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ABSTRACT OF DISSERTATION

TORIC VARIETIES AND COBORDISM

A long-standing problem in cobordism theory has been to �nd convenient manifolds to
represent cobordism classes. For example, in the late 1950's, Hirzebruch asked which
complex cobordism classes can be represented by smooth connected algebraic vari-
eties. This question is still open. Progress can be made on this and related problems
by studying certain convenient connected algebraic varieties, namely smooth pro-
jective toric varieties. The primary focus of this dissertation is to determine which
complex cobordism classes can be represented by smooth projective toric varieties.
A complete answer is given up to dimension six, and a partial answer is described in
dimension eight. In addition, the role of smooth projective toric varieties in the poly-
nomial ring structure of complex cobordism is examined. More speci�cally, smooth
projective toric varieties are constructed as polynomial ring generators in most di-
mensions, and evidence is presented suggesting that a smooth projective toric variety
can be chosen as a polynomial generator in every dimension. Finally, toric varieties
with an additional �ber bundle structure are used to study some manifolds in oriented
cobordism. In particular, manifolds with certain �ber bundle structures are shown to
all be cobordant to zero in the oriented cobordism ring.
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Chapter 1 Introduction

A toric variety is a certain type of algebraic variety that contains a torus which acts
on the variety in a prescribed manner. Surprisingly, there is a bijective correspon-
dence between toric varieties and certain objects from convex geometry called fans.
This correspondence allows one to study complicated algebraic, geometric, and topo-
logical properties of toric varieties by examining the often more easily understood
combinatorial properties of the corresponding fans.

Since they were �rst studied in the 1970's, the convenient combinatorial structure
of toric varieties has encouraged mathematicians to use them in numerous seemingly
disparate branches of mathematics. They typically arise in any area which involves
algebraic varieties or fans, including algebraic geometry, polytope theory, linear opti-
mization, coding theory, and mathematical physics (see [11, Appendix A] for details).
The combinatorial nature of toric varieties often facilitates performing computations
with them. For this reason, they are commonly used as special cases when an un-
derstanding of more general algebraic varieties is not feasible. In many situations, a
large amount of information can be gleaned from these special cases alone.

Algebraic varieties also appear in many topological problems. One example is
cobordism theory, which studies a certain equivalence relation between manifolds
that can be thought of as a generalization of di�eomorphism. Chapter 2 will provide
a brief introduction to the aspects of complex and oriented cobordism theory that are
pertinent to this work.

If we consider the equivalence classes under the cobordism relation, we may won-
der when such a cobordism class contains an algebraic variety. In other words, when
can a manifold be deformed through this cobordism relation to obtain a much �nicer�
algebraic variety, which can then be studied using techniques from algebraic geom-
etry? Milnor answered this question in the 1950's by proving that every cobordism
class with positive dimension can be represented by a smooth algebraic variety [41,
Chapter VII]. However, his nonconstructive proof involves taking disjoint unions of va-
rieties, so the smooth algebraic variety representatives are not necessarily connected.
Hirzebruch posed the following related question in 1958.

Problem. ([22]) Which complex cobordism classes can be represented by connected
smooth algebraic varieties?

Very little progress has been made on this di�cult problem. This makes it an
excellent candidate for the utilization of toric varieties. Smooth projective toric va-
rieties are examples of connected smooth algebraic varieties. Their combinatorial
structure could allow us to approach a toric version of Hirzebruch's question. Chap-
ter 3 provides an introduction to toric varieties from a combinatorial perspective
and describes several constructions that are helpful when utilizing toric varieties in
cobordism. This background will allow us to consider the following toric version of
Hirzebruch's question in Chapter 4.
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Problem. Which complex cobordism classes can be represented by smooth projective
toric varieties?

Answering this would at least partially resolve Hirzebruch's original question, and
it might reveal techniques which could be generalized to other nontoric algebraic
varieties. Unfortunately, even this greatly simpli�ed question seems to have a compli-
cated answer. Only in the lowest two complex dimensions does the presence of toric
varieties in cobordism classes depend strictly on their combinatorial structure. For
higher dimensions, the representation of a cobordism class by a toric variety seems to
be determined by an intricate interplay of the combinatorics and geometry of toric
varieties.

In Chapter 4, the above question is completely answered in complex dimension
three. The outcome depends on values of the cobordism-invariant Chern numbers
c1c2, c3, and c

3
1.

Theorem. Let [M ] be a cobordism class of complex dimension three.

1. If c1c2 [M ] 6= 24 or c3 [M ] /∈ {4, 6, 8, . . .}, then [M ] is not represented by a
smooth projective toric variety.

2. Suppose c1c2 [M ] = 24 and c3 [M ] = 4. Then [M ] is represented by a smooth
projective toric variety if and only if [M ] = [CP 3].

3. Suppose c1c2 [M ] = 24 and c3 [M ] = 6. Then [M ] is represented by a smooth
projective toric variety if and only if c3

1 [M ] = 2a2 + 54 for some a ∈ Z.

4. If c1c2 [M ] = 24 and c3 [M ] ∈ {8, 10, 12, . . .}, then [M ] is represented by a
smooth projective toric variety.

The techniques used to prove this theorem only yield partial results in complex
dimension four. In particular, note that if c3 is su�ciently large (and even) in complex
dimension 3, then it no longer provides an obstruction to a cobordism class contain-
ing a smooth projective toric variety. A similar asymptotic result holds in complex
dimension four.

Theorem. Let [M ] be a cobordism class of complex dimension four. Choose integers
g1 and g2 such that 2 ≤ g2 ≤ g1 − 1. Suppose the following conditions are satis�ed.

c4[M ] = 5 + 3g1 + g2

c1c3[M ] = 50 + 6g1 − 2g2

c4
1[M ] = 4c2

1c2[M ] + 3c2
2[M ] + 3g1 − 3g2 − 675

Then [M ] is represented by a smooth projective toric variety.

The computational complexity of these techniques grows quickly with the di-
mension, so other methods will likely be needed to study toric varieties in higher-
dimensional cobordism.
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The role that toric varieties play in representing individual cobordism classes is
quite complicated. However, toric varieties likely play a much simpler and quite
useful role in the algebraic structure of this set of cobordism classes. The set of
complex cobordism classes forms a polynomial ring with a generator in each even
dimension [37, 44]. The standard method for describing such generators involves
taking products and disjoint unions of complex projective spaces CP i and Milnor
hypersurfaces Hi,j ⊂ CP i × CP j [38]. While this method proves the existence of
smooth algebraic not necessarily connected generators, it does not give a useful way
of explicitly describing these generators in each dimension.

In 1998, Buchstaber and Ray provided another set of generators for the polynomial
ring of complex cobordism [5, 7]. They proved that polynomial ring generators can
be constructed by taking products and connected sums of certain smooth projective
toric varieties. Unfortunately, the operation of connected sum does not preserve
algebraicity, so the resulting generators are not themselves algebraic varieties. It is
currently unknown whether or not every polynomial generator can be represented by
a smooth connected algebraic variety.

The purpose of Chapter 5 is to introduce a drastically di�erent approach to con-
structing polynomial generators of complex cobordism. This new method involves
calculating certain cobordism invariants of a speci�c class of fairly simple smooth
projective toric varieties which were classi�ed by Kleinschmidt [29]. Applying a se-
quence of blow-ups to these varieties eventually produces new smooth projective toric
varieties that can be used as polynomial generators. In particular, we do not need
to take products or connected sums of manifolds to produce connected generators. It
seems likely that this method will provide a smooth projective toric variety for each
polynomial generator of complex cobordism. This would verify that it is indeed possi-
ble to choose a smooth connected algebraic variety for each generator. The following
theorem will be proven in Chapter 5.

Theorem. If n is odd or n is one less than a power of a prime, then the cobor-
dism class of a smooth projective toric variety can be chosen for the cobordism ring
polynomial generator of dimension 2n.

It seems very likely that generators can be found in the remaining even dimensions
as well using a similar strategy. In fact, this would be a consequence of a certain
number theory conjecture. While a proof of this conjecture remains elusive, there is
a signi�cant amount of numerical evidence that supports it.

Theorem. If n ≤ 100001, then the cobordism class of a smooth projective toric
variety can be chosen for the cobordism ring polynomial generator of dimension 2n.

Chapter 6 provides an example of how working with toric varieties can inspire
techniques that can be applied to more general objects. At the beginning of this
chapter, certain projective toric varieties called Bott towers are examined. These
varieties have a very strict �ber bundle structure, which aids in computations in
oriented cobordism. Techniques that work for Bott towers serve as motivation for
proving that certain generalized manifolds with a similar �ber bundle structure vanish
in oriented cobordism.

3



Proposition. Let ξ be a two-dimensional complex vector bundle over a compact,
stably complex manifold N . Let CP (ξ) = (M,π,N) be its projectivization. Then the
cobordism class of M vanishes in oriented cobordism.

A generalization of this proposition involving hypersurfaces will then be consid-
ered. In this case, the proof is much more involved.

Theorem. Let ξ1 be a two-dimensional complex vector bundle over a compact, almost
complex manifold P of dimension 2(n − 2). Let CP (ξ1) = (N, π1, P ) denote its
projectivization. Now let ξ2 be a two-dimensional complex vector bundle over N .
Projectivize ξ2 to form the bundle CP (ξ2) = (M,π2, N). If V ⊂ M is a string
hypersurface, then V is cobordant to zero in oriented cobordism.

Generalizing these results may prove to be of interest in di�erential geometry.
For example, Stolz conjectured that the vanishing of a certain oriented cobordism
invariant called the Witten genus is related to positivity of the Ricci curvature of a
manifold. More speci�cally,

Conjecture. ([40]) LetM be a smooth closed string manifold with dimension divisible
by four. If M admits a metric of positive Ricci curvature, then φW (M) = 0, where
φW is the Witten genus.

Since the manifolds described in the above proposition and theorem vanish in
oriented cobordism, their Witten genus clearly vanishes as well. Overall, Stolz's
conjecture has only been veri�ed for a very limited number of special cases [40, 15, 8],
and these projectivized manifolds provide an additional class of examples for which
the conjecture holds.

Chapter 7 discusses questions motivated by the results of this dissertation along
with some possible directions for further research.

Copyright c© Andrew Wilfong, 2013.
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Chapter 2 Cobordism

The focus of this chapter is to give a brief overview of the topics in cobordism theory
that are pertinent to later results. Generally speaking, the necessary facts involve
understanding cobordism from a geometric perspective and exploring the algebraic
structure of cobordism rings. For a more complete treatment of cobordism theory,
see [42].

De�nition 2.1. Two smooth compact n-dimensional manifoldsM1 andM2 are cobor-
dant if their disjoint union M1

∐
M2 forms the boundary of an (n+ 1)-dimensional

smooth compact manifold-with-boundary.

It is easy to see that cobordism is an equivalence relation. The equivalence classes
of the cobordism relation are called cobordism classes. It is often useful to place
additional restrictions on all of the manifolds involved in 2.1. For example,

De�nition 2.2. Two smooth oriented n-dimensional manifoldsM1 andM2 are called
oriented cobordant if the disjoint unionM1

∐
−M2 forms the boundary of an (n+ 1)-

dimensional smooth compact oriented manifold-with-boundary, where −M2 is M2

with the orientation reversed.

The main object of study in this dissertation is a certain type of complex va-
riety. For this reason, it would also be useful to restrict the manifolds considered
in cobordism to only complex manifolds. However, this does not work. Given two
complex manifolds of dimension 2n, there is no complex manifold of odd dimension
2n + 1 which they could bound. To overcome this problem, the condition of having
a complex structure is weakened.

De�nition 2.3. ([6, Section 5.3]) A stably complex manifold consists of a smooth
manifold M and a real vector bundle isomorphism between a complex vector bundle
ξ overM and τM⊕Rk, where τM is the tangent bundle, and Rk is the k-dimensional
trivial bundle. Two stably complex n-dimensional manifolds (M1, ξ1) and (M2, ξ2) are
complex cobordant if there is a stably complex (n+ 1)-dimensional manifold (W, ζ)
such that ∂W = M1

∐
−M2 and ζ induces ξ1 and ξ2 by identifying the inward normal

bundle with the trivial real one-dimensional bundle on ∂W .

When the type of cobordism is clear from context, the adjectives (like oriented
and complex) will be suppressed.

2.1 Complex cobordism

For a more in-depth coverage of complex cobordism, see [42, 38, 6]. All cohomology
considered in this section will be integral cohomology.
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The algebraic structure of ΩU
∗

The complex cobordism classes can be given a useful algebraic structure. The set
of complex n-dimensional cobordism classes forms a cobordism group under disjoint
union. This group is denoted ΩU

n . The identity of ΩU
2n can be represented by Sn

with its standard stably complex structure, since Sn bounds the disc. The inverse
of a cobordism class [M, ξ] is obtained by taking the same manifold M and giving ξ
the opposite complex structure. More speci�cally, suppose f : τM ⊕ Rk → ξ is the
pertinent isomorphism. Then one can de�ne another isomorphism

f ⊕ c : τM ⊕ Rk ⊕ R2 → ξ ⊕ C

by setting c (x, y) = x − iy, where C is a one-dimensional trivial complex bundle.
This yields the opposite complex structure. If M is a complex manifold, then [M ]
will denote its complex cobordism class with the standard complex structure on the
tangent bundle of M . The cobordism groups can be combined into a graded ring by
using Cartesian product as multiplication. This ring is denoted ΩU

∗ .
It is possible to determine exactly when two stably complex manifolds are cobor-

dant by studying Chern numbers of manifolds. Recall that the Chern class

c (ξ) = c0 (ξ) + c1 (ξ) + . . .

of a vector bundle ξ = (E, π,B) is a cohomology class which satis�es the following
four properties.

1. c0 (ξ) = 1 and ck (ξ) ∈ H2k (B) for all k

2. (naturality) Let f : ξ → ζ be a bundle map. Then c(ξ) = f ∗c(ζ), where f ∗ is
the induced map in cohomology.

3. (Whitney sum formula) c (ξ ⊕ ζ) = c (ξ) · c (ζ)

4. If η is the tautological line bundle over CP 1, then c (η) = 1+c1 (η), where c1 (η)
is the canonical generator of H2 (CP 1).

Refer to [36, 25] for background on vector bundles and characteristic classes. If τM
denotes the tangent bundle of a manifold M , then the Chern class c (τM) is written
c (M) and is called the Chern class of the manifold. Note that Chern classes in the
top cohomology group of a manifold can be evaluated on the fundamental class of the
manifold. Unless otherwise speci�ed, all cohomology will be integral cohomology, so
this operation will assign an integer to a manifold.

De�nition 2.4. Let M be a stably complex 2n-dimensional manifold, and let

I = {i1, . . . , it}

be a partition of a nonnegative integer m ≤ n. Consider the cohomology class
ci1 (M) · · · cit (M) ∈ H2m (M). Evaluating this class on the fundamental class µM
of M gives an integer

〈ci1 (M) · · · cit (M) , µM〉

6



called a Chern number ofM . This Chern number is denoted as ci1 · · · cit [M ] or cI [M ].
Note that cI [M ] is zero unless I is a partition of the integer n itself.

These Chern numbers determine exactly when two manifolds are cobordant.

Theorem 2.5. ([34, 37]) Two stably complex manifolds M2n
1 and M2n

2 are cobordant
if and only all of their Chern numbers are equal, i.e. cI [M1] = cI [M2] for every
partition I of n.

Note that each Chern class has an even degree. This means that manifolds with
odd dimensions have vanishing Chern numbers. Thus ΩU

n = 0 whenever n is odd.
Certain linear combinations of Chern numbers are also useful in describing the

algebraic structure of the cobordism ring ΩU
∗ .

De�nition 2.6. ([36, Section 16]) Two monomials in x1, . . . , xn are called equivalent
if each one can be obtained from the other through a permutation of x1, . . . , xn. Fix
a nonnegative integer k ≤ n, and consider a partition I = {i1, . . . , ij} of k. Consider∑
xi11 x

i2
2 · · ·x

ij
j , where the sum is taken over all distinct monomials that are equivalent

to xi11 · · ·x
ij
j . This is a symmetric polynomial, so it can be written in terms of the

elementary symmetric polynomials. De�ne sI (σ1, . . . , σk) =
∑
xi11 x

i2
2 · · ·x

ij
j to be

this sum of monomials written in terms of the elementary symmetric polynomials
σ1, . . . , σk.

Now consider a manifold M2n. By the splitting principle (see [24, Section 4.4] for
details), its Chern class can be formally written as

c (M) = (1 + x1) · · · (1 + xn) .

Then ck (M) = σk (x1, . . . , xn) is the kth elementary symmetric polynomial. In this
situation, sI (c (M)) = sI (c1 (M) , . . . , ck (M)) is a cohomology class in H∗ (M).
Given the partition I = {n} of n, the characteristic number 〈sI (c (M)) , µM〉 ∈ Z
is called the Milnor number 1 and is denoted sn [M ].

Example 2.7. Consider a manifold M of complex dimension 3 with Chern class

c (M) = (1 + x1) (1 + x2) (1 + x3) .

Consider the partition {3} of 3. This gives the corresponding characteristic class

s3 (c (M)) = x3
1 + x3

2 + x3
3

= (x1 + x2 + x3)3 − 3 (x1 + x2 + x3) (x1x2 + x1x3 + x2x3) + 3x1x2x3.

In terms of Chern classes, this means that

s3 (c (M)) = c1 (M)3 − 3c1 (M) c2 (M) + 3c3 (M) .

The Milnor number s3 [M ] is therefore given by a sum of Chern numbers, namely
s3 [M ] = c3

1 [M ]− 3c1c2 [M ] + 3c3 [M ].
1Although this number appears frequently in the study of complex cobordism, it does not have

a well-established name. Milnor attributes these numbers to Thom [35, Introduction to Part 4], and
Thom in turn attributes them to Pontrjagin [44]. I will call these numbers Milnor numbers because
of Milnor's extensive use of them in his work on cobordism.
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Example 2.8. Consider the smooth projective toric variety CP n for n ≥ 1. Its Chern
class is

c (CP n) = (1 + x)n+1 ∈ H∗ (CP n) ∼= Z [x] /
(
xn+1

)
,

where x is a generator of H2 (CP n) (see [36, Section 14] for details). Then

sn (c (CP n)) = (n+ 1)xn.

Since xn is the generator of H2n (CP n),

sn [CP n] = n+ 1. (2.1.1)

Theorem 2.9. ([37, 44]) The complex cobordism ring is a polynomial ring with one
generator in each even dimension. A cobordism class [M2n] can be chosen for the
polynomial generator αn of ΩU

∗
∼= Z [α1, α2, . . .] if and only if

sn [M ] =

{
±1 if n+ 1 6= pm for any prime p and integer m

±p if n+ 1 = pm for some prime p and integer m.

There are many other useful cobordism invariants that can be written as a linear
combination of Chern classes. Of particular importance in cobordism theory is the
Todd genus. This is an example of a more general object called a multiplicative genus,
which is a ring homomorphism ΩU

∗ → R for some Q-algebra R. These multiplicative
genera can all be constructed from power series that have one as their constant term
(see [24] for details).

De�nition 2.10. ([31, Chapter III Section 11], [23, Section 1.7]) Consider the power
series td (x) = x

1−e−x = 1 + 1
2
x + 1

12
x2 + . . .. Given a stably complex manifold M

of real dimension 2n, formally write its Chern class as c (M) =
n∏
k=1

(1 + xk). Now

consider the symmetric function
n∏
k=1

td (xk). This series can be written in terms of

the elementary symmetric polynomials (i.e. the Chern classes of M) as

n∏
k=1

td (xk) = 1 +
∞∑
k=1

Tdk (c1 (M) , . . . , cn (M)) ,

where each Tdk is a homogeneous polynomial of degree k. For example, one can
compute

Td1 (M) =
1

2
c1 (M)

Td2 (M) =
1

12

(
c1 (M)2 + c2 (M)

)
Td3 (M) =

1

24
c1 (M) c2 (M)
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(see [23, Section 1.7] for more). The cohomology class

1 +
∞∑
k=1

Tdk (c1 (M) , . . . , cn (M)) ∈ H∗ (M)

is denoted Td (M) and is called the Todd class of M . Evaluating the Todd class on
the fundamental class of M yields the Todd genus Td [M ] of M , i.e.

Td [M ] = 〈Td (M) , µM〉 = 〈Tdn (M) , µM〉 .

Representatives of complex cobordism classes

Although the algebraic structure of complex cobordism is well understood, this does
not give much information about individual cobordism classes. More speci�cally, it
can be di�cult to �nd a �convenient� representative of a given cobordism class. There
are still long-standing open problems regarding what types of manifolds can be chosen
to represent a cobordism class. The most well-known is the following question, which
was posed by Hirzebruch in 1958.

Problem 2.11. ([22]) Which complex cobordism classes can be represented by con-
nected smooth algebraic varieties?

Partial answers to this question have been given by considering less speci�c types
of manifolds.

Theorem 2.12. (Milnor, see [42, Chapter VII]) For n > 0, every complex cobordism
class [M ] ∈ ΩU

n can be represented by a smooth not necessarily connected algebraic
variety.

This answers Hirzebruch's question if the connectedness condition is ignored.
Given the cobordism class [M ] ∈ ΩU

n of such a smooth algebraic variety M , one can
take the connected sum of its components to obtain a cobordant variety that is still
smooth, but now is also connected. However, the connected sum operation does not
preserve algebraicity. Therefore, every complex cobordism class of positive dimension
can be represented by a smooth connected not necessarily algebraic manifold.

Because of Theorem 2.5, questions about individual cobordism classes can be
approached by studying the corresponding Chern numbers. While every cobordism
class is uniquely identi�ed by its list of Chern numbers, there is not a cobordism
class that corresponds to every list of integers. The integers which correspond to
the Chern numbers of a cobordism class can be described by using a construction
from K-theory. (Refer to [31] for a good introduction to K-theory which includes the
following material.)

De�nition 2.13. Let ξ be complex n-dimensional vector bundle, and formally write

its Chern class as c (ξ) =
n∏
k=1

(1 + xk). The Chern character of ξ is the rational

cohomology class

chξ = ex1 + . . .+ exn =
n∑
k=1

∞∑
i=0

xik
i!

= n+ c1 (ξ) +
1

2

(
c1 (ξ)2 − 2c2 (ξ)

)
+ . . . .

9



The Chern character is particularly useful because it is additive and multiplicative.

Proposition 2.14. Given two vector bundles ξ and ζ over M , ch (ξ ⊕ ζ) = chξ+chζ
and ch (ξ ⊗ ζ) = chξ · chζ.

Corollary 2.15. The Chern character gives a ring homomorphism

ch : K (M)→ H∗ (M ;Q)

from the K-theory of M to the cohomology of M .

This means that the K-theory of a manifold could reveal information about cer-
tain cohomology classes. For certain choices of virtual bundles in K-theory, this
information regards Chern classes.

De�nition 2.16. ([2]) Let ξ be a vector bundle over a manifold M of dimension

n. Set λt (ξ) =
∞∑
k=0

Λk (ξ) tk, where Λk (ξ) is the kthexterior power of ξ. The Atiyah

γ-functions are de�ned by the equation

λt/(1−t)
(
ξ − Cdim ξ

)
=
∞∑
k=0

γk (ξ) tk

where Cdim ξ is the trivial complex bundle of dimension dim ξ and λt/(1−t)
(
ξ − Cdim ξ

)
is given by

λt/(1−t) (ξ)

λt/(1−t) (Cdim ξ)
.

Now consider some partition ω of some nonnegative integer m ≤ n, and write
γk = γk (τM) for each k. Consider the virtual bundle sω (γ1, . . . , γm), where sω is the
symmetric polynomial de�ned in 2.6. Applying the Chern character to this bundle
yields a cohomology class chsω (γ1, . . . , γm) ∈ H∗ (M).

De�nition 2.17. (compare to [10, Sections 13 and 14]) The K-theory Chern number
κω [M ] of M is found by multiplying the above cohomology class by the Todd class
(see 2.10) and then evaluating on the fundamental class of M , i.e.

κω [M ] = 〈chsω (γ1, . . . , γm) · Td (M) , µM〉 .

Note that κω [M ] is a rational linear combination of the Chern numbers ofM . This
means that it only depends on the cobordism class of [M ] by Theorem 2.5. Hattori
and Stong proved that possible Chern numbers in complex cobordism are completely
determined by when these rational combinations have integer values [20, 41]. The
following statement of their theorem comes from [10, Section 14].

Theorem 2.18 (Hattori-Stong Theorem). Let [M ] ∈ ΩU
2n be an arbitrary complex

cobordism class. For each partition ω of a nonnegative integer m ≤ n, one can
write κω [M ] =

∑
I∈π(n)

βI (ω) cI [M ] as a linear combination of Chern numbers, where

βI (ω) ∈ Q and the sum ranges over the set π (n) of partitions of n. Now consider a
family of integers {bI}I∈π(n). Then cI [M ] = bI are the Chern numbers of a complex

cobordism class if and only if κω [M ] =
∑

I∈π(n)

βI (ω) · bI is an integer for every ω.

10



In practice, computing K-theory Chern numbers can be cumbersome. The fol-
lowing formula provides some assistance.

Proposition 2.19. ([33, Section 2.6]) Let ξ be an n-dimensional bundle over a man-
ifold M . Formally write c (ξ) = (1 + x1) · · · (1 + xn). Then

chγk (ξ) = σk (ex1 − 1, . . . , exn − 1)

where σk is the k
th elementary symmetric polynomial and exi =

∞∑
j=0

xji
j!
.

2.2 Oriented cobordism

Recall that two oriented manifolds M1 and M2 are (oriented) cobordant if and only
if the disjoint union M1

∐
−M2 is the boundary of an oriented manifold of one di-

mension higher. The algebraic structure of the oriented cobordism ring ΩSO
∗ is more

complicated than that of ΩU
∗ (see [42]). However, determining when two manifolds

are oriented cobordant is still fairly straight-forward. As in the complex case, this is
determined by values of certain characteristic numbers on the manifolds (compare to
2.5). Refer to [36, 25] for more in-depth coverage of the following.

Recall that the Stiefel-Whitney class w (ξ) of a vector bundle ξ = (E, π,B) is
a cohomology class with coe�cients modulo Z/2 which satis�es the following four
properties.

1. w0 (ξ) = 1 and wk (ξ) ∈ Hk (B;Z/2) for all k

2. (naturality) Let f : ξ → ζ be a bundle map. Then w(ξ) = f ∗w(ζ).

3. (Whitney sum formula) w (ξ ⊕ ζ) = w (ξ) · w (ζ)

4. If η is the tautological line bundle over RP 1, then w (η) = 1 + w1 (η), where
w1 (η) is nonzero in H1 (RP 1;Z/2) = Z/2

These properties of Stiefel-Whitney classes are very similar to the properties satis�ed
by the Chern classes, and there is a close relationship between these two characteristic
classes.

Theorem 2.20. Let ξ = (E, π,B) be a complex vector bundle, and let ξR denote the
real bundle obtained by ignoring the complex structure. Then c (ξ) 7→ w (ξR) under
the coe�cient map H∗ (B;Z)→ H∗ (B;Z/2). In particular, wk (ξR) = 0 for each odd
k.

De�nition 2.21. Consider a connected orientable closed n-dimensional manifold
M , and let I = {i1, . . . , it} be a partition of n. Consider the cohomology class
wi1 (M) · · ·wit (M) ∈ Hn (M ;Z/2). The number 〈wi1 (M) · · ·wit (M) , µM〉 ∈ Z/2 is
called a Stiefel-Whitney number of M and is denoted as wi1 · · ·wit [M ] or wI [M ].
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The Stiefel-Whitney numbers are not enough to determine when two oriented
manifolds are cobordant. Their Pontrjagin numbers must also be compared. Recall
that the Pontrjagin class p (ξ) of a real vector bundle ξ = (E, π,B) is de�ned to be
p (ξ) = 1 + p1 (ξ) + p2 (ξ) + . . ., where each pk (ξ) ∈ H4k (B;Z) is de�ned in terms of
Chern classes by pk (ξ) = (−1)k c2k (ξ ⊗ C), where ξ ⊗C is the complexi�cation of ξ.
The Pontrjagin class of a complex vector bundle ξ = (E, π,B) can also be de�ned by
considering the corresponding real bundle ξR which ignores the complex structure of
ξ. More speci�cally, for every k,

pk (ξ) = pk (ξR) = (−1)k c2k (ξR ⊗ C) = (−1)k c2k

(
ξ ⊕ ξ

)
,

where ξ is the conjugate bundle. This means that the Pontrjagin class of a complex
vector bundle ξ is given in terms of its Chern class by

∞∑
k=0

(−1)k pk (ξ) = (1− c1 (ξ) + c2 (ξ)− . . .) (1 + c1 (ξ) + c2 (ξ) + . . .) (2.2.1)

(compare to [36, Section 15]).

De�nition 2.22. Consider a smooth compact oriented 4n-dimensional manifold M ,
and let I = {i1, . . . , it} be a partition of n. Consider the cohomology class

pi1 (M) · · · pit (M) ∈ H4n (M ;Z) .

The number 〈pi1 (M) · · · pit (M) , µM〉 ∈ Z is called a Pontrjagin number of M and is
denoted as pi1 · · · pit [M ] or pI [M ].

Theorem 2.23. ([46, Corollary 1]) Two oriented manifolds M1 and M2 are oriented
cobordant if and only if all of their Stiefel-Whitney numbers and Pontrjagin numbers
coincide.

Copyright c© Andrew Wilfong, 2013.
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Chapter 3 Fans, Polytopes, and Toric Varieties

A toric variety is a normal variety that contains the torus as a dense open subset such
that the action of the torus on itself extends to an action on the entire variety. Re-
markably, these varieties are in one-to-one correspondence with objects from convex
geometry called fans. Therefore, studying the combinatorial properties of objects like
fans and polytopes can reveal a great deal of information about the corresponding
toric varieties. This chapter will provide an introduction to these objects and a de-
scription of how fans and polytopes are related to toric varieties. In particular, certain
topological properties of toric varieties will be described in relation to properties of
the corresponding fans. Refer to [11, 16] for a more thorough treatment of this topic.

3.1 Constructing toric varieties from fans

Convex geometric objects called fans can be used as blueprints for constructing toric
varieties. Fans are comprised of objects called cones (see Figure 3.1).

De�nition 3.1. A (strongly convex rational polyhedral) cone σ spanned by generating
rays v1, . . . , vm ∈ Zn is a set of points

σ = pos (v1, . . . , vm) =

{
m∑
k=1

akvk ∈ Rn|ak ≥ 0

}

such that σ does not contain any lines passing through the origin.
The dual cone of σ is σ∨ = {u ∈ Rn|u · v ≥ 0 for all v ∈ σ}.

A cone in Rn can be used to construct an a�ne toric variety (compare to [16]).
To construct the a�ne variety corresponding to a cone σ ∈ Rn, �rst consider the
commutative semigroup Sσ consisting of all lattice points in Zn that are contained
in σ∨. This semigroup in turn determines a C-algebra C [Sσ]. This algebra has a
vector space basis {χv|v ∈ Sσ}, and its multiplicative structure is determined by the
additive structure of Sσ, i.e. χ

v1 ·χv2 = χv1+v2 . One can choose a set of multiplicative

Figure 3.1: A cone (left) along with its dual cone (right)
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generators and write C [Sσ] ∼= C [x1, . . . , xq] /I for some ideal I. The corresponding
a�ne variety is de�ned to be Uσ = V (I), the zero locus of all polynomials in I.

Example 3.2. Consider the cone σ = {0} ∈ Rn. Its dual cone is σ∨ = Rn. The
corresponding semigroup is then Sσ = Zn, which is generated by the standard basis
vectors {±ek}. This de�nes a C-algebra

C [Sσ] = C
[
χe1 , χ−e1 , . . . , χen , χ−en

]
∼= C [x1, x2, . . . , x2n] / (x1x2 − 1, x3x4 − 1, . . . , x2n−1x2n − 1) .

The corresponding a�ne variety Uσ is the zero locus of x1x2−1, . . . , x2n−1x2n−1. But
this is easily seen to be isomorphic to the algebraic torus(C∗)n. Thus the algebraic
torus is the toric variety corresponding to the fan {0}.

Note that every cone contains the cone {0}. This means that any a�ne variety
constructed from a cone will contain the algebraic torus. One can use this result
to prove that the a�ne varieties of all cones are in fact toric varieties (see [11] for
details).

Example 3.3. Consider the cone σ ∈ R2 generated by v1 = (1, 0) and v2 = (−1,−1).
Then σ∨ is generated by the vectors (1,−1) and (0,−1). That is,

σ∨ =
{
a1 (1,−1) + a2 (0,−1) ∈ R2|a1, a2 ≥ 0

}
.

These cones are displayed in Figure 3.1. The corresponding semigroup of lattice
points in Z2 is generated by (1,−1) and (0,−1). Then the C-algebra for this cone is
Sσ = C

[
χ(1,−1), χ(0,−1)

] ∼= C [x, y] = C [x, y] / (0). Then the corresponding a�ne toric
variety Uσ is the zero locus of the polynomial 0, i.e. Uσ ∼= C2.

More general toric varieties can be constructed by gluing together a�ne toric
varieties. On the level of fans, this process can be described by gluing together cones
in a certain manner.

De�nition 3.4. A face of a cone σ spanned by v1, . . . , vm ∈ Zn is a cone lying on the
boundary of σ that is spanned by a subset of {v1, . . . , vm}. The empty set corresponds
to the face {0} of a cone.

A fan Σ in Rn is a set of cones in Rn such that each face of a cone in Σ also
belongs to Σ, and the intersection of any two cones in Σ is a face of each cone.

A fan Σ in Rn is complete if the union of its cones is Rn.
A fan Σ in Rn is regular if every maximal n-dimensional cone of Σ is spanned by

generating rays that form a basis of Zn.

Thus fans are constructed by gluing together multiple cones along their faces,
being careful not to let the cones overlap except along their boundaries. Note that
complete fans can be completely described by listing the sets of generating rays that
span maximal cones. This information can be used to determine all cones of lower
dimension.
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Figure 3.2: The fan corresponding to CP 2

On the level of a�ne toric varieties, each face of a cone corresponds to a subvariety
in the variety de�ned by the larger cone. If a face τ is contained in two cones σ1 and
σ2 of a fan, then the a�ne varieties Uσ1 and Uσ2 of the two cones can be glued together
along the subvariety Uτ associated to τ to produce a toric variety associated to the
fan σ1 ∪ σ2. Again, see [11, 16] for details.

Example 3.5. Consider the complete fan in R2 shown in Figure 3.2 with generating
rays v1 = (1, 0), v2 = (0, 1), and v3 = (−1,−1). The maximal cones are pos (v1, v2),
pos (v1, v3), and pos (v2, v3). As in Example 3.3, each of these two-dimensional cones
corresponds to C2. It is also easy to see that each one-dimensional cone corre-
sponds to C × C∗. Gluing together the complex planes along the varieties C × C∗
produces CP 2. More speci�cally, one can write CP 2 = U0 ∪ U1 ∪ U2 where each
Ui = {[z0 : z1 : z2] ∈ CP 2|zi 6= 0} is isomorphic to C2 and corresponds to one of the
maximal cones of the fan. The intersections of the Ui correspond to the intersections
of the cones in the fan.

This construction demonstrates that every fan de�nes a corresponding toric vari-
ety. In fact, the converse is also true.

Theorem 3.6. ([11, Section 3.1]) There is a bijective correspondence between equiva-
lence classes of fans in Rn under unimodular transformations and isomorphism classes
of complex n-dimensional toric varieties.

The fan corresponding to a variety X will be denoted ΣX , and the variety corre-
sponding to a fan Σ will be denoted XΣ. This bijection can be proven by examining
the orbits of a toric variety under the torus action. There is a bijective correspondence
between these orbits and the cones of the associated fan.

Theorem 3.7. ([11, Section 3.2]) Consider a fan Σ in Rn and its associated complex-
dimension n toric variety XΣ. Every orbit of the torus action on XΣ corresponds to a

15



distinct cone in Σ. If such an orbit is a k-dimensional torus, then the corresponding
cone will have dimension n− k.

As a result of this correspondence between fans and toric varieties, many of the
algebraic properties of toric varieties directly correspond to properties of the associ-
ated fans. Three such properties that will be particularly important in what follows
are compactness, smoothness, and isomorphism of varieties.

Proposition 3.8. ([29]) Consider a fan Σ in Rn.
The toric variety XΣ is compact if and only if Σ is a complete fan.
The variety is smooth if and only if Σ is regular.
The variety XΣ is isomorphic to the variety XΣ′ if and only if there is a unimodular

transformation Zn → Zn which maps Σ into Σ′ and preserves the simplicial structure
of the fans.

If such a unimodular transformation exists, then Σ and Σ′ will be called isomorphic
fans.

3.2 Polytopes

A special class of toric varieties can be constructed from certain polytopes. The
following material can be found in [6, 16]. For a more in-depth treatment of polytopes
and toric varieties, refer to [11, 14, 47, 19].

Constructing toric varieties from polytopes

De�nition 3.9. A (convex) polytope P in Rn is the convex hull of a �nite set of
points in Rn.

Let H be a hyperplane in Rn, and suppose the a�ne hull of H ∩P has dimension
k. If all of P is contained in one of the closed half-spaces de�ned by H, then H ∩ P
is called a face of P of dimension k. Faces of dimension zero are called vertices,
one-dimensional faces are edges, and (n− 1)-dimensional faces are called facets.

A lattice polytope is a polytope whose vertices lie in Zn.

All of the polytopes in this dissertation will be full-dimensional. That is, the a�ne
hull of the vertices of a polytope in Rn will always be Rn itself.

A lattice polytope P in Rn can be used to construct a fan ΣP called the normal
fan to P (see Figure 3.3). This is done by choosing a vector for each facet of P
that is normal to the facet pointing inwards. Because P is a lattice polytope, these
vectors can be chosen to belong to Zn. Reposition these normal vectors at the origin
to produce the generating rays of the normal fan ΣP . The cones of ΣP are determined
from the simplicial structure of the polytope. More precisely, a set of generating rays
spans a cone in the fan if and only if the intersection of the corresponding facets in P
is nonempty. As a result, cones of dimension k in ΣP correspond to faces of dimension
n − k in P . In particular, the vertices of P determine the maximal n-dimensional
cones of ΣP .
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Figure 3.3: The polytope and associated normal fan that correspond to CP 2

Since each fan in Rn determines a complex n-dimensional toric variety, each lattice
polytope P in Rn also has an associated n-dimensional toric variety XP . However,
not all toric varieties correspond to polytopes.

Proposition 3.10. X is a projective toric variety if and only if it corresponds to the
normal fan of some lattice polytope.

Some properties of projective toric varieties can easily be described in terms of
the associated polytopes.

Proposition 3.11. The toric variety XP associated to the lattice polytope P in Rn

is smooth if and only if n edges meet at every vertex of P , and the n edges emanating
from each vertex de�ne a basis of Zn. These polytopes are called smooth polytopes.

The g-theorem

The combinatorial structure of a polytope is given by its face poset, the partially
ordered set of faces of the polytope under inclusion.

De�nition 3.12. Two polytopes are combinatorially equivalent if there is a bijection
between their faces that preserves inclusion. A combinatorial polytope is an equiva-
lence class of combinatorially equivalent polytopes.

The combinatorial structure of polytopes reveals a considerable amount of infor-
mation about the topology of the associated projective toric varieties. In fact, a great
deal of information can be extracted simply by counting the number of faces in each
dimension. One can refer to [6] or most standard texts on polytopes for more details
on the following.

De�nition 3.13. A simple polytope P in Rn is a polytope in which exactly n facets
meet at every vertex. Equivalently, P is simple if exactly n edges meet at every
vertex.

The f -vector, or face vector, of a simple polytope P in Rn is f (P ) = (f0, . . . , fn−1),
where fk is the number of faces of dimension n− k − 1 in P .
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Also de�ne f−1 = 1 to account for the interior of a simple polytope. Note that fk
counts the faces of codimension k + 1. For example, f0 is the number of facets of P
and fn−1 is the number of vertices of P . It is often more convenient to study di�erent
vectors that capture the same information about the number of faces of a polytope
in a di�erent way.

De�nition 3.14. The h-vector h (P ) = (h0, . . . , hn) of an n-dimensional simple poly-
tope P is de�ned by the following equation.

n∑
k=0

hkt
n−k =

n∑
k=0

fk−1 (t− 1)n−k

Note in particular that h0 = f−1 = 1. This de�nition can be used to derive the
following useful formulas.

Proposition 3.15. Let P be a simple n-polytope with f -vector (f0, . . . , fn−1) and
h-vector (h0, . . . , hn). Then for k = 0, . . . , n,

hk =
k∑
i=0

(−1)k−i
(
n− i
n− k

)
fi−1 and fn−1−k =

n∑
q=k

(
q

k

)
hn−q. (3.2.1)

There are several advantages to using this h-vector to describe the faces of a poly-
tope instead of the f -vector. For example, the h-vector has a geometric interpretation
that will be useful. Let P be a simple polytope in Rn. Choose a vector ν that is not
perpendicular to any edge of P . This vector de�nes a directed graph on the vertices
and edges on P . More speci�cally, choose the direction of an edge e so that v · e > 0.
De�ne the index of a vertex to be the number of edges pointing towards the vertex.

Proposition 3.16. ([6, Proof of Theorem 1.20]) Given P and ν as described above,
the number of vertices of P with index q is equal to hn−q. In particular, this number
is independent of the choice of ν.

Proof. Given a face F of P , the directed graph on the edges of P induces a directed
graph on the edges of F . The graph determined by F has exactly one sink (highest
vertex in relation to ν). Fix an integer k such that 0 ≤ k ≤ n and let q be an arbitrary
integer such that k ≤ q ≤ n. Now consider a vertex v of P with index q. Each set
of k edges out of the q that are directed towards v de�nes a k-dimensional face of P ,
and each of these faces has v as the sink of the corresponding graph. Thus there are(
q
k

)
-many distinct k-dimensional faces whose graph has v as the sink. This is true

for each vertex of index q, and all of these k-dimensional faces are distinct since the
corresponding graphs have a unique sink. Thus the number of k-dimensional faces of
P is given by the formula

fn−k−1 =
n∑
q=k

(
q

k

)
Iν (q)

where Iν (q) denotes the number of vertices of P with index q. Comparing to (3.2.1)
proves that Iν (q) = hn−q.
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Another advantage of using the h-vector instead of the f -vector is that it is sym-
metric for simple polytopes.

Theorem 3.17 (Dehn-Sommerville relations). The h-vector of an n-dimensional sim-
ple polytope satis�es the relations hk = hn−k for k = 0, . . . , n.

This means that all of the information about the number of face vectors of a simple
polytope is actually contained in just the �rst half of its h-vector. This information
can be written more compactly in terms of the g-vector.

De�nition 3.18. The g-vector g (P ) =
(
g0, g1, . . . , gbn/2c

)
is given by g0 = 1 and

gk = hk − hk−1 for k = 1, . . . ,
⌊
n
2

⌋
.

Note that the f -, g-, and h-vectors are di�erent ways of expressing the exact same
information about a simple polytope, namely how many faces of each dimension the
polytope contains.

Example 3.19. The n-dimensional simplex ∆n is the convex hull of the origin and
the n standard basis vectors in Rn. Note that any k vertices of ∆n form a face of
∆n which is itself combinatorially equivalent to a (k − 1)-dimensional simplex. This
means that f (∆n) =

((
n+1
n

)
,
(
n+1
n−1

)
, . . . ,

(
n+1

1

))
. In particular,

fn−k−1 (∆n) =

(
n+ 1

k + 1

)
=

(
n

k

)
+

(
n

k + 1

)
=

(
n

k

)
+

(
n− 1

k

)
+

(
n− 1

k + 1

)
=
...

=
n∑
q=k

(
q

k

)
.

Comparing this with (3.2.1) proves that h (∆n) = (1, 1, . . . , 1). Then by De�nition
3.18, g (∆n) = (1, 0, . . . , 0).

It is clear that the normal fan to ∆n has generating rays e1, . . . , en, (−1, . . . ,−1),

where ek is the k
th standard basis vector. The smooth projective toric variety corre-

sponding to the polytope ∆n is therefore CP n (compare to Example 3.5).

A natural question to ask about polytopes is how many faces of di�erent dimen-
sions a polytope can have. In other words, describe all vectors that are the f -vectors
(or g- or h-vectors) of polytopes. This classi�cation question has been answered for
simple polytopes with what is known as the g-theorem. This theorem describes a
set of g-vectors satisfying certain conditions and states that these are exactly the
g-vectors that correspond to simple polytopes. Billera and Lee [4] constructed sim-
ple polytopes for each of the g-vectors which satisfy the conditions, and Stanley [39]
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proved that these are the only g-vectors that could possibly correspond to a simple
polytope.

Some additional notation is necessary to state the g-theorem (see [6, Section 1.3]
for details). Let a and i be two positive integers. Then there is a unique binomial
i-expansion

a =

(
ai
i

)
+

(
ai−1

i− 1

)
+ . . .+

(
aj
j

)
such that 1 ≤ j ≤ aj ≤ . . . ≤ ai−1 ≤ ai. Given this expansion, de�ne the integer

a〈i〉 =

(
ai + 1

i+ 1

)
+

(
ai−1 + 1

i

)
+ . . .+

(
aj + 1

j + 1

)
and 0〈i〉 = 0.

Theorem 3.20. (g-theorem) An integer vector
(
g0, g1, . . . , gbn/2c

)
is the g-vector of

a simple n-dimensional polytope if and only if

g0 = 1, g1 ≥ 0, and 0 ≤ gk+1 ≤ g
〈k〉
k for k = 1, . . . ,

⌊n
2

⌋
− 1.

Example 3.21. Suppose n = 3. Then the only conditions provided by the g-theorem
are g0 = 1 and g1 ≥ 0. Thus the g-vectors that correspond to simple polytopes in R3

are those of the form (1, g1) where g1 ≥ 0.
Now suppose n = 4. Simple polytopes in this dimension are characterized by

g-vectors (g0, g1, g2). The g-theorem provides three conditions in this dimension. The
simple four-dimensional polytopes obtain exactly the g-vectors satisfying these three
conditions. Using the fact that g

〈1〉
1 =

(
g1+1

2

)
, one can write these conditions as follows.

1. g0 = 1

2. g1 ≥ 0

3. 0 ≤ g2 ≤ 1
2
g1 (g1 + 1)

3.3 Kleinschmidt's varieties

Generally speaking, very few classi�cation results exist for fans, polytopes, or toric va-
rieties. One exception to this is the classi�cation of fans with relatively few generating
rays.

Proposition 3.22. Up to isomorphism, there is only one complete regular fan in
Rn with (n+ 1)-many generating rays. The toric variety corresponding to this fan is
CP n.

Proof. Suppose Σ is a complete regular fan in Rn with generating rays v1, . . . , vn+1.
Without loss of generality, assume that pos (v1, . . . , vn) is a maximal cone of Σ. Con-
sider the unimodular transformation that sends each of these rays to the standard
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basis vectors of Rn, i.e. vk 7→ ek for k = 1, . . . , n. In order for the fan to be com-
plete, the other maximal cones in the image of Σ under this transformation must be
spanned by n − 1 of the standard basis vectors and the image of vn+1. But because
the fan is regular and complete, the only possibility for the value of the image of vn+1

is (−1, . . . ,−1). Then Σ is isomorphic to the fan with generating rays u1, . . . un+1

where uk = ek for k = 1, . . . , n and un+1 = (−1, . . . ,−1). The maximal cones of this
fan consist of all spans of subsets of n-many of these rays. By applying the same
approach as in Example 3.5, it is easy to see that the toric variety corresponding to
this fan is CP n.

Classifying complete regular fans in Rn with n + 2 generating rays is already
signi�cantly more complicated. This classi�cation was described in 1988 by Peter
Kleinschmidt [29]. His results build on the earlier classi�cation of simple polytopes
with n+ 2 facets (see [19, Section 6.1], which classi�es the dual simplicial polytopes
with n+ 2 vertices). Kleinschmidt created a list of fans in Rn with n+ 2 generating
rays so that any such fan would be isomorphic to a member of the list.

To describe these fans, �x a dimension n ≥ 2. Choose r ∈ {1, 2, . . . , n− 1}
and select a weakly increasing set of integers 0 ≤ a1 ≤ . . . ≤ ar. Now de�ne two
sets of vectors U = {u1, . . . , ur+1} and V = {v1, . . . , vn−r+1}, where uk = ek for

k = 1, . . . , r; ur+1 =
(
−1, (r). . .,−1, 0 . . . , 0

)
; vk = ek+r for k = 1, . . . , n − r; and

vn−r+1 = (a1, . . . , ar,−1, . . . ,−1). Note that there are n+ 2 vectors in U ∪ V . De�ne
Σn (a1, . . . , ar) to be the fan whose generating rays are those in U∪V , and its maximal
cones consist of the spans of all sets of vectors consisting of r vectors from U and
n− r vectors from V . Denote the corresponding toric variety by Xn (a1, . . . , ar).

Example 3.23. Consider the fan Σ3 (0, 0) in R3. Since r = 2, the set of generating
rays is U ∪ V = {u1, u2, u3} ∪ {v1, v2}, where u1 = e1, u2 = e2, u3 = (−1,−1, 0),
v1 = e3, and v2 = (0, 0,−1). The fan that is obtained is the product of the fans
corresponding to CP 1 and CP 2, so it is not surprising that X3 (0, 0) ∼= CP 1 × CP 2.

Consider the fan Σ4 (1) in R4. The set of generating rays for the fan is

U ∪ V = {u1, u2} ∪ {v1, v2, v3, v4}

as shown in Figure 3.4. The fan can be visualized as the join of the fans of u-vectors
and v-vectors. That is, a maximal cone in Σ4 (1) is obtained by taking the combined
span of a maximal cone in the left fan in Figure 3.4 and a maximal cone in the right
fan. One can show that the corresponding toric variety X4 (1) is a CP 1-bundle over
CP 3.

Theorem 3.24. ([29]) Every compact smooth n-dimensional complex toric variety
whose corresponding fan has n+ 2 generating rays is isomorphic to exactly one of the
varieties Xn (a1, . . . , ar).

In fact, all of the fans Σn (a1, . . . , ar) are normal fans to some polytopes in Rn.
Applying 3.10 yields the following

Theorem 3.25. ([29]) The toric varieties Xn (a1, . . . , ar) are all projective.
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Figure 3.4: The fan Σ4 (1)

3.4 Cohomology of smooth toric varieties

Danilov [12] and Jurkiewicz [28] have computed the integral cohomology of smooth
toric varieties by using information from the fans. Refer to [6, 11, 16] for a more
thorough treatment of the cohomology of smooth toric varieties.

Consider a complete regular fan Σ in Rn with generating rays v1, . . . , vm. Each of
the rays vk is a one-dimensional cone in Σ which corresponds to a codimension two
subvariety Xk of XΣ. Each of these subvarieties determines a cohomology class in
H2 (XΣ) by taking the image of the fundamental class [Xk] of Xk under the compo-
sition

H2n−2 (Xk) ↪→ H2n−2 (XΣ)→ H2 (XΣ) ,

where the �rst map is induced from inclusion and the second is Poincaré duality.
Denote the cohomology class in H2 (XΣ) corresponding to the ray vk by vk as well.
It will be clear from context what the meaning of vk is.

The cohomology ring H∗ (XΣ) is isomorphic to the ring Z [v1, . . . , vm] /I, where I
is an ideal which is determined by the geometry and combinatorial structure of Σ.
More speci�cally, suppose that the coordinates of the generating rays are given by
vj = (λ1j, . . . , λnj). For i = 1, . . . , n, set θi = λi1v1 + . . . + λimvm ∈ Z [v1, . . . , vm].
De�ne L = (θ1, . . . , θn) to be the ideal generated by these linear polynomials. Also,
de�ne J to be the ideal generated by all square-free monomials vi1 · · · vik such that
vi1 , . . . , vik do not span a cone in Σ. This ideal is the Stanley-Reisner ideal of Σ.

Theorem 3.26. ([12, 28]) Given a complete regular fan Σ in Rn with generating rays
v1, . . . , vm, the integral cohomology ring of the associated toric variety XΣ is given by

H∗ (XΣ) ∼= Z [v1, . . . , vm] / (L+ J) .

Example 3.27. Consider the fan Σ in Rn associated to the toric variety CP n. As
in Example 3.5, the generating rays of the fan are vk = ek for k = 1, . . . , n and
vn+1 = (−1, . . . ,−1). Applying Theorem 3.26 should yield the well-known result
H∗ (XΣ) ∼= Z [x] / (xn+1). The linear ideal L consists of all θi = vi − vn+1. The only
subset of {v1, . . . , vn+1} that does not span a cone in Σ is {v1, . . . , vn+1} itself, so
the Stanley-Reisner ideal for Σ is J = (v1 · · · vn+1). The cohomology ring of XΣ is
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Z [v1, . . . , vn+1] / (L+ J). The relations in L imply that vi = vn+1 for i = 1, . . . , n, so
J = (v1 · · · vn+1) =

(
vn+1
n+1

)
. Then H∗ (XΣ) ∼= Z [vn+1] /

(
vn+1
n+1

)
as expected.

Example 3.28. Consider the fan Σ3 (a1, a2) for some integers 0 ≤ a1 ≤ a2 (see
Section 3.3). This fan in R3 has generating rays u1 = e1, u2 = e2, u3 = (−1,−1, 0),
v1 = e3, and v2 = (a1, a2,−1). The linear ideal L is given by

L = (u1 − u3 + a1v2, u2 − u3 + a2v2, v1 − v2) .

The Stanley-Reisner ideal is J = (u1u2u3, v1v2). Combining these yields the ideal
L + J = (u3

3 − (a1 + a2)u2
3v2, v

2
2). Thus the cohomology ring of the corresponding

smooth projective toric variety is given by

H∗ (X3 (a1, a2)) ∼= Z [u3, v2] /
(
u3

3 − (a1 + a2)u2
3v2, v

2
2

)
.

An understanding of the cohomology of smooth toric varieties allows certain char-
acteristic numbers to be evaluated which play a key role in describing the cobordism of
smooth toric varieties. In fact, evaluating cohomology classes associated to maximal
cones on the fundamental class of a toric variety is straight-forward.

Proposition 3.29. ([16, Section 5.1]) Suppose pos (v1, . . . , vn) is a maximal cone of a
complete regular fan Σ in Rn. Let vk ∈ H2 (XΣ) also denote the associated cohomology
class of the generator. Then evaluating v1 · · · vn ∈ H2n (XΣ) on the fundamental class
µXΣ

of the variety yields one, i.e.

〈v1 · · · vn, µXΣ
〉 = 1.

The Chern class of a smooth toric variety can also be computed using combinato-
rial data. The complex structure of a smooth toric variety leads to a stable splitting
of its tangent bundle, and this splitting is encoded in the fan associated to a toric
variety.

Theorem 3.30. (see [6, Section 5.3] for details) Given a complete regular fan Σ in
Rn with generating rays v1, . . . , vm, the total Chern class of XΣ is given by

c (XΣ) = (1 + v1) (1 + v2) · · · (1 + vm) ∈ H∗ (XΣ) .

3.5 Equivariant blow-ups

It will prove useful to explore operations on smooth projective toric varieties that
produce new smooth projective toric varieties. One such operation is the equivariant
blow-up.

Geometric description of blow-ups

A more detailed explanation of this construction can be found in Chapter 1 Section
4 of [18].
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De�nition 3.31. Consider the unit disc D ⊂ Cn. The blow-up of D at the origin
is Bl0D = {(z, L) ∈ D × CP n−1|ziLj = zjLi for all i, j}, where the zi are complex
coordinates of D, and the Li are homogeneous coordinates in CP n−1.

It is easy to show that Bl0D = {(z, L) ∈ D × CP n−1|z ∈ L}, where L ∈ CP n−1

is viewed as a line through the origin in Cn. With this interpretation of Bl0D, the
projection π : Bl0D → D onto the �rst coordinate is an isomorphism away from the
origin, and π−1 (0) ∼= CP n−1.

De�nition 3.32. Given a complex manifold M2n, the blow-up of M at x ∈ M ,
denoted BlxM , is found by applying the above construction locally to a neighborhood
of x. There is a projection π : BlxM →M that is an isomorphism away from x, and
π−1 (x) ∼= CP n−1.

This construction of blowing up points can be generalized to blowing up subman-
ifolds of higher dimension. It is again su�cient to understand how to blow up a
subdisc of the unit disc in Cn. This process can then be applied locally on a manifold
(see [18, Chapter 4 Section 6] for details).

De�nition 3.33. Let D ⊂ Cn be the unit disc. Let

V = {(z1, . . . , zn) ∈ D|zk+1 = . . . = zn = 0} .

Consider CP n−k−1 with homogeneous coordinates [Lk+1 : . . . : Ln]. The blow-up of D
along the submanifold V is

BlVD =
{

(z, L) ∈ D × CP n−k−1|ziLj = zjLi for i, j = k + 1, . . . , n
}
.

Now consider a complex manifold M2n with submanifold V 2k. As in the case of
blowing up at a point, there is a projection BlVM →M that is an isomorphism away
from V , and π−1 (v) ∼= CP n−k−1 for any v ∈ V .

Blow-ups of toric varieties

In some circumstances, blowing up along a subvariety of a toric variety produces
another toric variety. This happens when the subvariety that is being blown up is
an orbit of the torus action. Since the torus orbits correspond to the cones in the
associated fan (see Theorem 3.7), the operation of blowing up on toric varieties can
be described in terms of changes to the fans.

Example 3.34. ([16]) Consider Bl0C2, the blow-up of the complex plane at the
origin. This variety is given explicitly by

Bl0C2 =
{

(z0, z1)× [L0 : L1] ∈ C2 × CP 1|z0L1 = z1L0

}
.

One can write Bl0C2 = W0 ∪W1 where

Wi =
{

(z0, z1)× [L0 : L1] ∈ C2 × CP 1|z0L1 = z1L0 and Li 6= 0
}
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Figure 3.5: The fan associated to Bl0C2

for i = 1, 2. Then each Wi is isomorphic to C2. More speci�cally, the isomorphism

φ0 : W0 → C2 is given by (z0, z1) × [L0 : L1] 7→
(
z0,

L1

L0

)
, and φ1 : W1 → C2 is

given by (z0, z1)× [L0 : L1] 7→
(
L0

L1
, z1

)
. The intersection of these two subvarieties is

φ0 (W0) ∩ φ1 (W1) = {(z0, z1) ∈ C2|z0z1 = 1} ∼= C× C∗.
Next consider the fan Σ shown in Figure 3.5 with maximal cones σ1 = pos (v1, w)

and σ2 = pos (v2, w). The procedure in Section 3.1 can be used to �nd the toric
variety associated to this fan.

The corresponding C-algebras are C [Sσ1 ] = C
[
χ(0,1), χ(1,−1)

] ∼= C [y, xy−1] and

C [Sσ1 ] = C
[
χ(−1,1), χ(1,0)

] ∼= C [x−1y, x]. Then the a�ne varieties are U0
∼= U1

∼= C2

with intersection U0 ∩ U1 = {(z0, z1) ∈ C2|z0z1 = 1} ∼= C× C∗. Note that the way in
which U0 and U1 are glued together is exactly the same as the manner in which W0

and W1 are glued together. Thus the toric variety XΣ is isomorphic to the blow-up
Bl0C2.

A similar procedure can be used to show that for any n ∈ N, Bl0Cn ∼= XΣ, where
Σ is the fan in Rn with generating rays vk = ek, k = 1, . . . , n and w = (1, . . . , 1)
and maximal cones spanned by w and all but one of the vk. In particular, the fan
Σ corresponding to the blow-up can be obtained from the fan associated with Cn by
inserting the generating ray w = v1 + . . .+ vn.

This process can be generalized to other fans. In general, consider a fan Σ in
Rn which contains an n-dimensional cone σ = pos (v1, . . . , vn). Construct a new
fan BlσΣ by inserting a new ray w = v1 + . . . + vn and replacing the cone σ with
all cones spanned by w and all but one of the v1, . . . , vn. There is a unimodular
transformation of BlσΣ that maps these cones to the fan associated with Bl0Cn. Also
note that no cones outside of σ were altered by the inclusion of w. This means that
the associated variety XBlσΣ is actually the blow-up of XΣ at the torus-�xed point of
XΣ corresponding to σ. This operation can be extended to describing blow-ups along
torus-�xed subvarieties of higher dimension.

De�nition 3.35. ([11, Section 3.3]) Suppose Σ is a fan in Rn. Let τ = pos (v1, . . . , vk)
be a cone in Σ for which all cones containing τ are regular (i.e. their generating rays
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Figure 3.6: Truncation of a polytope at a vertex

form bases for Zn). Set w = v1 + . . .+vk. The fan BlτΣ is constructed by including w
in the set of generating rays. The maximal cones of BlτΣ are obtained by replacing
every maximal σ of Σ that contains τ with k-many new maximal cones. Each of these
new cones is spanned by w, (k − 1)-many of the rays v1, . . . , vk, and all of the rays
spanning σ but not τ . The fan BlτΣ is called the star subdivision of Σ relative to τ .

Proposition 3.36. ([11, Section 3.3]) Let Σ be a fan in Rn. Let τ = pos (v1, . . . , vk)
be a cone in Σ for which all cones containing τ are regular. Let Xτ denote the
(n− k)-dimensional toric subvariety of XΣ which is associated to the cone τ . Then
XBlτΣ = BlXτXΣ. That is, the blow-up of XΣ along the subvariety Xτ is a toric
variety whose associated fan is the star subdivision of Σ relative to τ .

The operation of blowing up along torus equivariant subvarieties preserves several
key properties of toric varieties. For example, the blow-up of a smooth projective
toric variety is itself smooth and projective. To understand why this is true, recall
that a toric variety is smooth and projective if and only if its associated fan is the
normal fan to a smooth polytope (See Propositions 3.11 and 3.10). The operation of
blowing up can be understood in terms of changes to these polytopes.

Example 3.37. Consider the smooth projective toric variety XΣ = CP 2 (see Ex-
ample 3.5). The associated fan Σ is normal to the smooth polytope in R2 shown
on the left in Figure 3.6. Let σ = pos (v1, v2) in the normal fan Σ, where vk = ek.
Then σ corresponds to the vertex v of the polytope (as shown in the �gure), and v1

and v2 correspond to the two edges F1 and F2 meeting at this vertex. Now consider
what happens when CP 2 is blown up at the torus-�xed point corresponding to σ. To
create the new fan BlσΣ, σ is removed. In the corresponding polytope P , the vertex
v must be removed. The cones that are added to create BlσΣ consist of a new ray
w = (1, 1) and two new maximal cones pos (v1, w) and pos (v2, w). In terms of the
polytope, a new edge Fw must be inserted which meets each of F1 and F2 at a new
vertex. The resulting polytope on the right in Figure 3.6 is the polytope associated
to the equivariant blow-up of CP 2 at a point.
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This example can be generalized to higher dimensions. A polytope P in Rn can
be truncated at an (n− k)-dimensional facet F by choosing a hyperplane that passes
through P and separates F from all vertices of P that are not contained in F . The
truncated polytope is the intersection of P and the half-space that does not contain
F . It is easy to see that the simplicial structure of this new polytope matches the
simplicial structure obtained from subdividing the cone associated to F in the normal
fan. In fact, if P is smooth, then one can choose the hyperplane and dilate the new
polytope so that the truncated polytope is also smooth.

Proposition 3.38. Let XΣ be a smooth projective toric variety whose associated
fan Σ is the normal fan to a smooth polytope P in Rn. Suppose τ is a cone in Σ
corresponding to a facet F of P . Then XBlτΣ is a smooth projective toric variety
whose associated polytope is obtained by truncating P at F .

De�ne the g-vector of a smooth projective toric variety to be the g-vector of its
associated polytope. Since blowing up changes the associated polytopes in predictable
ways, one can study the change in the g-vector of smooth projective toric varieties
during a blow-up. For example, the following theorem describes the change in g-vector
for blow-ups of low-dimensional subvarieties.

Theorem 3.39. Let XP be a smooth projective toric variety with corresponding poly-
tope P in Rn. Suppose the g-vector of XP is given by

(
1, g1, . . . , gbn/2c

)
.

1. The g-vector of a blow-up of XP at any torus-�xed point is(
1, g1 + 1, g2, g3, . . . , gbn/2c

)
.

2. Assume the real dimension of XP is at least six. Suppose BlXFXP is the blow-
up of XP along a two-dimensional subvariety corresponding to an edge F of P .
Then the g-vector of BlXFXP is given by

(
1, g1 + 1, g2 + 1, g3, g4, . . . , gbn/2c

)
.

Proof. Suppose h (P ) = (1, h1, h2, . . . , hn−1, 1).
First consider a blow-up at a torus-�xed point. This corresponds to truncat-

ing P ⊂ Rn at one of its vertices, call it v. The resulting truncated polytope is
obtained by replacing this vertex with an (n− 1)-dimensional polytope which is com-
binatorially equivalent to ∆n−1, connecting each edge emanating from the original
vertex to a distinct vertex of the simplex. Choose a vector ν ⊂ Rn that is both
not perpendicular to ∆n−1 and that makes v the source of the directed graph de-
scribed in Proposition 3.16. The truncation removes v, which decreases h0 = 1 by
one. The truncation also adds n new vertices with the insertion of ∆n−1. Since
the h-vector of ∆n−1 is

(
1, (n). . ., 1

)
(see Example 3.19), the addition of ∆n−1 in-

creases h0, . . . , hn−1 each by one. Then the h-vector of the truncated polytope is
(1, h1 + 1, h2 + 1, . . . , hn−1 + 1, 1). If g (P ) =

(
1, g1, . . . , gbn/2c

)
, then the g-vector of

the truncated polytope is
(
1, g1 + 1, g2, g3, . . . gbn/2c

)
by De�nition 3.18.

Next consider a blow-up along a two-dimensional subvariety. This corresponds
to truncating P ⊂ Rn at the associated edge F. The resulting truncated polytope
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is obtained by replacing F with ∆n−2 × I. This time, choose a vector ν ⊂ Rn that
is perpendicular to neither ∆n−2 × {0} nor ∆n−2 × {1} and that gives the vertices
of F index zero and one, respectively, in the corresponding directed graph. Note
that truncating P at F decreases both h0 and h1 by one. It is easy to show that

h (∆n−2 × I) =
(

1, 2, (n−2). . . , 2, 1
)
. Then the inclusion of ∆n−2 × I increases h0 and

hn−1 by one, and it increases h1, . . . , hn−2 by two. Then the h-vector of the truncated
polytope is (1, h1 + 1, h2 + 2, h3 + 2, . . . , hn−2 + 2, hn−1 + 1, 1). Then the g-vector of
the truncated polytope is

(
1, g1 + 1, g2 + 1, g3, g4, . . . , gbn/2c

)
by De�nition 3.18.

The change in complex cobordism during a blow-up can also be described. Since
a blow-up results in a local change on a manifold, it is not surprising that the change
in cobordism during a blow-up only depends on the part of the manifold that is being
blown up. The following proposition follows from a calculation of Ustinovsky [45]
(see [6, 21] for details as well).

Proposition 3.40. Consider a cone τ in a regular fan Σ in Rn. The change in
cobordism class when blowing up the toric variety XΣ along Xτ to obtain BlXτXΣ is
completely independent of all rays of Σ that do not belong to a cone containing τ .

Copyright c© Andrew Wilfong, 2013.
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Chapter 4 Toric Varieties Representing Complex Cobordism

Toric varieties and complex cobordism interact in several interesting ways. Most
importantly, there is a set of smooth projective toric varieties which multiplicatively
generates ΩU

∗ . By taking the connected sums of these, one can show that any complex
cobordism class can be represented by a topological generalization of a toric variety
called a quasitoric manifold [5, 7]. Unfortunately, taking connected sums of toric va-
rieties does not preserve algebraicity. This property is sacri�ced in order to represent
every cobordism class with a quasitoric manifold.

Recall that an open problem of Hirzebruch is to �gure out which complex cobor-
dism classes can be represented by smooth connected algebraic varieties (see Problem
2.11). The combinatorial structure of toric varieties makes them very convenient to
work with. This combinatorial structure could be exploited to approach a toric ver-
sion of Hirzebruch's problem and to give a partial answer, since smooth toric varieties
are connected and algebraic.

Problem 4.1. Which complex cobordism classes can be represented by smooth pro-
jective toric varieties?

4.1 Combinatorial obstructions

One well-known obstruction to a cobordism class containing a smooth toric variety is
the Todd genus. For any smooth compact toric variety, the value of this genus is one
[27, Theorem 3.3]. The contrapositive provides the following

Proposition 4.2. Any cobordism class whose Todd genus is not one is not represented
by a smooth projective toric variety.

This is just one of a list of obstructions to a cobordism class containing a smooth
toric variety that correspond to the combinatorial structure of toric varieties. In
fact, this obstruction arises from the Hodge structure of a toric variety, and further
examination of this structure leads to the other obstructions. As a Kähler manifold,
a complex smooth projective toric variety X has a Hodge structure, a decomposition

Hr (X;C) ∼=
⊕
p+q=r

Hp,q (X)

of its complex cohomology groups (see [18, Chapter 0 Section 7] for details). The
Hodge numbers of such a variety X are de�ned by hp,q = hp,q (X) = dimHp,q (X).
For smooth projective toric varieties, the Hodge numbers are determined by the h-
vector of the associated polytope.

Proposition 4.3. ([11, Section 9.4]) Let XP be a smooth projective toric variety
of real dimension 2n, and let h (P ) = (h0, . . . , hn) be the h-vector of the associated
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polytope. Then the Hodge numbers of XP are given by

hp,q =

{
hp if q = p

0 if q 6= p
.

There is another way of encoding these Hodge numbers which happens to relate
the Hodge structure to complex cobordism.

De�nition 4.4. ([24, Section 5.4]) Given a complex smooth projective variety X of

complex dimension n, set χp (X) =
n∑
q=0

(−1)q hp,q (X). The χy-genus of X is de�ned

to be the degree n polynomial

χy (X) =
n∑
p=0

χp (X) · yp. (4.1.1)

The χy-genus displays several symmetries that arise from the underlying Hodge
structure. Most importantly,

Proposition 4.5. ([23, Section 15.8]) χp (X) = (−1)n χn−p (X) for all p = 0, . . . , n.

Applying the de�nition of the χy-genus to Proposition 4.3 allows one to calculate
the χy-genus of a smooth projective toric variety.

Corollary 4.6. Let XP be a smooth projective toric variety of real dimension 2n,
and let h (P ) = (h0, . . . , hn) be the h-vector of its associated polytope. Then

χp (XP ) = (−1)p hp

and the χy-genus of XP is given by χy (XP ) =
n∑
p=0

(−1)p hp · yp =
n∑
p=0

(−y)p hp.

It will be useful to be able to state the χp in terms of the g-vector as well.

Corollary 4.7. Let XP be a smooth projective toric variety of real dimension 2n,
and write g (P ) =

(
1, g1 . . . , gbn/2c

)
. Then for p = 0, . . . ,

⌊
n
2

⌋
,

χp (XP ) = (−1)p χn−p (XP ) = (−1)p
p∑

k=0

gk.

This means that the χy-genus of a smooth projective toric variety and its g-vector
hold exactly the same information. On the other hand, the Hirzebruch-Riemann-
Roch Theorem relates the χy-genus to cobordism invariants using a generalization of
the Todd genus (see De�nition 2.10).
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De�nition 4.8. ([23, Section 1.8]) Fix an indeterminate y, and consider the formal

power series Q (y, x) =
x (y + 1)

1− e−x(y+1)
− yx. Given a stably complex manifold M2n,

formally write its Chern class with rational coe�cients as c (M) =
n∏
k=1

(1 + xk). Now

consider the symmetric function
n∏
k=1

Q (y, xk). This series can be written in terms of

the elementary symmetric polynomials (i.e. the Chern classes of M) as

n∏
k=1

Q (y, xk) =
∞∑
n=0

Tn (y, c1 (M) , . . . , cn (M)) ∈ H∗ (M ;Q) [y] ,

where each Tn is a homogeneous polynomial in the xk of degree n. The sum of
all of the Tn's is called the generalized Todd class of M . Each of the polynomials
Tn (y, c1 (M) , . . . , cn (M)) can be written as

Tn (y, c1 (M) , . . . , cn (M)) =
n∑
p=0

T pn (c1 (M) , . . . , cn (M)) yp. (4.1.2)

Each T pn (c1 (M) , . . . , cn (M)) is a cohomology class of degree 2n expressed in terms
of Chern classes. Evaluating this cohomology class on the fundamental class of M
therefore yields a cobordism invariant

T pn [M ] = 〈T pn (c1 (M) , . . . , cn (M)) , µM〉 ∈ Q.

If the entire polynomial Tn (y, c1 (M) , . . . , cn (M)) is evaluated on the fundamen-
tal class, we get a polynomial in y called the generalized Todd genus of M . More
speci�cally, this genus is de�ned to be

T [M ] = 〈Tn (M) , µM〉 ∈ Q [y] .

Note that just like the χy-genus, the generalized Todd genus of a manifold is a
polynomial in the indeterminate y. These two constructions are in fact equivalent.

Theorem 4.9. (Hirzebruch-Riemann-Roch Theorem, [23, Section 20]) If M2n is
a compact complex manifold, then χp (M2n) = T pn [M2n] for all p. In other words,
χy (M) = T [M ].

In summary, the χy-genus of a smooth projective toric variety XP is completely
determined by the g-vector of P , and the generalized Todd genus can be written as
a linear combination of Chern numbers with rational coe�cients. The Hirzebruch-
Riemann-Roch Theorem therefore provides a way of deducing information about the
cobordism of a smooth projective toric variety from its g-vector. In fact, a distinct
Chern number of a smooth projective toric variety can be determined from each
coordinate of its g-vector.
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Proposition 4.10. ([30, 32]) Let M2n be a compact complex manifold. The num-
bers χp (M) provide exactly

⌊
n+2

2

⌋
-many linearly independent conditions on the Chern

numbers of M . These conditions are given by

χp
(
M2n

)
= T pn

[
M2n

]
for p = 0, . . . ,

⌊
n
2

⌋
.

This proposition along with Corollaries 4.6 and 4.7 give the following

Corollary 4.11. Let XP be a smooth projective toric variety of complex dimension
n. Write the g-vector of P as

(
1, g1, . . . , gbn/2c

)
. Then each of these coordinates

determines a distinct Chern number of the cobordism class [XP ]. This correspondence
is described by

(−1)p
p∑

k=0

gk = T pn
[
M2n

]
for p = 0, . . . ,

⌊
n
2

⌋
.

As an example, consider the relation corresponding to p = 0. Note that substitut-

ing y = 0 in the χy-genus yields χ0 =
n∑
p=0

χp ·0p = χ0 (see (4.1.1)). By the Hirzebruch-

Riemann-Roch Theorem and the de�nition of the generalized Todd genus, this means

that χ0 is the genus associated to the power series Q (0, x) =
x

1− e−x
. By De�nition

2.10, χ0 = χ0 = Td is itself the Todd genus (i.e. the Todd genus is the constant term
of the generalized Todd genus). Using the Hirzebruch-Riemann-Roch Theorem and
the fact that g0 = 1, we obtain the relation

1 = T 0
n

[
M2n

]
= χ0 (M) = Td.

Thus the fact that the coordinate g0 of the g-vector of a simple polytope is always
one produces the well-known fact that the Todd genus of a smooth projective toric
variety is always one (see Proposition 4.2).

Since the other g-vector coordinates of a smooth polytope do not have any �xed
values, they result in much more complicated descriptions of Chern numbers. There
is a more convenient way of deriving these conditions that follows from [32]. Consider
the generalized Todd class Tn (y; c1, . . . , cn), and de�ne a new class

tn (y) = tn (y; c1, . . . cn) = Tn (y − 1; c1, . . . , cn) .

By the Hirzebruch-Riemann-Roch Theorem,

tn (y)
[
M2n

]
=

n∑
p=0

χp (M) (y − 1)p . (4.1.3)

Corollary 4.12. ([32]) The
⌊
n+2

2

⌋
-many independent conditions on Chern numbers

arising from the χy-genus (and thus the g-vector for smooth projective toric varieties)
can be described by equating the coe�cients of the even powers of y in (4.1.3).
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Recall that a cobordism class [M2n] ∈ ΩU
n is completely described by |π (n)| in-

tegers, where π (n) is the set of partitions of n (see Theorem 2.5). Thus for the
cobordism class of a smooth projective toric variety, |π (n)|−

⌊
n+2

2

⌋
of its Chern num-

bers are completely independent of the g-vector of the toric variety. Even in relatively
low dimensions, these Chern numbers are determined by an intricate interplay of the
combinatorics and geometry of the toric variety.

4.2 Smooth projective toric varieties in low-dimensional cobordism

Since |π (n)| =
⌊
n+2

2

⌋
for n = 1, 2, the answer to Problem 4.1 in ΩU

2 and ΩU
4 can

be completely described in terms of the combinatorial structure of smooth projective
toric varieties. Unfortunately, these are the only two dimensions for which this is true
(as will be seen in the next section).

Theorem 4.13. The only cobordism class in ΩU
2 that is represented by a smooth

projective toric variety is [CP 1].

This is true simply because CP 1 is the only smooth projective toric variety of
dimension two. This follows from the fact that there is only one one-dimensional
combinatorial polytope.

By Theorem 4.10, there are exactly
⌊

2+2
2

⌋
= 2 independent conditions on the

Chern numbers determined by the χp in ΩU
4 . These can be computed by comparing the

constant term and degree two term of t2 (y) [M4] =
2∑
p=0

χp (M) (y − 1)p (see Corollary

4.12). In [32],

t2 (y) = c2 − c2y +
1

12

(
c2 + c2

1

)
y2

is computed. Thus the conditions on Chern numbers in this dimension are given

by c2 =
2∑
p=0

(−1)p χp = χ−1 and 1
12

(c2 + c2
1) = χ2 = χ0 = Td. If the cobordism

class under consideration contains a smooth projective toric variety, then applying
Corollary 4.7 yields

c2 = 3 + g1 and Td = 1, (4.2.1)

where (1, g1) is the g-vector of the associated polytope.

Theorem 4.14. A cobordism class [M ] ∈ ΩU
4 can be represented by a smooth projec-

tive toric variety if and only if Td(M) = 1 and c2[M ] ∈ {3, 4, 5, . . .}.

Proof. By (4.2.1), if a cobordism class [M ] ∈ ΩU
4 is represented by a smooth projective

toric variety, then Td (M) = 1 and c2 [M ] = 3 + g1 for some (1, g1) that is the
g-vector of a smooth two-dimensional polytope. By the g-theorem 3.20, g-vectors
that correspond to simple polytopes in R2 are given by {(1, g1) |g1 ≥ 0}. Thus, if
[M ] ∈ ΩU

4 is represented by a smooth projective toric variety, then Td(M) = 1 and
c2 [M ] ∈ {3, 4, 5, . . .}.
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The converse can be proven by noting that a smooth polytope in R2 can be
created for each of these g-vectors. For example, the g-vector of the triangle pictured
in Figure 3.3 is (1, 0). The corresponding smooth projective toric variety is CP 2 (see
Example 3.19). By Theorem 3.39, a four-dimensional smooth projective toric variety
with g-vector (1, g1) can be obtained by applying a sequence of g1-many blow-ups at
torus �xed points, starting with CP 2. On the level of polytopes, this corresponds
to applying g1-many truncations of vertices to the triangle in Figure 3.3 to produce
a new polytope with g-vector (1, g1). This construction proves that each cobordism
class in ΩU

4 satisfying Td(M) = 1 and c2[M ] ∈ {3, 4, 5, . . .} can be represented by a
smooth projective toric variety.

This result can be generalized due to classi�cation results in this small dimension.
More speci�cally, all smooth compact toric varieties of dimension four have been clas-
si�ed. They are all obtained through a sequence of equivariant blow-ups at torus �xed
points in either CP 2 or a Hirzebruch surface [16, Section 2.5]. Since both CP 2 and
Hirzebruch surfaces are projective and equivariant blow-ups preserve projectivity, all
of the smooth toric varieties of dimension four must be projective. As a consequence,
the projectivity condition in Theorem 4.14 can be dropped.

Corollary 4.15. A cobordism class [M ] ∈ ΩU
4 can be represented by a smooth compact

toric variety if and only if Td(M) = 1 and c2[M ] ∈ {3, 4, 5, . . .}.

4.3 Smooth projective toric varieties in six-dimensional cobordism

The answer to Problem 4.1 in ΩU
6 is already signi�cantly more complicated than

in lower dimensions. In this dimension, there are again
⌊

3+2
2

⌋
= 2 independent

conditions on the Chern numbers determined by the χy-genus (see Theorem 4.10).
As in ΩU

4 , these are given by equating the constant and degree two terms of

t3 (y)
[
M6
]

=
3∑
p=0

χp (M) (y − 1)p .

Again, the left-hand side is computed in [32] where is found to be

t3 = c3 +
1

2
(−3c3) y +

1

12
(6c3 + c1c2) y2 +

1

24
(−c1c2) y3.

Thus by Corollary 4.12, the conditions on the Chern numbers are

c3 =
3∑
p=0

(−1)p χp = χ−1 and
1

12
(6c3 + c1c2) = χ2 − 3χ3.

If [M ] contains a smooth projective toric variety, then Corollary 4.7 can be used to
state the Chern number relations as

c3 [M ] = 4 + 2g1 and
1

24
c1c2 [M ] = Td (M) = 1. (4.3.1)
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The two Chern numbers c1c2 [M ] and c3 [M ] in addition to a third Chern number
c3

1 [M ] completely determine the cobordism class of M in ΩU
6 (see Theorem 2.5).

However, c3
1 [M ] is not determined by the χy-genus.

Before considering this additional Chern number, we will �rst examine the results
obtained by the above restrictions on c3 and c1c2. According to the g-theorem, the
g-vectors that correspond to simple polytopes in R3 are those with g1 ≥ 0. In fact,
for each of these g-vectors, a smooth polytope can be constructed. This is done in
the same way as in the proof of Theorem 4.14. The polytope associated to CP 3 has
g-vector (1, 0). Apply a sequence of g1-many blow-ups of torus-�xed points to obtain
a smooth projective toric variety with g-vector (1, g1). Combining this with (4.3.1)
implies that the only cobordism classes [M ] ∈ ΩU

6 that could possibly contain smooth
projective toric varieties are those that satisfy Td(M) = 1 and c3 [M ] ∈ {4, 6, 8, . . .}.

Since the Chern number c3
1 [X] of a smooth projective toric variety is not deter-

mined by its combinatorial structure, the answer to Question 4.1 becomes much more
complicated.

Theorem 4.16. Let [M ] ∈ ΩU
6 .

1. If c1c2 [M ] 6= 24 or c3 [M ] /∈ {4, 6, 8, . . .}, then [M ] is not represented by a
smooth projective toric variety.

2. Suppose c1c2 [M ] = 24 and c3 [M ] = 4. Then [M ] is represented by a smooth
projective toric variety if and only if [M ] = [CP 3].

3. Suppose c1c2 [M ] = 24 and c3 [M ] = 6. Then [M ] is represented by a smooth
projective toric variety if and only if c3

1 [M ] = 2a2 + 54 for some a ∈ Z.

4. If c1c2 [M ] = 24 and c3 [M ] ∈ {8, 10, 12, . . .}, then [M ] is represented by a
smooth projective toric variety.

Part 1 of Theorem 4.16 is proven by the preceding argument. In order to prove the
remaining parts, one can consider all possible pairs c1c2 [M ] and c3 [M ] given by (4.3.1)
with g1 ≥ 0, and for each pair, �nd all values of c3

1 [M ] that result in a cobordism
class containing a smooth projective toric variety. Before doing this, it is essential to
know exactly which combinations of Chern numbers can represent cobordism classes
in ΩU

6 in general. This can be accomplished by applying the Hattori-Stong Theorem
2.18 in this dimension.

K-theory Chern numbers and ΩU
6

Before applying the Hattori-Stong Theorem 2.18, it will be useful to know several
relations among symmetric polynomials and Chern numbers. Suppose [M ] ∈ ΩU

6 and
formally write c(M) = (1 + x1) (1 + x2) (1 + x3). To simplify notation, the Chern
class ck (M) will be abbreviated as ck. Then

Td (M) = 1 +
1

2
c1 +

1

12

(
c2

1 + c2

)
+

1

24
c1c2 + . . . (4.3.2)
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(see De�nition 2.10). The following relations among symmetric polynomials are
straight-forward to derive.

x2
1 + x2

2 + x2
3 = c2

1 − 2c2

x3
1 + x3

2 + x3
3 = c3

1 − 3c1c2 + 3c3 (4.3.3)
3∑
i=1

∑
j 6=i

x2
ixj = c1c2 − 3c3

The partitions that must be considered when using the Hattori-Stong Theorem in this
dimension are ω ∈ {∅, 1, 11, 2, 111, 12, 3}. The K-theory Chern number correspond-
ing to each of these partitions can be calculated by using the techniques described in
Section 2.1. The classes sω are calculated in Section 16 of [36].

ω = ∅: s∅ () = 1, so κ∅ [M ] = Td [M ] = 1
24
c1c2. This gives the �rst divisibility

relation for Chern numbers in ΩU
6 :

c1c2 [M ] ≡ 0 mod 24 (4.3.4)

ω = 1: s1 (γ1) = γ1, so

κ1 [M ] = 〈chγ1 · Td (M) , µM〉
= 〈σ1 (ex1 − 1, ex2 − 1, ex3 − 1) · Td (M) , µM〉

=

〈(
(x1 + x2 + x3) +

1

2

(
x2

1 + x2
2 + x2

3

)
+

1

6

(
x3

1 + x3
2 + x3

3

))
·

· Td (M) , µM

〉
=

〈(
c1 +

(
1

2
c2

1 − c2

)
+

(
1

6
c3

1 −
1

2
c1c2 +

1

2
c3

))
·

·
(

1 +
1

2
c1 +

1

12

(
c2

1 + c2

))
, µM

〉
=

〈
1

2
c3

1 −
11

12
c1c2 +

1

2
c3, µM

〉
=

1

2
c3

1 [M ]− 11

12
c1c2 [M ] +

1

2
c3 [M ]

This gives the second divisibility relation

6c3
1 [M ]− 11c1c2 [M ] + 6c3 [M ] ≡ 0 mod 12. (4.3.5)
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ω = 11: s11 (γ1, γ2) = γ2, so

κ11 [M ] = 〈chγ2 · Td (M) , µM〉
= 〈σ2 (ex1 − 1, ex2 − 1, ex3 − 1) · Td (M) , µM〉

=

〈(
(x1x2 + x1x3 + x2x3) +

1

2

3∑
i=1

∑
j 6=i

x2
ixj

)
· Td (M) , µM

〉

=

〈(
c2 +

1

2
(c1c2 − 3c3)

)
·
(

1 +
1

2
c1

)
, µM

〉
=

〈
c1c2 −

3

2
c3, µM

〉
= c1c2 [M ]− 3

2
c3 [M ]

This gives the third divisibility relation

2c1c2 [M ]− 3c3 [M ] ≡ 0 mod 2. (4.3.6)

ω = 2: s2 (γ1, γ2) = γ2
1 − 2γ2, so chs2 (γ1, γ2) = (chγ1)2 − 2chγ2. Then

κ2 [M ] =

〈((
c1 +

(
1

2
c2

1 − c2

))2

− 2

(
c2 +

1

2
(c1c2 − 3c3)

))
· Td (M) , µM

〉
(see ω = 1 & ω = 11)

=

〈((
c2

1 − 2c2

)
+
(
c3

1 − 3c1c2 + 3c3

))
·
(

1 +
1

2
c1

)
, µM

〉
=

〈
3

2
c3

1 − 4c1c2 + 3c3, µM

〉
=

3

2
c3

1 [M ]− 4c1c2 [M ] + 3c3 [M ]

This gives the fourth divisibility relation

3c3
1 [M ]− 8c1c2 [M ] + 6c3 [M ] ≡ 0 mod 2. (4.3.7)

ω ∈ {111, 12, 3}: Since these are partitions of 3 itself, κω [M ] = 〈sω (c1, c2, c3) , µM〉
for each of these partitions. Each of these is a linear combination of Chern
numbers with integer coe�cients, so their sums are always integers since the
Chern numbers are themselves integers.

Simplifying and combining the relations (4.3.4), (4.3.5), (4.3.6), and (4.3.7) provides
the following

Proposition 4.17. A cobordism class [M ] ∈ ΩU
6 can have Chern numbers c3

1[M ],
c1c2[M ], and c3[M ] if and only if the following divisibility relations hold.

c3
1 [M ] ≡ 0 mod 2

c1c2 [M ] ≡ 0 mod 24

c3 [M ] ≡ 0 mod 2
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Smooth projective toric varieties representing ΩU
6

Now the remaining parts of Theorem 4.16 can be proven.

Proof of Theorem 4.16 part 2. Suppose c1c2[M ] = 24 and c3[M ] = 4 for [M ] ∈ ΩU
6 .

If [M ] is represented by a smooth projective toric variety, then it must have g-vector
(1, 0) according to (4.3.1). But there is only one smooth toric variety with this g-
vector, namely CP 3. This means that [M ] is represented by a smooth projective toric
variety if and only if [M ] = [CP 3].

This part of the theorem demonstrates that (4.3.1) are not the only obstructions
to a cobordism class in ΩU

6 being represented by a smooth projective toric variety.
Since c3

1 [CP 3] = 64 (see [36, Section 14] for details), all the cobordism classes with
c1c2[M ] = 24, c3[M ] = 4, and c3

1[M ] 6= 64 do not contain any smooth projective toric
varieties, even though these classes satisfy (4.3.1). Such cobordism classes exist by
Proposition 4.17.

To prove part 3 of Theorem 4.16, consider a cobordism class [M ] ∈ ΩU
6 with

c1c2 [M ] = 24 and c3 [M ] = 6. If [M ] were represented by a smooth projective toric
variety, then its g-vector would be (1, 1) by (4.3.1). This means that its h-vector
would be (1, 2, 2, 1). By (3.2.1), the f -vector of the associated polytope would be
(5, 9, 6). In particular, the polytope would have �ve facets. Then the normal fan
would have 5 = 3 + 2 generating rays. But these are exactly the fans that were
classi�ed by Kleinschmidt (see Theorem 3.24). In fact, it is easy to check that each
of Kleinschmidt's varieties with real dimension six has (5, 9, 6) as the f -vector of the
associated polytope. Thus if c1c2 [M ] = 24 and c3 [M ] = 6 for [M ] ∈ ΩU

6 , then the only
possible smooth projective toric varieties that could represent [M ] are Kleinschmidt's
varieties X3 (a1, a2) and X3 (a1). In order to prove part 3 of Theorem 4.17, it su�ces
to calculate c3

1 [X3 (a1, a2)] and c3
1 [X3 (a1)].

Lemma 4.18. c3
1 [X3 (a1, a2)] = 54 for all integers 0 ≤ a1 ≤ a2.

Proof. Recall that Σ3 (a1, a2) has �ve generating rays u1, u2, u3, v1, and v2. From
Example 3.28, H∗ (X3 (a1, a2)) ∼= Z [u3, v2] / (u3

3 − (a1 + a2)u2
3v2, v

2
2). In particular,

the ideal L in Example 3.28 yields the following linear relations among the cohomology
classes.

u1 = u3 − a1v2

u2 = u3 − a2v2

v1 = v2

Then applying Theorem 3.30 gives the �rst Chern class of X3 (a1, a2) as

c1 (X3 (a1, a2)) = u1 + u2 + u3 + v1 + v2 = 3u3 + (2− a1 − a2) v2.

Then

c3
1 (X3 (a1, a2)) = (3u3 + (2− a1 − a2) v2)3

= 27u3
3 + 3 · 9u2

3 · (2− a1 − a2) v2

= 54u2
3v2.
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Note that pos (u1, u3, v2) is a maximal cone in Σ3 (a1, a2). Using the above linear
relation for u1 and v2

2 = 0 from the cohomology ring,

u1u3v2 = u2
3v2.

Thus by Proposition 3.29,
〈
u2

3v2, µX3(a1,a2)

〉
= 1. Then c3

1 [X3 (a1, a2)] = 54.

Lemma 4.19. c3
1 [X3 (a)] = 2a2 + 54 for any a ≥ 0.

Proof. This is proven using a computation similar to that of the previous lemma.
Again, start by calculating H∗ (X3 (a)). The linear relations are

u1 = u2 − av3

v1 = v3

v2 = v3

and the Stanley-Reisner ideal is J = (u1u2, v1v2v3). Combining these yields

H∗ (X3 (a)) = Z[u2, v3]/
(
u2

2 − au2v3, v
3
3

)
.

The �rst Chern class of the variety is c1 (X3 (a)) = 2u2 + (3− a) v3. Then

c3
1 (X3 (a)) = 3 · 2u2 · (3− a)2 v2

3 + 3 · 4u2
2 · (3− a) v3 + 8u3

2

=
(
54− 36a+ 6a2

)
u2v

2
3 +

(
36a− 12a2

)
u2v

2
3 + 8a2u2v

2
3

=
(
54 + 2a2

)
u2v

2
3.

Since pos (u2, v1, v3) is a maximal cone and u2v1v3 = u2v
2
3 in H∗ (X3 (a)), the result

follows from Proposition 3.29.

Part 3 of Theorem 4.16 is an immediate consequence of the preceding two lemmas.
Part 4 of Theorem 4.16 states that if c3 [M ] is su�ciently large, then every cobor-

dism class is represented by a smooth projective toric variety. This part will be proven
in two steps. First, smooth projective toric variety representatives will be constructed
for each cobordism class with c1c2 [M ] = 24 and c3 [M ] = 8. Next, a sequence of blow-
ups will be applied to these varieties to prove the existence of smooth projective toric
variety representatives for any higher possible c3 [M ].

Proposition 4.20. If c1c2 [M ] = 24 and c3 [M ] = 8 for [M ] ∈ ΩU
6 , then [M ] can be

represented by a smooth projective toric variety.

Proof. Let τ1 = pos (u1, u2) in Σ3 (a1, a2). Consider Blτ1Σ3 (a1, a2), the star subdivi-
sion with additional ray z1 = u1 + u2. Denote the corresponding smooth projective
toric variety as X1 (a1, a2). To compute the cobordism class of X1 (a1, a2), it su�ces
to compute its Chern numbers. By Theorem 3.39, the g-vector of the correspond-
ing polytope is (1, 2), so c1c2 [X1 (a1, a2)] = 24 and c3 [X1 (a1, a2)] = 8 by (4.3.1).
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To compute c3
1 [X1 (a1, a2)], �rst calculate H∗ (X1 (a1, a2)) (see Theorem 3.26). The

linear relations in this cohomology ring are

u1 = u3 − a1v2 − z1

u2 = u3 − a2v2 − z1

v1 = v2

and the Stanley-Reisner ideal is J = (u1u2, v1v2, u3z1). Combining these yields

H∗
(
X1 (a1, a2)

)
= Z [u3, v2, z1] /

(
v2

2, u3z1, u
2
3 − (a1 + a2)u3v2 + (a1 + a2) v2z1 + z2

1

)
.

Theorem 3.30 and the above linear relations can be used to calculate

c1 (X12 (a1, a2)) = 3u3 + (2− a1 − a2) v2 − z.

Then

c1

(
X1 (a1, a2)

)3
= 27u3

3 + 3 · 9u2
3 · (2− a1 − a2) v2 + 3 · (2− a1 − a2) v2 · z2

1 − z3
1

= 27 (a1 + a2)u2
3v2 + 27 (2− a1 − a2)u2

3v2+

− 3 (2− a1 − a2)u2
3v2 − (a1 + a2)u2

3v2

= (48 + 2 (a1 + a2))u2
3v2

so c3
1 [X1 (a1, a2)] = 48+2 (a1 + a2), as in the preceding lemmas. The cobordism class

[M ] ∈ ΩU
6 with c1c2[M ] = 24, c3[M ] = 8, and c3

1[M ] = 48 + 2k ∈ {48, 50, 52, . . .} is
represented by the smooth projective toric variety X1 (0, k).

Next de�ne τ2 = pos (u1, u3) in Σ3 (a1, a2). Consider Blτ2Σ3 (a1, a2) with addi-
tional ray z2 = u1 + u3. Let X2 (a1, a2) denote the corresponding smooth projec-
tive toric variety. The g-vector of the corresponding polytope is again (1, 2), so
c1c2 [X2 (a1, a2)] = 24 and c3 [X2 (a1, a2)] = 8. The linear relations in H∗ (X2 (a1, a2))
are

u1 = u2 − (a1 − a2) v2 − z2

u3 = u2 + a2v2 − z2

v1 = v2

and the Stanley-Reisner ideal is J = (u1u3, v1v2, u2z2). Then

H∗
(
X2 (a1, a2)

)
= Z[u2, v2, z2]/

(
v2

2, u2z2, u
2
2 + (2a2 − a1)u2v2 − (2a2 − a1) v2z2 + z2

2

)
.

The �rst Chern class of the variety is c1 (X2 (a1, a2)) = 3u2 + (2 + 2a2 − a1) v2 − z2.
Then

c1

(
X2 (a1, a2)

)3
= 27u3

2 + 3 · 9u2
2 · (2 + 2a2 − a1) v2 + 3 · (2 + 2a2 − a1) v2 · z2

2 − z3
2

= −27 (2a2 − a1)u2
2v2 + 27 (2 + 2a2 − a1)u2

2v2+

− 3 (2 + 2a2 − a1)u2
2v2 + (2a2 − a1)u2

2v2

= (48 + 2a1 − 4a2)u2
3v2

40



so c3
1 [X2 (a1, a2)] = 48 + 2a1 − 4a2. Consider the cobordism class [M ] ∈ ΩU

6 that
satis�es c1c2[M ] = 24, c3[M ] = 8, and c3

1[M ] = 48 − 4k ∈ {48, 44, 40, . . .}. This
cobordism class is represented by the smooth projective toric variety X2 (0, k). If
instead, c3

1 [M ] = 46 − 4k ∈ {46, 42, 38, . . .}, then [M ] is represented by the smooth
projective toric variety X2 (1, k + 1).

Since c3
1 [M ] must be even by Proposition 4.17, all possible cobordism classes

with c1c2 [M ] = 24 and c3 [M ] have been obtained using the smooth projective toric
varieties X1 (0, k), X2 (0, k), and X2 (1, k + 1).

Recall from Proposition 3.40 that when a toric variety XΣ is blown up along
a subvariety Xτ given by a cone τ ⊂ Σ, the change in cobordism is completely
determined by the cones of Σ that contain τ . In the case of blowing up a point, τ is a
maximal cone of Σ, so τ is the only cone that contains τ . A unimodular transformation
can be chosen to send the generating rays of τ to the standard basis vectors. This
produces an isomorphic toric variety. Thus the change in cobordism resulting from the
blow-up of any toric variety at a point can be completely determined by computing
the change in Chern numbers in just one convenient example.

Lemma 4.21. Let X1 be a smooth projective toric variety with fan ΣX1 in R3. Sup-
pose that ΣX2 is obtained through a star subdivision of a maximal cone in ΣX1. Then
c3 [X2] = c3 [X1] + 2 and c3

1 [X2] = c3
1 [X1]− 8.

Proof. From the preceding argument, it su�ces to verify this for any one example.
Choose the fan Σ1 = {x1, x2, x3, y} corresponding to X1 = CP 3, so xk = ek is the
standard basis vector and y = (−1,−1,−1). Let Σ2 = {x1, x2, x3, y, z} be the fan
obtained by subdividing the maximal cone pos (x1, x2, x3) with z, so z = (1, 1, 1). Let
X2 be the smooth projective toric variety corresponding to this fan.

Equation (4.3.1) makes it easy to compute the change in c3 during the blow-up.
Note that g (X1) = (1, 0) and g (X2) = (1, 1) by Example 3.19 and Theorem 3.39.
Then c3 [X1] = 4 and c3 [X2] = 4 + 2 = c3 [X1] + 2.

Recall that c3
1 [CP 3] = 64. To compute c3

1 [X2], we must �rst compute its coho-
mology H∗ (X2). The linear relations in H∗ (X2) are x1 = x2 = x3 = y − z, and the
Stanley-Reisner ideal is J = (x1x2x3, yz). Combining these yields

H∗ (X2) = Z [y, z] /
(
yz, y3 − z3

)
.

The �rst Chern class of the variety is c1 (X2) = x1 + x2 + x3 + y + z = 4y − 2z, so
c1 (X2)3 = 64y3 − 8z3 = 56y3. Since y3 = x1x2y in H∗ (X2) and pos (x1, x2, y) is a
maximal cone in Σ2, by Proposition 3.29, c3

1 [X2] = 56 = c3
1 [X1]− 8.

Now a smooth projective toric variety can be constructed to represent any cobor-
dism class [M ] ∈ ΩU

6 such that c1c2 [M ] = 24 and c3 [M ] ∈ {8, 10, 12, . . .}.

Proof of part 4 of Theorem 4.16. Suppose [M ] ∈ ΩU
6 is a cobordism class satisfying

c1c2 [M ] = 24, c3 [M ] = 8 + 2B for some integer B ≥ 0, and c3
1 [M ] = 2k for some

k ∈ Z. (Recall that all cobordism classes in this dimension have even Chern number
c3

1 by Proposition 4.17.) By Proposition 4.20, there exists a smooth projective toric
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variety XΣ satisfying c1c2 [XΣ] = 24, c3 [XΣ] = 8, and c3
1 [XΣ] = 2k + 8B. Apply a

sequence of B-many blow-ups at torus-�xed points of XΣ and the subsequent blown
up varieties to obtain a new smooth projective toric variety XΣ′ . By Lemma 4.21,
c1c2 [XΣ′ ] = 24, c3 [XΣ′ ] = 8+2B, and c3

1 [XΣ′ ] = 2k. Thus [M ] = [XΣ′ ] is represented
by a smooth projective toric variety.

4.4 Smooth projective toric varieties in eight-dimensional cobordism

The techniques used to answer Question 4.1 in ΩU
6 can be applied to ΩU

8 as well. How-
ever, the computations that are involved are already signi�cantly more complicated,
meaning that extending the techniques to even higher dimensions is not practical.
Also, studying ΩU

8 reveals some of the limitations of the methods that have been used
so far. Unlike in lower dimensions, they can only provide a partial answer to Problem
4.1.

In this dimension, there are
⌊

4+2
2

⌋
= 3 independent conditions on the Chern

numbers determined by the χy-genus (see Theorem 4.10). These are given by equating

the constant, degree two, and degree four terms of t4 (y) [M8] =
4∑
p=0

χp (M) (y − 1)p

(see Corollary 4.12). The left-hand side is computed in [32] where it is found to be

t4 = c4 − 2c4y +
1

12
(14c4 + c1c3) y2 +

1

12
(−2c4 − c1c3) y3+

+
1

720

(
−c4 + c1c3 + 3c2

2 + 4c2
1c2 − c4

1

)
y4.

Thus the conditions on the Chern numbers are

c4 =
4∑
p=0

(−1)p χp = χ−1

1

12
(14c4 + c1c3) = χ2 − 3χ3 + 6χ4

1

720

(
−c4 + c1c3 + 3c2

2 + 4c2
1c2 − c4

1

)
= χ4 = Td.

If [M ] contains a smooth projective toric variety, then Corollary 4.7 can be used to
simplify these and write

c4 [M ] = 5 + 3g1 + g2

c1c3 [M ] = 50 + 6g1 − 2g2 (4.4.1)

c4
1 [M ] = 4c2

1c2 [M ] + 3c2
2 [M ] + 3g1 − 3g2 − 675

where (1, g1, g2) is the g-vector of the associated polytope.
Now that some of the Chern numbers have been written in terms of g-vectors,

it is important to know which g-vectors can correspond to smooth polytopes in R4.
According to the g-theorem 3.20, a g-vector (1, g1, g2) corresponds to a simple polytope
in R4 if and only if

0 ≤ g1 and 0 ≤ g2 ≤
1

2
g1 (g1 + 1) . (4.4.2)
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This means that the only cobordism classes [M ] ∈ ΩU
8 that can possibly be represented

by a smooth projective toric variety are those satisfying (4.4.1) for some g-vector
(1, g1, g2) which satis�es (4.4.2).

Theorem 4.22. Let [M ] ∈ ΩU
8 . If [M ] does not satisfy equations (4.4.1) for some

g-vector (1, g1, g2) satisfying (4.4.2), then [M ] does not contain a smooth projective
toric variety.

K-theory Chern numbers and ΩU
8

As in ΩU
6 , it is next necessary to determine exactly which combinations of Chern

numbers cobordism classes in ΩU
8 can have. There are |π (4)| = 5 Chern numbers in

this dimension. Fix [M ] ∈ ΩU
8 , and abbreviate the Chern classes ofM by ck (M) = ck.

The �rst terms of the Todd class are

Td (M) = 1 +
1

2
c1 +

1

12

(
c2

1 + c2

)
+

1

24
c1c2 +

1

720

(
−c4

1 + 4c2
1c2 + 3c2

2 + c1c3 − c4

)
(see [23, Section 1.7] for details). Formally write c(M) =

4∏
k=1

(1 + xk). The following

relations among symmetric polynomials are also useful. The sums are taken over all
monomials that are equivalent to the given monomial, i.e. all monomials obtained
from a permutation of x1, . . . , x4 (see De�nition 2.6).∑

x2
1 = c2

1 − 2c2∑
x3

1 = c3
1 − 3c1c2 + 3c3∑

x4
1 = c4

1 − 4c2
1c2 + 2c2

2 + 4c1c3 − 4c4∑
x2

1x2 = c1c2 − 3c3∑
x3

1x2 = c2
1c2 − 2c2

2 − c1c3 + 4c4∑
x2

1x
2
2 = c2

2 − 2c1c3 + 2c4∑
x2

1x2x3 = c1c3 − 4c4

The partitions that must be considered for the Hattori-Stong Theorem 2.18 in this
dimension are

ω ∈ {∅, 1, 11, 2, 111, 12, 3, 1111, 112, 22, 13, 4} .
The computations of sω can again be found in Section 16 of [36].

ω = ∅: s∅ () = 1, so

κ∅ [M ] = Td [M ] =
1

720

(
−c4

1 [M ] + 4c2
1c2 [M ] + 3c2

2 [M ] + c1c3 [M ]− c4 [M ]
)
.

This gives the �rst divisibility relation for Chern numbers in ΩU
8 :

− c4
1[M ] + 4c2

1c2[M ] + 3c2
2[M ] + c1c3[M ]− c4[M ] ≡ 0 mod 720 (4.4.3)
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ω = 1: As in ΩU
6 ,

κ1 [M ] = 〈σ1 (ex1 − 1, . . . , ex4 − 1) · Td (M) , µM〉

=

〈(
4∑

k=1

xk +
1

2

4∑
k=1

x2
k +

1

6

4∑
k=1

x3
k +

1

24

4∑
k=1

x4
k

)
· Td (M) , µM

〉

=

〈(
c1 +

1

2

(
c2

1 − 2c2

)
+

1

6

(
c3

1 − 3c1c2 + 3c3

)
+

1

24

(
c4

1 − 4c2
1c2 + 2c2

2 + 4c1c3 − 4c4

) )
·

·
(

1 +
1

2
c1 +

1

12

(
c2

1 + c2

)
+

1

24
c1c2

)
, µM

〉
=

〈
1

6
c4

1 −
5

12
c2

1c2 +
5

12
c1c3 −

1

6
c4, µM

〉
=

1

6
c4

1 [M ]− 5

12
c2

1c2 [M ] +
5

12
c1c3 [M ]− 1

6
c4 [M ] .

This gives the divisibility relation

2c4
1 [M ]− 5c2

1c2 [M ] + 5c1c3 [M ]− 2c4 [M ] ≡ 0 mod 12. (4.4.4)

ω = 11: This computation is again similar to the one performed in ΩU
6 . The sums

are taken over all monomials that are equivalent to the displayed monomial (see
De�nition 2.6).

κ11 [M ] = 〈σ2 (ex1 − 1, . . . , ex4 − 1) · Td (M) , µM〉

=

〈(
c2 +

1

2

∑
x2

1x2 +
1

6

∑
x3

1x2 +
1

4

∑
x2

1x
2
2

)
· Td (M) , µM

〉
=

〈(
c2 +

1

2
(c1c2 − 3c3) +

1

12

(
2c2

1c2 − c2
2 − 8c1c3 + 14c4

))
·

·
(

1 +
1

2
c1 +

1

12

(
c2

1 + c2

))
, µM

〉
=

〈
1

2
c2

1c2 −
17

12
c1c3 +

7

6
c4, µM

〉
=

1

2
c2

1c2 [M ]− 17

12
c1c3 [M ] +

7

6
c4 [M ] .

This gives the divisibility relation

6c2
1c2 [M ]− 17c1c3 [M ] + 14c4 [M ] ≡ 0 mod 12. (4.4.5)
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ω = 2: As in ΩU
6 ,

κ2 [M ] =

〈((
c1 +

1

2

(
c2

1 − 2c2

)
+

1

6

(
c3

1 − 3c1c2 + 3c3

))2

+

− 2

(
c2 +

1

2
(c1c2 − 3c3) +

1

12

(
2c2

1c2 − c2
2 − 8c1c3 + 14c4

)))
·

· Td(M), µM

〉

=

〈((
c2

1 − 2c2

)
+
(
c3

1 − 3c1c2 + 3c3

)
+

+
1

12

(
7c4

1 − 28c2
1c2 + 14c2

2 + 28c1c3 − 28c4

) )
·

·
(

1 +
1

2
c1 +

1

12

(
c2

1 + c2

))
, µM

〉
=

〈
7

6
c4

1 −
47

12
c2

1c2 + c2
2 +

23

6
c1c3 −

7

3
c4, µM

〉
7

6
c4

1 [M ]− 47

12
c2

1c2 [M ] + c2
2 [M ] +

23

6
c1c3 [M ]− 7

3
c4 [M ] .

This gives the divisibility relation

14c4
1[M ]− 47c2

1c2[M ] + 12c2
2[M ] + 46c1c3[M ]− 28c4[M ] ≡ 0 mod 12. (4.4.6)

ω = 111: s111 (γ1, γ2, γ3) = γ3, so

κ111 [M ] = 〈chγ3 · Td (M) , µM〉
= 〈σ3 (ex1 − 1, . . . , ex4 − 1) · Td (M) , µM〉

=

〈(
c3 +

1

2

∑
x2

1x2x3

)
· Td (M) , µM

〉
=

〈(
c3 +

1

2
(c1c3 − 4c4)

)
·
(

1 +
1

2
c1

)
, µM

〉
= 〈c1c3 − 2c4, µM〉
= c1c3 [M ]− 2c4 [M ] .

Since the Chern numbers are all integers, κ111 [M ] is always an integer, so this
partition does not give a new divisibility relation.
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ω = 12: s12 (γ1, γ2, γ3) = γ1γ2 − 3γ3, so

κ12 [M ] = 〈(chγ1 · chγ2 − 3chγ3) · Td (M) , µM〉

=

〈((
c1 +

1

2

(
c2

1 − 2c2

))
·
(
c2 +

1

2
(c1c2 − 3c3)

)
+

− 3

(
c3 +

1

2
(c1c3 − 4c4)

))
·
(

1 +
1

2
c1

)
, µM

〉

=

〈
3

2
c2

1c2 − c2
2 −

9

2
c1c3 + 6c4, µM

〉
=

3

2
c2

1c2 [M ]− c2
2 [M ]− 9

2
c1c3 [M ] + 6c4 [M ] .

This gives the divisibility relation

3c2
1c2 [M ]− 2c2

2 [M ]− 9c1c3 [M ] + 12c4 [M ] ≡ 0 mod 2. (4.4.7)

ω = 3: s3 (γ1, γ2, γ3) = γ3
1 − 3γ1γ2 + 3γ3, so

κ3 [M ] =
〈(

(chγ1)3 − 3chγ1 · chγ2 + 3chγ3

)
· Td (M) , µM

〉
=

〈((
c1 +

1

2

(
c2

1 − 2c2

))3

− 3

(
c1 +

1

2

(
c2

1 − 2c2

))
·

(
c2 +

1

2
(c1c2 − 3c3)

)
+ 3

(
c3 +

1

2
(c1c3 − 4c4)

))
·

·
(

1 +
1

2
c1

)
, µM

〉

=

〈
2c4

1 −
15

2
c2

1c2 + 3c2
2 +

15

2
c1c3 − 6c4, µM

〉
= 2c4

1 [M ]− 15

2
c2

1c2 [M ] + 3c2
2 [M ] +

15

2
c1c3 [M ]− 6c4 [M ] .

This gives the divisibility relation

4c4
1 [M ]− 15c2

1c2 [M ] + 6c2
2 [M ] + 15c1c3 [M ]− 12c4 [M ] ≡ 0 mod 2. (4.4.8)

The remaining partitions are partitions of four itself. For each of these partitions,
κω [M ] = 〈sω (c1, c2, c3, c4) , µM〉 is a linear combination of Chern numbers. Thus the
κω [M ] do not introduce any new divisibility relations among the Chern numbers for
these partitions ω.

Simplifying and combining (4.4.3), (4.4.4), (4.4.5), (4.4.6), (4.4.7), and (4.4.8)
shows that a cobordism class [M ] ∈ ΩU

8 can have Chern numbers c4
1[M ], c2

1c2[M ],
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c2
2[M ], c1c3[M ], and c4[M ] if and only if the following divisibility relations hold.

−c4
1[M ] + 4c2

1c2[M ] + 3c2
2[M ] + c1c3[M ]− c4[M ] ≡ 0 mod 720

2c4
1[M ]− 5c2

1c2[M ] + 5c1c3[M ]− 2c4[M ] ≡ 0 mod 12

6c2
1c2[M ]− 5c1c3[M ] + 2c4[M ] ≡ 0 mod 12

2c4
1[M ] + c2

1c2[M ]− 2c1c3[M ]− 4c4[M ] ≡ 0 mod 12

c2
1c2[M ] + c1c3[M ] ≡ 0 mod 2

Smooth projective toric varieties representing ΩU
8

The above congruences still do not give a very lucid idea of which combinations of
Chern numbers are possible in ΩU

8 . Fortunately, to try to answer Question 4.1, we only
need to consider the cobordism classes in ΩU

8 that could possibly contain a smooth
projective toric variety. This means that the class [M ] must also satisfy the equations
in (4.4.1) for some g-vector satisfying (4.4.2). Applying these relations to the above
divisibility relations simpli�es them considerably. This simple calculation yields the
following

Theorem 4.23. The only cobordism classes [M ] ∈ ΩU
8 that can possibly contain a

smooth projective toric variety are those whose Chern numbers satisfy (4.4.1) and the
following divisibility relations for some g-vector satisfying (4.4.2).

c2
1c2 ≡ 0 mod 2 and c2

1c2 + 2c2
2 + c1c3 ≡ 0 mod 4 (4.4.9)

This theorem does not say that every cobordism class satisfying these two relations
contains a smooth projective toric variety. This is false, as will soon be seen. However,
we do know that if a cobordism class does not satisfy the relations, then it cannot
possibly contain a smooth projective toric variety.

As in ΩU
6 , the answer to Problem 4.1 in ΩU

8 is easy for �small� g-vectors. For
example, the only smooth (projective) toric variety corresponding to the g-vector
(1, 0, 0) is CP 4. Using (4.4.1), the conditions on the Chern numbers corresponding
to this g-vector are

c4[M ] = 5

c1c3[M ] = 50 (4.4.10)

c4
1[M ] = 4c2

1c2[M ] + 3c2
2[M ]− 675.

Theorem 4.24. Suppose the Chern numbers of [M ] ∈ ΩU
8 satisfy the above three

equations. Then [M ] can be represented by a smooth projective toric variety if and
only if [M ] = [CP 4].

It is easy to �nd integers that satisfy (4.4.9) and (4.4.10) that are not the Chern
numbers of [CP 4] (for example, (c4

1, c
2
1c2, c

2
2, c1c3, c4) = (−672, 0, 1, 50, 5)). This means

that (4.4.1) are not the only obstructions to a cobordism class in ΩU
8 containing a

smooth projective toric variety.
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Next consider g-vectors with g1 = 1. By the g-theorem 3.20, the only such g-
vectors that correspond to simple polytopes are those with g2 ∈ {0, 1} (see (4.4.2)).
Writing the f -vector in terms of the g-vector in this dimension gives f0 = 5+g1. This is
the number of facets of a polytope with g-vector (1, g1, g2), or equivalently the number
of rays of the corresponding fan. Then a complete smooth fan in R4 has 6 generating
rays if and only if the corresponding normal polytope has g-vector (1, 1, 0) or (1, 1, 1).
But all these fans have been classi�ed by Kleinschmidt [29]. Thus, the cobordism
classes in ΩU

8 corresponding to these g-vectors that contain smooth (projective) toric
varieties are exactly those corresponding to the smooth toric varieties of dimension 8
given in Theorem 3.24, using n = 4.

Theorem 4.25. Suppose [M ] ∈ ΩU
8 satis�es (4.4.1) with g1 = 1 and g2 ∈ {0, 1}.

Then [M ] can be represented by a smooth projective toric variety if and only if

[M ] ∈ {[X4 (a1, a2, a3)] , [X4 (a1, a2)] , [X4 (a1)]}

for some integers 0 ≤ a1 ≤ a2 ≤ a3.

Calculating the Chern numbers of the above smooth toric varieties reveals that
once again, they cannot represent all combinations of Chern numbers satisfying (4.4.1)
with these g-vectors and (4.4.9). This means that (4.4.1) are not the only obstructions
to a cobordism class containing a smooth projective toric variety for the g-vectors
(1, 1, 0) or (1, 1, 1). However, by taking several equivariant blow-ups of X4 (a1, a2, a3),
one can obtain enough smooth projective toric varieties with the g-vector (1, 3, 2) to
show that (4.4.1) are the only obstructions to containing a smooth projective toric
variety for this g-vector.

Theorem 4.26. Suppose [M ] ∈ ΩU
8 satis�es (4.4.1) with g-vector (1, 3, 2). That is,

c4[M ] = 16

c1c3[M ] = 64 (4.4.11)

c4
1[M ] = 4c2

1c2[M ] + 3c2
2[M ]− 672.

Then [M ] can be represented by a smooth projective toric variety.

The following lemma will make the calculations in the proof of this theorem con-
siderably simpler.

Lemma 4.27. Let X8 be a smooth projective toric variety with a corresponding reg-
ular complete fan Σ in R4. Suppose {u1, u2, u3, v1, v2} ⊂ G (Σ) are some of its gen-
erating rays, where ui = ei for all i, v1 = e4, and v2 = (a1, a2, a3,−1) for integers
ai. Assume that pos (u1, u2, u3, v1) and pos (u1, u2, u3, v2) are two cones in Σ. Now
apply a star subdivision to pos (u1, u2, u3) in Σ to obtain a new fan Σ′ with corre-
sponding smooth projective toric variety XΣ′. Let P and P ′ be the smooth polytopes
corresponding to Σ and Σ′, respectively.

1. If g (P ) = (1, g1, g2), then g (P ′) = (1, g1 + 1, g2 + 1).
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2. The changes in cobordism that rely on the combinatorial structure are described
by c2

1c2 [XΣ′ ] = c2
1c2 [XΣ] + 4 (a1 + a2 + a3)− 16 and c2

2 [XΣ′ ] = c2
2 [XΣ].

Proof. The change in g-vector is given by Theorem 3.39 since the cone that is being
blown up has dimension three and therefore corresponds to a face of codimension
three, i.e. an edge, in the associated polytope.

By Proposition 3.40, the change in cobordism is completely independent of the
unmentioned generating rays of Σ and Σ′. To prove the lemma, it therefore su�ces
to compute these Chern numbers for one example pair of suitable varieties XΣ and
XΣ′ .

De�ne u4 = (−1,−1,−1, 0), and let Σ be the fan whose generating rays are given
by {u1, u2, u3, u4} ∪ {v1, v2} and whose maximal cones consist of three elements from
the �rst set and one element from the second set (see Figure 4.1). Note that Σ is
almost the same as Σ4 (a1, a2, a3), except we exclude the condition 0 ≤ a1 ≤ a2 ≤ a3.
It is easy to verify that Σ is still a complete regular fan. The classifying theorem
3.24 only states that this fan is isomorphic to some other fan Σ4 (a1, . . . , ar) for some
r ∈ {1, 2, 3} and integers 0 ≤ a1 . . . ≤ ar. The linear relations in H

∗ (XΣ) are

u1 = u4 − a1v2

u2 = u4 − a2v2

u3 = u4 − a3v2

v1 = v2

and the Stanley-Reisner ideal is J = (u1u2u3u4, v1v2). Combining these relations
yields

H∗ (XΣ) = Z [u4, v2] /
(
v2

2, u
4
4 − (a1 + a2 + a3)u3

4v2

)
.

Using the above linear relations, the �rst Chern class of XΣ is

c1 (XΣ) = u1 + u2 + u3 + u4 + v1 + v2 = 4u4 + (2− a1 − a2 − a3) v2.

The second Chern class is given by c2 (XΣ) = σ2 (u1, u2, u3, u4, v1, v2), where σ2 is the
second elementary symmetric polynomial. It is straight-forward to simplify this using
the relations in the cohomology ring to obtain

c2 (XΣ) = 6u2
4 + (8− 3a1 − 3a2 − 3a3)u4v2.

Then

c2
1 (XΣ) c2 (XΣ) = (4u4 + (2− a1 − a2 − a3) v2)2 (6u2

4 + (8− 3a1 − 3a2 − 3a3)u4v2

)
=
(
16u2

4 + (16− 8a1 − 8a2 − 8a3)u4v2

)
·

·
(
6u2

4 + (8− 3a1 − 3a2 − 3a3)u4v2

)
=
(

96 (a1 + a2 + a3) + 16 (8− 3a1 − 3a2 − 3a3) +

+ 6 (16− 8a1 − 8a2 − 8a3)
)
u3

4v2

= 224u3
4v2.
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Figure 4.1: The fan Σ

Since u3
4v2 = u2u3u4v2 in H∗ (XΣ) and pos (u2, u3, u4, v2) is a maximal cone in Σ,

c2
1c2 [XΣ] = 224 by Proposition 3.29. Similarly,

c2 (XΣ)2 =
(
6u2

4 + (8− 3a1 − 3a2 − 3a3)u4v2

)2

= (36 (a1 + a2 + a3) + 12 (8− 3a1 − 3a2 − 3a3))u3
4v2

= 96u3
4v2,

so c2
2 [XΣ] = 96.
Now consider Σ′ obtained by subdividing pos (u1, u2, u3) in Σ with z = (1, 1, 1, 0)

(see Figure 4.2). The linear relations in H∗ (XΣ′) are

u1 = u4 − a1v2 − z
u2 = u4 − a2v2 − z
u3 = u4 − a3v2 − z
v1 = v2

and the Stanley-Reisner ideal is J = (u4z, v1v2, u1u2u3). Then

H∗ (XΣ′) = Z [u4, v2, z] /
(
u4z, v

2
2, u

3
4 − (a1 + a2 + a3)u2

4v2 − (a1 + a2 + a3) v2z
2 − z3

)
.

The �rst Chern class of XΣ′ is c1 (XΣ′) = 4u4 + (2− a1 − a2 − a3) v2− 2z. Its second
Chern class is

c2 (XΣ′) = σ2 (u1, u2, u3, u4, v1, v2, z)

= 6u2
4 + (8− 3a1 − 3a2 − 3a3)u4v2 − (4− a1 − a2 − a3) v2z.

Then c2
1 (XΣ′) = 16u2

4 + 8 (2− a1 − a2 − a3)u4v2 − 4 (2− a1 − a2 − a3) v2z + 4z2, so

c2
1 (XΣ′) · c2 (XΣ′) =

(
96 (a1 + a2 + a3) + 16 (8− 3a1 − 3a2 − 3a3) +

+ 48 (2− a1 − a2 − a3)− 4 (4− a1 − a2 − a3)

)
v2z

3

= (208 + 4 (a1 + a2 + a3)) v2z
3.
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Figure 4.2: The fan Σ′

Since v2z
3 = u2u3v2z in H∗ (XΣ′) and pos (u2, u3, v2, z) is a maximal cone in Σ′,

c2
1c2 [XΣ′ ] = 208 + 4 (a1 + a2 + a3) = c2

1c2 [XΣ] + 4 (a1 + a2 + a3)− 16. Similarly,

c2 (XΣ′)
2 = (36 (a1 + a2 + a3) + 12 (8− 3a1 − 3a2 − 3a3)) v2z

3

= 96v2z3

Then c2
2 [XΣ′ ] = 96 = c2

2 [XΣ].

This understanding of blow-ups of two-dimensional submanifolds will allow us to
construct smooth projective toric varieties to represent all possible cobordism classes
that satisfy the conditions in Theorem 4.26.

Proof of Theorem 4.26. Consider the complete regular fans Σ4 (a1, a2, a3) for integers
0 ≤ a1 ≤ a2 ≤ a3 (see Section 3.3). Let Σs (a1, a2, a3) denote the fan obtained
from Σ4 (a1, a2, a3) by applying a star subdivision to pos (u3, u4) in Σ4 (a1, a2, a3). Let
z = u3 + u4 = (−1,−1, 0, 0) be the additional ray. The g-vector of the polytope
corresponding to Σ4 (a1, a2, a3) is (1, 1, 0), and one can calculate the g-vector of the
polytope corresponding to Σs (a1, a2, a3) to be (1, 2, 1). In order to compute the
cobordism class of the corresponding smooth projective toric variety Xs (a1, a2, a3), it
remains to compute its Chern numbers c2

1c2 [Xs (a1, a2, a3)] and c2
2 [Xs (a1, a2, a3)] by

(4.4.1). The linear relations in H∗ (Xs (a1, a2, a3)) are

u1 = u4 − a1v2 + z

u2 = u4 − a2v2 + z

u3 = u4 − a3v2

v1 = v2

and the Stanley-Reisner ideal is J = (u3u4, v1v2, u1u2z). Combining these yields

H∗ (Xs (a1, a2, a3)) = Z[u4, v2, z]/I
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where

I =
(
u2

4 − a3u4v2, v
2
2, (a3 − a1 − a2)u4v2z + 2u4z

2 − (a1 + a2) v2z
2 + z3

)
.

The �rst Chern class of the variety is

c1 (Xs (a1, a2, a3)) = 4u4 + (2− a1 − a2 − a3) v2 + 3z.

Its second Chern class is

c2 (Xs (a1, a2, a3)) = σ2 (u1, u2, u3, u4, v1, v2, z)

= (8− 3a1 − 3a2 + 3a3)u4v2 + 10u4z+

+ (6− 2a1 − 2a2 − 3a3) v2z + 3z2.

Then

c1 (Xs (a1, a2, a3))2 = 8 (2− a1 − a2 + a3)u4v2 +24u4z+6 (2− a1 − a2 − a3) v2z+9z2,

so

c1 (Xs (a1, a2, a3))2 · c2 (Xs (a1, a2, a3)) =

=

(
24 (2− a1 − a2 + a3) + 240a3+24 (6− 2a1 − 2a2 − 3a3) +

+72 (a1 + a2 − 2a3) + 60 (2− a1 − a2 − a3)− 36 (2− a1 − a2 − a3) +

+9 (8− 3a1 − 3a2 + 3a3) + 90 (a1 + a2 − 2a3)− 18 (6− 2a1 − 2a2 − 3a3) +

+81 (a3 − a1 − a2)

)
u4v2z

2

This simpli�es to

c1 (Xs (a1, a2, a3))2 · c2 (Xs (a1, a2, a3)) = (204− 6 (a1 + a2 − a3))u4v2z
2.

Since u4v2z
2 = u1u4v2z in H

∗ (Xs (a1, a2, a3)) and pos (u1, u4, v2, z) is a maximal cone
in the fan,

c2
1c2 [Xs (a1, a2, a3)] = 204− 6 (a1 + a2 − a3) .

Similarly,

c2 (Xs (a1, a2, a3))2 =

(
6 (8− 3a1 − 3a2 + 3a3) + 100a3 + 20 (6− 2a1 − 2a2 − 3a3) +

+ 60 (a1 + a2 − 2a3)− 12 (6− 2a1 − 2a2 − 3a3)

+ 27 (−a1 − a2 + a3)

)
u4v2z

2

= (96− a1 − a2 + a3)u4v2z
2,

so
c2

2 [Xs (a1, a2, a3)] = 96− a1 − a2 + a3.
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Since Xs (a1, a2, a3) has g-vector (1, 2, 1), (4.4.1) gives

c4
1 [Xs (a1, a2, a3)] = 432− 27 (a1 + a2 − a3)

c2
1c2 [Xs (a1, a2, a3)] = 204− 6 (a1 + a2 − a3)

c2
2 [Xs (a1, a2, a3)] = 96− a1 − a2 + a3

c1c3 [Xs (a1, a2, a3)] = 60

c4 [Xs (a1, a2, a3)] = 12.

As expected, this variety does not satisfy the conditions in (4.4.11) since it does not
have the desired g-vector. To obtain varieties that do satisfy them, we need to apply
another subdivision. First, consider the unimodular transformation A : R4 → R4

given by

A (v) =


0 0 1 0
0 −1 0 0
1 −1 0 0
0 0 0 1

 · v.
Applying this transformation to the fan Σs (a1, a2, a3) gives a new fanA (Σs (a1, a2, a3))
which corresponds to an isomorphic variety. In particular, consider τ = pos (u1, u3, z)
in Σs (a1, a2, a3). This cone is contained in the two maximal cones pos (u1, u3, z, v1)
and pos (u1, u3, z, v2). One can compute A (τ) = pos (A (u1) , A (u3) , A (z)) to be
given by A (u1) = e3, A (u3) = e1, and A (z) = e2. We can also calculate A (v1) = e4

and A (v2) = (a3,−a2, a1 − a2,−1). Note in particular that the cones A (τ), A (v1),
and A (v2) in A (Σs (a1, a2, a3)) satisfy the conditions of Lemma 4.27. Now apply a
star subdivision of A (τ) in A (Σs (a1, a2, a3)) to obtain a new fan Σ13 (a1, a2, a3) with
corresponding smooth projective toric variety X13 (a1, a2, a3). By Lemma 4.27, the
g-vector of the polytope corresponding to X13 (a1, a2, a3) is (1, 3, 2). By the same
lemma,

c2
1c2

[
X13 (a1, a2, a3)

]
= 204− 6 (a1 + a2 − a3) + 4 (a3 − a2 + a1 − a2)− 16

= 188− 2a1 − 14a2 + 10a3

and
c2

2

[
X13 (a1, a2, a3)

]
= 96− a1 − a2 + a3.

Next consider the unimodular transformation B : R4 → R4 given by

B(v) =


−1 1 0 0
0 0 −1 0
−1 0 1 0
0 0 0 1

 · v.
Again, B (Σs (a1, a2, a3)) is a new fan whose corresponding variety is isomorphic to
Xs (a1, a2, a3). Consider φ = pos (u2, u4, z) in Σs (a1, a2, a3). This cone is contained
in the two maximal cones pos (u2, u4, z, v1) and pos (u2, u4, z, v2). One can compute
B (φ) = pos (B (u2) , B (u4) , B (z)) to be given by B (u2) = e1, B (u4) = e2, and
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B (z) = e3. Also, B (v1) = e4 and B (v2) = (−a1 + a2,−a3,−a1 + a3,−1). Now
apply a star subdivision of φ in B (Σs (a1, a2, a3)) to obtain a new fan Σ24 (a1, a2, a3)
with corresponding smooth projective toric variety X24 (a1, a2, a3). Applying Lemma
4.27, the g-vector of the polytope corresponding to X24 (a1, a2, a3) is (1, 3, 2). By the
same lemma,

c2
1c2

[
X24 (a1, a2, a3)

]
= 204− 6 (a1 + a2 − a3) + 4 (−a1 + a2 − a3 − a1 + a3)− 16

= 188− 14a1 − 2a2 + 6a3

and
c2

2

[
X24 (a1, a2, a3)

]
= 96− a1 − a2 + a3.

To complete the proof of the theorem, it su�ces to show that any cobordism class
in ΩU

8 that satis�es (4.4.11) can be represented by at least one of the smooth projective
toric varieties X13 (a1, a2, a3) or X24 (a1, a2, a3), where 0 ≤ a1 ≤ a2 ≤ a3 are integers.
Note that the possible combinations of Chern numbers for such a cobordism class are
exactly those that satisfy (4.4.9). But c2

1c2 [X13 (a1, a2, a3)] and c2
1c2 [X24 (a1, a2, a3)]

are always even, and c1c3 [X13 (a1, a2, a3)] = c1c3 [X24 (a1, a2, a3)] = 64. The condi-
tions in (4.4.9) therefore reduce to

c2
1c2 + 2c2

2 ≡ 0 mod 4

in this case. It remains to verify that every combination of c2
1c2 and c2

2 that satis�es
this congruence is obtained by one of the X13 (a1, a2, a3) or X24 (a1, a2, a3).

Fix an integer α ≥ 0. First, assume c2
2[M ] = 96 + α for some [M ] ∈ ΩU

8 . The
cobordism classes with this Chern number that could possibly contain a smooth
projective toric variety can be described as those satisfying c2

1c2[M ] = 188 + 6α+ 4β
where β can be given any integer value.

Case 1. Suppose β ≤ α, so 0 ≤ α− β ≤ 2α− β. Then

c2
2

[
X13 (0, α− β, 2α− β)

]
= 96− 0− (α− β) + (2α− β) = 96 + α

and

c2
1c2

[
X13 (0, α− β, 2α− β)

]
= 188− 0− 14 (α− β) + 10 (2α− β) = 188 + 6α + 4β.

Case 2. Suppose β ≥ 0, so 0 ≤ β ≤ α + β. Then

c2
2

[
X24 (0, β, α + β)

]
= 96− 0− β + α + β = 96 + α

and

c2
1c2

[
X24 (0, β, α + β)

]
= 188− 0− 2β + 6 (α + β) = 188 + 6α + 4β.

These two cases have shown that all cobordism classes [M ] ∈ ΩU
8 satisfying

(4.4.11) and c2
2[M ] ≥ 96 can be represented by the smooth projective toric varieties
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X13 (a1, a2, a3) and X24 (a1, a2, a3). In fact, the two cases overlap, so many classes
can be represented by multiple examples of these varieties.

Next, assume c2
2[M ] = 96 − α, where α ≥ 0 is still an arbitrary integer. The

cobordism classes with this Chern number that could possibly contain a smooth
projective toric variety can be described as those satisfying c2

1c2[M ] = 188− 6α+ 4β
where β can be given any integer value.

Case 1. Suppose β ≤ 0, so 0 ≤ α ≤ α− β. Then

c2
2

[
X13 (α, α− β, α− β)

]
= 96− α− (α− β) + (α− β) = 96− α

and

c2
1c2

[
X13 (α, α− β, α− β)

]
= 188− 2α− 14 (α− β) + 10 (α− β) = 188− 6α + 4β.

Case 2. Suppose β ≥ −α, so 0 ≤ α ≤ 2α + β. Then

c2
2

[
X24 (α, 2α + β, 2α + β)

]
= 96− α− (2α + β) + (2α + β) = 96− α

and

c2
1c2

[
X24 (α, 2α + β, 2α + β)

]
= 188−14α−2 (2α + β)+6 (2α + β) = 188−6α+4β.

The previous two cases have shown that all cobordism classes [M ] ∈ ΩU
8 satisfying

(4.4.11) and c2
2[M ] ≤ 96 can be represented by the smooth projective toric varieties

X13 (a1, a2, a3) and X24 (a1, a2, a3), again with some overlap. Between the four cases,
all possible cobordism classes that satisfy (4.4.11) have been represented by smooth
projective toric varieties, which proves the theorem.

Now that all cobordism classes corresponding to one g-vector have been shown
to have smooth projective toric varieties, induction can be used to say the same for
other g-vectors. This is done by applying blow-ups along zero- and two-dimensional
torus-equivariant subvarieties of the varieties X13 (a1, a2, a3) and X24 (a1, a2, a3).

Theorem 4.28. Let [M ] ∈ ΩU
8 . Choose integers g1 and g2 such that 2 ≤ g2 ≤ g1− 1.

Assume that the following conditions are satis�ed.

c4[M ] = 5 + 3g1 + g2

c1c3[M ] = 50 + 6g1 − 2g2

c4
1[M ] = 4c2

1c2[M ] + 3c2
2[M ] + 3g1 − 3g2 − 675

Then [M ] is represented by a smooth projective toric variety.

Proof. Suppose [M ] ∈ ΩU
8 satis�es the equations in the theorem (see (4.4.1)) with

2 ≤ g2 ≤ g1 − 1. If (1, g1, g2) = (1, 3, 2), then [M ] contains a smooth projective toric
variety according to Theorem 4.26. Now �x a g-vector satisfying 2 ≤ g2 ≤ g1 − 1.
Recall that subdividing a maximal cone in a regular fan increases g1 by one and
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subdividing a three-dimensional cone increases both g1 and g2 by one (see Theo-
rem 3.39). This means that a regular fan with the �xed g-vector (1, g1, g2) can be
obtained through a sequence of star subdivisions starting with a regular fan with
g-vector (1, 3, 2). Start with one of the fans Σ13 (a1, a2, a3) or Σ24 (a1, a2, a3), whose
g-vectors are all (1, 3, 2) and �x such a sequence of subdivisions to obtain a fan with
g-vector (1, g1, g2). Choose these subdivisions so that any cone which intersects a
cone containing the ray v2 = (a1, a2, a3,−1) is never subdivided. By Proposition
3.40, the change in cobordism class through this sequence of subdivisions is indepen-
dent of the values of a1, a2, and a3. In other words, regardless of these values, the
same constants are added to the Chern numbers of X13 (a1, a2, a3) and X24 (a1, a2, a3)
to obtain the Chern numbers of the smooth projective toric varieties with g-vector
(1, g1, g2). But all possible combinations Chern numbers with g-vector (1, 3, 2) are
obtained using X13 (a1, a2, a3) and X24 (a1, a2, a3). This means that all possible com-
binations of Chern numbers can be obtained for a cobordism class corresponding to
(1, g1, g2), just by starting the sequence of subdivisions with the appropriate variety
X13 (a1, a2, a3) or X24 (a1, a2, a3).

Note that the same techniques that gave a complete answer to Problem 4.1 in ΩU
6

only give a partial answer in ΩU
8 . There are still in�nitely many cobordism classes

that satisfy (4.4.1) that may or may not contain a smooth projective toric variety.
However, Theorem 4.28 gives a nice asymptotic result, which is displayed in Figure
4.3. The lattice points represent the values g1 and g2 of a g-vector (1, g1, g2) that cor-
respond to simple four-dimensional polytopes. Recall that each of these coordinates
determines a distinct Chern number in complex cobordism (see Corollary 4.11). The
shaded area in the �gure represents the g-vectors for which the obstructions (4.4.9) on
the corresponding Chern numbers are the only obstructions to a cobordism class con-
taining a smooth projective toric variety. That is, each cobordism class with Chern
numbers given by these g-vectors can be represented by a smooth projective toric
variety.

Theorem 4.28 essentially says that if a g-vector allows for enough freedom in
choices of smooth polytopes, such polytopes can be found so that the associated
smooth projective toric varieties represent all possible cobordism classes. The re-
maining g-vectors that have not been addressed could possibly be approached by
gaining a more thorough understanding of the smooth four-dimensional polytopes
that can have these g-vectors.

4.5 Smooth projective toric varieties in higher-dimensional cobordism

As cobordism dimension increases, the number of Chern numbers |π (n)| increases
rapidly, and the previously used techniques quickly become impractical. Both ΩU

6 and
ΩU

8 display asymptotic behavior regarding the g-vectors that correspond to cobordism
classes with smooth projective toric varieties (see Theorems 4.16 and 4.28). It seems
reasonable to expect that in any dimension, certain g-vectors will correspond to a
large enough assortment of smooth polytopes to allow a similar asymptotic result to
hold.
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Figure 4.3: g-vectors satisfying the conditions of Theorem 4.28

Conjecture 4.29. There is a set of g-vectors for which the corresponding
⌊
n+2

2

⌋
independent conditions on Chern numbers are the only obstructions to a cobordism
class in ΩU

2n being represented by a smooth projective toric variety.

Several facts about which cobordism classes contain smooth projective toric vari-
eties can be proven by using the combinatorial structure of toric varieties and some
basic classi�cation theorems. For example, Corollary 4.11 can be thought of as the
most generalized version of the fact that the Todd genus of a toric variety is one, and
it describes all obstructions to a cobordism class containing a smooth projective toric
variety that arise from the g-vector of the associated polytope.

As an example of the value of classi�cation results on toric varieties, recall that
the only n-dimensional smooth projective toric variety with g-vector (1, 0, . . . , 0) is

CP n (see Example 3.19). By Corollary 4.7, χy (CP n) =
n∑
k=0

(−y)k. This implies the

following

Theorem 4.30. Suppose [M ] ∈ ΩU
2n satis�es χy (M) =

n∑
k=0

(−y)k. Then [M ] can be

represented by a smooth projective toric variety if and only if [M ] = [CP n].

Kleinschmidt's classi�cation theorem 3.24 of complete regular fans in Rn with
n + 2 generating rays also gives information about smooth projective toric varieties
in certain dimensions.

Theorem 4.31. Suppose [M ] ∈ ΩU
2n satis�es Corollary 4.7 for some g-vector corre-

sponding to a smooth n-polytope, and assume g1 = 1. Then [M ] is represented by a
smooth projective toric variety if and only if M is cobordant to one of Kleinschmidt's
varieties Xn (a1, . . . , ar), where 1 ≤ r ≤ n − 1 and 0 ≤ a1 ≤ a2 ≤ . . . ≤ ar are
integers.
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Proof. If g1 = 1, then the de�nition of the g- and h-vector (De�nition 3.18 and
(3.2.1)) yield 1 = g1 = h1 − 1 =f0 − n− 1. Then any smooth polytope with g-vector
(1, 1, g2, . . .) has f0 = n+ 2 facets. Then the normal fan to such a polytope has n+ 2
generating rays. These are exactly the fans classi�ed in Theorem 3.24. Since they
account for every smooth variety whose fan has n + 2 generators, [M ] must be the
cobordism class of one of these varieties if it is to contain a smooth projective toric
variety with g1 = 1.

Copyright c© Andrew Wilfong, 2013.
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Chapter 5 Smooth Projective Toric Variety Polynomial Generators in

Complex Cobordism

The previous chapter focused on examining which cobordism classes are represented
by smooth projective toric varieties (see Problem 4.1). This was done by calculating
certain cobordism invariants, i.e. the Chern numbers, of toric varieties. However,
the answer to Problem 4.1 turns out to be quite complicated since the combinatorial
structure of toric varieties does not yield much information about Chern numbers.
This gives good reason to instead examine the Milnor numbers of toric varieties (refer
to De�nition 2.6). Like the Chern numbers, these are cobordism invariants. Recall
that a cobordism class [M ] ∈ ΩU

2n is completely determined by its |π (n)| Chern
numbers (see 2.5). The Milnor numbers of a manifold hold much less information
than this about cobordism. However, this loss of information is accompanied by a
large decrease in computational di�culty, and the Milnor numbers still capture very
useful information about complex cobordism. Recall that the value of Milnor numbers
determines exactly when a cobordism class can be used as a polynomial generator of
ΩU
∗
∼= Z [α1, α2, . . .] (see Theorem 2.9). In particular, a cobordism class [M2n] can be

chosen for the polynomial generator αn of ΩU
∗
∼= Z [α1, α2, . . .] if and only if its Milnor

number sn [M ] satis�es

sn [M ] =

{
±1 if n+ 1 6= pm for any prime p and integer m

±p if n+ 1 = pm for some prime p and integer m.
(5.0.1)

If the Milnor numbers of toric varieties could be computed, one could determine
exactly when the cobordism class of a toric variety can be used as a polynomial
generator αn. This in turn may bring more understanding to the ring structure of
complex cobordism.

Recall that a smooth algebraic variety (not necessarily connected) can be chosen
to represent each αn (see Theorem 2.12). By taking connected sums of algebraic
varieties, smooth connected (not necessarily algebraic) manifolds can be chosen to
represent each αn. This raises the question of which polynomial generators can be
represented by smooth connected algebraic varieties. Smooth projective toric varieties
are particularly convenient examples of these varieties, and it seems likely that these
can be used to represent any polynomial generator.

Conjecture 5.1. For each n ≥ 1, there exists a smooth projective toric variety whose
cobordism class can be chosen for the polynomial generator αn of ΩU

∗
∼= Z [α1, α2, . . .].

Recall from (2.1.1) that sn [CP n] = n + 1 for n ≥ 1. By applying (5.0.1), this
means that the cobordism class of the smooth projective toric variety CP n can be
used for many of the polynomial generators.

Proposition 5.2. The cobordism class [CP n] can be chosen as the polynomial gen-
erator αn of ΩU

∗ = Z [α1, α2, . . .] if and only if n+ 1 is prime.

Note in particular that one can choose α1 = [CP 1] and α2 = [CP 2].
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5.1 Polynomial generators given by Kleinschmidt's varieties

In general, it is still very di�cult to calculate the Milnor numbers of smooth projec-
tive toric varieties. The main di�culty in proving Conjecture 5.1 is �nding smooth
projective toric varieties that are simple enough to allow their Milnor numbers to be
calculated yet complicated enough to yield many di�erent possible values. Studying
the Milnor numbers of Kleinschmidt's varieties (see Theorem 3.24) and some blow-ups
of them could reach this balance.

Theorem 5.3. Consider the smooth projective toric variety Xn (a1, . . . , ar) for some
integers n ≥ 2, n − r ≤ r ≤ n − 1, and 0 ≤ a1 ≤ a2 ≤ . . . ≤ ar (see Theorem 3.24).
The Milnor number of this variety is given by the formula

sn [Xn (a1, . . . , ar)] = (r + 1)hn−r (a1, . . . , ar) +

+
n−r∑
i=1

(−1)i
(
n

i

)
si (a1, . . . , ar)hn−r−i (a1, . . . , ar)

where sk (a1, . . . , ar) = ak1 + . . .+ akr is the symmetric polynomial from De�nition 2.6
and hk is the complete homogeneous symmetric polynomial.

Proof. The cohomology of Xn (a1, . . . , ar) must be computed �rst (see Theorem 3.26).
The set of generating rays of Σn (a1, . . . , ar) is {u1, . . . , ur+1, v1, . . . , vn−r+1}, where
uk = ek for k = 1, . . . , r, ur+1 =

(
−1, (r). . .,−1, 0 . . . , 0

)
, vk = er+k for k = 1, . . . , n− r,

and vn−r+1 = (a1, . . . , ar,−1, . . . ,−1). Let uk and vk denote the cohomology classes
corresponding to the rays uk and vk, respectively. Also, set u = ur+1 and v = vn−r+1

in H∗ (Xn (a1, . . . , ar)). The linear relations in cohomology are given by

uk = u− akv for k = 1, . . . , r

ur+1 = u

vk = v for k = 1, . . . , n− r + 1

and the Stanley-Reisner ideal is

J = (u1 · · ·ur+1, v1 · · · vn−r+1) .

Combining these yields

H∗ (Xn (a1, . . . , ar)) = Z [u, v] /I,

where

I =

(
u ·

r∏
k=1

(u− akv) , vn−r+1

)
.

Several relations in this cohomology ring will be particularly useful. One of these
is

vn−r+1 = 0. (5.1.1)
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Another is given by

0 = u ·
r∏

k=1

(u− akv) = ur+1 +
n−r∑
i=1

(−1)i σi (a1, . . . , ar)u
r−i+1vi,

where σi is the ith elementary symmetric polynomial. Note that the terms with
higher powers of v vanish since vn−r+1 = 0. This relation gives

ur+1 =
n−r∑
i=1

(−1)i+1 σi (a1, . . . , ar)u
r−i+1vi.

Then by (5.1.1),

ur+1vn−r−1 = σ1 (a1, . . . , ar)u
rvn−r = h1 (a1, . . . , ar)u

rvn−r

where hi is the i
th complete homogeneous symmetric polynomial. Similarly,

ur+2vn−r−2 = σ1 (a1, . . . , ar)u
r+1vn−r−1 − σ2 (a1, . . . , ar)u

rvn−r

= σ1 (a1, . . . , ar)h1 (a1, . . . , ar)u
rvn−r − σ2 (a1, . . . , ar)u

rvn−r

= h2 (a1, . . . , ar)u
rvn−r

where the �nal equality follows from the well-known relation among symmetric poly-
nomials

j∑
i=0

(−1)i σi (a1, . . . , ar)hj−i (a1, . . . , ar) = 0 (5.1.2)

for any integer j ≥ 1 [17]. Using (5.1.2) and induction, for any integer j = 0, . . . , n−r,

ur+jvn−r−j =

j∑
i=1

(−1)i+1 σi (a1, . . . , ar)u
r+j−ivn−r+i−j

ur+jvn−r−j =

j∑
i=1

(−1)i+1 σi (a1, . . . , ar)hj−i (a1 . . . ar)u
rvn−r

ur+jvn−r−j = hj (a1, . . . , ar)u
rvn−r. (5.1.3)

Now Theorem 3.30 can be applied to �nd the Chern class of Xn (a1, . . . , ar):

c (Xn (a1, . . . , ar)) = (1 + u1) · · · (1 + ur+1) · (1 + v1) · · · (1 + vn−r+1)

= (1 + u) ·
r∏

k=1

(1 + u− akv) · (1 + v)n−r+1
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Since this provides a splitting of the Chern class, De�nition 2.6 gives a formula for
the characteristic class

sn (c (Xn (a1, . . . , ar))) = un +
r∑

k=1

(u− akv)n + (n− r + 1) vn

= un +
r∑

k=1

n−r∑
i=0

(−1)i
(
n

i

)
aiku

n−ivi by (5.1.1)

= un +
n−r∑
i=0

(−1)i
(
n

i

)( r∑
k=1

aik

)
un−ivi

= un + run +
n−r∑
i=1

(−1)i
(
n

i

)
si (a1, . . . , ar)u

n−ivi

= (r + 1)ur+(n−r)+

+
n−r∑
i=1

(−1)i
(
n

i

)
si (a1, . . . , ar)u

r+(n−i−r)vn−r−(n−r−i)

= (r + 1)hn−r (a1, . . . , ar)u
rvn−r+

+
n−r∑
i=1

(−1)i
(
n

i

)
si (a1, . . . , ar)hn−r−i (a1, . . . , ar)u

rvn−r

by (5.1.3).

Note that in H∗ (Xn (a1, . . . , ar)), u1 · · ·ur · v1 · · · vn−r = vn−r ·
r∏

k=1

(u− akv) = urvn−r

by (5.1.1). Then by Proposition 3.29,

sn [Xn (a1, . . . , ar)] = (r + 1)hn−r (a1, . . . , ar) +

+
n−r∑
i=1

(−1)i
(
n

i

)
si (a1, . . . , ar)hn−r−i (a1, . . . , ar) .

Note that even this fairly complicated formula does not give the Milnor number for
every one of the varieties classi�ed by Kleinschmidt whose associated fans have two
more rays than the ambient dimension. It is only true when n− r ≤ r. If n− r > r,
then (5.1.3) no longer holds, and it must be replaced with a much more complicated
expression. On the other hand, the formula in Theorem 5.3 becomes much simpler
for certain special choices of the ak. For example,

Corollary 5.4. Consider the smooth projective toric variety Xr
n (a) = Xn

(
0, (r−1). . . , 0, a

)
for some integers n ≥ 2, n− r ≤ r ≤ n− 1, and 0 ≤ a. Its Milnor number is

sn [Xr
n (a)] = aε

(
r + (−1)ε

(
n− 1

ε

))
where ε = n− r.
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Proof. By Theorem 5.3,

sn [Xr
n (a)] = (r + 1)hn−r (0, . . . , 0, a) +

+
n−r∑
i=1

(−1)i
(
n

i

)
si (0, . . . , 0, a)hn−r−i (0, . . . , 0, a)

= (r + 1) an−r +
n−r∑
i=1

(−1)i
(
n

i

)
ai · an−r−i

= an−r

(
r + 1 +

n−r∑
i=1

(−1)i
(
n

i

))

= an−r
(
r + (−1)n−r

(
n− 1

n− r

))
.

The last equality is a basic property of binomial coe�cients [1].

This same formula happens to hold in this particular example even when r < n−r.

Proposition 5.5. Consider the smooth projective toric variety

Xr
n (a) = Xn

(
0, (r−1). . . , 0, a

)
for some integers n ≥ 2, 1 ≤ r ≤ n− 1, and 0 ≤ a. Its Milnor number is

sn [Xr
n (a)] = aε

(
r + (−1)ε

(
n− 1

ε

))
where ε = n− r.

Proof. As in the proof of Theorem 5.3, one can calculate the cohomology of Xr
n (a)

to be H∗ (Xr
n (a)) = Z [u, v] /I, where I = (ur (u− av) , vn−r+1). In particular,

ur+1 = aurv and vn−r+1 = 0.

Then ur+1vn−r−1 = aurvn−r. Similarly, for j = 1, . . . , n− r,

ur+jvn−r−j = aur+j−1vn−r−j+1

= a2ur+j−2vn−r−j+2

...

= ajurvn−r.
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The Chern class of Xr
n (a) is given by c (Xr

n (a)) = (1 + u)r (1 + u− av) (1 + v)n−r+1.
Then

sn (c (Xr
n (a))) = run + (u− av)n

= run +
n−r∑
k=0

(−1)k
(
n

k

)
akun−kvk since vn−r+1 = 0

= an−rrurvn−r +
n−r∑
k=0

(−1)k
(
n

k

)
ak · an−r−kurvn−r

= an−r

(
r +

n−r∑
k=0

(−1)k
(
n

k

))
urvn−r

= an−r
(
r + (−1)n−r

(
n− 1

n− r

))
urvn−r.

This produces the desired value for the Milnor number.

Now that the Milnor number of many of Kleinschmidt's varieties has been cal-
culated, one can begin exploring when this Milnor number satis�es (5.0.1). In other
words, in which dimensions can the cobordism class of one of Kleinschmidt's varieties
be used as a polynomial generator of complex cobordism?

Theorem 5.6. If n = 2m − 1 for some integer m ≥ 2, then the cobordism class
of a smooth projective toric variety can be chosen as the polynomial generator αn of
ΩU
∗ = Z [α1, α2, . . .]. In particular, one can choose αn = [Xn (1)].

Proof. By Proposition 5.5, sn [Xn (1)] = sn [X1
n (1)] = 1 + (−1)n−1 (n−1

n−1

)
= 2 since n

is odd. Then by Theorem 2.9, [Xn (1)] can be chosen for αn.

Recall that the cobordism class of CP n can be used for the polynomial generator
if n is one less than a prime. In fact, one can �nd more examples of polynomial
generators in these dimensions among Kleinschmidt's varieties.

Proposition 5.7. If n = p − 1 for some prime p ≥ 5, then [X2
n (1)] can be chosen

for the polynomial generator αn.

Proof. By Proposition 5.5, sn [X2
n (1)] = 2 + (−1)n−2 (n−1

n−2

)
= n + 1 = p since n is

even. Then by Theorem 2.9, [X2
n (1)] can be chosen for αn.

Note that in each of these dimensions n = p−1, where p ≥ 5 is prime, there are two
distinct choices for smooth projective toric varieties which can be used as polynomial
generators. In fact, these varieties are not even cobordant. This can be seen by using
Corollary 4.7 to calculate the Chern numbers cn [X2

n (1)] = 3n−3 6= n+1 = cn [CP n].
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5.2 Blow-ups of Kleinschmidt's varieties

While simple examples of Kleinschmidt's varieties have provided some examples of
polynomial generators of ΩU

∗ = Z [α1, α2, . . .] (see Theorem 5.6 and Proposition 5.7),
there are still many dimensions in which examples have not been found. Calculating
Milnor numbers of smooth projective toric varieties can be challenging in general.
Instead of searching for more varieties which might have easily computable Milnor
numbers, it may be easier to apply an operation which preserves smoothness and
projectivity to a toric variety, tracking the change in Milnor number during this
operation. One such operation which preserves these properties of toric varieties is
the equivariant blow-up (see Section 3.5).

Proposition 5.8. Consider a complex manifoldM2n and its blow-up BlxM at x ∈M .
The change in Milnor number is given by the following formula.

sn [BlxM ] =

{
sn [M ]− (n+ 1) if n is even

sn [M ]− (n− 1) if n is odd

Proof. This formula is a consequence of the well-known fact that BlxM is di�eomor-
phic to M#CP n as an oriented di�erentiable manifold, where CP n is the complex
projective space with the opposite of the standard orientation (see [26, Proposition
2.5.8] for details). Recall that the Chern class of CP n with its standard complex

structure is c (CP n) = (1 + x)
(n+1)
· · · (1 + x), where x ∈ H2 (CP 2). The reversal of

orientation in CP n changes the sign of one of the x's in this Chern class. That is,

c
(
CP n

)
= (1 + x)n · (1− x) .

Then by De�nition 2.6, sn
(
c
(
CP n

))
= nxn + (−x)n = (n+ (−1)n)xn. Then its

Milnor number is

sn
[
CP n

]
= 〈(n+ (−1)n)xn, µCPn〉 = − (n+ (−1)n) ,

where the negative arises since xn is dual to the fundamental class of CP n with
standard orientation. Then since

[
M#CP n

]
= [M ] +

[
CP n

]
(see [41] for details),

sn [BlxM ] = sn [M ] + sn
[
CP n

]
= sn [M ]− (n+ (−1)n) .

Now Proposition 5.7 can be generalized by examining blow-ups of some of Klein-
schmidt's varieties when n is one less than a power of an odd prime, i.e. n = pm − 1.
In this situation, a cobordism class must have Milnor number ±p for it to be used
as a polynomial generator in cobordism. But each blow-up at a point in this even
complex dimension decreases the Milnor number by n+ 1 = pm. This means that in
order to �nd a smooth projective toric variety with Milnor number p, it su�ces to
�nd one whose Milnor number is positive and is congruent to p modulo pm. The extra
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multiples of pm can then be removed by a sequence of blow-ups of points. By choos-
ing these points to be torus-�xed points, each successive blow-up is itself a smooth
projective toric variety. A technical lemma will be needed to show that there are
smooth projective toric varieties in these dimensions that satisfy this congruence.

Lemma 5.9. Let n = pm − 1 for some odd prime p and integer m ≥ 2. Then there
exists an integer ε ∈ {1, . . . , n− 1} such that

1. for any x ∈ Z, if p 6 |x, then xε ≡ x mod pm−1 AND

2. p|
(
r + (−1)ε

(
n−1
ε

))
, but p2 6 |

(
r + (−1)ε

(
n−1
ε

))
, where r = n− ε.

Proof. Such an ε can be described explicitly. First, suppose n = 32 − 1, so p = 3 and
m = 2. Set ε = 3. Choose x ∈ Z that is not divisible by three. If x ≡ 1 mod 3, then
x = 3k + 1 for some k ∈ Z. Then x3 = 27k3 + 27k2 + 9k + 1 ≡ 1 ≡ x mod 3. A
similar calculation proves that x3 ≡ x mod 3 when x ≡ 2 mod 3. Then this value for ε
satis�es condition 1. Condition 2 is also satis�ed since r+(−1)ε

(
n−1
ε

)
= 5−

(
7
3

)
= −30.

Now assume that n 6= 8. Set

ε = pm−2 (p− 1)2 + 1. (5.2.1)

Note that ε = pm−pm−2 (2p− 1)+1. Since p ≥ 3 andm ≥ 2, 3 ≤ pm−2 (2p− 1) ≤ pm.
Then

1 ≤ pm − pm−2 (2p− 1) + 1 ≤ pm − 2.

In other words, ε satis�es 1 ≤ ε ≤ pm − 2 = n− 1.
Let Z×k = {x ∈ Zk| gcd (z, k) = 1} be the multiplicative group of integers modulo

k. Recall that Z×pm−1 is a cyclic group of order φ (pm−1) = pm−2 (p− 1), where φ is

the Euler φ function. This means that xp
m−2(p−1) ≡ 1 mod pm−1 for any x ∈ Z×pm−1 .

Thus if p 6 |x, then x ∈ Z×pm−1 and xp−1 ∈ Z×pm−1 , so

xε = xp
m−2(p−1)2+1 =

(
xp−1

)pm−2(p−1) · x ≡ x mod pm−1.

This veri�es that ε satis�es the �rst condition.
To prove that the second condition is also satis�ed, �rst consider

(
n−1
ε

)
. Note that

expanding ε in (5.2.1) gives ε = pm − 2pm−1 + pm−2 + 1. Then

r = n− ε = pm − 1− ε = 2pm−1 − pm−2 − 2. (5.2.2)

Then (
n− 1

ε

)
=

(
n− 1

r − 1

)
=

(
pm − 2

2pm−1 − pm−2 − 3

)
(
n− 1

ε

)
=

(pm − 2) (pm − 3) · · · (pm − (2pm−1 − pm−2 − 2))

(2pm−1 − pm−2 − 3)!
. (5.2.3)
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In general, if p 6 |c, then c has a multiplicative inverse c−1 modulo p2. In this situation,

p2 − c
c

= c−1
(
p2 − c

)
≡ −1 mod p2. (5.2.4)

If p|c, then this cancellation cannot be applied.

Case 1. Suppose m = 2. Since p ≥ 5 (for otherwise n = 8, which was addressed
above), (5.2.3) becomes(

n− 1

ε

)
=

(p2 − 2) (p2 − 3) · · · (p2 − (2p− 4)) (p2 − (2p− 3))

(2p− 4)!

=
p2 − p
p
· p

2 − 2

2
· · · p

2 − (p− 1)

p− 1
· p

2 − (p+ 1)

p+ 1
· · · p

2 − (2p− 4)

2p− 4
·

·
(
p2 − (2p− 3)

)
≡ (p− 1) · (−1)p−2 · (−1)p−4 · (−2p+ 3) mod p2

≡ 5p− 3 mod p2.

Then using (5.2.2) and the fact that ε = p2 − 2p+ 2 is odd,

r + (−1)ε
(
n− 1

ε

)
≡ 2p− 3− (5p− 3) mod p2

≡ −3p mod p2.

Since p ≥ 5, this shows that the second condition is satis�ed for m = 2.

Case 2. Suppose m ≥ 3. The factors of (5.2.3) can be separated into terms that can
cancel as in (5.2.4) (Q2 in the following) and terms that cannot cancel (Q1 in the
following), i.e. (

n− 1

ε

)
= Q1 ·Q2 ·

(
pm −

(
2pm−1 − pm−2 − 2

))
.

Note that there is one extra term pm− (2pm−1 − pm−2 − 2) in the numerator that has
no corresponding term in the denominator. More speci�cally, the terms that do not
cancel are

Q1 =
pm − p
p

· p
m − 2p

2p
· · · p

m − (2pm−1 − pm−2 − p)
2pm−1 − pm−2 − p

=
pm−1 − 1

1
· p

m−1 − 2

2
· · · p

m−1 − (2pm−2 − pm−3 − 1)

2pm−2 − pm−3 − 1
.

The terms that cancel can be written as Q2 = P0 · P1 · · ·P2pm−2−pm−3−1 where

P0 =
pm − 2

2
· p

m − 3

3
· · · p

m − (p− 1)

p− 1

Pk =
pm − (kp+ 1)

kp+ 1
· p

m − (kp+ 2)

kp+ 2
· · · p

m − (kp+ p− 1)

kp+ p− 1

for k = 1, . . . , 2pm−2 − pm−3 − 2

P2pm−2−pm−3−1 =
pm − (2pm−1 − pm−2 − p+ 1)

2pm−1 − pm−2 − p+ 1
· · · p

m − (2pm−1 − pm−2 − 3)

2pm−1 − pm−2 − 3
.
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Counting factors and applying the cancellations yields(
n− 1

ε

)
= Q1 ·Q2 ·

(
pm −

(
2pm−1 − pm−2 − 2

))
(
n− 1

ε

)
≡ pm−1 − 1

1
· p

m−1 − 2

2
· · · p

m−1 − (2pm−2 − pm−3 − 1)

2pm−2 − pm−3 − 1
· (5.2.5)

·
(
2pm−1 − pm−2 − 2

)
mod p2.

Now the same process of separating the terms that do cancel and those that do not
cancel can be applied to (5.2.5). This yields(

n− 1

ε

)
≡ pm−2 − 1

1
· p

m−2 − 2

2
· · · p

m−2 − (2pm−3 − pm−4 − 1)

2pm−3 − pm−4 − 1
·

·
(
2pm−1 − pm−2 − 2

)
mod p2.

Applying this separation and cancellation process m − 2 times (recall that m ≥ 3)
gives(

n− 1

ε

)
≡ p2 − 1

1
· p

2 − 2

2
· · · p

2 − (2p− 2)

2p− 2
·
(
2pm−1 − pm−2 − 2

)
mod p2.

Applying the separating and canceling procedure to this new expression is much
simpler.(

n− 1

ε

)
≡ p2 − p

p
· p

2 − 1

1
· · · p

2 − (p− 1)

p− 1
· p

2 − (p+ 1)

p+ 1
· · · p

2 − (2p− 2)

2p− 2
·

·
(
2pm−1 − pm−2 − 2

)
mod p2

≡ (p− 1) · (−1)p−1 · (−1)p−2 ·
(
2pm−1 − pm−2 − 2

)
mod p2

≡ −
(
2pm − 3pm−1 + pm−2 − 2p+ 2

)
mod p2

Then (
n− 1

ε

)
≡

{
p− 2 mod p2 if m = 3

2p− 2 mod p2 if m ≥ 4
.

Thus, using (5.2.2) and the fact that ε = p2 − 2p+ 2 is odd,

r + (−1)ε
(
n− 1

ε

)
≡

{
2pm−1 − pm−2 − 2− (p− 2) mod p2 if m = 3

2pm−1 − pm−2 − 2− (2p− 2) mod p2 if m ≥ 4

≡ −2p mod p2 if m = 3 or m ≥ 4.

This means that p|
(
r + (−1)ε

(
n−1
ε

))
, but p2 6 |

(
r + (−1)ε

(
n−1
ε

))
, which proves that ε

also satis�es the second condition.
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Theorem 5.10. If n = pm − 1 for some odd prime p and some integer m ≥ 2, then
there exists a smooth projective toric variety whose cobordism class can be chosen for
the polynomial generator αn of ΩU

∗ = Z [α1, α2, . . .].

Proof. Choose an integer ε ∈ {1, . . . , n− 1} that satis�es the following conditions.

1. For any x ∈ Z, if p 6 |x, then xε ≡ x mod pm−1 AND

2. p|
(
r + (−1)ε

(
n−1
ε

))
, but p2 6 |

(
r + (−1)ε

(
n−1
ε

))
, where r = n− ε.

Such an integer exists by Lemma 5.9. Set R = r + (−1)ε
(
n−1
ε

)
. Consider the

congruence
Rz ≡ p mod pm. (5.2.6)

Since p2 6 |R, this congruence has some integer solution z = a such that a < 0. Since
p divides R, p cannot divide a (for otherwise, p2|Ra, so a could not be a solution).
Then by the �rst condition above, aε ≡ a mod pm−1. Then aε is also a solution to
(5.2.6). That is,

aε
(
r + (−1)ε

(
n− 1

ε

))
≡ p mod pm. (5.2.7)

Now consider Xr
n (a) = Xn

(
0, (r−1). . . , 0, a

)
. As in the proof of Lemma 4.27, Xr

n (a)

is a smooth projective toric variety, despite the fact that a < 0. Kleinschmidt's
classi�cation theorem 3.24 simply says thatXr

n (a) is isomorphic to one of the varieties
Xn (a1, . . . as) for some integers s ∈ {1, . . . , n− 1} and 0 ≤ a1 ≤ a2 ≤ . . . ≤ as. The
positivity of a is also not needed in the proof of Proposition 5.5, so by this proposition,
sn [Xr

n (a)] = aε
(
r + (−1)ε

(
n−1
ε

))
. Thus sn [Xr

n (a)] ≡ p mod pm. In fact, the choice

of ε = pm − 2pm−1 + pm−2 + 1 guarantees that r + (−1)ε
(
n−1
ε

)
< 0. Then since a < 0

and ε is odd, sn [Xr
n (a)] = aε

(
r + (−1)ε

(
n−1
ε

))
≥ p.

Also recall that each blow-up at a point of a manifold of even complex dimension
n decreases the Milnor number by n+ 1 (see Proposition 5.8). In this situation, this
means that blowing up a smooth projective toric variety of dimension n = pm − 1 at
a torus-�xed point produces a new smooth projective toric variety, and the Milnor
number decreases by n+ 1 = pm. Thus by (5.2.7), applying su�ciently many of these
blow-ups to Xr

n (a) produces a smooth projective toric variety with Milnor number p.
The cobordism class of this variety can be used as a polynomial generator of ΩU

∗ by
Theorem 2.9.

Example 5.11. Suppose n = 52 − 1 = 24, so ε = 50 · (5− 1)2 + 1 = 17 (see (5.2.1)).
Then R = 7 + (−1)17 (23

17

)
= −100940. The congruence −100940z ≡ 5 mod 52 has a

solution z = −7. Then z = (−7)17 = −232630513987207 is also a solution. Thus,
sn [X7

24 (−7)] = (−7)17 (7 + (−1)17 (23
17

))
= 23481724081868674580 ≡ 5 mod 52. Each

blow-up of a point in this dimension decreases the Milnor number by n + 1 = 25.
Thus, by applying a sequence of 939268963274746983 many blow-ups at torus-�xed
points to X7

24 (−7), one obtains a smooth projective toric variety with Milnor number
23481724081868674580 − 25 · 939268963274746983 = 5. The cobordism class of this
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variety can be used as the polynomial generator α24 of ΩU
∗ = Z [α1, α2, . . .] by Theorem

2.9.

This example demonstrates that although Theorem 5.10 gives the existence of
smooth projective toric variety polynomial generators in certain dimensions, the the-
orem is not very useful in explicitly constructing such examples.

So far, the only odd complex dimensions which have been shown to have smooth
projective toric variety representatives for polynomial generators are those that are
one less than a power of two (see Theorem 5.6 and also recall that we can choose
α1 = [CP 1]). In fact, this theorem can be generalized, and Conjecture 5.1 is true for
all odd n. Another number theory fact is needed to prove this.

Lemma 5.12. Let n be a positive odd integer. If n 6= 2k − 1 for any k ∈ Z, then
n ≡ (2m − 1) mod 2m+1 for some integer m ≥ 1.

Proof. Suppose n is odd and n 6= 2k− 1 for any integer k. Then n+ 1 = 2m · q, where
m ≥ 1, q > 1, and 2 6 |q. Then n + 1 − 2m = 2m · q − 2m = 2m (q − 1), and q − 1 is
even. Then 2m+1| (n+ 1− 2m), i.e. n + 1 − 2m = 2m+1 · j for some integer j. Then
n = 2m − 1 + 2m+1 · j, which is equivalent to the congruence given in the lemma.

To prove Conjecture 5.1 for every odd n, blow-ups at points are not enough. The
behavior of Milnor numbers during blow-ups of real-dimension two subvarieties must
also be understood.

Lemma 5.13. Let Σ be a complete regular fan in Rn, where n is odd. Consider an
(n− 1)-dimensional cone τ . Without loss of generality (i.e. by applying a unimod-
ular transformation to Σ to obtain an isomorphic fan), τ = pos (e1, . . . , en−1). This
(n− 1)-dimensional cone is the intersection of two maximal cones. More speci�cally
(again without loss of generality), τ = pos (e1, . . . , en) ∩ pos (e1, . . . , en−1, v) where
v = (a1, . . . , an−1,−1) for some integers ak. Then the change in the Milnor number
upon blowing up XΣ along the two-dimensional submanifold Xτ is given by

sn [BlXτXΣ] = sn [XΣ] + 2 (a1 + . . .+ an−1) .

Proof. By Proposition 3.40, the change in Milnor number is completely determined
by the cones pos (e1, . . . , en) and pos (e1, . . . , en−1, v) that contain τ . Therefore, it
su�ces to consider one simple example containing such a cone τ and compute the
change in Milnor number when τ is subdivided.

Let Σ = Σn (a1, . . . , an−1) as in Theorem 3.24, but allow the ak to have any integer
values (so Σ is isomorphic to some Σn (b1, . . . , br) for some integers r ∈ {1, . . . , n− 1}
and 0 ≤ b1 ≤ . . . ≤ br). By Theorem 5.3,

sn [XΣ] = n · h1 (a1, . . . , an−1)− n · s1 (a1, . . . , an−1) = 0.

The generating rays of Σ are {u1, . . . , un, v1, v2}, where uk = ek for k = 1, . . . , n−1,
un = (−1, . . . ,−1, 0), v1 = en, and v2 = (a1, . . . , an−1,−1). Consider the (n− 1)-
dimensional cone

τ = pos (u1, . . . , un−1) = pos (u1, . . . , un−1, v1) ∩ pos (u1, . . . , un−1, v2)
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in Σ. This cone satis�es the generality conditions speci�ed in the lemma. Subdivide
τ with a new ray w = (1, . . . , 1, 0) to obtain a new fan BlτΣ with corresponding toric
variety BlXτXΣ. The cohomology of this toric variety has linear relations

uk = un − akv2 − w for k = 1, . . . , n− 1

v1 = v2,

and the Stanley-Reisner ring is (unw, v1v2, u1 · · ·un−1). Combining these relations
and using the assumption that n is odd yields

0 = unw

0 = v2
2

0 =
n−1∏
k=1

(un − akv2 − w) (5.2.8)

= un−1
n + wn−1 −

(
n−1∑
k=1

ak

)
un−2
n v2 +

(
n−1∑
k=1

ak

)
v2w

n−2.

These relations can be used to derive several other useful relations, namely

unn = un

(
−wn−1 +

(
n−1∑
k=1

ak

)
un−2
n v2 −

(
n−1∑
k=1

ak

)
v2w

n−2

)

=

(
n−1∑
k=1

ak

)
un−1
n v2

and

wn = w

(
−un−1

n +

(
n−1∑
k=1

ak

)
un−2
n v2 −

(
n−1∑
k=1

ak

)
v2w

n−2

)

= −

(
n−1∑
k=1

ak

)
v2w

n−1.

Also,

un−1
n v2 = v2

(
−wn−1 +

(
n−1∑
k=1

ak

)
un−2
n v2 −

(
n−1∑
k=1

ak

)
v2w

n−2

)
= −v2w

n−1,

so

wn =

(
n−1∑
k=1

ak

)
un−1
n v2.

Note that pos (u2, . . . , un, v2) is a maximal cone in BlτΣ. Then by Proposition
3.29, 〈

u2 · · ·unv2, µBlXτXΣ

〉
= 1.

71



But using the above cohomology relations yields

u2 · · ·unv2 = unv2

n−1∏
k=2

(un − akv2 − w)

= unv2

(
un−2
n − wn−2 −

(
n−1∑
k=2

ak

)
un−3
n v2 −

(
n−1∑
k=2

ak

)
v2w

n−3

)
= un−1

n v2.

Then
〈
un−1
n v2, µBlXτXΣ

〉
= 1. By Theorem 3.30 and the linear relations in cohomology,

the Chern class of BlXτXΣ is given by

c (BlXτXΣ) = (1 + u1) · · · (1 + un) (1 + v1) (1 + v2) (1 + w) .

Then
sn (c (BlXτXΣ)) = un1 + . . .+ unn−1 + unn + vn1 + vn2 + wn.

Using the cohomology relations and the fact that n is odd, for every k = 1, . . . , n− 1,

unk = (un − akv2 − w)n

= unn − wn − nakun−1
n v2 − nakv2w

n−1

=

(
n−1∑
k=1

ak

)
un−1
n v2 −

(
n−1∑
k=1

ak

)
un−1
n v2 − nakun−1

n v2 + naku
n−1
n v2

= 0.

Then sn (c (BlXτXΣ)) = unn + wn = 2

(
n−1∑
k=1

ak

)
un−1
n v2, so

sn [BlXτXΣ] = 2
n−1∑
k=1

ak = sn [XΣ] + 2 (a1 + . . .+ an−1) .

Theorem 5.14. If n is odd, then there exists a smooth projective toric variety whose
cobordism class can be chosen as the polynomial generator αn of ΩU

∗ = Z [α1, α2, . . .].

Proof. For n = 1, use α1 = [CP 1]. If n = 2m−1 for some m ≥ 2, then one can choose
αn = [Xn (1)] by Theorem 5.6. Now assume that n 6= 2k − 1 for any integer k. Then
by Lemma 5.12, there exists an integer m ≥ 1 such that n ≡ (2m − 1) mod 2m+1.
Consider the smooth projective toric variety X = Xn−2m

n (2m − 3). By Proposition
5.5,

sn [X] = (2m − 3)2m
(
n− 2m + (−1)2m

(
n− 1

2m

))
. (5.2.9)

The variety X will be used as a starting point to construct a smooth projective toric
variety in this dimension with Milnor number ±1. By Theorem 2.9, this is what
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the Milnor number needs to be in this dimension in order for the variety to be used
as a polynomial generator. The variety X was chosen because it has two essential
properties. Its Milnor number is positive and odd.

It is easy to see that sn [X] is positive, using (5.2.9) and the fact that m ≥ 1
and n > 2m. Demonstrating that sn [X] is odd is a more di�cult task. Since by
assumption n− 1 ≡ (2m − 2) mod 2m+1, one can write n− 1 = 2m+1K + 2m− 2, and
K is a positive integer since n 6= 2m−1. Let K = K0 +2K1 +22K2 + . . . be the binary
expansion of K, so Ki ∈ {0, 1}. Then 2m+1K = 2m+1K0 + 2m+2K1 + 2m+3K2 + . . ..
Since m ≥ 1, the coe�cient of 2 in the binary expansion of 2m+1K is zero. Let i be
the minimal index such that Ki 6= 0. Then the binary expansion of 2m+1K − 2 is
2 + 22 + . . . + 2m+i + 2m+i+1 · 0 + 2m+i+2Ki+1 + . . .. Note that the coe�cient of 2m

in this expansion is one regardless of the value of i. Then the coe�cient of 2m in the
binary expansion of 2m+1K + 2m − 2 is zero. Then(

n− 1

2m

)
=

(
2m+1K + 2m − 2

2m

)
≡
(

0

0

)(
1

0

)(
1

0

)
· · ·
(

0

1

)(
1

0

)
· · ·
(

1

0

)(
Ki+1

0

)(
Ki+2

0

)
· · · mod 2,

where
(

0
1

)
is the factor corresponding to the coe�cients of 2m in n− 1 and 2m. Since

this factor is zero,
(
n−1
2m

)
≡ 0 mod 2, i.e.

(
n−1
2m

)
is even. Since n is odd, this implies

that

sn [X] = (2m − 3)2m
(
n− 2m + (−1)2m

(
n− 1

2m

))
is odd.

Now a smooth projective toric variety with odd, positive Milnor number has been
constructed in each pertinent dimension. Next, an in�nite sequence of blow-ups will
be described with the property that each blow-up decreases the Milnor number by
four. This means that applying su�ciently many of these blow-ups will produce a
variety with the desired Milnor number ±1 (see Theorem 2.9).

This construction begins with the (n− 1)-dimensional cone τ0 = pos (e1, . . . , en−1)
in the fan Σ corresponding to X. Note that in this fan,

τ0 = pos (e1, . . . , en−1, en) ∩ pos (e1, . . . , en−1, v) ,

where v =
(

0, . . . , 0, 2m − 3,−1, (2m). . . , −1
)
. De�ne X1 = BlXτ0X to be the blow-up

along the real-dimension two subvariety corresponding to τ0. In terms of fans, the
fan of the blown up variety is obtained by a star subdivision of τ0 in the original fan.
Let w = (1, . . . , 1, 0) be the added generating ray. By Lemma 5.13,

sn [X1] = sn [X] + 2 (2m − 3 + (2m − 1) · (−1)) = sn [X]− 4.

That is, the Milnor number has decreased by four.
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Now consider the new smooth projective toric variety X1. Apply the unimodular
transformation φ : Rn → Rn given by

x 7→


1 0 . . . . . . 0
−1 1 0 . . . 0
... 0

. . . . . .
...

−1
...

. . . . . . 0
0 0 . . . 0 1

 · x

to its associated fan to obtain an isomorphic fan denoted by φ (Σ1). In particular,
note that φ (w) = e1, φ (ek) = ek for k = 2, . . . , n, and φ (v) = v. Then one of the
(n− 1)-dimensional cones in the blown up fan is τ1 = pos (w, e2, . . . , en−1). After
applying φ, this cone in φ (Σ1) is

τ1 = pos (e1, . . . , en−1) = pos (e1, . . . , en−1, en) ∩ pos (e1, . . . , en−1, v) .

Then locally, τ1 in φ (Σ1) is identical to τ in Σ. This means that when a star sub-
division is applied to τ1, the resulting fan is associated to a smooth projective toric
variety for which the Milnor number has decreased by four more. One can apply φ to
this newly subdivided fan to again create an (n− 1)-dimensional cone that is locally
identical to τ in Σ. This process can be continued inde�nitely. Since sn [X] is odd
and positive and each step in this process produces a new smooth projective toric
variety with a Milnor number decreased by four, applying a certain number of these
blow-ups will produce a smooth projective toric variety with Milnor number ±1. The
cobordism class of this variety can be used as the polynomial generator by Theorem
2.9.

Example 5.15. Suppose n = 5. Then n ≡ (21 − 1) mod 22. Let

X = X3
5 (−1) = X5 (0, 0,−1) .

The generating rays of the corresponding fan Σ are u1 = e1, u2 = e2, u3 = e3,
u4 = (−1,−1,−1, 0, 0), v1 = e4, v2 = e5, and v3 = (0, 0,−1,−1,−1). By Proposition
5.5, s5 [X] = (−1)2 (3 +

(
4
2

))
= 9. Then two blow-ups of two-dimensional subvarieties

as described in the proof of 5.14 must be applied to obtain a smooth projective toric
variety with Milnor number 9− 4− 4 = 1. The cobordism class of this variety can be
chosen for the polynomial generator α5 in ΩU

∗ = Z [α1, α2, . . .]. More speci�cally, �rst
apply a star subdivision to pos (u1, u2, u3, v1) in Σ, and let w = (1, 1, 1, 1, 0) denote
the added ray. Second, apply a star subdivision to the cone pos (w, u2, u3, v1) in the
new fan to obtain the desired fan.

5.3 Polynomial generators in the remaining dimensions

Conjecture 5.1 has now been veri�ed in many dimensions. More speci�cally, the
cobordism class of a smooth projective toric variety can be chosen as the polynomial
generator αn of ΩU

n
∼= Z [α1, α2, . . .] for any dimension n such that n is odd or n is
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one less than a power of a prime (see 5.6, 5.7, 5.10, and 5.14). The only dimensions
in which Conjecture 5.1 has not yet been veri�ed are those for which n is even and
n+ 1 is not a prime power.

Towards a proof of Conjecture 5.1

While a proof of the conjecture in these dimensions remains elusive, there is over-
whelming numerical evidence that suggests that the conjecture is true. In fact, it
appears that a number-theoretic argument similar to the one used to prove Theo-
rem 5.10 can be applied to the remaining dimensions. Unfortunately, the necessary
number theory conjecture stated below has not yet been proven.

Conjecture 5.16. Suppose n is a positive even integer such that n+1 is not a prime
power. Then there exists an odd integer ε ∈ {1, . . . , n− 1} that satis�es the following
conditions.

1. gcd
(
ε, ord

(
Z×n+1

))
= 1

2. gcd
(
ε+ 1 +

(
n−1
ε

)
, n+ 1

)
= 1

Suppose that 5.16 is true. Write n + 1 = pm1
1 · · · pmtt , where the p1, . . . , pt are

distinct primes, m1, . . . ,mt ∈ N, and t ≥ 2, and choose an integer ε that satis�es the
conjecture. Condition 2 of the conjecture simply states that pk 6 |

(
ε+ 1 +

(
n−1
ε

))
for

every k. Since ε is odd, this means that pk 6 |
(
−ε− 1 + (−1)ε

(
n−1
ε

))
. Since pk| (n+ 1),

we get pk 6 |
(
n− ε+ (−1)ε

(
n−1
ε

))
. Set R = r+(−1)ε

(
n−1
ε

)
, where r = n−ε. Condition

2 of the conjecture then implies that R has an inverse R−1 in Z×n+1.
Now the �rst condition comes into play. Let a, b ∈ Z×n+1, and suppose

aε ≡ bε mod n+ 1.

Let c = a−1 in Z×n+1. Then

1 ≡ (ac)ε ≡ aεcε ≡ bεcε ≡ (bc)ε mod n+ 1.

Since ε is relatively prime to the order of Z×n+1, the only element x ∈ Z×n+1 that
satis�es xε ≡ 1 mod n + 1 is x = 1. Thus bc ≡ 1 mod n + 1, so c = b−1 in Z×n+1.
Then a ≡ b mod n + 1. This means that for integers ε that satisfy the �rst con-
dition, a ≡ b mod n + 1 ⇐⇒ aε ≡ bε mod n + 1. But this in turn implies that{
aε mod n+ 1|a ∈ Z×n+1

}
= Z×n+1.

Consider again R−1 ∈ Z×n+1. By the above argument, R−1 ≡ aε mod n + 1 for
some a ∈ Z×n+1. That is, a

ε
(
r + (−1)ε

(
n−1
ε

))
≡ 1 mod n+ 1. By Proposition 5.5,

sn [Xr
n (a)] ≡ 1 mod n+ 1

for this choice of ε and a. Since ε is odd, one can also choose a to be either positive or
negative to guarantee that sn [Xr

n (a)] is positive. Now apply a sequence of equivariant
blow-ups at torus-�xed points of Xr

n (a). By Proposition 5.8, each of these will de-
crease the Milnor number of the variety by n+1, since n is even. Applying su�ciently
many of these blow-ups to Xr

n (a) will produce a smooth projective toric variety with
Milnor number equal to one. By Theorem 2.9, the cobordism class of this smooth
projective toric variety can be chosen for the generator αn of ΩU

∗
∼= Z [α1, α2, . . .].
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Figure 5.1: The number of integers ε satisfying Conjecture 5.16 for n up to 10000

Evidence supporting Conjecture 5.16

The main di�culty in proving Conjecture 5.16 involves the second condition. In
general, it appears to be challenging to predict when the number ε + 1 +

(
n−1
ε

)
is

divisible by a prime factor of n + 1 for a given value of ε. It is straight-forward to
verify Conjecture 5.16 in a given dimension using a computer program. Doing so yields
an overwhelming amount of numerical evidence that suggests that the conjecture is
true in general.

Proposition 5.17. Conjecture 5.16 is true for every pertinent n ≤ 100000.

Corollary 5.18. For any complex dimension n ≤ 100001, the cobordism class of
a smooth projective toric variety can be chosen as the polynomial generator αn of
ΩU
∗
∼= Z [α1, α2, . . .].

In fact, it appears that the number of integers ε that satisfy Conjecture 5.16
generally increases as n grows. In Figure 5.1, the number of ε satisfying the conditions
of the conjecture is plotted against the dimension n for applicable n up to 10000. In
order to verify the conjecture, only one such ε needs to exist for any given n. It seems
likely that the trend in the graph would continue for larger n, making it doubtful
that there exists some large complex dimension n for which there is no corresponding
ε that satis�es the conjecture.

Since there are so many choices for ε as the dimension grows, it also seems rea-
sonable to place additional convenient restrictions on ε in an attempt to simplify the
conjecture. For example, given n = pm1

1 · · · pmtt , we could try to �nd values for ε that
are prime numbers such that max {p1, . . . , pt} < ε ≤ n − 1. Such ε would automati-
cally satisfy the �rst condition of Conjecture 5.16. Therefore, Conjecture 5.1 is true
if the following number-theoretic conjecture holds.
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Figure 5.2: The number of integers ε satisfying Conjecture 5.19 for n up to 10000

Conjecture 5.19. Assume n is a positive even integer such that n+ 1 = pm1
1 · · · pmtt

is not a prime power. If n 6= 20 and n 6= 50, then there exists a prime ε in the interval
max {p1, . . . , pt} < ε ≤ n− 1 such that gcd

(
ε+ 1 +

(
n−1
ε

)
, n+ 1

)
= 1.

Again, there is a signi�cant amount of evidence supporting this conjecture. A
simple program can compute examples of such ε for relatively small dimensions.

Proposition 5.20. Conjecture 5.19 is true for every pertinent n ≤ 100000.

There are two complex dimensions, n = 20 = 3 · 7− 1 and n = 50 = 3 · 17− 1, for
which no such prime ε exists. For n = 20, one can show that ε = 7 is the only integer
for which Conjecture 5.16 holds. For n = 50, the only suitable ε are ε ∈ {21, 25, 27},
none of which is prime. Despite these low-dimensional anomalies, the number of ε
that satisfy Conjecture 5.19 seems to grow as the dimension n increases. Figure 5.2
displays the number of ε satisfying Conjecture 5.19 for each pertinent dimension up
to 10000. It seems unlikely for there to be a large n for which Conjecture 5.19 fails,
assuming the trend in this graph continues.

Copyright c© Andrew Wilfong, 2013.
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Chapter 6 Vanishing Theorems in Oriented Cobordism

Although cohomology and characteristic classes of toric varieties are well-understood,
these are typically quite di�cult to compute in practice. Only in certain special
situations can these calculations be carried out in great generality. One useful special
case is the class of toric varieties called Bott manifolds (see [9] for details). While
Bott manifolds are simple enough to facilitate topological computations, they are still
varied enough to provide a useful testing ground for properties which may also hold
for more general manifolds.

De�nition 6.1. A Bott tower of height n is a collection of complex manifolds

{Nk|0 ≤ k ≤ n}

which are constructed inductively as follows.

1. N0 is a point.

2. For 1 ≤ k ≤ n, Nk = CP (C⊕ ξk−1) where ξk−1 is a line bundle over the previous
stage Nk−1 of the Bott tower, and C is the trivial line bundle over Nk−1.

Each level of a Bott tower is called a Bott manifold.

It is not immediately obvious that Bott manifolds are indeed toric varieties. How-
ever, it can be shown that each Bott manifold of dimension n can be constructed as a
toric variety from a polytope that is combinatorially equivalent to the hypercube In.
The bundle structure of Bott manifolds makes their cohomology and characteristic
classes easy to compute (again, see [9] for details).

Example 6.2. The simplest Bott tower is one in which Nk = CP (C⊕ C) for each

k. In this situation, it is easy to see inductively that Nk = (CP 1)
k
. A more generic

Bott tower can be thought of as a generalization of a product of complex projective
lines.

Example 6.3. Now consider a Bott tower of height two. Since the only line bundle
over a point is the trivial bundle, N1 = CP (C⊕ C) = CP 1. The highest Bott
manifold in the tower is N2 = CP (C⊕ ξ), where ξ is some line bundle over CP 1.
Since line bundles over CP 1 are completely classi�ed by their �rst Chern classes, this
Bott tower is in fact completely determined by one integer c1 (ξ) = a. The manifold
N2 is often called a Hirzebruch surface and is denoted Ha (see [16, 11] for details). As
a toric variety, the associated fan and polytope of N2 = Ha are displayed in Figure
6.1.

Note that the fan of Ha has 4 = 2+2 generating rays, so it is one of the toric vari-
eties classi�ed by Kleinschmidt in Theorem 3.24. By Kleinschmidt's construction, it
is easy to see that Ha = X2 (a) if a is nonnegative. In general, the fans corresponding
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Figure 6.1: The fan of a Hirzebruch surface Ha and its associated polytope

to higher-dimensional Bott towers have too many generating rays to be one of the
toric varieties classi�ed by Kleinschmidt. However, both classes of toric varieties have
similar projective bundle structures. While a Bott tower is a stack of CP 1-bundles,
each of the varieties classi�ed by Kleinschmidt is a CP i-bundle over some CP j.

Bott towers and certain hypersurfaces within them provide further evidence sup-
porting Stolz's conjecture involving the Witten genus (see [13] for details) and positive
Ricci curvature (see [31] for details).

Conjecture 6.4. ([40]) Let M be a smooth closed string manifold with dimension
divisible by four. If M admits a metric of positive Ricci curvature, then φW (M) = 0,
where φW is the Witten genus.

In this chapter, Bott manifolds and string hypersurfaces within them will be shown
to vanish in oriented cobordism. This implies that every multiplicative genus must
be zero for these manifolds, so in particular their Witten genus is zero. Only a small
portion of the structure present in Bott towers is needed to prove these results. In
this situation, these toric varieties provide inspiration for vanishing theorems that
hold for more generalized manifolds.

6.1 Vanishing of some projectivizations in oriented cobordism

Recall that an oriented manifold represents zero in ΩSO
∗ if and only if all of its Stiefel-

Whitney numbers and Pontrjagin numbers are zero (see Theorem 2.23). One can use
the explicit computations of the Chern class and cohomology of Bott manifolds to
prove that all of these manifolds represent zero in ΩSO

∗ . This vanishing result can be
extended to any manifold with a projective structure like the top projectivization of
a Bott tower.

Proposition 6.5. Let ξ be a two-dimensional complex vector bundle over a compact
stably complex manifold N of dimension 2 (n− 1). Let CP (ξ) = (M,π,N) be its
projectivization, so dimM = 2n. Then [M ] = 0 in ΩSO

2n .
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This proposition will be proven after closer examination of the structure of this
projectivization. By the splitting principle [24, Section 4.4], the induced bundle
π∗ξ = λ1⊕λ2 splits into a sum of line bundles. Thus, we have the following diagram.

E(π∗ξ) = E(λ1 ⊕ λ2) //

��

CP (E(ξ)) = M

π

��
E(ξ) // N

The tangent bundle of M splits as

TM = π∗TN ⊕ TF

where TF is the bundle tangent to the �bers of CP (ξ). Then

c(M) = π∗c(N) · (1 + ω) (6.1.1)

where ω = c1(TF ). Note that ω ∈ H2(M). However the bundle structure yields the
following

Lemma 6.6. Let ξ be a two-dimensional complex vector bundle over a compact,
almost complex manifold N with real dimension 2(n−1). Let CP (ξ) = (M,π,N) be its
projectivization, so c(M) = π∗c(N) · (1 +ω) where ω = c1(TF ). Then ω2 ∈ π∗H4(N).

Proof. Set l1 = c1(λ1) and l2 = c1(λ2). Let x = c1(η∗), where η∗ is dual to the
tautological bundle over M . By [43], the bundle tangent to the �bers stably splits as

TF ⊕ C = η∗ ⊗ π∗ξ.

Then c(TF ) = c(η∗ ⊗ π∗ξ) = (1 + x+ l1)(1 + x+ l2) (compare to [36, Problem 7-C]).
But TF is a complex bundle of rank one, so c2(η∗ ⊗ π∗ξ) = 0. That is,

x2 + (l1 + l2)x+ l1l2 = 0. (6.1.2)

Then c(TF ) = 1 + 2x+ l1 + l2 = 1 + ω, so ω = 2x+ l1 + l2. Then

ω2 = 4x2 + 4(l1 + l2)x+ 2l1l2 + l21 + l22
= −2l1l2 + l21 + l22 by (6.1.2)

= (l1 + l2)2 − 4l1l2

= π∗c1(ξ)2 − 4π∗c2(ξ)

Then ω2 ∈ π∗H4(N).

Several of the relations in the proof of this lemma will be useful later, so they will
be summarized in the following
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Corollary 6.7. Let ξ be a two-dimensional complex vector bundle over a compact,
almost complex manifold N with real dimension 2(n− 1). Let CP (ξ) = (M,π,N) be
its projectivization. Split π∗ξ = λ1 ⊕ λ2 into a sum of line bundles. Set l1 = c1(λ1)
and l2 = c1(λ2). Let x = c1(η∗), where η∗ is dual to the tautological bundle over M .
Then

c(M) = π∗c(N) · (1 + ω)

where
ω = 2x+ l1 + l2.

Also,
x2 + (l1 + l2)x+ l1l2 = 0.

Proof of Theorem 6.5. By Theorem 2.23, it su�ces to prove that all of the Stiefel-
Whitney numbers and Pontrjagin numbers of M2n are zero. Let I = i1, . . . , im be a

partition of n and consider the cohomology class
m∏
k=1

cik (M) ∈ H2n (M). By Corollary

6.7, cik (M) = π∗cik (N) + π∗cik−1 (N) · ω. Since ω2 ∈ π∗H4 (N) by Lemma 6.6,

m∏
k=1

cik (M) =
m∏
k=1

(π∗cik (N) + π∗cik−1 (N) · ω)

= ν1 + ων2

for some ν1 ∈ π∗H2n (N) = 0 and ν2 ∈ π∗H2(n−1) (N). Then using Corollary 6.7,

m∏
k=1

cik (M) = (2x+ l1 + l2) · ν2

= 2xν2 + (l1 + l2) ν2

= 2xν2 + c1 (λ1 ⊕ λ2) · ν2

= 2xν2 + π∗c1 (ξ) · ν2

m∏
k=1

cik (M) = 2xν2 (6.1.3)

since π∗c1 (ξ) · ν2 ∈ π∗H2n (N) = 0. Since each of these cohomology classes is even,
Theorem 2.20 implies that every Stiefel-Whitney number of M is zero.

If the dimension of M is not divisible by four, then all of its Pontrjagin numbers
are zero by the de�nition of Pontrjagin classes. Now assume that the dimension 2n of

M is divisible by four. Formally write the Chern class of N as c (N) =
n−1∏
k=1

(1 + vk).

Then by Corollary 6.7,

c (M) = 1 + c1 (M) + c2 (M) + . . . = (1 + ω) ·
n−1∏
k=1

(1 + π∗vk)
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and

1− c1 (M) + c2 (M)− . . . = (1− ω) ·
n−1∏
k=1

(1− π∗vk) .

Then by (2.2.1),

1− p1 (M) + p2 (M)− . . . =
(
1− ω2

)
·
n−1∏
k=1

(
1− π∗v2

k

)
,

so
pk (M) = σk

(
ω2, π∗v2

1, . . . , π
∗v2
n−1

)
,

where σk is the kth elementary symmetric polynomial. In particular, for every k,
pk (M) ∈ π∗H4k (N) by Lemma 6.6. This means that every Pontrjagin number of
M is obtained by evaluating a cohomology class in H2n (N) = 0 on the fundamental
class of M , so all of its Pontrjagin classes are zero.

Theorem 6.5 can be considered in term of Stolz's Conjecture 6.4 as well.

Corollary 6.8. Let ξ be a two-dimensional complex vector bundle over a compact,
stably complex manifold N with dimension 4n − 2. Let CP (ξ) = (M,π,N) be its
projectivization, so dimM = 4n. If M is a string manifold that admits a metric of
positive Ricci curvature, then the Witten genus of M is zero.

Stolz has previously proven that his conjecture holds for total spaces of �ber
bundles in which the structure group is a compact semi-simple Lie group [40, Theorem
3.1]. This corollary generalizes this class of manifolds by demonstrating that if the
bundle is a real-dimension two projectivization, then these conditions on the structure
group are not needed.

6.2 Cobordism vanishing theorem for hypersurfaces in projectivizations

A version of Theorem 6.5 also applies to certain hypersurfaces in the total space of
projectivized bundles. However, several additional conditions must hold in order for
the cobordism classes of these hypersurfaces to be zero. In particular, the hypersurface
must lie in a manifold that is the top level of a stack of two projectivizations. The
hypersurface must also be a string manifold, which places an extra condition on its
characteristic numbers as described below.

De�nition 6.9. An oriented manifold M is called a spin manifold if w2 (M) = 0
(refer to [31, Chapter II] for more details).

Now suppose that M is a spin manifold whose dimension is divisible by four. One
can show that there is a unique cohomology class 1

2
p1 (M) such that multiplying this

class by two yields p1 (M) (see [15, Chapter 1] for details). A spin manifold M is
called a string manifold if 1

2
p1 (M) = 0 [13].
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Theorem 6.10. Let ξ1 be a two-dimensional complex vector bundle over a compact,
almost complex manifold P of dimension 2(n−2). Let CP (ξ1) = (N, π1, P ) denote its
projectivization, so N has dimension 2(n− 1). Now let ξ2 be a two-dimensional com-
plex vector bundle over N . Projectivize ξ2 to form the bundle CP (ξ2) = (M,π2, N),
so M has dimension 2n. If V ⊂ M is a string hypersurface, then V represents zero
in ΩSO

2(n−1).

The proof of Theorem 6.10 is quite technical, so it will be dealt with in several
simpler cases. It is also important to have a thorough understanding of the cohomol-
ogy structure of this construction, so this will be described in more detail before the
proof is given.

By the splitting principle, π∗1ξ1 = λ11 ⊕ λ12 and π∗2ξ2 = λ21 ⊕ λ22 are sums of line
bundles. The following diagram displays the structure that is present.

E(π∗2ξ2) = E(λ21 ⊕ λ22) //

��

CP (E(ξ2)) = M

π2

��
E(ξ2) // CP (E(ξ1)) = N

π1

��

E(π∗1ξ1) = E(λ11 ⊕ λ12)oo

��
P E(ξ1)oo

This bundle structure can be used to calculate the cohomology ring of M . Set
lij = c1(λij) for i, j ∈ {1, 2}. Let η∗1 and η∗2 be dual to the tautological bundles over
N and M , respectively. Let x1 = c1(η∗1) and x2 = c1(η∗2). By Corollary 6.7,

x2
1 + (l11 + l12)x1 + l11l12 = 0 (6.2.1)

and
x2

2 + (l21 + l22)x2 + l21l22 = 0. (6.2.2)

Then by the Leray-Hirsch Theorem,

H∗(M) = π∗2H
∗(N)⊕ π∗2H∗(N) · x2

= π∗2π
∗
1H
∗(P )⊕ π∗2π∗1H∗(P ) · π∗2x1 ⊕ π∗2π∗1H∗(P ) · x2 ⊕ π∗2π∗1H∗(P ) · π∗2x1 · x2

(6.2.3)

where the multiplicative structure is given by (6.2.1) and (6.2.2). In particular,

H2(M) = π∗2π
∗
1H

2(P )⊕ Zπ∗2x1 ⊕ Zx2.

Remark 6.11. To simplify notation, the maps π∗1 and π∗2 will be suppressed. This
means for example that this cohomology group will be written as

H2 (M) = H2 (P )⊕ Zx1 ⊕ Zx2.
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Now �x a cohomology class

z = u+ a1x1 + a2x2 ∈ H2(M) (6.2.4)

where u ∈ H2(P ) and a1, a2 ∈ Z are arbitrary. Let ν be the line bundle over M

with c1 (ν) = z. This determines a codimension two submanifold V
i
↪→ M whose

tangent bundle TV satis�es i∗TV ⊕ ν ∼= TM . This submanifold V ⊂M is called the
hypersurface dual to z (see [15, Section 2.2] for details). In this situation, the Chern
class of M splits as c(M) = i∗c(V )(1 + z). If the Chern class of P is formally written

as c(P ) =
n−2∏
k=1

(1 + vk), then applying Corollary 6.7 twice yields

c(M) = (1 + ω1)(1 + ω2) ·
n−2∏
k=1

(1 + vk) (6.2.5)

where
ω1 = 2x1 + l11 + l12 and ω2 = 2x2 + l21 + l22. (6.2.6)

Remark 6.12. Applying Lemma 6.6 to each level of this projectivization shows that
ω2

2 ∈ H4 (N) and ω2
1 ∈ H4 (P ).

Knowing the formula for the Chern class of M make it possible to determine the
Chern class and Pontrjagin class of V .

Proposition 6.13. Suppose V
i
↪→M is the hypersurface dual to z = u+ a1x1 + a2x2

as described above. The inclusion i induces a map i∗ : H∗ (M)→ H∗ (V ) on the level

of cohomology. The kth Chern class of V is given by

ck (V ) =
k∑
j=0

(−1)j i∗zjσk−j (i∗ω1, i
∗ω2, i

∗v1, . . . , i
∗vn−2)

where σk−j is the (k − j)th elementary symmetric polynomial. The kth Pontrjagin
class of V is given by

pk (V ) =
k∑
j=0

(−1)j i∗z2jσk−j
(
i∗ω2

1, i
∗ω2

2, i
∗v2

1, . . . , i
∗v2
n−2

)
.

Proof. The formula for the Chern class follows from c(M) = c(V )(1 + z) and (6.2.5).
This splitting of the Chern class implies that the total Pontrjagin class of V is de-
scribed by

p (V )
(
1 + i∗z2

)
= (1 + i∗ω2

1)(1 + i∗ω2
2) ·

n−2∏
k=1

(1 + i∗v2
k).

The formula for the Pontrjagin class is derived by expanding this.
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Remark 6.14. As with the maps π∗1 and π∗2, i
∗ will be suppressed to make notation

more manageable. This means that the kth Chern class of V is given by

ck (V ) =
k∑
j=0

(−1)j zjσk−j (ω1, ω2, v1, . . . , vn−2) , (6.2.7)

and its kth Pontrjagin class will be written as

pk (V ) =
k∑
j=0

(−1)j z2jσk−j
(
ω2

1, ω
2
2, v

2
1, . . . , v

2
n−2

)
. (6.2.8)

If V is assumed to be a string manifold, then we obtain additional useful infor-
mation about the cohomology class z2.

Lemma 6.15. Suppose V ⊂ M is a string manifold dual to z as described above.
Then z2 ∈ H4 (N).

Proof. By (6.2.8), the �rst Pontrjagin class of V is given by

p1 (V ) = ω2
1 + ω2

2 + v2
1 + . . .+ v2

n−2 − z2.

Thus, if V is string, then

z2 = ω2
1 + ω2

2 + v2
1 + . . .+ v2

n−2. (6.2.9)

Then by Remark 6.12, z2 ∈ H4 (N).

The string condition on V also places restrictions on the coe�cients of the dual
class z = u+ a1x1 + a2x2. For example,

Lemma 6.16. Suppose V ⊂ M is a string manifold dual to z = u + a1x1 + a2x2 as
described above. Then a2 is even.

Proof. Since V is string, it is also a spin manifold. By de�nition, this means that
c1 (V ) must be even. By (6.2.7) and (6.2.6),

c1 (V ) = ω1 + ω2 + v1 + . . .+ vn−2 − z
= 2x1 + l11 + l12 + 2x2 + l21 + l22 + v1 + . . .+ vn−2 − u− a1x1 − a2x2.

In particular, the coe�cient of x2 in c1 (V ) is 2 − a2. Then in order for c1 (V ) to be
even and V to be spin, a2 must be even.

Now we can begin to approach the proof of Theorem 6.10. In order to prove
that the spin hypersurface V represents zero in ΩSO

∗ , we must show that all of its
Stiefel-Whitney numbers and Pontrjagin numbers are zero (see Theorem 2.23).

Proposition 6.17. Suppose V ⊂ M is a hypersurface dual to z = u + a1x1 + a2x2

with the bundle structure de�ned in 6.10. Then every Stiefel-Whitney number of V
is zero.
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Proof. Consider a partition I = i1, . . . , ij of n. Using (6.2.7), the Chern number of V
corresponding to I is

〈ci1 (V ) · · · cit (V ) , µV 〉 = 〈ci1 (V ) · · · cit (V ) · z, µM〉

=

〈
z

t∏
k=1

(
ik∑
j=0

(−1)j zjσk−j (ω1, ω2, v1, . . . , vn−2)

)
, µM

〉
.

Terms of degree n in the cohomology class that is being evaluated on µM have the
form

ωq11 ω
q2
2 v

r1
1 · · · v

rn−2

n−2 z
s = ωq11 (2x2 + l21 + l22) q2vr11 · · · v

rn−2

n−2 (u+ a1x1 + a2x2)s

where q1 + q2 + r1 + . . . + rn−2 + s = n (see (6.2.6)). After further expanding these
terms, any term that lacks x2 vanishes since it lies in H2n (N) = 0. The remaining
nonzero terms containing x2 must have even coe�cients since a2 is even by Lemma
6.16. Thus every Chern number of V is even, so every Stiefel-Whitney number is zero
by Theorem 2.20.

To prove Theorem 6.10, it only remains to demonstrate that all Pontrjagin num-
bers of the string hypersurface V vanish. This will be approached in several cases,
depending on the nature of the dual cohomology class z ∈ H2 (M).

Proposition 6.18. Suppose V ⊂M is a hypersurface as in Theorem 6.10, where V
is dual to z = u+ a1x1 + a2x2 ∈ H2 (M). If a2 = 0, then [V ] = 0 in ΩSO

2(n−1).

Proof. Consider a partition I = i1, . . . , ij of n. By (6.2.8), the Pontrjagin class
corresponding to I is given by

〈pi1 (V ) · · · pit (V ) , µV 〉 = 〈pi1 (V ) · · · pit (V ) · z, µM〉

=

〈
(u+ a1x1)

t∏
k=1

(
ik∑
j=0

(−1)j z2jσk−j
(
ω2

1, ω
2
2, v

2
1, . . . , v

2
n−2

))
, µM

〉

By Remark 6.12 and Lemma 6.15, the cohomology class that is being evaluated on
µM in the last step belongs to H∗ (N). But this Pontrjagin number is found by
evaluating the degree n terms of this cohomology class on µM , and H2n (N) = 0.
Thus this arbitrary Pontrjagin number is zero.

Now assume that V ⊂ M is dual to z = u + a1x1 + a2x2, where a2 6= 0. Since
z2 ∈ H4 (N) by Lemma 6.15, it cannot include a term with x2, since this class belongs
to H∗ (M) \H∗ (N). But

z2 = (u+ a1x1 + a2x2)2

= a2
2x

2
2 + 2a2 (u+ a1x1)x2 + (u+ a1x1)2

= a2
2 (− (l21 + l22)x2 − l21l22) + 2a2 (u+ a1x1)x2 + (u+ a1x1)2 by (6.2.2)

z2 =
(
2a2u− a2

2 (l21 + l22) + 2a1a2x1

)
x2 + (u+ a1x1)2 − a2

2l21l22. (6.2.10)
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This means that the term being multiplied by x2 in this last expression must be zero.
This can yield some useful information after the introduction of more notation.

Note that l21 + l22 = c1 (ξ2) ∈ H2 (N) = H2 (P )⊕ Zx1 (by again suppressing the
map π∗2). Set

l21 + l22 = y1 + bx1 (6.2.11)

where y1 ∈ H2 (P ) and b ∈ Z. Then (6.2.10) becomes

z2 =
((

2a2u− a2
2y1

)
+
(
2a1a2 − a2

2b
)
x1

)
x2 + (u+ a1x1)2 − a2

2l21l22. (6.2.12)

Since the term in z2 containing x2 must be zero, this implies that 2a2u − a2
2y1 = 0

and 2a1a2 − a2
2b = 0. But a2 6= 0 by assumption, so

2u = a2y1 and 2a1 = a2b. (6.2.13)

By (6.2.9), the term in z2 that contains x1 must equal the term containing x1 in
ω2

1 + ω2
2 + v2

1 + . . .+ v2
n−2. By Remark 6.12, the only one of these squares which may

contain a nonzero x1 term is ω2
2. Let C denote the coe�cient of this term.

Proposition 6.19. Suppose V ⊂M is a hypersurface as in Theorem 6.10, where V
is dual to z = u+ a1x1 + a2x2. If a2 6= 0 and C = 0, then [V ] = 0 in ΩSO

2(n−1).

Proof. Again by Theorem 2.23 and Proposition 6.17, it su�ces to prove that all Pon-
trjagin numbers of V vanish. By (6.2.8), The Pontrjagin number of V corresponding
to I is

〈pi1 (V ) · · · pit (V ) , µV 〉 = 〈pi1 (V ) · · · pit (V ) · z, µM〉

=

〈
z

t∏
k=1

(
ik∑
j=0

(−1)j z2jσk−j
(
ω2

1, ω
2
2, v

2
1, . . . , v

2
n−2

))
, µM

〉
.

Terms of degree n in the cohomology class that is being evaluated on µM have the
form

ωq11 ω
q2
2 v

r1
1 · · · v

rn−2

n−2 z
s−1 · z

where q1 + q2 + r1 + . . .+ rn−2 + s = n and q1, q2, r1, . . . , rn−2, s− 1 are all even. But
the coe�cient C of x1 in z

2 and ω2
2 is zero by assumption. Thus by Lemma 6.15 and

Remark 6.12, zs−1, ωq22 ∈ H∗ (P ). Since ωq11 v
r1
1 · · · v

rn−2

n−2 ∈ H∗ (P ) by Remark 6.12,

ωq11 ω
q2
2 v

r1
1 · · · v

rn−2

n−2 z
s−1 ∈ H2(n−1) (P ) = 0.

Then each term of degree n in the above cohomology class is zero, so every Pontrjagin
number of V is zero.

Now assume the coe�cient C of x1 in z2 and ω2
2 is not zero. Since

l21l22 = c2 (ξ2) ∈ H4 (N) = H4 (P )⊕H2 (P ) · x1

(again suppressing the maps π∗1 and π∗2), we can write

l21l22 = y22 + y21 · x1 (6.2.14)
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for some y22 ∈ H4 (P ) and y21 ∈ H2 (P ). Since the coe�cient of x2 in z2 is zero by
Lemma 6.15, equation (6.2.12) becomes

z2 = (u+ a1x1)2 − a2
2l21l22

= a2
1x

2
1 + 2a1ux1 + u2 − a2

2y22 − a2
2y21x1

= a2
1 (−(l11 + l12)x1 − l11l12) + 2a1ux1 + u2 − a2

2y22 − a2
2y21x1 by (6.2.1)

=
(
2a1u− a2

2y21 − a2
1 (l11 + l12)

)
x1 + terms lacking x1.

Then the coe�cient C of x1 in z2 is

C = 2a1u− a2
2y21 − a2

1 (l11 + l12)

=
1

2
· 2u · 2a1 − a2

2y21 −
1

4
· 2a1 · 2a1 (l11 + l12)

=
1

2
a2

2by1 − a2
2y21 −

1

4
a2

2b
2 (l11 + l12) by (6.2.13)

C =
1

4
a2

2

(
2by1 − 4y21 − b2 (l11 + l12)

)
. (6.2.15)

But C is also the coe�cient of the term containing x1 in ω2
2. Using (6.2.6),

ω2
2 = (2x2 + l21 + l22)2

= 4x2
2 + 4x2 (l21 + l22) + (l21 + l22)2

= 4
(
x2

2 + x2 (l21 + l22) + l21l22

)
+ (l21 + l22)2 − 4l21l22

= (l21 + l22)2 − 4l21l22 by (6.2.2)

= (y1 + bx1)2 − 4 (y22 + y21x1) by (6.2.11) and (6.2.14)

= y2
1 + b2x2

1 + 2by1x1 − 4 (y22 + y21x1)

= y2
1 + b2 (−(l11 + l12)x1 − l11l12) + 2by1x1 − 4 (y22 + y21x1) by (6.2.1)

=
(
2by1 − 4y21 − b2 (l11 + l12)

)
x1 + terms lacking x1.

Then C = 2by1 − 4y21 − b2 (l11 + l12). Comparing this with (6.2.15) yields

C =
1

4
a2

2C.

Since C 6= 0 by assumption, this implies that a2 = ±2.
Consider what happens to z as a result of this.

z = u+ a1x1 ± 2x2

=
1

2
(±2) y1 +

1

2
(±2) bx1 ± 2x2 by (6.2.13)

= ± (y1 + bx1 + 2x2)

= ± (l21 + l22 + 2x2) by (6.2.11)

z = ±ω2 by (6.2.6) (6.2.16)
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Proposition 6.20. Suppose V ⊂M is a hypersurface as in Theorem 6.10, where V
is dual to z = u+ a1x1 + a2x2. If a2 6= 0 and C 6= 0, then [V ] = 0 in ΩSO

2(n−1).

Proof. Consider a partition I = {i1, . . . , ij} of n. Using (6.2.8), the kth Pontrjagin
class of V is given by

pk (V ) =
k∑
j=0

(−1)j z2jσk−j
(
ω2

1, ω
2
2, v

2
1, . . . , v

2
n−2

)
=

k∑
j=0

(−1)j ω2j
2 σk−j

(
ω2

1, ω
2
2, v

2
1, . . . , v

2
n−2

)
by (6.2.16).

Consider terms of degree n − 1 in this cohomology class. By Remark 6.12, the only
terms that do not automatically vanish for dimension reasons are those that contain
ω2

2. The terms that do contain ω2
2 can be separated into those in which ω2

2 appears
in the monomial given by the symmetric polynomial, and those in which ω2

2 does not
appear there. That is,

pk (V ) =
k−1∑
j=0

(−1)j ω
2(j+1)
2 σk−j−1

(
ω2

1, v
2
1, . . . , v

2
n−2

)
+

+
k∑
j=1

(−1)j ω2j
2 σk−j

(
ω2

1, v
2
1, . . . , v

2
n−2

)
= −

k∑
j=1

(−1)j ω2j
2 σk−j

(
ω2

1, v
2
1, . . . , v

2
n−2

)
+

k∑
j=1

(−1)j ω2j
2 σk−j

(
ω2

1, v
2
1, . . . , v

2
n−2

)
= 0.

For these string hypersurfaces satisfying C 6= 0 and a2 = ±2, the entire Pontrjagin
class vanishes. Thus all Pontrjagin numbers of the hypersurface are zero. Then
[V ] = 0 in ΩSO

2(n−1) by Theorem 2.23.

Now all possible string hypersurfaces in a stack of two projectivizations described
in Theorem 6.10 have been considered. The results of Propositions 6.18, 6.19, 6.20
combine to prove Theorem 6.10, i.e. all such hypersurfaces are oriented cobordant to
zero.

As in the simpler case involving one projectivization, this vanishing result on
hypersurfaces gives additional evidence supporting Stolz's Conjecture 6.4.

Corollary 6.21. Let ξ1 be a two-dimensional complex vector bundle over a compact,
almost complex manifold P of dimension 4k − 2. Let CP (ξ1) = (N, π1, P ) denote its
projectivization, so N has dimension 4k. Now let ξ2 be a two-dimensional complex
vector bundle over N . Projectivize ξ2 to form the bundle CP (ξ2) = (M,π2, N), so M
has dimension 4k + 2. If V ⊂ M is a string hypersurface which admits a metric of
positive Ricci curvature, then the Witten genus of V is zero.
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This result can also be thought of as a generalization of cases for which Stolz's
conjecture is known to be true. The conjecture holds for complete intersections in
complex projective space [40] and also for complete intersections in products of com-
plex projective spaces [15, 8]. The results of this section demonstrate that if the
complete intersection has codimension two (i.e. it is a hypersurface), then a much
weaker bundle structure su�ces to satisfy Stolz's conjecture.

Copyright c© Andrew Wilfong, 2013.

90



Chapter 7 Concluding Remarks

Each of Chapters 4, 5, and 6 displays a di�erent problem relating toric varieties and
cobordism. In the past, little has been studied regarding the interaction of toric
varieties and cobordism. As a consequence, there are numerous opportunities to
expand the results in each chapter and also to study other related questions.

In Chapter 4, the combinatorial structure of toric varieties is used to compute
their χy-genus. This provides some information about when a cobordism class cannot
be represented by a smooth projective toric variety. Unfortunately, this combinato-
rial structure only reveals a small proportion of the total information encoded in a
cobordism class. Perhaps this means that the χy-genus is not the best cobordism
invariant to use in this situation. Is there a di�erent invariant that encodes more of
the combinatorial and geometric information of a toric variety? This could in turn
reveal more information about when they represent a given cobordism class.

Studying the χy-genus alone allows us to analyze thoroughly the presence of toric
varieties in complex cobordism classes up to complex dimension three, and it also
provides partial results in dimension four. Further results in dimension four may be
obtained through a better understanding of smooth four-dimensional polytopes. If
more of these polytopes were classi�ed, then one may be able to directly compute
their corresponding cobordism classes, as was the case with the varieties classi�ed by
Kleinschmidt.

As for Chapter 5, it is of course desirable to complete the proof of Conjecture 5.1,
which asserts that the cobordism class of a smooth projective toric variety can be
chosen for each polynomial generator αn of ΩU

∗
∼= Z [α1, α2, . . .]. One way of accom-

plishing this would be to prove the su�cient number theory Conjecture 5.16. This
conjecture involves considering blow-ups of a very special class of varieties that were
classi�ed by Kleinschmidt. There could also be many other smooth projective toric
varieties that may be chosen for generators. Another approach to proving Conjec-
ture 5.1 would be to �nd other smooth projective toric varieties that are complicated
enough to produce a wide range of Milnor numbers, yet are simple enough to still
allow these Milnor numbers to be calculated.

Theorems 5.10 and 5.14 prove that the generators αn for n odd or n one less
than a prime power can be chosen to be represented by smooth projective toric
varieties. Unfortunately, this construction relies on applying an unspeci�ed number
of blow-ups to an initial toric variety. Thus there is no explicit description of each
toric variety generator. However, it seems likely that there are in fact many distinct
smooth projective toric varieties that can be chosen for each αn (see the evidence in
Section 5.3 for example). It may be worthwhile to seek explicit examples of smooth
projective toric varieties that can be chosen for each generator. Is it possible to �nd a
clear universal description of such toric variety generators? Being able to describe the
cobordism ring so explicitly could be helpful in other unrelated cobordism calculations
since toric varieties easily lend themselves to computational methods.

Chapter 6 provides several speci�c vanishing theorems for cobordism classes of
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manifolds in ΩSO
∗ with certain �ber bundle structures. These results are proven by

generalizing certain computations on Bott towers, which are toric varieties with a
similar bundle structure. Since the manifolds described in Theorems 6.5 and 6.10
vanish in oriented cobordism, they provide additional examples that support Stolz's
Conjecture 6.4.

Overall, Stolz's conjecture has only been veri�ed for a very limited number of
special cases. The proofs for all manifolds for which the conjecture is known to hold
do not use positive Ricci curvature. That is, Stolz's conjecture has only been veri�ed
for classes of manifolds for which every manifold in the class automatically has positive
Ricci curvature [40, 15]. One of these classes is complete intersections in products of
projective spaces [15, 8]. These products of projective spaces are examples of smooth
toric varieties, so it is reasonable to wonder if Stolz's conjecture can be generalized
to complete intersections in toric varieties or to the toric varieties themselves. The
convenient structure of toric varieties may help to facilitate computations in this case.

Toric varieties may be particularly interesting to study in terms of this conjec-
ture since not all of them have positive Ricci curvature. Fortunately, positive Ricci
curvature of toric varieties is already partially understood. In general a manifold
has positive Ricci curvature if and only if it is a Fano manifold (see [3, Chapter 7]
for details). The smooth Fano toric varieties are completely characterized by their
associated polytopes. More speci�cally,

Proposition. ([11, Section 8.3]) Consider a lattice polytope which contains the origin
in its interior. Suppose the vertices corresponding to each of its facets forms an integer
basis. Then the dual polytope corresponds to a smooth Fano toric variety, and every
smooth Fano toric variety can be constructed in this manner.

Unfortunately, this condition is not always easy to work with in practice, and
there is not yet a complete classi�cation of the corresponding Fano polytopes. Further
examination of this property could be applied to studying Stolz's conjecture for toric
varieties and complete intersections within them. Exploring this problem may help
to reveal the role that the positive Ricci curvature condition plays in this conjecture.

Copyright c© Andrew Wilfong, 2013.
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