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ABSTRACT OF THESIS

Automatic Detection of Abnormal Behavior in Computing Systems

I present RAACD, a software suite that detects misbehaving computers in large
computing systems and presents information about those machines to the system
administrator. I build this system using preexisting anomaly detection techniques.
I evaluate my methods using simple synthesized data, real data containing coerced
abnormal behavior, and real data containing naturally occurring abnormal behav-
ior. I find that the system adequately detects abnormal behavior and significantly
reduces the amount of uninteresting computer health data presented to a system
administrator.
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Chapter 1 Introduction

This thesis presents a new abnormal-behavior detection scheme for networked
computers. I base the design for this scheme on the anomaly detection scheme
presented by Wei et al. [16]. I use the Symbolic Aggregate approXimation (SAX)
method for discretizing a time series [11]. The SAX method converts a series of
real-valued samples into a symbolic representation. I present three approaches
to searching for anomalies in the symbolic representation: window-pair analy-
sis, baseline analysis, and profile search. These approaches compute a series of
anomaly scores, with higher values corresponding to more anomalous behavior.
Window-pair analysis slides two concatenated windows across the series and com-
putes the distance between the contents of the windows at each offset in the series.
Baseline analysis slides a single window across the series and computes the dis-
tance between that window and a precomputed profile of the expected behavior
for the series. A profile search looks for a particular anomaly by computing the
distance between the contents of a sliding window and a precomputed profile for
an anomaly. I use these three methods to build a multidimensional analysis algo-
rithm for detecting abnormal behavior. I evaluate these methods using synthetic
and real time series. The real time series include both natural and coerced behav-
ior.

I implement this detection scheme in a software package called RAACD, pro-
nounced ”racked.” RAACD stands for Roberts’ Automatic Abnormal Conduct De-
tector. I chose this name for two reasons: the purpose of the software is to auto-
matically detect abnormal behavior (or conduct), and the pronunciation has the
convenient connotation of a machine room full of servers. I implement RAACD as
an analysis and presentation package for use with NodeScape, a software package
that monitors the health of a group of computers.

Throughout this thesis, I use the term anomalous or anomaly to refer to behav-
ior that is notable with regard to the series in which it appears, but that a system
administrator may not consider otherwise significant. I use the term abnormal to
refer to behavior that the system administrator may find significant. Usually ab-
normal behavior indicates a problem with the machine on which it is observed.
Anomalous behavior does not always indicate abnormal behavior, but abnormal
behavior usually is also anomalous. I present the system administrator with in-
formation about hosts that behave anomalously, a superset of the machines that
exhibit problematic or otherwise significant behavior.

Copyright c© J. Frank Roberts, 2013.
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Chapter 2 Relevance

Monitoring of machine health is important to the maintenance of any group of
computers. Health monitoring allows administrators to prevent unplanned down-
time by detecting and preemptively repairing potential problems. As our com-
puting infrastructure continues to grow, administrators encounter more difficulty
when trying to detect small problems. Our ability to collect and store data has
scaled well with the size of our infrastructure, but our ability to analyze and
present that data has not.

In spring 2011, Aggregate.org began research on how to better analyze and
present computer monitoring data. NodeScape was the first product of this re-
search [7]. The first version of NodeScape (NodeScape v1) presents health data
for the nodes in a cluster as a painted image of that cluster. Our initial work on
NodeScape v1 focused on finding ways to make interesting properties of moni-
toring data apparent to the viewer. NodeScape v1 solves this problem in the way
that it presents the data. A viewer can easily see at a glance which machines have
warm CPUs or which machines have a high load average. These machines stand
out because they are colored differently from the rest of the cluster.

Figure 2.1: A temperature display from NodeScape v1

While this presentation format works well for observing values of a particu-
lar property across the nodes in a cluster at a particular moment in time, it is not
useful for observing trends or detecting patterns of abnormal behavior. This pre-
sentation format also will not scale well. An administrator may reasonably scan
the image of a 100-node cluster, but visually scanning the image or images of a
several-thousand-node cluster would be cumbersome.
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We must reduce the amount of data that our tools present to the system admin-
istrator. We can take advantage of the relative scarcity of abnormal behavior; most
machines behave normally most of the time. The administrator does not consult
a health monitoring system to see which machines are behaving normally; rather,
the administrator uses the health monitoring system to look for unhealthy ma-
chines. We can build a better monitoring system by detecting abnormal behavior
and presenting only that behavior to the administrator.

One approach to detecting abnormal behavior is to analyze the data for anoma-
lies. Others have developed anomaly detection schemes for use in data mining
and process control [6, 9, 16]. I extend one of these schemes to detect abnormal
behavior in computing systems.

Copyright c© J. Frank Roberts, 2013.
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Chapter 3 Related Work

My work ties together research from two areas: computer monitoring systems and
anomaly detection. My work is informed by results from both areas.

3.1 Other Monitoring Systems

Munin

Munin is a computer monitoring system written in Perl that is compatible with
most Unix/Linux derivatives [3]. Munin uses a server-pull architecture; that is,
the Munin master process, which runs on a central server, queries munin-node
processes running on the monitored nodes. The set of properties that Munin mon-
itors by default varies with the installation environment, but it generally includes
memory and disk usage, system load, device latencies, processor, usage and pro-
cess count. Users may extend munin-node by writing plugins to monitor addi-
tional properties of a computer system such as web, FTP, and mail services, custom
database and filesystem tools, or virtualization environments. A munin-node
plugin script must return a single value that corresponds to the current state of
the property that it monitors. The Munin-master builds graphs from the data and
presents them through an HTML web interface. Munin builds graphs for periods
of one day, one week, one month, and one year.

Ganglia

Ganglia was designed specifically for use in high-performance computing envi-
ronments [2]. Its implementation emphasizes efficiency in its algorithms and data
structures, making Ganglia a popular choice for monitoring high-performance or
large scale environments. Ganglia monitors the same properties as Munin. Like
Munin, Ganglia uses a server-pull model for monitoring multiple machines. Gan-
glia provides a web interface for most configuration and usage, but also presents
data in a command-line environment. Ganglia supports a hierarchical monitoring
structure and scales to very large installations. Ganglia is in production use by
many computing centers and corporations.

Cacti

Cacti[1] is a front-end for rrdtool[5], a graphing and logging tool also utilized by
Munin and Ganglia. Cacti uses a polling system to collect data from remote hosts
over SNMP. Cacti provides a full featured interface for creating graphs from mon-
itoring data, and allows the user to define custom scripts for collecting data. The
user may also define custom templates for adding new graphs, hosts, and data
sources. Cacti provides a user account system for restricting access to certain data.
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Nagios

Nagios is the self-declared industry standard in IT infrastructure monitoring [4].
Nagios presents information about machine resources and services via a web in-
terface. Nagios features an extensive set of tools to detect outages in network ser-
vices. The system administrator may define checks both for hosts and individual
services on a host. Nagios uses a server-pull approach to collecting data. A Nagios
monitoring server runs the specified checks on the remote machines and collects
the results. Nagios determines from the result of the host checks whether a host is
UP, DOWN, or UNREACHABLE. A service check returns either OK, WARNING,
UNKNOWN, or CRITICAL. Services checks query include properties like temper-
ature, memory usage, and system load as well as the state of software running on a
host like an HTTP or FTP server. When an outage occurs for a host or service, Na-
gios notifies specific contacts or contact groups. Nagios allows the administrator
to define custom plugins to perform both host and service checks.

Pulsar

Pulsar is a client-push tool for monitoring large Unix sites [8]. Pulsar has three
components: a presenter, a scheduler, and pulse monitors. The scheduler runs on
each machine that is to be monitored. A configuration file determines which pulse
monitors the scheduler is to run on each host and how often. When a pulse mon-
itor runs, it first invokes a command to gather data from the machine. The pulse
monitor converts the result of the command (also called an alarm) to a discomfort
level and reports that discomfort level to the presenter. The presenter runs on the
administrator’s machine and displays an icon for each alarm that it receives. The
presenter colors the icons based on the reported discomfort levels. The presenter
does not display icons for alarms with a discomfort level of zero. As the discom-
fort level rises, the presenter colors the alarm icon green, then yellow, then red. The
administrator may get more information about an alarm by selecting the alarm.

NodeScape

The NodeScape computer monitoring system highlights important computer
health information, reducing the amount of information presented to the humans
responsible for monitoring large scale computer systems. Dr. Hank Dietz wrote
the first version of NodeScape, NodeScape v1, for use in a compute cluster[7].
NodeScape v1 consists of a monitor and a collector. The monitor runs on each
machine being monitored. It may run as a daemon, or it may be scheduled by an
external program. The monitor is configured by the arguments passed when it is
run.

The collector maintains an image of the cluster. The collector colors each node
in the image based on a single property (e.g. CPU temperature, load average).
The collector updates the image immediately upon receiving status information
from the monitor processes. High status values correspond to redder colors in the
image; low status values correspond to bluer colors. The collector determines the
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”height” of a status value based on the distance between that value and the current
and historical averages for that property.

We have written a second version of NodeScape. We designed Nodescape
v2 to handle monitoring duties in any computing environment, not just clusters.
Nodescape v2 separates the collection and storage of data from the analysis and
presentation of data. The Nodescape v2 back-end handles the collection and stor-
age of data, and is comprised of two components. The monitor runs periodically
on each machine being monitored. Each time it runs, the monitor reads a list of
commands to be executed. Each command measures some property and prints
the measurement to standard output. The monitor runs these commands, cap-
tures the output, and sends the output, with the corresponding property label, to
the collector.

The collector listens for updates from monitors. When the collector receives an
update, it unpacks and stores the update in a database. Programs that analyze and
present the collected data are called front-ends. NodeScape front-ends retrieve
data from the database. This design allows multiple front-ends to share the same
back-end.

3.2 Anomaly Detection and Time Series Analysis Methods

Motifs

Lin et al. [12] present a method for efficiently detecting frequently occurring pat-
terns in a time series. The preprocessing for their method applies the Piecewise
Aggregate Approximation (PAA) algorithm for reducing the dimensionality of a
series. The SAX discretization method (Section 4.1) also applies PAA before before
assigning symbols. The ability to detect frequently occurring patterns may also be
useful for anomaly detection. The set of most frequently occurring patterns in a
time series could be used as a profile for a time series. A time series containing a
very different set of common patterns may be anomalous.

Novelty detection using immunology

The human immune system employs T-cells to distinguish the body’s cells from
foreign cells. This approach may be generalized and used to detect anomalous
behavior in a time series [6]. This method begins by generating a multiset of strings
that represent normal behavior for the series of interest. The method employs
negative selection to detect anomalous behavior. New behavior in the series passes
through a set of detectors that do not match the series. Thus, if new behavior
matches any of the detectors, then that behavior cannot match the normal behavior
for the series.

Dasgupta et al. test their implementation of this method in two situations [6].
First, they employ their method to detect tool breakage in a simulated milling
operation. The time series begins with normal operation but contains irregular be-
havior toward the end, after the cutting tool has broken. During normal milling

6



operation, the detectors in their system experience no matches. However, the
anomalous behavior caused by the broken tool matches a number of detectors,
increasing the anomaly score. They also apply their method to detecting noise in
a signal processing application. Again, the portion of the time series where the
signal behaves normally matches no detectors, but small region of noise matches
several detectors.

Use of pattern frequency to determine novelty

Instead of analyzing the structure of parts of the time series, this approach ana-
lyzes how often different structures occur in the time series. Keogh et al. [9] im-
plement this approach by encoding the subwords of a discretized time series and
the number of occurrences of each in a suffix tree. Their method the compares new
time-series information, also encoded in a suffix tree, to the initial tree. A pattern is
considered anomalous if the number of occurrences in the new data is significantly
different from the number of occurrences in the old data.

Keogh et al. compare their approach with other anomaly-detection approaches,
including the immunology based approach introduced by Dasgupta. They apply
their method to a noisy sine wave containing a synthetic anomaly and power-
demand data from a Dutch research facility. Of all the methods they present, theirs
is the only method to detect the synthetic anomaly. They apply the method to
an entire year’s worth of power demand data. The three most anomalous weeks
flagged by their algorithm each contain a national holiday.

Assumption-free anomaly detection

Wei et al. [16] present a technique for making anomalous behavior easier for hu-
mans to recognize. Their method presents the user with a graphical representa-
tion of a series of anomaly scores. Higher scores correspond to more anomalous
behavior. Their examples demonstrate that the anomaly score contains an obvious
rise surrounding anomalous behavior. Wei calls the method assumption-free be-
cause it is domain-agnostic; this method properly detects anomalies in data from
a variety of domains. The authors demonstrate that this method correctly detects
anomalies in ECG data.
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3.3 Other uses of SAX

Identifying multi-headed attack tools by time signature

Often, network-attack tools combine multiple exploits into a single tool. These
tools are called multi-headed attack tools. Multi-headed attack tools are difficult
to distinguish from other attack tools. The conventional approach of fingerprint-
ing attack tools based on the type of attack fails because multi-headed attack tools
use different attacks against different hosts. Pouget et al. [13] propose that multi-
headed attack tools can be identified by the timing and frequency of their attacks.
Pouget’s method collects timing information for different attacks across multiple
hosts and detects attacks that demonstrate similar trends. Pouget uses a 7-symbol
SAX method to discretize the attack information before searching for attack pat-
terns with similar trends. Pouget transforms each time series into a single SAX
word and computes distance between SAX words directly instead of counting sub-
words.

Trend-based Symbolic Approximation (TSX)

Although SAX conversion preserves information about the mean value of each
segment, it does not preserve information about trends in the time series. Li et
al. [10] present TSX for preserving information about both the mean value of each
segment and the trends present in the time series. For some types of data, financial
data in particular, it is important to preserve trends when discretizing the data.

In addition to calculating the mean of each segment, TSX conversion collects
slope information about each segment. TSX applies similar steps to SAX to assign
symbols based on the slope information, though instead of using breakpoints from
a normal distribution, TSX sets breakpoints based on angles. TSX encodes the time
series as a sequence of tuples. Each tuple contains the SAX symbol for that segment
in addition to the TSX symbols assigned based on the slope information from that
segment. TSX may be applicable to searching for abnormal behavior. TSX would
allow RAACD to perform trend analysis.

Preserving patterns when anonymizing data

It is important to preserve privacy when releasing a dataset. K-anonymity is a con-
ventional approach to anonymizing data. To k-anonymize a dataset, one removes
information is removed from the dataset until each record is identical to at least
k-1 other records [15]. Although k-anonymity preserves most information about
the values in the dataset, it does not effectively preserve pattern information from
the dataset [14]. Shang et al. [14] propose an approach called (k,P)-anonymity that
publishes value data and pattern data separately. The (k,P)-anonymity model uses
SAX to encode information about patterns present in the dataset.
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3.4 Connections to Related Work

I have chosen to implement Wei’s method as the core of my abnormality detec-
tion scheme. Unfortunately, I found that the magnitude of the score produced by
the assumption-free method varies significantly with the configuration parameters
and with the properties of the series being analyzed. This inconsistency makes it
very difficult to automatically detect when there is anomalous behavior. My meth-
ods extend this technique so that it can be used to detect anomalous and abnormal
behavior automatically.

Besides NodeScape and Pulsar, I am not aware of any freely available or widely
used software package that provides health monitoring capabilities. Munin, Gan-
glia, Cacti, and other similar packages provide ways to access and visualize com-
puter monitoring data, but they do not analyze or provide explicit information
about machine health. My package, RAACD, pairs behavior analysis and anomaly
detection techniques with the presentation paradigms of common computer mon-
itoring packages.

Copyright c© J. Frank Roberts, 2013.
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Chapter 4 Algorithms for Anomaly Detection

At its core, my method for detecting anomalies and abnormalities is based on the
anomaly detection algorithm presented by Wei et al. [16]. Wei presents his al-
gorithm as a method for automatically marking parts of a time series for further
inspection by either humans or by other anomaly-detection algorithms. I employ
two significant elements from the assumption-free method: symbolic aggregate
approximation and subword-count histograms.

4.1 Symbolic Aggregate Approximation

Symbolic Aggregate approXimation (SAX) is a technique for converting a real-
valued time series to a discrete representation [11]. A benefit of using a discrete
representation is that it summarizes the time series and makes it easier to classify
parts of the series. The assumption-free method employs SAX because SAX is well
suited to data-mining tasks and because distance calculations in the SAX domain
can be used to derive lower bounds for distances in the original series [11].

SAX starts by dividing the series into short subregions, usually fewer than 10
samples long. SAX assigns a symbol to each subregion based on where the aver-
age value of the subregion falls in the normal distribution. Symbols are assigned
so that each symbol has equal probability of appearing at a given location in the
symbolic representation. SAX does not process the entire series at once. Instead,
SAX builds a list of words, with one word beginning at each sample in the time
series.

Table 4.1: SAX conversion example

Sample
Value

Normalized
Value

Symbol
Average

Symbol
Assigned

25 1.73 1.43 d
24 1.58
20 0.98
15 0.23 -0.08 b
12 -0.23
12 -0.23
12 -0.23 -0.23 b
13 -0.08
11 -0.38
9 -0.68 -1.13 a
6 -1.13
3 -1.58

10



Table 4.1 shows an example of how the SAX method assigns symbols to parts
of a time series. This example converts a 12-sample long region of a larger series
to the word ”dbba”. First, SAX normalizes the entire region by subtracting from
every sample the average value of the region and then dividing by the standard
deviation. SAX then divides the region into subregions of length 3 and computes
the average value of each subregion. SAX assigns a symbol to each subregion
based on the break points listed in Table 4.2.

Table 4.2: Breakpoints based on the normal distribution

Symbol Range
a < -0.675
b -0.675 .. 0.0
c 0.0 .. 0.675
d > 0.675

4.2 Computing an Anomaly Score

Before computing the distance between two series, SAX build histograms of
the appearance of subwords, that is, sequences of symbols with a given length.
For example, the SAX word ”abbbd” contains 3 subwords: ”ab” with count
of 1, ”bb” with a count of 2, and ”bd” with a count of 1. SAX normalizes the
histograms to have a maximum value of 1 so that series of different lengths may
be compared. SAX subtracts corresponding subword counts between the two
histograms to obtain a series of distances. Finally, SAX computes the 2-norm
of the series of distances. This computation produces a single anomaly score. I
include pseudo-code for this process in listings 4.1 and 4.2.

1 func count_subwords(words, subword_length):
2
3 subword_count = init_map(subword_length)
4
5 for word in words:
6 for i from 0 to word.length - subword_length - 1:
7 subword_count[word[i:i+subword_length] += 1
8
9 max = maxval(subword_count)

10 for subword in subword_count:
11 subword_count[subword] /= max
12
13 return subword_count

Listing 4.1: Algorithm to compute subword count from a list of words

11



1 func histogram_distance(A, B):
2 dist = 0
3 for subword in union(A, B):
4 dist += (A[subword] - B[subword]) ** 2
5 return dist

Listing 4.2: Algorithm to compute the distance between two subword histograms

Table 4.3: Computing an anomaly score

Subword Count 1
(Normalized)

Count 2
(Normalized)

Difference
(Squared)

aa 4 (1) 3 (0.6) 0.4 (0.16)
ab 2 (0.5) 3 (0.6) -0.1 (0.01)
bc 1 (0.25) 1 (0.2) 0.05 (0.025)
cc 1 (0.25) 5 (1) -0.75 (0.5625)
cd 2 (0.5) 0 (0) 0.5 (0.25)

Total 1.0075

In Table 4.3 I document the steps for computing the distance between two sub-
word histograms. The columns Count 1 and Count 2 refer to the subword counts
in the first and second histograms, respectively. The histograms are sparse, con-
taining instances of only five subwords between them. The table shows the unnor-
malized count as well as the normalized count for each subword. For each possible
subword I compute the difference between the two histograms. The total distance
(the anomaly score) is the sum of the squared differences.

I use this method to implement three anomaly-detection techniques. Each tech-
nique compares a sliding window, which I refer to as the inspection window, from
one time series to another time series. Window-pair analysis compares the win-
dow to another part of the same series; baseline analysis and the profile-search
technique use precomputed subword histograms.

4.3 Characteristics of Subword-count Histograms

Understanding the behavior of a series of anomaly scores requires some explana-
tion of the behavior of subword-count histograms. In particular, normalization,
subword variety, and the exponentiation in the distance calculation have signifi-
cant effects on the final anomaly score for a pair of histograms.

Normalization

The maximum value in a normalized subword-count histogram is always 1. If
multiple subwords share the highest unnormalized count, then they share the
value 1 in the normalized histogram. If one subword significantly outnumbers
the rest of the subwords, that subword may be the only one to make a meaningful
contribution to the anomaly score.
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Subword variety

The inspection window contains a fixed number of subwords of a particular
length. If the count for one subword increases then the count must decrease for
some other subword. The sum of the normalized counts increases with the num-
ber of unique subwords in the inspection window. This relationship means that
inspection windows with a larger variety of subwords tend to cause the anomaly
score to increase regardless of the contents of the second histogram. A histogram
containing a large variety of subwords necessarily has a lower maximum subword
count. In this situation, all subwords contribute more evenly to the total distance
because each subword count is closer to the maximum subword count.

Exponentiation in the distance calculation

The formula for calculating the distance between two subword histograms squares
the difference between the normalized counts for a particular subword. A linear
increase in the difference for a particular subword causes a quadratic increase in
that subword’s contribution to the distance. The interaction between this method
and the effects of differences in subword variety has dramatic effects on the behav-
ior of the anomaly-score. For example, if the unnormalized maximum subword
count decreases by 1, the contributions from all of the other subwords in the his-
togram increase quadratically, even though only one of the other unnormalized
subword counts increases.

4.4 Window-pair Analysis

Window-pair (WP) analysis is an implementation of the assumption-free anomaly
detection method. WP analysis slides two concatenated windows, the lead and
lag windows, across the series. In WP analysis, the inspection window is the lead
window. At each time step in the series, WP analysis builds a subword histogram
for each window and computes the distance between the two histograms. WP
analysis associates the anomaly score with the border between the two windows.
The lead window should be long enough to capture entire anomalous events. The
lag window should be at least as long as the lead window.

WP analysis treats the lag window as a reference for normal behavior. How-
ever, the distance computation does not differentiate between the two windows.
If an anomaly appears in the lag window but no anomaly appears in the lead
window, then the distance between the two windows is the same as when the
anomaly appears in the lead window. When analyzing a series that contains a
clear anomaly, WP analysis produces a double peak in the anomaly-score vector
surrounding the anomaly. The first peak occurs due to the anomaly appearing in
the lead window. As the anomaly begins to straddle the two windows, they be-
ing to look more alike, and the anomaly score falls. Once the anomaly has moved
entirely into the lag window, the anomaly score rises again, resulting in a second
peak.
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The ratio of the lengths of the two windows affects the signature of an anomaly
in the vector of anomaly scores. When the two windows are the same length, we
see a symmetric double peak. As we increase the length of the lag window, we see
the second peak decrease in height. The longer the lag window contains enough
normal behavior to outweigh a short anomaly.

4.5 Baseline Analysis

Baseline analysis slides a single window across the series. Wei et al. present
a similar method, called the ”unsupervised” method, with their assumption-free
method [16]. At each time step in the series, baseline analysis computes the sub-
word histogram for the inspection window and computes the distance from that
histogram to a precomputed subword histogram. The precomputed histogram is
built from a sample of the expected baseline behavior for the series. The distance
between the two histograms is recorded as the anomaly score for the approximate
midpoint of the current inspection window. I discuss the method for associating
anomaly scores with particular samples in section 4.8.

4.6 Profile Search

A profile search works the same way as baseline analysis, only the anomaly score
is computed differently, because the comparison histogram does not represent nor-
mal behavior. After computing the anomaly score for all time steps, I subtract the
maximum distance from every score, shifting all anomaly scores to be on or below
the x-axis. I multiply all anomaly scores by −1 to reflect the distance curve across
the x-axis so that higher scores correspond to smaller distances between the two
histograms.

4.7 Multi-property Search

The above methods are intended to automatically detect anomalous behavior. I
am able to detect abnormal behavior by applying these methods to analyze mul-
tiple properties on a single host at once. After running baseline analysis on the
time series for each property for a particular host, I normalize each anomaly-score
vector to have a maximum value of one. I then look to see if multiple vectors ex-
ceed some threshold value at the same place in the series. If enough vectors exceed
the threshold in the same place, then this machine is considered to be exhibiting
abnormal behavior.
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To make this approach work, I must be able to ignore scores that remain high
as a result of a near single-valued series. Series containing very little variation
tend to have consistently high values for the anomaly score. To work around this
problem, I ignore any series that has a small standard deviation.

4.8 Computing Ideal Offset

Each anomaly score must be associated with a particular position in the series. An
anomalous sample begins to affect the anomaly score as soon as the leading word
in the inspection window includes that sample. In general, the number of samples
which the algorithm looks forward from the first sample in the inspection window
is:

V = W ∗ S + I − 1 (4.1)

where:

V = view length (samples)
I = inspection window length (samples)
W = word length (symbols)
S = samples per symbol

I call this value the inspection window’s view. The view includes every sam-
ple beginning with the first letter of the first word in the inspection window and
continuing forward in the time series to the last sample of the leading word in
the inspection window. Because the search methods analyze whole words at a
time, words that begin close to the end of the inspection window contain infor-
mation from samples past the end of the inspection window. We account for this
by adding the length of the leading word in the inspection window to the length
of the inspection window. We subtract one from the total because the last sample
in the inspection window is the first sample in the leading word of the inspection
window.

Using 3 samples per symbol, a window length of 3 samples, and a word length
of 6 symbols, the algorithm sees 20 samples from the start of the inspection win-
dow:

6 ∗ 3 + 3− 1 = 20

In Figure 4.1, the window begins at sample 89 and extends 3 samples; it con-
siders the words beginning at samples 89, 90, and 91. Each symbol in the word
beginning at sample 91 represents an average of three samples. The last symbol
in the word ends at sample 108, which is the 20th sample from the start of the
window.
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Figure 4.1: A visualization of inspection-window view

For baseline analysis, we associate an anomaly score with the center of the cur-
rent view. To compute the offset of the anomaly score from the beginning of the
inspection window, we divide the view length (equation 4.1) by 2:

O = (W ∗ S + I − 1)/2 (4.2)

where:

O = offset

We use a different formula for associating scores with anomalies in WP analy-
sis. WP analysis generates a double peak for a point anomaly. We would like to
center the trough between the peaks around the corresponding anomaly:

O = S ∗W/2 (4.3)

We modify equation 4.2 to move the score backwards half of one inspection-
window length. Because we do not add the inspection-window length, we are no
longer double counting the last sample in the window, so we do not subtract 1.

Copyright c© J. Frank Roberts, 2013.
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Chapter 5 Implementation

I have built several tools to study the behavior of my anomaly detection methods.
The tools depend on two libraries, which I also wrote. The first library, nsutil,
provides functions that handle NodeScape v2 monitoring data. These functions
allow my tools to read NodeScape and SAX configuration parameters from a file,
to retrieve data from a database or from a local file, to write the data series and
distance vectors to a file, and to generate plots from the data series and distance
vectors. The second library, saxutil, provides functions that implement SAX, that
generate subword count histograms from SAX words, and that compute the dis-
tance between subword histograms. I wrote my tools and the two libraries in the
Go programming language.

I present three tools here. They are build-profile, multi-search, and
check-prop. Multi-search performs WP analysis, baseline analysis, and pro-
file search. Build-profile computes a subword histogram from a series of raw
data and stores it for later use. Check-prop uses baseline analysis to complete a
multi-dimensional search across all properties for each host.

Build-profile retrieves a single series from either a file or a database and
converts it to a series of SAX words. A configuration file provides a list of subword
lengths. Build-profile counts the occurrences of subwords of each length for
the entire list of words. Build-profile writes the unnormalized subword his-
togram out to a file.

Multi-search uses a command-line flag to determine whether to retrieve
the series of interest from a local file or from a database. A configuration file in-
cludes a list of baselines to compare against and a list of profiles to search for.
Multi-search reads the precomputed baselines and profiles into subword his-
tograms. Multi-search then converts the series of interest into a list of SAX
words. The conversion function normalizes the subregion of samples for each
word to have a mean of 0 and a standard deviation of 1 before assigning sym-
bols to the region. The conversion function generates one word for each sam-
ple in the series. When the conversion nears the end of the series, it generates
shorter words that only go up to the end of the series. The configuration file
provides a list of subword lengths to process. Multi-search generates a sub-
word count for each subword length for both the initial lead and lag windows.
Multi-search also generates ordered lists of all possible subwords for the given
lengths. Multi-search uses these lists to control iteration over the subword
histograms, because Go does not guarantee consistent ordering when iterating
over maps. Multi-search slides the lead and lag windows through the series
one sample at a time. For each sample, multi-search adjusts the lead and lag
subword histograms to add one new word and remove one old word. At each
sample, multi-search normalizes the lead and lag subword histograms to have
a maximum value of 1. Normalization allows multi-search to compare sub-
word counts from windows of different lengths. Multi-search computes the
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distance between the lead and lag subword histograms as well as the distance be-
tween the lead window and each of the baseline and profile subword histograms.
Multi-search computes separate distances for each subword length and mul-
tiplies them together to obtain the final anomaly score. Multi-search applies
equation (4.2) to associate the anomaly score for each location of the lead win-
dow with a particular sample. Multi-search continues moving the lead and
lag windows through the series until the leading edge of the lead window reaches
the end of the series. Multi-search then writes the series, the WP analysis dis-
tance vector, and the distance vectors for each baseline and profile to a file. Finally,
multi-search invokes gnuplot to generate plots of the original series and of all
the distance vectors.

Check-prop implements multi-property analysis on top of baseline analysis
and WP analysis. Check-prop begins by retrieving a list of all known hosts from
the NodeScape database. For each host, check-prop queries the database for all
properties being monitored on that host. For each property, check-prop looks
in the local filesystem for pre-computed baseline profiles. Check-prop performs
baseline analysis for each baseline profile that it finds and normalizes the resulting
distance vector to have maximum value of 1. Normalization allows check-prop
to easily determine which regions of a distance vector are most anomalous. If
check-prop does not find any baseline profiles, it continues to the next property.
After computing distance vectors for all of the properties of a host, check-prop
simultaneously scans all of the distance vectors. If it finds one location were three
or more distance vectors have a value above 0.6, it flags this host’s behavior as
abnormal.

Check-prop also performs WP analysis on each property, though it does
not consider the WP anomaly score when searching for abnormal behavior.
Near single-valued series often have consistently high (> 0.6) anomaly scores.
Check-prop ignores these series because they make a host’s behavior more
likely to look abnormal even though they do contain any abnormal behavior.
Check-prop ignores any property series that has a very low standard deviation.

Check-prop handles the analysis portion of a NodeScape v2 front-end. When
check-prop finds a host to be behaving abnormally, it generates plots of the se-
ries for each property, the WP analysis distance vector, and the distance vectors
for all precomputed baseline profiles. It also generates an HTML document for
each host that includes these plots. Finally, check-prop generates an HTML file
containing the list of abnormally behaving hosts and thumbnails for the first four
property and anomaly plots. A cron job invokes a script every 10 minutes that
invokes check-prop.

Copyright c© J. Frank Roberts, 2013.
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Chapter 6 Evaluation

6.1 Detecting Anomalies in a Single Series

I test my methods using both real and synthesized data. I use simple, synthesized
data to test for basic functionality. The set of synthesized data includes an impulse
series, a unit step series, a sine wave series that changes frequency, a series con-
taining a slow rise and fall, a series of uniformly distributed random data, and a
series of data taken from a normal distribution.

I begin each test by synthesizing a time series. The synthesized time series
contains either a specific anomaly or samples from a random distribution and is
approximately 200 samples in length. The series are analyzed for several config-
urations using both the WP and baseline analysis methods. The configurations
vary four parameters: inspection window length, word length, symbol size, and
subword lengths.

I build a baseline profile for each test from a portion of the series that does not
contain the anomaly. The length of the window used in baseline analysis is the
same as the length of the lead window in WP analysis. I test each synthetic series
with multi-search. For tests with multiple subword lengths, multi-search
multiplies together the anomaly scores for all subword lengths to obtain a single
anomaly-score vector. For example, the anomaly-score vector produced by con-
figuration 1 (Table 6.1) is the element-wise multiplication of the length-2 anomaly-
score vector by the length-4 anomaly-score vector. For each test, we look to see
whether the anomaly score increases around the anomaly.

Impulse

The first test analyzes a time series containing an impulse (Figure 6.1, top). The
series is 200 samples in length, with a 4-sample wide impulse appearing in samples
98-101. This series contains no noise.

I search for 2 profiles in this series. I used build-profile to built the first
profile. The profile is built from a series that is 26 samples in length and contains
the same impulse as the series of interest at samples 12-15. I chose a length of 26
because it is the smallest length that is still as long as the inspection window. I want
the series to contain as little normal behavior as possible. I used a modified version
of configuration 1 that counts subwords of lengths 1-6 to generate the profile.

The second profile I built manually. It contains the exact subword count his-
togram from the inspection window starting at sample 84 in the series of interest.
The distance from the inspection window to this profile should be 0 when the in-
spection window reaches sample 84.

I analyze this series using five configurations (Table 6.1). For all configurations,
I set the inspection-window length to the same value as the lead length.
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Figure 6.1: Configuration 1, impulse test.
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Figure 6.2: Configuration 2, impulse test.
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Figure 6.3: Configuration 3, impulse test.
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Figure 6.4: Configuration 4, impulse test.
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Figure 6.5: Configuration 5, impulse test.
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Table 6.1: Standard testing configurations

Configuration number 1 2 3 4 5
Samples per symbol 3 3 6 3 3

Word length (symbols) 6 6 6 6 4
Subword lengths (symbols) 2,4 2,4 2,4 4,6 2,4

Lead window length (samples) 9 9 36 9 9
Lag window length (samples) 9 18 36 9 9

WP analysis and baseline analysis and both profile searches produce a high
anomaly score surrounding the impulse. For tests where the lead and lag win-
dow have the same length, WP analysis produces a symmetric double peak sur-
rounding the impulse. WP analysis produces this double peak because the score
reported is the distance between the lead and lag windows. The distance between
the lead and lag windows increases as the impulse enters the lead window. The
distance falls when the impulse transitions between the two windows, because
both windows contain some anomalous behavior. The second peak appears when
the lag window contains the entire impulse; the anomaly score is high because the
lead window now contains only normal behavior. Testing with the second config-
uration demonstrates that increasing the length of the lag window dampens the
second peak.

For configurations 1, 3, 4, and 5, the window of interest is narrow, causing
sharp peaks in the anomaly scores produced by WP analysis and baseline analysis.
Configuration 5 demonstrates the effect of using a smaller word size; the peaks in
the anomaly scores are taller and sharper than in configuration 1. Configuration
3 increases the number of samples per symbol and doubles the width of the lead
and lag windows. This change flattens the anomaly scores from all three methods
because the impulse is always a smaller portion of the inspection window. When
compared with the baseline profile, the contents of the inspection window never
appear as anomalous as in the other configurations.

The two profile searches produce similar anomaly-score plots for all configura-
tions except configuration 4. The anomaly-score plot for the manually built profile
behaves differently because it does not contain subword counts for subwords of
length 6; configuration 4 is the only configuration that counts subwords of length
6. When the inspection window does not contain the impulse, the only word in the
window is ”cccccc”. In this region, the distance between the two histograms for
subwords of length 6 is 1 because ”cccccc” is the only subword in the inspection
window histogram and the profile histogram contains no subwords of length 6.

When the impulse enters the inspection window, we first see the anomaly-score
rise. This rise occurs because the histograms for subwords of length 4 begin to
look similar. However, the increasing number of different subwords with length 6
quickly overcomes the similarity between the length-4 histograms.

Neither profile search generates a peak for configuration 5. I generated the two
profiles from a word length of 6 symbols, but configuration 5 generates words con-
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taining only 4 symbols. Different word lengths generate very different groups of
symbols. I counted the number of unique words generated from configuration 5.
The list of words contains only twelve 4-symbol words. The 26-sample profile con-
tains occurrences of eleven 4-symbol subwords, but has only two 4-symbol words
in common with the list generated from configuration 5. Thus, the inspection win-
dow is most similar to the 26-sample profile when it contains the fewest subwords,
that is, when the inspection window does not contain the impulse. When the im-
pulse enters the inspection window, the distance between the inspection window
and the 26-sample profile actually increases. The manually built profile suffers
from the same problem.

The profile searches produce the best results for configurations 1 and 2. The
peaks in the anomaly-score plots are not as sharp as for baseline analysis or WP
analysis, but the anomaly scores away from the impulse are 0, and the peaks are
still obvious. These results are unsurprising because configurations 1 and 2 are the
most similar to the configurations that I generated these profiles from.

Configurations 1, 2 and 4 show small plateaus on either side of the peak in
the anomaly-score plots for baseline analysis. The scores that form the leftmost
plateau for configuration 1 are associated with samples 96 through 98. Scores for
samples to the left of 96 consistently increase, and scores to the right of 98 re-
main the same until the other side of the peak. The score for sample 97 causes the
plateau.

The plateaus are an result of the way that subwords move in and out of the
inspection window as the window crosses the impulse. Before the inspection-
window view contains the impulse, SAX conversion generates only the word ”cc-
cccc”. The series is single-valued at that point, so the average for any subregion of
the series is 0. SAX always assigns the symbol ”c” to subregions with an average
value of 0. 1

As the impulse comes into the view of the inspection window, the inspection
window begins to contain higher numbers of words that begin with consecutive
instances of the symbol ”b”. As a result, subwords beginning with consecutive
instances of ”b” have high counts in the subword histogram. At the same time, the
histogram contains fewer and fewer subwords with consecutive instances of ”c”,
so the anomaly score rises.

When the impulse reaches the halfway point in the inspection-window view,
the number of subwords that begin with consecutive instances of ”b” begins to
decrease; they are replaced with words that end with consecutive instances of ”b”.
As the words beginning with ”b” exit the inspection window, the counts for sub-
words starting with ”b” do not decrease uniformly. In particular, the subword
”bbbd” continues to have the same unnormalized count. The other subwords
starting with ”b” now have lower counts, and thus contribute significantly less
to the anomaly score.

1The series used to build the baseline profile for this test is also single-valued. The subword
histogram thus contains entries for only the subwords that contain exclusively the symbol ”c”.
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The new subwords that end in ”b” also have low unnormalized counts. The
combined effect of the movement of these subwords is that the anomaly score
decreases for one sample. When the inspection window moves to the next sample,
the count for the subword ”bbbd” decreases, allowing the other subwords to again
contribute significantly to the anomaly score.

Impulse with noise

The second test evaluates a series similar to the first, except that I have added some
noise to the series. The noise is added from a normal distribution with a standard
deviation of 5. The series is still 200 samples long with a 4-sample wide impulse
in samples 98-101.

Table 6.2: Testing configuration number 6

Configuration number 6
Samples per symbol 6

Word length (symbols) 4
Subword length (symbols) 2,4

Lead window length (samples) 9
Lag window length (samples) 9

In addition to the 5 configurations used in the previous tests, I test this series
with a 6th configuration (Table 6.2). This configuration is the same as configuration
5 except that the number of samples per symbol is doubled. This change should
reduce the effect of the noise on the generation of symbols.
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Figure 6.6: Configuration 1, noisy impulse test
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Figure 6.7: Configuration 2, noisy impulse test
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Figure 6.8: Configuration 3, noisy impulse test
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Figure 6.9: Configuration 4, noisy impulse test
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Figure 6.10: Configuration 5, noisy impulse test
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Figure 6.11: Configuration 6, noisy impulse test
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The WP anomaly-score plots for configurations 1 and 2 show a clear double
peak around the anomaly (Figure 6.6, 6.7). These two configurations also show
a second double peak centered at approximately sample 141. Sample 141 has a
value of 50, while the average of the ten surrounding samples is approximately
45. The value 50 is anomalous in this limited context, but it does not constitute
abnormal behavior. This value stands out only because the surrounding samples
consistently have the value of approximately 45.

Configuration 6 shows a clear double peak around sample 126. Configurations
1, 2, and 3 also have double peak in this region, but they are disguised by the peaks
that surround the anomalies that occur at samples 100 and 141. The peak to the
left of sample 126 merges with the peak to the right of sample 100, and the peak to
the right of sample 126 merges with the peak to the left of sample 141. The values
of the samples surrounding sample 126 vary more than in the surrounding area,
so this double peak is not surprising.

The WP anomaly-score plots for configurations 4 and 5 do not show any clear
anomalies. I do not find this behavior surprising in either case. Configuration
4 counts subwords of lengths 4 and 6. Other configurations show that counting
subwords of length-4 works well but in this case the anomaly-score plot from the
length-4 subwords is overwhelmed by the anomaly-score plot from length-6 sub-
words.

Counting subwords of length 6 does not work well for two reasons. First, the
number of possible subwords of length 6 is significantly larger than for subwords
of length 4. There are likely to be more different subwords of length 6. Second,
the word length for configuration 4 is 6 symbols; by counting subwords of length
6, configuration 4 counts occurrences of full words. In general, adjacent words are
very unlikely to have the same value. Thus, in addition to subwords of length
6 having a larger possible variety, subwords of length 6 are also very unlikely to
appear near each other under this configuration. Configuration 5 suffers from the
same problem; it runs the analysis with a word length of 4 symbols and counts
subwords of lengths 2 and 4.

All configurations except configuration 4 provide good results from baseline
analysis. All configurations find the artificial anomaly in samples 98 through 101,
although configuration 4 also shows a high anomaly score for many other samples,
most of which are not anomalous. All configurations except configuration 4 show a
high anomaly score around the anomaly in sample 141. Configuration 5 is the best;
it shows a sharp peak in the anomaly score right at the beginning of the impulse.
As expected, the longer inspection window and larger symbol size in configuration
3 dramatically smooth the anomaly-score plot. Configuration 6 strikes a better
balance; the curve is smooth but the peaks are still sharp.

Baseline analysis does a good job of picking the impulse out of the surrounding
noise, but there is no simple way to automatically detect whether any part of the
series is anomalous. The anomaly score vectors vary significantly in range and are
only useful for telling which part of the series is most anomalous.

I search for two profiles in this series. The first is the same 26-sample profile that
I searched for in the previous series. The second profile I built from a 26-sample
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series that contains a 4-sample wide impulse and noise from a normal distribution.
The anomaly-score plots from these searches do not provide much information
about whether the series contains the corresponding anomalies. The plots from
configuration 3 have maximum values surrounding the anomaly, but the peaks
are too wide to provide useful information about where the anomaly is.

The plots from the profile searches for configurations 1, 2, and 6 detect both
the impulse and the anomaly at sample 141. These anomalies cause the highest
peaks in these plots. The peak surrounding the impulse is broader; aside from this
difference, the peaks are mostly the same for the two anomalies.

Sine function

This test applies WP and baseline analysis to a time series representing a sine func-
tion that doubles in frequency 700 samples into the series. The series is 1200 sam-
ples long. For the first 700 samples, the sine function has a period of 100 samples.
Beginning at sample 700, the period changes to 50 samples.

I present three new configurations for testing this series (Table 6.3). These con-
figurations all use the same number of samples per symbol and the same word
length. The inspection window in configuration 7 covers exactly one of the longer
periods and the lag window is twice the length of the inspection window. The
inspection window in configuration 8 is exactly long enough to cover one shorter
period. The inspection window in configuration 9 is not a whole number of peri-
ods in length.

I test this series with two baseline profiles. The first profile I built from the
first 200 samples of this series; this baseline represents two of the longer periods.
I expect this long-period baseline to produce a low anomaly score for the first 700
samples and to produce a high anomaly score for the remainder of the series. The
second profile I built from the 200-sample section beginning at sample 700 and
continuing to sample 899; this baseline represents four of the shorter periods. I
expect this short-period baseline to produce a high anomaly score for the first 700
samples and a low anomaly score after that. I used configuration 7 to build both
profiles.

I first test configurations 7 and 8 with the long-period baseline (Figures 6.12 and
6.13). I then test configurations 7 and 8 with the short-period baseline(Figures 6.14
and 6.15). Finally, I test configuration 9 with the long-period baseline (Figure 6.16).

Table 6.3: Sine function testing configurations

Configuration number 7 8 9
Samples per symbol 5 5 5

Word length (symbols) 5 5 5
Subword lengths (symbols) 2,4 2,4 2,4

Lead window length (samples) 100 50 75
Lag window length (samples) 200 100 150

35



Figure 6.12: Configuration 7, long-period baseline, sine function test

Figure 6.13: Configuration 8, long-period baseline, sine function test
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Figure 6.14: Configuration 7, short-period baseline, sine function test

Figure 6.15: Configuration 8, short-period baseline, sine function test
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Figure 6.16: Configuration 9, long-period baseline, sine function test

Both WP and baseline perform well in the first test (Figure 6.12). The WP
anomaly-score vector has the value 0 everywhere except for around the change in
frequency. The maximum value in the WP anomaly-score vector is 0.718 and oc-
curs at samples 698 and 699. WP analysis does not produce a double peak for this
type of anomaly; it instead produces a single peak at the location of the anomaly.
This result makes sense: the lead and lag windows are most different when the
lead window contains only the short-period sine function and the lag window
contains only the long-period sine function. This situation occurs when the border
between the windows lies at sample 700.

Baseline analysis produces an anomaly score of almost 0 until around sample
650; this location corresponds to when the leading edge of the inspection window
reaches the change in frequency at sample 700. The anomaly score rises quickly to
a peak at sample 703; at this point the inspection window contains one entire pe-
riod of the higher frequency waveform. Regular changes in the slope of the wave-
form as it enters the inspection window cause the anomaly score to vary between
samples 703 and 750. The anomaly score reaches a second peak at sample 750 that
corresponds to the point at which the lag window contains only the short-period
waveform. The anomaly score remains constant until sample 1139, at which point
the shorter words at the end of the series begin to enter the inspection window,
causing the anomaly score to rise again.
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In test 2 (Figure 6.13) I employ a shorter inspection window that contains only
one half-period of the long-period waveform. Although I still use the baseline pro-
file built from the long-period waveform, the anomaly score is higher in the region
of the long-period waveform than in the region of the short-period waveform. This
characteristic also applies to WP analysis for this test.

Configuration 8 never allows the lead and lag windows to share the same pro-
file in the first 700 samples. The lag window always contains a single period from
the long-period waveform and the lead window always contains one half-period
of the long-period waveform. The WP anomaly score is highest when the lead
window contains samples that have a monotonic slope. When this happens, the
words in the lead window are either all decreasing or all increasing, that is, they
all follow the regular expression d∗c∗b∗a∗ (decreasing) or the regular expression
a∗b∗c∗d∗ (increasing). The lag window contains approximately the same number
of each kind of word.

The peaks in the baseline analysis anomaly score occur for the same reason,
but baseline analysis offsets the anomaly scores so that they are associated with
the center of the inspection window. Thus, the peaks appear at the beginning
of each period instead of at the peaks and troughs of the waveform. The anomaly
scores for the second portion of the test series are lower because the inspection win-
dow contains an entire period of the short-period waveform. Although the words
produced by the long-period waveform are different from those produced by the
short-period waveform (the slope of the long-period waveform is less steep), the
two sequences of words contain many of the same subwords.

The results from test 4 (Figure 6.15) resemble the results from this test. WP pro-
duces the same results because the SAX parameters are exactly the same. Baseline
analysis produces a waveform similar to test 2 except that the anomaly score de-
creases to 0 once the inspection window contains only the short-period waveform.

The WP anomaly-score vector produced in test 3 (Figure 6.14)is the same as
in test 1 because the SAX parameters did not change. I built the baseline profile
used in this test from the short-period waveform. Baseline analysis does not record
an anomaly score until sample 250; the inspection window is always in line with
the lead window from WP analysis, and the lead window begins at sample 200
to account for the lag window. Again, we see two peaks in the baseline analysis
anomaly-score plot. The first peak results from the frequency change entering
the view of the inspection window for the first time. The second peak occurs at
sample 700, when the inspection window contains one half-period of the long-
period waveform and one whole-period of of the short-period waveform.

Test 5 demonstrates the behavior of WP and baseline analysis when the in-
spection window does not contain a whole number of periods. The normalized
counts of the subwords contained in the lag window or baseline profile never ex-
actly match the normalized counts in the inspection window, causing the anomaly
score to rise and fall periodically. After sample 700, the inspection window con-
tains exactly one and a half periods of the short-period waveform, causing the
baseline analysis to behave in a way similar to the other tests.
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6.2 Testing Multi-Property Detection

I use RAACD for testing my implementation of multi-property abnormal-behavior
detection. I have a NodeScape v2 instance collecting health data from 81 hosts. I
have built baseline profiles for all of the properties on 25 of these hosts. I build
these baseline profiles using the RAACD-profile configuration (Table 6.4). RAACD
uses the RAACD-search configuration (Table 6.5) to search for abnormal behavior.
I chose a longer inspection window and a larger symbol size than configurations
1-6 to better fit the natural behavior of the machines that I am monitoring. Most of
the machines send updates at 5-minute or 10-minute intervals. For machines that
update at 10-minute intervals, the 12-sample inspection window covers on hour of
behavior; for machines that update every 5 minutes, the inspection window covers
2 hours. I started using RAACD with the RAACD-profile configuration and have
since adjusted the configuration to the one in Table 6.5. RAACD-search produces
better results than RAACD-profile.

Table 6.4: RAACD-profile configuration

Configuration name RAACD-profile
Samples per symbol 4

Word length (symbols) 6
Subword length (symbols) 1 .. 6

Lead window length (samples) 12
Lag window length (samples) 12

Table 6.5: RAACD-search configuration

Configuration name RAACD-search
Samples per symbol 3

Word length (symbols) 5
Subword length (symbols) 2,4

Lead window length (samples) 15
Lag window length (samples) 15

I began testing this detection method by evaluating synthetic anomalies. We
opened several sessions on the machine violet.cs.uky.edu (violet) and
started a long-running program that causes a high but varying load on the ma-
chine. The graphs in Figure 6.17 show abnormal behavior in several properties
beginning at approximately 11:00 pm UTC. Used memory, session count, process
count, and load average all show increased values for the period between 11:00
pm and 5:00 am on the following day. Cache memory demonstrates tame behav-
ior except for two impulses at 9:00 pm and 2:00 pm.
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Figure 6.17: Monitoring data captured from violet.cs.uky.edu
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The configuration used for this test considers behavior to be abnormal if three
or more anomaly scores rise above 0.6 for the same sample. My algorithm con-
siders violet’s behavior to be anomalous because the anomaly scores for load
average, session count, and process count all rise above 0.6 at approximately 12:00
am. Although the anomaly scores for both used memory and cache memory rise
above 0.6 in multiple places, they do not contribute to violet’s behavior being
considered anomalous. Neither score rises above 0.6 at the same time as any other
score.

The program fails to recognize the abnormal behavior in cache memory us-
age that occurs at 9:00 pm and at 2:00 pm. Even though two impulses, one of
them rather large, appear in the monitoring data, this cache memory behavior, as
a whole, is calmer than the baseline behavior for violet. The series used to build
the baseline for violet actually contains an impulse similar to the one which oc-
curs at 9:00 pm, which causes the impulse in the current series not to register as
anomalous.

The anomaly detection program runs continually, generating an HTML doc-
ument when it detects anomalous behavior. The program detected an anomaly
on iris.cs.uky.edu; Figure 6.18 shows the corresponding sample series and
anomaly scores. We see anomalous behavior between 2:00 pm and 9:00 pm. We
see abnormal behavior primarily in process count, session count, and memory us-
age, and we see a small increase in memory being used as cache. Inspection of
the anomaly scores shows that the scores for process count, session count, and
memory usage all exceed the 0.6 threshold at 6:30 pm. In particular, the algorithm
detects the relatively small change in behavior that occurs at 7:00 pm.

In this case, the algorithm detects abnormal behavior, but it does not detect it
early enough to be useful. We would prefer to detect the change in behavior that
happens shortly after 2:00 pm.

There is also some abnormal behavior occurring around 12:00 pm. We observe
a short spike in load average, cached memory, and used memory. This behavior
is not significant enough in magnitude or duration to trigger high anomaly scores,
nor is it sufficiently abnormal to be of interest to the system administrator. The
detection algorithm correctly ignores this spike. Figure 6.19 shows recent behav-
ior from the machine labeled conglomerate.kaos. Conglomerate runs the
abnormality detection algorithm once every ten minutes, generating a cyclic load.
This cycle manifests itself mostly in process count, load average, and CPU1 tem-
perature. Even though this behavior is normal (we expect the program to generate
load every 10 minutes), the anomaly scores for process count and load average
remain consistently high. The reason that these scores increase is that we built
baseline profiles for conglomerate before the detection program was scheduled
to run every 10 minutes. The previous normal behavior (Figure 6.20) is different
enough from the new normal to look anomalous. I have built a new baseline pro-
file for process count on conglomerate, but the anomaly-score plot for process
count still shows consistently high scores. The frequency of the cycle in process
count does not survive SAX conversion, but it does affect the list of words enough
to make it difficult for any profile to match.
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Figure 6.18: Monitoring data captured from iris.cs.uky.edu
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Figure 6.19: Monitoring data captured from conglomerate

Figure 6.20: The old process count on conglomerate

Copyright c© J. Frank Roberts, 2013.
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Chapter 7 Conclusion

I find that WP analysis, although it performs well on simple synthesized time se-
ries, does not work well when applied to real data. Performing WP analysis on
real data with symmetric window sizes produces an anomaly-score vector that is
consistently noisy and high valued. WP analysis produces a better anomaly-score
vector when the window lengths are asymmetric, but the score still does not rise
sharply around anomalies. WP analysis also suffers from the lack of an absolute
baseline reference.

A profile search yields good results under ideal circumstances. When I search
for a specific anomaly in a clean synthesized time series, the resulting anomaly-
score shows a peak surrounding the anomaly. Unfortunately, my method for pro-
file search is not suitable for general use. It is sensitive to differences between the
configuration used to build the profile and the configuration used to perform the
search. In particular, if the search uses a different word length or counts subwords
of a length not include in the profile, the resulting anomaly-score vector contains
no useful information about were or whether the anomaly of interest occurred. In
the cases where a profile search does produce useful information, the information
provided by baseline analysis and WP analysis is much sharper.

Baseline analysis performs better than either WP analysis or a profile search.
Baseline analysis produces an anomaly-score vector that rises sharply around
anomalies in the time series. Baseline analysis works particularly well in the con-
text of computing systems. We have a good concept of what constitutes normal
behavior for computing systems, and we can easily build profiles to represent nor-
mal behavior.

My tests with the sine function demonstrate that WP and baseline analysis are
both able to detect anomalous behavior that isn’t a dramatic change in magnitude.
Both of these methods can detect a change in frequency when configured correctly.
These methods best detect such changes when the inspection window contains one
entire normal cycle of behavior.

None of the three basic methods for anomaly detection is useful for automatic
detection of anomalous or abnormal behavior. The anomaly-score vectors pro-
duced by these three methods vary wildly in magnitude from one series to the
next. I was not able to develop a rule to tell when an anomaly score is high enough
to signify an anomaly. The distance vectors produced by these three methods are
only useful to show which parts of a time series are most anomalous.

Although these methods by themselves are not enough to automatically detect
abnormal behavior, I was able to develop an algorithm based on these methods
that does detect abnormal behavior. My method for multi-property search suc-
cessfully detects abnormal behavior in a production environment. I demonstrate
that by combining the anomaly-score vectors from the baseline analysis of several
properties on the same machine, I am able to automatically detect whether there
is any correlated anomalous behavior. Correlated anomalous behavior often in-
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dicates abnormal behavior. This relationship allows me to automatically detect
abnormal behavior. In addition to automatically detecting abnormal behavior, my
system requires very little set up or configuration. To detect abnormal behavior,
the system administrator must simply select a set of time series that display nor-
mal behavior.

RAACD does not detect abnormal behavior in a timely fashion. The delay is
due primarily to the frequency at which I monitor the hosts in NodeScape. Low
monitoring frequencies mean that new data come into the system infrequently,
and the time difference between samples may be large. A single SAX symbol often
represents at least 3 samples; for a monitoring frequency of once every 10 minutes,
a single SAX symbol represents 30 minutes. I cannot detect abnormal behavior
until it appears in several symbols. In some cases, this requirement means that I
do not detect abnormal behavior until it has been occurring for over 1 hour.

The current implementations of NodeScape and RAACD also do not detect or
repair gaps in the health data. RAACD removes gaps from the time series by con-
catenating the parts of the series that surround the gap. This behavior may lead
to false anomalous behavior because the time series is not likely to be continuous
across a gap in the samples. The gap may also disrupt natural cycles in the data.
One straightforward method to repair a gap in a time series is to repeat the be-
havior that leads up to the gap. Repeated behavior should not cause anomalous
behavior on the earlier edge of the gap; the effect of this method on the later edge
of the gap is unpredictable.

RAACD is successful at reducing the amount of data presented to the system
administrator. I have tested RAACD both in compute environments and general-
purpose workstation/server environments. I employ my system to monitor ap-
proximately 30 machines including workstations, servers, and compute nodes.
Rarely does RAACD present information from more than 5 machines at once.
RAACD does sometimes present a machine that is not behaving abnormally. The
system usually presents information only about machines that behave abnormally.

Copyright c© J. Frank Roberts, 2013.
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Chapter 8 Future Work

The work I present in this thesis is the beginning of our research on how to au-
tomatically detect abnormal behavior in computing systems. Further work in this
area includes novel areas of research as well as possible improvements to the meth-
ods and tools that I have developed.

Multi-host detection

I search for abnormal behavior by analyzing multiple properties for a single ma-
chine. In many cases, the cause of abnormal behavior actually affects multiple
machines. For example, a failure of the cooling system would cause CPU tempera-
tures on all of the computers in the machine room to rise. We would like to develop
a method to analyze multiple machines for simultaneous anomalies. Implement-
ing this method would require more configuration because the tool would need to
be told how to group machines. We may also benefit from combining multi-host
detection with multi-property detection.

More timely detection

I believe RAACD may be able to detect abnormal behavior more quickly. I can
achieve more timely detection in two ways. First, I can modify NodeScape to col-
lect measurements of each property more frequently. I can also modify NodeScape
to collect more information than just an instantaneous measurement of each prop-
erty. I can modify the monitor so that it collects the minimum, maximum, and
mean values for the gaps between samples. This extra information would al-
low me to interpolate values between samples. Second, I can modify the multi-
property detection method to detect partial patterns of abnormal behavior. Once I
have detected a particular abnormal behavior several times, I may be able to char-
acterize the pattern that leads up to that abnormal behavior. I may be able to detect
abnormal behavior before observing the entire pattern of abnormal behavior.

Improvements to multi-property detection

My implementation of multi-property detection is crude. There may be more than
one expected profile for baseline behavior on a machine. Currently, check-prop
does not allow multiple baseline profiles for a single property on a single machine.
Allowing multiple baselines for a property would require a more sophisticated
analysis to keep properties with multiple baselines from carrying more weight
that properties with only a single baseline.

47



A different approach to pre-computing profiles

The deficiencies in my method for searching for a particular anomaly in a time
series are partially due to the way that I pre-compute the profile for an anomaly.
I compute the subword histogram for all of the words in the series. There may
be better ways to build a profile for an anomaly that more precisely encode the
characteristics of the anomaly.

One idea is to represent a profile as a sequence of subword histograms, where
each histogram represents a different inspection window from the profile series. I
would search for this type of profile by looking for a similar sequence as I slide the
inspection window across the time series.

Improvements to check-prop

I use check-prop to test my methods on real data, but the tool is far from produc-
tion quality. The code is not well organized, I have no process for deployment, and
there is no documentation. I do not have any central configuration interface. The
baseline profiles that check-prop uses are built using a separate process and sepa-
rate tools. Check-prop also has performance problems. Database queries take a
very long time, and some of the algorithms could be changed to increase perfor-
mance. In addition to the problems with check-prop itself, NodeScape v2, which
check-prop depends on for collection and storage of data, is not ready for release.
I have not thought much about security for either check-prop or NodeScape v2.
To release check-prop, I at least need to write documentation and installation
instructions for check-prop and must add some security features to NodeScape
v2.

Integration into other monitoring tools

I have implemented multi-property detection in RAACD as a front-end for
NodeScape, but I may be able to adapt multi-property detection to work with other
infrastructure monitoring packages. Specifically, I may be able to integrate multi-
property detection into Pulsar and Nagios. To integrate multi-property detection
into Pulsar, I would implement my method as a monitor. I would use a discomfort
level of 0 for hosts that behave normally and a much higher discomfort level, per-
haps 20, for hosts that behave abnormally. I could vary the discomfort level based
on the number of properties exhibiting anomalous behavior.

There are two ways that I might integrate multi-property detection into Nagios.
Instead of applying multi-property detection to a set of anomaly scores, I would
use the results of service checks run by Nagios. I would implement multi-property
detection as a new service check. The service check would return WARNING if
several of the service checks that it monitors also return WARNING. I would re-
turn CRITICAL if several of the service checks return CRITICAL. This approach is
similar to on-demand checks in Nagios; on-demand checks allow Nagios to query
the state of the host when a service running on that host changes state. The second
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way that I might implement multi-property detection in Nagios is also as a service
check. The service check would return WARNING if multiple properties exhibit
anomalous behavior at once and would return CRITICAL if many properties ex-
hibit anomalous behavior at once.

Study and implementation of other anomaly detection schemes

I would like to study other schemes for detecting anomalous and abnormal behav-
ior. I briefly considered frequency-domain analysis and comparison with standard
deviation as approaches to detect anomalies. I did not find either method useful,
but a more thorough analysis of these methods may prove otherwise. I present
methods in sections 3.2 and 3.3 that may also be useful for analyzing computer
health information. I can substitute the immunology-based method for baseline
analysis with very few changes to the structure of my implementation. One weak-
ness of my approach is that I do not detect long-running trends. I may be able
to use TSX to build trend analysis into RAACD. Finally, there are other distance
functions for measuring distance between two SAX representations. I can apply
any of the above methods in place of comparing subword histograms.

Study other SAX alphabet sizes

I use a 4-symbol alphabet for SAX conversion, but SAX works with an alphabet
of any size. Pouget et al. apply SAX with a 7-symbol alphabet. One advantage
of a larger alphabet is that it preserves more information from the original series.
In particular, alphabets with an odd number of symbols provide a center symbol.
Because I only use 4 symbols, SAX converts a time series with only 1 value into a
series of words containing only the letter ”c”. SAX uses the symbol ”c” because
the average value of every normalized segment is 0, which is the center breakpoint
for an alphabet with an even number of symbols. The choice of the symbol ”c” for
the value 0 is arbitrary; I could have instead chosen to use ”b”. An alphabet with
an odd number of symbols eliminates this arbitrary decision. I would like to study
whether alphabets with odd cardinality provide better encodings than alphabets
with even cardinality.

Copyright c© J. Frank Roberts, 2013.
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