
University of Kentucky University of Kentucky

UKnowledge UKnowledge

Theses and Dissertations--Computer Science Computer Science

2013

APPLICATION OF SWARM AND REINFORCEMENT LEARNING APPLICATION OF SWARM AND REINFORCEMENT LEARNING

TECHNIQUES TO REQUIREMENTS TRACING TECHNIQUES TO REQUIREMENTS TRACING

Hakim Sultanov
University of Kentucky, hisult2@g.uky.edu

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Sultanov, Hakim, "APPLICATION OF SWARM AND REINFORCEMENT LEARNING TECHNIQUES TO
REQUIREMENTS TRACING" (2013). Theses and Dissertations--Computer Science. 10.
https://uknowledge.uky.edu/cs_etds/10

This Doctoral Dissertation is brought to you for free and open access by the Computer Science at UKnowledge. It has
been accepted for inclusion in Theses and Dissertations--Computer Science by an authorized administrator of
UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/cs_etds
https://uknowledge.uky.edu/cs
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

STUDENT AGREEMENT: STUDENT AGREEMENT:

I represent that my thesis or dissertation and abstract are my original work. Proper attribution

has been given to all outside sources. I understand that I am solely responsible for obtaining

any needed copyright permissions. I have obtained and attached hereto needed written

permission statements(s) from the owner(s) of each third-party copyrighted matter to be

included in my work, allowing electronic distribution (if such use is not permitted by the fair use

doctrine).

I hereby grant to The University of Kentucky and its agents the non-exclusive license to archive

and make accessible my work in whole or in part in all forms of media, now or hereafter known.

I agree that the document mentioned above may be made available immediately for worldwide

access unless a preapproved embargo applies.

I retain all other ownership rights to the copyright of my work. I also retain the right to use in

future works (such as articles or books) all or part of my work. I understand that I am free to

register the copyright to my work.

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE

The document mentioned above has been reviewed and accepted by the student’s advisor, on

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of

the program; we verify that this is the final, approved version of the student’s dissertation

including all changes required by the advisory committee. The undersigned agree to abide by

the statements above.

Hakim Sultanov, Student

Dr. Jane Hayes, Major Professor

Dr. Raphael Finkel, Director of Graduate Studies

APPLICATION OF SWARM AND REINFORCEMENT
LEARNING TECHNIQUES TO REQUIREMENTS

TRACING

DISSERTATION

A dissertation submitted in partial fulfillment of the

requirements for the degree of Doctor of Philosophy in the
College on Engineering at the University of Kentucky

By

Hakim Sultanov

Lexington, Kentucky
Director: Dr. Jane Huffman Hayes, Professor of Computer Science

Lexington, Kentucky
2013

Copyright © Hakim Sultanov 2013

ABSTRACT OF DISSERTATION

APPLICATION OF SWARM AND REINFORCEMENT

LEARNING TECHNIQUES TO REQUIREMENTS

TRACING

Today, software has become deeply woven into the fabric of our lives. The quality of the software
we depend on needs to be ensured at every phase of the Software Development Life Cycle
(SDLC). An analyst uses the requirements engineering process to gather and analyze system
requirements in the early stages of the SDLC. An undetected problem at the beginning of the
project can carry all the way through to the deployed product.

The Requirements Traceability Matrix (RTM) serves as a tool to demonstrate how requirements
are addressed by the design and implementation elements throughout the entire software
development lifecycle. Creating an RTM matrix by hand is an arduous task. Manual generation

of an RTM can be an error prone process as well.

As the size of the requirements and design document collection grows, it becomes more
challenging to ensure proper coverage of the requirements by the design elements, i.e., assure that
every requirement is addressed by at least one design element. The techniques used by the
existing requirements tracing tools take into account only the content of the documents to
establish possible links. We expect that if we take into account the relative order of the text
around the common terms within the inspected documents, we may discover candidate links with
a higher accuracy.

The aim of this research is to demonstrate how we can apply machine learning algorithms to
software requirements engineering problems. This work addresses the problem of requirements
tracing by viewing it in light of the Ant Colony Optimization (ACO) algorithm and a
reinforcement learning algorithm. By treating the documents as the starting (nest) and ending
points (sugar piles) of a path and the terms used in the documents as connecting nodes, a possible
link can be established and strengthened by attracting more agents (ants) onto a path between the
two documents by using pheromone deposits. The results of the work show that ACO and RL can
successfully establish links between two sets of documents.

KEYWORDS: Software Engineering, Requirements Engineering, Traceability,
Swarms, Reinforcement Learning

Hakim Sultanov

Student’s Signature

March 27, 2013

Date

APPLICATION OF SWARM AND REINFORCEMENT

LEARNING TECHNIQUES TO REQUIREMENTS

TRACING

By

Hakim Sultanov

Dr. Jane Huffman Hayes

Director of Dissertation

Dr. Raphael Finkel

Director of Graduate Studies

March 27, 2013

I dedicate my dissertation to my family and my parents. I express a deep appreciation of
the possibilities and brave world outlook given to me by my loving parents, Ismat

Sultanov and Sanobar Azimova.

I dedicate this work to my wife, Marianna Zagurovskaya, for being a gentle and loving
support, so needed, for completing this work. A special thanks to my children Arthur and
Marc, who shared my interest in learning about ants and provided cheerful and reflective

drawings of the process.

iii

ACKNOWLEDGEMENTS

I would like to thank Dr. Jane Hayes for her guidance and for being a patient and
outstanding advisor. I would also like to thank Dr. Judy Goldsmith for her valuable input.

Thanks also to my committee members Dr. Brent Seales and Dr. Kevin Donohue for their
support.

I would like to offer thanks to fellow graduate students Wei-Keat Kong, Wenbin Li, and
Jody Larsen for their support.

iv

Table of Content

ACKNOWLEDGEMENTS .. iii

Table of Content.. iv

List of Figures ... vi

List of Tables .. viii

1. Introduction ... 1

1.1 Requirements Tracing .. 1

1.2 Requirements Traceability Matrix ... 2

1.3 Problem Statement ... 4

1.4 Research Thesis .. 4

1.5 Scope of Research .. 5

1.6 Research Contributions .. 5

2. Background ... 6

2.1 Information Retrieval ... 6

2.2 IR Methods ... 7

 Boolean Retrieval.. 7 2.2.1

 Vector Space TF –IDF .. 8 2.2.2

2.3 Requirements Tracing .. 11

2.4 Swarm Intelligence... 14

2.5 Reinforcement Learning... 15

3. Related Work .. 18

3.1 Requirements Traceability ... 18

3.2 PSO and ACO Techniques ... 21

3.3 Machine Learning Techniques ... 23

4 Research Approach ... 26

4.1 Simple Swarm .. 29

4.2 Pheromone Swarm ... 31

5. Validation.. 34

5.1 Evaluation Approach .. 34

5.2 Hypotheses ... 34

5.3 Statistical Evaluation .. 34

5.4 Results to Date ... 35

v

 Simple Swarm Applied to the Pine Dataset .. 35 5.4.1

 Secondary measures for the Pine dataset .. 38 5.4.2

 Simple Swarm on CM1 dataset... 39 5.4.3

 Pheromone Swarm on the CM1 dataset .. 40 5.4.4

 Secondary measures for the CM1 dataset ... 42 5.4.5

5.5 Statistical Analysis ... 43

5.6 Threats to Validity.. 44

5.7 Threats to Validity.. 44

5.8 Overall Summary ... 45

6. Reinforcement Learning Model .. 48

6.1 Overview .. 48

 Path Saturation .. 55 6.1.1

 Experiment Design.. 56 6.1.2

6.2 Results .. 57

 Reinforcement Learning Initial Results and Points of Interest 57 6.2.1

 Reinforcement Learning on Pine .. 59 6.2.2

 Reinforcement Learning on CM1SUB ... 61 6.2.3

 Observations.. 62 6.2.4

 Hard Traces ... 65 6.2.5

6.3 Future Work ... 67

Appendix ... 68

References ... 71

Vita.. 75

vi

List of Figures
Figure 1.1 Boehm curve... 2
Figure 1.2. RTM requirements vs. design elements. .. 4
Figure 2.1 A term document incidence matrix. .. 7

Figure 2.2 Inverted index .. 8
Figure 2.3 Dictionary terms with TF count for documents A1, C1, and F1. 10

Figure 2.4 Forward tracing from design elements to test cases. 12
Figure 2.5 Backward tracing from use cases to requirements. ... 12
Figure 2.6 Candidate links. One design element is missing a link to test cases. 13

Figure 2.7 The interaction of the agent and the environment in reinforcement learning. 15
Figure 2.8 Value Iteration reinforcement learning pseudo code. 17

Figure 4.1 Vocabulary with documents compose the search space. 26
Figure 4.2 Positional index ... 27
Figure 4.3 Document to terms links inferred from the positional index. 27

Figure 4.4. Vocabulary with documents compose the search space. 28
Figure 4.5. Indirect index. Links from terms to documents containing the terms. 28

Figure 4.6 Agents tracing links from high- level to low-level elements via vocabulary .. 30
Figure 5.1 11-point Interpolated precision-recall curve for TF-IDF and simple swarm for
the Pine dataset.. 35

Figure 5.2 F and F2 measures for TF-IDF and simple swarm on the Pine dataset.......... 36
Figure 5.3 11-point interpolated precision-recall curve for pheromone swarm and TF-

IDF for the Pine dataset .. 37
Figure 5.4 F measure for TF-IDF and pheromone swarm for the Pine dataset 37
Figure 5.5 F2 measure for TF-IDF and pheromone swarm for the Pine dataset 38

Figure 5.6 DiffAR vs. recall for simple swarm, pheromone swarm, and TF-IDF for the
Pine.. 38
Figure 5.7 MAP vs. recall for simple swarm, pheromone swarm, and TF-IDF for the Pine

dataset.. 39
Figure 5.8 11-point interpolated precision-recall curve for the simple swarm and TF-IDF

methods on the CM1 dataset ... 39
Figure 5.9 F and F2 for the simple swarm and TF-IDF methods on the CM1 dataset 40
Figure 5.10 11-point interpolated precision-recall curve for pheromone swarm, delta = 1,

3, 5, and the TF-IDF methods for the CM1 dataset .. 41
Figure 5.11 F and F2 measures for pheromone swarm, delta=1, and TF-IDF methods for

the CM1 dataset .. 41
Figure 5.12 F measure for the pheromone swarm, delta = 1, 3, 5, and the TF-IDF methods
for the CM1 dataset... 42

Figure 5.13 F2 measure for the pheromone swarm, delta = 1, 3, 5, and the TF-IDF
methods for the CM1 dataset .. 42

Figure 5.14 DiffAR vs. recall for simple swarm, pheromone swarm, and TF-IDF methods
on the CM1 dataset ... 43
Figure 5.15 MAP vs. recall for the simple swarm, pheromone swarm, and TF-IDF

methods on CM1 ... 43
Figure 6.1. RL Agent state transition diagram. ... 49

Figure 6.2. Term selection probability based on linear selection behavior. 52
Figure 6.3. Term selection probability based on quadratic selection behavior. 52

vii

Figure 6.4 Precision-recall curves for TF-IDF and initial phase of reinforcement learning
methods for the Pine dataset ... 58

Figure 6.5 Precision-recall curves for TF-IDF and initial phase of reinforcement learning
methods for the CM1SUB Dataset ... 58

Figure 6.6 Precision-recall curves for TF-IDF and reinforcement learning methods for
the Pine method... 59
Figure 6.7 Precision-recall curves for TF-IDF and reinforcement learning methods for the

CM1SUB... 61
Figure 6.8 Precision-recall curves ideal vs. typical .. 63

Figure 6.9 Two documents sharing common segments .. 64
Figure 6.10 Precision-recall curve for WARC. .. 65
Figure 6.11 Two hard trace documents from WARC dataset comprising missed link 66

Figure 6.12 Two hard trace documents from WARC dataset comprising link discovered
by the RL method.. 66

viii

List of Tables

Table 5.1 Statistical Analysis for the TF-IDF, simple swarm and pheromone swarm
methods ... 44

Table 6.1. Agent actions. .. 50
Table 6.2. Term selection probability based on the transition values and selection

behavior... 51

1

1. Introduction
Today, software has become deeply woven into the fabric of our lives. Software controls
a pump meter at a gas station, manages concurrent display of maps and conversation on a
cell phone, and controls the ascent of rockets into space. Software malfunctions can cause

disasters both small and large. For example, a malfunction in a rocket’s control software
may cause the rocket to disintegrate in pieces like the Ariane 5 [1]. For these reasons, the

quality of the software we depend on needs to be ensured at every phase of the Software
Development Life Cycle (SDLC).

The SDLC consists of four main phases: Planning, Analysis, Design, and Implementation
and Testing [2]. The planning phase aims to address justifications for the software

system, feasibility studies, risk management, etc. During the analysis phase, the
requirements for the future software system are elicited, gathered, negotiated, and
validated. When the SDLC enters the design phase, these requirements are transformed

into design elements describing how the required functionality is achieved. The
implementation phase encompasses the development and test of the designed elements.

1.1 Requirements Tracing

An analyst uses the requirements engineering process to gather and analyze system
requirements. During this process, the analyst clarifies customer needs, conducts

feasibility studies, presents and specifies a solution, and cross validates the specifications.
In a large-scale project, it is quite possible to miss or misinterpret some of the identified

requirements. In his book, Patterns of Software System Failure and Success, Jones says
that more than 80% of the failures in large-scale mission-critical projects are attributed to
undetected problems in the early phases of the SDLC [3]. An undetected problem at the

beginning of the project can carry all the way through to the deployed product; this is
called a latent defect or latent error.

Such undetected problems can have the additional effect of lengthening a project’s
timeline and expanding the development budget. Boehm and Basili point out that as the

software life cycle progresses, the cost of fixing or changing software increases. They
claim that finding and fixing a software problem after delivery is often one hundred times

more expensive than finding and fixing it during the requirements and design phase [4].
Boehm’s curve, shown below, illustrates a simple idea: create a proper set of
requirements accompanied by good and detailed design or face the strong possibility of

paying a higher price later [5].

2

Figure 1.1 Boehm curve

To address and mitigate the possibility of costly latent errors, an analyst should collect,

note, and track the software requirements during the early phases of the SDLC.

Two sets of documents are typically created in the early phases of any software project:
the Software Requirements Specification (SRS) and the Software Design Description
(SDD). These two sets of documents capture the information needed to properly identify

the required functionality (SRS) and then define how the software should be structured to
provide the functionality required (SDD).

According to the Software Engineering Body of Knowledge (SWEBOK), a software
requirement is “a property which must be exhibited by software developed or adapted to

solve a particular problem [6].” These requirements are captured in the Software
Requirements Specification (SRS). This document is defined by IEEE Standard 1012-

1998 as “documentation of the essential requirements (i.e., functions, performance,
design constraints, and attributes) of the software and its external interfaces. The software
requirements are derived from the system specification [6].”

The Software Design Description (SDD) is a “representation of software created to

facilitate analysis, planning, implementation, and decision making. The software design
description is used as a medium for communicating software design information, and
may be thought of as a blueprint or model of the system [7].”

 1.2 Requirements Traceability Matrix

The process of Validation and Verification (V&V) uses artifacts created during early

phases of the Software Development Life Cycle (SDLC). Among other things, V&V
ensures that the every requirement specification element is adequately reflected by at
least one design description element.

The Requirements Traceability Matrix (RTM) serves as a tool to demonstrate how

requirements are addressed by the design and implementation elements throughout the
entire software development lifecycle.

3

The activity of building an RTM is a part of the requirements tracing process. The
process involves seven steps [8]:

1. Identify each requirement and design element.

2. Assign a unique identifier to each requirement and design element.
3. For each requirement, locate all matching design elements.
4. For each design element, locate a parent element in the collection of requirements.

5. Determine if each requirement has been completely satisfied.
6. Prepare a report that presents the traceability matrix.

7. Prepare a summary report that expresses the level of traceability of the document
pair.

Creating an RTM matrix by hand is an arduous task. For each combination of
requirements and design documents, an analyst must open two documents (the

requirement document and the design document) using a word processor application and
then search for key terms and phrases that may be relevant or important for establishing a
possible logical link between two documents.

For example, an analyst opens a requirement document from the requirements collection,

analyzes the content, and notes main points. Then the analyst opens a document from the
design elements collection and searches for key ideas, terms, or phrases in the opened
design document. Here, we make an assumption that all documents are text based. This

process of opening, analyzing, and searching within each document is repeated for every
pair of requirement and design documents.

An RTM provides a view of the requirements to design elements mapping in a matrix
form. Each row corresponds to a requirement. Each column corresponds to a design

element. Requirement elements addressed by the design elements are marked in an
appropriate row and column. Figure 1.2 displays a sample RTM for Requirements to

Design Traceability.

The following are sample requirements (R.1 through R.4) and design elements (D.1

through D.4) corresponding to Figure 1.2.

R.1 The image viewer will allow the viewing of images.
R.2 The system shall mark images checked for printing.
R.3 The system shall allow printing image sections.

R.4 The system shall provide information about displayed images.

D.1 Annotation overlay to indicate marked images.
D.2 A list to present the indexes and information about the images.
D.3 A user interface to display images and respective information and controls to print

images.
D.4 A cropper tool to select sections of an image.

4

 D.1 D.2 D.3 D.4

R.1 X

R.2 X X

R.3 X

R.4 X

Figure 1.2. RTM requirements vs. design elements.

We can see that requirements R1 and R2 are addressed by design element D3. The
requirements state that the system needs to be able to view and print images. These
requirements are addressed by the design description of a user interface to view and print

the images.

As the example shows, in addition to being labor intensive, a manual generation of an
RTM can be an error prone process as well. The manual process requires a human analyst
to cross check every pair of documents. Luckily, there are automatic tools designed to

alleviate the process of matching requirements artifacts with design elements [9][10].

 1.3 Problem Statement

As the size of the requirements and design document collection grows, it becomes more
challenging to ensure proper coverage of the requirements by the design elements, i.e.
assure that every requirement is addressed by at least one design element. The techniques

used by the existing requirements tracing tools take into account only the content of the
documents to establish possible links. We expect that if we take into account the relative

order of the text around the common terms within the inspected documents, we may
discover candidate links with a higher accuracy.

The aim of this research is to demonstrate how we can apply machine learning algorithms
to software requirements engineering problems. This work addresses the problem of

requirements tracing by viewing it in light of the Ant Colony Optimization (ACO)
algorithm [11] and a reinforcement learning algorithm [12]. By treating the documents as
the starting (nest) and ending points (sugar piles) of a path and the terms used in the

documents as connecting nodes, a possible link can be established and strengthened by
attracting more agents (ants) onto a path between the two documents by using pheromone

deposits. The results of the work show that ACO and RL can successfully establish links
between two sets of documents [13].

 1.4 Research Thesis

The research demonstrates two approaches, one based on the Ant Colony Optimization
algorithm and the other is based on Reinforcement Learning, to identify candidate links

between two collections of documents: the requirements and the design documents.

The requirements tracing tool is based on the existing tool Retro.NET [9]. Our tool

establishes the candidate links by applying the Ant Colony Optimization algorithm and
Reinforcement Learning.

5

 1.5 Scope of Research

The research is aimed at English textual software requirements and design documents.

An assumption is made that requirements and design documents are presented as two
separate collections.

 1.6 Research Contributions

This research makes the following contributions: establish candidate links based on the

common textual segments between documents; and emphasize and demonstrate the
benefit of treating documents as collection of phrases, rather than “bag of words.” As
consequence of this approach, the suggested method establishes links of a higher quality

between textual documents. The quality of the links can be evaluated through the ratio of
the number of correctly suggested links vs. the total number of suggested links. The

higher the ratio, the better is the quality of the links. A correct list of links between the
document pair ensures higher efficiency for the human analyst performing the tracing
process.

The remainder of the dissertation is organized as follows: Chapter 2 provides necessary

background information. Chapter 2 consists of sections on Requirements Traceability,
Information Retrieval, Swarm Intelligence, and Reinforcement Learning. Chapter 3
surveys the related work in the field. Chapter 4 discusses pheromone swarm technique

and the results obtained through this technique. Chapter 5 presents Reinforcement
Learning algorithm applied to the requirements tracing problem. Chapter 6 contains the

dissertation conclusions and directions for possible future work.

6

2 Background
To understand the proposed ideas using the swarm technique and the reinforcement
learning for requirements tracing, it is necessary to understand the basic concepts in the
following areas: information retrieval (IR), requirements tracing, swarm intelligence, and

reinforcement learning (RL).

 2.1 Information Retrieval

Information retrieval (IR) is the process of finding documents relevant to an information
request within a collection of documents, usually a search query. In a typical scenario, the
documents returned in response to a query are sorted by weight relevance. The relevance

weight is a computer calculated numeric value indicating how closely the returned
document matches the requesting query; the higher the weight, the more relevant the

document is to the query. From a user perspective, a document is relevant if the user
considers the document relevant to the original query. The user may not agree with the
high weight relevance of every returned document.

The effectiveness and accuracy of the IR method can be evaluated through recall and

precision measurements. Recall is evaluated as the total number of relevant retrieved
documents divided by the total number of relevant documents in the whole collection.

collectionin relevant of#

retrievedrelevant of#
Recall

2.1.1

Precision is evaluated as the total number of relevant retrieved documents divided by the
total number of retrieved documents:

retrieved of#

retrievedrelevant of#
Precision

2.1.2

Precision and recall can be combined into a weighted harmonic mean:

F =

RP

RP

2

2 1

,where),0[2 .
2.1.3

When 2 = 1, precision and recall are balanced in the measure, this is called 1F measure.

When 2 = 2, recall has more weight than precision, this is called 2F measure.

Higher recall and precision measurements indicate higher completeness and accuracy of
the retrieved data.

7

A secondary measurement such as Mean Average Precision (MAP) measures “the quality

across the recall levels” [14]. The higher the MAP, the closer the true links are to the top

of the candidate link list. For hj in a set of textual artifacts H={h-1,…, h-n}, a subset of

relevant documents {d-1,…, d-m
j
}, and LjT L={(d,h)|sim(d,h)} a subset of true links

ranked by relevance, MAP is evaluated as follows:

 MAP(H) = .)(Pr
11

1

||

1

jm

k

jT

H

j j

Lecision
mH

 2.1.4

A high value of MAP implies that true links are ranked higher in the list of the returned

results.

 2.2 IR Methods

There are several IR methods. The following two methods are the most common:

 Boolean

 Vector space

In the rest of this section, we introduce these techniques.

2.2.1 Boolean Retrieval

In the Boolean Retrieval model, a query is constructed in the form of a Boolean
expression of terms. In this model, each document is treated as a collection of

terms/words. One way to determine the presence of a word in a document is to scan the
documents linearly. To facilitate the search, the incidence matrix is constructed. The

incidence matrix indicates the presence of a term in a document; one (1) indicates the
document contains the term, zero (0) indicates the document does not contain the term.

 A1.txt A2.txt C2.txt C3.txt D3.txt F1.txt
Personal 1 0 0 0 0 0

Distribution 1 1 0 0 0 0
List 1 1 1 0 1 0
Email 0 1 1 1 0 1

System 0 0 0 1 1 0
..

Store 1 0 0 0 1 1
Figure 2.1 A term document incidence matrix.

Examining Figure 2.1, a query of Personal AND Distribution AND List AND Store, we
will take the vectors for these terms and do a bitwise AND:

 100000 AND 110000 AND 111010 AND 100011 AND = 100000

The result for this query is document A1.txt. A1.txt is the only document containing the
term Personal.

8

The limitation of Boolean Retrieval can easily be discovered by querying a collection of
1 million documents with 100,000 distinct terms. It would be hard to fit a matrix of 106 *

105 = 1011 bits in the operating memory of a computer.

To overcome the limitations of the incidence matrix for a huge collection of documents,
the inverted index has become a major concept in the field of information retrieval [15].
All of the distinct terms across the documents in the collection comprise a dictionary. For

each term in the dictionary, the inverted matrix maintains a list of documents indicating
where the term is encountered as shown in Figure 2.2. The list of document occurrences

is called a posting.

Figure 2.2 Inverted index

During the construction of the inverted index, the document frequency of the term is
stored along with the document postings. The document frequency indicates how many

documents in the collection contain the term.

Even though the Boolean Retrieval model does not utilize the document frequency count,
there are other IR methods that use the document frequency to calculate the relevance
weight for query results. One such method is the Vector Space model with Term

Frequency Inverted Document Frequency (TF-IDF) weighting.

2.2.2 Vector Space TF –IDF

Unlike the Boolean Retrieval, free text queries do not use any connecting search

operators such as AND, OR, or NOT. The Vector Space Model (VSM) supports
document searches for these types of queries by representing the queries and documents

as multi-dimensional vectors. The multi-dimensional space is constructed using all terms

Personal

Distribution

List

Email

System

Store
A1.txt

A1.txt

A1

.txt

 A1.txt

A1.txt

A2.txt

C3.txt

A2.txt

A2.txt C2.txt D3.txt

C2.txt C3.txt F1.txt

D3.txt

D3.txt F1.txt

1

2

4

4

2

3

9

in the dictionary, using each term as an orthogonal measurement in the multidimensional
space.

To measure the similarity between two vectors in the multi-dimensional space, the VSM

uses the Euclidean cosine similarity between the vectors. The size of the vector space is
equal to the size of the dictionary (each term represents a dimension). If d is a document,

then we can denote a vector derived from the document as V

(d). The vector

coordinates can be represented as:

V

(d) = {v1, v2,…,vn},

where vi = 0 if the term i is not present in the document.

Cosine similarity in the Euclidean multi-dimensional space is estimated by the following
formula:

Sim (V

1

,V

2

) =

||||
21

21

VV

VV

 , 2.2.1

where VV

21
 is a dot product of two vectors. The dot product between two vectors x

and y

 is estimated as:

N

i

ii yxyx
1

2.2.2

The Euclidian length x

 is estimated as:

x

=

N

i

ix
1

2

2.2.3

The effect of

||
1

1

V

V

 is to normalize V

1

to a unit vector. The unit vector is obtained from a

vector in N-dimensional space that has the same orientation, but its length is equal to 1.

When we consider a document as a vector in the multi-dimensional space represented by

dictionary terms, we can treat the term frequency as a coordinate corresponding to the
term. For example, if the documents A1.txt, C1.txt, and F1.txt consist of the following
text, respectively:

“A1. The system shall have an address book available to store contacts. The

address book shall store contacts in groups as well.”

“C1. The system shall support a text-based interface to compose mail, use mail

addresses from an address book, and attach mail stored in folders.”

10

“F1. The system shall support the ability for users to create a folder to store mail.

The system shall support uploading mail that is stored in folders.”

The dictionary shown in Figure 2.3 presents the terms and their respective counts for
documents A1, C1, and F1. The column TF stands for term frequency. TF is the total
count of the term in the collection of documents.

 A1 C1 F1 TF

the 2 1 2 5

system 1 1 2 4

shall 2 1 2 5

have 1 0 0 1

an 1 0 0 1

address 2 2 0 1

book 2 1 0 2

available 1 0 0 1

to 1 0 0 1

store 2 0 0 2

contact 1 0 0 1

group 1 0 0 1

well 1 0 0 1

text-based 0 1 0 1

interface 0 1 0 1

compose 0 1 0 1

use 0 1 0 1

mail 0 3 1 3

attach 0 1 1 1

support 0 0 2 2

ability 0 0 1 1

user 0 0 1 1

folder 0 1 2 3

store 0 1 2 3

upload 0 0 1 1

compose 0 0 1 1

Figure 2.3 Dictionary terms with TF count for documents A1, C1, and F1.

In our example, if we treat the term frequencies as coordinates in the multi-dimensional

space, the vector corresponding to the documents A1, C1, and F1 will look like this:

V

(A1) = (2, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

V

(C1) = (1, 1, 1, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 3, 1, 0, 0, 0, 1, 1, 0, 0)

V

(F1) = (2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 1, 1, 2, 2, 1, 1)

11

A cursory look at the three vectors shows common terms among the vectors. The
problem with this approach is that all terms are treated equally. The term’s importance is

not considered when assessing a query. For example, the terms “the,” “system,” and
“shall” are encountered in all documents. Thus, the documents may have these terms in
common, but may not be related. Frequently used words such as the articles “a,” “an,”

and “the” and prepositions “to,” “for,” and “from” are removed from consideration. The
removed terms belong to a stopword list. The stopword list contains all terms that should

be extracted and ignored before analyzing the documents.

The stopword preprocessing helps to reduce the amount of noise coming from the

frequent terms that do not carry much information. The importance of a term in the
collection can be evaluated though the term’s relative frequency. The document

frequency, df,t , is the total number of the terms in a document. The inverse document
frequency (idf) of a term t, is estimated as follows:

df
t

t

N
idf log , 2.2.4

where N is the total number of documents in the collection.

The idf for a frequent term is low and is high for the rare term. The tf-idf promotes the

importance of a term in a document using the composite weight of the term frequency
and inverse document frequency:

 tf-idft ,d = tft ,d x idft
2.2.5

Thus, the importance of a term in a document is high for a rare term (relative to the whole
collection). The importance weight is amplified by term frequency in the document.

 2.3Requirements Tracing

In the introduction, we covered the importance of requirements tracing, the RTM

provides the results of the tracing activity. Requirements tracing plays an important role
in the project life cycle because it enables analysts “to describe and follow the life of a
requirement, in both a forward and a backward direction, through the whole system’s life

cycle [16].”

As the software project evolves, the project documentation is augmented by use cases.
The use cases typically yield the software requirements. Sometimes, the use cases are
used as design artifacts. In this case the requirements are interpreted though the use cases.

When the requirements serve as a basis for layout of design elements, the testing ensures
the correctness of the produced code from the source requirements. To trace the

requirements forward, we trace the use cases to the requirements specification or

12

requirements specifications to the design elements. To trace backwards, we might trace
from the use cases back to the requirements or from design elements to the requirements.

Figure 2.4 and
Figure 2.5 show the forward and backward tracing, respectively.

Figure 2.4 Forward tracing from design elements to test cases.

Figure 2.5 Backward tracing from use cases to requirements.

As the result of tracing, we establish candidate links between two collections of

documents. A candidate link is a logical connection between two documents; if a

D1.txt

A1.txt

DA1.txt

A2.txt

DFC1.txt

C1.txt

DAF1.txt

F1.txt

Design Elements

Requiremetns

TAL1.txt

UC-ALB1.txt

TC-A2.txt

UC-ALB2.txt

TC6-A.txt

UC-ALX3.txt

T-F1.txt

UC-F1.txt

Test Cases

Use Cases

13

document TAL1.txt (Figure 2.6) addresses ideas mentioned in document DA1.txt, we say
there is a link between DA1.txt and TAL1.txt. For example, if in the forward tracing

from design elements to test cases (Figure 2.4) there is no link coming from element
DAF1.txt, we can immediately assess that our test cases do not fully address all of the

design elements.

Figure 2.6 Candidate links. One design element is missing a link to test cases.

The TF-IDF method creates a list of candidate links between the two document
collections with the “weight” assigned to the links for each suggested pair of documents.

The weight represents a “similarity” between the documents. The higher the weight the
“closer” the documents are to each other. The closeness is evaluated by having similar

terms. Also, the value of the “weight” is used as a filter. Links below a certain threshold
are cut off from consideration. A low value of the weight implies that the documents
share only a few terms; a higher value of the weight indicates that documents share many

terms. By lowering the threshold, we create a large list of candidate links. The documents
in such links may share just a few terms, but have very little meaning in common. The

low threshold value pulls many document pairs for consideration; hence we may obtain a
higher recall, but the precision of such candidate links will suffer: only a small fraction of
the document pairs can be identified as true links. With a higher threshold value, we

obtain more precise results, but not all possible true links are identified. Thus the results
of the TF-IDF method may range from a very low recall and high precision to a high

recall and low precision.

Another shortcoming of the TF-IDF method is that it treats a textual document as a bag of

words. The relative order of the terms is not important for the TF-IDF method. We
propose a method that identifies common segments between the documents; thus shifting

the focus onto treating documents as collections of phrases. One of the objectives of the
proposed research is to discover the candidate links between two sets of software

D1.txt

DA1.txt

DFC1.txt

DAF1.txt

Design Elements

TAL1.txt

TC-A2.txt

TC6-A.txt

T-F1.txt

Test Cases

14

requirement documents automatically by using swarm intelligence. Another objective is
to provide candidate links that do not have either high recall and low precision or low

recall and high precision. We want to have our recall and precision values come a step
closer to the ideal location in the precision recall graph – top right corner, i.e., high recall

and high precision.

 2.4Swarm Intelligence

Insects such as bees and ants, small and simple individually, can accomplish tremendous
tasks in a collective effort. Swarm intelligence describes computational algorithms that

inspire computer scientists by the fact that the insects’ achievements and actions are all
accomplished through local peer-to-peer interactions. A number of scientists have studied
the behavior of ants in foraging for food. Jean-Louis Deneubourg described the self-

organizing behavior of ant colonies, where ants used pheromone communication [17].
The idea of using pheromone trails as a method of communicating through the

environment is at the heart of the ant colony optimization (ACO) algorithm [11]. This
algorithm has been used in a number of computer science applications, such as the
traveling salesperson problem, and has applicability to requirements engineering

problems.

Consider a graph G = (V, E), where V is a set of vertices and E is a matrix representing
connections between the vertices. For each edge, (i, j), between the nodes i and j in the
graph, we assign a pheromone value τij. In the initial step, the ACO will assign each edge

in the graph a zero pheromone value, τij(0). Also, a group of ants k = 1,...,n is positioned
at the source node.

For every iteration, each ant builds a path to the destination node. Also, at every node,

each ant decides the next link to take. If ant k is at node i, the probability
k

ijp (t) of

selecting the next node j k

iN , which belongs to a set of nodes adjacent to i [11], is:

 N 0

N
)(

)(

)(

k

i

k

i

jif

jif
t

t

tp
k
iNj

a

ij

ij

k

ij

 2.4.1

15

where Nk

i
is the set of nodes accessible for agent k from the node i. If node j is not

accessible for ant k from the node i, the probability
k

ijp (t)=0. In the formula above, α is a

parameter which amplifies the attractiveness of the pheromone trail. Large values of α
attribute importance to pheromone.

 2.5Reinforcement Learning

The reinforcement learning (RL) model is a machine learning technique dealing with the
actions an agent needs to take in order to maximize collected rewards as a result of these

actions. The agents in RL learn the actions to maximize the long term, discounted,
expected reward by interacting with the environment.

The RL model can be presented as (S, A,{Psa},γ, R), where

- S is a set of environment states

- A are actions available to agents
- Psa is a state transition distribution, i.e., the probability of transitioning into

next state by taking an action a while being at state s and ∑ ()
- γ is a discount factor

- R is a reward function, R , is domain of real numbers.

Reward is a scalar value associated with transitioning into states.

In reinforcement learning (RL), agents probe the environment though a discrete sequence

of steps and actions over time t, where t = 0, 1, 2, 3 etc. At each step t, the agent evaluates
the state st S, where S is a set of all possible states. Based on the state st, the agent

selects an action at A(st), where A is a set of possible actions available to the agent in

state st. As the result of the action taken at the moment t, i.e. t-th time step, the agent
gains reward rt+1, and moves to the state st+1 [12]. Figure 2.7 displays the interaction
between the agent and environment [12].

Figure 2.7 The interaction of the agent and the environment in reinforcement learning.

As shown in, Figure 2.7 the agent receives the state st as an input and produces action at

as an output. The mapping of the states into actions is determined by a policy πt. Since

each state st can present a set of possible actions A(st), the policy πt denotes the
probabilities of selecting one of the possible actions determined by the state st. The

16

mapping of states to actions is represented as πt(s,a), the probability of selecting action
a=at, when state s=st. The agent’s goal is to maximize the total rewards acquired in the

long run by choosing actions according to the distribution specified by π.

The reward the agent collects depends upon the actions it takes and their probabilistic
effects. To estimate the desirability of a state, some RL algorithms use the notion of value
function. Formally, the value function is represented as:

 () { | } {∑

 | }

,

(2.5.1)

where Rt is a function of the reward sequence [12]. The value {} is the expected

reward value given to the agent that follows the policy π. The discount coefficient γ

[0, 1] signifies preference for the immediate or future rewards. If γ approaches 0, the
immediate rewards are assigned the most value. When γ approaches 1, the future
rewards and immediate rewards are valued more nearly equally.

Bellman’s equation [12] provides another way to express the value of a state s:

 () ∑ ()∑

 ()

(2.5.2)

where,
 , is the probability of reaching state s` from s if action a is taken;

 is the

reward associated with reaching state s` from s by taking action a.

A policy that maximizes expected return for all states is called an optimal policy and is

denoted π*. Formally, π* π`
, if and only if, Vπ*(s) Vπ`(s) for all s S. Alternatively,

we can define V* as:

 V*(s) = ()

(2.5.3)

There exist at least one policy and its expected return is better than or equal to that of π*

for all the states, Bellman’s theorem [12]. If there are several policies, i.e., more than one

policy, that allow agents to reach maximal expected return, we still denote these policies
as π*.

One way to determine an optimal policy is to use the value iteration algorithm [12]. The
value iteration algorithm is an iterative backup operation. The algorithm combines an

immediate policy improvement for the current state and the values of states reachable
from the current state in the following form:

 () ∑

 ()

(2.5.4)

where
 and

 bear the same meaning as defined in equation (2.5.2). The value of

state s is maximized across all actions a available at s. The pseudo code for the value
iteration algorithm [12] is listed in Fig. 2.8.

17

Initialize V(s) =0, for all s S
Repeat

 For each s S

 V ()

 V(s)
∑ ()

 (| ()|)
 Until ()

Output a deterministic policy, π, such that

 ()

∑

 ()

Figure 2.8 Value Iteration reinforcement learning pseudo code.

To apply the reinforcement learning approach to the traceability problem, we constructed

a search space, i.e., an environment. After the states, actions, and rewards are established,
the value iteration algorithm is executed. The value iteration algorithm outputs actions for

each state. The actions established for the states determine the navigation heuristics for
the agents.

The idea of building a path from the source node to the destination node resonates well
with the activity of establishing candidate links in the requirements traceability process.

18

3 Related Work

 3.1 Requirements Traceability

In this section, we address traceability link generation, swarm techniques, and
reinforcement learning. As mentioned earlier, candidate link generation is concerned with

retrieving the relevant elements from a given textual artifact pair. The candidate link list
is reviewed by an analyst to determine if each link is a true relevant link or not.

In 1994, Gotel and Finkelstein identified a lack of automatic tools to conduct
requirements traceability activities [18]. Since then, much work has been done to remedy

this problem by applying information retrieval techniques to the candidate link generation
problem. Antoniol et al. [19] used the vector space model (VSM) and a probabilistic

model to recover traceability from source code modules to man pages and functional
requirements. In a probabilistic model the documents are ranked based on the probability
of being relevant to a query. The authors used a Bayesian classifier “to score the

sequence of mnemonics extracted from each source code components against the models.
[19] ” With VSM, they achieved the highest recall (100%) for the Albergate dataset by

setting the threshold to 10% of the highest similarity measure. However, they only
achieved a precision of 11.98%.

In the VSM and probabilistic models, links are established between documents using
common weighted terms. Specifically, terms are assigned weights based on term

frequency and term count in the document collection. The swarm technique differs in that
links between documents are established by discovering and promoting the importance of
common phrases in the inspected documents. The reinforcement learning method

discovers candidate links by optimizing the search heuristics (Chapter 5).

Another perspective on requirements traceability is goal-centric traceability, as
demonstrated by Huang et al. [20]. Huang proposed a model to establish links among
subsets of artifacts that an analyst considered as covering a certain objective. For

example, the artifacts may describe the security features of a system. The authors
demonstrated how goal-centric traceability keeps track of the traces between goals and

documents. The model provided change impact analysis through automated traceability.
In our approach, we use the swarm technique instead of the goal-centric traceability
model. This was done since the swarm technique does not require an initial classification

of the documents as related to a particular goal or objective. This was also done because
Huang’s approach potentially increases the possibility of creating too many traces

between documents in the subset. To manage this possibility, we looked at a scoped
approach to traceability management as described by Lago et al. [21]. The method
described by Lago et al. takes on the traceability task by focusing on selected activities,

rather than by using an automatic “trace all” approach. Similar to the goal-centric
traceability in Huang’s work, Lago’s method requires an initial selection of artifacts

related to the target activities. Unlike our swarm technique, the scoped approach traces
only selected items.

19

Panis [22] states that 26 engineers at Teradyne expressed their preference to see the
traced content of a requirement rather than see a simple identifier. He found that

engineers place the most value on traceability information when they are creating
documents.

Further, according to Egyed et al. [23], an analyst takes one to two minutes, on average,
to manually establish traces from code to requirements. They also found that recovery of

method traces takes 3 - 6 times longer than recovering class traces (also manually). The
swarm technique provides a method to generate trace links in an automatic fashion.

While this time reduction is significant, there are still additional issues to deal with in
order to improve the quality of the candidate links generated. Specifically, we had to
select a context to establish the trace links. To do this, we first looked at work done by

DeLucia et al. [24].

DeLucia et al. used a traceability recovery tool based on Latent Semantic Indexing (LSI).
By introducing categorization, the DeLucia et al. reached a precision of 25% with 90%

recall. Without categorization and at the same 90% level of recall, the precision reached
only 17%. Marcus and Maletic [25] applied the LSI technique to the same Albergate
dataset used by Antoniol et al. The LSI technique identifies the patterns and concepts

contained in a collection of text by establishing associations among terms occurring in
similar contexts [24]. Marcus and Maletic achieved a precision of 16.38% at 100% recall

using this technique.

In effect, the LSI technique uses a document as the context. The swarm technique differs

by establishing candidate links between two collections of documents based on similar
terms occurring in the neighborhood of common terms; the neighborhood of a linking

term acts as a “context.”

Swarm techniques and the RL method further expand neighborhood terms by using a

thesaurus. This approach discovers links through synonymous terms. The value of using a
thesaurus was validated by Hayes, Dekhtyar, and Osborne [26] when they applied VSM

with a thesaurus to a dataset and compared this method to manual tracing and to a
proprietary tool. They achieved a higher precision using manual tracing compared to the
proprietary tool: 46% vs. 38.8%. Also the manual tracing scored better in terms of

precision than the VSM + thesaurus method: 46% vs. 40.7%. At the same time, VSM +
thesaurus method outperformed the other two approaches in terms of recall, (85.4%

compared to 43.9% for manual and 63.4% for the proprietary tool). Thus, the use of the
thesaurus expanded the term base. As a result, additional links were discovered between
textual chunks expressing similar ideas and phrases using different terms.

By using phrasing as a way to improve the precision of automated IR traces, Zou et al.

[27] obtained improvements of almost 20% for one dataset when examining the top 5%
of the returned candidate links. Their work focuses on establishing “similar” areas
between documents. The similar areas are established through shared common terms in

the neighborhood of the linking terms. In this regard, “similar neighborhoods” in our
work resemble the phrasing technique used by Zou et al. [27].

20

Phrasing is similar to the idea of ‘lexical affinities’ as expressed by Maarek et al. [28] and
by Niu and Easterbrook [29]. Their research considered two word units within a single

sentence. The ‘lexical affinities’ limit the neighborhood window to a maximum of five
terms apart. In other words, terms occurring relatively close to each other in two

documents form related phrases. The related phrases in two documents can be viewed as
common segments, creating a logical link between the documents.

This idea of small common segments between two documents appears to be a valid
starting point for investigating the swarm behavior on the traceability problem. Unlike

the ‘lexical affinities’ method, the swarm technique considers terms that may cross the
boundaries of a sentence. Furthermore, the swarm technique does not require any
knowledge about the part of speech for a given term, whereas the ‘lexical affinities’

method deals with two-word phrases: noun verb pairs.

Zisman and Spanoudakis [30] examined ways to generate traceability links by applying
rules to artifacts that had been tagged with the parts of speech. In their work, the authors
established four types of traceability relationships based on the grammatical tagging of

the textual artifacts. The proposed swarm technique does not perform such fine-grained
classification of traceability links. The swarm agents simply identify the links based on

the common vocabulary base with the purpose of simplifying the algorithm and the
search heuristics.

The effect of the vocabulary base on traceability accuracy (using both artifacts versus just
the low-level artifact to build the vocabulary) was studied by Sundaramet et al. [31]; in

the study, they found support for using only the low-level artifact.

In general, the above techniques have been able to achieve excellent recall [26] [31]

[32], but often at the expense of precision that is only borderline acceptable at best. The
work described in this dissertation differs in that it uses a “greedy algorithm” approach to

generate the candidate link lists with the goal of increasing precision.

A greedy algorithm will potentially increase precision because it selects the optimal link

to follow, which is optimal from the agent’s point of view. This algorithm also does not
require tagging parts of speech or phrasing, simplifying the process of building links and

reducing the amount of time required to conduct searches.

To evaluate the performance of this method, we use traditional IR measurements: recall,

precision, F harmonics, mean average precision (MAP), as well as several other
secondary measurements.

Zou et al. [27] use average precision (AP) to measure the internal quality of candidate
link lists. AP looks at a number of recall levels such as 10% recall, 20% recall, etc., and

averages the precision changes of each, thus returning only one value. For similar
reasons, we prefer mean average precision (MAP) to AP. It has the advantage of

returning a single value, but it does not require one to set recall levels, and it does not

21

require interpolation. The swarm method also uses secondary measurement, such as
MAP, to evaluate the performance of the algorithm.

 3.2 PSO and ACO Techniques

There are other researchers who have applied the particle swarm optimization (PSO)

algorithm to analyze textual documents. PSO is a direct method that searches for an
optimal solution in a search space. The main characteristic of the PSO algorithm is that
each member of the swarm adjusts its behavior based on the information obtained from

its neighbors in the search space. The swarm agents are modeled to have a specific
position and velocity in a search space. The agents iteratively evaluate a fitness function

where the agents’ position and velocity are used as input parameters. The agents operate
on the premise of their own “best” position and the swarm’s and the neighbors’ “best”
position, where “best” implies a point in the search space where the fitness function has

reached some optimal value [33].

To test this approach, Merwe and Engelbrecht applied data clustering using PSO on six
different classification problems [34]. Four hundred vectors were randomly created in a

two-dimensional space from the Wisconsin breast cancer database, with the objective of
classifying the data as representing benign or malignant tumors. Another PSO clustering
work was carried out by Cui, Potok, and Palathingal on textual documents [35].

Also, PSO was used to rank the results of IR methods. Diaz-Aviles and Nejdl proposed a

swarm ranking method for IR using the particle swarm optimization on the benchmark
database LETOR. The swarm first undertook a learning phase to rank IR results and
attempted to reduce over-fitting [36].

In the above work, the researchers modeled the search space as a hyperspace of words or

terms. The fitness function was, in some form or fashion, a Euclidian distance in the
vector space of terms between the multidimensional points. The vector space model treats

each term as a dimension of the multidimensional space. For example, for data clustering,
Merwe and Engelbrecht [34] used a variation of a distance vector to randomly seed
centroid vectors, e.g., to seed some starting points in the search space. When compared

to the PSO method described above, a drawback of a VSM approach discussed earlier
becomes apparent. Namely, it treats terms as separate dimensions of the search space.

Each new term increases the vector space’s dimension size and hence increases the
complexity and number of necessary computations.

To overcome this weakness in the VSM approach, Diaz-Aviles and Nejdl [36] used
training (learning to rank IR results) for a collection of queries and the resulting retrieved

documents. They used a training set, as well as a validation set, to attempt to reduce
over-fitting. They proposed the method of SwarmRanking to optimize the combination

of the content and links. This method used mean average precision (MAP) as the fitness
function to evaluate the results. They found that the approach significantly outperformed
standard approaches.

Our method is similar in that we use a swarm algorithm to rank retrieved low-level
requirement elements that may be relevant to a given high-level requirement. Our

22

approach differs in that we do not take a semi- or supervised learning approach, and thus
do not require a training set.

Aghdam, Ghasem-Aghaee, and Basiri used ACO to select text features [37]. Azzag and

Guinot [38] used ant colony optimization (ACO) to cluster data in trees. In their work,
([37],[38]), the authors mentioned that due to “the probabilistic behavior of artificial ants
they can produce quality results without any prior knowledge of data structures.” In our

work, randomness is considered a positive factor as well, since it allows ants to explore
the search space of the document collection.

Further, in the ACO algorithm, the agents do not have any prior knowledge of the text
features. The proposed swarm method also does not involve supervised learning, and the

agents do not have a predetermined knowledge of the space they traverse.

In typical ACO, the pheromone deposited by the ants evaporates over time. The
evaporation enables a dynamic behavior to take place in the search process. A path with
more pheromone deposits becomes more attractive to the ants. The more ants that

traverse the path, the more attractive the path becomes.

The proposed swarm method uses pheromone deposits on the links and terms to influence
the path selection behavior of a swarm agent. The pheromone deposits on the links and
terms influence the path selection behavior of a swarm agent. Note, that there is no

predetermined knowledge of the traversed space. The search and discover phase of the
algorithm is like “random roulette” and it is greedy. The term and document frequencies

of the text collection are used as guiding heuristics for the agent’s behavior. Technically,
the algorithm still resembles an ant colony, but it is not as intelligent and cooperative as
ACO. In our approach, the swarm agents are given freedom to operate on their own,

determining the search path based on the environment, i.e., term frequency, weight, etc.

The next logical step from the pheromone swarm technique is to “learn” the search space
environment. The RL method maps out the search space and “learns” the environment. As
a result of this learning, our RL method equips the agents with the search space traversal

heuristics to discover candidate links (Chapter 5).

Abraham and Ramos [39] explored ACO clustering with linear genetic programming.
Their model of clustering web documents was based on the behavior of ants forming
cemetery clusters (deposits of dead ant bodies) within the colony’s territory. From the

computational point of view, the main factors that influenced the behavior of artificial
ants are the number of objects in the neighborhood and their similarities. The proposed

swarm technique also builds the behavior of an artificial ant based on the similarities
between neighborhoods in the documents.

Li and Lam used ant-like agents to generate test threads from unified model language
(UML) diagrams [40]. The authors used three-dimensional UML diagrams as directed

graphs to provide a search space for artificial ants. The swarm technique also creates a
three-layered graph as a search space for the ants.

23

Another interesting aspect of Li and Lam’s work is a limited “energy” supply for the ants.

This way the ants can avoid looping indefinitely while traversing the graph. In our work,
we limit the length of a path that the swarm agent traverses; the length of a path is equal

to two – from a high level document to a low level though a common term. In other
words, the ant can only move from a high level document to a low level document
through a common term before it finishes its journey. The three layer topology of the

search space implies the agent cannot travel more than 3 hops. One extra hop is permitted
to jump to a synonym if it is chosen.

3.3 Machine Learning Techniques

In the past several years, the interest in machine learning techniques applied to
requirements engineering has been growing. Machine learning techniques can help

establish some knowledge or rules from requirements engineering artifacts [41],[42].

Background knowledge from a set of examples of the system description and system’s
properties is derived by a method proposed by d’Avila-Garces et al. [42]. The method
uses a machine learning technique, inductive learning (IL)1. From the set of positive and

negative examples, the inductive learning technique finds hypotheses, i.e., definitions of
domain concepts. The authors use the technique to analyze and revise specifications if

any system property violations are discovered. Our work is different because we use
reinforcement learning. Our method does not use positive or negative examples to train
the system; the discovery of candidate links is executed autonomously.

Another example of inductive learning can be found in work by Spanoudakis, d’Avila-

Garces, and Zisman. They use a machine learning technique to generate requirements
traceability relations [41]. The traceability rules are established between two sets of
documents: textual requirement statements and object models. Based on user feedback on

the undetected traceability relations, the existing traceability rules are transformed to
match the indicated traceability relations. To implement the method, the authors utilize

abduction (AL)2 and induction learning (IL) techniques and the part of speech tagging
method. In our work, we also establish logical links between two sets of documents, but
our method does not use the part of speech tagging and we used RL not AL or IL.

In addition to extracting knowledge from the documents, the machine learning techniques

can be used in recommender systems. Seo and Zhang describe a reinforcement learning
(RL) technique for the Web based personalized filtering system [45]. The work by Seo
and Zhang presents an interest for our work because the personalized filtering system

gives a boost to selecting relevant documents. The personalized information filtering
method learns from the profiles of individual users and their responses to presented

documents. Our method is similar to the work by Seo and Zhang using greedy term

1
 Induction Learning evaluates and generates conclusion based on some examples, i.e. premises. In the

inductive logical argument, the premises support the conclusion to some degree of certainty [43].
2
 In abduction learning an explanatory hypothesis is adopted to account for all the facts or some of them

[44]

24

selection through the RL technique to locate relevant documents. However, our method
differs because it does not use any form of feedback.

Cleland-Huang, Czauderna, Gibiec, and Emenecker present two machine learning

approaches to improve traces between regulatory codes and product requirements [46].
The terms in requirements are assigned probabilistic scores with respect to a regulatory
code. To classify the requirements, the manually created traces were used for cross-

training and testing. The second approach, web based, was used to retrieve indicator
terms from the Internet for a specific regulatory code. Only in this second case, the

machine learning classification took place based on the web-mined documents.

Asuncion H, Asunsion A, and Taylor [47] use the latent Dirichlet allocation (LDA)

machine learning technique to assign topics to traceability artifacts: requirements and
design documents. For this technique, the initial input for the LDA method consists of the

documents and number of topics to assign. The authors suggest that topic modeling
provides semantic information about traceability artifacts.

Establishing links between the documents can also be based on related textual segments.
Hatziavasilloglu, Klavans, and Eskin present the composite similarity metric to measure

the semantic distance between a pair of small textual segments [48]. The authors use a
machine learning approach to select the potential optimal features between documents.
The potential matches are established through word co-occurrence. This approach

resonates well with our technique. We also use common linking terms and the terms
located close to a lining term in the text. The composite similarity performs the matching

through the noun phrases, synonyms, the semantic class of verb (verb implying similar
actions), and common proper nouns.

In our work, we also use synonyms to conduct matching. The composite similarity uses
the relative order of terms in evaluating the matching. The authors use and train a

classifier on manually marked pairs of units. This aspect of the matching used by the
authors echoes with our work. In chapter 5, we describe how the textual segments are
probed for similarities. The relative order of the terms is also considered for the similarity

evaluation.

The main focus of our work is to establish the logical links between the textual
documents by using common textual segments. The work presented by Menczer and
Belew lists many of features similar to our work [49]:

1. The authors describe how autonomous agents make decisions to automate the web

document search and discovery process. The agents in the work of Mencer and
Belew have a heuristic behavior by which the agents select links to follow. In our
work, the autonomous agents also discover a heuristic to traverse the search

space, i.e., select a link to follow.
2. An agent in Menczer and Belew’s work senses the “current neighborhood” by

analyzing the text where the agent is situated. This matching feature is similar to
the concept of term neighborhood that we use (Chapters 4 and 5).

25

3. The agents in Menczer and Belew’s work use reinforcement learning (RL) to
modify the behavior to follow the “best link” possible. In our work, we use the

RL technique to enable agent to traverse the search space and establish the
candidate links between the documents.

Even with so many similarities between the agents in Menczer and Belew’s work and
ours, there exist three notable differences:

1. The links between documents in the work of Menczer and Belew are web links. In

our work, the links between documents are established via common terms
(Chapter 4 and 5).

2. The agents of Menczer and Belew receive user feedback on the suggested links;

in our work the agents do not receive feedback.
3. The agents in Menczer and Belew’s work are created with “initial reservoir of

‘energy’ [49].” The agents in our research do not utilize any energy measurements
for the search space traversal.

To sum up the features of the related work, we can state the following:
- It has been proven useful to link documents by treating them as a collection

of phrases, not a bag of words [48].
- Small textual segments and the similarity between them can be evaluated

based on semantic distance [49].

- The textual segments of linking terms, i.e. neighborhoods of the linking
terms, provide useful location data of the compared textual segments [48]

[49].
- The machine learning approach in general, and reinforcement learning in

particular, proved to be useful computational agents to modify and select

an optimal search space behavior [45] [49].

In Chapter 5, we describe further how we probe textual segments for similarities and order
terms considered for similarity evaluation.

26

4 Research Approach
To trace high level textual elements (from a requirements document for example) to low
level textual elements (from a design document), we use swarm agents that traverse the
collection of all documents and the vocabulary shared by all documents. The main idea of

the proposed method is based on constructing a search space traversable by software ants.
The search space is composed of documents on both levels, high and low, and common

terms.

To use an analogy of the overall structure, documents with links to common terms can be

visualized as a “tree trunk” of common terms at the core of the search space. Documents
can be viewed as leaves on the tree’s branches (Figure 4.1).

Figure 4.1 Vocabulary with documents compose the search space.

The vocabulary, i.e., the collection of terms from all documents, connects all documents
in the search space. The swarm agents can travel from high level documents to the

vocabulary using a positional index in the vocabulary.

27

Figure 4.2 Positional index

The positional index stores such information as document name and positions (within
document) for each term in the vocabulary (Figure 4.2). Thus, using the positional

indexes, the swarm agents can reach every term in a document.
As shown in Figure 4.3, it is possible to reach terms ‘personal,’ ‘distribution,’ ‘list,’ and
‘store’ from high level document A1.txt.

Figure 4.3 Document to terms links inferred from the positional index.

To continue the journey further within the search space (Figure 4.5), the swarm agents

reach into low level documents from the vocabulary level via the inverted index. The
inverted index is built during a preprocessing step performed during the construction of

the vocabulary.

First, the documents are parsed, and then undergo term stemming. Words are reduced to

their stem such as ‘comput-‘ for ‘computer’ and ‘computing.’ Also, stop words such as
‘the’ and ‘of’ are removed. Term frequencies for each term in a document are also

calculated. The TF-IDF weight is calculated using formula 2.2.5 listed in sec 2.2.2.

Personal

Personal

Distribution

Distribution

List

List

Email

Email

System

System

Store

Store

A1.txt <6>

A1.txt

A1.txt <5>

A2.txt

A1.txt <4>

C2.txt

A1.txt <3>

D3.txt

A2.txt <4>

C3.txt

C3.txt <2>

F1.txt

A2.txt <6>

A2.txt <7> C2.txt <3,10> D3.txt <5,12>

C2.txt <2> C3.txt <3> F1.txt <13>

D3.txt <4, 15>

D3.txt <4, 15> F1.txt <12>

1

2

4

4

2

3

28

Figure 4.4. Vocabulary with documents compose the search space.

The constructed inverted index indicates not only the textual element associated with a
given term, but also the type of the element: high or low. This is necessary for the search

processes. The type of element helps the swarm agents to navigate the search space
(Figure 4.4). In our model, we direct the swarm agents to go from high level to low level

documents.

Figure 4.5. Indirect index. Links from terms to documents containing the terms.

The navigation of the search space by the swarm agents is described by the simple swarm

algorithm.

Personal

Personal

Distribution

Distribution

Lis

t

List

Email

Email

System

System

Stor

e

Store

A1.txt
<6>

UC1.txt

A1.txt
<4>

UC2.txt

A1.txt

<3>

UC3.txt

A2.txt
<4>

UC5.txt

C3.txt
<2>

UC4.txt

A2.txt
<6>

UC6.txt

C2.txt
<2>

C3.txt
<3>
F1.txt
<13>

D3.txt
<4, 15>

D3.txt
<4, 15>

F1.txt
<12>

5

2

4

4

2

3

A1.txt <5>

A2.txt <7>

C2.txt
<3,10>
D3.txt
<5,12>

UC1.txt

UC2.txt

UC3.txt

UC6.txt

UC2.txt

UC3.txt

UC2.txt

UC3.txt UC6.txt

UC2.txt

UC3.txt

UC2.txt

UC3.txt

UC6.txt

UC4.txt

High Level Documents Terms Low Level Documents

29

4.1 Simple Swarm

The simple swarm technique is described as follows :

SIMPLE SWARM TRACELINKS (H, L)

 // Input High and Low level documents H and L
 // Output list of agent count (h,l,n) - from h in l, where n is the count

1. For each document h in high level collection H

2. // T = {t1,….,tn} sorted terms in doc h

3. T h.Terms.sortBy(TFIDF)

4. For each agent s in swarm S

5. i Random[1.10]

6. t T[i]
7. // E is a record in the inverted index listing occurrences of

8. // term t in low level documents

9. E Vocabulary[t].LinksToLowLevelDocuments

10. E.sortBy(t.TermFrequency)

11. j Random[1.10]

12. e E[j]
13. e.countAdd(h,l)

14. EndFor
15. EndFor

16. For each document h in high level collection H
17. For each document l in low level collection L
18. list agent count from h in l

19. EndFor
20. EndFor

Listing 4.1. Pseudo code for simple swarm.

When all agents reach the low-level elements, we can then establish candidate links. To
establish and quantify candidate links, we need to count the number of agents that made it

to the low-level elements, grouping them by their origin.

The origin is the name of the high-level element from where the agents started their

journey. If a low-level element B has at least one agent that came from element A, we
consider this count of at least one (1) as a potential candidate link between A and B. The

candidate links for each high-level element are ordered by the count of the agents at the
low-level elements. Agent counts are normalized to a value between 0 and 1, with the top
low-level link for each high-level element having a value of 1. Links are filtered out at

fixed threshold intervals to calculate recall and precision values at each cutoff threshold.

Figure 4.6 depicts the application of the algorithm to a small example (select terms were
chosen for illustrative purposes). Assume that we have high-level requirements Req1.txt
and Req2.txt and use cases UC5.txt and UC8.txt:

Req1.txt: “The system shall support personal distribution lists.”

30

Req2.txt: “The system shall be able to add a contact to the address list.”
UC5.txt: “User edits personal distribution list by adding new contact.”

UC8.txt: “List email contacts.”

After pre-processing these elements, we determine that Req1.txt has the terms personal,
distribution, and list and that Req2.txt has the terms list, address, and contact. Similarly,
we know that the low-level element UC5 has the terms edit, personal, distribution, and

list and that UC8 has the terms contact, list, and email. The inverted dictionary for the
collection of all documents is used as the common vocabulary. The terms in the common

vocabulary contain links pointing to the documents in which the terms are encountered.
The vocabulary term links contain the term frequency count TF and a tag indicating if it
is a high or low-level element.

As the algorithm starts, a group of agents is assigned to high level document. The number

of agents in the group is greater or equal to the number low-level documents. In the high-
level element, the terms are then ordered by the TF-IDF weight of each term in the
document. The agent randomly selects a term, for example, the term personal. The agent

then “positions” itself in the common vocabulary at the term personal. The agent inspects
the links from the term personal to low-level elements. These links are sorted in

descending order by term frequency. The agent randomly picks the next link to follow
from the top ten or less candidate links. On the last leg of its journey, the agent arrives at
the low-level element. At the end of this loop, the resulting composition of agents will

have all agents from all high-level documents located at the low-level elements.

Figure 4.6 Agents tracing links from high-level to low-level elements via vocabulary

An important part of the swarm method algorithm that helps to refine the search results is
the threshold filter. For the swarm method, candidate link lists are generated after
applying a threshold filter varying from 0.1 to 0.9. The threshold indicates a percentage

above which links are considered to be part of the candidate link list. For example,

31

assume that one hundred agents starting from element Req1.txt traverse to documents
UC1.txt, UC2.txt, UC3,txt, and UC4.txt, of which 50, 35, 10, 5 agents reach UC1.txt,

UC2.txt, UC3.txt, and UC4.txt, respectively. If 0.7 is selected as the threshold, then only
UC1.txt and UC2.txt are selected for the candidate link list (normalized values are 1, 0.7,

0.2, and 0.1, respectively).

The simple swarm method we tested used the TF-IDF weight and term frequency as the

guiding heuristic for the agents. This version of the algorithm does not use any
pheromones. Therefore, formula 2.4.1 is not applicable in its classical sense. This

version of the algorithm appears to be a more focused version of TF-IDF. Nevertheless,
the simple swarm is a stepping stone for the next method, pheromone swarm.

 4.2 Pheromone Swarm

The pheromone swarm method uses the TF-IDF weight amplified by pheromone count
on terms and links as the guiding heuristic for the agents. The distinction between the

simple swarm method and the swarm with pheromone method lies in the selection of the
terms and links by the swarm agents.

A simple swarm agent is driven to consider, select, and focus on the most important
terms in the document mostly at random (with some heuristic selection based on TF-IDF

value of a term in a document). The agents in the pheromone swarm take into
consideration pheromone deposits on the links and terms as they choose the next step of
their journey.

In a pheromone swarm, the agents of the swarm search, discover, and guide swarm

members to a target location via local interactions in the search space. The agent’s
decision on what term to select or what path to take is influenced by the presence of
pheromone markings on the inspected object, e.g., terms or links.

For example, when an agent starts from a high-level document, the agent has a higher

chance of selecting a term if the term has some pheromone markings. The pheromone
markings on a term in a high-level document indicate an established fact that this
particular term is a neighbor to some other term in a low-level document.

This idea of marking the neighbors and selected terms is based on treating textual

documents as collections of phrases rather than as bags of words. A similar idea was
expressed by Zou et al. [27], where the authors focused on “two-word phrases.” Our
approach is different in this sense; we allow phrases to be loosely defined in a

neighborhood of a linking term.

The swarm with pheromones algorithm is described in Listing 4.2:

32

PHEROMONE SWARM TRACELINKS (H, L)

 // Input High and Low level documents H and L
 // Output list of agent count (h,l,n) - from h in l, where n is the count

1. For each agent s in swarm S
2. For each document h in high level collection H

3. // T = {t1,….,tn} sorted terms in doc h

4. T h.Terms.sortBy (TFIDF,PheromoneCount)

5. i Random[1.10]

6. t T[i]

7. E Vocabulary[t].LinksToLowLevelDocuments

8. E.sortBy (tTermFrequency,PheromoneCount);

9. j Random[1.10]

10. e E[j]

11. N l.neighborsOf(t)

12. For each neighbor n of t
13. Vocabulary[n].link[e].addPheromone[h]

14. if (Vocabulary[n].links.Contain[h]) and
15. (h.Terms[n].isNeighborOf(t)) then
16. h.Terms[n].addPheromone()

17. EndFor
18. EndFor

19. EndFor
20. For each document h in high level collection H
21. For each document l in low level collection L

22. list agents from h in l
23. EndFor

24. EndFor

Listing 4.2 Pseudo code for pheromone swarm

Once all agents reach the low-level elements, they remain there. The pheromone deposit
can spread further up the graph to the terms. We use the same methodology to generate
candidate links using the cutoff threshold.

As the algorithm starts, a group of agents is assigned to a high level document, for
instance Req1.txt. In the high-level element, the terms are then ordered by the product of

TF-IDF weight and a linear function of pheromone count in the document. The agent
randomly selects a term from the top ten sorted terms. Returning to our original example,

the agent picks the term personal. The agent then “positions” itself in the common
vocabulary at the term personal. Then, the agent inspects the links from the term
personal to low-level elements. In this algorithm the links may contain pheromone

deposits.

33

The pheromone deposits on the link serve as attractors for the agents’ path selection. In
Listing 4.2, the lines 4,5 and 7,8 use the pheromone counts to select next term and low

level document respectively. For example, in line 4 the terms are sorted by pheromone
count in descending order. On the line 5, a random term from top 10 terms is selected. A

similar two step action takes places in lines 7 and 8: links to low level documents are
sorted by pheromone count and a random link is selected from top 10 pheromone marked
links. The pheromone deposits on the links indicate that there is another agent at the low-

level document that came from a particular high-level document. Furthermore, the
residing agent in the low-level document is in the neighborhood of the term personal. If

the source document of the residing agent is Req1.txt, then our current agent will have a
higher probability of selecting this pheromone marked link. Once a link to the low-level
document has been selected, the agent crawls down to a low-level element. Once there,

the agent diffuses pheromones on the neighbors of the linking term. These pheromone
deposits will attract future agents traveling from the Req1.txt high-level document.

To experiment with the size of matching neighborhoods, we indicate how far the
pheromones are deposited from the linking term. Swarm agents can also be instructed to

deposit pheromones in low-level documents beyond the immediate neighboring
documents and terms. To measure how far we allow agents to deposit the pheromones,

we introduce a delta value. When delta is equal to one, we deposit the pheromones on the
immediate neighbors. When we set the delta to 3, the agents deposit the pheromones up
to three neighbors to the left and right of the linking term in the low-level document.

When the delta is set to 5, five neighbors on either side of the linking term receive
pheromone deposits. If the linking term is at the end or beginning of a document, and

there are no “next 3 neighbors” on the right or left, only the present side of the linking
term’s neighborhood receives pheromone deposits.

The algorithm has to iterate through each swarm agent, each high level document, and
sort terms within the high level document by weight and pheromone deposit. If we have

A agents, D documents, and T terms, we say N = max(A,D,T). To iterate through every
agent, we are bound by N. To iterate through every document, we are bound by N. For
every time an agent crosses a document (N x N), the algorithm needs to sort at most N

terms in the document (N logN). The pheromone swarm algorithm has a complexity
O(N3logN).

34

5. Validation

This section presents the validation of the research.

 5.1 Evaluation Approach

The purpose of this work is to evaluate the performance of the swarm methods to
establish better quality candidate links between two sets of textual documents compared

to vector space model (VSM) with TF-IDF weighting, referred to as TF-IDF.

We ran TF-IDF and swarm methods on the target set of documents and compared the

quality of the candidate links generated by each method. The quality of the links for each
set of high level and low level elements was evaluated against the corresponding set of

correct links, i.e., the answer set.

For all studies, swarm method results were compared against the TF-IDF method on the

Pine and CM1 datasets. Section 5.2 presents our hypotheses. In sections 0 and 5.4.2, we
present and evaluate the swarm methods on the Pine dataset using the primary measures

of recall, precision, F, and F2 as well as secondary measures for the Pine dataset. In
sections 5.4.3 through 5.4.5, we evaluate the swarm methods on the CM1 dataset, along
with a discussion about measures. Section 5.8 provides an overall summary of the results.

Data points for the figures presented in this section are presented in Error! Reference

source not found.of the Error! Reference source not found..

 5.2 Hypotheses

To validate the performance of each method, we used a one-tailed hypothesis in
the form of the following question: Does “swarm method M” produce better

candidate link lists than TF-IDF?

The independent variable in the study is the method (TFIDF, simple swarm). The
dependent variable is MAP. The null hypothesis, H[method]0, is:

There is no statistically significant difference in MAP between VSM TF-IDF and
Swarm Methods.

H 0 :MAPtf-idf = MAPswarm

The alternative hypothesis, H[method]A, can be stated as:

The MAP for Swarm Methods is greater that MAP for VSM TF-IDF.

HA : MAPswarm >MAPtf-idf

 5.3 Statistical Evaluation

The 11-point interpolated precision-recall graph is used to evaluate the statistical

significance of the results (sign test). In addition, the Wilcoxon signed-rank test is applied
to the MAP results to test for significance at the 0.05 level. In cases where the number of

35

relevant links returned by the queries is different, the Mann-Whitney U Test is used
instead of the Wilcoxon test.

 5.4 Results to Date

The information that follows previously appeared in a conference [13] and a journal
paper [50]. As the baseline, we ran traces on the Pine and CM1 datasets using the TF-IDF

method. We treated the results obtained from TF-IDF for recall, precision, DiffAR, and
MAP as our reference point. For hypothesis evaluation, we ran ten experiments on the
Pine and CM1 datasets.

Due to the fact that agents’ heuristics on selecting the “next hop,” i.e., term or document,

is based on a random choice, we gathered the results from several similar experiments.
We made an assumption that ten experiments should be sufficient to observe any trend (if
there is any) exhibited by the resulting random behavior of the swarm agents.

Furthermore, to validate any statistically significant difference, a set of similar
experiments becomes a stronger base for any conclusion. 1 Simple Swarm Applied to

the Pine Dataset

Figure 5.1 presents the 11-point interpolated precision-recall curve for the simple swarm
and TF-IDF methods on the Pine dataset. Simple swarm presented higher precision than

TF-IDF at 6 out of the 11 recall points, with most of the points near the middle to high
end of recall. The difference in precision, however, was not statistically significant using

the signed rank test.

Figure 5.1 11-point Interpolated precision-recall curve for TF-IDF and simple swarm for the Pine

dataset

Figure 5.2 depicts the F and F2 measures for both simple swarm and TF-IDF methods on

the Pine dataset across the different thresholds. This figure presents a different view of
how the two methods performed when threshold filtering was applied. F and F2 values

for TF-IDF start off high but degrade as threshold values increased. Simple swarm F and
F2 values, on the other hand, did not degrade as quickly as TF-IDF. They performed best
between the threshold values of 0.2 and 0.4. Figure 5.2 also shows that simple swarm had

a more consistent precision-recall tradeoff compared to TF-IDF when using threshold
filtering.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

o
n

Recall

Pine TF-IDF vs. Simple Swarm

TF-IDF Simple Swarm

36

For threshold values less than 0.4, simple swarm showed an increase in performance. The

TF-IDF produced a consistent decline in performance as threshold values increased. This
behavior can be explained by the fact that agents tend to gather around a smaller subset of

elements as threshold values increase. The simple swarm method “directs” each swarm
agent to consider and focus on the most important terms in the document, allowing agents
to perform a more focused search. After passing an optimum threshold, agents start

missing correct targets, e.g., low-level elements that are part of the correct links to the
high-level element from which the agents started the journey.

Figure 5.2 F and F2 measures for TF-IDF and simple swarm on the Pine

dataset

Another explanation for the difference in F and F2 behavior between TF-IDF and simple
swarm is how each link’s weight is calculated. TF-IDF link weights are measures of

cosine similarity between the weighted keyword vectors of two documents [17]. For TF-
IDF, link weights above 0.8 are uncommon.

Swarm methods, on the other hand, calculate link weights by dividing each link’s agent
count by the largest agent count. Using this method, the top-most link always has a

weight of 1. The difference in how weights are calculated does not prevent the methods
from being compared appropriately as links are filtered using the same threshold values

for both methods. The difference in F and F2 behavior indicates that TF-IDF achieves
peak scores at lower threshold values compared to swarm. Both methods achieved
comparable peak F and F2 values at different threshold values, e.g. TF-IDF at 0.1 and

simple swarm at 0.2 and 0.4.

Pheromone swarm precision deteriorated below the 0.2 threshold but still remained near
the 0.9 range. Figure 5.3 presents the 11-point interpolated precision-recall curve for the
pheromone swarm and TF-IDF methods on the Pine dataset. Pheromone swarm gained a

slightly higher precision than TF-IDF at several points for various delta values.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

F
/

F2
 m

ea
su

re

Threshold

Pine TF-IDF vs. Simple Swarm

F TF-IDF F2 TF-IDF

F Simple Swarm F2 Simple Swarm

37

Figure 5.3 11-point interpolated precision-recall curve for pheromone

swarm and TF-IDF for the Pine dataset

Figure 5.4 depicts the graph of the F measure for TF-IDF and pheromone swarm. Peak F
values for pheromone swarm delta=1 and delta=3 are comparable to the TF-IDF Peak F

value, e.g., 0.58, 0.56, 0.58, respectively. Pheromone swarm did not exhibit the same
F/F2 trend as simple swarm when threshold values increased. The decrease in F values

for the pheromone swarm was still slower than TF-IDF, indicating that the
recall/precision tradeoff does not decrease as quickly with each increasing threshold
value.

Figure 5.4 F measure for TF-IDF and pheromone swarm for the Pine

dataset

Figure 5.5 depicts the graph of the F2 measure for TF-IDF and pheromone swarm for the

Pine dataset. The trend in the F2 graph is similar to Figure 5.4, with TF-IDF
outperforming pheromone swarm 0.66 to 0.61respectively at the 0.1 threshold. Even so,

the recall/precision tradeoff was still slower compared to TF-IDF, implying that the
pheromone swarm identified a greater number of relevant candidate links.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
P

re
ci

si
o

n

Recall

Pine TF-IDF vs. Pheromone Swarm

TF-IDF Ph. Swarm δ=1 Ph. Swarm δ=3 Ph. Swarm δ=5

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

F
m

e
as

u
re

Threshold

Pine TF-IDF vs. Pheromone Swarm

TF-IDF Ph. Swarm δ=1 Ph. Swarm δ=3 Ph. Swarm δ=5

38

Figure 5.5 F2 measure for TF-IDF and pheromone swarm for the Pine

dataset

5.4.2 Secondary measures for the Pine dataset

Figure 5.6 shows DiffAR performance for simple swarm, pheromone swarm, and TF-
IDF methods. All swarm methods produced consistently higher DiffAR values compared

to TF-IDF. Simple swarm performed the best among all methods, with DiffAR going
from 0.41 to 0.93 as threshold values increased. This suggests that link weights from

Swarm methods correlate to a greater degree with link correctness. Achieving higher
DiffAR represents work that is less frustrating for human analysts, who must ultimately
vet all candidate links to form the final traceability matrix.

Figure 5.6 DiffAR vs. recall for simple swarm, pheromone swarm, and TF-

IDF for the Pine

Figure 5.7 plots MAP vs. recall for the simple swarm, pheromone swarm, and TF-IDF

methods. The simple swarm method returned more correct links at higher MAP with the
first three thresholds compared to all the other swarm methods. Compared to TF-IDF at

the 0.1 threshold, simple swarm achieved 0.76 MAP at 0.86 recall while TF-IDF
achieved 0.75 MAP at 0.72 recall.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

F2
 m

e
as

u
re

Threshold

Pine TF-IDF vs. Pheromone Swarm

TF-IDF Ph. Swarm δ=1 Ph. Swarm δ=3 Ph. Swarm δ=5

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

d
if

fA
R

Recall

Pine DiffAR/Recall

TF-IDF Simple Swarm Ph. Swarm δ=1

Ph. Swarm δ=3 Ph. Swarm δ=5

39

Figure 5.7 MAP vs. recall for simple swarm, pheromone swarm, and TF-

IDF for the Pine dataset

5.4.3 Simple Swarm on CM1 dataset

Next, we examined the results for the CM1 dataset. Figure 5.8 shows the recall/precision
graph for the simple swarm and TF-IDF methods. Note that precision values for this

dataset are significantly lower than Pine due to the larger size of the dataset. This is a
common phenomenon for IR methods that larger datasets yield smaller precision values.

Figure 5.8 11-point interpolated precision-recall curve for the simple swarm

and TF-IDF methods on the CM1 dataset

The recall/precision tradeoff between the two methods is slightly different than the

tradeoff seen in the Pine dataset. Precision increased slowly when recall decreased, e.g.,
for simple swarm, precision only increased from 0.04 to 0.073 while recall dropped from
0.8 to 0.5. This indicates that simple swarm agents were not picking the correct low-level

elements as threshold values increased. It is apparent that the search options given to the
swarm agents restricted their options to explore and directed them to an overly limited

number of low-level elements.

3
 We acknowledge that this is not acceptable precision.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

M
A

P
Recall

Pine MAP/Recall

TF-IDF Simple Swarm Ph. Swarm δ=1

Ph. Swarm δ=3 Ph. Swarm δ=5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

o
n

Recall

CM1 TF-IDF vs. Simple Swarm

TFIDF Simple Swarm

40

Figure 5.9 shows the F and F2 measures for the simple swarm and TF-IDF methods. The

F and F2 measurement for simple swarm on CM1 did not exceed 0.25. Note that the F
measure for simple swarm did not change significantly, varying from 0.15 to 0.24.

TF-IDF achieved a peak F value of 0.28 and peak F2 value of 0.37, significantly
outperforming simple swarm. For CM1, the TF-IDF method performed better than simple

swarm for both F and F2 measurements. TF-IDF performed best at the 0.2 threshold
value while simple swarm performed best at the 0.8 threshold for F and the 0.5 threshold

for F2. Precision for simple swarm ranged from 0.04 to 0.19, contributing to the low F/F2
values and indicating that the two document levels contained many “coincidental
matches,” that is to say, even if the elements contained many similar terms, they were not

necessarily classified as true links in the answer set.

Figure 5.9 F and F2 for the simple swarm and TF-IDF methods on the

CM1 dataset

5.4.4 Pheromone Swarm on the CM1 dataset

Figure 5.10 shows the precision-recall curve for the pheromone swarm and TF-IDF
methods where agents deposited pheromones up to 1, 3, and 5 neighbors away, e.g.,

delta=1, delta = 3, and delta = 5. The pheromone swarm method performed worse at
almost all recall points except for 0.5 recall, where pheromone swarm delta=1 and
delta=3 tied with TF-IDF. Note that delta does not have much of an effect on precision

for most of the recall points. That implies that the size of a neighborhood does influence
the precision on CM1.

0

0.1

0.2

0.3

0.4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

F/
F2

 M
e

as
u

re

Threshold

CM1 TF-IDF vs. Simple Swarm

TF-IDF Simple Swarm F2 TF-IDF F2 Simple Swarm

41

Figure 5.10 11-point interpolated precision-recall curve for pheromone

swarm, delta = 1, 3, 5, and the TF-IDF methods for the CM1

dataset

Figure 5.11 shows the F and F2 measures for the pheromone swarm and TF-IDF
methods. The F measurement stayed under 0.19. At the same time, F2 reached 0.26 at

the threshold value of 0.3. Note that the F measure remained in the narrow “corridor”
between 0.12 and 0.19 for the most part. The “corridor” of F2 values was between 0.17

and 0.26 in the CM1 dataset. TF-IDF outperformed pheromone swarm, with similar
results compared to simple swarm, although the peak F2 value for pheromone swarm was
at the 0.2 threshold.

Figure 5.11 F and F2 measures for pheromone swarm, delta=1, and TF-IDF

methods for the CM1 dataset

Figure 5.12 and Figure 5.13 show the F and F2 measures for the TF-IDF and pheromone
swarm methods for CM1. F measure for pheromone swarm increased slowly with each
threshold increase, while F2 measure slowly decreased instead. Pheromone swarm with

delta = 3 seemed to perform better than the other two delta values, achieving peak F

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

o
n

Recall

CM1 Precision/Recall

TFIDF Ph. Swarm with δ=1

Ph. Swarm with δ=3 Ph. Swarm with δ=5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

F
/

F2
 m

e
as

u
re

Threshold

CM1 TF-IDF vs. Pheromone Swarm

F TF-IDF F2 TFIDF

F Ph. Swarm with δ=1 F2 Ph. Swarm with δ=1

42

value of 0.20 and peak F2 value of 0.25. Therefore, expanding the pheromone affected
neighborhood did not seem to improve the performance of the method.

Figure 5.12 F measure for the pheromone swarm, delta = 1, 3, 5, and the TF-IDF methods for the

CM1 dataset

Figure 5.13 F2 measure for the pheromone swarm, delta = 1, 3, 5, and the TF-IDF methods for the

CM1 dataset

5.4.5 Secondary measures for the CM1 dataset

Figure 5.14 shows DiffAR performance for simple swarm, pheromone swarm, and TF-
IDF methods. Similar to Pine, all swarm methods had higher DiffAR values compared to

TF-IDF. All Swarm methods performed about the same, with simple swarm performing
worse between threshold values of 0.1 to 0.3.

43

Figure 5.14 DiffAR vs. recall for simple swarm, pheromone swarm, and TF-

IDF methods on the CM1 dataset

Figure 5.15 plots MAP vs. recall for the simple swarm, pheromone swarm, and TF-IDF

methods. Simple swarm performed better than TF-IDF at the 0.1 to 0.3 threshold.
Pheromone swarm with delta = 3 also performed better than TF-IDF at the 0.1 threshold.

Pheromone swarm with delta = 1 performed worse than TF-IDF, but as delta increased,
performance was comparable to TF-IDF. Note, however, that MAP was still quite low at
0.23, indicating that, on average, each document (high-level element) has an average

precision of 23%.

Figure 5.15 MAP vs. recall for the simple swarm, pheromone swarm, and

TF-IDF methods on CM1

 5.5 Statistical Analysis

Table 5.1 shows the values for MAP and DiffAR for TF-IDF, simple swarm, and

pheromone swarm methods. The lower value of MAP implies better results; the higher
value of DiffAR indicates a higher quality of the candidate links. As we can see, the
MAP values for Pine were better in the experiments run with Pheromone swarm with

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

d
if

fA
R

Recall

CM1 DiffAR/Recall

TF-IDF Simple Swarm Ph. Swarm with δ=1

Ph. Swarm with δ=3 Ph. Swarm with δ=5

0

0.05

0.1

0.15

0.2

0.25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
A

P

Recall

CM1 MAP/Recall

TF-IDF Simple Swarm Ph. Swarm with δ=1

Ph. Swarm with δ=3 Ph. Swarm with δ=5

44

delta size 1, 3 and 5. For example, the Pheromone method with delta =1 produced MAP
of 0.68 for Pine Dataset. The Wilcoxon-Signed Rank test indicated signed rank statistic

W+ =397 and W- =164 with sample size of 33, and statistical significance of p <= 0.03.
In Wilcoxon-Signed Rank test, the high value for the “positive” sum (i.e., 397 vs 164 in

the case of delta =1 at threshold 0.1) implies that we can reject the null hypothesis. We
see mixed results for MAP and DiffAR produced by both methods (simple swarm and
pheromone swarm).

Table 5.1 Statistical Analysis for the TF-IDF, simple swarm and pheromone

swarm methods

 5.6 Threats to Validity

The lines in bold in Table 5.1 imply we can reject the null hypotheses in favor of the
alternative. Yet, not every experiment indicated that the swarm methods outperformed

the benchmark method (VSM TF-IDF).

 5.7 Threats to Validity

Threats to conclusion validity threaten the ability to draw correct conclusions from the
study results. By using two datasets and applying similar treatments, we addressed the
reliability of the treatment implementation. We used standard information retrieval

measures to evaluate effectiveness, such as MAP. Both datasets were analyzed using the
TF-IDF, simple swarm, and pheromone swarm methods.

There was a possible threat to internal validity due to experimenter bias. The answer
sets were created by human analysts that are familiar with the traceability research

domain. We reduced this threat by using datasets for which answer sets had been
independently verified by more than one analyst, and in some cases more than one

research group (CM1). We also used a vetted tool, RETRO.NET [9], and adapted it in
order to implement the swarm techniques.

There was another possible threat to internal validity due to stochastic agent behavior.
The swarm methods randomly select links to follow. To mitigate this threat, we ran each

method ten times and examined the mean recall and precision values. In future
experiments, we plan to execute the same methods at least ten times.

MAP DiffAR

tfidf@0.2 0.204 Wilcoxon Signed-Rank (tfidf vs swarm) 0.101 Mann-Whitney (tfidf vs swarm)

ss@0.3 0.227 W+ = 4806, W- = 6519, N = 150, p <= 0.1083 0.281 U = 9839, z = -4.65, p < 0.0001

delta1@0.3 0.163 W+ = 4191, W- = 2479, N = 115, p <= 0.01696 0.212 U = 5979, z = -1.99, p < 0.0466

delta3@0.1 0.222 W+ = 6117, W- = 6924, N = 161, p <= 0.4964 0.261 U = 7989, z = -3.2, p < 0.0014

delta5@0.1 0.209 W+ = 4297.50, W- = 4747.50, N = 134, p <= 0.6181 0.272 U = 7722, z = -2.92, p < 0.0035

tfidf@0.1 0.75 Wilcoxon Signed-Rank (tfidf vs swarm) 0.179 Wilcoxon Signed-Rank (tfidf vs swarm)

ss@0.1 0.76 W+ = 272.50, W- = 322.50, N = 34, p <= 0.6753 0.456 W+ = 40, W- = 1088, N = 47, p <= 3.037e-08

delta1@0.1 0.68 W+ = 397, W- = 164, N = 33, p <= 0.0382 0.377 W+ = 232, W- = 896, N = 47, p <= 0.0004516

delta3@0.1 0.66 W+ = 425, W- = 170, N = 34, p <= 0.0299 0.436 W+ = 162, W- = 966, N = 47, p <= 2.151e-05

delta5@0.1 0.58 W+ = 591, W- = 112, N = 37, p <= 0.0003 0.445 W+ = 151, W- = 977, N = 47, p <= 1.271e-05

CM1

Pine

45

Threats to construct validity undermine how the experiment settings and measurements
truly determine the correct desired properties. In our experiments we decided to use the

agent count in low level documents as a measurement for candidate links. We reduced
threats to construct validity by using a relative agent count (out of total swarm size)

rather than absolute count to indicate a candidate link.

Threats to external validity deal with whether the results can be generalized. Results to

date used two datasets from two different domains for validation. Though both datasets
are real projects (not student projects), one of them is relatively small (49 x 51).

Therefore, it is not possible to state that the study sufficiently validated all domains or all
projects [9].

 5.8 Overall Summary

Though the swarm agent counts and TF-IDF links weights are not calculated in the same

manner, they serve a similar role; they are used for filtering the candidate links. The
higher the filter value (a close cosine similarity in documents in TF-IDF or a higher agent
count in swarm methods), the more the F values decreased for TF-IDF and Swarm

methods on both datasets.

Figure 5.1 shows that F values for TF-IDF perform better than simple swarm below
threshold values of 0.2 on the Pine dataset. After the threshold is increased, the swarm’s
F values (with/without pheromones) were better than TF-IDF as seen in Figure 5.2 and

Figure 5.4. Furthermore, TF-IDF exhibited a steep decline in F and F2 as threshold
values increased. Swarms demonstrated better values for F measurements for higher

threshold values. The higher threshold implies that an analyst has to review fewer links of
higher quality.

Figure 5.9 showed better performance for the TF-IDF method than simple swarm on the
CM1 dataset, achieving 0.28 for F and 0.37 for F2. Simple swarm performed better than

TF-IDF past the 0.4 threshold.

Pheromone swarm, in general, performed better than simple swarm on the CM1 dataset.

Pheromone swarm with delta=3 reached the highest value for F of 0.21 at the 0.6
threshold. Furthermore, pheromone swarm exhibited a gradual increase in F value as the

threshold increased. TF-IDF reached its peak F value of 0.28 at the 0.3 threshold and then
declined sharply as threshold values increased.

The same trend was observed with TF-IDF in the CM1 and Pine datasets for the F
measurement. The F2 values for the swarm methods exhibited a slightly different

behavior. F2 values slowly declined as the threshold increased for all swarm methods.
Even in these instances, the swarms displayed a more gradual change in performance as
the threshold increased. Pheromone swarm F2 values gradually decreased from 0.25 to

0.18.

46

In summary, the simple swarm approach showed some advantage over the TF-IDF
method on the Pine dataset, yet it did not fare as well on CM1. At the same time, with

pheromone swarm, any advantage indicated on the Pine dataset was lost. Pheromone
swarm performance on CM1 improved over simple swarm, but still underperformed TF-

IDF.

A possible explanation for this is the way that the high and low elements are connected.

The Pine dataset contains 49 high-level and 51 low-level elements, with 2,499 possible
links. The CM1 dataset contains 235 high and 220 low elements, creating a search space

of 51,700 possible candidate links. The answer set for the Pine dataset has 246 links,
about 10% of all possible links. In the CM1 dataset, the ratio of true links over possible
links goes down to less than 1% (361 true links divided by 51,700). CM1 also uses a

significant amount of technical terms and acronyms, causing the swarm agents to end up
at incorrect low-level elements. One can draw a logical conclusion to utilize a thesaurus

when a dataset contains many acronyms.

It appears that in a compact dataset such as Pine, the pheromones made the agents “over

choose” certain links. This led to lower starting recall and higher precision as seen in
Figure 5.3. On the other hand, for CM1, pheromone swarm delivered better precision

than simple swarm with more focused selection in a sparsely linked set. Agents got to
pick proper links based on the pheromone markings previously deposited by other agents.

For the CM1 dataset, the MAP measurements exhibited some variance with regard to the
pheromone swarm method. Pheromone swarm at delta = 3 performed just “above” TF-

IDF and all other swarm methods. As we saw earlier for the CM1 dataset, increasing the
size of the affected neighborhood delivered some performance gains. Simple swarm had
better MAP at lower thresholds for both datasets.

Another interesting result we observed was related to the size of the neighborhood of a

linking term. When we increased the delta from 3 to 5 for the pheromone swarm, we
noticed a slight drop in performance across just recall measurements and both datasets.
Apparently, by depositing pheromones on neighbors that are “too remote,” the agent

introduces too much noise for future agents. For example, on the CM1 dataset with delta
= 3 the starting recall and precision values were 56% and 8%, respectively. When we

increase the delta to 5, i.e., five neighboring terms on either side of the linking term
received deposits, the starting recall and precision became 48% and 8%, respectively.

Maarek et al. [35] and Niu and Easterbrook [36] experimented with a neighborhood of
size five (5) using ‘lexical affinities.’ Our work differs from ‘lexical affinities’ in several

ways. Unlike ‘lexical affinities,’ the swarms consider neighbors that may cross sentence
boundaries. ‘Lexical affinities’ pick up two word units, whereas the swarm considers all
terms within the limits of the inspected neighborhood. This difference may explain why

we obtained an optimal neighborhood of three (3) as opposed to five (as in ‘lexical
affinities’).

47

To achieve high recall and precision results for the CM1 dataset, the swarm agents have
to conduct the search with a more narrow focus. The use of a thesaurus might have

directed the swarm agents to the proper document. In addition, a method of handling
acronyms might be of significant assistance. In this case, the thesaurus may become

project specific.

In the case of TF-IDF at low threshold values, the method considered a greater number of

the low-level elements as possible candidate links, thus yielding higher recall at the cost
of precision. The Swarm method, a more focused approach than TF-IDF, limited the

“discovery horizon” for the agents by focusing on the top terms in a textual element,
hence limiting the possible search alternatives. Both methods increased recall at the
expense of precision.

48

6 Reinforcement Learning Model
This section presents the Reinforcement Learning method overview and observations
made based on empirical results.

 6.1 Overview

The search space in a reinforcement learning (RL) model is similar to the search space
described in the swarm technique. It has three layers of data. The top level consists of the

high level documents. The middle level consists of all terms in all documents. The
bottom level consists of the low-level documents.

The agents traverse the search space starting from the top level documents down to the
low level documents by selecting the terms in the middle layer that are common between

the selected documents. The main idea of the algorithm is to equip the agents with some
heuristics to navigate the search space and choose the correct candidate links between the
high and low level documents.

To define a search space in terms of the RL model, we need to define states, actions,

transitions, and rewards. Figure 6.1 lists states and the transitions between them.

States are defined by the agent’s position in the data space. The agents can be in any of

the following states:

- Top level document, HL

- A term in a high level document, tHL

- Low level document, LL

- A term in a low level document, tLL

- A synonym term in vocabulary, st.

The agent’s states are the positions in the search space where the agent can be located.
The action the agent selects determines the states in the search space to which the agent

will transition. Possible actions at states and transitions between the states are shown in
the Agent State Transition Diagram, Figure 6.1.

49

Figure 6.1. RL Agent state transition diagram.

As we can see in Figure 6.1, when an agent is positioned at a high level document, state

HL, the agent starts by selecting a term as the starting point for its journey (the heuristic
of selecting terms is described below). By selecting a term in a high level document, the

agent transitions to the state tHL. From the state tHL, the agent can choose a low level

document that contains either the term or a synonym of the term.

By choosing a low level document, the agent transitions to the state LL. From the state

LL, the agent should select a term in the low level document. If the low level document

contains the term tHL in several positions, the agent needs to select a position tLL within
the low level document to maximize the match between the neighborhoods in the high

and low level documents. A neighborhood is a textual segment located around a linking
term.

Alternatively, from state tHL, the agent can also choose to explore the synonyms of the

term. If the agent selects a synonym, it transitions to the state st. From the state st, the
agent can only choose a low level document containing the synonymus term. Possible

actions at states and transitions between the states are summed up in Table 6.1.

50

 Table 6.1. Agent actions.

From Action* To

Top Level Document HL Select a term Term (High Level Doc)

tHL

Term(High Level Doc)

tHL Select Low Level or

Synonym

Low Level

Document

LL

Term(High Level Doc) tHL Select Low Level or
Synonym

Synonym st

Low Level

Document

LL Select a term Term(Low Level Doc) tLL

A synonym term in
vocabulary

st

Select Low Level Low Level
document

tLL

Each action listed in Table 6.1 can be in one of the three behaviors: random, linear, or
quadratic.

In random behavior the agent has an equal probability of transitioning in any of the

available next states. The formula for the random behavior is as follows:

 ()

 ,

(6.1)

where Si is a reachable state and N is the number all reachable states. For example, if the

agent is in a “term- high-level” state tHL and has ten possible low level documents, i.e.

ten reachable LL states, the probability of transitioning into each of the reachable states
is only 0.1.

Linear behavior allocates the transitional probabilities to the reachable states proportional
to the numeric values or rewards the reachable states possess. The formula for linear

behavior is as follows:

 ()
 ()

∑ ()
 ,

(6.2)

The probability of transitioning into the state Si is proportional to the value in the state Si,

divided by the sum of values of possible transition states. For example, if the ten

reachable LL states from the state tHL had the following values associated with them:

{20, 50, 30, 0, 0, 0, 0, 0, 0, 0}, the probability of transitioning into the first LL state is

51

0.2, into the second 0.5, the third is 0.3. The remaining reachable states would receive 0
transition probability. We describe the numeric state values and rewards later.

When the agent selects the quadratic behavior, the transition probabilities from the

example above would be distributed based on the following formula:

 ()
 ()

∑ ()

(6.3)

The probability of transitioning into the state Si is proportional to the squared value in the

state Si, divided by the sum of squared values of possible transition states.

Table 6.2 shows state values and associated behavioral probabilities for an agent

inspecting the A3.txt high level document in the Pine dataset. The probabilities depend
upon the term selection behavior the agent may choose.

Table 6.2. Term selection probability based on the transition values and

selection behavior.

Term Value Random Linear Quadratic

a3 0 0.067 0.00 0.00

address 1.106 0.067 0.12 0.10

book 0.808 0.067 0.09 0.06

allow 0 0.067 0.00 0.00

creat 0.52 0.067 0.06 0.02

delet 0.29 0.067 0.03 0.01

modifi 0 0.067 0.00 0.00

add 0 0.067 0.00 0.00

name 0 0.067 0.00 0.00

delet 0.24 0.067 0.03 0.00

name 0.026 0.067 0.00 0.00

person 1.5 0.067 0.16 0.19

distribut 1.54 0.067 0.17 0.20

list 1.55 0.067 0.17 0.20

pdl 1.57 0.067 0.17 0.21

Consider the term ‘list.’ In the course of the Reinforcement Learning algorithm, the state

“A3-list” received the value 1.55. The random selection behavior estimates the
probability of transitioning into “A3-list” state from “A3” state as 0.067. The linear

52

selection behavior raises the probability of such transition to 0.17. The quadratic selection
assigns the transition from ‘A3’ to ‘A3-list’ the highest probability, 0.21.

Figure 6.1 and Figure 6.2 display the transitional probabilities for linear and quadratic

selection behaviors based on Table 6.2

Figure 6.2. Term selection probability based on linear selection behavior.

Figure 6.3. Term selection probability based on quadratic selection

behavior.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
Linear

Prob

0

0.05

0.1

0.15

0.2

0.25
Quadratic

Prob

53

It can be visually seen that the term ‘delet’ in Figure 6.3 is significantly smaller compared
to the terms ‘distribut,’ ‘list,’ and ‘pld.’ It is also worth mentioning that our RL algorithm

differentiates between the different positions of a term in a document. For example, the
term ‘delet’ appears in document A3 in two positions. Each position, or state “A3-pos,’

receives different values based on values calculated during the Value Iteration algorithm.
Therefore, the positions receive different transition probabilities.

A state “a term in low level document” tHL can have a reward. This is a numeric value

associated with transitioning into the tHL state. The reward is calculated by comparing the
text segments in two neighborhoods: in high and low level documents. The comparison

evaluates how many common terms the two segments share. The reward is estimated
using the following formula:

∑ ∑ ()[

] ,

(6.4)

where H is the collection of high level documents, L is the collection of low level
documents, and are the terms in H and L documents respectively.

The function () is calculated as follows:

 () {

 .

(6.5)

The multiplication coefficients range from 1 to 10: { } . The range of

multiplication coefficients is a calculated estimate on the similarity of the textual

neighborhoods. The higher values for the coefficients imply that the

matching terms are close to each other in the neighborhood of the linking term.

The reward associated with transitioning into a position in a low level document is

propagated back to the high level documents through the common linking terms. As
described in the background section (Section 2.3), the agents choose the behavior in the
RL model, i.e., the search space navigation policy, to maximize expected return. The

expected return is calculated by the formula:

 ∑

(6.6)

where rt is the reward received after t-th transition action.

54

The Reinforcement Learning algorithm for requirements traceability is described in
Listing 6.1:

REINFORCEMENT LEARNING TRACELINKS (H, L)

 // Input High and Low level documents H and L
 // Output list of agent count (h,l,n) - from h in l, where n is the count

1. // Creates State Space

2. For each document hl in high level collection H
3. States.Add(NewState(hl))
4. For each term t in high level document h

5. i position of t in hl
6. States.Add(newState(hl_t))

7. // Iterate through low level documents linked via term t
8. For each document ld in Vocabulary.GetDocsByTerm (t)

9. If ld is lowLevelDocument
10. For each position j of term t in ld

11. lowLevelDocState newState(ht_t_ld_posj)

12. Value = EstimateMatchingValue(hl,ld,i,j)

13. lowLevelDocState.ValueValue

14. End For
15. Else // ld is a synonym

16. ld_2 Vocabulary.GetDocsByTerm (ld)
17. For each position j of term ld in ld_2

18. lowLevelDocState newState(ht_t_ld_posj)
19. Value = EstimateMatchingValue(hl,ld_2,i,j)

20. lowLevelDocState.ValueValue
21. End For

22. End if
23. End For

24. End For
25.
26.

27. // Calculate state values
28. For cycle 1 to 5

29. For each state s in States

30. argMaxValue 0

31. possibleSates s.Transitions
32. For each action a in Actions

33. possibleStates.TransitionProbabilitiesForAction(a)
34. For each ps in possibleStates

35. possibleValue possibleValue + ps.Probability* ps.Value

36. If possibleValue > argMaxValue

37. bestAction a

38. s.Policy a

55

39. End if
40. End For //possible states

41. argMaxValue Max(possibleValue, argMaxValue)
42. End For // Actions

43. s.Values.TransReward + argMaxValue
44. End For // states

45.
46. // Traverse the Search Space

47. For each top level document hl
48. For each agent ant in colony

49. currentState States(hl)

50. While CurrentState != low level document
51. //using currentState.Policy and currentStates.Transitions

52. nextState currentState.SelectNextState

53. currentState nextState

54. End While
55. End For

56. End For

Listing 6.1 Pseudo code for requirements traceablity reinforcement learning

The Reinforcement Learning algorithm determines an optimal transition policy for each

state by maximizing the expected return. The transition policy will become the guiding
heuristic for the agents to traverse the search space.

6.1.1 Path Saturation

The agents choose to select certain states based on the space traversal policy. When an

agent is presented a choice of possible next states S= {s1, s2,… , sk}, the probability of

transitioning into the next state depends on the value the next state holds. It is possible for
one of the next states to have a value which is much higher than the values of other
possible next states. In this case, the probability of transitioning into Si is higher than the

probability of transitioning into any other state:

 Pr(si) >> Pr(sj), where si ,sj {s1, s2,… ,sk} and i j,

(6.7)

It is possible to have a situation where a majority of agents always select the state with

the transition probability much higher than other possible states. This scenario may limit
the search only to the states with high values. To address this situation, we introduce the

notion of path saturation.

Path saturation is a value added to define the number of agents transitioning from state SA

to state SB. As the saturation value gets higher, the probability of transitioning from SA to

56

SB becomes smaller. The saturation value from SA to SB on the transition path has the
inverse effect on the transition probability from SA to SB.

In a manner similar to the Swarm Algorithm, the candidate links are estimated by the

agent count gathered in the low level documents. A candidate link between high level
document HLdoc and the low level document LLdoc gets a count of one if an agent starting
from HLdoc has reached the low level document LLdoc. After all counts on the candidate

links have been calculated, the candidate links are ranked by the agent count.

Having defined the search space and the search space traversal heuristic, the next step is
to outline the experiment design.

6.1.2 Experiment Design

In order to validate the RL technique, it was applied to two datasets. The datasets are the

same as used for the swarm algorithm. The first project consisted of 49 textual
requirements and 51 textual use cases. The dataset is a text-based email system Pine
developed by the University of Washington [51].

The Pine dataset contains 246 true links. These links form the answer set, i.e. a collection

of links against which we can validate our findings.

The second project consisted of 22 requirements documents and 53 design documents in

the NASA scientific instrument project CM1SUB [52]. The project has 45 true links in
the answer set.

The experiments were conducted using a Vector Space Model using TF-IDF weighting
(TF-IDF hereafter) and the Reinforcement Learning (RL) method. The independent

variable in the study was the method (TFIDF, Reinforcement Learning). The dependent
variables were recall and precision. The precision-recall graph and statistical analysis were

used to evaluate the results.

All textual documents were pre-processed, the agents selected each high-level element

one at a time and the agents used the search space navigation heuristics established by the
RL method. The output was captured in the form of candidate RTM. The results were

compared to the answer set to calculate recall and precision (formulas 2.1.1 and 2.1.2)
defined earlier.

To eliminate any possible threats to the validity of the experiment, several controls were
implemented.

Internal threats to validity included possibly indicating a relationship between the

treatment methods and the outcome, when in reality there was no relationship. First, in
our controlled experiment, we used the same datasets in the same environment. This was

done to provide a fixed environment where it was possible to observe the differences in
the outcome only where the treatments are different, i.e., where we apply different
candidate link generating algorithms.

57

To address the possible threat to internal validity due to repeated testing, each method

was run ten times and examined using the mean recall and precision values. Each method
produced average recall and precision values with variances ranging from 0.003 to 0.06.

To protect the ability to draw valid conclusions from the study, the same two datasets
were analyzed using similar treatments. In this experiment, both datasets were analyzed

using the TF-IDF and the RL methods.

Another possible threat identified was the effect of experimenter bias on the ability to
reach valid conclusions based on the data. This threat was reduced by using datasets

where the answer sets were independently verified by more than one analyst. In the case
of CM1SUB dataset, more than one research group was used.

There was additional potential for bias in that the answer sets created by human analysts
familiar with the traceability research domain. The vetted tool, RETRO.NET [36], was

used and adapted in order to properly implement the RL technique. The threats to validity
were also reduced by using the standard information retrieval measures of recall and
precision to evaluate effectiveness.

In addition to the internal threats to validity, threats to external validity and the ability to

properly generalize the results were addressed by using two datasets for validation.
Though both datasets are real projects (not student projects), they are small size datasets.

Also, though the datasets do represent two different domains, it is not possible to state
that the study sufficiently validated all domains or all projects.

 6.2Results

Following the completion of the experiments, the RL method and TF-IDF method were
evaluated for the Pine and CM1SUB datasets using the primary measures of recall and
precision. Section 6.2.1 presents the results and observations made during the initial

stage of the RL algorithm development. The RL results for Pine are shown in in Section
6.2.2. In section 6.2.3, we evaluate the RL method for the CM1SUB dataset. Section

6.2.4 provides an overall summary of the results and directions for future possible work.
Data points for the figures in this section are presented in Table 2 of Appendix A.

6.2.1 Reinforcement Learning Initial Results and Points of Interest

The initial development phase for the RL algorithm yielded results that were less than
impressive. For both datasets, Pine and CM1SUB, the precision-recall curves for the RL

method were below the precision-recall curves for the TF-IDF method. Figure 6.4
presents precision-recall curve for Pine obtained using an early version of the RL method.
It is clearly visible that the RL method at that phase underperformed the TF-IDF method.

58

Figure 6.4 Precision-recall curves for TF-IDF and initial phase of

reinforcement learning methods for the Pine dataset

Compared to the TF-IDF method, the initial version of the RL algorithm showed lower

precision values for the same values of recall. The highest value of precision for the RL
method was 0.67 at recall 0.13. At the same time, for TF-IDF at recall 0.13 the precision

was 0.95. We observe a similar situation for the CM1SUB dataset on the initial version of
the RL algorithm, shown in Figure 6.5.

Figure 6.5 Precision-recall curves for TF-IDF and initial phase of

reinforcement learning methods for the CM1SUB Dataset

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

o
n

Recall

Precision-Recall Pine. TF-IDF vs. RL

TF-IDF Initial RL

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

o
n

Recall

Precision-Recall for CMSUB. TF-IDF vs. RL

TF-IDF RL

59

For the CM1SUB dataset, the initial version of the RL algorithm showed lower precision

values for the same values of recall. The highest value of precision for the RL method
was 0.34 at recall 0.29. The TF-IDF method achieved precision of 0.5 at recall 0.29.

Another observation we made was that on both datasets, the initial RL method
demonstrated a narrower corridor of precision-recall values. For Pine, the precision

ranged from 0.41 up to 0.67; for CM1SUB, the precision ranged from 0.12 up to 0.32.
This led us to believe that the RL method maintains a “narrower focus” compared to TF-

IDF. Further investigation of the algorithm accentuated the importance of the “matching
neighborhood function.” We observed the direct effect of the way the textual
neighborhoods are matched on the quality of candidate links. The pseudo code presented

in Listing 6.1 displays, in line 12, the call to the neighborhood matching function.

After careful consideration and analysis, we decided to utilize tf-idf weight of the terms in
establishing matches between textual neighborhoods (Formula 6.4). Intuitively, it makes
sense that two textual segments, i.e., neighborhoods, sharing a number of terms with high

tf-idf weight, may in fact have a strong link between them. The results for the improved
Reinforcement Learning algorithm are presented in the next sections.

6.2.2 Reinforcement Learning on Pine

Figure 6.6 presents the precision-recall curve for the RL and TF-IDF methods for the

Pine dataset.

Figure 6.6 Precision-recall curves for TF-IDF and reinforcement

learning methods for the Pine method

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

o
n

Recall

Precision-Recall on Pine. TF-IDF vs. RL

TF-IDF RL

60

The RL method demonstrates higher precision values than TF-IDF for the same values of
recall. The highest precision for RL method is 0.84 at recall 0.24. As we can see in

Figure 6.6, the highest precision-recall value in RL is at the same position as in TF-IDF.

By inspecting other values of the precision-recall graph, we see the RL method produced
a more focused result. The lowest precision returned by the RL method is 0.65 at recall
0.52. The comparable result for TF-IDF achieves precision 0.65 at recall 0.4. The quality

of candidate links produced by the RL method is better; the RL achieves higher precision
than TF-IDF for the same recall values.

For the Pine dataset, at recall of 0.42 the RL method achieves precision of 0.73. As we
can see from Table 2 in Appendix A, the RL method filtered at 0.25 suggested 141 links.

The number of correctly identified links was 103. The total number of correct candidate
links for the Pine dataset is 248. The 103 correctly suggested links out of a total of 248

equates to 0.42 recall.

The TF-IDF method at 0.20 filtering on the Pine dataset suggests 162 links; 106 links are

correctly identified. 106 out 248 is 0.42 recall. Having similar recall values, the two
methods achieved different precision: the TF-IDF method achieves 0.65 (0.65= 106/162);

the RL method achieves 0.73 (103/141). The RL method retrieves a higher number of
relevant documents compared to the TF-IDF method.

To evaluate any statistical difference between the two methods, the recall and precision
numbers were compared on the overlapping recall value range. For the Pine dataset, the

TF-IDF method covered recall values from 0 to 1, while the RL method covered recall
values from 0.23 to 0.52. Using the recall point from the RL method, the precision values
were interpolated for the TF-IDF method. Twenty recall values and twenty precision

values for TF-IDF and RL were used to define the null hypothesis and alternative
hypotheses for the results:

H0: There is no difference between the precision values of the TF-IDF
interpolated precision-recall graph compared to the precision values for the RL
method’s precision-recall graph.

H1: There is a difference between the precision values of the TF-IDF interpolated
precision-recall graph compared to the precision values for the RL method’s

precision-recall graph.
The Wilcoxon Signed Ranked method was used to evaluate the null hypothesis. The
critical value for Zcritical test was ±1.96 at confidence level α = 0.05. The results of the

calculations produced the following values:

 W- = -205,

 W+ = 20,

 Z = -3.82.

Since Z < Zcritical, the null hypothesis was rejected. This left the conclusion that there is a
statistically significant difference between the precision values of the two methods.

61

6.2.3 Reinforcement Learning on CM1SUB

The RL method applied on the CM1SUB dataset produced results similar to the results

obtained on the Pine dataset. Figure 6.7 shows the precision-recall values for the RL
method compared to the precision-recall values for the TF-IDF method using the

CM1SUB dataset.

Figure 6.7 Precision-recall curves for TF-IDF and reinforcement learning

methods for the CM1SUB

As shown in Figure 6.7, the points in the Precision-recall plane for the RL method have

higher precision values than the points for the TF-IDF method. The RL method reaches a
precision of 0.61 at recall of 0.24. The TF-IDF method reaches a precision of only 0.5 at
a 0.24 recall value.

When comparing recall and precision values for the RL method, recall values grow to

0.38 as precision drops to 0.39. The RL method results also cluster in the area from recall
0.39 and precision 0.39 up to precision value 0.61 at recall 0.24. These values in dicate
the RL method does target the relevant candidate links.

For the CM1SUB dataset, the recall and precision numbers were compared between the

two overlapping recalls to confirm any statistical difference between the two methods.
With values similar to those for the Pine dataset, the RL method covers a limited range of
recall values 0.28 to 0.34.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

o
n

Recall

Precision-Recall for CMSUB. TF-IDF vs. RL

TF-IDF RL

62

The precision values for the TF-IDF method were interpolated using 20 recall values and
20 precision values for TF-IDF and RL. The null hypothesis and alternative hypotheses

were defined as follows:
H0: There is no difference between the precision values of the TF-IDF

interpolated precision-recall graph compared to the precision values for the RL
method’s precision-recall graph.
H1: There is a difference between the precision values of the TF-IDF interpolated

precision-recall graph compared to the precision values for the RL method’s
precision-recall graph.

The Wilcoxon Signed Ranked method was also used to evaluate the null hypothesis as
was done previously for the Pine dataset. The critical value for Zcritical test was found to
be ±1.96 at confidence level α = 0.05. The calculations produced the following values for

W-, W+ and Z :

 W- = -153,

 W+ = 18.5,

 Z = -3.07.

Since our Z < Zcritical, as found previously for the Pine dataset, the null hypothesis must
also be rejected. This left us to conclude that there is a statistically significant difference
between the precision values of the TF-IDF and RL methods on CM1SUB.

6.2.4 Observations

In light of the results obtained from the experiments, we were able to make several

interesting observations.

Typically, when we consider a precision-recall curve, we observe three possible

outcomes: high recall values and low precision; high precision and low recall; and values
in between these two extremes [53], [15],[9].

High precision and low recall implies that we accurately retrieved a small fraction of the
required documents, but not most of them. Low precision and high recall implies that we

retrieved most of the required documents, but at the same time, we retrieved more
unrelated documents as well.

Ideally, when we issue a query we would like to retrieve all the correct documents and no
unrelated items. This ideal scenario should provide high recall and high precision values;

our precision-recall curve should reside in the upper right area of the graph as shown in
Figure 6.8. We would like our precision recall curve to resemble the ideal shape, i.e.

move the top right corner of the precision recall graph and raise the lower boundaries on
recall and precision values.

63

Figure 6.8 Precision-recall curves ideal vs. typical

For both datasets, the RL method demonstrated higher precision values than the TF-IDF

method for the same recall values. For the Pine dataset, the RL method reached precision
value 0.65 at recall 0.52. The TF-IDF method only reached precision value 0.52 at recall
0.52.

We observed a similar difference in precision between the RL and TF-IDF methods using

the CM1SUB dataset. The RL method reached precision 0.61 at recall of 0.24, while TF-
IDF reached precision 0.5 at recall of 0.24.

It should be noted that the RL method did not cover the whole spectrum of recall or
precision values. The minimum recall for RL on Pine is 0.23; the maximum recall for RL

on Pine is 0.52. The minimum precision for RL on Pine is 0.65; the maximum precision
for RL on Pine is 0.84.

A precision-recall curve for the RL method using the CM1SUB dataset was also limited
by min/max values in recall and precision. For CM1SUB, the minimum recall value for

RL is 0.24; the maximum recall was 0.38. The minimum precision value for RL was
0.39, the maximum was 0.61.

The precision-recall data points for the RL method on both datasets exhibited a more
focused result, compared to the TF-IDF method. However, the TF-IDF method did reach
values close to 1 in recall and precision.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

o
n

Recall

Ideal Precision-Recall

Ideal Typical

64

At the same time, when TF-IDF recall reaches to 1, precision drops to almost 0. The
same is true for precision: when precision reaches 1, the recall drops close to 0. The RL

method recall does not drop below 0.23 for Pine and produces recall higher than 0.24.
Also, the lower boundaries for precision on the RL method for the Pine and CM1SUB

datasets were 0.37 and 0.39, respectively.

One explanation for the observed trends using the RL method is that the common textual

segments in two compared documents contribute significantly to promoting a possible
link between the two documents. In other words, the candidate links suggested by the RL

method shared common textual segments. This is why the higher precision results are
produced in the RL method on both datasets.

The upper boundary on precision for RL for both Pine and CM1SUB datasets is 0.84 and
0.61, respectively. This indicates that having common segments between textual

documents is not enough to establish a true link between them. If the RL method links the
documents with common segments, the upper boundary on the precision indicates that
some documents sharing textual segments may not have a logical link between them. For

example, the RL method suggested a link between high level document F6.txt and low
level UC-F1.txt as shown in Figure 6.9.

Figure 6.9 Two documents sharing common segments

By tracing the agents, we can see that the suggested link came as the result of a common

segment in F6.txt and UC-F1.txt: “the system shall issue a warning.”

Even though the wording of the segment is the same in both documents, the information

carried by this common segment is not sufficient to link the documents. This suggests
that not all common textual segments are “created equal.”

65

At the same time, the lower boundary on the RL method’s precision for Pine and
CM1SUB datasets does not fall below 0.65 and 0.39, respectively. This fact suggests that

the common segments play an important role in identifying correct candidate links
between high and low level documents. The portion of the relevant documents returned

by the RL method did not fall below 0.65 and 0.39 for Pine and CM1SUB datasets
respectively.

With the lower boundaries on precision, the RL method reaches the upper boundaries for
recall (0.52 and 0.38). This indicates that the common textual segments may not

necessarily uncover all possible ways of linking the documents.

6.2.5 Hard Traces

To evaluate the value of discovering common textual segments using the RL method, we

compared the quality of candidate links on the Web Archive tool (WARC) dataset [54].
Figure 6.10 Precision-recall curve for WARC. shows precision-recall curves for the TF-

IDF and RL methods on the WARC dataset.

Figure 6.10 Precision-recall curve for WARC.

As shown in Figure 6.10, the points in the precision-recall curve for the RL method are
gathered around the recall value of 0.23 and the precision varies from 0.49 to 0.72. The
RL method did not demonstrate a significant performance gain with respect to the TF-

IDF method. Only on one point (precision 0.72, recall 0.23) did the RL curve exceed TF-
IDF’s performance; the interpolated value for TF-IDF there is precision of 0.70 at recall
of 0.23. Yet, similar to the results on Pine and CM1SUB, the RL method demonstrated

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

o
n

Recall

Precision-Recall WARC. RL vs.
TF-IDF

TF-IDF RL

66

focused results: the recall ranged from 0.23 to 0.26 and precision ranged from 0.49 to
0.72.

What interested us in this set of results was the performance on the “hard traces.”

According to Gibiec, Czauderna, Cleland-Huang, the hard traces exhibit average
precision less than 10% and occur when documents do not share common terms or
synonyms in a thesaurus [55]. The RL method was able to locate some of the hard traces

with 100% recall and precision. For example, table A.3 in the appendix shows 100%
recall and precision for FR30.txt, FR33.txt, and FR38.txt. Yet, the RL method completely

missed some of the hard traces. If we analyze the “completely” missed links, we can see
that the documents comprising the link shared very few common terms. An example of
such documents is F04.txt which has the following low level documents in the answer

set: SRS08.txt, SRS09, and SRS10.txt. By zooming further into the content of the
documents (Figure 6.11), we see only a single pair of terms common between the two

documents.

Figure 6.11 Two hard trace documents from WARC dataset comprising missed link

At the same time, the RL method did pick up the documents that comprise the hard to

trace links and share common textual segments. Figure 6.12 shows documents FR30.txt
and SRS49.txt sharing several common textual segments.

Figure 6.12 Two hard trace documents from WARC dataset comprising link discovered by the RL

method.

67

 6.3Future Work

Comparing RL to TF-IDF, which links the documents based on all common terms and

their weight, the RL method promotes the links between documents with common terms
located close to each other. In other words, the RL method identifies common textual

segments between documents, and suggests links between such documents. By doing so,
the RL method outperforms the TF-IDF method for the same recall values. RL’s higher
precision at the same recall rate provides a human analyst with a more compact and

focused collection of candidate links.

Considering the encouraging results from the RL method, future work can be directed to
incorporate the advantages that the RL method offers. Future work will incorporate a
feedback mechanism similar to the one in Mencer’s work [49]. Feedback may improve

the accuracy of the generated candidate links.

Also, combining the feedback with personalized filtering, similar to Seo’s work [45],
should definitely affect the accuracy of the candidate links. A part of speech tagging or
noun-verb phrasing technique [27] shall also be considered in future work. By

classifying terms in textual documents, we can amplify the importance of one type of
textual segment over others.

68

Appendix
Table 0.1. Detailed results for the TF-IDF and pheromone swarm methods on the Pine
and CM1 datasets

Pine CM-1

TF-IDF TF-IDF

Threshold Recall Precision F F2 DiffAR MAP Threshold Recall Precision F F2 DiffAR MAP

0.1 0.72 0.48 0.58 0.66 0.18 0.75 0.1 0.82 0.08 0.14 0.28 0.09 0.16

0.2 0.43 0.65 0.51 0.46 0.25 0.58 0.2 0.50 0.19 0.27 0.37 0.10 0.20

0.3 0.24 0.82 0.37 0.28 0.41 0.38 0.3 0.25 0.32 0.28 0.26 0.22 0.15

0.4 0.15 0.97 0.27 0.19 0.55 0.27 0.4 0.09 0.31 0.14 0.10 0.34 0.06

0.5 0.08 0.95 0.15 0.10 0.61 0.16 0.5 0.03 0.45 0.05 0.03 0.47 0.02

0.6 0.04 1.00 0.08 0.05 0.69 0.08 0.6 0.01 0.57 0.02 0.01 0.66 0.01

0.7 0.02 1.00 0.03 0.02 0.75 0.04 0.7 0.00 0.50 0.01 0.00 0.75 0.00

0.8 0.00 1.00 0.01 0.01 0.80 0.00

Simple Swarm Simple Swarm

Threshold Recall Precision F F2 DiffAR MAP Threshold Recall Precision F F2 DiffAR MAP

0.1 0.86 0.27 0.41 0.60 0.46 0.76 0.1 0.80 0.04 0.07 0.15 0.28 0.23

0.2 0.78 0.40 0.53 0.66 0.41 0.74 0.2 0.66 0.05 0.10 0.20 0.23 0.22

0.3 0.65 0.52 0.58 0.62 0.44 0.67 0.3 0.50 0.07 0.12 0.22 0.19 0.21

0.4 0.55 0.63 0.59 0.57 0.46 0.61 0.4 0.41 0.08 0.14 0.23 0.24 0.19

0.5 0.48 0.71 0.58 0.52 0.57 0.57 0.5 0.35 0.11 0.16 0.24 0.23 0.18

0.6 0.40 0.76 0.53 0.44 0.66 0.52 0.6 0.26 0.13 0.17 0.22 0.34 0.16

0.7 0.34 0.81 0.48 0.39 0.72 0.47 0.7 0.22 0.15 0.17 0.20 0.46 0.15

0.8 0.28 0.83 0.41 0.32 0.85 0.41 0.8 0.19 0.17 0.18 0.19 0.57 0.14

0.9 0.22 0.86 0.35 0.26 0.93 0.36 0.9 0.16 0.19 0.17 0.16 0.72 0.13

Pheromone Swarm δ=1 Pheromone Swarm with δ=1

Threshold Recall Precision F F2 DiffAR MAP Threshold Recall Precision F F2 DiffAR MAP

0.1 0.63 0.54 0.58 0.61 0.38 0.68 0.1 0.58 0.07 0.13 0.24 0.27 0.14

0.2 0.46 0.63 0.53 0.49 0.43 0.57 0.2 0.44 0.10 0.17 0.27 0.23 0.15

0.3 0.33 0.64 0.44 0.37 0.58 0.48 0.3 0.37 0.12 0.18 0.26 0.21 0.16

0.4 0.28 0.66 0.39 0.31 0.64 0.45 0.4 0.30 0.13 0.19 0.24 0.31 0.14

0.5 0.25 0.69 0.37 0.29 0.73 0.42 0.5 0.26 0.15 0.19 0.23 0.35 0.15

0.6 0.23 0.73 0.35 0.27 0.76 0.40 0.6 0.23 0.17 0.19 0.21 0.41 0.15

0.7 0.21 0.78 0.33 0.24 0.89 0.39 0.7 0.20 0.18 0.19 0.20 0.57 0.15

0.8 0.19 0.84 0.31 0.23 0.93 0.37 0.8 0.19 0.20 0.19 0.19 0.62 0.14

0.9 0.18 0.87 0.30 0.22 0.95 0.37 0.9 0.16 0.21 0.18 0.17 0.82 0.14

Pheromone Swarm δ=3 Pheromone Swarm with δ=3

Threshold Recall Precision F F2 DiffAR MAP Threshold Recall Precision F F2 DiffAR MAP

0.1 0.59 0.54 0.56 0.58 0.44 0.66 0.1 0.56 0.08 0.13 0.25 0.26 0.22

0.2 0.42 0.62 0.50 0.45 0.52 0.54 0.2 0.40 0.10 0.16 0.25 0.27 0.20

0.3 0.35 0.67 0.46 0.39 0.60 0.51 0.3 0.34 0.12 0.18 0.25 0.28 0.19

0.4 0.30 0.74 0.42 0.34 0.70 0.47 0.4 0.30 0.14 0.19 0.25 0.29 0.18

0.5 0.27 0.77 0.40 0.31 0.75 0.45 0.5 0.27 0.16 0.20 0.24 0.35 0.17

0.6 0.24 0.81 0.37 0.28 0.88 0.42 0.6 0.25 0.19 0.21 0.23 0.40 0.17

0.7 0.22 0.84 0.34 0.25 0.93 0.40 0.7 0.22 0.21 0.21 0.22 0.50 0.16

0.8 0.20 0.87 0.32 0.23 0.95 0.37 0.8 0.18 0.20 0.19 0.19 0.69 0.14

0.9 0.19 0.89 0.31 0.23 0.98 0.37 0.9 0.17 0.22 0.19 0.18 0.77 0.13

Pheromone Swarm δ=5 Pheromone Swarm with δ=5

Threshold Recall Precision F F2 DiffAR MAP Threshold Recall Precision F F2 DiffAR MAP

0.1 0.52 0.52 0.52 0.52 0.45 0.58 0.1 0.48 0.08 0.13 0.23 0.27 0.21

0.2 0.38 0.63 0.48 0.41 0.52 0.49 0.2 0.38 0.11 0.17 0.25 0.25 0.19

0.3 0.33 0.69 0.45 0.37 0.60 0.46 0.3 0.31 0.12 0.18 0.24 0.25 0.18

0.4 0.28 0.71 0.40 0.31 0.67 0.41 0.4 0.28 0.14 0.18 0.23 0.31 0.18

0.5 0.24 0.71 0.35 0.27 0.75 0.38 0.5 0.24 0.15 0.18 0.21 0.39 0.16

0.6 0.23 0.77 0.35 0.26 0.79 0.38 0.6 0.22 0.16 0.18 0.20 0.55 0.16

0.7 0.21 0.81 0.34 0.25 0.84 0.37 0.7 0.20 0.19 0.20 0.20 0.65 0.15

0.8 0.19 0.85 0.31 0.23 0.93 0.36 0.8 0.18 0.20 0.19 0.18 0.77 0.14

0.9 0.18 0.86 0.30 0.21 1.00 0.33 0.9 0.17 0.21 0.19 0.17 0.86 0.13

69

Table 0.2. Detailed results for the TF-IDF and RL methods on the Pine and CM1SUB

datasets

70

Table 0.3. Detailed results for the TF-IDF and RL methods on the Pine and CM1SUB
datasets

71

References

[1] M. Dowson, “The Ariane 5 software failure,” SIGSOFT Softw. Eng. Notes, vol. 22,

no. 2, p. 84, 1997.

[2] R. Pressman, Software Engineering: A Practitioner’s Approach, 7th ed. McGraw-
Hill Science/Engineering/Math, 2009.

[3] C. Jones, Patterns of Software System Failure and Success. Intl Thomson Computer
Pr (Sd), 1995.

[4] B. Boehm and V. R. Basili, “Software Defect Reduction Top 10 List,” Computer,

vol. 34, no. 1, pp. 135–137, 2001.
[5] B. W. Boehm, Software Engineering Economics. Prentice Hall, 1981.

[6] “SWEBOK Guide - Chapter 2,” 20:14:23. [Online]. Available:
http://www.computer.org/portal/web/swebok/html/ch2. [Accessed: 31-Aug-2010].

[7] IEEE, IEEE Standard 610.12-90 IEEE Standard Glossary of Software Engineering

Terminology. IEEE, 1990.
[8] J. H. Hayes, A. Dekhtyar, and S. Sundaram, “Advancing Candidate Link Generation

for Requirements Tracing: The Study of Methods,” IEEE Transactions on Software
Engineering, vol. 32, no. 1, pp. 4 – 19, 2006.

[9] J. H. Hayes, A. Dekhtyar, S. Sundaram, E. Holbrook, S. Vadlamudi, and A. April,

“REquirements TRacing On target (RETRO): improving software maintenance
through traceability recovery,” Innovations in Systems and Software Engineering,

vol. 3, no. 3, pp. 193–202, 2007.
[10] T. Mundie and F. Hallsworth, “Requirements analysis using SuperTrace PC,” 1995.
[11] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 2nd ed.

Prentice Hall, 2002.
[12] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. The MIT

Press, 1998.

[13] H. Sultanov and J. H. Hayes, “Application of Swarm Techniques to Requirements
Engineering: Requirements Tracing,” presented at the 18th Intl. Requirement

Engineering Conference, Sydney, Australia, 2010.
[14] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Information Retrieval,

1st ed. Cambridge University Press, 2008.

[15] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval. ACM Press,
Addison-Wesley, 1999.

[16] J. Matthias, “Requirements Tracing,” Communications of the ACM, vol. 41, no. 12,
1998.

[17] Deneubourg, S. Aron, S. Goss, and J. Pasteels, “The self-organizing exploratory

pattern of the argentine ant,” Journal of Insect Behavior, vol. 3, no. 2, pp. 168, 159,
Mar. 1990.

[18] O. C. Z. Gotel and A. C. W. Finkelstein, “An Analysis of the Requirements
Traceability Problem,” pp. 94–101, 1994.

[19] G. Antoniol, G. Canfora, G. Casazza, A. D. Lucia, and E. Merlo, “Recovering

Traceability Links between Code and Documentation,” IEEE Trans. Softw. Eng.,
vol. 28, no. 10, pp. 970–983, 2002.

[20] J. Cleland-Huang, R. Settimi, O. BenKhadra, E. Berezhan, and S. Christina, “Goal-
Centric Traceability for Managing Non-Functional Requirements,” 2005.

72

[21] P. Lago, H. Muccini, and H. van Vliet, “A scoped approach to traceability
management,” Journal of Systems and Software, vol. 82, no. 1, pp. 168–182, Jan.

2009.
[22] M. C. Panis, “Successful Deployment of Requirements Traceability in a

Commercial Engineering Organization...Really,” Sydney, Australia, 2010.
[23] A. Egyed, P. Grünbacher, and F. Graf, “Effort and Quality of Recovering

Requirements-to-Code Traces: Two Exploratory Experiments,” Sydney, Australia,

2010.
[24] A. D. Lucia, F. Fasano, R. Oliveto, and G. Tortora, “Recovering traceability links in

software artifact management systems using information retrieval methods,” ACM
Trans. Softw. Eng. Methodol., vol. 16, no. 4, p. 13–es, Sep. 2007.

[25] A. Marcus and J. I. Maletic, “Recovering documentation-to-source-code traceability

links using latent semantic indexing,” Washington, DC, USA, 2003, pp. 125–135.
[26] J. H. Hayes, A. Dekhtyar, and J. Osborne, “Improving Requirements Tracing via

Information Retrieval,” 2003, p. 138.
[27] X. Zou, R. Settimi, and J. Cleland-Huang, “Improving automated requirements trace

retrieval: a study of term-based enhancement methods,” Empir Software Eng, vol.

15, no. 2, pp. 119–146, Jul. 2009.
[28] Y. S. Maarek, D. M. Berry, and G. E. Kaiser, “An Information Retrieval Approach

for Automatically Constructing Software Libraries,” IEEE Transactions on
Software Engineering, vol. 17, pp. 800–813, 1991.

[29] N. Niu and S. Easterbrook, “Extracting and Modeling Product Line Functional

Requirements,” Los Alamitos, CA, USA, 2008, pp. 155–164.
[30] A. Zisman, G. Spanoudakis, E. Perez-Minana, and P. Krause, “Towards a

Traceability Approach for Product Family Requirements,” 2002.
[31] S. Sundaram, J. H. Hayes, A. Dekhtyar, and A. Holbrook, “Assessing traceability of

software engineering artifacts,” Requirements Engineering Journal, vol. early view,

Jan. 2010.
[32] G. Spanoudakis, A. Zisman, E. Perez-Minana, and P. Krause, “Rule-Based

Generation of Requirements Traceability Relations,” Journal of Systems and
Software, vol. 72, no. 2, pp. 105–127, 2004.

[33] E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelligence: From Natural to

Artificial Systems, 1st ed. Oxford University Press, USA, 1999.
[34] D. W. van der Merwe and A. P. Engelbrecht, “Data clustering using particle swarm

optimization,” presented at the 2003 Congress on Evolutionary Computation,
Canberra, ACT, Australia, 03:04:17, pp. 215–220.

[35] X. Cui, T. E. Potok, and P. Palathingal, “Document Clustering using Particle Swarm

Optimization,” IEEE SWARM INTELLIGENCE SYMPOSIUM, THE WESTIN,
2005.

[36] E. Diaz-Aviles, W. Nejdl, and L. Schmidt-Thieme, “Swarming to rank for
information retrieval,” Montreal, Québec, Canada, 2009, pp. 9–16.

[37] M. H. Aghdam, N. Ghasem-Aghaee, and M. E. Basiri, “Text feature selection using

ant colony optimization,” Expert Syst. Appl., vol. 36, no. 3, pp. 6843–6853, 2009.
[38] H. Azzag, N. Monmarche, M. Slimane, and G. Venturini, “AntTree: a new model

for clustering with artificial ants,” presented at the Evolutionary Computation, 2003.
CEC ’03. The 2003 Congress on, 2003, vol. 4, pp. 2642–2647 Vol.4.

73

[39] A. Abraham and V. Ramos, “Web usage mining using artificial ant colony
clustering and linear genetic programming,” presented at the Evolutionary

Computation, 2003. CEC ’03. The 2003 Congress on, 2003, vol. 2, pp. 1384–1391
Vol.2.

[40] H. Li and C. P. Lam, “Using Anti-Ant-like Agents to Generate Test Threads from
the UML Diagrams,” in Testing of Communicating Systems, vol. 3502, F. Khendek
and R. Dssouli, Eds. Springer Berlin / Heidelberg, 2005, pp. 405–405.

[41] G. Spanoudakis, A. d’ Avila-Garces, and A. Zisman, Revising Rules to Capture
Requirements Traceability Relations: A Machine Learning Approach. 2003.

[42] A. S. d’ Avila Garcez, A. Russo, B. Nuseibeh, and J. Kramer, “Combining
abductive reasoning and inductive learning to evolve requirements specifications,”
Software, IEE Proceedings -, vol. 150, no. 1, pp. 25 – 38, Feb. 2003.

[43] J. Hawthorne, “Inductive Logic,” in The Stanford Encyclopedia of Philosophy,
Winter 2012., E. N. Zalta, Ed. 2012.

[44] P. A. Flach and A. C. Kakas, Eds., Abduction and Induction: Essays on their
Relation and Integration, Softcover reprint of hardcover 1st ed. 2000. Springer,
2010.

[45] Y.-W. Seo and B.-T. Zhang, “A reinforcement learning agent for personalized
information filtering,” in Proceedings of the 5th international conference on

Intelligent user interfaces, New York, NY, USA, 2000, pp. 248–251.
[46] J. Cleland-Huang, A. Czauderna, M. Gibiec, and J. Emenecker, “A machine

learning approach for tracing regulatory codes to product specific requirements,” in

Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering - Volume 1, New York, NY, USA, 2010, pp. 155–164.

[47] H. U. Asuncion, A. U. Asuncion, and R. N. Taylor, “Software traceability with topic
modeling,” in Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering - Volume 1, New York, NY, USA, 2010, pp. 95–104.

[48] V. Hatzivassiloglou, J. L. Klavans, and E. Eskin, “Detecting Text Similarity over
Short Passages: Exploring Linguistic Feature Combinations via Machine Learning,”

in IN PROCEEDINGS OF THE 1999 JOINT SIGDAT CONFERENCE ON
EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND VERY
LARGE CORPORA, 1999, pp. 203–212.

[49] F. Menczer and R. K. Belew, “Adaptive information agents in distributed textual
environments,” in Proceedings of the second international conference on

Autonomous agents, New York, NY, USA, 1998, pp. 157–164.
[50] H. Sultanov, J. H. Hayes, and W.-K. Kong, “Application of swarm techniques to

requirements tracing,” Requirements Eng, Jun. 2011.

[51] “Pine Email System,” 19:03:51. [Online]. Available:
http://www.washington.edu/pine/. [Accessed: 19-Feb-2010].

[52] M. D. P. Website, CM-1 Project. .
[53] S. T. Dumais, G. W. Furnas, T. K. Landauer, and S. Deerwester, “Using latent

semantic analysis to improve information retrieval,” 1988, pp. 281–285.

[54] “WARC, Web Archive Eighteen (18),” 19:03:51. [Online]. Available:
http://code.google.com/p/warc-tools/. [Accessed: 19-Feb-2010].

[55] M. Gibiec, A. Czauderna, and J. Cleland-Huang, “Towards mining replacement
queries for hard-to-retrieve traces,” in Proceedings of the IEEE/ACM international

74

conference on Automated software engineering, New York, NY, USA, 2010, pp.
245–254.

75

Vita

Date and Place of Birth:
Tashkent, USSR

Education:

Tashkent State University, May 1995
Diploma. Applied Mathematics and Mechanics

Rochester Institute of Technology
Bachelor of Science in Applied Mathematics, August 1994

Oklahoma State University
Master in Computer Science. August 1997

Professional Positions Held:

Citibank, Technology Head
Almaty, Kazakhstan
December 1997-October 2002

SMC, Programmer

Lexington, Kentucky
April 2004 – August 2008

ACS, Software Developer
Lexington, KY
August 2008 – Dec 2011

Kinemetrix, Project Engineer

Lexington, KY
Jan 2012 – present

Professional Publications:
H. Sultanov and J.H. Hayes, “Application of Swarm Techniques to Requirements

Engineering: Requirements Tracing,” Sydney, Australia: 2010.

H. Sultanov, J.H. Hayes, and W.-K. Kong, “Application of swarm techniques to

requirements tracing,” Requirements Engineering, Jun. 2011

 H. Sultanov, W.-K. Kong, Jane Hayes, W Li, “Software Verification and Validation
Research Laboratory (SVVRL) of the University of Kentucky: Traceability Challenge
2011: Language Translation,” TEFSE 2011, ICSE workshop

H. Sultanov, J.H. Hayes, “Application of Reinforcement Learning Requirements

Engineering: Requirements tracing,” Requirements Engineering Conference, Jul. 2013
(accepted)

	APPLICATION OF SWARM AND REINFORCEMENT LEARNING TECHNIQUES TO REQUIREMENTS TRACING
	Recommended Citation

	ACKNOWLEDGEMENTS
	Table of Content
	List of Figures
	List of Tables
	1. Introduction
	1.1 Requirements Tracing
	1.2 Requirements Traceability Matrix
	1.3 Problem Statement
	1.4 Research Thesis
	1.5 Scope of Research
	1.6 Research Contributions

	2 Background
	2.1 Information Retrieval
	2.2 IR Methods
	2.2.1 Boolean Retrieval
	2.2.2 Vector Space TF –IDF

	2.3 Requirements Tracing
	2.4 Swarm Intelligence
	2.5 Reinforcement Learning

	3 Related Work
	3.1 Requirements Traceability
	3.2 PSO and ACO Techniques
	3.3 Machine Learning Techniques

	4 Research Approach
	4.1 Simple Swarm
	4.2 Pheromone Swarm

	5. Validation
	5.1 Evaluation Approach
	5.2 Hypotheses
	5.3 Statistical Evaluation
	5.4 Results to Date
	5.4 1 Simple Swarm Applied to the Pine Dataset
	5.4.2 Secondary measures for the Pine dataset
	5.4.3 Simple Swarm on CM1 dataset
	5.4.4 Pheromone Swarm on the CM1 dataset
	5.4.5 Secondary measures for the CM1 dataset

	5.5 Statistical Analysis
	5.6 Threats to Validity
	5.7 Threats to Validity
	5.8 Overall Summary

	6 Reinforcement Learning Model
	6.1 Overview
	6.1.1 Path Saturation
	6.1.2 Experiment Design

	6.2 Results
	6.2.1 Reinforcement Learning Initial Results and Points of Interest
	6.2.2 Reinforcement Learning on Pine
	6.2.3 Reinforcement Learning on CM1SUB
	6.2.4 Observations
	6.2.5 Hard Traces

	6.3 Future Work

	Appendix
	References
	Vita

