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ABSTRACT OF DISSERTATION 

 
 

 
APPLICATION OF SWARM AND REINFORCEMENT 

LEARNING TECHNIQUES TO REQUIREMENTS 

TRACING 

 

 
Today, software has become deeply woven into the fabric of our lives. The quality of the software 
we depend on needs to be ensured at every phase of the Software Development Life Cycle 
(SDLC). An analyst uses the requirements engineering process to gather and analyze system 
requirements in the early stages of the SDLC. An undetected problem at the beginning of the 
project can carry all the way through to the deployed product. 

The Requirements Traceability Matrix (RTM) serves as a tool to demonstrate how requirements 
are addressed by the design and implementation elements throughout the entire software 
development lifecycle. Creating an RTM matrix by hand is an arduous task.  Manual generation 

of an RTM can be an error prone process as well.  

As the size of the requirements and design document collection grows, it becomes more 
challenging to ensure proper coverage of the requirements by the design elements, i.e., assure that 
every requirement is addressed by at least one design element. The techniques used by the 
existing requirements tracing tools take into account only the content of the documents to 
establish possible links. We expect that if we take into account the relative order of the text 
around the common terms within the inspected documents, we may discover candidate links with 
a higher accuracy.  
 
The aim of this research is to demonstrate how we can apply machine learning algorithms to 
software requirements engineering problems. This work addresses the problem of requirements 
tracing by viewing it in light of the Ant Colony Optimization (ACO) algorithm and a 
reinforcement learning algorithm. By treating the documents as the starting (nest) and ending 
points (sugar piles) of a path and the terms used in the documents as connecting nodes, a possible 
link can be established and strengthened by attracting more agents (ants) onto a path between the 
two documents by using pheromone deposits. The results of the work show that ACO and RL can 
successfully establish links between two sets of documents. 

KEYWORDS:  Software Engineering, Requirements Engineering, Traceability, 
Swarms, Reinforcement Learning 
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1. Introduction 
Today, software has become deeply woven into the fabric of our lives. Software controls 
a pump meter at a gas station, manages concurrent display of maps and conversation on a 
cell phone, and controls the ascent of rockets into space. Software malfunctions can cause 

disasters both small and large. For example, a malfunction in a rocket’s control software 
may cause the rocket to disintegrate in pieces like the Ariane 5 [1]. For these reasons, the 

quality of the software we depend on needs to be ensured at every phase of the Software 
Development Life Cycle (SDLC).  
 

The SDLC consists of four main phases: Planning, Analysis, Design, and Implementation 
and Testing [2]. The planning phase aims to address justifications for the software 

system, feasibility studies, risk management, etc. During the analysis phase, the 
requirements for the future software system are elicited, gathered, negotiated, and 
validated. When the SDLC enters the design phase, these requirements are transformed 

into design elements describing how the required functionality is achieved. The 
implementation phase encompasses the development and test of the designed elements.  

1.1 Requirements Tracing               

An analyst uses the requirements engineering process to gather and analyze system 
requirements. During this process, the analyst clarifies customer needs, conducts 

feasibility studies, presents and specifies a solution, and cross validates the specifications. 
In a large-scale project, it is quite possible to miss or misinterpret some of the identified 

requirements. In his book, Patterns of Software System Failure and Success, Jones says 
that more than 80% of the failures in large-scale mission-critical projects are attributed to 
undetected problems in the early phases of the SDLC [3]. An undetected problem at the 

beginning of the project can carry all the way through to the deployed product; this is 
called a latent defect or latent error.  

 
Such undetected problems can have the additional effect of lengthening a project’s 
timeline and expanding the development budget. Boehm and Basili point out that as the 

software life cycle progresses, the cost of fixing or changing software increases. They 
claim that finding and fixing a software problem after delivery is often one hundred times 

more expensive than finding and fixing it during the requirements and design phase [4]. 
Boehm’s curve, shown below, illustrates a simple idea: create a proper set of 
requirements accompanied by good and detailed design or face the strong possibility of 

paying a higher price later [5]. 



 

2 

 

 
 

Figure 1.1  Boehm curve 

 

 
To address and mitigate the possibility of costly latent errors, an analyst should collect, 

note, and track the software requirements during the early phases of the SDLC.   
 

Two sets of documents are typically created in the early phases of any software project: 
the Software Requirements Specification (SRS) and the Software Design Description 
(SDD). These two sets of documents capture the information needed to properly identify 

the required functionality (SRS) and then define how the software should be structured to 
provide the functionality required (SDD).  

 
According to the Software Engineering Body of Knowledge (SWEBOK), a software 
requirement is “a property which must be exhibited by software developed or adapted to 

solve a particular problem [6].” These requirements are captured in the Software 
Requirements Specification (SRS).  This document is defined by IEEE Standard 1012-

1998 as “documentation of the essential requirements (i.e., functions, performance, 
design constraints, and attributes) of the software and its external interfaces. The software 
requirements are derived from the system specification [6].”   

 
The Software Design Description (SDD) is a “representation of software created to 

facilitate analysis, planning, implementation, and decision making. The software design 
description is used as a medium for communicating software design information, and 
may be thought of as a blueprint or model of the system [7].”  

 1.2 Requirements Traceability Matrix 

The process of Validation and Verification (V&V) uses artifacts created during early 

phases of the Software Development Life Cycle (SDLC). Among other things, V&V 
ensures that the every requirement specification element is adequately reflected by at 
least one design description element. 

 
The Requirements Traceability Matrix (RTM) serves as a tool to demonstrate how 

requirements are addressed by the design and implementation elements throughout the 
entire software development lifecycle.  
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The activity of building an RTM is a part of the requirements tracing process. The 
process involves seven steps [8]:  

 
1. Identify each requirement and design element. 

2. Assign a unique identifier to each requirement and design element. 
3. For each requirement, locate all matching design elements. 
4. For each design element, locate a parent element in the collection of requirements. 

5. Determine if each requirement has been completely satisfied. 
6. Prepare a report that presents the traceability matrix. 

7. Prepare a summary report that expresses the level of traceability of the document 
pair. 

 

Creating an RTM matrix by hand is an arduous task. For each combination of 
requirements and design documents, an analyst must open two documents (the 

requirement document and the design document) using a word processor application and 
then search for key terms and phrases that may be relevant or important for establishing a 
possible logical link between two documents.  

 
For example, an analyst opens a requirement document from the requirements collection, 

analyzes the content, and notes main points. Then the analyst opens a document from the 
design elements collection and searches for key ideas, terms, or phrases in the opened 
design document.  Here, we make an assumption that all documents are text based. This 

process of opening, analyzing, and searching within each document is repeated for every 
pair of requirement and design documents.  

 
An RTM provides a view of the requirements to design elements mapping in a matrix 
form. Each row corresponds to a requirement. Each column corresponds to a design 

element. Requirement elements addressed by the design elements are marked in an 
appropriate row and column. Figure 1.2 displays a sample RTM for Requirements to 

Design Traceability.  
 
The following are sample requirements (R.1 through R.4) and design elements (D.1 

through D.4) corresponding to Figure 1.2.  
 

R.1 The image viewer will allow the viewing of images. 
R.2 The system shall mark images checked for printing. 
R.3 The system shall allow printing image sections. 

R.4 The system shall provide information about displayed images. 
 

D.1 Annotation overlay to indicate marked images. 
D.2 A list to present the indexes and information about the images. 
D.3 A user interface to display images and respective information and controls to print 

images.  
D.4 A cropper tool to select sections of an image. 
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 D.1 D.2 D.3 D.4 

R.1   X  

R.2 X  X  

R.3    X 

R.4  X   

 
Figure 1.2. RTM requirements vs. design elements. 

 

We can see that requirements R1 and R2 are addressed by design element D3. The 
requirements state that the system needs to be able to view and print images. These 
requirements are addressed by the design description of a user interface to view and print 

the images.  
 

As the example shows, in addition to being labor intensive, a manual generation of an 
RTM can be an error prone process as well. The manual process requires a human analyst 
to cross check every pair of documents. Luckily, there are automatic tools designed to 

alleviate the process of matching requirements artifacts with design elements [9][10]. 

 1.3 Problem Statement 

As the size of the requirements and design document collection grows, it becomes more 
challenging to ensure proper coverage of the requirements by the design elements, i.e. 
assure that every requirement is addressed by at least one design element. The techniques 

used by the existing requirements tracing tools take into account only the content of the 
documents to establish possible links. We expect that if we take into account the relative 

order of the text around the common terms within the inspected documents, we may 
discover candidate links with a higher accuracy.  
 

The aim of this research is to demonstrate how we can apply machine learning algorithms 
to software requirements engineering problems. This work addresses the problem of 

requirements tracing by viewing it in light of the Ant Colony Optimization (ACO) 
algorithm [11] and a reinforcement learning algorithm [12]. By treating the documents as 
the starting (nest) and ending points (sugar piles) of a path and the terms used in the 

documents as connecting nodes, a possible link can be established and strengthened by 
attracting more agents (ants) onto a path between the two documents by using pheromone 

deposits. The results of the work show that ACO and RL can successfully establish links 
between two sets of documents [13].   

 1.4 Research Thesis 

The research demonstrates two approaches, one based on the Ant Colony Optimization 
algorithm and the other is based on Reinforcement Learning, to identify candidate links 

between two collections of documents: the requirements and the design documents.  
 
The requirements tracing tool is based on the existing tool Retro.NET [9]. Our tool 

establishes the candidate links by applying the Ant Colony Optimization algorithm and 
Reinforcement Learning. 
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 1.5 Scope of Research 

The research is aimed at English textual software requirements and design documents. 

An assumption is made that requirements and design documents are presented as two 
separate collections.  

 1.6 Research Contributions 

This research makes the following contributions: establish candidate links based on the 

common textual segments between documents; and emphasize and demonstrate the 
benefit of treating documents as collection of phrases, rather than “bag of words.”  As 
consequence of this approach, the suggested method establishes links of a higher quality 

between textual documents. The quality of the links can be evaluated through the ratio of 
the number of correctly suggested links vs. the total number of suggested links. The 

higher the ratio, the better is the quality of the links. A correct list of links between the 
document pair ensures higher efficiency for the human analyst performing the tracing 
process. 

 
The remainder of the dissertation is organized as follows: Chapter 2 provides necessary  

background information. Chapter 2 consists of sections on Requirements Traceability,  
Information Retrieval, Swarm Intelligence, and Reinforcement Learning. Chapter 3 
surveys the related work in the field. Chapter 4 discusses pheromone swarm technique 

and the results obtained through this technique. Chapter 5 presents Reinforcement 
Learning algorithm applied to the requirements tracing problem. Chapter 6 contains the 

dissertation conclusions and directions for possible future work.  
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2 Background 
To understand the proposed ideas using the swarm technique and the reinforcement 
learning for requirements tracing, it is necessary to understand the basic concepts in the 
following areas: information retrieval (IR), requirements tracing, swarm intelligence, and 

reinforcement learning (RL).  

 

 2.1 Information Retrieval 

Information retrieval (IR) is the process of finding documents relevant to an information 
request within a collection of documents, usually a search query. In a typical scenario, the 
documents returned in response to a query are sorted by weight relevance. The relevance 

weight is a computer calculated numeric value indicating how closely the returned 
document matches the requesting query; the higher the weight, the more relevant the 

document is to the query. From a user perspective, a document is relevant if the user 
considers the document relevant to the original query. The user may not agree with the 
high weight relevance of every returned document.  

 
The effectiveness and accuracy of the IR method can be evaluated through recall and 

precision measurements.  Recall is evaluated as the total number of relevant retrieved 
documents divided by the total number of relevant documents in the whole collection. 

  

 
collectionin relevant  of#

retrievedrelevant  of#
Recall 

 
2.1.1 

 
Precision is evaluated as the total number of relevant retrieved documents divided by the 
total number of retrieved documents:  

 

 
retrieved of#

retrievedrelevant  of#
Precision 

 
2.1.2 

 

 
Precision and recall can be combined into a weighted harmonic mean: 

 

 
F = 

 
RP

RP




2

2 1





,where ),0[2  . 
2.1.3 

 

 

When 2  = 1, precision and recall are balanced in the measure, this is called 1F  measure. 

When 2  = 2, recall has more weight than precision, this is called 2F  measure. 

 
Higher recall and precision measurements indicate higher completeness and accuracy of 
the retrieved data.  
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A secondary measurement such as Mean Average Precision (MAP) measures “the quality 

across the recall levels” [14]. The higher the MAP, the closer the true links are to the top 

of the candidate link list. For hj in  a set of textual artifacts H={h-1,…, h-n},  a subset of 

relevant documents {d-1,…, d-m
j
}, and LjT  L={(d,h)|sim(d,h)} a subset of true links 

ranked by relevance, MAP is evaluated as follows: 

 MAP(H) = .)(Pr
11

1

||

1




jm

k

jT

H

j j

Lecision
mH

 2.1.4 

 

A high value of MAP implies that true links are ranked higher in the list of the returned 

results. 

 2.2 IR Methods 

There are several IR methods. The following two methods are the most common: 

 Boolean  

 Vector space  

In the rest of this section, we introduce these techniques. 

2.2.1 Boolean Retrieval 

 
In the Boolean Retrieval model, a query is constructed in the form of a Boolean 
expression of terms. In this model, each document is treated as a collection of 

terms/words. One way to determine the presence of a word in a document is to scan the 
documents linearly. To facilitate the search, the incidence matrix is constructed. The 

incidence matrix indicates the presence of a term in a document; one (1) indicates the 
document contains the term, zero (0) indicates the document does not contain the term.  
 

 A1.txt A2.txt C2.txt C3.txt D3.txt F1.txt 
Personal 1 0 0  0 0 0 

Distribution 1 1 0 0 0 0 
List 1 1 1 0 1 0 
Email 0 1 1 1 0 1 

System 0 0 0 1 1 0 
..       

Store 1 0 0 0 1 1 
Figure 2.1 A term document incidence matrix. 

 

Examining Figure 2.1, a query of Personal AND Distribution AND List AND Store, we 
will take the vectors for these terms and do a bitwise AND:  

 
 100000 AND 110000 AND 111010 AND 100011 AND  = 100000 
 

The result for this query is document A1.txt. A1.txt is the only document containing the 
term Personal. 
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The limitation of Boolean Retrieval can easily be discovered by querying a collection of 
1 million documents with 100,000 distinct terms. It would be hard to fit a matrix of 106 * 

105 = 1011 bits in the operating memory of a computer. 
 

To overcome the limitations of the incidence matrix for a huge collection of documents, 
the inverted index has become a major concept in the field of information retrieval [15].  
All of the distinct terms across the documents in the collection comprise a dictionary. For 

each term in the dictionary, the inverted matrix maintains a list of documents indicating 
where the term is encountered as shown in Figure 2.2.  The list of document occurrences 

is called a posting. 
 
 

 

 
Figure 2.2 Inverted index 

 
During the construction of the inverted index, the document frequency of the term is 
stored along with the document postings. The document frequency indicates how many 

documents in the collection contain the term. 
 

Even though the Boolean Retrieval model does not utilize the document frequency count, 
there are other IR methods that use the document frequency to calculate the relevance 
weight for query results. One such method is the Vector Space model with Term 

Frequency Inverted Document Frequency (TF-IDF) weighting.  

2.2.2 Vector Space TF –IDF 

Unlike the Boolean Retrieval, free text queries do not use any connecting search 

operators such as AND, OR, or NOT. The Vector Space Model (VSM) supports 
document searches for these types of queries by representing the queries and documents 

as multi-dimensional vectors. The multi-dimensional space is constructed using all terms 

Personal 

Distribution 

List 

Email 

System 

Store 
A1.txt 

A1.txt 

A1

.txt 

 A1.txt 

A1.txt 

A2.txt 

C3.txt 

A2.txt 

A2.txt C2.txt D3.txt 

C2.txt C3.txt F1.txt 

D3.txt 

D3.txt F1.txt 

1 

2 

4 

4 

2 

3 
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in the dictionary, using each term as an orthogonal measurement in the multidimensional 
space.  

 
To measure the similarity between two vectors in the multi-dimensional space, the VSM 

uses the Euclidean cosine similarity between the vectors. The size of the vector space is 
equal to the size of the dictionary (each term represents a dimension). If d is a document, 

then we can denote a vector derived from the document as V


(d). The vector 

coordinates can be represented as: 
 

V


(d)  = {v1, v2,…,vn}, 
 
where vi  = 0 if the term i is not present in the document. 

 
Cosine similarity in the Euclidean multi-dimensional space is estimated by the following 
formula: 

 

 
Sim (V


1

,V


2

)  =  

||||
21

21

VV

VV 


 , 2.2.1 

 

 

where VV


21
  is  a dot product of two vectors. The dot product between two vectors x


 

and y


 is estimated as: 

 



N

i
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The Euclidian length x


 is estimated as:  

 
x


= 


N

i

ix
1
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2.2.3 

 

 

The effect of 

||
1

1

V

V


 is to normalize V


1

to a unit vector. The unit vector is obtained from a 

vector in N-dimensional space that has the same orientation, but its length is equal to 1.  

 
When we consider a document as a vector in the multi-dimensional space represented by 

dictionary terms, we can treat the term frequency as a coordinate corresponding to the 
term. For example, if the documents A1.txt, C1.txt, and F1.txt consist of the following 
text, respectively:  

 
“A1. The system shall have an address book available to store contacts. The 

address book shall store contacts in groups as well.” 
 
“C1. The system shall support a text-based interface to compose mail, use mail 

addresses from an address book, and attach mail stored in folders.” 



 

10 

 

 
“F1. The system shall support the ability for users to create a folder to store mail. 

The system shall support uploading mail that is stored in folders.” 
 

The dictionary shown in Figure 2.3 presents the terms and their respective counts for 
documents A1, C1, and F1. The column TF stands for term frequency.  TF is the total 
count of the term in the collection of documents.  

 
 

 A1 C1 F1 TF 

the 2 1 2 5 

system 1 1 2 4 

shall 2 1 2 5 

have 1 0 0 1 

an  1 0 0 1 

address 2 2 0 1 

book 2 1 0 2 

available 1 0 0 1 

to 1 0 0 1 

store 2 0 0 2 

contact 1 0 0 1 

group 1 0 0 1 

well 1 0 0 1 

text-based 0 1 0 1 

interface 0 1 0 1 

compose 0 1 0 1 

use 0 1 0 1 

mail 0 3 1 3 

attach  0  1  1 1 

support 0 0 2 2 

ability 0 0 1 1 

user 0 0 1 1 

folder 0 1 2 3 

store 0 1 2 3 

upload 0 0 1 1 

compose 0 0 1 1 

 
Figure 2.3 Dictionary terms with TF count for documents A1, C1, and F1. 

 
In our example, if we treat the term frequencies as coordinates in the multi-dimensional 

space, the vector corresponding to the documents A1, C1, and F1 will look like this:  
 

V


(A1) = (2, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)  

V


(C1) = (1, 1, 1, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 3, 1, 0, 0, 0, 1, 1, 0, 0) 

V


(F1) = (2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 1, 1, 2, 2, 1, 1) 
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A cursory look at the three vectors shows common terms among the vectors. The 
problem with this approach is that all terms are treated equally. The term’s importance is 

not considered when assessing a query. For example, the terms “the,” “system,” and 
“shall” are encountered in all documents. Thus, the documents may have these terms in 
common, but may not be related. Frequently used words such as the articles “a,” “an,” 

and “the” and prepositions “to,” “for,” and “from” are removed from consideration. The 
removed terms belong to a stopword list. The stopword list contains all terms that should 

be extracted and ignored before analyzing the documents.   
 
The stopword preprocessing helps to reduce the amount of noise coming from the 

frequent terms that do not carry much information. The importance of a term in the 
collection can be evaluated though the term’s relative frequency. The document 

frequency, df,t , is the total number of the terms in a document. The inverse document 
frequency (idf) of a term t, is estimated as follows:  
 

  

  

df
t

t

N
idf log , 2.2.4 

 

 
where N is the total number of documents in the collection. 

 
The idf for a frequent term is low and is high for the rare term. The tf-idf promotes the 

importance of a term in a document using the composite weight of the term frequency 
and inverse document frequency:  

 tf-idft ,d = tft ,d x idft 
2.2.5 

 
 

Thus, the importance of a term in a document is high for a rare term (relative to the whole 
collection). The importance weight is amplified by term frequency in the document.     
 

 2.3Requirements Tracing 

In the introduction, we covered the importance of requirements tracing, the RTM 

provides the results of the tracing activity. Requirements tracing plays an important role 
in the project life cycle because it enables analysts “to describe and follow the life of a 
requirement, in both a forward and a backward direction, through the whole system’s life 

cycle [16].” 
 

As the software project evolves, the project documentation is augmented by use cases. 
The use cases typically yield the software requirements. Sometimes, the use cases are 
used as design artifacts. In this case the requirements are interpreted though the use cases. 

When the requirements serve as a basis for layout of design elements, the testing ensures 
the correctness of the produced code from the source requirements. To trace the 

requirements forward, we trace the use cases to the requirements specification or 
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requirements specifications to the design elements. To trace backwards, we might trace 
from the use cases back to the requirements or from design elements to the requirements. 

Figure 2.4 and 
Figure 2.5  show the forward and backward tracing, respectively.  

 

  
 

Figure 2.4 Forward tracing from design elements to test cases. 

 

 
 

Figure 2.5 Backward tracing from use cases to requirements.  

 
As the result of tracing, we establish candidate links between two collections of 

documents. A candidate link is a logical connection between two documents; if a 
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document TAL1.txt (Figure 2.6) addresses ideas mentioned in document DA1.txt, we say 
there is a link between DA1.txt and TAL1.txt.  For example, if in the forward tracing 

from design elements to test cases (Figure 2.4) there is no link coming from element 
DAF1.txt, we can immediately assess that our test cases do not fully address all of the 

design elements.  

  
 

Figure 2.6 Candidate links. One design element is missing a link to test cases. 

 
The TF-IDF method creates a list of candidate links between the two document 
collections with the “weight” assigned to the links for each suggested pair of documents. 

The weight represents a “similarity” between the documents. The higher the weight the 
“closer” the documents are to each other. The closeness is evaluated by having similar 

terms. Also, the value of the “weight” is used as a filter. Links below a certain threshold 
are cut off from consideration. A low value of the weight implies that the documents 
share only a few terms; a higher value of the weight indicates that documents share many 

terms. By lowering the threshold, we create a large list of candidate links. The documents 
in such links may share just a few terms, but have very little meaning in common. The 

low threshold value pulls many document pairs for consideration; hence we may obtain a 
higher recall, but the precision of such candidate links will suffer: only a small fraction of 
the document pairs can be identified as true links. With a higher threshold value, we 

obtain more precise results, but not all possible true links are identified. Thus the results 
of the TF-IDF method may range from a very low recall and high precision to a high 

recall and low precision. 
 
Another shortcoming of the TF-IDF method is that it treats a textual document as a bag of 

words. The relative order of the terms is not important for the TF-IDF method. We 
propose a method that identifies common segments between the documents; thus shifting 

the focus onto treating documents as collections of phrases. One of the objectives of the 
proposed research is to discover the candidate links between two sets of software 
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requirement documents automatically by using swarm intelligence. Another objective is 
to provide candidate links that do not have either high recall and low precision or low 

recall and high precision. We want to have our recall and precision values come a step 
closer to the ideal location in the precision recall graph – top right corner, i.e., high recall 

and high precision.  
 

 2.4Swarm Intelligence  

Insects such as bees and ants, small and simple individually, can accomplish tremendous 
tasks in a collective effort.  Swarm intelligence describes computational algorithms that 

inspire computer scientists by the fact that the insects’ achievements and actions are all 
accomplished through local peer-to-peer interactions. A number of scientists have studied 
the behavior of ants in foraging for food. Jean-Louis Deneubourg described the self-

organizing behavior of ant colonies, where ants used pheromone communication [17]. 
The idea of using pheromone trails as a method of communicating through the 

environment is at the heart of the ant colony optimization (ACO) algorithm [11]. This 
algorithm has been used in a number of computer science applications, such as the 
traveling salesperson problem, and has applicability to requirements engineering 

problems.  
 

Consider a graph G = (V, E), where V is a set of vertices and E is a matrix representing 
connections between the vertices. For each edge, (i, j), between the nodes i and j in the 
graph, we assign a pheromone value τij. In the initial step, the ACO will assign each edge 

in the graph a zero pheromone value, τij(0). Also, a group of ants k = 1,...,n is positioned 
at the source node.  

      
For every iteration, each ant builds a path to the destination node. Also, at every node, 

each ant decides the next link to take. If ant k is at node i, the probability 
k

ijp (t) of 

selecting the next node j  k

iN , which belongs to a set of nodes adjacent to i [11], is: 
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where  Nk

i
is the set of nodes accessible for agent k from the node i. If node j is not 

accessible for ant k from the node i, the probability 
k

ijp (t)=0.  In the formula above, α is a 

parameter which amplifies the attractiveness of the pheromone trail. Large values of α 
attribute importance to pheromone.  

 
 

 2.5Reinforcement Learning 

The reinforcement learning (RL) model is a machine learning technique dealing with the 
actions an agent needs to take in order to maximize collected rewards as a result of these 

actions. The agents in RL learn the actions to maximize the long term, discounted, 
expected reward by interacting with the environment.  

 
The RL model can be presented as (S, A,{Psa},γ, R), where  

- S is a set of environment states   

- A are actions available to agents 
- Psa  is a state transition distribution, i.e., the probability of transitioning into 

next state    by taking an action a while being at state s and ∑    (  )      
- γ is a discount factor 

- R is a reward function, R        ,   is domain of real numbers. 

Reward is a scalar value associated with transitioning into states. 
 
In reinforcement learning (RL), agents probe the environment though a discrete sequence 

of steps and actions over time t, where t = 0, 1, 2, 3 etc. At each step t, the agent evaluates 
the state st   S, where S is a set of all possible states. Based on the state st, the agent 

selects an action at    A(st), where A is a set of possible actions available to the agent in 

state st. As the result of the action taken at the moment t, i.e. t-th time step, the agent 
gains reward rt+1, and moves to the state st+1 [12]. Figure 2.7 displays the interaction 
between the agent and environment [12]. 

 

 
Figure 2.7 The interaction of the agent and the environment in reinforcement learning. 

 
As shown in, Figure 2.7 the agent receives the state st as an input and produces action at  

as an output. The mapping of the states into actions is determined by a policy πt. Since 

each state st can present a set of possible actions A(st), the policy πt denotes the 
probabilities of selecting one of the possible actions determined by the state st. The 



 

16 

 

mapping of states to actions is represented as πt(s,a), the probability of selecting action 
a=at, when state s=st. The agent’s goal is to maximize the total rewards acquired in the 

long run by choosing actions according to the distribution specified by π.  
 

The reward the agent collects depends upon the actions it takes and their probabilistic 
effects. To estimate the desirability of a state, some RL algorithms use the notion of value 
function. Formally, the value function is represented as:  

   ( )     {  |    }    {∑         
 
   |    } 

, 

 
(2.5.1) 

 
where Rt is a function of the reward sequence [12].  The value   {}  is the expected 

reward value given to the agent that follows the policy π.  The discount coefficient γ    

[0, 1] signifies preference for the immediate or future rewards. If γ approaches 0, the 
immediate rewards are assigned the most value. When γ   approaches 1, the future 
rewards and immediate rewards are valued more nearly equally.  

Bellman’s equation [12] provides another way to express the value of a state s:  

   ( )  ∑  (   )∑     
      

     (  ) 

   

 
 

(2.5.2) 
 

where,     
 , is the probability of reaching state s` from s if action a is taken;     

  is the 

reward associated with reaching state s` from s by taking action a.  
 
A policy that maximizes expected return for all states is called an optimal policy and is 

denoted π*. Formally, π*    π`
, if and only if, Vπ*(s)   Vπ`(s) for all s    S. Alternatively, 

we can define V* as:  

 V*(s) =       ( ) 
 

(2.5.3) 

 
There exist at least one policy and its expected return is better than or equal to that of π* 

for all the states, Bellman’s theorem [12]. If there are several policies, i.e., more than one 

policy, that allow agents to reach maximal expected return, we still denote these policies 
as π*. 

 
One way to determine an optimal policy is to use the value iteration algorithm [12]. The 
value iteration algorithm is an iterative backup operation.  The algorithm combines an 

immediate policy improvement for the current state and the values of states reachable 
from the current state in the following form: 

     ( )       ∑     
      

       (  )   
 

(2.5.4) 
 

where     
 and     

  bear the same meaning as defined in equation (2.5.2). The value of 

state s is maximized across all actions a available at s. The pseudo code for the value 
iteration algorithm [12] is listed in Fig. 2.8.  
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Initialize  V(s) =0, for all s     S 
Repeat 

      

  For each s     S 

  V   ( )  

  V(s)      
∑             (  )    

      (  |   ( )|) 
  Until     (                         ) 

Output a deterministic policy, π, such that  

 ( )        
 

∑     
      

    (  ) 
  

 

Figure 2.8 Value Iteration reinforcement learning pseudo code. 

 
To apply the reinforcement learning approach to the traceability problem, we constructed 

a search space, i.e., an environment. After the states, actions, and rewards are established, 
the value iteration algorithm is executed. The value iteration algorithm outputs actions for 

each state. The actions established for the states determine the navigation heuristics for 
the agents.  
 

The idea of building a path from the source node to the destination node resonates well 
with the activity of establishing candidate links in the requirements traceability process.  
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3 Related Work 

 3.1 Requirements Traceability  

In this section, we address traceability link generation, swarm techniques, and 
reinforcement learning. As mentioned earlier, candidate link generation is concerned with 

retrieving the relevant elements from a given textual artifact pair. The candidate link list 
is reviewed by an analyst to determine if each link is a true relevant link or not.    

 
In 1994, Gotel and Finkelstein identified a lack of automatic tools to conduct 
requirements traceability activities [18]. Since then, much work has been done to remedy 

this problem by applying information retrieval techniques to the candidate link generation 
problem.  Antoniol et al. [19] used the vector space model (VSM) and a probabilistic 

model to recover traceability from source code modules to man pages and functional 
requirements.  In a probabilistic model the documents are ranked based on the probability 
of being relevant to a query.  The authors used a Bayesian classifier “to score the 

sequence of mnemonics extracted from each source code components against the models. 
[19] ” With VSM, they achieved the highest recall (100%) for the Albergate dataset by 

setting the threshold to 10% of the highest similarity measure. However, they only 
achieved a precision of 11.98%.   
 

In the VSM and probabilistic models, links are established between documents using 
common weighted terms. Specifically, terms are assigned weights based on term 

frequency and term count in the document collection. The swarm technique differs in that 
links between documents are established by discovering and promoting the importance of 
common phrases in the inspected documents. The reinforcement learning method 

discovers candidate links by optimizing the search heuristics (Chapter 5). 
 

Another perspective on requirements traceability is goal-centric traceability, as 
demonstrated by Huang et al. [20].  Huang proposed a model to establish links among 
subsets of artifacts that an analyst considered as covering a certain objective. For 

example, the artifacts may describe the security features of a system. The authors 
demonstrated how goal-centric traceability keeps track of the traces between goals and 

documents. The model provided change impact analysis through automated traceability.  
In our approach, we use the swarm technique instead of the goal-centric traceability 
model. This was done since the swarm technique does not require an initial classification 

of the documents as related to a particular goal or objective. This was also done because 
Huang’s approach potentially increases the possibility of creating too many traces 

between documents in the subset.  To manage this possibility, we looked at a scoped 
approach to traceability management as described by Lago et al. [21].  The method 
described by Lago et al. takes on the traceability task by focusing on selected activities, 

rather than by using an automatic “trace all” approach. Similar to the goal-centric 
traceability in Huang’s work, Lago’s method requires an initial selection of artifacts 

related to the target activities. Unlike our swarm technique, the scoped approach traces 
only selected items.  
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Panis [22] states that 26 engineers at Teradyne expressed their preference to see the 
traced content of a requirement rather than see a simple identifier. He found that 

engineers place the most value on traceability information when they are creating 
documents. 

 
Further, according to Egyed et al. [23], an analyst takes one to two minutes, on average, 
to manually establish traces from code to requirements. They also found that recovery of 

method traces takes 3 - 6 times longer than recovering class traces (also manually). The 
swarm technique provides a method to generate trace links in an automatic fashion.  

While this time reduction is significant, there are still additional issues to deal with in 
order to improve the quality of the candidate links generated. Specifically, we had to 
select a context to establish the trace links. To do this, we first looked at work done by 

DeLucia et al. [24]. 
 

DeLucia et al. used a traceability recovery tool based on Latent Semantic Indexing (LSI).  
By introducing categorization, the DeLucia et al. reached a precision of 25% with 90% 

recall. Without categorization and at the same 90% level of recall, the precision reached 
only 17%.  Marcus and Maletic [25] applied the LSI technique to the same Albergate 
dataset used by Antoniol et al.  The LSI technique identifies the patterns and concepts 

contained in a collection of text by establishing associations among terms occurring in 
similar contexts [24]. Marcus and Maletic achieved a precision of 16.38% at 100% recall 

using this technique.    
 
In effect, the LSI technique uses a document as the context. The swarm technique differs 

by establishing candidate links between two collections of documents based on similar 
terms occurring in the neighborhood of common terms; the neighborhood of a linking 

term acts as a “context.”  
 
Swarm techniques and the RL method further expand neighborhood terms by using a 

thesaurus. This approach discovers links through synonymous terms. The value of using a 
thesaurus was validated by Hayes, Dekhtyar, and Osborne [26] when they applied VSM 

with a thesaurus to a dataset and compared this method to manual tracing and to a 
proprietary tool.  They achieved a higher precision using manual tracing compared to the 
proprietary tool: 46% vs. 38.8%. Also the manual tracing scored better in terms of 

precision than the VSM + thesaurus method: 46%  vs. 40.7%. At the same time, VSM + 
thesaurus method outperformed the other two approaches in terms of recall, (85.4% 

compared to 43.9% for manual and 63.4% for the proprietary tool).  Thus, the use of the 
thesaurus expanded the term base. As a result, additional links were discovered between 
textual chunks expressing similar ideas and phrases using different terms.  

     
By using phrasing as a way to improve the precision of automated IR traces, Zou et al. 

[27] obtained improvements of almost 20% for one dataset when examining the top 5% 
of the returned candidate links.  Their work focuses on establishing “similar” areas 
between documents. The similar areas are established through shared common terms in 

the neighborhood of the linking terms. In this regard, “similar neighborhoods” in our 
work resemble the phrasing technique used by Zou et al. [27].   
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Phrasing is similar to the idea of ‘lexical affinities’ as expressed by Maarek et al. [28] and 
by Niu and Easterbrook [29]. Their research considered two word units within a single 

sentence. The ‘lexical affinities’ limit the neighborhood window to a maximum of five 
terms apart. In other words, terms occurring relatively close to each other in two 

documents form related phrases. The related phrases in two documents can be viewed as 
common segments, creating a logical link between the documents.  
 

This idea of small common segments between two documents appears to be a valid 
starting point for investigating the swarm behavior on the traceability problem.  Unlike 

the ‘lexical affinities’ method, the swarm technique considers terms that may cross the 
boundaries of a sentence. Furthermore, the swarm technique does not require any 
knowledge about the part of speech for a given term, whereas the ‘lexical affinities’ 

method deals with two-word phrases: noun verb pairs. 
 

Zisman and Spanoudakis [30] examined ways to generate traceability links by applying 
rules to artifacts that had been tagged with the parts of speech. In their work, the authors 
established four types of traceability relationships based on the grammatical tagging of 

the textual artifacts. The proposed swarm technique does not perform such fine-grained 
classification of traceability links. The swarm agents simply identify the links based on 

the common vocabulary base with the purpose of simplifying the algorithm and the 
search heuristics.   
 

The effect of the vocabulary base on traceability accuracy (using both artifacts versus just 
the low-level artifact to build the vocabulary) was studied by Sundaramet et al. [31]; in 

the study, they found support for using only the low-level artifact.   
 
In general, the above techniques have been able to achieve excellent recall  [26] [31] 

[32], but often at the expense of precision that is only borderline acceptable at best.  The 
work described in this dissertation differs in that it uses a “greedy algorithm” approach to 

generate the candidate link lists with the goal of increasing precision.  
 
A greedy algorithm will potentially increase precision because it selects the optimal link 

to follow, which is optimal from the agent’s point of view. This algorithm also does not 
require tagging parts of speech or phrasing, simplifying the process of building links and 

reducing the amount of time required to conduct searches.  
 
To evaluate the performance of this method, we use traditional IR measurements: recall, 

precision, F harmonics, mean average precision (MAP), as well as several other 
secondary measurements. 

 
Zou et al. [27] use average precision (AP) to measure the internal quality of candidate 
link lists.  AP looks at a number of recall levels such as 10% recall, 20% recall, etc., and 

averages the precision changes of each, thus returning only one value.  For similar 
reasons, we prefer mean average precision (MAP) to AP.  It has the advantage of 

returning a single value, but it does not require one to set recall levels, and it does not 
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require interpolation. The swarm method also uses secondary measurement, such as 
MAP, to evaluate the performance of the algorithm. 

 3.2 PSO and ACO Techniques 

There are other researchers who have applied the particle swarm optimization (PSO) 

algorithm to analyze textual documents. PSO is a direct method that searches for an 
optimal solution in a search space. The main characteristic of the PSO algorithm is that 
each member of the swarm adjusts its behavior based on the information obtained from 

its neighbors in the search space.  The swarm agents are modeled to have a specific 
position and velocity in a search space. The agents iteratively evaluate a fitness function 

where the agents’ position and velocity are used as input parameters. The agents operate 
on the premise of their own “best” position and the swarm’s and the neighbors’ “best” 
position, where “best” implies a point in the search space where the fitness function has 

reached some optimal value [33]. 
  

To test this approach, Merwe and Engelbrecht applied data clustering using PSO on six 
different classification problems [34]. Four hundred vectors were randomly created in a 

two-dimensional space from the Wisconsin breast cancer database, with the objective of 
classifying the data as representing benign or malignant tumors. Another PSO clustering 
work was carried out by Cui, Potok, and Palathingal on textual documents [35].  

 
Also, PSO was used to rank the results of IR methods. Diaz-Aviles and Nejdl proposed a 

swarm ranking method for IR using the particle swarm optimization on the benchmark 
database LETOR. The swarm first undertook a learning phase to rank IR results and 
attempted to reduce over-fitting [36]. 

 

In the above work, the researchers modeled the search space as a hyperspace of words or 

terms. The fitness function was, in some form or fashion, a Euclidian distance in the 
vector space of terms between the multidimensional points. The vector space model treats 

each term as a dimension of the multidimensional space. For example, for data clustering, 
Merwe and Engelbrecht [34] used a variation of a distance vector to randomly seed 
centroid vectors, e.g., to seed some starting points in the search space.  When compared 

to the PSO method described above, a drawback of a VSM approach discussed earlier 
becomes apparent. Namely, it treats terms as separate dimensions of the search space.  

Each new term increases the vector space’s dimension size and hence increases the 
complexity and number of necessary computations.   

 

To overcome this weakness in the VSM approach, Diaz-Aviles and Nejdl [36] used 
training (learning to rank IR results) for a collection of queries and the resulting retrieved 

documents.  They used a training set, as well as a validation set, to attempt to reduce 
over-fitting.  They proposed the method of SwarmRanking to optimize the combination 

of the content and links. This method used mean average precision (MAP) as the fitness 
function to evaluate the results. They found that the approach significantly outperformed 
standard approaches.   

 
Our method is similar in that we use a swarm algorithm to rank retrieved low-level 
requirement elements that may be relevant to a given high-level requirement.  Our 
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approach differs in that we do not take a semi- or supervised learning approach, and thus 
do not require a training set.   

 
Aghdam, Ghasem-Aghaee, and Basiri used ACO to select text features [37]. Azzag and 

Guinot [38] used ant colony optimization (ACO) to cluster data in trees.  In their work, 
([37],[38]), the authors mentioned that due to “the probabilistic behavior of artificial ants 
they can produce quality results without any prior knowledge of data structures.” In our 

work, randomness is considered a positive factor as well, since it allows ants to explore 
the search space of the document collection. 

 
Further, in the ACO algorithm, the agents do not have any prior knowledge of the text 
features. The proposed swarm method also does not involve supervised learning, and the 

agents do not have a predetermined knowledge of the space they traverse.   
 

In typical ACO, the pheromone deposited by the ants evaporates over time. The 
evaporation enables a dynamic behavior to take place in the search process. A path with 
more pheromone deposits becomes more attractive to the ants. The more ants that 

traverse the path, the more attractive the path becomes.  
 

The proposed swarm method uses pheromone deposits on the links and terms to influence 
the path selection behavior of a swarm agent. The pheromone deposits on the links and 
terms influence the path selection behavior of a swarm agent. Note, that there is no 

predetermined knowledge of the traversed space. The search and discover phase of the 
algorithm is like “random roulette” and it is greedy. The term and document frequencies 

of the text collection are used as guiding heuristics for the agent’s behavior. Technically, 
the algorithm still resembles an ant colony, but it is not as intelligent and cooperative as 
ACO. In our approach, the swarm agents are given freedom to operate on their own, 

determining the search path based on the environment, i.e., term frequency, weight, etc.   
 

The next logical step from the pheromone swarm technique is to “learn” the search space 
environment. The RL method maps out the search space and “learns” the environment. As 
a result of this learning, our RL method equips the agents with the search space traversal 

heuristics to discover candidate links (Chapter 5). 
 

Abraham and Ramos [39] explored ACO clustering with linear genetic programming. 
Their model of clustering web documents was based on the behavior of ants forming 
cemetery clusters (deposits of dead ant bodies) within the colony’s territory.  From the 

computational point of view, the main factors that influenced the behavior of artificial 
ants are the number of objects in the neighborhood and their similarities.  The proposed 

swarm technique also builds the behavior of an artificial ant based on the similarities 
between neighborhoods in the documents. 
 

Li and Lam used ant-like agents to generate test threads from unified model language 
(UML) diagrams [40]. The authors used three-dimensional UML diagrams as directed 

graphs to provide a search space for artificial ants. The swarm technique also creates a 
three-layered graph as a search space for the ants.  
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Another interesting aspect of Li and Lam’s work is a limited “energy” supply for the ants. 

This way the ants can avoid looping indefinitely while traversing the graph. In our work, 
we limit the length of a path that the swarm agent traverses; the length of a path is equal 

to two – from a high level document to a low level though a common term. In other 
words, the ant can only move from a high level document to a low level document 
through a common term before it finishes its journey. The three layer topology of the 

search space implies the agent cannot travel more than 3 hops. One extra hop is permitted 
to jump to a synonym if it is chosen. 

3.3 Machine Learning Techniques 

In the past several years, the interest in machine learning techniques applied to 
requirements engineering has been growing. Machine learning techniques can help 

establish some knowledge or rules from requirements engineering artifacts [41],[42]. 
  

Background knowledge from a set of examples of the system description and system’s 
properties is derived by a method proposed by d’Avila-Garces et al. [42]. The method 
uses a machine learning technique, inductive learning (IL)1. From the set of positive and 

negative examples, the inductive learning technique finds hypotheses, i.e., definitions of 
domain concepts. The authors use the technique to analyze and revise specifications if 

any system property violations are discovered.  Our work is different because we use 
reinforcement learning. Our method does not use positive or negative examples to train 
the system; the discovery of candidate links is executed autonomously.  

 
Another example of inductive learning can be found in work by Spanoudakis, d’Avila-

Garces, and Zisman. They use a machine learning technique to generate requirements 
traceability relations [41]. The traceability rules are established between two sets of 
documents: textual requirement statements and object models. Based on user feedback on 

the undetected traceability relations, the existing traceability rules are transformed to 
match the indicated traceability relations.  To implement the method, the authors utilize 

abduction (AL)2 and induction learning (IL) techniques and the part of speech tagging 
method.  In our work, we also establish logical links between two sets of documents, but 
our method does not use the part of speech tagging and we used RL not AL or IL. 

 
In addition to extracting knowledge from the documents, the machine learning techniques 

can be used in recommender systems. Seo and Zhang describe a reinforcement learning 
(RL) technique for the Web based personalized filtering system [45].  The work by Seo 
and Zhang presents an interest for our work because the personalized filtering system 

gives a boost to selecting relevant documents. The personalized information filtering 
method learns from the profiles of individual users and their responses to presented 

documents. Our method is similar to the work by Seo and Zhang using greedy term 

                                                 
1
 Induction Learning evaluates and generates conclusion based on some examples, i.e. premises. In the 

inductive logical argument, the premises support the conclusion to some degree of certainty [43]. 
2
 In abduction learning an explanatory hypothesis is adopted to  account for all the facts or some of them 

[44] 
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selection through the RL technique to locate relevant documents. However, our method 
differs because it does not use any form of feedback.  

 
Cleland-Huang, Czauderna, Gibiec, and Emenecker present two machine learning 

approaches to improve traces between regulatory codes and product requirements [46].  
The terms in requirements are assigned probabilistic scores with respect to a regulatory 
code. To classify the requirements, the manually created traces were used for cross- 

training and testing.  The second approach, web based, was used to retrieve indicator 
terms from the Internet for a specific regulatory code. Only in this second case, the 

machine learning classification took place based on the web-mined documents.  
 
Asuncion H, Asunsion A, and Taylor [47] use the latent Dirichlet allocation (LDA) 

machine learning technique to assign topics to traceability artifacts: requirements and 
design documents. For this technique, the initial input for the LDA method consists of the 

documents and number of topics to assign. The authors suggest that topic modeling 
provides semantic information about traceability artifacts.   
 

Establishing links between the documents can also be based on related textual segments. 
Hatziavasilloglu, Klavans, and Eskin present the composite similarity metric to measure 

the semantic distance between a pair of small textual segments [48]. The authors use a 
machine learning approach to select the potential optimal features between documents. 
The potential matches are established through word co-occurrence. This approach 

resonates well with our technique. We also use common linking terms and the terms 
located close to a lining term in the text. The composite similarity performs the matching 

through the noun phrases, synonyms, the semantic class of verb (verb implying similar 
actions), and common proper nouns.  
 

In our work, we also use synonyms to conduct matching. The composite similarity uses 
the relative order of terms in evaluating the matching. The authors use and train a 

classifier on manually marked pairs of units. This aspect of the matching used by the 
authors echoes with our work. In chapter 5, we describe how the textual segments are 
probed for similarities. The relative order of the terms is also considered for the similarity 

evaluation.  
 

The main focus of our work is to establish the logical links between the textual 
documents by using common textual segments.  The work presented by Menczer and 
Belew lists many of features similar to our work [49]:  

 
1. The authors describe how autonomous agents make decisions to automate the web 

document search and discovery process.  The agents in the work of Mencer and 
Belew have a heuristic behavior by which the agents select links to follow. In our 
work, the autonomous agents also discover a heuristic to traverse the search 

space, i.e., select a link to follow.  
2. An agent in Menczer and Belew’s work senses the “current neighborhood” by 

analyzing the text where the agent is situated. This matching feature is similar to 
the concept of term neighborhood that we use (Chapters 4 and 5).   
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3. The agents in Menczer and Belew’s work use reinforcement learning (RL) to 
modify the behavior to follow the “best link” possible. In our work, we use the 

RL technique to enable agent to traverse the search space and establish the 
candidate links between the documents.  

 
Even with so many similarities between the agents in Menczer and Belew’s work and 
ours, there exist three notable differences: 

  
1. The links between documents in the work of Menczer and Belew are web links. In 

our work, the links between documents are established via common terms 
(Chapter 4 and 5).  

2. The agents of Menczer and Belew receive user feedback on the suggested links; 

in our work the agents do not receive feedback.   
3. The agents in Menczer and Belew’s work are created with “initial reservoir of 

‘energy’ [49].” The agents in our research do not utilize any energy measurements 
for the search space traversal.  

 

To sum up the features of the related work, we can state the following:  
- It has been proven useful to link documents by treating them as a collection 

of phrases, not a bag of words [48].   
- Small textual segments and the similarity between them can be evaluated 

based on semantic distance [49]. 

- The textual segments of linking terms, i.e. neighborhoods of the linking 
terms,  provide useful location data of the compared textual segments [48] 

[49]. 
- The machine learning approach in general, and reinforcement learning in 

particular, proved to be useful computational agents to modify and select 

an optimal search space behavior [45] [49].   
 

In Chapter 5, we describe further how we probe textual segments for similarities and order 
terms considered for similarity evaluation. 
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4 Research Approach 
To trace high level textual elements (from a requirements document for example) to low 
level textual elements (from a design document), we use swarm agents that traverse the 
collection of all documents and the vocabulary shared by all documents. The main idea of 

the proposed method is based on constructing a search space traversable by software ants. 
The search space is composed of documents on both levels, high and low, and common 

terms.  
 
To use an analogy of the overall structure, documents with links to common terms can be 

visualized as a “tree trunk” of common terms at the core of the search space.  Documents 
can be viewed as leaves on the tree’s branches (Figure 4.1).    

 

 
Figure 4.1 Vocabulary with documents compose the search space. 

 

The vocabulary, i.e., the collection of terms from all documents, connects all documents 
in the search space. The swarm agents can travel from high level documents to the 

vocabulary using a positional index in the vocabulary. 
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Figure 4.2 Positional index 

 

The positional index stores such information as document name and positions (within 
document) for each term in the vocabulary (Figure 4.2). Thus, using the positional 

indexes, the swarm agents can reach every term in a document.  
As shown in Figure 4.3, it is possible to reach terms ‘personal,’ ‘distribution,’ ‘list,’ and 
‘store’ from high level document A1.txt. 

 
Figure 4.3 Document to terms links inferred from the positional index. 

 
To continue the journey further within the search space (Figure 4.5), the swarm agents 

reach into low level documents from the vocabulary level via the inverted index. The 
inverted index is built during a preprocessing step performed during the construction of 

the vocabulary.  
 
First, the documents are parsed, and then undergo term stemming. Words are reduced to 

their stem such as ‘comput-‘ for ‘computer’ and ‘computing.’ Also, stop words such as 
‘the’ and ‘of’ are removed. Term frequencies for each term in a document are also 

calculated.  The TF-IDF weight is calculated using formula 2.2.5 listed in sec 2.2.2. 
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Figure 4.4. Vocabulary with documents compose the search space. 

 
The constructed inverted index indicates not only the textual element associated with a 
given term, but also the type of the element: high or low. This is necessary for the search 

processes. The type of element helps the swarm agents to navigate the search space 
(Figure 4.4). In our model, we direct the swarm agents to go from high level to low level 

documents.  
 

 
Figure 4.5. Indirect index. Links from terms to documents containing the terms. 

 
The navigation of the search space by the swarm agents is described by the simple swarm 

algorithm.   
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4.1 Simple Swarm 

The simple swarm technique is described as follows :   

 
SIMPLE SWARM TRACELINKS (H, L) 

      // Input High  and Low level documents H and L  
      // Output list of agent count (h,l,n) - from h in l, where n is the count 

1. For each document  h in high level collection H 

2.           // T = {t1,….,tn} sorted terms in doc h 

3.           T  h.Terms.sortBy(TFIDF) 

4.            For each agent s in swarm S 

5.                         i  Random[1.10] 

6.                         t   T[i]                
7.                         // E is a record in the inverted index listing occurrences of 

8.                         // term t in low level documents 

9.                        E  Vocabulary[t].LinksToLowLevelDocuments 

10.                        E.sortBy(t.TermFrequency) 

11.                         j  Random[1.10] 

12.                         e  E[j] 
13.                        e.countAdd(h,l) 

14.           EndFor 
15. EndFor 

16. For each document  h in high level collection H 
17.           For each document  l in low level collection L 
18.                  list agent count from h in l 

19.           EndFor 
20. EndFor 

 
Listing 4.1.  Pseudo code for simple swarm. 

 

When all agents reach the low-level elements, we can then establish candidate links. To 
establish and quantify candidate links, we need to count the number of agents that made it 

to the low-level elements, grouping them by their origin.  
 
The origin is the name of the high-level element from where the agents started their 

journey.  If a low-level element B has at least one agent that came from element A, we 
consider this count of at least one (1) as a potential candidate link between A and B. The 

candidate links for each high-level element are ordered by the count of the agents at the 
low-level elements. Agent counts are normalized to a value between 0 and 1, with the top 
low-level link for each high-level element having a value of 1. Links are filtered out at 

fixed threshold intervals to calculate recall and precision values at each cutoff threshold.  
 

Figure 4.6 depicts the application of the algorithm to a small example (select terms were 
chosen for illustrative purposes).  Assume that we have high-level requirements Req1.txt 
and Req2.txt and use cases UC5.txt and UC8.txt: 

 
Req1.txt: “The system shall support personal distribution lists.” 
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Req2.txt: “The system shall be able to add a contact to the address list.” 
UC5.txt: “User edits personal distribution list by adding new contact.” 

UC8.txt: “List email contacts.” 
 

After pre-processing these elements, we determine that Req1.txt has the terms personal, 
distribution, and list and that Req2.txt has the terms list, address, and contact.  Similarly, 
we know that the low-level element UC5 has the terms edit, personal, distribution, and 

list and that UC8 has the terms contact, list, and email. The inverted dictionary for the 
collection of all documents is used as the common vocabulary. The terms in the common 

vocabulary contain links pointing to the documents in which the terms are encountered. 
The vocabulary term links contain the term frequency count TF and a tag indicating if it 
is a high or low-level element. 

 
As the algorithm starts, a group of agents is assigned to high level document. The number 

of agents in the group is greater or equal to the number low-level documents.  In the high-
level element, the terms are then ordered by the TF-IDF weight of each term in the 
document.  The agent randomly selects a term, for example, the term personal. The agent 

then “positions” itself in the common vocabulary at the term personal. The agent inspects 
the links from the term personal to low-level elements. These links are sorted in 

descending order by term frequency. The agent randomly picks the next link to follow 
from the top ten or less candidate links. On the last leg of its journey, the agent arrives at 
the low-level element.  At the end of this loop, the resulting composition of agents will 

have all agents from all high-level documents located at the low-level elements.  
 

 
 

Figure 4.6  Agents tracing links from high-level to low-level elements via vocabulary 

 

An important part of the swarm method algorithm that helps to refine the search results is 
the threshold filter. For the swarm method, candidate link lists are generated after 
applying a threshold filter varying from 0.1 to 0.9. The threshold indicates a percentage 

above which links are considered to be part of the candidate link list. For example, 
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assume that one hundred agents starting from element Req1.txt traverse to documents 
UC1.txt, UC2.txt, UC3,txt, and UC4.txt, of which 50, 35, 10, 5 agents reach UC1.txt, 

UC2.txt, UC3.txt, and UC4.txt, respectively. If 0.7 is selected as the threshold, then only 
UC1.txt and UC2.txt are selected for the candidate link list (normalized values are 1, 0.7, 

0.2, and 0.1, respectively).  
 
The simple swarm method we tested used the TF-IDF weight and term frequency as the 

guiding heuristic for the agents. This version of the algorithm does not use any 
pheromones. Therefore, formula  2.4.1 is not applicable in its classical sense. This 

version of the algorithm appears to be a more focused version of TF-IDF. Nevertheless, 
the simple swarm is a stepping stone for the next method, pheromone swarm. 

 4.2 Pheromone Swarm 

The pheromone swarm method uses the TF-IDF weight amplified by pheromone count 
on terms and links as the guiding heuristic for the agents. The distinction between the 

simple swarm method and the swarm with pheromone method lies in the selection of the 
terms and links by the swarm agents.  
 

A simple swarm agent is driven to consider, select, and focus on the most important 
terms in the document mostly at random (with some heuristic selection based on TF-IDF 

value of a term in a document). The agents in the pheromone swarm take into 
consideration pheromone deposits on the links and terms as they choose the next step of 
their journey.   

 
In a pheromone swarm, the agents of the swarm search, discover, and guide swarm 

members to a target location via local interactions in the search space. The agent’s 
decision on what term to select or what path to take is influenced by the presence of 
pheromone markings on the inspected object, e.g., terms or links.  

 
For example, when an agent starts from a high-level document, the agent has a higher 

chance of selecting a term if the term has some pheromone markings. The pheromone 
markings on a term in a high-level document indicate an established fact that this 
particular term is a neighbor to some other term in a low-level document.  

 
This idea of marking the neighbors and selected terms is based on treating textual 

documents as collections of phrases rather than as bags of words. A similar idea was 
expressed by Zou et al. [27], where the authors focused on “two-word phrases.” Our 
approach is different in this sense; we allow phrases to be loosely defined in a 

neighborhood of a linking term.  
 

The swarm with pheromones algorithm is described in Listing 4.2:   
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PHEROMONE SWARM TRACELINKS (H, L) 

       // Input High and Low level documents H and L  
      // Output list of agent count (h,l,n) - from h in l, where n is the count 

 
1. For each agent s in swarm S 
2.          For each document  h in high level collection H   

3.                        // T = {t1,….,tn} sorted terms in doc h                

4.                        T  h.Terms.sortBy (TFIDF,PheromoneCount) 

5.                         i  Random[1.10] 

6.                         t   T[i]             

7.                        E  Vocabulary[t].LinksToLowLevelDocuments    

8.                         E.sortBy (tTermFrequency,PheromoneCount); 

9.                         j  Random[1.10] 

10.                         e  E[j] 

11.                        N   l.neighborsOf(t) 

12.                        For each neighbor  n of t 
13.                             Vocabulary[n].link[e].addPheromone[h] 

14.                             if (Vocabulary[n].links.Contain[h]) and  
15.                                (h.Terms[n].isNeighborOf(t)) then 
16.                                            h.Terms[n].addPheromone() 

17.                        EndFor 
18.           EndFor 

19. EndFor 
20. For each document  h in high level collection H 
21.           For each document  l in low level collection L 

22.                  list agents from h in l 
23.           EndFor 

24. EndFor 
 
 

Listing 4.2 Pseudo code for pheromone swarm 

 

Once all agents reach the low-level elements, they remain there. The pheromone deposit 
can spread further up the graph to the terms. We use the same methodology to generate 
candidate links using the cutoff threshold. 

 
As the algorithm starts, a group of agents is assigned to a high level document, for 
instance Req1.txt.  In the high-level element, the terms are then ordered by the product of 

TF-IDF weight and a linear function of pheromone count in the document. The agent 
randomly selects a term from the top ten sorted terms. Returning to our original example, 

the agent picks the term personal. The agent then “positions” itself in the common 
vocabulary at the term personal. Then, the agent inspects the links from the term 
personal to low-level elements. In this algorithm the links may contain pheromone 

deposits.  
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The pheromone deposits on the link serve as attractors for the agents’ path selection. In 
Listing 4.2, the lines 4,5 and 7,8 use the pheromone counts to select next term and low 

level document respectively. For example, in line 4 the terms are sorted by pheromone 
count in descending order. On the line 5, a random term from top 10 terms is selected. A 

similar two step action takes places in lines 7 and 8: links to low level documents are 
sorted by pheromone count and a random link is selected from top 10 pheromone marked 
links. The pheromone deposits on the links indicate that there is another agent at the low-

level document that came from a particular high-level document. Furthermore, the 
residing agent in the low-level document is in the neighborhood of the term personal. If 

the source document of the residing agent is Req1.txt, then our current agent will have a 
higher probability of selecting this pheromone marked link. Once a link to the low-level 
document has been selected, the agent crawls down to a low-level element. Once there, 

the agent diffuses pheromones on the neighbors of the linking term. These pheromone 
deposits will attract future agents traveling from the Req1.txt high-level document.  

 
To experiment with the size of matching neighborhoods, we indicate how far the 
pheromones are deposited from the linking term. Swarm agents can also be instructed to 

deposit pheromones in low-level documents beyond the immediate neighboring 
documents and terms. To measure how far we allow agents to deposit the pheromones, 

we introduce a delta value. When delta is equal to one, we deposit the pheromones on the 
immediate neighbors. When we set the delta to 3, the agents deposit the pheromones up 
to three neighbors to the left and right of the linking term in the low-level document. 

When the delta is set to 5, five neighbors on either side of the linking term receive 
pheromone deposits. If the linking term is at the end or beginning of a document, and 

there are no “next 3 neighbors” on the right or left, only the present side of the linking 
term’s neighborhood receives pheromone deposits. 
 

The algorithm has to iterate through each swarm agent, each high level document, and 
sort terms within the high level document by weight and pheromone deposit. If we have 

A agents, D documents, and T terms, we say N = max(A,D,T). To iterate through every 
agent, we are bound by N. To iterate through every document, we are bound by N. For 
every time an agent crosses a document (N x N), the algorithm needs to sort at most N 

terms in the document (N logN). The pheromone swarm algorithm has a complexity 
O(N3logN).   
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5. Validation 
 
This section presents the validation of the research. 

 5.1  Evaluation Approach 

The purpose of this work is to evaluate the performance of the swarm methods to 
establish better quality candidate links between two sets of textual documents compared 

to vector space model (VSM) with TF-IDF weighting, referred to as TF-IDF.  
 
We ran TF-IDF and swarm methods on the target set of documents and compared the 

quality of the candidate links generated by each method. The quality of the links for each 
set of high level and low level elements was evaluated against the corresponding set of 

correct links, i.e., the answer set.  
 
For all studies, swarm method results were compared against the TF-IDF method on the 

Pine and CM1 datasets. Section 5.2 presents our hypotheses.  In sections 0 and 5.4.2, we 
present and evaluate the swarm methods on the Pine dataset using the primary measures 

of recall, precision, F, and F2 as well as secondary measures for the Pine dataset. In 
sections 5.4.3 through 5.4.5, we evaluate the swarm methods on the CM1 dataset, along 
with a discussion about measures. Section 5.8 provides an overall summary of the results. 

Data points for the figures presented in this section are presented in Error! Reference 

source not found.of the Error! Reference source not found..  

 5.2 Hypotheses 

To validate the performance of each method, we used a one-tailed hypothesis in 
the form of the following question: Does “swarm method M” produce better 

candidate link lists than TF-IDF?  
 

The independent variable in the study is the method (TFIDF, simple swarm). The 
dependent variable is MAP. The null hypothesis, H[method]0,  is:  
 

There is no statistically significant difference in MAP between VSM TF-IDF and 
Swarm Methods.  

H 0 :MAPtf-idf  = MAPswarm 

 
The alternative hypothesis, H[method]A, can be stated as:  

 
The  MAP for Swarm Methods  is greater that MAP for VSM TF-IDF. 

HA  :   MAPswarm >MAPtf-idf    

 5.3 Statistical Evaluation 

The 11-point interpolated precision-recall graph is used to evaluate the statistical 

significance of the results (sign test). In addition, the Wilcoxon signed-rank test is applied 
to the MAP results to test for significance at the 0.05 level. In cases where the number of 
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relevant links returned by the queries is different, the Mann-Whitney U Test is used 
instead of the Wilcoxon test.  

 

 5.4 Results to Date 

The information that follows previously appeared in a conference [13] and a journal 
paper [50]. As the baseline, we ran traces on the Pine and CM1 datasets using the TF-IDF 

method. We treated the results obtained from TF-IDF for recall, precision, DiffAR, and 
MAP as our reference point. For hypothesis evaluation, we ran ten experiments on the 
Pine and CM1 datasets.  

 
Due to the fact that agents’ heuristics on selecting the “next hop,” i.e., term or document, 

is based on a random choice, we gathered the results from several similar experiments. 
We made an assumption that ten experiments should be sufficient to observe any trend (if 
there is any) exhibited by the resulting random behavior of the swarm agents. 

Furthermore, to validate any statistically significant difference, a set of similar 
experiments becomes a stronger base for any conclusion. 1 Simple Swarm Applied to 

the Pine Dataset 

Figure 5.1  presents the 11-point interpolated precision-recall curve for the simple swarm 
and TF-IDF methods on the Pine dataset. Simple swarm presented higher precision than 

TF-IDF at 6 out of the 11 recall points, with most of the points near the middle to high 
end of recall. The difference in precision, however, was not statistically significant using 

the signed rank test. 
 

 
 

Figure 5.1 11-point Interpolated precision-recall curve for TF-IDF and simple swarm for the Pine 

dataset 

Figure 5.2 depicts the F and F2 measures for both simple swarm and TF-IDF methods on 

the Pine dataset across the different thresholds. This figure presents a different view of 
how the two methods performed when threshold filtering was applied. F and F2 values 

for TF-IDF start off high but degrade as threshold values increased. Simple swarm F and 
F2 values, on the other hand, did not degrade as quickly as TF-IDF. They performed best 
between the threshold values of 0.2 and 0.4. Figure 5.2 also shows that simple swarm had 

a more consistent precision-recall tradeoff compared to TF-IDF when using threshold 
filtering.   
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For threshold values less than 0.4, simple swarm showed an increase in performance. The 

TF-IDF produced a consistent decline in performance as threshold values increased. This 
behavior can be explained by the fact that agents tend to gather around a smaller subset of 

elements as threshold values increase. The simple swarm method “directs” each swarm 
agent to consider and focus on the most important terms in the document, allowing agents 
to perform a more focused search. After passing an optimum threshold, agents start 

missing correct targets, e.g., low-level elements that are part of the correct links to the 
high-level element from which the agents started the journey. 

 

 
Figure 5.2  F and F2 measures for TF-IDF and simple swarm on the Pine 

dataset 

 
Another explanation for the difference in F and F2 behavior between TF-IDF and simple 
swarm is how each link’s weight is calculated. TF-IDF link weights are measures of 

cosine similarity between the weighted keyword vectors of two documents [17]. For TF-
IDF, link weights above 0.8 are uncommon.  

 
Swarm methods, on the other hand, calculate link weights by dividing each link’s agent 
count by the largest agent count. Using this method, the top-most link always has a 

weight of 1. The difference in how weights are calculated does not prevent the methods 
from being compared appropriately as links are filtered using the same threshold values 

for both methods. The difference in F and F2 behavior indicates that TF-IDF achieves 
peak scores at lower threshold values compared to swarm. Both methods achieved 
comparable peak F and F2 values at different threshold values, e.g. TF-IDF at 0.1 and 

simple swarm at 0.2 and 0.4. 
 

Pheromone swarm precision deteriorated below the 0.2 threshold but still remained near 
the 0.9 range. Figure 5.3 presents the 11-point interpolated precision-recall curve for the 
pheromone swarm and TF-IDF methods on the Pine dataset. Pheromone swarm gained a 

slightly higher precision than TF-IDF at several points for various delta values.          
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Figure 5.3  11-point interpolated precision-recall curve for pheromone 

swarm and TF-IDF for the Pine dataset 

 
Figure 5.4 depicts the graph of the F measure for TF-IDF and pheromone swarm. Peak F 
values for pheromone swarm delta=1 and delta=3 are comparable to the TF-IDF Peak F 

value, e.g., 0.58, 0.56, 0.58, respectively. Pheromone swarm did not exhibit the same 
F/F2 trend as simple swarm when threshold values increased. The decrease in F values 

for the pheromone swarm was still slower than TF-IDF, indicating that the 
recall/precision tradeoff does not decrease as quickly with each increasing threshold 
value.  

 

 
Figure 5.4 F measure for TF-IDF and pheromone swarm for the Pine 

dataset 

 
Figure 5.5 depicts the graph of the F2 measure for TF-IDF and pheromone swarm for the 

Pine dataset. The trend in the F2 graph is similar to Figure 5.4, with TF-IDF 
outperforming pheromone swarm 0.66 to 0.61respectively at the 0.1 threshold. Even so, 

the recall/precision tradeoff was still slower compared to TF-IDF, implying that the 
pheromone swarm identified a greater number of relevant candidate links. 
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Figure 5.5  F2 measure for TF-IDF and pheromone swarm for the Pine 

dataset 

5.4.2 Secondary measures for the Pine dataset 

Figure 5.6  shows DiffAR performance for simple swarm, pheromone swarm, and TF-
IDF methods. All swarm methods produced consistently higher DiffAR values compared 

to TF-IDF. Simple swarm performed the best among all methods, with DiffAR going 
from 0.41 to 0.93 as threshold values increased. This suggests that link weights from 

Swarm methods correlate to a greater degree with link correctness.  Achieving higher 
DiffAR represents work that is less frustrating for human analysts, who must ultimately 
vet all candidate links to form the final traceability matrix. 

 

 
Figure 5.6 DiffAR vs. recall for simple swarm, pheromone swarm, and TF-

IDF for the Pine 

 
Figure 5.7 plots MAP vs. recall for the simple swarm, pheromone swarm, and TF-IDF 

methods. The simple swarm method returned more correct links at higher MAP with the 
first three thresholds compared to all the other swarm methods. Compared to TF-IDF at 

the 0.1 threshold, simple swarm achieved 0.76 MAP at 0.86 recall while TF-IDF 
achieved 0.75 MAP at 0.72 recall. 
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Figure 5.7 MAP vs. recall for simple swarm, pheromone swarm, and TF-

IDF for the Pine dataset 

5.4.3 Simple Swarm on CM1 dataset 

Next, we examined the results for the CM1 dataset. Figure 5.8 shows the recall/precision 
graph for the simple swarm and TF-IDF methods. Note that precision values for this 

dataset are significantly lower than Pine due to the larger size of the dataset. This is a 
common phenomenon for IR methods that larger datasets yield smaller precision values.  

 

 
Figure 5.8 11-point interpolated precision-recall curve for the simple swarm 

and TF-IDF methods on the CM1 dataset 

 
The recall/precision tradeoff between the two methods is slightly different than the 

tradeoff seen in the Pine dataset. Precision increased slowly when recall decreased, e.g., 
for simple swarm, precision only increased from 0.04 to 0.073 while recall dropped from 
0.8 to 0.5. This indicates that simple swarm agents were not picking the correct low-level 

elements as threshold values increased. It is apparent that the search options given to the 
swarm agents restricted their options to explore and directed them to an overly limited 

number of low-level elements. 

                                                 
3
 We acknowledge that this is not acceptable precision. 
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Figure 5.9 shows the F and F2 measures for the simple swarm and TF-IDF methods. The 

F and F2 measurement for simple swarm on CM1 did not exceed 0.25. Note that the F 
measure for simple swarm did not change significantly, varying from 0.15 to 0.24.  

 
TF-IDF achieved a peak F value of 0.28 and peak F2 value of 0.37, significantly 
outperforming simple swarm. For CM1, the TF-IDF method performed better than simple 

swarm for both F and F2 measurements. TF-IDF performed best at the 0.2 threshold 
value while simple swarm performed best at the 0.8 threshold for F and the 0.5 threshold 

for F2. Precision for simple swarm ranged from 0.04 to 0.19, contributing to the low F/F2 
values and indicating that the two document levels contained many “coincidental 
matches,” that is to say, even if the elements contained many similar terms, they were not 

necessarily classified as true links in the answer set. 
 

 
Figure 5.9  F and F2 for the simple swarm and TF-IDF methods on the 

CM1 dataset 

5.4.4 Pheromone Swarm on the CM1 dataset 

Figure 5.10 shows the precision-recall curve for the pheromone swarm and TF-IDF 
methods where agents deposited pheromones up to 1, 3, and 5 neighbors away, e.g., 

delta=1, delta = 3, and delta = 5. The pheromone swarm method performed worse at 
almost all recall points except for 0.5 recall, where pheromone swarm delta=1 and 
delta=3 tied with TF-IDF. Note that delta does not have much of an effect on precision 

for most of the recall points. That implies that the size of a neighborhood does influence 
the precision on CM1. 
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Figure 5.10 11-point interpolated precision-recall curve for pheromone 

swarm, delta = 1, 3, 5, and the TF-IDF methods for the CM1 

dataset 
 

 
Figure 5.11 shows the F and F2 measures for the pheromone swarm and TF-IDF 
methods.  The F measurement stayed under 0.19. At the same time, F2 reached 0.26 at 

the threshold value of 0.3. Note that the F measure remained in the narrow “corridor” 
between 0.12 and 0.19 for the most part. The “corridor” of F2 values was between 0.17 

and 0.26 in the CM1 dataset. TF-IDF outperformed pheromone swarm, with similar 
results compared to simple swarm, although the peak F2 value for pheromone swarm was 
at the 0.2 threshold. 

 

 
Figure 5.11 F and F2 measures for pheromone swarm, delta=1, and TF-IDF 

methods for the CM1 dataset 
 

Figure 5.12 and Figure 5.13 show the F and F2 measures for the TF-IDF and pheromone 
swarm methods for CM1.  F measure for pheromone swarm increased slowly with each 
threshold increase, while F2 measure slowly decreased instead. Pheromone swarm with 

delta = 3 seemed to perform better than the other two delta values, achieving peak F 
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value of 0.20 and peak F2 value of 0.25. Therefore, expanding the pheromone affected 
neighborhood did not seem to improve the performance of the method.   

 

 
 

Figure 5.12 F measure for the pheromone swarm, delta = 1, 3, 5, and the TF-IDF methods for the 

CM1 dataset 

 
 

Figure 5.13 F2 measure for the pheromone swarm, delta = 1, 3, 5, and the TF-IDF methods for the 

CM1 dataset 

5.4.5 Secondary measures for the CM1 dataset  

Figure 5.14 shows DiffAR performance for simple swarm, pheromone swarm, and TF-
IDF methods. Similar to Pine, all swarm methods had higher DiffAR values compared to 

TF-IDF. All Swarm methods performed about the same, with simple swarm performing 
worse between threshold values of 0.1 to 0.3. 
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Figure 5.14 DiffAR vs. recall for simple swarm, pheromone swarm, and TF-

IDF methods on the CM1 dataset 

 
Figure 5.15 plots MAP vs. recall for the simple swarm, pheromone swarm, and TF-IDF 

methods. Simple swarm performed better than TF-IDF at the 0.1 to 0.3 threshold. 
Pheromone swarm with delta = 3 also performed better than TF-IDF at the 0.1 threshold. 

Pheromone swarm with delta = 1 performed worse than TF-IDF, but as delta increased, 
performance was comparable to TF-IDF. Note, however, that MAP was still quite low at 
0.23, indicating that, on average, each document (high-level element) has an average 

precision of 23%. 
 

 
Figure 5.15 MAP vs. recall for the simple swarm, pheromone swarm, and 

TF-IDF methods on CM1 

 5.5 Statistical Analysis  

Table 5.1 shows the values for MAP and DiffAR for TF-IDF, simple swarm, and 

pheromone swarm methods. The lower value of MAP implies better results; the higher 
value of DiffAR indicates a higher quality of the candidate links.  As we can see, the 
MAP values for Pine were better in the experiments run with Pheromone swarm with 
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delta size 1, 3 and 5. For example, the Pheromone method with delta =1 produced MAP 
of 0.68 for Pine Dataset. The Wilcoxon-Signed Rank test indicated signed rank statistic 

W+ =397 and W- =164 with sample size of 33, and statistical significance of p <= 0.03.    
In Wilcoxon-Signed Rank test, the high value for the “positive” sum (i.e., 397 vs 164 in 

the case of delta =1 at threshold 0.1) implies that we can reject the null hypothesis.  We 
see mixed results for MAP and DiffAR produced by both methods (simple swarm and 
pheromone swarm).  

 
Table 5.1 Statistical Analysis for the TF-IDF, simple swarm and pheromone 

swarm methods 

 5.6 Threats to Validity  

The lines in bold in Table 5.1 imply we can reject the null hypotheses in favor of the 
alternative. Yet, not every experiment indicated that the swarm methods outperformed 

the benchmark method (VSM TF-IDF). 

 5.7 Threats to Validity 

Threats to conclusion validity threaten the ability to draw correct conclusions from the 
study results.  By using two datasets and applying similar treatments, we addressed the 
reliability of the treatment implementation. We used standard information retrieval 

measures to evaluate effectiveness, such as MAP. Both datasets were analyzed using the 
TF-IDF, simple swarm, and pheromone swarm methods. 

 
There was a possible threat to internal validity due to experimenter bias. The answer 
sets were created by human analysts that are familiar with the traceability research 

domain. We reduced this threat by using datasets for which answer sets had been 
independently verified by more than one analyst, and in some cases more than one 

research group (CM1).  We also used a vetted tool, RETRO.NET [9], and adapted it in 
order to implement the swarm techniques.  
 

There was another possible threat to internal validity due to stochastic agent behavior. 
The swarm methods randomly select links to follow. To mitigate this threat, we ran each 

method ten times and examined the mean recall and precision values. In future 
experiments, we plan to execute the same methods at least ten times.  
 

MAP DiffAR

tfidf@0.2 0.204 Wilcoxon Signed-Rank (tfidf vs swarm) 0.101 Mann-Whitney (tfidf vs swarm)

ss@0.3 0.227 W+ = 4806, W- = 6519, N = 150, p <= 0.1083 0.281 U = 9839, z = -4.65, p < 0.0001

delta1@0.3 0.163 W+ = 4191, W- = 2479, N = 115, p <= 0.01696 0.212 U = 5979, z = -1.99, p < 0.0466

delta3@0.1 0.222 W+ = 6117, W- = 6924, N = 161, p <= 0.4964 0.261 U = 7989, z = -3.2, p < 0.0014

delta5@0.1 0.209 W+ = 4297.50, W- = 4747.50, N = 134, p <= 0.6181 0.272 U = 7722, z = -2.92, p < 0.0035

tfidf@0.1 0.75 Wilcoxon Signed-Rank (tfidf vs swarm) 0.179 Wilcoxon Signed-Rank (tfidf vs swarm)

ss@0.1 0.76 W+ = 272.50, W- = 322.50, N = 34, p <= 0.6753 0.456 W+ = 40, W- = 1088, N = 47, p <= 3.037e-08

delta1@0.1 0.68 W+ = 397, W- = 164, N = 33, p <= 0.0382 0.377 W+ = 232, W- = 896, N = 47, p <= 0.0004516

delta3@0.1 0.66 W+ = 425, W- = 170, N = 34, p <= 0.0299 0.436 W+ = 162, W- = 966, N = 47, p <= 2.151e-05

delta5@0.1 0.58 W+ = 591, W- = 112, N = 37, p <= 0.0003 0.445 W+ = 151, W- = 977, N = 47, p <= 1.271e-05

CM1

Pine



 

45 

 

Threats to construct validity undermine how the experiment settings and measurements 
truly determine the correct desired properties. In our experiments we decided to use the 

agent count in low level documents as a measurement for candidate links. We reduced 
threats to construct validity by using a relative agent count (out of total swarm size) 

rather than absolute count to indicate a candidate link.  
 
Threats to external validity deal with whether the results can be generalized.  Results to 

date used two datasets from two different domains for validation.  Though both datasets 
are real projects (not student projects), one of them is relatively small (49 x 51). 

Therefore, it is not possible to state that the study sufficiently validated all domains or all 
projects [9]. 
 

 5.8  Overall Summary 

Though the swarm agent counts and TF-IDF links weights are not calculated in the same 

manner, they serve a similar role; they are used for filtering the candidate links. The 
higher the filter value (a close cosine similarity in documents in TF-IDF or a higher agent 
count in swarm methods), the more the F values decreased for TF-IDF and Swarm 

methods on both datasets.    
 

Figure 5.1 shows that F values for TF-IDF perform better than simple swarm below 
threshold values of 0.2 on the Pine dataset. After the threshold is increased, the swarm’s 
F values (with/without pheromones) were better than TF-IDF as seen in Figure 5.2 and 

Figure 5.4.  Furthermore, TF-IDF exhibited a steep decline in F and F2 as threshold 
values increased. Swarms demonstrated better values for F measurements for higher 

threshold values. The higher threshold implies that an analyst has to review fewer links of 
higher quality.  
 

Figure 5.9 showed better performance for the TF-IDF method than simple swarm on the 
CM1 dataset, achieving 0.28 for F and 0.37 for F2. Simple swarm performed better than 

TF-IDF past the 0.4 threshold. 
 
Pheromone swarm, in general, performed better than simple swarm on the CM1 dataset. 

Pheromone swarm with delta=3 reached the highest value for F of 0.21 at the 0.6 
threshold. Furthermore, pheromone swarm exhibited a gradual increase in F value as the 

threshold increased. TF-IDF reached its peak F value of 0.28 at the 0.3 threshold and then 
declined sharply as threshold values increased.  
 

The same trend was observed with TF-IDF in the CM1 and Pine datasets for the F 
measurement. The F2 values for the swarm methods exhibited a slightly different 

behavior. F2 values slowly declined as the threshold increased for all swarm methods. 
Even in these instances, the swarms displayed a more gradual change in performance as 
the threshold increased.  Pheromone swarm F2 values gradually decreased from 0.25 to 

0.18. 
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In summary, the simple swarm approach showed some advantage over the TF-IDF 
method on the Pine dataset, yet it did not fare as well on CM1. At the same time, with 

pheromone swarm, any advantage indicated on the Pine dataset was lost. Pheromone 
swarm performance on CM1 improved over simple swarm, but still underperformed TF-

IDF.  
 
A possible explanation for this is the way that the high and low elements are connected. 

The Pine dataset contains 49 high-level and 51 low-level elements, with 2,499 possible 
links. The CM1 dataset contains 235 high and 220 low elements, creating a search space 

of 51,700 possible candidate links.  The answer set for the Pine dataset has 246 links, 
about 10% of all possible links. In the CM1 dataset, the ratio of true links over possible 
links goes down to less than 1% (361 true links divided by 51,700). CM1 also uses a 

significant amount of technical terms and acronyms, causing the swarm agents to end up 
at incorrect low-level elements. One can draw a logical conclusion to utilize a thesaurus 

when a dataset contains many acronyms.  
 
It appears that in a compact dataset such as Pine, the pheromones made the agents “over 

choose” certain links. This led to lower starting recall and higher precision as seen in 
Figure 5.3. On the other hand, for CM1, pheromone swarm delivered better precision 

than simple swarm with more focused selection in a sparsely linked set. Agents got to 
pick proper links based on the pheromone markings previously deposited by other agents.  
 

For the CM1 dataset, the MAP measurements exhibited some variance with regard to the 
pheromone swarm method. Pheromone swarm at delta = 3 performed just “above” TF-

IDF and all other swarm methods. As we saw earlier for the CM1 dataset, increasing the 
size of the affected neighborhood delivered some performance gains. Simple swarm had 
better MAP at lower thresholds for both datasets. 

 
Another interesting result we observed was related to the size of the neighborhood of a 

linking term. When we increased the delta from 3 to 5 for the pheromone swarm, we 
noticed a slight drop in performance across just recall measurements and both datasets. 
Apparently, by depositing pheromones on neighbors that are “too remote,” the agent 

introduces too much noise for future agents. For example, on the CM1 dataset with delta 
= 3 the starting recall and precision values were 56% and 8%, respectively. When we 

increase the delta to 5, i.e., five neighboring terms on either side of the linking term 
received deposits, the starting recall and precision became 48% and 8%, respectively.  
 

Maarek et al. [35] and Niu and Easterbrook [36] experimented with a neighborhood of 
size five (5) using ‘lexical affinities.’ Our work differs from ‘lexical affinities’ in several 

ways. Unlike ‘lexical affinities,’ the swarms consider neighbors that may cross sentence 
boundaries. ‘Lexical affinities’ pick up two word units, whereas the swarm considers all 
terms within the limits of the inspected neighborhood. This difference may explain why 

we obtained an optimal neighborhood of three (3) as opposed to five (as in ‘lexical 
affinities’).  
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To achieve high recall and precision results for the CM1 dataset, the swarm agents have 
to conduct the search with a more narrow focus. The use of a thesaurus might have 

directed the swarm agents to the proper document. In addition, a method of handling 
acronyms might be of significant assistance. In this case, the thesaurus may become 

project specific.  
 
In the case of TF-IDF at low threshold values, the method considered a greater number of 

the low-level elements as possible candidate links, thus yielding higher recall at the cost 
of precision. The Swarm method, a more focused approach than TF-IDF, limited the 

“discovery horizon” for the agents by focusing on the top terms in a textual element, 
hence limiting the possible search alternatives. Both methods increased recall at the 
expense of precision. 
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6 Reinforcement Learning Model 
This section presents the Reinforcement Learning method overview and observations 
made based on empirical results. 

 6.1  Overview 

The search space in a reinforcement learning (RL) model is similar to the search space 
described in the swarm technique. It has three layers of data. The top level consists of the 

high level documents. The middle level consists of all terms in all documents. The 
bottom level consists of the low-level documents.  
 

The agents traverse the search space starting from the top level documents down to the 
low level documents by selecting the terms in the middle layer that are common between 

the selected documents.  The main idea of the algorithm is to equip the agents with some 
heuristics to navigate the search space and choose the correct candidate links between the 
high and low level documents.  

   
To define a search space in terms of the RL model, we need to define states, actions, 

transitions, and rewards.  Figure 6.1 lists states and the transitions between them.  
 
States are defined by the agent’s position in the data space. The agents can be in any of 

the following states:  

- Top  level document, HL 

- A term in a high level document, tHL 

- Low level document, LL 

- A term in a low level document, tLL 

- A synonym term in vocabulary, st. 
 

The agent’s states are the positions in the search space where the agent can be located.  
The action the agent selects determines the states in the search space to which the agent 

will transition. Possible actions at states and transitions between the states are shown in 
the Agent State Transition Diagram, Figure 6.1. 
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Figure 6.1. RL Agent state transition diagram. 

 

 
As we can see in Figure 6.1, when an agent is positioned at a high level document, state 

HL, the agent starts by selecting a term as the starting point for its journey (the heuristic 
of selecting terms is described below). By selecting a term in a high level document, the 

agent transitions to the state tHL. From the state tHL, the agent can choose a low level 

document that contains either the term or a synonym of the term.  
 

By choosing a low level document, the agent transitions to the state LL. From the state 

LL, the agent should select a term in the low level document. If the low level document 

contains the term tHL in several positions, the agent needs to select a position tLL within 
the low level document to maximize the match between the neighborhoods in the high 

and low level documents. A neighborhood is a textual segment located around a linking 
term. 
 

Alternatively, from state tHL, the agent can also choose to explore the synonyms of the 

term. If the agent selects a synonym, it transitions to the state st. From the state st, the 
agent can only choose a low level document containing the synonymus term. Possible 

actions at states and transitions between the states are summed up in Table 6.1. 
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 Table 6.1. Agent actions. 

 

From Action* To 

Top Level Document   HL Select a term Term (High Level Doc)  
 

tHL 

Term(High Level Doc)  

 

tHL Select Low Level or 

Synonym 

Low Level 

Document  

LL 

Term(High Level Doc)  tHL Select Low Level or 
Synonym 

Synonym  st 

Low Level 

Document  

LL Select a term  Term(Low Level Doc)  tLL 

A synonym term in 
vocabulary  

st 
 

Select Low Level Low Level 
document  

tLL 

 

 
Each action listed in Table 6.1 can be in one of the three behaviors: random, linear, or 
quadratic.  

 
In random behavior the agent has an equal probability of transitioning in any of the 

available next states. The formula for the random behavior is as follows: 
 

 
 

   (  )   
 

 
   , 

 

(6.1) 
 

 

 
where Si is a reachable state and N is the number all reachable states. For example, if the 

agent is in a “term- high-level” state  tHL and has ten possible low level documents, i.e. 

ten reachable  LL states, the probability of transitioning into each of the reachable states 
is only 0.1.  

 
Linear behavior allocates the transitional probabilities to the reachable states proportional 
to the numeric values or rewards the reachable states possess. The formula for linear 

behavior is as follows: 
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(6.2) 
 

 
 
The probability of transitioning into the state Si is proportional to the value in the state Si, 

divided by the sum of values of possible transition states. For example, if the ten 

reachable LL states from the state tHL had the following values associated with them: 

{20, 50, 30, 0, 0, 0, 0, 0, 0, 0}, the probability of transitioning into the first LL state is 
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0.2, into the second 0.5, the third is 0.3. The remaining reachable states would receive 0 
transition probability. We describe the numeric state values and rewards later. 

 
When the agent selects the quadratic behavior, the transition probabilities from the 

example above would be distributed based on the following formula: 
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(6.3) 

 
 

 
The probability of transitioning into the state Si is proportional to the squared value in the 

state Si, divided by the sum of squared values of possible transition states. 
 
Table 6.2 shows state values and associated behavioral probabilities for an agent 

inspecting the A3.txt high level document in the Pine dataset. The probabilities depend 
upon the term selection behavior the agent may choose.   

 
 

Table 6.2. Term selection probability based on the transition values and 

selection behavior. 

 

Term Value Random Linear Quadratic 

a3 0 0.067 0.00 0.00 

address 1.106 0.067 0.12 0.10 

book 0.808 0.067 0.09 0.06 

allow 0 0.067 0.00 0.00 

creat 0.52 0.067 0.06 0.02 

delet 0.29 0.067 0.03 0.01 

modifi 0 0.067 0.00 0.00 

add  0 0.067 0.00 0.00 

name 0 0.067 0.00 0.00 

delet 0.24 0.067 0.03 0.00 

name 0.026 0.067 0.00 0.00 

person 1.5 0.067 0.16 0.19 

distribut 1.54 0.067 0.17 0.20 

list 1.55 0.067 0.17 0.20 

pdl 1.57 0.067 0.17 0.21 

 
 

Consider the term ‘list.’ In the course of the Reinforcement Learning algorithm, the state 

“A3-list” received the value 1.55. The random selection behavior estimates the 
probability of transitioning into “A3-list” state from “A3” state as 0.067. The linear 



 

52 

 

selection behavior raises the probability of such transition to 0.17. The quadratic selection 
assigns the transition from ‘A3’ to ‘A3-list’ the highest probability, 0.21.   

 
Figure 6.1 and Figure 6.2 display the transitional probabilities for linear and quadratic 

selection behaviors based on Table 6.2 
 

 
 

Figure 6.2. Term selection probability based on linear selection behavior. 

 

 
 

Figure 6.3. Term selection probability based on quadratic selection 

behavior. 
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It can be visually seen that the term ‘delet’ in Figure 6.3 is significantly smaller compared 
to the terms ‘distribut,’ ‘list,’ and ‘pld.’ It is also worth mentioning that our RL algorithm 

differentiates between the different positions of a term in a document. For example, the 
term ‘delet’ appears in document A3 in two positions. Each position, or state “A3-pos,’ 

receives different values based on values calculated during the Value Iteration algorithm. 
Therefore, the positions receive different transition probabilities. 
 

A state “a term in low level document” tHL can have a reward. This is a numeric value 

associated with transitioning into the tHL state. The reward is calculated by comparing the 
text segments in two neighborhoods: in high and low level documents. The comparison 

evaluates how many common terms the two segments share. The reward is estimated 
using the following formula:  
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(6.4) 

 

 
 

 
where H is the collection of high level documents, L is the collection of low level 
documents, and       are the terms in H and L documents respectively. 

 
The function  (    ) is calculated as follows: 
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(6.5) 

 

 
 

The multiplication coefficients range from 1 to 10:             {    } . The range of 

multiplication coefficients is a calculated estimate on the similarity of the textual 

neighborhoods. The higher values for the                coefficients imply that the 

matching terms are close to each other in the neighborhood of the linking term. 

 
The reward associated with transitioning into a position in a low level document is 

propagated back to the high level documents through the common linking terms. As 
described in the background section (Section 2.3), the agents choose the behavior in the 
RL model, i.e., the search space navigation policy, to maximize expected return.  The 

expected return is calculated by the formula: 
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(6.6) 

 

 
where rt is the reward received after t-th transition action.  
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The Reinforcement Learning algorithm for requirements traceability is described in 
Listing 6.1:   

 

REINFORCEMENT LEARNING TRACELINKS (H, L) 

       // Input High  and Low level documents H and L  
      // Output list of agent count (h,l,n) - from h in l, where n is the count 
 

 
1.        // Creates State Space  

2.         For each document  hl in high level collection H   
3.              States.Add(NewState(hl)) 
4.           For each term  t in high level document h 

5.                         i  position of t in hl 
6.                        States.Add(newState(hl_t)) 

7.                        // Iterate through low level documents linked via term t 
8.                        For each document ld in  Vocabulary.GetDocsByTerm (t) 

9.                   If ld is lowLevelDocument 
10.                                   For each position j  of term t in ld 

11.                                        lowLevelDocState  newState(ht_t_ld_posj)              

12.                                        Value = EstimateMatchingValue(hl,ld,i,j) 

13.                                        lowLevelDocState.ValueValue 

14.                                  End For 
15.                            Else  // ld is a synonym 

16.                                    ld_2  Vocabulary.GetDocsByTerm (ld) 
17.                                   For each position j  of term ld in ld_2 

18.                                         lowLevelDocState  newState(ht_t_ld_posj)              
19.                                         Value = EstimateMatchingValue(hl,ld_2,i,j) 

20.                                        lowLevelDocState.ValueValue 
21.                                  End For 

22.                           End if 
23.                        End For 

24.            End For 
25.   
26.   

27.           // Calculate state values  
28.           For cycle 1 to 5 

29.              For each state s in States 

30.                   argMaxValue 0 

31.                   possibleSates  s.Transitions 
32.                   For each action a in Actions 

33.                         possibleStates.TransitionProbabilitiesForAction(a) 
34.                        For each ps in possibleStates 

35.                            possibleValue  possibleValue + ps.Probability* ps.Value 

36.                          If possibleValue > argMaxValue 

37.                             bestAction  a 

38.                             s.Policy  a 
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39.                         End if 
40.                       End For //possible states 

41.                       argMaxValue  Max(possibleValue, argMaxValue) 
42.                  End For // Actions   

43.                 s.Values.TransReward + argMaxValue 
44.            End For // states  

45.   
46.  // Traverse the Search Space 

47.  For each top level document hl 
48.          For each agent ant in colony 

49.           currentState  States(hl) 

50.           While CurrentState != low level document 
51.                   //using  currentState.Policy and currentStates.Transitions 

52.                  nextState      currentState.SelectNextState 

53.                currentState nextState 

54.           End While            
55.        End For 

56. End For 
 

Listing 6.1 Pseudo code for requirements traceablity reinforcement learning  

 
The Reinforcement Learning algorithm determines an optimal transition policy for each 

state by maximizing the expected return. The transition policy will become the guiding 
heuristic for the agents to traverse the search space.  

6.1.1 Path Saturation 

The agents choose to select certain states based on the space traversal policy. When an 

agent is presented a choice of possible next states S= {s1, s2,… , sk}, the probability of 

transitioning into the next state depends on the value the next state holds. It is possible for 
one of the next states to have a value which is much higher than the values of other 
possible next states. In this case, the probability of transitioning into Si is higher than the 

probability of transitioning into any other state: 
 

 
 

 Pr(si) >> Pr(sj), where si ,sj   {s1, s2,… ,sk} and  i j, 

 
(6.7) 

 

 
 
It is possible to have a situation where a majority of agents always select the state with 

the transition probability much higher than other possible states. This scenario may limit 
the search only to the states with high values. To address this situation, we introduce the 

notion of path saturation.  
 
Path saturation is a value added to define the number of agents transitioning from state SA 

to state SB. As the saturation value gets higher, the probability of transitioning from SA to 
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SB becomes smaller. The saturation value from SA to SB on the transition path has the 
inverse effect on the transition probability from SA to SB. 

 
In a manner similar to the Swarm Algorithm, the candidate links are estimated by the 

agent count gathered in the low level documents. A candidate link between high level 
document HLdoc and the low level document LLdoc gets a count of one if an agent starting 
from HLdoc has reached the low level document LLdoc.  After all counts on the candidate 

links have been calculated, the candidate links are ranked by the agent count. 
 

Having defined the search space and the search space traversal heuristic, the next step is 
to outline the experiment design. 
 

6.1.2 Experiment Design 

In order to validate the RL technique, it was applied to two datasets.  The datasets are the 

same as used for the swarm algorithm. The first project consisted of 49 textual 
requirements and 51 textual use cases. The dataset is a text-based email system Pine 
developed by the University of Washington [51].   

 
The Pine dataset contains 246 true links. These links form the answer set, i.e. a collection 

of links against which we can validate our findings.   
 
The second project consisted of 22 requirements documents and 53 design documents in 

the NASA scientific instrument project CM1SUB [52]. The project has 45 true links in 
the answer set. 

 
The experiments were conducted using a Vector Space Model using TF-IDF weighting 
(TF-IDF hereafter) and the Reinforcement Learning (RL) method.  The independent 

variable in the study was the method (TFIDF, Reinforcement Learning). The dependent 
variables were recall and precision. The precision-recall graph and statistical analysis were 

used to evaluate the results.  
 
All textual documents were pre-processed, the agents selected each high-level element 

one at a time and the agents used the search space navigation heuristics established by the 
RL method.  The output was captured in the form of candidate RTM. The results were 

compared to the answer set to calculate recall and precision (formulas 2.1.1  and 2.1.2) 
defined earlier.     

 

To eliminate any possible threats to the validity of the experiment, several controls were 
implemented. 

 

Internal threats to validity included possibly indicating a relationship between the 

treatment methods and the outcome, when in reality there was no relationship. First, in 
our controlled experiment, we used the same datasets in the same environment.  This was 

done to provide a fixed environment where it was possible to observe the differences in 
the outcome only where the treatments are different, i.e., where we apply different 
candidate link generating algorithms. 
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To address the possible threat to internal validity due to repeated testing, each method 

was run ten times and examined using the mean recall and precision values. Each method 
produced average recall and precision values with variances ranging from 0.003 to 0.06.  

 
To protect the ability to draw valid conclusions from the study, the same two datasets 
were analyzed using similar treatments. In this experiment, both datasets were analyzed 

using the TF-IDF and the RL methods.  
 

Another possible threat identified was the effect of experimenter bias on the ability to 
reach valid conclusions based on the data.  This threat was reduced by using datasets 

where the answer sets were independently verified by more than one analyst.  In the case 
of CM1SUB dataset, more than one research group was used.   
 

There was additional potential for bias in that the answer sets created by human analysts 
familiar with the traceability research domain. The vetted tool, RETRO.NET [36], was 

used and adapted in order to properly implement the RL technique. The threats to validity 
were also reduced by using the standard information retrieval measures of recall and 
precision to evaluate effectiveness.  

 
In addition to the internal threats to validity, threats to external validity and the ability to 

properly generalize the results were addressed by using two datasets for validation.  
Though both datasets are real projects (not student projects), they are small size datasets.  
 

Also, though the datasets do represent two different domains, it is not possible to state 
that the study sufficiently validated all domains or all projects.  

 

 6.2Results 

Following the completion of the experiments, the RL method and TF-IDF method were 
evaluated for the Pine and CM1SUB datasets using the primary measures of recall and 
precision. Section 6.2.1  presents the results and observations made during the initial 

stage of the RL algorithm development. The RL results for Pine are shown in in Section 
6.2.2.  In section 6.2.3, we evaluate the RL method for the CM1SUB dataset. Section 

6.2.4 provides an overall summary of the results and directions for future possible work. 
Data points for the figures in this section are presented in Table 2 of Appendix A. 

6.2.1 Reinforcement Learning Initial Results and Points of Interest 

The initial development phase for the RL algorithm yielded results that were less than 
impressive. For both datasets, Pine and CM1SUB, the  precision-recall curves for the RL 

method were below the precision-recall curves for the TF-IDF method. Figure 6.4 
presents precision-recall curve for Pine obtained using an early version of the RL method.  
It is clearly visible that the RL method at that phase underperformed the TF-IDF method. 
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Figure 6.4 Precision-recall curves for TF-IDF and initial phase of 

reinforcement learning methods for the Pine dataset 

 
Compared to the TF-IDF method, the initial version of the RL algorithm showed lower 

precision values for the same values of recall. The highest value of precision for the RL 
method was 0.67 at recall 0.13. At the same time, for TF-IDF at recall 0.13 the precision 

was 0.95. We observe a similar situation for the CM1SUB dataset on the initial version of 
the RL algorithm, shown in Figure 6.5. 
 

 
Figure 6.5 Precision-recall curves for TF-IDF and initial phase of 

reinforcement learning methods for the CM1SUB Dataset 
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For the CM1SUB dataset, the initial version of the RL algorithm showed lower precision 

values for the same values of recall. The highest value of precision for the RL method 
was 0.34 at recall 0.29. The TF-IDF method achieved precision of 0.5 at recall 0.29.  

 
Another observation we made was that on both datasets, the initial RL method 
demonstrated a narrower corridor of precision-recall values. For Pine, the precision 

ranged from 0.41 up to 0.67; for CM1SUB, the precision ranged from 0.12 up to 0.32.  
This led us to believe that the RL method maintains a “narrower focus” compared to TF-

IDF. Further investigation of the algorithm accentuated the importance of the “matching 
neighborhood function.” We observed the direct effect of the way the textual 
neighborhoods are matched on the quality of candidate links.  The pseudo code presented 

in Listing 6.1 displays, in line 12, the call to the neighborhood matching function.  
 

After careful consideration and analysis, we decided to utilize tf-idf weight of the terms in 
establishing matches between textual neighborhoods (Formula 6.4). Intuitively, it makes 
sense that two textual segments, i.e., neighborhoods, sharing a number of terms with high 

tf-idf weight, may in fact have a strong link between them.  The results for the improved 
Reinforcement Learning algorithm are presented in the next sections.  

 

6.2.2 Reinforcement Learning on Pine 

Figure 6.6  presents the precision-recall curve for the RL and TF-IDF methods for the 

Pine dataset. 
 

 
 

Figure 6.6  Precision-recall curves for TF-IDF and reinforcement 

learning methods for the Pine method 
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The RL method demonstrates higher precision values than TF-IDF for the same values of 
recall.  The highest precision for RL method is 0.84 at recall 0.24. As we can see in 

Figure 6.6, the highest precision-recall value in RL is at the same position as in TF-IDF.  
 

By inspecting other values of the precision-recall graph, we see the RL method produced 
a more focused result. The lowest precision returned by the RL method is 0.65 at recall 
0.52.  The comparable result for TF-IDF achieves precision 0.65 at recall 0.4. The quality 

of candidate links produced by the RL method is better; the RL achieves higher precision 
than TF-IDF for the same recall values.  

 
For the Pine dataset, at recall of 0.42 the RL method achieves precision of 0.73. As we 
can see from Table 2 in Appendix A, the RL method filtered at 0.25 suggested 141 links. 

The number of correctly identified links was 103. The total number of correct candidate 
links for the Pine dataset is 248. The 103 correctly suggested links out of a total of 248 

equates to 0.42 recall.  
 
The TF-IDF method at 0.20 filtering on the Pine dataset suggests 162 links; 106 links are 

correctly identified. 106 out 248 is 0.42 recall. Having similar recall values, the two 
methods achieved different precision: the TF-IDF method achieves 0.65 (0.65= 106/162); 

the RL method achieves 0.73 (103/141). The RL method retrieves a higher number of 
relevant documents compared to the TF-IDF method. 
 

To evaluate any statistical difference between the two methods, the recall and precision 
numbers were compared on the overlapping recall value range. For the Pine dataset, the 

TF-IDF method covered recall values from 0 to 1, while the RL method covered recall 
values from 0.23 to 0.52. Using the recall point from the RL method, the precision values 
were interpolated for the TF-IDF method. Twenty recall values and twenty precision 

values for TF-IDF and RL were used to define the null hypothesis and alternative 
hypotheses for the results: 

H0: There is no difference between the precision values of the TF-IDF 
interpolated precision-recall graph compared to the precision values for the RL 
method’s precision-recall graph. 

H1: There is a difference between the precision values of the TF-IDF interpolated 
precision-recall graph compared to the precision values for the RL method’s 

precision-recall graph. 
The Wilcoxon Signed Ranked method was used to evaluate the null hypothesis. The 
critical value for Zcritical test was ±1.96 at confidence level α = 0.05. The results of the 

calculations produced the following values:  
 

 W- = -205,  

 W+ = 20,  

 Z = -3.82.  
 

Since Z < Zcritical, the null hypothesis was rejected. This left the conclusion that there is a 
statistically significant difference between the precision values of the two methods.  
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6.2.3 Reinforcement Learning on CM1SUB 

The RL method applied on the CM1SUB dataset produced results similar to the results 

obtained on the Pine dataset.  Figure 6.7  shows the precision-recall values for the RL 
method compared to the precision-recall values for the TF-IDF method using the 

CM1SUB dataset.  
 

 
 

 

Figure 6.7 Precision-recall curves for TF-IDF and reinforcement learning 

methods for the CM1SUB  

 
As shown in Figure 6.7, the points in the Precision-recall plane for the RL method have 

higher precision values than the points for the TF-IDF method. The RL method reaches a 
precision of 0.61 at recall of 0.24. The TF-IDF method reaches a precision of only 0.5 at 
a 0.24 recall value.  

 
When comparing recall and precision values for the RL method, recall values grow to 

0.38 as precision drops to 0.39. The RL method results also cluster in the area from recall 
0.39 and precision 0.39 up to precision value 0.61 at recall 0.24. These values in dicate 
the RL method does target the relevant candidate links. 

 
For the CM1SUB dataset, the recall and precision numbers were compared between the 

two overlapping recalls to confirm any statistical difference between the two methods. 
With values similar to those for the Pine dataset, the RL method covers a limited range of 
recall values 0.28 to 0.34.  
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The precision values for the TF-IDF method were interpolated using 20 recall values and 
20 precision values for TF-IDF and RL. The null hypothesis and alternative hypotheses 

were defined as follows: 
H0: There is no difference between the precision values of the TF-IDF 

interpolated precision-recall graph compared to the precision values for the RL 
method’s precision-recall graph. 
H1: There is a difference between the precision values of the TF-IDF interpolated 

precision-recall graph compared to the precision values for the RL method’s 
precision-recall graph. 

The Wilcoxon Signed Ranked method was also used to evaluate the null hypothesis as 
was done previously for the Pine dataset. The critical value for Zcritical test was found to 
be ±1.96 at confidence level α = 0.05. The calculations produced the following values for 

W-, W+ and Z : 
 

 W- = -153,  

 W+ = 18.5,  

 Z = -3.07.  
 

Since our Z < Zcritical, as found previously for the Pine dataset, the null hypothesis must 
also be rejected. This left us to conclude that there is a statistically significant difference 
between the precision values of the TF-IDF and RL methods on CM1SUB. 

6.2.4 Observations 

In light of the results obtained from the experiments, we were able to make several 

interesting observations.  
 
Typically, when we consider a precision-recall curve, we observe three possible 

outcomes: high recall values and low precision; high precision and low recall; and values 
in between these two extremes [53], [15],[9].   

 
High precision and low recall implies that we accurately retrieved a small fraction of the 
required documents, but not most of them. Low precision and high recall implies that we 

retrieved most of the required documents, but at the same time, we retrieved more 
unrelated documents as well.  

 
Ideally, when we issue a query we would like to retrieve all the correct documents and no 
unrelated items. This ideal scenario should provide high recall and high precision values; 

our precision-recall curve should reside in the upper right area of the graph as shown in 
Figure 6.8. We would like our precision recall curve to resemble the ideal shape, i.e. 

move the top right corner of the precision recall graph and raise the lower boundaries on 
recall and precision values.  
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Figure 6.8 Precision-recall curves ideal vs. typical 

 

 
For both datasets, the RL method demonstrated higher precision values than the TF-IDF 

method for the same recall values.  For the Pine dataset, the RL method reached precision 
value 0.65 at recall 0.52. The TF-IDF method only reached precision value 0.52 at recall 
0.52.  

 
We observed a similar difference in precision between the RL and TF-IDF methods using 

the CM1SUB dataset.  The RL method reached precision 0.61 at recall of 0.24, while TF-
IDF reached precision 0.5 at recall of 0.24.  
 

It should be noted that the RL method did not cover the whole spectrum of recall or 
precision values. The minimum recall for RL on Pine is 0.23; the maximum recall for RL 

on Pine is 0.52. The minimum precision for RL on Pine is 0.65; the maximum precision 
for RL on Pine is 0.84.  
 

A precision-recall curve for the RL method using the CM1SUB dataset was also limited 
by min/max values in recall and precision. For CM1SUB, the minimum recall value for 

RL is 0.24; the maximum recall was 0.38. The minimum precision value for RL was 
0.39, the maximum was 0.61.  
 

The precision-recall data points for the RL method on both datasets exhibited a more 
focused result, compared to the TF-IDF method. However, the TF-IDF method did reach 
values close to 1 in recall and precision.  
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At the same time, when TF-IDF recall reaches to 1, precision drops to almost 0. The 
same is true for precision: when precision reaches 1, the recall drops close to 0. The RL 

method recall does not drop below 0.23 for Pine and produces recall higher than 0.24. 
Also, the lower boundaries for precision on the RL method for the Pine and CM1SUB 

datasets were 0.37 and 0.39, respectively.  
 
One explanation for the observed trends using the RL method is that the common textual 

segments in two compared documents contribute significantly to promoting a possible 
link between the two documents. In other words, the candidate links suggested by the RL 

method shared common textual segments.  This is why the higher precision results are 
produced in the RL method on both datasets.  
 

The upper boundary on precision for RL for both Pine and CM1SUB datasets is 0.84 and 
0.61, respectively. This indicates that having common segments between textual 

documents is not enough to establish a true link between them. If the RL method links the 
documents with common segments, the upper boundary on the precision indicates that 
some documents sharing textual segments may not have a logical link between them. For 

example, the RL method suggested a link between high level document F6.txt and low 
level UC-F1.txt as shown in Figure 6.9. 

 

 

 

 
 

Figure 6.9 Two documents sharing common segments  

 
By tracing the agents, we can see that the suggested link came as the result of a common 

segment in F6.txt and UC-F1.txt: “the system shall issue a warning.” 
 
Even though the wording of the segment is the same in both documents, the information 

carried by this common segment is not sufficient to link the documents. This suggests 
that not all common textual segments are “created equal.”  

 



 

65 

 

At the same time, the lower boundary on the RL method’s precision for Pine and 
CM1SUB datasets does not fall below 0.65 and 0.39, respectively. This fact suggests that 

the common segments play an important role in identifying correct candidate links 
between high and low level documents. The portion of the relevant documents returned 

by the RL method did not fall below 0.65 and 0.39 for Pine and CM1SUB datasets 
respectively. 
 

With the lower boundaries on precision, the RL method reaches the upper boundaries for 
recall (0.52 and 0.38). This indicates that the common textual segments may not 

necessarily uncover all possible ways of linking the documents.   

6.2.5 Hard Traces 

To evaluate the value of discovering common textual segments using the RL method, we 

compared the quality of candidate links on the Web Archive tool (WARC) dataset [54].  
Figure 6.10 Precision-recall curve for WARC. shows precision-recall curves for the TF-

IDF and RL methods on the WARC dataset. 
 

 
Figure 6.10 Precision-recall curve for WARC.  

 
 

As shown in Figure 6.10, the points in the precision-recall curve for the RL method are 
gathered around the recall value of 0.23 and the precision varies from 0.49 to 0.72.  The 
RL method did not demonstrate a significant performance gain with respect to the TF-

IDF  method. Only on one point (precision 0.72, recall 0.23) did the RL curve exceed TF-
IDF’s performance; the interpolated value for TF-IDF there is  precision of 0.70 at recall 
of 0.23. Yet, similar to the results on Pine and CM1SUB, the RL method demonstrated 
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focused results: the recall ranged from 0.23 to 0.26 and precision ranged from 0.49 to 
0.72.  

 
What interested us in this set of results was the performance on the “hard traces.” 

According to Gibiec, Czauderna, Cleland-Huang, the hard traces exhibit average 
precision less than 10% and occur when documents do not share common terms or 
synonyms in a thesaurus [55]. The RL method was able to locate some of the hard traces 

with 100% recall and precision. For example, table A.3 in the appendix shows 100% 
recall and precision for FR30.txt, FR33.txt, and FR38.txt. Yet, the RL method completely 

missed some of the hard traces. If we analyze the “completely” missed links, we can see 
that the documents comprising the link shared very few common terms. An example of 
such documents is F04.txt which has the following low level documents in the answer 

set: SRS08.txt, SRS09, and SRS10.txt.  By zooming further into the content of the 
documents (Figure 6.11), we see only a single pair of terms common between the two 

documents.   
 

 
Figure 6.11 Two hard trace documents from WARC dataset comprising missed link 

 
At the same time, the RL method did pick up the documents that comprise the hard to 

trace links and share common textual segments. Figure 6.12 shows documents FR30.txt 
and SRS49.txt sharing several common textual segments. 
 

 

 
Figure 6.12 Two hard trace documents from WARC dataset comprising link discovered by the RL 

method. 
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 6.3Future Work 

Comparing RL to TF-IDF, which links the documents based on all common terms and 

their weight, the RL method promotes the links between documents with common terms 
located close to each other. In other words, the RL method identifies common textual 

segments between documents, and suggests links between such documents. By doing so, 
the RL method outperforms the TF-IDF method for the same recall values. RL’s higher 
precision at the same recall rate provides a human analyst with a more compact and 

focused collection of candidate links. 
 

Considering the encouraging results from the RL method, future work can be directed to 
incorporate the advantages that the RL method offers. Future work will incorporate a 
feedback mechanism similar to the one in Mencer’s work [49]. Feedback may improve 

the accuracy of the generated candidate links.  
 

Also, combining the feedback with personalized filtering, similar to Seo’s work [45], 
should definitely affect the accuracy of the candidate links. A part of speech tagging or 
noun-verb phrasing technique [27] shall also be considered in future work.  By 

classifying terms in textual documents, we can amplify the importance of one type of 
textual segment over others.  
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Appendix  
Table 0.1. Detailed results for the TF-IDF and pheromone swarm methods on the Pine 
and CM1 datasets 

 

Pine CM-1

TF-IDF TF-IDF

Threshold Recall Precision F F2 DiffAR MAP Threshold Recall Precision F F2 DiffAR MAP

0.1 0.72 0.48 0.58 0.66 0.18 0.75 0.1 0.82 0.08 0.14 0.28 0.09 0.16

0.2 0.43 0.65 0.51 0.46 0.25 0.58 0.2 0.50 0.19 0.27 0.37 0.10 0.20

0.3 0.24 0.82 0.37 0.28 0.41 0.38 0.3 0.25 0.32 0.28 0.26 0.22 0.15

0.4 0.15 0.97 0.27 0.19 0.55 0.27 0.4 0.09 0.31 0.14 0.10 0.34 0.06

0.5 0.08 0.95 0.15 0.10 0.61 0.16 0.5 0.03 0.45 0.05 0.03 0.47 0.02

0.6 0.04 1.00 0.08 0.05 0.69 0.08 0.6 0.01 0.57 0.02 0.01 0.66 0.01

0.7 0.02 1.00 0.03 0.02 0.75 0.04 0.7 0.00 0.50 0.01 0.00 0.75 0.00

0.8 0.00 1.00 0.01 0.01 0.80 0.00

Simple Swarm Simple Swarm

Threshold Recall Precision F F2 DiffAR MAP Threshold Recall Precision F F2 DiffAR MAP

0.1 0.86 0.27 0.41 0.60 0.46 0.76 0.1 0.80 0.04 0.07 0.15 0.28 0.23

0.2 0.78 0.40 0.53 0.66 0.41 0.74 0.2 0.66 0.05 0.10 0.20 0.23 0.22

0.3 0.65 0.52 0.58 0.62 0.44 0.67 0.3 0.50 0.07 0.12 0.22 0.19 0.21

0.4 0.55 0.63 0.59 0.57 0.46 0.61 0.4 0.41 0.08 0.14 0.23 0.24 0.19

0.5 0.48 0.71 0.58 0.52 0.57 0.57 0.5 0.35 0.11 0.16 0.24 0.23 0.18

0.6 0.40 0.76 0.53 0.44 0.66 0.52 0.6 0.26 0.13 0.17 0.22 0.34 0.16

0.7 0.34 0.81 0.48 0.39 0.72 0.47 0.7 0.22 0.15 0.17 0.20 0.46 0.15

0.8 0.28 0.83 0.41 0.32 0.85 0.41 0.8 0.19 0.17 0.18 0.19 0.57 0.14

0.9 0.22 0.86 0.35 0.26 0.93 0.36 0.9 0.16 0.19 0.17 0.16 0.72 0.13

Pheromone Swarm δ=1 Pheromone Swarm with δ=1

Threshold Recall Precision F F2 DiffAR MAP Threshold Recall Precision F F2 DiffAR MAP

0.1 0.63 0.54 0.58 0.61 0.38 0.68 0.1 0.58 0.07 0.13 0.24 0.27 0.14

0.2 0.46 0.63 0.53 0.49 0.43 0.57 0.2 0.44 0.10 0.17 0.27 0.23 0.15

0.3 0.33 0.64 0.44 0.37 0.58 0.48 0.3 0.37 0.12 0.18 0.26 0.21 0.16

0.4 0.28 0.66 0.39 0.31 0.64 0.45 0.4 0.30 0.13 0.19 0.24 0.31 0.14

0.5 0.25 0.69 0.37 0.29 0.73 0.42 0.5 0.26 0.15 0.19 0.23 0.35 0.15

0.6 0.23 0.73 0.35 0.27 0.76 0.40 0.6 0.23 0.17 0.19 0.21 0.41 0.15

0.7 0.21 0.78 0.33 0.24 0.89 0.39 0.7 0.20 0.18 0.19 0.20 0.57 0.15

0.8 0.19 0.84 0.31 0.23 0.93 0.37 0.8 0.19 0.20 0.19 0.19 0.62 0.14

0.9 0.18 0.87 0.30 0.22 0.95 0.37 0.9 0.16 0.21 0.18 0.17 0.82 0.14

Pheromone Swarm δ=3 Pheromone Swarm with δ=3

Threshold Recall Precision F F2 DiffAR MAP Threshold Recall Precision F F2 DiffAR MAP

0.1 0.59 0.54 0.56 0.58 0.44 0.66 0.1 0.56 0.08 0.13 0.25 0.26 0.22

0.2 0.42 0.62 0.50 0.45 0.52 0.54 0.2 0.40 0.10 0.16 0.25 0.27 0.20

0.3 0.35 0.67 0.46 0.39 0.60 0.51 0.3 0.34 0.12 0.18 0.25 0.28 0.19

0.4 0.30 0.74 0.42 0.34 0.70 0.47 0.4 0.30 0.14 0.19 0.25 0.29 0.18

0.5 0.27 0.77 0.40 0.31 0.75 0.45 0.5 0.27 0.16 0.20 0.24 0.35 0.17

0.6 0.24 0.81 0.37 0.28 0.88 0.42 0.6 0.25 0.19 0.21 0.23 0.40 0.17

0.7 0.22 0.84 0.34 0.25 0.93 0.40 0.7 0.22 0.21 0.21 0.22 0.50 0.16

0.8 0.20 0.87 0.32 0.23 0.95 0.37 0.8 0.18 0.20 0.19 0.19 0.69 0.14

0.9 0.19 0.89 0.31 0.23 0.98 0.37 0.9 0.17 0.22 0.19 0.18 0.77 0.13

Pheromone Swarm δ=5 Pheromone Swarm with δ=5

Threshold Recall Precision F F2 DiffAR MAP Threshold Recall Precision F F2 DiffAR MAP

0.1 0.52 0.52 0.52 0.52 0.45 0.58 0.1 0.48 0.08 0.13 0.23 0.27 0.21

0.2 0.38 0.63 0.48 0.41 0.52 0.49 0.2 0.38 0.11 0.17 0.25 0.25 0.19

0.3 0.33 0.69 0.45 0.37 0.60 0.46 0.3 0.31 0.12 0.18 0.24 0.25 0.18

0.4 0.28 0.71 0.40 0.31 0.67 0.41 0.4 0.28 0.14 0.18 0.23 0.31 0.18

0.5 0.24 0.71 0.35 0.27 0.75 0.38 0.5 0.24 0.15 0.18 0.21 0.39 0.16

0.6 0.23 0.77 0.35 0.26 0.79 0.38 0.6 0.22 0.16 0.18 0.20 0.55 0.16

0.7 0.21 0.81 0.34 0.25 0.84 0.37 0.7 0.20 0.19 0.20 0.20 0.65 0.15

0.8 0.19 0.85 0.31 0.23 0.93 0.36 0.8 0.18 0.20 0.19 0.18 0.77 0.14

0.9 0.18 0.86 0.30 0.21 1.00 0.33 0.9 0.17 0.21 0.19 0.17 0.86 0.13
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Table 0.2. Detailed results for the TF-IDF and RL methods on the Pine and CM1SUB 

datasets 
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Table 0.3. Detailed results for the TF-IDF and RL methods on the Pine and CM1SUB 
datasets 
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