar disorder (Craddock et al., 2005). 

Susceptibility to infectious diseases is usually polygenic and considered a complex trait, 

as several genes are generally involved (Bellamy, 2006). One of the first infectious 
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disease GWAS was performed in 2007, discovering genetic determinants that affect the 

viral load during asymptomatic stages of HIV (Fellay et al., 2007). Another early 

infectious disease GWAS was performed on Kawasaki disease, finding several variants in 

genes that are involved with the pathogenesis (Burgner et al., 2009). Knowledge of 

affected genes can help identify pathways involved with disease susceptibility, increase 

understanding of the pathogenesis, and aid in the development of potential therapeutics 

(Davila and Hibberd, 2009). 

The technology used in conducting GWAS in humans is now being applied in other 

species, such as the cow and horse. Sequencing the genome of these animals was 

instrumental in the development of tools specific for analyzing their genomes, making the 

study of complex traits and diseases possible (Chowdhary and Raudsepp, 2008). In cattle, 

GWAS have been used heavily for improvement of production, conformation, and 

fitness. In the dairy industry, GWAS has been instrumental in breeding animals that have 

increased milk production (Wiggans et al., 2011). In the past, equine researchers have 

used gene maps and comparative genomics to identify monogenic traits, such as 

metabolic disorders (Dranchak et al., 2007), hereditary skin abnormalities (Tryon et al., 

2007), and immune system disorders (Shin et al., 1997). The equine SNP chip has been 

implemented in numerous studies of more complex traits and diseases, including 

recurrent laryngeal neuropathy (Dupuis et al., 2011), osteochondrosis (Lykkjen et al., 

2010), dwarfism (Orr et al., 2010), and equine viral arteritis (Go et al., 2011). This 

technology has also been used to develop optimum racing distance for Thoroughbreds 

(Hill et al., 2010) and desired coat colors (Reissmann et al., 2007). 
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1.15. Equine EPM Model 

The development of an equine model of EPM would significantly enhance knowledge of 

the disease. An equine model would aid in understanding the pathogenesis of EPM and 

lead to potential improvements in the diagnosis, treatment, and prevention of the disease. 

Several studies have attempted to induce EPM with varying levels of success, utilizing 

three different methods to introduce S. neurona into the horse.  

1.15.1. Intragastric Introduction 

Intragastric introduction was the first method used to create an EPM model. Two 

approaches were used in the preparation of S. neurona sporocysts inoculums. In one 

approach, the sporocysts were collected from intestinal scrapings of naturally infected 

opossums (Fenger et al., 1997). Since the opossum is the definitive host for three 

Sarcocystis spp (S. neurona, Sarcocystis falcatula, Sarcocystis speeri) (Rosenthal et al., 

2001), the inoculums were not pure S. neurona, but a mixture of Sarcocystis spp (Fenger 

et al., 1997). Bioassay or polymerase chain reaction (PCR) characterized the S. neurona 

inoculums from opossum’s intestinal scrapings (Cutler et al., 2001; Saville et al., 2001). 

In a second approach, sporocysts were collected from laboratory-raised opossums. In this 

approach, tongues of naturally infected raccoons were fed to laboratory-raised opossums 

whose intestines were scraped for sporocysts, which were then fed to laboratory-raised 

raccoons. The raccoon muscle was subsequently fed to laboratory-raised opossums, from 

which the sporocysts were finally collected (Sofaly et al., 2002). 

The initial study by Fenger et al. (1997) introduced an inoculum of mixed Sarcocystis spp 

sporocysts from the intestines of naturally infected feral opossums directly into the foals’ 
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stomachs using a nasogastric tube. One to three doses of at least 2 x 106 sporocysts were 

administered to the foals. All foals seroconverted between 24 and 42 days post 

inoculation (dpi) and had CSF antibodies present between 24 and 42 dpi. Foals displayed 

mild neurologic symptoms, with 3 of the 5 foals exhibiting histopathologic lesions in the 

brainstem and/or spinal cord. However, no organisms were observed in the tissues 

(Fenger et al., 1997).  

In a second study, Cutler et al. (2001) corticosteroids were used as an immunomodulator 

to induce EPM. An inoculum of PCR-characterized S. neurona sporocysts, collected from 

the intestines of naturally infected feral opossums, was administered via a nasogastric 

tube to horses for 7 consecutive days at a dose of 5 x 105 S. neurona sporocysts. A 

treatment group was additionally administered 0.1 mg/kg of the corticosteroid, 

dexamethasone, daily beginning 7 days prior to the first inoculation through the 

termination of the study. All horses seroconverted in the blood and CSF, but the 

dexamethasone-treated horses immunoconverted in less time and showed increased 

clinical signs. Unfortunately, it was difficult to determine if the horses displayed 

neurologic signs from the S. neurona infection or signs of weakness from systemic 

disease caused by the immunosuppression (Cutler et al., 2001).  

Saville et al. (2001) examined the effect of stress, specifically corticosteroids and 

transportation, on generating EPM in the horse. Bioassay characterized S. neurona 

sporocysts from the intestines of naturally infected feral opossums were administered in a 

single dose of 8 x 104 sporocysts via nasogastric tube to horses in 2 treatment groups. 

Horses were then transported for 55 hours to create stress. Upon arrival at the facility, 

one treatment group was immediately administered S. neurona sporocysts. A second 
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treatment group was allowed 14 days to acclimate, and then given 0.5 mg/kg dose of 

dexamethasone prior to being inoculated with 8 x 104 S. neurona sporocysts. This group 

continued to receive 0.2 mg/kg of dexamethasone twice a week for the remainder of the 

study. While all horses immunoconverted in both serum and CSF, transportation resulted 

in a quicker seroconversion time (Saville et al., 2001). Additionally, dexamethasone-

treated horses presented milder clinical signs, which contradicts previous study results 

from Cutler et al. (2001). Since transportation stress seemed to be effective in inducing 

EPM, Saville et al. (2004b) conducted another study to test the effect of a second 

transportation. The inoculums of S. neurona sporocysts were taken from laboratory-

raised opossums. Horses underwent prolonged transportation and then were inoculated 

with a single dose of 1.5 x 106 S. neurona sporocysts. One treatment group was not 

transported again, while a second treatment group was transported again at either 4, 11, 

or 18 dpi. All horses seroconverted between 12 and 21 dpi. The treatment group with the 

single transportation exhibited more severe clinical signs than the horses with the second 

transport (Saville et al., 2004b).  

Sofaly et al. (2002) studied the effect of inoculation doses on the induction of EPM. 

Inoculua of S. neurona sporocysts, derived from laboratory-raised opossums, were 

administered to horses in doses varying from 102 - 106. There was a dose-dependent 

relationship, as increased doses resulted in earlier seroconversion time. Results showed 

that a dose of at least 106 was necessary to consistently induce S. neurona infection 

(Sofaly et al., 2002).   

The method of inducing EPM via S. neurona sporocysts to the stomach of the horse 

resulted in fairly consistent findings between studies. Horses had both serum and CSF 
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immunoconversion, mild to moderate clinical signs, and occasional lesions present in the 

brain/spinal cord tissue. However, this method was unable to reproduce severe clinical 

signs (i.e., asymmetrical signs, inability to rise) and S. neurona organisms were never 

recovered nor seen histopathologically.  

 

1.15.2. Intrathecal Introduction 

Intrathecal introduction was the second method used to create an EPM model. In a study 

by Lindsay et al. (2000), S. neurona merozoites were directly introduced into the CNS of 

the horse. In an effort to maintain a consistent CSF volume, 10mL of CSF were removed 

from the horses prior to injecting 5 x 106 culture derived S. neurona merozoites 

suspended in 10mL plasmalyte into the subarachnoid space. Horses did seroconvert and 

antibodies were present in the CSF, but no clinical signs of EPM were evident (Lindsay 

et al., 2000). Intrathecal introduction of S. neurona merozoites, therefore, did not prove to 

be a successful method to establish EPM.  

 

1.15.3. Intravenous Introduction 

The final method used to create an EPM model was through an artificial parenteral 

introduction of S. neurona. While investigating S. neurona parasitemia in SCID horses, 

Sellon et al. (2004b) injected intravenously 5 x 108 S. neurona culture derived merozoites 

into both SCID and immunocompetent horses. Neurological symptoms were present in 2 

of the 3 immunocompetent horses. Immunocompetent horses were able to control 

parasitemia. Using PCR, S. neurona was not detected in visceral tissues, but was present 

in neural tissue. Conversely, none of the SCID horses developed any neurologic signs. 
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However, SCID horses were unable to control parasitemia, and S. neurona was detected 

in visceral tissues (Sellon et al., 2004b).  

Ellison et al. (2004) developed a procedure to infect horses with host lymphocytes 

containing intracellular S. neurona. Blood was collected from the horse, and the buffy 

coat was isolated and incubated with S. neurona merozoites for 5 hours. The infected 

cells were added to 6mL of collected blood and injected intravenously back into the 

horse. A single horse was given 100,000 merozoites at four different times, each a week 

apart. Three other horses were dosed with varying amounts of merozoites (100, 1,000, 

10,000) daily for 15 consecutive days. All horses developed moderate clinical signs, with 

blood and CSF immunoconversion by day 7. One of the challenged horses was a 

pregnant mare. Within the lung tissue of the fetus, the author states that an organism or 

artifact was identified with H&E staining and there was antibody binding using IHC 

staining (Ellison et al., 2004). It seems more likely that what the author viewed was 

actually an artifact, as S. neurona is not known to be present in the lung tissue.  

A second study by Ellison and Witonsky (2009) modified this procedure. Blood from 

each horse was collected in an ethylenediaminetetraacetic acid (EDTA) tube, and 6,000 

S. neurona merozoites were directly inoculated into each of the blood tubes. Blood tubes 

were incubated at 37°C overnight. The blood was then injected intravenously back into 

the horse, and the process was repeated for 14 consecutive days. This resulted in horses 

developing clinical signs with serum and CSF immunoconversion (Ellison and Witonsky, 

2009). 
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The intravenous method of induction of EPM resulted in moderate clinical signs and 

earlier seroconversion times than the intragastric or intrathecal methods. Unfortunately, 

S. neurona has yet to be identified histologically within lesions of the CNS tissue. 

 

1.16. Research Objectives 

Although extensive EPM research has been conducted over the past two decades, there is 

still much to learn about this disease. The objective of the two studies in this thesis was to 

further understand factors involved in the development of EPM within the horse. The first 

study explored a possible genetic susceptibility to EPM, as only a small number of horses 

exposed to S. neurona actually develop the disease. The susceptibility was investigated 

by performing a genome-wide association study (GWAS) on formalin-fixed, paraffin-

embedded (FFPE) tissues from definitively positive EPM horses. The second study tested 

the viability of a previously described artificial infection method to create a reliable 

equine EPM model. The development of a working EPM model would be useful in 

understanding the pathogenesis of the disease, and aid in the diagnosis, treatment, and 

prevention of EPM. Additionally, the immune response to the challenge infection was 

examined in the second study.   
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CHAPTER TWO 

Genome-wide association study to investigate genetic susceptibility of  

equine protozoal myeloencephalitis 

 

2.1. Introduction 

Equine protozoal myeloencephalitis (EPM) is the most commonly diagnosed 

neurological disease of horses in the United States (Dubey et al., 2001b). The disease is 

caused by the protozoan parasite, Sarcocystis neurona (Dubey et al., 1991). Horses are an 

aberrant host of S. neurona, and are infected by ingesting feed or water contaminated 

with sporocysts. Within the horse, the organism infiltrates the central nervous system and 

initiates an immune response, which leads to damaged tissue and neurological disease 

(MacKay et al., 2000). Diagnosis of EPM is challenging, with microscopic identification 

of S. neurona in the brain or spinal cord during postmortem examination the only 

definitive diagnosis (Furr et al., 2002).  

Seroprevalence studies show an exposure rate to S. neurona of approximately 50% in 

horses of the United States (MacKay, 1997b). However, only 0.5-1% of all horses are 

actually diagnosed with EPM (Dubey et al., 2001b). The factors involved in facilitating 

disease development are still unknown. Some breeds, such as the Thoroughbred and 

Standardbred, seem to have higher incidences of EPM (Boy et al., 1990; Rooney et al., 

1970). Researchers have proposed a genetic basis for the susceptibility to EPM, but no 

studies have been performed to date. Investigating a potential genetic predisposition is 

now possible due to the availability of the equine genome sequence and technologies that 
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scan the genome to identify variants associated with susceptibility to disease (Wade et al., 

2009).  

The goal of this study was to perform a genome-wide association study (GWAS) of 

definitively positive EPM horses. This GWAS used archived formalin-fixed, paraffin-

embedded (FFPE) tissues to identify potential genetic variants associated with disease 

susceptibility. 

 

2.2. Materials and Methods 

2.2.1. Case Selection 

The case report database of the University of Kentucky Veterinary Diagnostic Laboratory 

(UK VDL) was searched to identify cases from 1993-2011 with a diagnosis of EPM. 

Each case report was reviewed for a statement of identification of protozoal organisms in 

CNS tissue. Archived hematoxylin and eosin (H&E) stained slides of the brain and spinal 

cord tissues from these cases were examined by light microscopy to confirm the presence 

of parasites.  

 

2.2.2. Immunohistochemistry 

Immunohistochemical (IHC) staining was completed using an automated staining system 

(Bond-maX, Leica Biosystems, Newcastle Upon Tyne, UK) following the manufacturer’s 

IHC Protocol F and the Bond Polymer Refine detection system (Leica Biosystems). This 

procedure involved an automated dewaxing and rehydration of the tissue, continuing with 
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a heat-induced antigen retrieval using a ready-to-use citrate based buffer (pH 6.0) and 

surfactant (Leica Biosystems) at 100°C for 20 minutes. Slides were then incubated with 

3% hydrogen peroxide (H2O2) for 5 minutes, followed by application of anti-S. neurona 

rabbit serum diluted 1:2500 with Bond Primary Antibody Diluent (Leica Biosystems), 

and incubated for 15 minutes. Slides were treated with postprimary blocking reagent for 8 

minutes and then horseradish peroxidase-labeled IgG polymer for 8 minutes. 

Diaminobenzidine tetrahydrochloride (DAB) substrate was added, and the slides were 

incubated for 10 minutes. Finally, the slides were counterstained with hematoxylin for 5 

minutes. Between each incubation step, slides were washed using Bond Wash Solution 

10x Concentrate (Leica Biosystems), diluted with distilled water to a 1x working 

concentration, to remove any unbound material. Brain tissue from a clinical EPM horse 

with a large number of S. neurona organisms was stained as a control. A negative control 

consisted of only Bond Primary Antibody Diluent (Leica Biosystems). 

Slides were removed from the instrument and washed under distilled water. Tissue was 

dehydrated using a graded series of alcohol washes (2-85% ethanol, 2-90% ethanol, 2-

95% ethanol, 2-100% ethanol) and cleared with 4 xylene washes. Slides were covered 

using mounting medium and glass coverslips, and viewed with light microscopy to 

identify S. neurona organisms. 

  

2.2.3. Genotyping 

For each confirmed EPM case, 5 µm serial sections were cut from FFPE spleen/liver or 

cerebellum tissue. Five tissue scrolls from serial sections of each horse were placed in 

labeled Eppendorf tubes. Samples were sent to GeneSeek, Inc. (Lincoln, Nebraska) for 
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genotyping. DNA was isolated from tissues using a phenol/chloroform extraction 

method. Samples were run on a single Equine SNP50 BeadChip (Illumina, San Diego, 

California) using the manufacturer’s protocols. This array contains 54,602 single 

nucleotide polymorphisms (SNPs) evenly distributed across all 31 autosomes with an 

average probe spacing of 43.2kb, derived from the EquCab2.0 SNP assembly of the horse 

genome (http://www.broadinstitute.org/mammals/horse). Average call rate was used for 

quality control. 

 

2.3. Results 

2.3.1. Case Selection 

The UK VDL database contained 194 cases with a diagnosis of EPM, or suspected EPM, 

between 1993 and 2011. In 36 case reports, pathologists stated that organisms were 

observed in the CNS by histopathologic examination.  

Signalment was obtained from each of the 36 case reports (Table 2.1). A majority of the 

horses were Thoroughbreds (n=29), other breeds included Quarter Horses (n=3), 

Tennessee Walking Horse (n=1), Percheron (n=1), and mixed breeds (n=1). There was 

minimal difference between the number of males (n=15) and females (n=19). Of the 

horses with a known age, about half (n=16) were 1-5 years old, while the remainder 

(n=15) were 6-30 years of age.  

http://www.broadinstitute.org/mammals/horse
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Table 2.1. Horses used in the study.  

ID # Year Breed Sex Age 
Parasites 

Identified – 
H&E 

Parasites 
Identified - 

IHC 

1 1993 Thoroughbred Female 5 Yes Yes 
2 1993 Thoroughbred Female 4 Yes Yes 
3 1994 Quarter Horse Male 9 Yes Yes 
4 1994 Tennessee Walking Horse Female 9 Yes Yes 
5 1994 Thoroughbred Female 16 Yes N/AB 
6 1995 Thoroughbred Male 2 Yes Yes 
7 1995 Thoroughbred Female 3 N/AA N/AB 
8 1996 Thoroughbred Unknown  Unknown Yes Yes 
9 1997 Thoroughbred Female 19 Yes Yes 
10 1998 Mixed Breed Male Adult Yes Yes 
11 1998 Thoroughbred Male Unknown Yes Yes 
12 1999 Thoroughbred Female Adult Yes No 
13 2000 Thoroughbred Female 6 Yes Yes 
14 2001 Thoroughbred Male 15 Yes Yes 
15 2001 Quarter Horse Female 3 Yes Yes 
16 2002 Thoroughbred Male 2 Yes Yes 
17 2003 Thoroughbred Female 3 Yes Yes 
18 2003 Thoroughbred Female 5 Yes Yes 
19 2004 Thoroughbred Female 3 Yes Yes 
20 2006 Thoroughbred Male 1 Yes Yes 
21 2006 Thoroughbred Female 13 Yes Yes 
22 2006 Thoroughbred Male 3 Yes Yes 
23 2006 Thoroughbred Male 12 Yes No 
24 2007 Quarter Horse Male 8 Yes Yes 
25 2007 Thoroughbred Male 3 Yes Yes 
26 2008 Thoroughbred Male 18 Yes Yes 
27 2010 Thoroughbred Unknown  1 Yes Yes 
28 2010 Thoroughbred Male 1 Yes Yes 
29 2010 Thoroughbred Female 30 Yes Yes 
30 2011 Thoroughbred Female 7 Yes Yes 
31 2011 Thoroughbred Female Adult Yes Yes 
32 2011 Percheron Male 17 Yes Yes 
33 2011 Thoroughbred Female 2 Yes Yes 
34 2011 Unknown Female 14 Yes Yes 
35 2011 Thoroughbred Female 11 Yes Yes 
36 2011 Thoroughbred Male 2 Yes No 

A = No slides available at UK VDL 
B = No tissue blocks available at UK VDL  



35 
 

2.3.2. Confirmation of Sarcocystis neurona  

For all cases in which archived slides were available (n=35), parasites were visualized on 

H&E stained slides (Table 2.1). The infection presented differently across the cases. 

Lesions varied from focal areas of inflammation to severe inflammation with widespread 

necrosis (Figures 2.1A & 2.1B). Parasites were generally located within areas of 

inflammation (Figure 2.2A). The number of parasites present varied, but was usually 

associated with the degree of inflammation/necrosis. Thus, the more severe the 

inflammation, typically the higher number of parasites observed.  

Immunohistochemical staining was used for further confirmation that the parasites 

present in the tissues were S. neurona, as IHC staining allows for identification of 

parasites, especially merozoites. The number of parasites located with IHC staining 

varied across cases. Within lesions, only a single S. neurona parasite was observed in 

some horses, while multiple S. neurona parasites in various stages of growth were seen in 

other horses (Figures 2.2B & 2.2C). Of the cases where tissue blocks were available 

(n=34), S. neurona parasites were identified in 31 cases (Table 2.1). Only a single 

parasite was observed in the corresponding H&E slide of the 3 cases that were not 

positive by IHC staining. 

 



36 
 

 

 
Figure 2.1. CNS lesions of EPM horses. Hematoxylin and eosin stain. Bar = 200µm. 

(A) Inflammatory foci within a spinal cord section of Horse 26, with a few perivascular 

cuffs containing inflammatory cells. (B) Severe inflammation present in brain tissue of 

Horse 24, with a heavy infiltration of monocytic cells and widespread tissue necrosis.  

A 

B 
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Figure 2.2. Sarcocystis neurona within CNS lesions of EPM horses. (A) Multiple S. 

neurona schizonts (arrows) within brain tissue of Horse 29. Hematoxylin & eosin stain. 

Bar = 10µm (B) - (C) Immunohistochemical staining with anti-S. neurona rabbit serum. 

Bar = 20µm. (B) Brain tissue with numerous S. neurona schizonts and merozoites of 

Horse 29. All brown staining indicates organisms. (C) A single S. neurona schizont 

located in the spinal cord of Horse 28.  

A 

C B 
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2.3.3. Genotyping 

Twenty-four definitive EPM cases of Thoroughbreds were selected to be genotyped and 

sent to GeneSeek, Inc. After purification from FFPE tissues, the majority of DNA 

samples were within optimal range (1.8-2.1) for purity (A260/280) (Table 2.2). The 

quantity of total DNA extracted from all 24 FFPE tissues was sufficient to run the SNP 

chip assay (>200ng) (Table 2.2). The range in the amount of DNA extracted was 

dependent on the size of the tissue present in the tissue block.  

Only 5 of the samples genotyped had a call rate above 88% (Table 2.2) signifying that 

over 88% of the possible 54,602 SNPs were read (i.e. successful genotype identification). 

The tissues of these 5 cases were fixed in formalin for the shortest time period of all 24 

cases analyzed. Call rates of the remaining 19 samples were only 43-68%. Any tissue 

fixed in formalin for more than 14 months resulted in a drop in call rate. The various 

tissue types from which DNA was extracted (i.e., adrenal gland, brain, heart, intestine, 

kidney, liver, lung, spleen, stomach, tongue) did not appear to effect the call rate.   
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Table 2.2. Call rate, DNA quantity and quality from FFPE tissue of EPM horses. 

ID # Month-Year Call Rate A260/280 Total DNA (ng) FFPE TissueA 

35 Jun-11 0.9648756 2.00 1705.0 Adrenal gland, liver, spleen 
31 Unknown-11 0.9298905 2.01 1878.0 Kidney, spleen 
29 Nov-10 0.8959416 2.05 1744.5 Liver, spleen 
33 Apr-11 0.8882084 2.04 3140.0 Kidney, spleen 
30 Apr-11 0.8880847 1.73 2100.0 Spleen 
6 Feb-95 0.6818547 2.03 1280.0 Liver, lung 
9 Dec-97 0.6553452 1.94 3025.0 Liver, lung, spleen 
19 Jan-04 0.6376516 2.05 1435.0 Kidney, liver, lung 
1 Jun-93 0.6186742 2.54 948.5 Lung, spleen 
16 Feb-02 0.6164161 2.59 1125.0 Liver, lung, spleen 
28 Aug-10 0.5944538 2.02 620.5 Intestine, liver, spleen  
21 Jul-06 0.5776262 1.75 2500.0 Liver, lung, spleen 
11 Mar-98 0.5719500 1.88 1430.0 Liver, lung, spleen  
2 Jul-93 0.5655778 1.96 1920.0 Liver, spleen 
8 Oct-96 0.5600563 2.02 1227.0 Brain (Cerebellum) 
17 Jan-03 0.5444042 2.05 3055.0 Heart, liver  
20 Jun-06 0.5389445 1.84 747.5 Spleen, stomach 
27 Apr-10 0.5227512 2.04 1117.0 Liver, spleen 
18 Apr-03 0.5143684 2.08 1370.0 Brain (Cerebellum) 
13 Jun-00 0.5122030 1.99 1941.5 Liver, lung, spleen  
14 Feb-01 0.5084602 2.02 2980.0 Liver, lung, spleen 
26 Jan-08 0.4909830 1.47 2930.0 Liver, lung, tongue 
22 Sep-06 0.4555184 1.74 615.5 Lung, spleen  
25 Oct-07 0.4347315 1.92 646.0 Spleen 

A = Type of FFPE Tissue sent to GeneSeek  

 

2.4. Discussion 

A sample set of FFPE tissue was used for a GWAS of definitively positive EPM horses. 

The study was unsuccessful as the DNA was degraded from fixation. The samples with 

low call rates did not generate enough data for analysis as approximately half of their 

genomes were searched for sequence variants. With such limited data and no SNP chip 
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analysis possible, results were inconclusive if horses have a genetic susceptibility to 

EPM.  

Archived FFPE tissues are a large resource for disease studies. Unfortunately, the 

formalin fixation used to preserve tissue morphology degrades DNA, producing DNA-

interstrand and DNA-protein cross-links (Crisan and Mattson, 1993). Formalin can also 

cause nucleotide substitutions or deletions (De Giorgi et al., 1994). Obtaining high 

quality DNA from FFPE samples is limited by the duration of fixation and the length of 

storage time (Crisan and Mattson, 1993). Over time, formalin acidifies into formic acid 

further deteriorating the DNA (Ferrer et al., 2007). The DNA extraction method also 

limits the size of DNA fragments. It has been shown that the phenol-chloroform 

extraction method further damages the fragile formalin-fixed DNA (Wang et al., 1994). 

The use of commercial DNA extraction kits has been shown to yield higher quality DNA 

(Ferrer et al., 2007; Jacobs et al., 2007). Since this study used formalin fixative and 

phenol-chloroform extraction method, the limited number of samples (n=5) with an 

appropriate call rate is understandable. 

The high number of Thoroughbreds in the sample set diagnosed with EPM may be 

misleading. Thoroughbreds may not be more susceptible to EPM than other breeds, as the 

data analysis needs to consider the demographics of Lexington, Kentucky from which the 

sample set was pulled. Due to the demographics of the horses used in the study 

Thoroughbred horses were overrepresented. To be conclusive, the sample set would need 

to contain horses from other geographic areas. For the purpose of this study, however, 

Thoroughbred horses were desired for the SNP analysis, as they have less diverse genetic 

markers than other breeds. 
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Based on our findings, the use of FFPE tissues for GWAS might be possible if samples 

were less than a year old. It is very likely that a GWAS of EPM susceptibility will have 

to be done prospectively, as there are not enough EPM cases reviewed at the UK VDL in 

a single year to obtain a significant sample set. However, if hair was collected during 

necropsy, and the definitive EPM diagnosis was obtained by the presence of S. neurona 

in the CNS, the DNA from the hair bulbs could be used. This would provide quality DNA 

to be run on the SNP chip. Additionally, different extraction methods could be utilized, 

such as a commercial DNA extraction kit, to obtain higher quality DNA. This 

methodology may be useful in studying more prevalent diseases that allow for adequate 

collection within one year.   
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CHAPTER THREE 

Assessment of an equine protozoal myeloencephalitis model using an  

artificial infection method in horses 

 

3.1. Introduction 

The development of an experimental horse equine protozoal myeloencephalitis (EPM) 

model would enhance the understanding of the pathogenesis and improve diagnostics and 

treatment therapies of the disease. Several previous attempts have been made to create 

models using various strategies, each resulting in varied success. In one model, 

Sarcocystis neurona sporozoites collected from the intestines of opossums were given 

intragastrically to horses (Fenger et al., 1997). A dose dependent relationship was seen 

with horses given a larger inoculum, 106 sporozoites, developing more severe clinical 

signs (Sofaly et al., 2002). Corticosteroids (Cutler et al., 2001) and transport stress 

(Saville et al., 2004b; Saville et al., 2001) caused horses to seroconvert and display mild 

to moderate clinical signs of EPM. However, S. neurona were not identified in neurologic 

tissue histologically. In a second model, intrathecal placement of S. neurona merozoites 

caused horses to develop antibodies in the blood and CSF, but not develop clinical 

neurologic EPM signs (Lindsay et al., 2000). 

An EPM model by Ellison et al. (2004) incubated lymphocytes with S. neurona 

merozoites overnight before intravenously injecting them back into the horse. This 

process was repeated for 15 consecutive days. All challenged horses developed moderate 

neurologic disease with antibodies present in the serum and CSF. A modified process by 

Ellison and Witonsky (2009) incubated S. neurona merozoites in whole blood overnight 
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before injecting back into the horse. This resulted in progressive neurological signs with 

antibodies present in the serum and CSF.         

There is limited knowledge of the horse cell-mediated immune (CMI) response to S. 

neurona. Studies, using natural and experimentally infected horses, have provided 

evidence that EPM horses have an increased IL-4 (Spencer et al., 2005) and suppressed 

IFN-γ expression in lymphocytes (Spencer et al., 2004). It is difficult to determine, 

however, if the development of EPM requires immunosuppression prior to infection or if 

S. neurona has the ability to suppress the horses’ immune response (Tornquist et al., 

2001).     

The object of this study was to evaluate whether an artificial infection model described 

previously (Ellison and Witonsky, 2009; Ellison et al., 2004) could be replicated to 

produce clinical EPM. Horses were injected intravenously with autologous blood 

incubated with S. neurona merozoites. Additionally, the immune response of horses to S. 

neurona was examined during the challenge infection. 

 

3.2. Materials and Methods 

3.2.1. Experimental Animals 

Six Quarter Horse yearling horses (12 – 18 months of age; 3 male, 3 female) were 

acquired from a commercial source. Horses were screened for antibodies to S. neurona 

surface antigens SnSAG2 and SnSAG4/3 (Equine Diagnostic Solutions, Lexington, 

Kentucky). One horse (464) had an antibody titer of 1:250 and was removed from 
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consideration as the uninoculated control. The uninoculated control was randomly 

selected from the remaining group of 5 horses, all of which had an antibody titer for 

SnSAG2 and SnSAG4/3 of <1:250. Neurologic examinations were performed to ensure 

that all horses were neurologically normal prior to challenge/inoculation. 

Horses were housed at East Tennessee Clinical Research, Inc. (ETCR) (Rockwood, 

Tennessee) in individual 12 x 12 ft. stalls within a wooden-trussed, metal-roofed 

building. Stalls consisted of 2 metal panels and 2 solid wooden walls, bedded with 

hardwood shavings and sawdust over packed clay and limestone. Horses were fed hay 

and grain concentrates daily in amounts adequate for proper growth and maintenance. 

Water was provided ad libitum. Horses were acclimated to study conditions for 2 days 

prior to first inoculation. Handling of horses was in compliance with local regulations, 

facility standard operating procedures, and the facility Institutional Animal Care and Use 

Committee (IACUC). Daily health observations of each horse were conducted by staff at 

ETCR, paying attention to general appearance, behavior, appetite, fecal consistency, and 

particularly the horses’ neurologic function. 

 

3.2.2. Experimental Infection of Horses 

Sarcocystis neurona merozoites were cultured at the University of Kentucky, as 

described previously (Howe et al., 2005). Cultured parasites were harvested and 

transported at 37°C in a styrofoam container for approximately two hours to a meeting 

location in Jellico, Tennessee. At ETCR, 5mL peripheral blood was collected from the 

jugular vein of each horse into EDTA vacutainer tubes (BD Vacutainer, Franklin Lakes, 
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New Jersey). Blood tubes were car transported in an incubator at 37°C for two hours to 

the meeting location in Jellico, Tennessee. Each blood tube was inoculated with a million 

(1 x 106) merozoites consisting of equal parts S. neurona strain SN3 (Granstrom et al., 

1992) and strain SN4 (Davis et al., 1991a). The control horse, 465, received only cell 

culture medium. The blood tubes were incubated at 37°C while traveling back to ETCR. 

Upon arrival, tubes were incubated at 37°C on a rocking platform for an additional two 

hours. Finally, autologous blood cells were injected back into each horse via intravenous 

injection of the jugular vein. Inoculations occurred on Days 0, 5, 12, and 20 (Figure 3.1). 
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Figure 3.1. Timeline for inoculation, sample collection, and examination of horses. 

Clinical health observations performed daily beginning Day -2 and continuing throughout 

the entire study. Neuro Exam: neurologic examination; Sera: serum collected; Blood: 

heparinized blood collected; CSF: cerebrospinal fluid collection; Phys Exam: physical 

examination. 

Day 

42 Neuro Exam, Blood, Sera 

21 Neuro Exam, Phys Exam 

12 Inoculation, Neuro Exam 

0 Inoculation, Blood, Sera, Phys Exam 
 

Neuro Exam 
ELISA titers for SnSAG2, SnSAG4/3 -2 

Inoculation 5 

14 Phys Exam 

Inoculation 20 

Neuro Exam 28 

Neuro Exam 35 

Neuro Exam 49 

Neuro Exam 
 

7 

Neuro Exam 63 

Neuro Exam 77 

Neuro Exam, Blood, Sera, CSF, 
Euthanasia and post mortem exam 89 
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3.2.3. Sample Collection and Preparation 

The timeline for sample collections is summarized in Figure 3.1. Serum samples were 

collected and sent to Equine Diagnostic Solutions on Day -2 to test for antibody titers 

against S. neurona. Additional serum samples were obtained on Day 0, 42, and 89 by 

collecting peripheral blood from the jugular vein in a 6mL serum separator vacutainer 

tube (BD Vacutainer). Serum tubes were allowed to clot for at least 30 minutes and then 

centrifuged at 3,000g for 10 minutes. Peripheral blood samples were collected from the 

jugular vein in two 4mL sodium heparinized vacutainer tubes (BD Vacutainer) on Day 0, 

42, and 89. Immediately following euthanasia on Day 89, 3mL CSF was collected from 

the foramen magnum of the atlanto-occipital joint in 4mL red top tubes (BD Vacutainer) 

using aseptic technique.  

Staff members of the ETCR performed all sample collections. Tubes were transported by 

car at 37°C to the University of Kentucky. Serum was removed from the tubes. Serum 

and CSF were stored at 4°C until assayed. Heparinized blood was immediately stimulated 

as described in section 3.2.9. 

 

3.2.4. Examinations 

Physical examinations were performed on Days 0, 14 and 21 by ETCR staff. Neurologic 

examinations were completed on Days -2, 7, 12, 21, 28, 35, 42, 49, 63, 77, and 89. Exams 

were conducted by Dr. Steve Reed (Rood and Riddle Equine Hospital, Lexington, 

Kentucky) on days -2, 12, and 42. Dr. Julio Prado (ETCR) performed the remaining 

neurologic examinations. The examination schedule is summarized in Figure 3.1. 
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Neurologic examinations evaluated each of the horses’ limbs (left front, right front, left 

hind, and right hind) at the walk, trot, circling, and backing. Each movement was 

assessed for ataxia (incoordination), paresis (weakness), spasticity (stiffness), and 

dysmetria (range of movement), and assigned a grade of 0-5 (Table 3.1), resulting in a 

total of 64 scores per horse (Table 3.2).  

 

Table 3.1. Description of ataxia grades. (Rose, 2000) 

Grade Description 
0 No deficits; normal 
1 Just detected at normal gait 
2 Deficit easily detected and exaggerated by backing, turning, swaying, loin pressure or 

neck extension 
3 Deficit very prominent on walking, turning, loin pressure or neck extension 
4 Stumbling, tripping, falling down spontaneously 
5 Recumbent, unable to rise 

 

 

Table 3.2. Neurology examination score sheet. At the walk, trot, circling, and backing, 

horses received a score of 0-5 for each limb based on ataxia, paresis, spasticity, and 

dysmetria.  

 
Walk Trot Circling Backing 

 
LF LR RF RR LF LR RF RR LF LR RF RR LF LR RF RR 

Ataxia                                 
Paresis                                 
Spasticity                                 
Dysmetria                                 
LF: left front; LR: left rear; RF: right front; RR: right rear 
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3.2.5. Euthanasia and Necropsy 

All six horses were euthanized and necropsied on Day 89. Horses were sedated 

intravenously with xylazine and then injected intravenously with a lethal dose of sodium 

pentobarbital. The euthanasia method was consistent with specification of the American 

Veterinary Medical Association (AVMA) Guidelines on Euthanasia (2007). During 

necropsy, sections of the brain and spinal cord were collected. Specifically, the dura 

mater was opened and 0.5cm sections of the spinal cord were removed from each of the 

following sections: Cervical(C)1-2, C3-4, C7-Thoracic(T)1, T4-5, T8-9, T12-13, Lumbar(L)1-2, 

L3-4, L7-Sacral(S)2. Tissue samples were placed in containers of buffered neutral 

formalin, and later sectioned, mounted, and stained for histological evaluation. 

Euthanasia and necropsies were performed by staff at ETCR.  

 

3.2.6. Histological Examination 

Histological examination was performed by board-eligible veterinary pathologist Dr. 

Uneeda Bryant at the University of Kentucky Veterinary Diagnostic Laboratory (UK 

VDL). Tissue sections were stained with H&E and evaluated under light microscopy for 

abnormalities.  

 

3.2.7. Immunohistochemistry 

Immunohistochemical (IHC) staining was completed using an automated staining system 

(Bond-maX, Leica Biosystems, Newcastle Upon Tyne, UK) following the manufacturer’s 

IHC Protocol F and the Bond Polymer Refine detection system (Leica Biosystems). This 
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procedure involved an automated dewaxing and rehydration of the tissue, continuing with 

a heat-induced antigen retrieval using a ready-to-use citrate based (pH 6.0) buffer and 

surfactant (Leica Biosystems) at 100°C for 20 minutes. Slides were then incubated with 

3% hydrogen peroxide (H2O2) for 5 minutes, followed by application of anti-S. neurona 

rabbit serum diluted 1:2500 with Bond Primary Antibody Diluent (Leica Biosystems), 

and incubated for 15 minutes. Slides were treated with postprimary blocking reagent for 8 

minutes and then a horseradish peroxidase-labeled IgG polymer for 8 minutes. 

Diaminobenzidine tetrahydrochloride (DAB) substrate was added, and the slides were 

incubated for 10 minutes. Finally, the slides were counterstained with hematoxylin for 5 

minutes. Between each incubation step, slides were washed using Bond Wash Solution 

10x Concentrate (Leica Biosystems), diluted with distilled water to a 1x working 

concentration, to remove any unbound material. Brain tissue from a clinical EPM horse 

with a large number of S. neurona organisms was stained as a control. A negative control 

consisted of only Bond Primary Antibody Diluent (Leica Biosystems). 

Slides were removed from the instrument and washed under distilled water. Tissue was 

dehydrated using a graded series of alcohol washes (2-85% ethanol, 2-90% ethanol, 2-

95% ethanol, 2-100% ethanol) and cleared with 4 xylene washes. Slides were covered 

using mounting medium and glass coverslips, and viewed with light microscopy to 

identify S. neurona organisms.  
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3.2.8. Enzyme-Linked Immunosorbent Assay 

Enzyme-linked immunosorbent assays (ELISAs) were conducted essentially as described 

previously (Hoane et al., 2005; Yeargan and Howe, 2011). Each rSnSAG was diluted in 

phosphate buffered saline (PBS) at predetermined optimal concentrations (SnSAG1 

0.2µg/mL, SnSAG2 1.0µg/mL, SnSAG4/3 0.5µg/mL, SnSAG5 0.5µg/mL), and then 

75µL of the antigen was dispensed into each well of high binding 96-well plates 

(Corning, Corning, New York). Plates were incubated overnight at 4°C. Antigen was 

removed and plates rinsed three times using PBS with 0.05% Tween 20 (PBST). Wells 

were blocked with 200µL blocking solution (PBS containing 5% normal goat serum, 1% 

Tween 20, 1% nonfat dry milk powder) and incubated at room temperature (RT) for 1.5 

hours. Wells were rinsed a single time with PBST. Primary antibody was diluted (serum 

1:250, CSF 1:2.5) with antibody diluent solution (1:10 blocking solution with PBST), 

75µL was added to duplicate wells, and incubated at 37°C for 1 hour. Plates were washed 

5 times with PBST. Secondary antibody, horseradish peroxidase (HRP)-conjugated goat 

anti-horse immunoglobulin (Ig)G (Jackson ImmunoResearch Laboratories Inc., West 

Grove, Pennsylvania) diluted 1:10,000 in antibody diluent, was added to wells in 75µL 

aliquots and incubated at 37°C for 1 hour. The plates were washed 5 times with PBST, 

then 75µL of RT chromagenic substrate TMB (3,3’,5,5’-tetramethylbenzidine; Pierce, 

Thermo Fisher Scientific, Inc., Waltham, Massachusetts) was added to each well. Plates 

sat at RT for 20-30 minutes for color to develop. Reactions were stopped with 75µL of 

2M sulfuric acid. Optical density (OD) was measured at 450nm (OD450) in an Emax 

microplate reader (Molecular Devices, Sunnyvale, California).  
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To account for inter-plate variability, percent positivity values were calculated for each 

sample relative to the reference standards [(OD(sample) – OD(negative control)) / 

(OD(positive control) – OD(negative control))] X 100 (Wright et al., 1993). The positive 

controls were serum samples from symptomatic horses with histologically-confirmed 

EPM. The negative control was a serum sample from a pre-infection weanling used in a 

previous S. neurona challenge study (Fenger et al., 1997). At a dilution of 1:250 (serum) 

or 1:2.5 (CSF), a sample is positive if the percent positivity is above the cutoff value of 

15% for SnSAG1, SnSAG2 and SnSAG5, and 10% for SnSAG4/3 (Hoane et al., 2005; 

Yeargan and Howe, 2011). End-point titers, the last dilution with a percent positivity 

above a set cutoff value, were established with serial 2-fold dilutions of serum and CSF 

samples beginning with 1:250 (serum) or 1:2.5 (CSF). A positive serum sample has at 

least an end-point titer of 1:250. Samples below the cutoff value at a 1:250 dilution are 

negative and given the antibody titer of <1:250. 

ELISAs for IgG isotypes were essentially conducted as stated above, except utilizing 

different secondary antibodies. Monoclonal antibodies (mAb) specific for IgGa (CVS 48; 

1:100), IgGb (CVS39; 1:10), and IgG(T) (CVS40; 1:10) (Lunn et al., 1991) were diluted 

to optimal concentrations with antibody diluent solution. Wells were incubated 1 hour at 

37°C with 75µL mAb diluent solution. Plates were rinsed 5 times with PBST, and 

incubated 1 hour at 37°C with 75µL of HRP-goat anti-mouse IgG antibody (Jackson 

ImmunoResearch Laboratories Inc.) diluted 1:10,000 in antibody diluent solution. 
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3.2.9. Relative Quantification (RQ) of Cytokine mRNA Expression by Real-time PCR 

Upon arrival at the University of Kentucky on Days 0, 42, and 89, paired heparinized 

blood tubes were measured to ensure each tube contained 2.5mL of blood. A 108 pellet of 

frozen SN3 S. neurona merozoites was resuspended in 1mL of RPMI 1640 medium 

(HyClone, Thermo Fisher Scientific, Inc.), and 100µL of the suspension was added to 

one blood tube from each of the six horses. Blood tubes were incubated at 37°C for 24 

hours. Each blood tube was pipetted into a PAXGENE blood RNA tube (PreAnalytiX, 

Valencia, California), incubated at RT for 24 hours, and then stored at -20°C. 

Total RNA was extracted using the PAXGENE blood RNA extraction kit (Qiagen, 

Valencia, California) following manufacturer’s protocol. PAXGENE tubes (PreAnalytiX) 

were thawed, mixed thoroughly, and centrifuged 10 minutes at 2,800g. The supernatant 

was poured off, and pellets were resuspended in 4mL of RNAse-free water (Qiagen). 

Tubes were centrifuged for 10 minutes at 2,800g. The supernatant was discarded. Pellets 

were resuspended in 350µL Buffer BR1 (Qiagen) and transferred to 1.5mL Eppendorf 

tubes. To each tube, 300µL Buffer BR2 (Qiagen) and 80µL Proteinase K (Qiagen) was 

added, with samples incubated 5 minutes at RT, then 10 minutes at 55°C. Tubes were 

thoroughly mixed and centrifuged 10 minutes at 20,000g. Pellets were removed and 

discarded. The supernatants were mixed with 350µL of 100% ethanol. Spin columns, 

placed in 2mL collection tubes, were centrifuged 1 minute at 8,000g with 700µL of 

sample. After each centrifugation, the spin columns were transferred to new 2mL 

collection tubes, and filled with the remaining sample volume, and centrifuged 1 minute 

at 8,000g. This process was repeated three times for 1 minute at 8,000g using 700µL 
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Buffer BR3 (Qiagen), for 1 minute at 8,000g using 500µL Buffer BR4 (Qiagen), and for 

3 minutes at 20,000g using 500µL Buffer BR4 (Qiagen). Spin columns were then 

centrifuged again for 1 minute at 20,000g with no buffer added. Spin columns were 

placed in 1.5mL Eppendorf tubes with 40 µL Buffer BR5 (Qiagen) added to the columns, 

and centrifuged for 1 minute at 8,000g. The process was repeated a second time. Spin 

columns were discarded after second centrifugation with Buffer BR5 (Qiagen). The tubes 

were incubated 5 minutes at 65°C, then immediately placed on ice. The RNA 

concentration was quantified at OD260 using an Eppendorf Biophotometer (Hauppauge, 

New York).  

In PCR tubes, 0.5µg of each RNA sample was brought up to a volume of 41.5µL with 

RNAse-free water (Qiagen), and mixed with 38.5µL of reverse transcription master mix. 

Reverse transcription master mix contained 0.5µL avian myelobastosis virus (AMV) 

reverse transcriptase (20U/µL; Promega, Madison, Wisconsin), 1µL oligo dT primer 

(0.5µg/µL; Promega), 1µL RNAsin (40U/µL; Promega), 4µL dNTP (10mM; Promega), 

16µL MgCl2 (25mM; Promega), and 16µL AMV buffer 5x (Promega). Reactions were 

incubated at 42°C for 15 minutes, then 95°C for 5 minutes in a thermocycler. The cDNA 

samples were stored at -20°C until further analysis. 

Gene expression utilized equine specific intron-spanning beta-glucuronidase (β-GUS), 

Granzyme B (GrzB), IFN-γ, IL-2, IL-4, and T-bet primer/probe sets (Applied 

Biosystems, Foster City, California) (Table 3.3). The cDNA was diluted 1:1 with RNAse-

free water (Qiagen), and reactions were setup using an automated PCR setup machine 

(Corbett). Each reaction consisted of 4.5µL diluted cDNA, 5µL TaqMan® Gene 
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Expression Master Mix (Applied Biosystems), and 0.5µL primer/probe set (Applied 

Biosystems). Samples were run in duplicate using the 7900HT Fast Real-Time PCR 

System (Applied Biosystems). Reactions were incubated for 10 minutes at 95°C, and 

then underwent 40 cycles of 95°C for 15 seconds, followed by 1 minute at 65°C. The 

PCR efficiencies were determined using LinRegPCR (Ramakers et al., 2003). Gene 

expression levels were calculated using the ΔΔCT method (Livak and Schmittgen, 2001), 

where ΔΔCT = [(Mean gene of interest CT – Mean β-GUS CT)Horse – (Mean gene of 

interest CT – Mean β-GUS CT)Calibrator]. The calibrator for each horse was the non-

stimulated media control of the pre-challenge sample. The reference gene β-GUS was 

used as an endogenous control (Breathnach et al., 2006). Results were calculated as 2-

ΔΔCT and denoted as relative quantification (RQ), measuring fold changes of expression 

levels.  

 

Table 3.3. Primer probe sets used for Real-time PCR.  

Gene Reference 
β-GUS Liu et al., 2011 
GrzB Liu et al., 2011 
IFN-γ Adams et al., 2011 
IL-2 Adams et al., 2011 
IL-4 Adams et al., 2011 
T-bet Ainsworth et al., 2003 

 

3.2.10. Statistics 

Statistical analyses were run on SIGMASTAT™ (Systat Inc. Richmond, California). 

Two-way repeated measured analysis of variance (ANOVA) was used to detect 

significant differences between the gene expression and the ELISA end-point titers, and 
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IgG isotype percent positivity values for the three sample days of the challenged horses. 

Data was log10 transformed, if not distributed normally, prior to analysis. Differences 

were considered to be significant at P < 0.05. For the CMI assay, comparisons were made 

from the mean difference between S. neurona stimulated and non-stimulated blood at 

different time points for the challenged horses. As there was only a single control horse, 

statistical comparisons could not be made between the challenged and control groups.  

 

3.2.11. Sarcocystis neurona Merozoite Invasion Assay  

A confluent T25 flask of bovine turbinate (BT) cells was washed twice with 37°C PBS. 

Cells were incubated with 0.5mL warm trypsin-versene solution. Once cells sloughed off, 

they were resuspended in 15mL 4% FBS RPMI 1640, and aliquotted 0.5mL into each 

well of a 24-well plate. Plate was incubated at 37°C for 5 days. 

As previously described (Howe et al., 2005), S. neurona strain F9F merozoites that 

express yellow fluorescent protein (YFP) were propagated by serial passages in BT cells. 

Merozoites were harvested from infected BT monolayer cultures that had fully lysed. 

Merozoites were pelleted by centrifugation at 3,000g for 10 minutes, then resuspended in 

4mL 4% FBS RPMI 1640. Parasites were passed through 22 and 25 gauge needles, and 

then through a 3.0µm pore sized membrane filter. The merozoite suspension was placed 

in a styrofoam container filled with 37°C water bottles to replicate conditions during the 

car transport. The styrofoam container was kept at room temperature. The BT cell 

monolayer in the 24-well plate received fresh media, 0.5mL 4% FBS RPMI 1640. At 

different time points (0, 1, 2, 3, 4, 6 hours), 20µL of the S. neurona merozoite suspension 
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(2,000 parasites) was added to three wells. The plate was kept at 37°C for 4 days. The 

YFP-expressing parasites were counted using a Nikon Diaphot inverted microscope 

equipped for fluorescence microscopy. 

 

3.3. Results 

3.3.1. Clinical Findings 

Neurological examinations prior to inoculation (Day -2) were within normal limits for all 

horses (Figure 3.2). Horses 466, 467, 468 and the control began showing detectable 

neurological abnormalities (score >1) on day 7 post inoculation (PI), and horses 463 and 

464 began showing abnormalities on day 12. The highest score received by horses 464 

and the control was 2. Scores of 3 were received by horse 468 on day 42, by horses 463 

and 467 on day 63, and by horse 466 on day 89. There were no scores of 4 or 5 given to 

any horse during the study. Physical examinations and daily clinical observations did not 

detect any non-neurologic abnormalities.  
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Figure 3.2. Neurology examination scores. For each neurologic examination, horses 

received 64 scores of 0-5. All horses were neurologically normal at the beginning of the 

study. Progressively, horses developed increasing neurological deficits. Scores represent 

the average scores of the challenged group, with the raw scores of the control horse. I: 

Inoculated horses; C: Control horse.  

 

3.3.2. Postmortem Examination 

Minimal histopathologic abnormalities were observed. Focal gliosis was apparent in the 

lumbar tissue of the control horse (Figure 3.3), horse 467 (Figure 3.4) and horse 468 

(Figure 3.5). Additionally, horse 468 had leukocytosis (increased numbers of 

intravascular neutrophils and eosinophils) of a meningal vessel and a blood vessel within 
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the white matter. Protozoa were not identified in any tissue sections. None of the 

histopathological findings were consistent with protozoal infection.  

Immunohistochemistry was performed on tissue sections with any abnormalities 

observed with H&E staining for potential identification of S. neurona organisms. Three 

tissue sections were stained, including lumbar tissue of horses 467, 468, and the control. 

No S. neurona organisms were observed in the tissues.  
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Figure 3.3. Histological evaluation of the control horse. Hematoxylin and eosin stain. 

(A) Focal gliosis located within the lumbar region of spinal cord. Bar = 100µm.            

(B) Higher magnification of focal gliosis in Figure 3.3A. Bar = 20µm. 

 
Figure 3.4. Histological evaluation of Horse 467. Hematoxylin and eosin stain.         

(A) Focal gliosis located within the lumbar region of the spinal cord. Bar = 100µm.        

(B) Higher magnification of focal gliosis in Figure 3.4A. Bar = 20µm.   

A 
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Figure 3.5. Histological evaluation of Horse 468. Hematoxylin and eosin stain.         

(A) Focal gliosis located within the lumbar region of the spinal cord. Bar = 100µm.      

(B) Higher magnification of focal gliosis in Figure 3.5A. Bar = 20µm. (C) Leukocytosis 

of meningal vessel. Bar = 100µm. (D) Higher magnification of Figure 3.5C. Leucocytosis 

of the meningal vessel with neutrophils and eosinophils (arrows) present. Bar = 20µm.           

(E) Leukocytosis of blood vessel within the white matter of the lumbar spinal cord with 

neutrophils and eosinophils (arrow) present. Bar = 20µm.  
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3.3.3. Antibody Response 

3.3.3.1. Total IgG in Serum 

Serum (pre-challenge, days 42 and 89) from all six horses was analyzed by ELISA to 

assess the total IgG antibody response against the parasite surface antigens SnSAG1, 

SnSAG2, SnSAG3, SnSAG4, and SnSAG5. End-point antibody titers were determined 

on all serum samples as the lowest dilution at which the percent positivity was greater 

than the cutoff value for each SnSAG. The control horse had sera end-point titers of 

<1:250 on all sample days for SnSAG1, SnSAG2, SnSAG4/3 and SnSAG5 (Figure 3.6). 

For SnSAG1, all challenged horses had serum end-point titers of <1:250 pre-challenge 

(Figure 3.6A). On day 42, all samples were positive with end-point titers of 1:1000 for 

horse 466, 1:500 for horses 463 and 464, and 1:250 for horses 467 and 468. On day 89, 

horses 463, 464, 466 remained positive with end-point titers of 1:250, while horses 467 

and 468 were negative with a titer of <1:250. The SnSAG1 serum end-point titers of the 

challenged horses were statistically significant between the different time points (P = 

0.004). Day 42 serum titers were statistically significant from the pre-challenge and day 

89 serum titers (P < 0.05).   

Serum end-point antibody titers for SnSAG2 were <1:250 for all challenged horses in the 

pre-challenge and day 89 samples (Figure 3.6B). On day 42, horses 464 and 468 had 

titers of 1:500, and horses 463 and 466 a titer of 1:250. Horse 467 was negative with a 

titer of <1:250. The SnSAG2 serum end-point titers of the challenged horses were 

statistically significant between the different time points (P = 0.006). Day 42 serum titers 

were statistically significant from the pre-challenge and day 89 serum titers (P < 0.05).   
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All challenge horses on all sample days had serum end-point antibody titers of <1:250 for 

SnSAG4/3 (Figure 3.6C).  

Challenged horses all had serum end-point titers of <1:250 in the pre-challenge serum for 

SnSAG5 (Figure 3.6D). End-point titers on day 42 were 1:1000 for horses 463 and 464, 

1:500 for horse 466, 1:250 for horse 467, and <1:250 for horse 468. Day 89 antibody 

titers were 1:250 for horses 463 and 464, and <1:250 for horses 466, 467, and 468. The 

SnSAG5 serum end-point titers of the challenged horses were statistically significant 

between the different time points (P = 0.013). Day 42 serum titers were statistically 

significant from the pre-challenge and day 89 serum titers (P < 0.05).  
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Figure 3.6. Anti-Sarcocystis neurona total IgG antibody titers of sera by ELISA 

analysis. Serum samples were collected pre-challenge and on days 42 and 89 post 

inoculation. Serum was tested in duplicate serial dilutions beginning at 1:250. Reciprocal 

antibody titers were determined as the lowest dilution at which the percent positivity was 

greater than the cutoff value of (A) SnSAG1, (B) SnSAG2, (C) SnSAG4/3, (D) SnSAG5. 

A positive serum sample has an end-point titer of 1:250. Samples below the cutoff value 

at a 1:250 dilution were given the antibody titer of <1:250. *Statistical difference of the 

serum end-point titers of challenged horses between samples days (P < 0.05).  
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3.3.3.2. Total IgG in CSF 

CSF collected from horses on day 89 was analyzed by ELISA to assess total IgG 

antibody against the surface antigens. The control horse was negative for all SnSAGs 

(Figure 3.7). Horse 464 was the only challenged horse with antibodies against SnSAG1 

in CSF (Figure 3.7A). The CSF from all other challenged horses was negative for all 

SnSAGs (Figure 3.7A-D).   
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Figure 3.7. Percent positivity of anti-Sarcocystis neurona total IgG antibodies of CSF 

by ELISA analysis. CSF samples were collected on day 89. CSF was tested in duplicate 

at a dilution of 1:2.5 for ELISA analysis of total IgG antibodies against four SnSAGs. A 

positive sample has a percent positivity above the cutoff value of each SnSAG.         

(A) SnSAG1 cutoff value is 15%. (B) SnSAG2 cutoff value is 15%. (C) SnSAG4/3 cutoff 

value is 10%. (D) SnSAG5 cutoff value is 15%. Horse 464 had a 15.4% positivity agaist 

SnSAG1. All other samples were negative against all SnSAGs.   
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3.3.3.3. IgG Isotype Response in Serum 

Serum (pre-challenge, day 42 and 89) from all six horses was analyzed with ELISA, 

testing three different IgG isotypes (IgGa, IgGb, and IgG(T)) responses against SnSAG1 

and SnSAG5.  

All pre-challenge samples were negative for IgGa against SnSAG1 (Figure 3.8A). The 

control horse remained negative for all sample days. The entire challenged group was 

positive on day 42. By day 89, only horses 464, 466, and 468 were positive. The mean 

percent positivity of the SnSAG1 IgGa response of the challenged horses was statistically 

significant (P = 0.009) between time points. There was a significant difference between 

day 42 and both pre-challenge and day 89 means (P < 0.05). 

Pre-challenge sera of all horses was negative for IgGb antibodies against SnSAG1 

(Figure 3.8B). The control horse remained negative for all sample days. All challenged 

horses were positive on day 42 and negative on day 89. The mean percent positivity of 

the SnSAG1 IgGb response of the challenged group was statistically significant (P = 

0.001) between time points. The day 42 mean was statistically significant from the pre-

challenge and day 89 mean (P < 0.05).  

Only horse 468 was positive pre-challenge for IgG(T) antibodies against SnSAG1 

(Figure 3.8C). The control horse was negative for SnSAG1 IgG(T) antibodies on all 

sample days. All challenged horses were positive on day 42. Horse 463 was the only 

negative challenged horse on day 89. Between sample days there was a statistically 

significant difference of the mean percent positivity for the challenged group (P = 0.008). 
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The mean percent positivity of day 42 was statistically significant from both pre-

challenge and day 89 means (P < 0.05).  
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Figure 3.8. Percent positivity of anti-Sarcocystis neurona SAG1 IgG isotype 

antibodies of sera by ELISA analysis. Serum samples were collected pre-challenge and 

on days 42 and 89 post inoculation. Serum was tested in duplicate at dilution of 1:250 for 

ELISA analysis of (A) IgGa, (B) IgGb, (C) IgG(T) antibody levels against SnSAG1. A 

positive sample has a percent positivity above the cutoff value of 15%. The control horse 

was negative on all sample dates. *Statistical difference of the mean percent positivity of 

challenged horses between samples days (P < 0.05).  
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The control horse was positive for IgGa antibodies against SnSAG5 at pre-challenge and 

negative on day 42 and 89 (Figure 3.9A). Horses 463 and 466 were positive for IgGa 

antibodies pre-challenge. All challenged horses were positive on day 42. Only horses 467 

and 468 were negative on day 89. The mean percent positivity was statistically significant 

between sample days for the challenged horses (P < 0.001). The mean percent positivity 

on day 42 was statistically significant from the pre-challenge and day 89 means (P < 

0.05). 

Horse 463 and the control were positive for SnSAG5 IgGb antibodies at pre-challenge 

(Figure 3.9B). The control horse was negative on day 42 and 89. All challenged horses 

were positive on day 42. Only horses 463, 464, and 466 were positive on day 89. The 

mean percent positivity between time points was statistically significant for the 

challenged group (P < 0.001). Day 42 mean percent positivity was statistically significant 

from pre-challenge and day 89 means (P < 0.05). 

The control and horses 463 and 466 were positive for IgG(T) antibodies against SnSAG5 

in the pre-challenge sample (Figure 3.9C). The control horse was negative on day 42 and 

89. All challenged horses were positive on day 42. Of the challenged horses, only 466 

and 467 were negative on day 89. The mean percent positivity was statistically significant 

between sample days (P < 0.001) for the challenged horses. Day 42 mean percent 

positivity was statistically significant from pre-challenge and day 89 means (P < 0.05).  
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Figure 3.9. Percent positivity of anti-Sarcocystis neurona SAG5 IgG isotype 

antibodies of sera by ELISA analysis. Serum samples were collected pre-challenge and  

on days 42 and 89 post inoculation. Serum was tested in duplicate at dilution of 1:250 for 

ELISA analysis of (A) IgGa, (B) IgGb, (C) IgG(T) antibody levels against SnSAG5. A 

positive sample has a percent positivity above the cutoff value of 15%. The control horse 

had a pre-challenge reactivity over 20% for each IgG isotype. *Statistical difference of 

the mean percent positivity of challenged horses between samples days (P < 0.05).  
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3.3.4. Cell-mediated Immune Response  

To investigate the effect of S. neurona on the CMI, heparinized blood samples (pre-

challenge, day 42 and 89) were stimulated with SN3 strain S. neurona merozoites. Using 

real-time PCR, fold changes in mRNA expression levels are reported as RQ values.  

The general expression pattern was similar for all genes in both the control and 

challenged horses. The fold change of expression increased on day 42. The levels 

declined back towards the pre-challenge baseline on day 89. The IFN-γ expression levels 

between sample days were significant (P = 0.008) (Figure 3.10A). The expression level 

on day 42 was significantly higher than the pre-challenge and day 89 levels (P < 0.05). 

The IL-2 expression levels were significantly different between sample days (P = 0.042) 

(Figure 3.10B). There was not enough power in the sample set to detect differences 

between specific time points. There were no statistically significant differences between 

the stimulated and non-stimulated samples among the time points for Granzyme B 

(Figure 3.11A), T-bet (Figure 3.11B), and IL-4 (Figure 3.12). 
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Figure 3.10. Relative quantification (RQ) of proinflammatory cytokine mRNA 

expression by Real-time PCR after Sarcocystis neurona stimulation. Heparinized 

blood was stimulated with SN3 strain S. neurona merozoites pre-challenge and on days 

42 and 89 post inoculation. Mean (±SE) fold changes in expression of cytokines         

(A) IFN-γ and (B) IL-2 for stimulated (Sn - striped bars) and non-stimulated (Media - 

white bars) blood of the challenge group and control horse. Raw RQ values are presented 

in graphs. Data was log10 transformed for statistical analysis. *Difference between 

stimulated and non-stimulated samples was statistically significant among the time points 

(P < 0.05).  
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Figure 3.11. Relative quantification (RQ) of mRNA expression by Real-time PCR 

after Sarcocystis neurona stimulation. Heparinized blood was stimulated with SN3 

strain S. neurona merozoites pre-challenge and on days 42 and 89 post inoculation. Mean 

(±SE) fold changes in expression of (A) Granzyme B and (B) T-bet for stimulated (Sn - 

striped bars) and non-stimulated (Media - white bars) blood of the challenge group and 

control horse. Raw RQ values are presented in graphs.   
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Figure 3.12. Relative quantification (RQ) of anti-inflammatory cytokine mRNA 

expression by Real-time PCR after Sarcocystis neurona stimulation. Heparinized 

blood was stimulated with SN3 strain S. neurona merozoites pre-challenge and on days 

42 and 89 post inoculation. Mean (±SE) fold changes in expression of cytokine IL-4 for 

stimulated (Sn - striped bars) and non-stimulated (Media - white bars) blood of the 

challenge group and control horse. Raw RQ values are presented in graphs.   

Control Horse IL-4 Challenge Group IL-4 



76 
 

3.3.5. Merozoite Invasion Assay 

The merozoite invasion assay was conducted to assess the viability of S. neurona 

merozoites after transportation at 37°C in a styrofoam container for two hours before 

being inoculated into the blood tubes. Time point 0 was used as the control and set at 

100% invasion. After sitting at 37°C in the styrofoam container, the invasion dropped 

approximately 20% every two hours. Even after six hours, an appreciable proportion of 

the merozoites were still viable and able to infect the host cell monolayer. 

 

 

Figure 3.13. Percent invasion of Sarcocystis neurona F9F merozoites. After sitting in 

a 37°C styrofoam container, at different time points 2,000 S. neurona F9F merozoites 

were added to 3 wells of a 24-well plate containing a monolayer of BT cells. The plate 

was incubated at 37°C, and parasites were counted on day 4. Time point 0 was set at 

100%. Values represent the average (±SE) of three wells for each time point.  
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3.4. Discussion 

The infection method used in this study was modified from a previous EPM challenge 

model (Ellison and Witonsky, 2009; Ellison et al., 2004), which eliminates the natural 

migration of S. neurona through the gastrointestinal system by placing S. neurona-

infected leukocytes directly into the bloodstream of the horse. Challenged horses 

developed mild to moderate neurological signs, and were seropositive for S. neurona on 

day 42. By day 89, the horses’ serum antibody titers dropped, and the CSF lacked S. 

neurona antibodies. There was no histopathological evidence of a S. neurona infection. 

These results suggest that the challenged horses had an active infection on day 42, but 

had likely cleared the infection by the conclusion of the study. 

Since the challenged horses did not appear to be infected by day 89, it is unclear why the 

horses continued to show increasing neurologic signs. Neurologic exams were taped and 

viewed by additional veterinarians, who agreed that the horses became more neurologic 

as the study progressed. Histological examination ruled out the possibility that the 

neurologic signs were caused by other factors (i.e., virus or bacterial infections, 

neurological disorders). Focal gliosis was observed in one section of the control horse’s 

lumbar tissue, but this is non-specific for EPM. The minimal non-specific changes seen 

in the CNS of these horses have been observed in horses of other infection challenge 

models displaying mild to moderate neurological signs (Cutler et al., 2001; Saville et al., 

2004b; Saville et al., 2001; Sofaly et al., 2002). One challenged horse displayed 

leukocytosis within the blood vessels of the lumbar spinal cord. Complete blood counts 

were not run on any of the horses. Therefore, it is unclear whether the horse had an 
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underlying systemic infection or if the leukocytosis was localized to that specific part of 

the spinal cord. 

As with all other previous challenge models (Cutler et al., 2001; Ellison and Witonsky, 

2009; Ellison et al., 2004; Fenger et al., 1997; Lindsay et al., 2000; Saville et al., 2004b; 

Saville et al., 2001; Sellon et al., 2004b; Sofaly et al., 2002), S. neurona was not 

identified histologically in the CNS tissue of the challenged horses. While a majority of 

the horses’ spinal cords were removed for analysis, not all regions were observed. Given 

the focal nature of S. neurona infection, and the need for only a few organisms to cause 

disease (Dubey et al., 2001b), it is possible that S. neurona was present in tissue that was 

not examined under light microscopy. However, this seems unlikely as 4 of 5 challenged 

horses were negative for S. neurona antibodies in their CSF. 

The SN3 strain of S. neurona expresses SnSAG1 and not SnSAG5, while strain SN4 

expresses SnSAG5 but not SnSAG1. All challenged horses displayed reactivity to 

SnSAG1, and all but one reacted to SnSAG5. Therefore, both S. neurona strains infected 

the horses. Diagnostically, SnSAG2, SnSAG3, and SnSAG4 are usually more dependable 

markers for infection than SnSAG1 and SnSAG5 (Crowdus et al., 2008; Hoane et al., 

2005). Isotypes IgGa and IgGb are associated with the induction of a Th1 response, while 

IgG(T) is involved with a Th2 response (Cunha et al., 2006; Hooper-McGrevy et al., 

2003). All three isotypes being produced in the challenged horses coincided with the 

evident humoral and CMI responses elicited by the horses. 

The CMI response is important in protecting the host against intracellular pathogens 

(Gazzinelli et al., 1994; Khan et al., 1997; Suzuki, 2002). Typically, a single cell type 
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(Th1 or Th2) will dominate the CMI response. Th1 immune responses are involved with 

intracellular pathogens (i.e., viruses, bacteria). The Th1 cells produce the cytokines IFN-

γ, and IL-2. Th2 immune responses are linked to extracellular pathogens (i.e., 

multicellular parasites). The cytokine IL-4 is predominately produced by Th2 cells (Kidd, 

2003). 

IFN-γ has been shown to play an important role in the control of intracellular parasites, 

including T. gondii, N. caninum, Leishmania spp., and Trypanosoma cruzi (Khan et al., 

1997; Lykens et al., 2010; Suzuki et al., 1988; Zambrano-Villa et al., 2002).When 

infected with S. neurona, IFN-γ KO mice developed terminal encephalitis, while 

infection of immunocompetent mice did not result in infection (Dubey and Lindsay, 

1998; Witonsky et al., 2003a). In this study, challenged horses had an increase in IFN-γ 

expression on day 42, with a statistical difference of IL-2 expression between the sample 

days. Due to the production of these cytokines, and without an increase in IL-4 levels, it 

appears that the horses were producing a Th1 response. The initiation of a Th1 type 

response in the challenge horses may explain why they were able to clear the infection. 

Studies of naturally infected EPM horses have shown an increase of IL-4 expression with 

IFN-γ suppression, thus indicating a Th2 immune response (Spencer et al., 2005). As the 

Th2 type response is not favorable for the clearance of intracellular parasites (Zambrano-

Villa et al., 2002), this could indicate the reason for infection. Further investigation is 

needed to understand the factors behind a Th1 or Th2 immune response to S. neurona. 

The outcome of this study was different than that of the model from which it was 

modified (Ellison and Witonsky, 2009; Ellison et al., 2004). Possible explanations may 

lie in minor procedural differences. In this study, the merozoites were transported for 2 
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hours prior to inoculating the blood samples. However, the invasion assay indicated that 

at 2 hours there was only a 20% decrease in the capability of the merozoites to infect 

cells of the monolayer. Therefore, it is reasonable to believe that 800,000 S. neurona 

merozoites were still viable to invade cells when inoculated into the blood tubes. In this 

study, blood tubes were incubated for 4 hours as opposed to overnight by Ellison and 

Witonsky (2009). Additionally, parasites were only given 4 times at a high dosage in this 

study, as opposed to Ellison and Witonsky (2009) administering low amounts over more 

consecutive days (100-10,000 merozoites for 14-15 days). 

The infection model used in this study did not cause horses to develop clinical EPM. 

There has yet to be an EPM model able to recreate the degree of disease seen in naturally 

infected horses. Further research is needed to better understand the pathogenesis of the 

disease and the interaction of S. neurona and the horse immune system.  
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CHAPTER FOUR 

Conclusion 

 

The studies described in this thesis investigated factors contributing to the development 

of EPM in the horse. In the first study, an attempt to look at potential susceptibility of 

horses to EPM was performed using a GWAS on FFPE tissue. The DNA extracted from 

the FFPE tissues was not adequate for SNP analysis, however, only yielding usable 

results in 5 of 24 horses. Tissue age appeared to be a factor in the viability of the DNA. 

Tissue that was older than 14 months showed a dramatic drop in call rate. It seems likely 

that use of FFPE tissues for GWAS will not be a practical method for an EPM study, as 

the UK VDL does not process enough cases annually to develop a reasonable sample 

size. Collaboration with other veterinary diagnostic laboratories would be needed to 

create an appropriate sample size of FFPE samples. Additionally, samples could be 

processed soon after case is received, and DNA stored until a sufficient sample size is 

collected. 

Illumina has developed a restoration solution to be used on DNA damaged in FFPE tissue 

(Pokholok et al., 2010). Through the use of polymerases, degraded DNA is repaired, 

leaving strands of DNA that do not contain the damaged bases. Strands can then be 

ligated together and run on an Infinium® HD Assay (Illumina). To date this technology 

has only been optimized for use on human SNP chips. In the future, it might be possible 

to use the restoration solution on damaged DNA extracted from equine FFPE samples 

before running them on an equine SNP chip. This may result in increased call rates, 

making the archived FFPE samples usable in a GWAS on EPM susceptibility. 
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The second study tested the use of a horse EPM model that involves injecting whole 

blood infected with S. neurona merozoites directly into the bloodstream of horses. 

Neurological examinations along with humoral and CMI responses were evaluated. At 

the conclusion of the study, horses displayed mild to moderate neurological signs and 

appeared to have cleared the S. neurona infection. Challenged horses had an increased 

expression of IFN-γ and IL-2, indicating a Th1 immune response. The severe clinical 

signs seen with natural infections were not observed in these challenged horses. 

Therefore, the infection model used in this experiment was not effective in replicating 

clinical EPM. 

Multiple attempts have been made to develop a working equine EPM model, but each has 

been unable to replicate the disease seen in naturally infected horses. There appears to be 

an underlying component needed to cause the disease that has not been identified with 

these challenge models. Questions regarding the interaction between S. neurona and the 

horse immune response should be addressed prior to attempting another EPM model. 

Additional studies are needed to confirm the relationship between IFN-γ and IL-4 

expression in horses infected with S. neurona. Other factors that may be involved include 

the horses’ genetics, stress level, and concurrent infections. As well, the S. neurona strain 

virulence and mechanisms of immunosuppression may play a role. Greater understanding 

of the pathogenesis of EPM could lead to improved diagnostics, treatment, identification 

of potential susceptible horses, and, ultimately, prevention of this devastating disease.  
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APPENDIX A 

List of Abbreviations 

 

AMV  Avian myelobastosis virus  

ANOVA Analysis of variance  

AVMA American Veterinary Medical Association  

β-GUS  Beta-glucuronidase  

BT  Bovine turbinate  

C  Cervical 

cDNA  Complementary DNA 

CMI  Cell-mediated immunity  

CNS  Central nervous system  

CSF  Cerebrospinal fluid  

CVM  Cervical vertebral malformation  

DAB  Diaminobenzidine tetrahydrochloride  

DMSO  Dimethyl sulfoxide  

DNA  Deoxyribonucleic acid 

Dpi  Days post inoculation  

EDTA  Ethylenediaminetetraacetic acid  

ELISA  Enzyme-linked immunosorbent assay  

EPM   Equine protozoal myeloencephalitis 

ETCR  East Tennessee Clinical Research, Inc.  

FBS  Fetal bovine serum 

FDA  Food and Drug Administration  
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FFPE  Formalin-fixed, paraffin-embedded  

GrzB  Granzyme B  

GWAS  Genome-wide association studies  

H&E  Hematoxylin and eosin  

HRP  Horseradish peroxidase  

IACUC Institutional Animal Care and Use Committee  

IFAT  Indirect fluorescent antibody test  

IFN-γ  Interferon-gamma  

Ig  Immunoglobulin  

IH  Intermediate host 

IHC  Immunohistochemical  

IL  Interleukin  

IRAK  Interleukin-1 receptor-associated kinase  

KO  Knockout  

L  Lumbar 

mAb  Monoclonal antibody  

MCP1  Monocyte chemoattractant protein-1  

MHC  Major histocompatibility complex  

mRNA  Messenger RNA 

MSMD Mendelian susceptibility to mycobacterial disease  

NK  Natural killer  

NSAID Nonsteroidal anti-inflammatory drug  

OD  Optical density 

PBS  Phosphate buffered saline  

PBST  PBS with 0.05% Tween 20  



85 
 

PCR  Polymerase chain reaction  

PI  Post inoculation  

PID  Primary immunodeficiencies  

PMA/I  Phorbol myristate acetate/ionomycin  

RNA  Ribonucleic acid 

RQ  Relative quantification  

RT  Room temperature  

S  Sacral 

SCID  Severe combined immunodeficiency  

SE  Standard error 

SNP  Single nucleotide polymorphism  

SnSAG Sarcocystis neurona surface antigen  

T  Thoracic 

UK VDL University of Kentucky Veterinary Diagnostic Laboratory  

US  United States  

USDA  United States Department of Agriculture  

YFP  Yellow fluorescent protein  
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APPENDIX B 

Neurologic Examination Results 

 

Table B.1. Horse 463 – frequency distribution of neurologic scores. 

STUDY 
DAY 

SCORE  
0 

SCORE 
1 

SCORE 
2 

SCORE 
3 ADDITIONAL OBSERVATIONS 

-2 60 4 0 0 N/A 
7 60 4 0 0 Cranial Nerves not examined 
12 46 9 9 0 No obvious cranial nerve deficits 

21 60 4 0 0 Gait worsened with head elevated (at a 
walk) 

28 57 7 0 0 Gait worsened with head elevated 
35 54 10 0 0 Gait worsened with head elevated 

42 28 28 8 0 

Hyporeflexive menace response; right 
ventrolateral strabismus; right ear droop; 
right head tilt. Gait worsened with head 

elevated and walking on a slope 
49 54 8 2 0 Gait worsened with head elevated 
63 24 29 10 1 Gait worsened with head elevated 

77 22 24 15 3 Gait worsened with head elevated and 
walking on a slope 

89 0 32 30 2 Gait worsened with head elevated and 
walking on a slope 
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Table B.2. Horse 464 – frequency distribution of neurologic scores. 

Study 
Day 

Score 
0 

Score 
1 

Score 
2 

Score 
3 Additional Observations 

-2 59 5 0 0 N/A 
7 62 2 0 0 Cranial Nerves not examined 

12 31 24 9 0 Gait worsened with head elevated and 
walking on a slope 

21 57 7 0 0 Gait worsened with head elevated 
28 52 12 0 0 Gait worsened with head elevated 
35 54 10 0 0 N/A 

42 4 42 18 0 
Gait worsened with head elevated and 
walking on a slope; no change when 

blindfolded 
49 44 11 9 0 Gait worsened with head elevated 
63 36 22 6 0 Gait worsened with head elevated 
77 28 28 8 0 Gait worsened with head elevated 

89 16 24 24 0 Gait worsened with head elevated and 
walking on a slope 

 

 

Table B.3. Horse 465 (Control) – frequency distribution of neurologic scores. 

STUDY 
DAY 

SCORE  
0 

SCORE 
1 

SCORE 
2 

SCORE 
3 ADDITIONAL OBSERVATIONS 

-2 64 0 0 0 N/A 

7 55 8 1 0 Cranial Nerves not examined; Gait 
worsened with head elevated 

12 33 17 14 0 (Horse resisted head elevation) 
21 54 8 2 0 Gait worsened with head elevated 
28 47 17 0 0 Gait worsened with head elevated 
35 45 14 5 0 Gait worsened with head elevated 
42 44 15 5 0 No change when blindfolded 
49 30 23 11 0 Gait worsened with head elevated 
63 38 18 8 0 Gait worsened with head elevated 
77 24 26 14 0 Gait worsened with head elevated 
89 40 16 8 0 Gait worsened with head elevated 
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Table B.4. Horse 466 – frequency distribution of neurologic scores. 

STUDY 
DAY 

SCORE  
0 

SCORE 
1 

SCORE 
2 

SCORE 
3 ADDITIONAL OBSERVATIONS 

-2 63 1 0 0 Moves very well 
7 53 10 1 0 Cranial Nerves not examined 
12 28 14 21 1 Gait worsened with head elevated 
21 50 14 0 0 Gait worsened with head elevated 

28 50 9 5 0 Gait worsened with head elevated and 
walking on a slope 

35 39 22 3  Gait worsened with head elevated 
42 44 17 3 0 No change when blindfolded 

49 28 22 14 0 Gait worsened with head elevated and 
walking on a slope 

63 35 17 12 0 Gait worsened with head elevated 
77 44 15 5 0 Gait worsened with head elevated 

89 30 6 24 4 Gait worsened with head elevated and 
walking on a slope 

 

 

Table B.5. Horse 467 – frequency distribution of neurologic scores. 

STUDY 
DAY 

SCORE  
0 

SCORE 
1 

SCORE 
2 

SCORE 
3 ADDITIONAL OBSERVATIONS 

-2 52 12 0 0 Mild ataxia in circles- trots ok but weak at 
stopping 

7 58 5 1 0 Cranial Nerves not examined 

12 36 28 0 0 Gait worsened with head elevated 
(pacing). Muzzle deviated while eating. 

21 51 13 0 0 Gait worsened with head elevated 

28 42 17 5 0 Gait worsened with head elevated and 
walking on a slope 

35 45 16 3 0 Gait worsened with head elevated 

42 18 36 10 0 
Gait worsened with head elevated and 
walking on a slope; no change when 

blindfolded 

49 30 23 11 0 Gait worsened with head elevated and 
walking on a slope 

63 22 26 14 2 Gait worsened with head elevated 
77 38 14 11 1 Gait worsened with head elevated 

89 0 4 50 10 Gait worsened with head elevated and 
walking on a slope 
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Table B.6. Horse 468 – frequency distribution of neurologic scores. 

STUDY 
DAY 

SCORE  
0 

SCORE 
1 

SCORE 
2 

SCORE 
3 ADDITIONAL OBSERVATIONS 

-2 59 5 0 0 Backs well, trots well; trots very nice 

7 7 6 1 0 Cranial Nerves not examined; Gait 
worsened with head elevated 

12 32 28 4 0 N/A 
21 56 8 0 0 Gait worsened with head elevated 

28 42 18 4  Gait worsened with head elevated and 
walking on a slope 

35 40 14 10 0 Gait worsened with head elevated and 
walking on a slope 

42 0 28 30 6 
Gait worsened with head elevated and 
walking on a slope; no change when 

blindfolded 

49 20 25 19 0 Gait worsened with head elevated and 
walking on a slope 

63 14 34 12 4 Gait worsened with head elevated 
77 32 22 10 0 Gait worsened with head elevated 

89 4 18 31 11 Gait worsened with head elevated and 
walking on a slope 
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