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ABSTRACT OF DISSERTATION 
 
 
 
 

PHYSICAL DORMANCY IN SEEDS, WITH SPECIAL REFERENCE TO 
GERANIACEAE: MORPHO-ANATOMY, DEVELOPMENT, PHYSIOLOGY, 
BIOMECHANICS AND CLASSIFICATION OF WATER-GAP COMPLEXES 

 

The primary aims of this dissertation were to (1) identify and characterize the water-
gap complex in seeds of Geraniaceae, (2) investigate its role in physical dormancy 
(PY) break and (3) develop a new classification system for water-gap complexes in 
seeds of angiosperms. The winter annuals Geranium carolinianum and G. dissectum 
were selected as the main representative species for the study, and seeds of an 
additional 29 species from the Geraniaceae were used to compare the water-gap 
complex within the family. A new classification system for water-gap complexes in 
species with PY was developed by comparing the morpho-anatomical features of  PY 
seeds and fruits of 16 families. 

The water-gap complex of G. carolinianum was identified as a micropyle-hinged 
valve gap complex, and only a slight morpho-anatomical variation was observed 
within the family. Ontogenetic studies of the seed coat of G. carolinianum revealed 
that the water-gap region of Geraniaceae develops as an entity of the micropyle. The 
timing of seed germination with the onset of autumn can be explained by PY-breaking 
processes involving (a) two-temperature-dependent steps in G. carolinianum, and (b) 
one or two moisture-dependent step(s) along with the inability to germinate under 
high temperatures in G. dissectum.  Step-I and step-II in PY-breaking of G. 
carolinianum are controlled by chemical and physical processes, respectively. This 
study indicates the feasibility of applying the developed thermal time model to predict 
or manipulate sensitivity induction in seeds with two-step PY-breaking processes. The 
model is the first and the most detailed one yet developed for sensitivity induction in 
PY-break. Based on the morpho-anatomical features, three basic water-gap complexes 
(types I, II and III) were identified in species with PY in 16 families.  Depending on 
the number of openings involved in initial imbibition, the water-gap complexes were 
subdivided into simple and compound. The new classification system enables the 
understanding of relationships between water-gap complexes of taxonomically 
unrelated species with PY.  

 

KEY WORDS, Geraniaceae, physical dormancy, thermal time, two-step model, 
water-gap complex 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

            Nalin Gama Arachchige 

April 10, 2013 



PHYSICAL DORMANCY IN SEEDS, WITH SPECIAL REFERENCE TO 
GERANIACEAE: MORPHO-ANATOMY, DEVELOPMENT, PHYSIOLOGY, 
BIOMECHANICS AND CLASSIFICATION OF WATER-GAP COMPLEXES  

 

By 

Nalin Suranjith Gama Arachchige 

 

 

 

 

 

 

 

       Carol C. Baskin  

Director of Dissertation 

       Brian C. Rymond 

                                                                                   Director of Graduate Studies 

        April 10, 2013 

 

 

 

 

 



iii 

ACKNOWLEDGMENTS 

I would like to express my sincere gratitude to my major co-advisors Dr. Carol C 

Baskin and Dr. Jerry M Baskin for accepting me in their lab and providing me with 

inspiration, guidance and encouragement throughout my graduate studies at 

Lexington. I owe them for moulding my career, and being my guiding stars in the new 

path I took in Science. I am also grateful to Dr. Robert L Geneve, Dr. Denis B Egli. 

Dr. Scott Gleeson and Dr. Nicholas McLetchie for cordially serving in my PhD 

committee. I am particularly indebted to Dr. Robert L Geneve for his guidance 

with my seed anatomical studies, his valuable suggestions and allowing me 

to work in his laboratory. Also I would like to thank Dr. Bruce A Downie for 

serving as my external examiner in my PhD defence and for his valuable suggestions.   

I very much grateful to Dr. Sharyn E. Perry for allowing me to use the microtome 

and tissue-sectioning equipment in her laboratory; Ms. Sharon T. Kester, for 

helping with sectioning and staining of tissues; Dr. Bruce A Downie for allowing 

me to use incubators in his laboratory and Mr. Larry Rice for the assistance with 

scanning electron microscopy.  

I am extremely thankful to the following people and institutions for providing me 

seeds/fruits for my study. Mr. Alvin Yoshinaga, Dr. Ching-Te Chein, Dr.  John 

Dickie, Dr. Robert Price, Dr. Elena Copete, Dr. Kun Liu, Dr. David Meritt, Dr. 

Cynthia S Jones, Dr. Mariam A Sahun, Dr. Chris Blazier, Dr. Ian Gillespie, Dr. 

Tracey Ruhlman, Dr. Doug Walker, Dr. Karen Sommerville, Dr. Richard Johnstone, 



iv 
 

Dr. Peter Cuneo, Ms. Qinying Lan,     Instituto de Botánica Darwinion in San Isidro, 

Argentina, Millenium Seed Bank Project, Royal Botanical Gardens, UK and Royal 

Botanic Gardens Sydney, Australia. 

 

I would like to thank the visiting scholars and fellow graduate students, Dr. Elena 

Copete, Dr. Kun Liu, Dr. JJ Lu, Ms. Luan Zhihui, Ms. Jan Fry and Mr. James Shaffer 

for helping me with various tasks and being good friends.  

 

I also want to offer my sincere thanks to Ms. Beverly Taulbee and other staff 

members of the Department of Biology for taking care of my administrative 

paperwork and their friendship during my stay in Lexington. 

 

Finally, I would like to express my deep gratitude to my family and my wife 

(Lakshmie Rangama) for their support, encouragement, and unconditional love over 

the years.  



v 
 

TABLE OF CONTENTS 

Acknowledgements .........................................................................................................iii 
  
List of Tables ..................................................................................................................vii 
  
List of Figures ................................................................................................................viii 
  
Chapter One: Background and significance.....................................................................01
 Introduction..........................................................................................................01
 Study organisms...................................................................................................07
 Research questions...............................................................................................08
 Objectives.............................................................................................................09
 Figures..................................................................................................................11
Chapter Two:  Identification and characterization of the water-gap in  
                        physically dormant seeds of Geraniaceae, with special   

                reference to Geranium carolinianum L. ..................................................12
 Introduction ........................................................................................................12
 Materials and Methods .......................................................................................16
 Results.................................................................................................................22
 Discussion...........................................................................................................28
 Tables..................................................................................................................37
 Figures.................................................................................................................40
Chapter Three:   Acquisition of physical dormancy and ontogeny of  
                           the micropyle-water gap complex in developing seeds 
                          of Geranium carolinianum L. (Geraniaceae).........................................49
 Introduction..........................................................................................................49
 Materials and Methods.........................................................................................52
 Results..................................................................................................................56
 Discussion............................................................................................................65
 Figures..................................................................................................................74
 
  
Chapter Four: Timing of physical dormancy-break in two winter annual  
                       species of Geraniaceae by a stepwise process…………...........................85
 Introduction..........................................................................................................85
 Materials and Methods.........................................................................................88
 Results..................................................................................................................94
 Discussion..........................................................................................................100
 Tables.................................................................................................................106
 Figures................................................................................................................109
  
Chapter Five: Quantitative analysis of the thermal requirements for  
                        stepwise physical dormancy-break in seeds of the winter  
                        annual Geranium carolinianum L.  (Geraniaceae)................................120
 Introduction........................................................................................................120
 Materials and Methods.......................................................................................122
 Results................................................................................................................129
 Discussion..........................................................................................................133
 Tables.................................................................................................................140



vi 

 Figures................................................................................................................142

Chapter Six:  Identification and characterization of 10 new water gaps 
in seeds and fruits with physical dormancy and classification  
of water-gap complexes...........................................................................149

 Introduction........................................................................................................149
Materials and Methods.......................................................................................152

 Results................................................................................................................155
 Discussion..........................................................................................................162
 Tables.................................................................................................................168
 Figures................................................................................................................177

Chapter Seven: Summaries and general conclusions.....................................................191
 Chapter Summaries............................................................................................191
 General Conclusions..........................................................................................196

Literature Cited……………………..…..……..………................................................198

Vita.................................................................................................................................211



vii 
 

LIST OF TABLES 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 

Table 2.1 Classification of  main study species of Geraniaceae .................................37
 
Table 2.1 Seed sources of the additional study species  of Geraniaceae......................38
 
Table 2.3 Mass, length and width of the two seed types of G. carolinianum..............39
 
Table 4.1 Temperature conditions for each month of the three storage temperature 

schemes …….………................................................................................106
  
Table 4.2 Life form, time of germination and conditions involved in the two-step  

model for breaking of PY………………………………………………...107
 
Table 5.1 Summary of the model selection statistics for models fitted to  

sensitivity induction at constant temperature storage................................140
 
Table 5.2 Evaluation of the thermal time model for induction of sensitivity in 

seeds of Geranium carolinianum under alternating temperatures  
and non-heated greenhouse conditions......................................................141

  
Table 6.1 Habit, life form, dormancy class, PY-breaking conditions and seed  

source of the study species……...………………………………………..168
  
Table 6.2 Water-gaps and secondary opening(s) involved in early imbibition 

of seeds or fruits with physical or combinational dormancy in 18 
angiosperm families………………….……………...…………….……..171



viii 

LIST OF FIGURES 

Figure 1.1 Occurrence of water impermeable structures in land plants ...................11 

Figure 2.1 The micropylar region of Geranium carolinianum.................................40 

Figure 2.2 Percentage mass increase in permeable (heat-treated), manually  
scarified and impermeable seeds of G. carolinianum .............................40

Figure 2.3 Longitudinal sections through micropylar and chalazal areas of  
seeds of G. carolinianum allowed to imbibe acid fuchsin for  
different periods of time .........................................................................41

Figure 2.4 Light micrographs of micropylar and chalazal regions of  
seeds of G. carolinianum allowed to imbibe methylene  
blue for different periods of time ……………………………….......….42

Figure 2.5 Percentage of G. carolinianum seeds that imbibed during 72 h  
of incubation at 20/10 °C.........................................................................43

Figure 2.6 Light micrographs of G. carolinianum seeds .........................................44

Figure 2.7 Scanning electron micrographs of Geranium carolinianum  
seeds .……………………………………………..………………...…..45

Figure 2.8 Scanning electron micrographs of water-gaps of  
Geraniaceae species …………………………………...……….………46

Figure 2.9 Micropylar region of G. carolinianum seeds exhumed  
after 4 months of burial in soil ………………………...……….………48

Figure 3.1 Length, width, moisture content, accumulation of dry matter,  
imbibition and germination of intact seeds and isolated embryos 
during seed development in G. carolinianum………...………………...74

Figure 3.2 Morphological and colour changes in developing seeds of  
G. carolinianum………………………………………………………...75

Figure 3.3 Effect of seed moisture content on imbibition of developing  
seeds of G. carolinianum harvested at 18 DAP………………………...75

Figure 3.4 Effect of slow-drying on imbibition and germination of  
developing seeds of G. carolinianum………………………………….76

Figure 3.5 Longitudinal sections of the seed coat in developing seeds of  
G. carolinianum………………………………………………………...77

Figure 3.6 Types of palisade and subpalisade cells in the mature  
seed coat of G. carolinianum…………………………………………...78



ix 
 

Figure 3.7 Longitudinal sections of the micropylar and chalazal regions  
of a mature seed of G. carolinianum.......................................................79

  
Figure 3.8 Longitudinal sections of the micropylar region in developing  

ovules of G. carolinianum ......................................................................80
  
Figure 3.9 Longitudinal sections of the micropylar and water-gap regions in 

 developing seeds of G. carolinianum………………………………..81
  
Figure 3.10 Longitudinal sections of the water gap in developing seeds of  

G. carolinianum………………………………….…………..…………82
  
Figure 3.11 Longitudinal sections of the chalazal region in developing seeds  

of G. carolinianum……………………………………………………...83
  
Figure 3.12 Timeline summary of the events of seed development in  

G. carolinianum.......................................................................................84
  
Figure 4.1 Percentage of imbibed seeds of  G. carolinianum and G. dissectum  

at constant temperatures and at 20/10 °C after dry storage at  
different constant temperatures………………….…………………….109

  
Figure 4.2 Percentage of imbibed seeds of  G. carolinianum and G. dissectum  

at constant temperatures and at 20/10 °C after dry storage at  
different alternating temperatures…………………….……………….110

  
Figure 4.3 Percentage of imbibed seeds  of G. carolinianum incubated at  

different constant temperatures after dry storage……………………..111
  
Figure 4.4 Percentage of imbibed seeds of  G. carolinianum and  G. dissectum 

 stored under dry and wet conditions  under temperature sequences….112
  
Figure 4.5 Percentage of imbibed seeds of G. dissectum at 40 °C after  

storage under different moisture regimes at 40 °C……………………113
  
Figure 4.6 PY breaking of G. carolinianum and G. dissectum seeds under  

greenhouse conditions in 2010 and 2011………….…………………..114
  
Figure 4.7 PY breaking in buried seeds of G. carolinianum in 2010/11  

and of G. dissectum in 2011……………………….…………………..116
  
Figure 4.8 Conceptual models for breaking seed dormancy in  

G. carolinianum and  G. dissectum………….…………...…...……….117
  
Figure 4.9 Percentage germination of manually scarified seeds of   

G. carolinianum and G. dissectum at different constant 
temperatures after dry-storage…….………………………………..…119

  
Figure 5.1 Experimental setup for the measurement of separation force  

of palisade cells from subpalisade cells in the water-gap of  



x 
 

seeds of G. carolinianum.......................................................................142
  
Figure 5.2 Cumulative percentages of sensitive seeds at the end of two 

weeks incubation at 10 oC after dry storage at different 
constant temperatures and at alternating temperatures or  
non-heated greenhouse conditions.........................................................142

  
Figure 5.3 Time taken for 50% of seeds to become sensitive under different  

storage temperatures and Arhenius plots of sensitivity induction 
rate.........................................................................................................143

  
Figure 5.4 Sensitivity induction rates of seed subpopulations of  

G. carolinianum.....................................................................................144
  
Figure 5.5 Cumulative sensitivity induction of seeds of G. carolinianum ............144
  
Figure 5.6 Difference between internal and external temperatures of  

seeds of G. carolinianum.......................................................................145
  
Figure 5.7 Scanning electron micrographs of the micropylar-water-gap 

region of G. carolinianum seeds...........................................................146
  
Figure 5.8 Schematic diagrams of the morphological changes in the  

water-gap region of sensitive seeds of G. carolinianum.......................147
  
Figure 5.9 Schematic diagrams of  mechanisms for PY-breaking  and 

opening of the water-gap region of G. carolinianum............................148
  
Figure 6.1 Scanning electron micrographs of water-gap regions of  

non-dormant (heat treated) seeds or fruits of nine families…………...177
  
Figure 6.2 Light micrographs of longitudinal sections of water-gap regions  

of seeds or fruits imbibed in acid fuchsin/methylene blue for  
different periods of time........................................................................179

  
Figure 6.3 Light micrographs of the surface view of water-gap regions of  

seeds or fruits imbibed in acid fuchin/methylene blue for different  
periods of time.......................................................................................181

  
Figure 6.4 Percentages of imbibed  seeds of Cercis canadensis during  

120 hr of incubation……………………………………...……………182
  
Figure 6.5 Longitudinal sections of  hilar and non-hilar regions of the seed  

coat of Sicyos angulatus........................................................................183
  
Figure 6.6 Longitudinal sections of hilar and non-hilar regions of the seed  

coat of Cercis canadensis......................................................................184
  
Figure 6.7 Longitudinal sections of stylar and non-stylar regions of the 

pericarp of Nelumbo nucifera................................................................185



xi 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 

 

  
Figure 6.8 Longitudinal sections of hilar and non-hilar regions of  the seed  

coat of Ceanothus americanus and endocarp of  
Stylobasium spathulatum.......................................................................186

  
Figure 6.9 Longitudinal sections of the micropylar and non- micropylar  

regions of the seed coat of Cardiospermum helicacabum.....................187
  
Figure 6.10 Longitudinal sections of hilar and non-hilar regions of  the  

seed coat of Koelreuteria paniculata.....................................................188
  
Figure 6.11 Longitudinal sections of hilar and non-hilar regions of  the  

seed coat of Sapindus saponaria...........................................................189
  
Figure 6.12 Schematic diagrams of the three basic water-gap types........................190
  



1 
 

CHAPTER 1 

Background and significance 

 

INTRODUCTION 

 

Germination-units and germination 

Depending on the species, seeds or fruits (sometimes with accessory parts) can act as 

germination-units (Baskin and Baskin, 1998). Germination commences with the 

uptake of water by a quiescent germination-unit and terminates with the elongation of 

the embryonic axis, usually the penetration of radicle through the germination-unit 

(Bewley and Black, 1994; Bewley, 1997; Baskin and Baskin, 1998).  

 

The five-classes of seed dormancy 

A dormant seed (or any other germination unit) is one that does not have the capacity 

to germinate within a specified period of time under any combination of normal 

physical environmental factors that otherwise is favourable for its germination, i.e. 

after the seed becomes  nondormant (Baskin and Baskin, 1998, 2004).  

 

Based on the seed dormancy classification scheme by Nikolaeva (1967[1969], 1977), 

Baskin and Baskin (1998, 2004, 2008) have proposed a detailed classification system 

for seed dormancy. Their classification system includes the five classes of dormancy: 

physiological dormancy (PD), morphological dormancy (MD), physical dormancy 

(PY), morphophysiological dormancy (MPD) and combinational dormancy (CD). 

Moreover, they have further subdivided dormancy classes into levels and types where 

appropriate (see table 1, Baskin and Baskin (2004).  
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Physiological dormancy (PD) is caused by low growth potential of embryos (Baskin 

and Baskin, 2004). The balance between the levels of Abscisic acid (ABA) and 

Gibberellic acid (GA) and their signaling pathways are important in induction, 

maintenance and release of PD. ABA acts as a positive regulator for PD induction and 

inhibits seed germination. Gibberellic acid (GA) counteracts inhibitory effects of 

ABA, releases seed dormancy and promotes seed germination (Kucera et al., 2005; 

Finklestein et al., 2008; Nambra et al., 2010; Graeber et al., 2012).  Moreover, PD is 

influenced by several other factors such as ethylene, brassinosteroids, dormancy-

specific genes, chromatin factors and non-enzymatic processes (Finklestein et al., 

2008; Graeber et al., 2012). 

 

Morphological dormancy (MD) occurs in species with small underdeveloped or 

undifferentiated embryos (without PD). MD is the delay of germination due to the 

requirement for a period of embryo growth within the seed after the mature seed has 

been dispersed (Baskin and Baskin, 1998). Baskin and Baskin proposed that a fresh 

seed has MD if the underdeveloped or undifferentiated embryo germinates within 

about 30 days at simulated autumn, spring or summer habitat temperatures (Baskin 

and Baskin, 2004).  

 

Morphophysiological dormancy (MPD) occurs in seeds with small underdeveloped or 

undifferentiated embryos that also have PD (Baskin and Baskin, 1998). Unlike seeds 

with MD, seeds with MPD require more than 30 days to germinate under favourable 

conditions (Baskin and Baskin, 2004).  
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Physical dormancy (PY) is caused by a water impermeable palisade layer(s) in seed or 

fruit coats (Baskin and Baskin, 1998). This dormancy class will be discussed in detail 

below.  

 

Combinational dormancy (CD or PY+PD) in seeds or fruits is caused by a water 

impermeable palisade layer(s), and additionally the embryo has some PD. Depending 

on the species, the loss of the PD component occurs before or after the loss of PY 

(Baskin and Baskin, 1998).  

 

Physical dormancy (PY) and its occurrence in the plant kingdom 

Physical dormancy (PY) can be defined as the incapability of a seed or fruit that has 

undergone maturation drying to imbibe water within a specified period of time due to 

a water impermeable palisade cell layer(s) in their seed or fruit coat, thus preventing 

germination. 

 

PY is caused by a water-impermeable palisade cell layer(s) in seeds or fruit coats 

(Baskin et al., 2000) along with tightly sealed chalaza and micropyle openings 

(Gama-Arachchige et al., 2010). Seeds of some species with PY also have 

physiological dormancy (PD); hence, they are considered to have combinational 

dormancy (CD). Maturation drying i.e. loss of moisture during the final stages of seed 

or fruit development due to abscission of the maternal vascular supply, plays a major 

role in acquisition of PY (see table 2, Qu et al., 2010). During this stage, the moisture 

content of seeds/fruit decreases rapidly and once it reaches a certain level that varies 

from aprox. 5 to 20% among species, the seed or fruit can become water impermeable 

(Li et al., 1999a; Jayasuriya et al., 2007b; Qu et al., 2010). 
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A special case of PY 

Apart from seeds and fruits with PY, a special type of PY occurs in sporocarps of the 

aquatic fern, Marsilea (Bilderback, 1978). The hypodermal layer of the sporocarp of 

Marsilea differentiates into a palisade layer during development of the sporocarp, and 

after maturation drying this palisade layer becomes impermeable (Bilderback, 1978). 

Unlike seeds or fruits with PY, the sporocarp structures enclose megaspores and 

microspores (Nagalingum et al., 2006). However, similar to seeds and fruits, 

sporocarps are involved in reproduction. 

 

Phylogenetic distribution of PY and CD in the plant kingdom 

PY and CD have been demonstrated or inferred to occur in species of 18 angiosperm  

plant families (Anacardiaceae, Biebersteiniaceae, Bixaceae, Cannaceae, Cistaceae, 

Convolvulaceae, Cucurbitaceae, Dipterocarpaceae, Fabaceae, Geraniaceae, 

Lauraceae, Malvaceae, Nelumbonaceae, Rhamnaceae, Sapindaceae, Sarcolaenaceae, 

Sphaerosepalaceae and Surianaceae) in 10 orders and are unknown in gymnosperms 

(Nandi, 1998; Baskin 2003; Horn, 2004; Baskin et al., 2000, 2006; Koutsovoulou et 

al., 2005; Angiosperm Phylogeny Group [APG III], 2009; Tsang, 2010) (Fig. 1.1). 

However, as discussed in the preceding paragraph PY also occurs in sporocarps of the 

fern family Marsileaceae (Bilderback, 1978). Another remarkable character regarding 

PY in the plant kingdom is that 14 of the 18 families with PY are in the eudicot fabid 

and malvid clades (Fig. 1.1).  

 

Water-gap region and PY-break 
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The breaking of PY involves disruption or dislodgement of ‘water-gap’ structures, 

which act as environmental ‘signal detectors’ for germination (Baskin et al., 2000). 

Therefore, the ability of water-gap structures to sense environmental conditions 

allows seeds with PY to become permeable under conditions favourable for 

germination and plant establishment (Taylor, 1996a, b; Jayasuriya et al., 2008a, 

2009c). The water-gap region is a morpho-anatomically specialized area that differs 

from the rest of the seed or fruit coat. Location, anatomy, morphology and origin of 

water-gap regions can differ between and even within families (Baskin et al., 2000, 

Jayasuriya et al., 2009b). Eleven different water-gap types have been characterized 

previously in six (excluding Geraniaceae) of the 18 angiosperm families with PY 

(Baskin and Baskin, 1998; Baskin et al., 2000; Baskin, 2003; Jayasuriya et al., 2007a, 

2008b; Hu et al., 2008; Turner et al., 2009). The occurrence of more than one water-

gap type is reported only in Convolvulaceae, Fabaceae and Malvaceae and it is 

possible that other families with PY may also have several water-gap types. However, 

water-gaps previously have not been characterized in Biebersteiniaceae, 

Cucubitaceae, Fabaceae (clade Cladrastis), Lauraceae, Malvaceae (subfamilies 

Bombacoideae, Brownlowioideae and Bythnerioideae), Nelumbonaceae, 

Rhamnaceae, Sapindaceae (subfamily Sapindoideae) and Surianaceae. 

 

In the literature, the term ‘water-gap’ is interchangeably used to define both the 

opening formed during the PY-break and the whole specialized region of the seed or 

fruit coat (Jayasuriya et al., 2007a; Turner et al., 2009; Karaki et al., 2011; De Paula 

et al., 2012). However, to date no attempts have been made to define the different 

structures involved in early imbibition or to classify similar water-gap regions to 

study the relationship among unrelated taxa. 
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Two step PY breaking process 

Taylor (1981) presented a temperature-dependent two-stage conceptual model for 

breaking of PY. In the first or preconditioning stage, the seeds are made sensitive to 

the second or PY-breaking stage (Taylor, 2005). This two-stage model is known to 

occur in seeds of several annual species of Fabaceae (Taylor, 1981; Taylor, 1996a, b; 

Taylor and Revell, 1999; Van Assche et al., 2003) and Convolvulaceae (Jayasuriya et 

al., 2008a, b; 2009c). The model consists of two distinct temperature and (or) 

moisture-dependent processes (Taylor, 2005; Van Assche and Vandelook, 2006; 

Jayasuriya et al., 2009b). However, the two-step process of PY-break is unknown in 

other families with PY or CD. Involvement of two stages in breaking of PY can be 

used to explain the PY-breaking behaviour and timing of germination under natural 

conditions (Taylor, 2005). 

 

Thermal time model for PY-break 

The concept of thermal time, i.e. exposure to a temperature above a threshold level for 

a particular time period, has been successfully applied in determining and comparing 

the rates of various physiological events in plants and poikilothermic invertebrates 

(Trudgill et al., 2005). This concept has been used in describing and quantifying 

physiological dormancy (PD)-break by after-ripening (Bradford, 2002; Batlla et al., 

2009) and single step PY-break (McDonald, 2000). However, it has not been used to 

explain the stepwise PY-breaking processes. 

 

PY in Geraniaceae 
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The family Geraniaceae belongs to the order Geraniales in the clade malvid (Fig. 1.1). 

The family is composed of the six genera viz. California (1 species), Erodium (70), 

Geranium (~420), Hypseocharis, Monsonia (39) and Pelargonium (~280) (Aedo et al, 

1998b; Bakker et al., 2004; Fiz et al., 2008). Geranium consists of three subgenera 

(Erodoidea, Geranium and Robertum) (Aedo et al., 1998b) and Erodium of two 

subgenera (Erodium and Barbata) (Fiz et al., 2006). There are three clades (A, B and 

C) in Pelargonium (Bakker et al., 2004; Jones et al., 2009) and two sections 

(Monsonia and Olopetalum) in Monsonia (Aldasoro et al., 2001; Touloumenidou et 

al., 2007). 

 

PY has been shown to occur in California, Erodium, Geranium and Pelargonium 

(Baskin and Baskin, 1974; Meisert, 2002; Gillespie and Andersen, 2005). Based on 

anatomical studies of the seed coat of Hypseocharis remy (Boesewinkel, 1988) and 

Monsonia senagalensis (Narayana and Arora, 1963), it can be inferred that PY also 

occurs in Hypseocharis and Monsonia. Thus, it appears that all six genera of 

Geraniaceae have PY or CD. However, the role of temperature in PY-breaking and 

development and morpho-anatomy of the water-gap region of the members of the 

family Geraniaceae are poorly understood. Therefore the current study is mainly 

focused on the PY of Geraniaceae.  

 

STUDY ORGANISMS 

 

Since more than half of the species in family Geraniaceae belong to the genus 

Geranium, the two species Geranium carolinianum and G. dissectum were selected as 

the main representative species for this study. G. carolinianum and G. dissectum are 
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herbaceous winter annual species. G. carolinianum is native to eastern North America 

(Piper, 1906; Small, 1907; Aedo, 2000), while G. dissectum is native to Europe (Aedo 

et al., 1998b; Rhoads and Block, 2007) and is an introduced species in North America 

(Piper and Beattie, 1915). Both species are widely distributed weeds in North 

America and usually grow in disturbed habitats such as road-sides, old fields, waste 

places, gardens and fallow and cultivated fields (McCready and Cooperrider, 1984; 

Abbas et al., 1995; Wilson and Clark, 2001). Moreover, both species are reported to 

be naturalized weeds in many parts of the world including Australia, China, Great 

Britain, Japan, Italy and South America, (Mueller, 1885; Dunn, 1905; Macbride, 

1949; Peng, 1978; Aedo et al., 1998b, 2005; Benvenuti et al, 2001; Xu and Aedo, 

2008; Nishida and Yamashita, 2009).  

 

Additionally, 29 species in Geraniaceae and 15 species in Bixaceae, Cistaceae, 

Cucurbitaceae, Fabaceae, Malvaceae, Nelumbonaceae, Rhamnaceae, Sapindaceae and 

Surianaceae were used to compare the morpho-anatomy of the water-gap region.  

 

RESEARCH QUESTIONS 

 

Even though Geraniaceae previously has been shown to contain species with PY or 

CD, several questions arise that require answering in order to fully understand the role 

of the water-gap region in this family.  

1. What is (are) the water-gap(s) in PY seeds of Geraniaceae? 

2. What is the ontogenetic origin of the water-gap region? 

3. What are the requirements for PY-break?  

4. How many steps are involved in the PY-breaking process?  
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5. Is it possible to quantify the temperature requirement for PY-break?  

6. What is the mechanism of opening of the water-gap?  

7. What is the morpho-anatomical relationship of the water-gap region in Geraniaceae 

to those of other PY families?  

 

 

OBJECTIVES 

 

The main aims of this dissertation research were to study the role of the water-gap 

region in the PY-breaking process in seeds of Geraniaceae and to compare the water-

gap region of the Geraniaceae with that of the other 17 angiosperm families known to 

contain species with PY. Thus, the objectives of each chapter in this dissertation 

research were as follows: 

 

1. Identify and morpho-anatomically characterize the water gap in PY seeds of 

Geraniaceae (chapter 2); 

2. Compare the simultaneous development of the water gap region, seed coat, chalaza 

and micropyle (chapter 3);  

3. Determine the number of steps involved in the PY-breaking processes and identify 

the temperature and moisture regimes that activate the dormancy-breaking process at 

each stage (chapter 4); 

4. Investigate the role of temperature in driving the two steps of PY-breaking (chapter 

5); 

5. Establish a thermal time (degree-weeks) model to explain sensitivity induction 

quantitatively (chapter 5); 
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6. Propose a mechanism to explain PY-breaking, focusing on the water-gap region 

(chapter 5); 

7. Morpho-anatomically characterize the water-gap regions in the families 

Biberstaineaceae, Cucubitaceae, Fabaceae (clade: Cladrastis), Lauraceae, Malvaceae 

(subfamilies Bombacoideae, Brownlowioideae and Bythnerioideae), Nelumbonaceae, 

Rhamnaceae, Sapindaceae (subfamily Sapindoideae) and Surianaceae (chapter 6); and 

8. Compare the morpho-anatomical features of water-gap regions of all the PY 

families and classify them into basic groups (chapter 6).  
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Figure 1.1. Occurrence of water impermeable structures in land plants. Phylogenetic 
tree of land plants is modified from APG-III (2009) and Nickrent et al (2000). Not 
all the species in families marked as PY contain water impermeable sporocarps, 
fruits or seeds.  Abbreviations: , PY of Dipterocarpaceae, Sphaerosepalaceae and 
Sarcolaenaceae are based on seed coat anatomy by Nandi (1998) and Horn (2004). 

 
 

Copyright © Nalin Gama Arachchige 2013 
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CHAPTER  2 

Identification and characterization of the water-gap in physically dormant seeds 

of Geraniaceae, with special reference to Geranium carolinianum L. 

 

INTRODUCTION 

 

Physical dormancy (PY) is caused by one or more water-impermeable layers of 

palisade cells in the seed (or fruit) coat (Baskin and Baskin, 1998; Baskin et al., 2000) 

along with a closed chalaza and micropyle. PY is known to occur only in angiosperms 

and thus is unknown in gymnosperms (Baskin and Baskin, 1998). One magnolids, one 

monocot and 16 eudicot families have been demonstrated or inferred to contain 

species that have PY (Nandi, 1998; Horn, 2004; Baskin et al., 2000; Baskin 2003; 

Koutsovoulou et al., 2005; Baskin et al., 2006; APG III, 2009; Tsang, 2010). Of the 

16 eudicots, occurrence of PY in Dipterocarpaceae, Sarcolaenaceae and 

Sphaerosepalaceae has been based only on seed-coat anatomy (Nandi, 1998; Horn, 

2004). Some families that contain species with PY also have species with 

physiological dormancy (PD), combinational dormancy (PY+PD) or non-dormancy 

(Baskin et al., 2000). 

 

Seeds with PY cannot imbibe water even under favourable environmental conditions 

due to a water-impermeable layer(s) of cells. Specialized structures are involved in 

occlusion of the water-gaps (see table 3.5, Baskin and Baskin, 1998; table 1, Baskin et 

al., 2000). The breaking of PY involves disruption or dislodgement of ‘water-gap’ 

structures, which act as environmental ‘signal detectors’ for germination (Baskin et 

al., 2000). Once the closed water-gap opens, a seed can imbibe water rapidly and 
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germinate under a wide range of conditions (Baskin and Baskin, 1998; Baskin et al., 

2000). 

 

Water-gap anatomy, morphology, origin and location differ among families as well as 

within the same family (Baskin et al., 2000). Moreover, anatomy and morphology of 

the seed (or fruit) coat in the water-gap region differ from those of the rest of the seed 

(or fruit) coat. Eleven different water-gap types have been characterized in six 

(excluding Geraniaceae) of the 18 angiosperm families with PY (Baskin and Baskin, 

1998; Baskin et al., 2000; Baskin, 2003; Jayasuriya et al., 2007a, 2008b; Hu et al., 

2008; Turner et al., 2009). 

 

Among the six genera of Geraniaceae, viz. California, Erodium, Geranium, 

Hypseocharis, Monsonia and Pelargonium (Fiz et al., 2008), PY has been shown to 

occur in Erodium, Geranium and Pelargonium (Baskin and Baskin, 1974; Meisert, 

2002). The recently recognized monotypic genus California (Aldasoro et al., 2002; 

Fiz et al., 2006) can also be considered as exhibiting PY, since Erodium 

macrophyllum (identified as California macrophyllum by Aldasoro et al., 2002) was 

reported to have PY (Gillespie and Andersen, 2005). Based on seed-coat anatomical 

studies on Hypseocharis remy (Boesewinkel, 1988) and Monsonia senagalensis 

(Narayana and Arora, 1963), it can be inferred that PY also occurs in Hypseocharis 

and Monsonia. Thus, it appears that all six genera of Geraniaceae have PY or 

(PY+PD). Further, we are not aware of a species in any of these six genera with PD, 

morphological dormancy (MD), morphophysiological dormancy (MPD) or with non-

dormant seeds. 
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The water-impermeable cell layer in the seed coat of Geraniaceae is a continuous 

layer of palisade cells (except in the chalazal region) that is located below the outer 

polygonal and middle parenchyma layer(s) of the outer integument (Kay and Lees, 

1907; Boesewinkel and Been, 1979; Schulz et al., 1991; Meisert et al., 1999). The 

palisade cells are strongly lignified and contain tannin depositions and calcium 

oxalate crystals (Schulz et al., 1991; Aedo et al., 1998a; Meisert et al., 2001). The gap 

between palisade cells of the chalaza is filled with a chalazal plug (= suberized 

stopper, sensu Boesewinkel and Been, 1979) that maintains seed-coat impermeability. 

When the palisade layer is damaged, e.g. by mechanical scarification, acid 

scarification, etc., seeds lose their impermeability and imbibe water (Nell et al., 1981, 

Schulz et al., 1991). 

 

Baskin and Baskin (1974) suggested that the hilum is the water-gap in Geranium 

carolinianum, but they did not document the presence of a water-gap. Nell et al. 

(1981) compared the morphology of the hilum region of four cultivars of 

Pelargonium hortorum using scanning electron micrographs and concluded that there 

is no relationship between occlusion of the hilar fissure and seed germination. Meisert 

et al. (1999) suggested that the chalazal opening is the main pathway of water entry 

into water-permeable seeds of P. molliconium. However, they described neither the 

initial water entrance into innately permeable seeds nor the water-gap of impermeable 

seeds after they become non-dormant. 

 

Using scanning electron micrographs, Schulz et al. (1991) compared the effect of acid 

scarification of the seed coat of water-permeable and water-impermeable varieties of 

P. zonale. These authors concluded that neither the light line in the palisade layer nor 
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the palisade layer itself is responsible for water impermeability, but they did not study 

the effect of acid scarification on opening of the water-gap. Gillespie and Andersen 

(2005) tested the effect of different treatments on seed germination of E. 

macrophyllum (= C. macrophyllum). Based on the high germination percentage after 

manual scarification, they suggested that germination of E. macrophyllum may be 

enhanced by physical abrasion of the seed coat when seeds drill themselves into the 

soil. 

 

The primary study species Geranium carolinianum (Carolina geranium) is a 

herbaceous winter annual that belongs to the family Geraniaceae, subgenus 

Geranium, section Geranium (which consists of 339 species; Aedo et al., 1998b). 

Two varieties, G. carolinianum var. carolinianum and var. confertiflorum, have been 

identified in Kentucky, USA (Jones, 2005). This species is native to eastern North 

America but is widely distributed throughout the North American continent (Piper, 

1906; Small, 1907; Aedo, 2000). Geranium carolinianum has long been considered a 

weed that grows in disturbed habitats such as roadsides, waste places, gardens, old 

fields, turfs and fallow and cultivated fields in the United States (Kay and Lees, 1913; 

Britton, 1918; Spencer, 1976; Haragan, 1991). Moreover, it has been reported to be a 

naturalized weed in China, Japan, northern Europe, South America and Taiwan (Peng, 

1978; Xu and Aedo, 2008; Nishida and Yamashita, 2009). 

 

Seed dormancy of G. carolinianum is caused by a water-impermeable seed coat. 

Freshly matured seeds also have shallow PD (i.e. small amount of embryo dormancy); 

thus, the seeds have (PY+PD) (Baskin and Baskin, 1974). In the Baskin and Baskin 

(1974) study, embryos became non-dormant during a short after-ripening period 
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before the seeds became permeable; thus, seeds of G. carolinianum primarily have 

PY. In nature, seeds are dispersed in early summer and come out of PY by late 

summer due to dry and hot weather conditions and germinate in autumn when soil 

moisture becomes readily available. 

 

Previous studies on Geraniaceae have considered water entry into innately permeable 

seeds only. Since breaking of seed dormancy is an ecologically significant event in 

the life history of a species, it is important to study the initial site of water entry into 

PY seeds after the breaking of dormancy. Therefore, the current study focused mainly 

on identifying and morphologically and anatomically characterizing the water-gap in 

PY seeds of Geraniaceae, with special reference to G. carolinianum. In addition, 

morphological changes in the seed coat during seed burial and after heat treatment 

were also studied. 

 

MATERIALS AND METHODS 

 

Seed collection and preparation 

Stems of Geranium carolinianum L. bearing mature fruits were collected from plants 

growing on a railroad right-of-way in Rosemont, Lexington, KY, USA, in May 2009. 

They were covered with a net and allowed to dry for 3 d inside a non-heated 

greenhouse. Seeds released naturally were used in this study. An additional 30 species 

of Geraniaceae members were selected to compare water-gap regions (Table 2.1).  

Mature seeds of species of California, Erodium, Hypseocharis, Geranium, Monsonia 

and Pelargonium were obtained from commercial seed companies and personal seed 

collections made by colleagues in Australia, China, France, Spain, United Kingdom 
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and United States of America (Table 2.2). Subsequently, seeds were stored at room 

temperature (approx. 23 °C and 50–60 % RH, dry storage) until used. 

 

Characteristics of the two seed types of G. carolinianum  

Geranium carolinianum was observed to produce dark-brown and light-brown seeds. 

Length, width and mass of seeds of each colour type were measured. For 

measurement of length and width, 30 seeds from each colour type were randomly 

selected and measured using a dissecting microscope with a calibrated micrometer 

eyepiece. For measurement of mass, ten replicates of ten seeds each of the two colour 

morphology types were weighed to the nearest 0.0001 g. 

 

To compare the anatomy of the micropylar and chalazal regions and, of the seed coat 

away from these two regions, 20-m vibratome sections (longitudinal and transverse) 

of both dark-brown and light-brown seeds were taken using a VIBRATOME® 1500 

sectioning system. Sections were observed under a light microscope (Olympus BX40) 

equipped with a digital camera (Olympus DP25) and micrographs taken and 

compared. During the rest of the study, either a dissecting microscope (ZEISS STEMI 

SVII) or the Olympus BX40 light microscope was used along with the Olympus 

DP25 digital camera for obtaining micrographs. 

 

Ten replicates (each with ten seeds) of fresh mechanically scarified and non-scarified 

seeds of both dark-brown and light-brown colour types were germinated on moist 

sand at 20/10 °C (12 h/12 h) under a 14 h/10 h daily light/dark period. Photon 

irradiance during the light phase was approx. 40 mol m–2 s–1, 400–700 nm, and the 

light source was cool white fluorescent tubes. The number of germinated seeds was 
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counted daily for 10 d (but only final germination is shown in Results). Hereafter, 

fresh seeds were selected for study irrespective of their colour. 

 

Dormancy breaking in seeds of G. carolinianum 

Fresh seeds of G. carolinianum were incubated on wet filter papers in Petri dishes for 

3 d and any innately permeable seeds discarded. Subsequently, fully filled, 

undamaged seeds were selected from non-imbibed seeds. This procedure was used 

whenever impermeable seeds were selected. Based on the results of preliminary 

studies, the selected seeds were made permeable by subjecting them to dry heat at 80 

°C for 7 d. 

 

Morphological changes during dormancy breaking  

Using the dissecting microscope equipped with a digital camera, micrographs of G. 

carolinianum seeds were taken before and after heat treatment to compare 

morphological changes that occur during breaking of dormancy. 

 

Germination  

Two hundred impermeable seeds of G. carolinianum were selected, and the outermost 

permeable cell layers (above the palisade layer) were removed carefully from 100 of 

them with the aid of a toothpick and a dissecting microscope. The other 100 seeds 

were left intact. The same procedure was repeated with permeable (heat-treated) 

seeds. Another set of 100 seeds was scarified mechanically with a razor blade at 

places on the seed coat away from micropylar and chalazal ends without damaging 

the embryo and was used as a control. All seeds were germinated as described above. 
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Imbibition 

An imbibition test was carried out to compare water uptake in impermeable, 

permeable (heat-treated) and mechanically scarified seeds of G. carolinianum. Fifty 

seeds each of each group of seeds were used for the test. Each category was separated 

into ten replicates of five seeds each and weighed to the nearest 0.0001 g. Seeds of 

each replicate sample were placed on wet filter paper in Petri dishes. The seeds were 

blotted and weighed at 30-min intervals for 10 h; percentage mass increase (fresh 

mass basis) for each interval was calculated. 

 

Dye tracking 

Dye-tracking experiments were carried out to locate the site of water movement 

through the seed coat of permeable seeds (heat-treated) during imbibition. 

Concentrated solutions of both acid fuchsin and methylene blue dyes were used. After 

the dormancy-breaking treatment, 100 seeds of G. carolinianum were dipped in a 

concentrated acid fuchsin solution. Four seeds each were removed initially after 5 min 

and 15 min and then at 15-min intervals for 4 h and blotted with tissue papers. Seeds 

were cut longitudinally into two halves across the micropylar and chalazal regions, 

and the cut surfaces were observed under external artificial illumination using the 

light microscope. The pathway of the dye (marked in pink) was observed and 

micrographs taken. The same procedure was repeated with impermeable seeds. 

 

Forty heat-treated seeds of G. carolinianum from which the outer water-permeable 

cell layers had been removed (for better visualization of the water-gap) were 

immersed in a concentrated methylene blue dye solution. Four seeds each were 

removed initially after 10 min, and then at 30-min intervals for 4 h. The surface of the 



20 
 

micropylar and chalazal regions (with and without removing the palisade layer) and 

cut-surfaces of seeds cut longitudinally into two halves through the chalazal and 

micropylar regions were observed and micrographs taken as described above. The 

pathway of methylene blue (marked in blue) was observed. 

 

Blocking experiment  

The outermost permeable cell layers in the micropylar and chalazal regions of heat-

treated seeds were removed carefully from approx. 500 seeds of G. carolinianum with 

a toothpick. The micropylar region was blocked with Super Glue® (methyl 2-

cyanoacrylate) in 100 seeds with a sharpened toothpick. One set of 100 seeds was 

blocked similarly at the chalazal region only and another 100 at both chalazal and 

micropylar regions. Ten replicates of ten seeds for each treatment were placed on wet 

sand in Petri dishes and incubated for 3 d under the same conditions used in 

germination experiments. The number of imbibed seeds (larger in size and lighter in 

colour) was counted at intervals of 24 h. 

 

Light microscopy  

 Microtome sections. 

Microtome and hand sections were taken to study the anatomy of the water-gap. Four 

fully matured seeds of G. carolinianum were scarified mechanically to facilitate wax 

infiltration and fixed in FAA solution for 7 d. Then, they were dehydrated in a series 

of tertiary-butanol (TBA) and embedded in paraffin wax. Subsequently, 12-m 

longitudinal sections of the seeds were cut using a microtome (LEICA RM 2135). 

Sections were stained with 1 % safranin solution. The micropylar and chalazal regions 
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and the seed coat away from micropyle and chalaza were observed and 

photomicrographed. 

 

 Free-hand sections. 

The outer permeable cell layers of three permeable G. carolinianum seeds were 

removed. Sections were cut periclinally through the micropylar region, including the 

presumed water-gap and palisade cells away from presumed water-gap. Sections were 

mounted on glass slides and micrographs taken. 

 

Scanning electron microscopy  

Seeds of 31 sprcies of Geraniaceae including G. carolinianum were made permeable 

by drying at 80 °C for 1 week. Three impermeable and three permeable (heat-treated) 

seeds, each with and without outer cell layers, were used to compare the 

morphological changes during the breaking of dormancy. To observe the 

morphological changes during early imbibition, six permeable seeds each with and 

without outer cell layers were immersed in water, and three seeds of each were 

removed from the water after 10 and 20 min of imbibition and blotted dry. The same 

procedure was followed with impermeable seeds. Two dislodged blisters were used to 

study the morphology of the lower surface of palisade cells of the presumed water-

gap.  

 

To compare the water-gaps of all 31 species, permeable (heat treated) seeds of each 

species from which the outer cell layers had been removed were immersed in water 

for 20 min and then blotted dry. All of the samples were mounted on scanning 

electron microscopy specimen stubs using double-sided carbon tapes. Then, the 
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samples were sputter-coated with gold-palladium (15 nm), scanned with an S-3200 

Hitachi scanning electron microscope at an acceleration voltage of 5.0 kV and 

micrographs taken and compared. 

 

Effect of morphological changes of seed coat during burial on seed germination 

To identify the morphological changes in the seed coat of G.carolinianum in vivo, 

seeds that had been buried at a depth of 2 cm in soil for 4 months (June to October) in 

an open area on the campus of University of Kentucky were exhumed, observed under 

a dissecting microscope and micrographs taken. Fifty seeds each with and without a 

change in colour near the micropylar region were germinated as described above (five 

replicates of ten seeds each for both types). 

 

Statistical analysis 

Percentage germination and imbibition data were normalized by arcsine-

transformation prior to the analysis. Seed length, width and mass data of the two G. 

carolinianum seed colour types and germination percentages data of the burial 

experiment were compared using an independent two-sample t-test (P < 0.05). All 

other germination and imbibition percentage data were analysed by one-way 

ANOVA, and Duncan’s multiple range test was used to determine significant 

differences between each treatment (P < 0.05). All analyses were carried out using 

SAS® ver. 9.2 software. 

 

RESULTS 
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Characteristics of the two seed types of G. carolinianum  

The light-brown and dark-brown seeds differ significantly in width but not in mass 

and length (Table 2.3). 

The two seed types did not differ in anatomy of the chalazal or micropylar regions or 

seed coat away from micropylar and chalazal regions. There was more thickening in 

radial walls of the outermost polygonal cell layer of the outer integument in light-

brown seeds than in dark-brown seeds (images not shown). 

 

After mechanical scarification, all G. carolinianum seeds imbibed water within 24 h, 

but only a few seeds germinated at 7 d. Within the next 3 d, germination increased 

rapidly to 89.0 ± 5.3 % and 96.0 ± 1.7 % in scarified light-brown and dark-brown 

seeds, respectively. Non-scarified light-brown and dark-brown seeds germinated to 

only 3.0 ± 2.1 % and 2.0 ± 2.6 %, respectively, after 10 d of incubation. Germination 

differed significantly between scarified and non-scarified seeds, but not between 

scarified or between non-scarified seeds of the two seed colour types (P < 0.05). 

 

Dormancy breaking in seeds of G.carolinianum 

After the dry heat treatment (80 °C for 1 week), a brownish-orange circular area 

appeared near the micropylar region in all treated seeds of G. carolinianum (Fig. 

2.1C, D). The colour of this area in fresh dormant seeds was similar to that of the seed 

coat (Fig. 2.1A, B). 

 

Imbibition 

Imbibition in manually scarified seeds of G. carolinianum was faster than it was in 

heat-treated seeds. Manually scarified seeds and heat-treated seeds reached their 
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maximum mass in 5.5 h and 6.5 h, respectively. After 10 h, the mass of manually 

scarified and heat-treated seeds had increased by 88.7 ± 1.1 % and 94.5 ± 1.9 %, 

respectively, whereas that of non-scarified seeds had increased by only 0.3 ± 0.2 % (P 

< 0.05; Fig. 2.2). 

 

Germination 

After 10 d of incubation on wet sand at 20/10 °C, heat-treated (outer cell layer intact), 

heat-treated (outer cell layers removed) and scarified seeds of G. carolinianum 

germinated to 100 %. Germination of impermeable (outer cell layers intact) and 

impermeable (outer cell layers removed) was 0.0 % and 2.0 ± 0.0 %, respectively (P < 

0.05). 

 

Dye tracking 

Within 5 min, the outermost layers [outer layer and middle layer(s) of the outer 

integument] of both impermeable and permeable G. carolinianum seeds were stained 

pink (Fig. 2.3C, I). After 5 min, the palisade cells of the ‘hinged valve’ had stained 

pink in permeable seeds (Fig. 2.3B) and blue in the chalazal opening (Fig. 2.4B). The 

first appearance of dye below the palisade layer was observed after 10 min in the 

subpalisade cells of the micropylar region below the ‘hinged valve’ (Fig. 2.4E), and 

this stained area had increased in size after 30 min, indicating water movement 

between palisade and subpalisade layers (Fig. 2.4F). Thereafter, movement of the 

stain was slower than that of water, but the cells swelled due to imbibition. After 1.5 

h, swelling of the embryo occurred first under the micropylar region towards the 

chalaza (Fig. 2.3D, E). At the same time, no staining or swelling occurred in the 

chalazal region (Fig. 2.3D, H). After 2 h, a pink colour was observed halfway through 
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the subpalisade directly below the micropylar region and after 2.5 h in the subpalisade 

cells adjacent to the micropyle towards the chalaza (Fig. 2.3F and G). The nucellus 

and the whole micropylar region were stained after 4 h of incubation in dye, while the 

whole embryo had imbibed (Fig. 2.3G). Even after 24 h, the embryo remained 

unstained (figure not shown). 

 

Blocking of presumed water-gap 

After 72 h of incubation, the percentage of imbibition in G. carolinianum seeds with 

the chalaza blocked (98 ± 1.1 %) was significantly higher than that in seeds with the 

micropylar region blocked (14.0 ± 3.1 %) or with the micropylar region + chalaza 

blocked (18.0 ± 3.3 %; P < 0.05). No significant difference was observed between 

seeds in which the micropylar region or chalaza + micropylar region were blocked (P 

< 0.05; Fig. 2.5). 

 

Light microscopy 

The seed coat of G. carolinianum consists of two integuments. The outer integument 

contains an outermost polygonal cell layer with thickened radial walls, middle 

parenchyma cell layer(s) and a palisade layer. The inner integument consists of a 

subpalisade layer, a middle compressed layer and an innermost large cell layer. The 

nucellus is much compressed (not shown). 

 

The palisade layer forms a continuous water-impermeable layer except in the chalazal 

region. Near the chalazal region of mature seeds, the chalazal plug originates from the 

nucleus and fills the gap between palisade cells. The palisade cells are polygonal 

(transverse section), and they can have from four to twelve sides. Normally, when 
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compared with cells with four to six sides, cells with more than six sides are darker, 

larger and contain larger cell depositions at the base of the cell. These are called 

tanniferous cells (Fig. 2.6E, F). The light line in the tanniferous cells is slightly more 

raised than it is in normal palisade cells. 

 

The anatomy of the seed coat in the micropylar region differs from that of the seed 

coat away from the micropyle. Near the micropylar region, the middle parenchyma 

cell layer of the outer integument is several layers thick, and the palisade cells are 

radially elongated. These elongated cells are lighter in colour than the palisade cells 

away from the micropylar region and have a wider light line (Fig. 2.6B, C). Elongated 

palisade cells form a dome-shaped structure by bending sideways, and the top of the 

dome is formed by parenchyma cells (Fig. 2.6B). Subpalisade cells in the micropylar 

region are multilayered, and the cells are elongated radially. Consequently, these 

subpalisade cells appear to be taller than other subpalisade cells away from the 

micropyle (Fig. 2.6B). 

 

Palisade cells of the ‘hinged valve’ comprise elongated and bent palisade cells of the 

micropyle and non-elongated palisade cells of the micropylar region. These palisade 

cells differ from palisade cells away from the water-gap region due to the absence of 

tanniferous cells in this region. Near the micropyle, the width of palisade cells is less 

than that of normal palisade cells, and their size increases towards the radicle end of 

the seed. The inner periclinal cell wall of the palisade cells near the micropyle is flat 

and becomes convex towards the radicle. Also, cell lumens are visible above the light 

line of the palisade cells near the micropyle (Fig. 2.6G). 
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Electron microscopy 

No apparent morphological differences were observed between dormant and non-

dormant (heat-treated) seeds of G. carolinianum with or without outer cell layers (Fig. 

2.7A and C). When permeable seeds started to imbibe water, a ‘clam shell’-shaped 

blister formed near the microplylar region towards the radicle end of the seed (Fig. 

2.7B and D). The blister was formed by swelling of palisade cells in this region, and it 

remained hinged to elongated palisade cells of the micropyle (Fig. 2.7C). Apparently, 

the outer two cell layers also play a role in preventing the blister from detaching. 

After 20 min, the blister was detached from the imbibed seeds (without outer cell 

layers) revealing an opening (Fig. 2.7G). The cell size of the palisade and subpalisade 

layers of the water-gap increased gradually – from the micropyle to the radicle end. 

Also, it was observed that the inner periclinal walls of palisade cells of the water-gap 

were flat near the micropyle and became convex towards the radicle end (Fig. 2.7E, 

F). Accordingly, outer periclinal walls of subpalisade cells of the water-gap are flat 

and concave (Fig. 2.7G). 

 

No distinct water-gap region was observed for seeds in Hypseocharis pimpinellifolia 

(Fig. 2.8A).  The water-gap of other study species of California, Erodium, Geranium, 

Monsonia and Pelargonium were located at the micropylar region (Fig. 2.8B-AD). 

However, water-gap morphology can vary with the species. In most species of 

Geranium and in all the Pelargonium species a circular opening was formed near the 

micropyle, similar to G. carolinianum (Fig. 2.8C-N; U-AD).  However, in seeds of G. 

bohemicum a horse-shoe shaped opening was formed near the micropyle (Fig. 2.8F).  

In seeds of C. macrophylla, E. angustifolia and all the Erodium species, the whole 

micropylar region, including the micropyle, was removed during blister formation 



28 
 

(Fig. 2.8B; O-S; T). Moreover, in E. ciconium and E. cicutarium, elongated openings 

formed (Fig. 2.8P,Q). 

 

Effect of morphological changes of seed coat during burial on seed germination 

During burial, the outer permeable cell layers were damaged or lost. A change of 

colour near the micropylar region was observed in some G. carolinianum seeds (Fig. 

2.9B) similar to that in seeds after heat treatment. Seeds with a change in colour 

germinated to a significantly higher percentage (100 %) than those without a colour 

change (20 ± 3.16 %; P < 0.05). 

 

DISCUSSION 

 

The two seed-coat colours in G. carolinianum can be attributed to different degrees of 

radial wall thickening in the outermost polygonal parenchyma cell layer of the outer 

integument. This cell layer along with the middle cell layer(s) is responsible for the 

reticulate appearance on the surface of Geraniaceae seeds (Boesewinkel and Been, 

1979; Schulz et al., 1991; Aedo et al., 1998a). Seeds with additional cell wall 

thickening in the outermost polygonal cell layer are lighter in colour, while those with 

less thickening are darker in colour. Due to the higher degree of thickening, the seed 

width of light-coloured seeds is significantly higher than that of darker seeds. 

However, the two seed types do not differ significantly in length, mass or seed-coat 

anatomy. 

 

Even though all of the fresh scarified G. carolinianum seeds of both seed types 

imbibed water within 24 h, the percentage germination remained very low within the 
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first 7 d. However, it reached a mean of 92 % germination by the end of 10 d. This 

slow rate of germination indicates the presence of some non-deep PD in the embryo. 

Thus, the seeds have (PY+PD). PD of intact seeds was lost within 2 months, and then 

scarified seeds germinated rapidly. Loss of PD in Geraniaceae during dry storage has 

been reported by Baskin and Baskin (1974) and Van Assche and Vandelook (2006). 

 

According to Meisert (2002), some physically dormant species of Geraniaceae have 

an innately permeable seed fraction. This fraction is <3 % in G. carolinianum. The 

permeable seed fraction of G. carolinianum seems to comprise three categories; viz. 

immature seeds, seeds with open chalaza and seeds with cracked seed coats. Seeds 

with PY acquire impermeability during maturation drying in the last stages of seed 

development (Egley, 1976; Egley et al., 1983; Baskin and Baskin, 1998; Li et al., 

1999a, Jayasuriya et al., 2007b; Chapter 3). If seeds are shed prematurely before 

development of PY, they may not become dormant due to lack of depositions such as 

lignin, wax, phenolic compounds, etc., that make them impermeable (Werker, 1997). 

The width of the chalazal opening plays a role in impermeable and permeable seed 

fractions in Geraniaceae. Water-permeable seeds form a wider opening than 

impermeable seeds in the chalazal slit (Meisert et al., 1999). Cracks in the seed coat 

may also be responsible for the occurrence of an innately permeable seed fraction (Ma 

et al., 2004). Cracks in both permeable and impermeable seeds of G. carolinianum 

were observed in scanning electron micrographs. If the cracks have reached the 

subpalisade layer, seeds may have become permeable. 

 

The outermost cell layers of the outer integument are not responsible for seed-coat 

dormancy due to the lack of mechanical barriers and presence of stomata. However, 
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as observed by Boesewinkel and Been (1979) in seeds of Geranium pratense, wax 

deposited on cell walls may act as a partial barrier to water. Apparently, when buried 

in soil these cell layers can be removed easily due to abrasion by soil particles and 

microbial and chemical breakdown. In the present study, removal of these outer cell 

layers in impermeable seeds did not break PY. Also, in dye-tracking experiments 

these cell layers were stained by dye in both permeable and impermeable seeds, 

indicating their permeability. Therefore, as reported in other species of Geraniaceae, 

PY of G. carolinianum is maintained by an impermeable palisade layer. The palisade 

layer is yellowish brown in vibratome sections, due to lignin and tannin depositions, 

while the other entire cell layers in the seed coat are colourless. 

 

Impermeable seeds of G. carolinianum subjected to dry heat (80 °C) for 1 week 

became permeable and could be identified by their brownish orange colour in the area 

of the water-gap. This colour change is due to detachment of the palisade layer from 

the subpalisade layer in the water-gap. We suggest that when the two layers separate, 

calcium oxalate crystals are shattered and cause the incident light to scatter, resulting 

in lightening of colour. The colour change was also observed in fresh seeds when 

pressure was applied to the micropylar area. Formation of a blister of a lighter colour 

in the chalazal region after application of a small force was reported in Sida spinosa 

(Egley and Paul, 1981). Therefore, the colour change in the water-gap of G. 

carolinianum during heat treatment may not be due to a chemical change. Heat-

treated seeds with a colour change germinated to 100 %, while none of the non-

treated seeds germinated. Thus, the colour change in the water-gap region after heat 

treatment is related to breaking of dormancy in G. carolinianum seeds. 
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After 4 months of burial in soil, the germination of G. carolinianum seeds with a 

colour change in the water-gap area was significantly higher (100 %) than that of 

seeds without visible colour change (20 ± 3.2 %). These results are similar to those of 

heat-treated and non-treated seeds. The colour change in the water-gap begins at the 

micropyle and gradually spreads toward the radicle end of the seed. The initial stages 

of colour change are not visible even under a dissecting microscope. This possibly 

explains why a considerable amount of germination in seeds without a visible colour 

change was obtained. 

 

The micropyle, lumens (located above the light line) and cracks in ‘hinged valve’ 

palisade cells near the micropyle may play an important role in imbibition. When the 

palisade cells of the ‘hinged valve’ imbibe water, they immediately start to swell, 

forming a blister in the micropylar region. When the blister erupts, it exposes an 

opening (water-gap) near the micropyle towards the radicle end of the seed. In heat-

treated seeds, the outer permeable cell layers prevent dislodgement of the blister, but 

in buried seeds the blister may be dislodged due to previous erosion of these outer cell 

layers. 

 

Dye-tracking showed that water enters through the water-gap and not through the 

chalaza, since the subpalisade layer was stained first below the water-gap and not in 

the chalazal region. Moreover, the embryo imbibed first near the water-gap after 1.5 

h, while it remained non-imbibed near the chalaza. Swelling of palisade and 

subpalisade cells and of the embryo started first near the micropyle and then extended 

towards the chalaza. This pattern of swelling confirms that movement of water after 

opening of the water-gap is radial and is directed towards the chalaza. Once cells near 
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the chalaza are swollen, more water can be imbibed through the chalazal opening. 

Movement of the dye lagged behind that of water. This may be due to the larger size 

of dye molecules and lack of affinity of the dye for cell walls, thus slowing the 

movement of the dye. Moreover, the embryo was not stained by acid fuchsin or by 

methylene blue even after 24 h of incubation. These results agree with those obtained 

for Dodonaea petiolaris (Turner et al., 2009). 

 

The idea that initial water entry occurs first through the water-gap near the micropyle 

and not through the chalazal opening was also supported by blocking experiments. 

Within the first 24 h of incubation, the percentage imbibition of seeds with the 

micropylar region sealed was significantly lower than that of those with the chalaza 

sealed. Even after 72 h, the difference remained the same. Therefore, water should 

first enter through the water-gap to initiate imbibition. The uptake of some water even 

after blocking the water-gap region may be due to imperfect binding of the glue. As 

previously reported by Egley and Paul (1981) and Turner et al. (2009), incomplete 

blocking is a common problem associated with sealants in blocking experiments. The 

role of the chalazal opening in initial water uptake can be disregarded since there was 

no significant difference in percentage imbibition of seeds with the chalaza blocked 

and with both the chalaza and micropylar regions blocked. Blocking of the water-gap 

only (i.e. without also blocking the micropyle) was not successful due to their 

closeness to each other. Therefore, the role of the micropyle in initial water uptake is 

still unresolved. 

 

Meisert et al. (1999) documented the chalazal slit as the site of water entry into 

innately permeable seeds of Geraniaceae. In that study, the authors compared the 
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chalazal anatomy of water-permeable and impermeable seeds. The permeable seed 

fraction of Pelargonium mollicomum and seeds of the permeable species, Erodium 

manescavii, form a wide chalazal opening that maintains permeability, while the 

impermeable seed fraction of P. mollicomum and seeds of the PY species P. 

candicans form a narrow opening through which water does not pass. Meisert et al. 

(1999) used OsO4 to visualize the entry of water into innately permeable P. 

mollicomum seeds and concluded that the chalazal opening was the main site of water 

entry into the seed. However, they documented neither the location of initial 

movement of water through innately permeable seeds nor the water-gap of 

impermeable seeds after breaking PY in Geraniaceae. The present study clearly shows 

that the initial water uptake in PY seeds after breaking of dormancy takes place 

through the water-gap near the micropyle and not via the chalazal opening. 

 

Baskin and Baskin (1974) suggested that the hilum functions as a ‘hygroscopic valve’ 

that is involved in initial water entry into the seed, but based on the reports of 

Boesewinkel and Been (1979), they subsequently reported the chalaza as the water-

gap in Geraniaceae (Baskin and Baskin, 1998; Baskin et al., 2000). Nell et al. (1981) 

compared the morphology of the hilum region of four cultivars of Pelargonium 

hortorum using scanning electron microscope photographs and concluded that there is 

no relationship between occlusion of the hilar fissure and seed germination. The hilar 

slit acts as the water-gap in certain species like Cercis canadensis (Jones and Geneve, 

1995; Geneve, 2009), Cuscuta australis (Jayasuriya et al., 2008b) and Sophora 

alopecuroides (Hu et al., 2008). However, unlike the hilar fissure in these three 

species, the hilar fissure in Geraniaceae is located in the outer permeable layers of the 

seed coat and thus cannot act as a water-gap. 
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Gillespie and Andersen (2005) suggested that physical abrasions may play a role in 

the breaking of PY in E. macrophyllum (= C. macrophyllum). This would occur when 

seeds are drilled into soil by coiling and uncoiling of their awns in response to 

changing relative humidity levels. However, Baskin and Baskin (2000) argue that it is 

rather unrealistic to consider that abrasive action, which is an ever-present probability 

in the physical environment, has a significant effect on breaking dormancy in nature. 

Such a mechanism would not allow for control of timing of dormancy break, which is 

a critical event in the adaptation of plants to their environment. 

 

Schulz et al. (1991) compared scanning electron microscope photographs of the seed 

coat of water-permeable and impermeable varieties of Pelargonium zonale before and 

after scarification with conc. H2SO4. They concluded that the palisade layer no longer 

acts as a water-impermeable barrier after the seeds are acid scarified. However, they 

did not show the effect of H2SO4 on either the chalazal or micropylar region, and 

therefore the effect of acid scarification on opening of the water-gap is not clear. 

 

Germination of physically dormant seeds occurs only after a plug or lid that closes the 

discontinuity (‘water-gap’) in the water-impermeable layer(s) is dislodged or 

disrupted, thereby creating an opening for entrance of water to the embryo (Baskin et 

al., 2000). Eleven kinds of water-gaps in six angiosperm families (excluding 

Geraniaceae) have been characterized previously: (1) a bulge gap adjacent to the 

micropyle in Convolvulaceae (Jayasuriya et al., 2007a); (2) a carpellary micropyle in 

Anacardiaceae (Li et al., 1999b); (3) a chalazal blister gap in Malvaceae–Malveae (La 

Croix and Staniforth, 1964; Egley and Paul, 1981; Serrato-Valenti et al., 1992); (4) a 
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chalazal opening in Malvaceae–Gossypieae (Christiansen and Moore, 1959; Simpson 

et al., 1940); (5) a chalazal slit in  Malvaceae-Hibisceae (Serrato-Valenti et al., 1992; 

Poljakoff-Mayber et al., 1994); (6) a gap adjacent to the hilum in Sapindaceae (Turner 

et al., 2009); (7) a hilar slit in Convolvulaceae (Jayasuriya et al., 2008b); (8) a hilar 

slit in Fabaceae–Caesalpinoideae (Jones and Geneve 1995; Geneve,2009) and 

Papilinoideae (Hu et al., 2008); (9) a lens gap in Fabaceae–Caesalpinoideae (Lersten 

et al., 1992) and Mimosoideae (Dell, 1980; Hanna, 1984; Morrison et al., 1998); (10) 

Lens slit in  Fabaceae-Papilinoideae (Morrison et al., 1998) and  (11) a raphal scar in 

Cannaceae (Grootjen and Bouman, 1988; Graven et al., 1997; Mass-Van De Kamer 

and Mass, 2008). 

 

Even though the location of the water-gap of G. carolinianum seeds shows some 

similarity to that of Ipomoea lacunosa (Jayasuriya et al., 2007a), they differ in that 

two openings are formed in I. lacunosa. Moreover, blister formation in G. 

carolinianum is similar to that of Abutilon theophrasti (La Croix and Staniforth, 

1964), Albizia lophantha (Dell, 1980), Sida spinosa (Egley and Paul, 1981, 1982; 

Egley et al., 1986), Acacia kempeana (Hanna, 1984), Canna tuerckheimii (Grootjen 

and Bouman, 1988), I. lacunosa (Jayasuriya et al., 2007a) and Dodonaea petiolaris 

(Turner et al., 2009). However, the water-gap in G. carolianum differs from all other 

characterized blister-forming water-gap types in anatomy, morphology or location. 

Therefore, the ‘hinged valve gap’ adjacent to the micropyle in Geraniaceae is the 

twelfth water-gap type to be characterized. 

 

Based on scanning electron micrographs, the morphology of the water-gaps in 

members of Geraniaceae are similar in shape and location with slight variations 
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within the family. In Geranium and Pelargonium, one half of the micropyle is 

retained when the blister is dislodged from the seed coat, whereas, in California, 

Erodium and Monsonia, the whole micropylar region, including the micropyle, is 

removed when the blister is dislodged from the seed coat. Thus the water-gaps of the 

latter three genera slightly differ from that in other members of the family. Moreover, 

due to lack of seeds, the water-gap of Hypseocharis could not be identified. Thus 

further studies should be carried out to identify the water-gap in this genus. 

 

Opening of the water-gap is essential for germination of G. carolinianum. During the 

initial stages of imbibition in permeable seeds (after PY is broken), eruption of the 

special structure, ‘hinged valve’, adjacent to the micropyle opens the water-gap in 

Geraniaceae. In G. carolinianum, morphology of the water-gap of seeds made 

permeable by exposing them to natural conditions was observed to be similar to that 

of heat-treated seeds. Therefore, as predicted by Baskin and Baskin (1974), dry hot 

weather conditions in summer can be an environmental factor affecting the dormancy 

breaking of G. carolinianum under natural conditions. The present study reveals that 

the ‘hinged valve’ gap which is adjacent to the micropyle, functions as the water-gap 

in seeds of G. carolinianum after PY is broken. 
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Table 2.1.  Classification of  study species of Geraniaceae 
 Genera Study species 
1. Hypseocharis H. pimpinellifolia 
   
2. California C.  macrophylla 
   
3. Geranium  
    subgenera  
       Erodoidea No species were studied 
       Geranium  G. carolinianum, G. dissectum, G. sessiliflorum,  

G. tuberosum, G. bohemicum, G. grandistipulatum 
       Robertum G. polyanthes, G. ocellatum, G. molle, G. pusillum,  

G. pyrenaicum, G. lucidum, G. madrense 
   
4. Erodium  
    subgenera  
       Erodium   E. taxanum  
       Barbata E. ciconium, E. cicutarium, E. manescavii,  

E. moschatum 
   
5. Monsonia  
   Section  
    Monsonia No species were studied 
    Olopetalum M. angustifolia 
   
6. Pelargonium  
   Clades  
      A P. alternans, P. capitatum, P. crithmifolium, P. nanum, 

P. vitifolium  
      B No species were studied 
      C P. dolomiticum, P. mirrhifolium, P. alchemilloides,  

P. quinquelobatum, P. tongaense 
   
The classification of  genera  into  clades, sections and subgenera  based on  
Aedo et al (1998b); Fiz et al (2006); Aldasoro et al (2001); Touloumenidou 
et al (2007); Bakker et al (2004); Jones et al (2009). 
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Table 2.2. Seed sources of the additional study species of Geraniaceae 

Species Seed source 
  
Hypseocharis pimpinellifolia Instituto de Botánica Darwinion, AR (March, 

2012)  
  
California macrophylla University of Texas, Austin, TX, USA 

(March, 2012) 
  
Geranium dissectum University of Kentucky, Lexington, KY, USA 

(June, 2009) 
Geranium sessiliflorum B and T World Seeds Company, Paguingan, 

FR (March, 2012) 
Geranium tuberosum B and T World Seeds Company, Paguingan, 

FR (July-,2011) 
Geranium bohemicum Plant World Seeds, Devon, UK  (March, 

2012) 
Geranium grandistipulatum Plant World Seeds, Devon, UK  (March, 

2012) 
Geranium polyanthes Plant World Seeds, Devon, UK  (March, 

2012) 
Geranium ocellatum Plant World Seeds, Devon, UK  (March, 

2012) 
Geranium molle University Kentucky, Lexington, KY, USA 

(June, 2009) 
Geranium pusillum University Kentucky, Lexington, KY, USA 

(June, 2009) 
Geranium pyrenaicum Millennium Seed Bank collection,  Kew 

Botanical Garden, Kew, UK (April, 2012) 
Geranium lucidum Millennium Seed Bank collection,  Kew 

Botanical Garden, Kew, UK (April, 2012) 
Geranium madrense Plant World Seeds, Devon, UK  (March, 

2012) 
  
Erodium taxanum University of Texas, Austin, TX, USA 

(February, 2012) 
Erodium ciconium La Gineta, Albacete, Castile-La Mancha, SP 

(June, 2011) 
Erodium cicutarium Spindletop Farm , Lexington, KY, USA (June, 

2009) 
Erodium manescavii Plant World Seeds, Devon, UK  (March, 

2012) 
Erodium moschatum Plant World Seeds, Devon, UK  (March, 

2012) 
  
Monsonia angustifolia B and T World Seeds Company, Paguingan, 

FR (March, 2012) 
  
Pelargonium alternans University of Texas, Austin, TX, USA 

(February, 2012) 
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Table 2.2 (continued)  
  
Pelargonium crithmifolium University of Connecticut, Storrs, CT, USA 

(February, 2012) 
Pelargonium nanum University of Texas, Austin, TX, USA 

(March, 2012) 
Pelargonium vitifolium University of Connecticut, Storrs, CT, USA 

(February, 2012) 
Pelargonium capitatum West Perth, WA, AUS (October, 2009) 

 
Pelargonium dolomiticum University of Texas, Austin, TX, USA 

(February, 2012) 
Pelargonium mirrhifolium University of Texas, Austin, TX, USA 

(February, 2012) 
Pelargonium alchemilloides University of Texas, Austin, TX, USA 

(February, 2012) 
Pelargonium quinquelobatum University of Texas, Austin, TX, USA 

(February, 2012) 
Pelargonium tongaense University of Connecticut, Storrs, CT, USA 

(February, 2012) 
  
  

Table 2.3. Mass, length and width of the two seed types of G. carolinianum 

Seed type Seed mass (mg) Seed length (mm) Seed width (mm) 

Light brown 2.44 ± 0.03 1.92 ± 0.02 1.26 ± 0.01* 

Dark brown 2.35 ± 0.03 1.96 ± 0.02 1.22 ± 0.01 

Values are means ± s.e. 

* Indicates significant difference at P < 0.05, with an independent two-sample t-test 
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Figure 2.1. The micropylar region of Geranium carolinianum: (A) dark-brown and 
(B) light-brown impermeable seeds with no colour change in the area adjacent to the 
micropyle; (C) dark-brown and (D) light-brown permeable seeds with colour change 
in the area adjacent to the micropyle after dry heat treatment at 80 °C for 1 week. 
Abbreviations: Hi, hilum; Wg, water-gap; Mi, micropyle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. Percentage mass increase (mean ± s.e.) in permeable (heat-treated), 
manually scarified and impermeable seeds of G. carolinianum during 10 h of 
incubation at ambient room temperature. Different letters indicate significant 
differences between treatments (P < 0.05). 
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Figure 2.3. Longitudinal sections through micropylar and chalazal areas of seeds of 
G. carolinianum allowed to imbibe acid fuchsin for different periods of time: (A) 
micropylar region of an impermeable seed before imbibition; (B) micropylar region 
of a permeable seed before imbibition; (C), (E), (F) and (G) micropylar region of 
permeable seeds with opened water-gap after 5 min, 2 h, 3.5 h and 4 h, respectively; 
(D) both chalazal and micropylar regions of a permeable seed after 1.5 h; (H) 
chalazal region of a permeable seed after 1.5 h; (I) micropylar region of an 
impermeable seed after 4 h. Abbreviations: Ch, chalaza; Chp, chalazal plug; Em, 
embryo; Hv, hinged valve (opened); [Hv], hinged valve (closed); Mi, micropyle; 
Mmo, multi-layered middle parenchyma cells; Op, outermost polygonal parenchyma 
cell layer; Pa, palisade cells; Pch, parenchyma cells of micropyle; R, radicle; Spa, 
subpalisade cells; SpaL, elongated subpalisade cells of micropylar region; Spal, 
elongated subpalisade cells of chalazal region. A cross in a circle indicates presence 
of acid fuchsin dye in different cell layers; an asterisk indicates regions that have 
imbibed. 
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Figure 2.4. Light micrographs of micropylar and chalazal regions of seeds of G. 
carolinianum allowed to imbibe methylene blue for different periods of time: (A) 
and (B) surface view of chalazal end of a seed before and 1.5 h after imbibition; (C) 
longitudinal section through chalazal region 1.5 h after imbibition; (D) chalazal 
region of a seed 1.5 h after imbibition (palisade layer removed to expose subpalisade 
layer); (E) micropylar region of a seed after 10 min imbibing the dye (hinged valve 
removed); (F) micropylar region of a seed after 30 min (palisade layer removed to 
expose elongated subpalisade layer). Abbreviations: Ch, chalaza; Chp, chalazal plug; 
Em, embryo; Mi, micropyle; Pa, palisade cells; Spa, subpalisade cells; SpaL, 
elongated subpalisade cells of micropylar region; Wg, water-gap. 

 

 

 

 

 

 

 

 

 

 

 



43 
 

 

 

 

 

 

 

 

 

 

 

Figure 2.5. Percentage of G. carolinianum seeds which imbibed (mean ± s.e.) during 
72 h of incubation at 20/10 °C with the chalaza blocked, the chalaza + micropylar 
region blocked or the micropylar region blocked. Different letters indicate 
significant differences between treatments (P < 0.05). 
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Figure 2.6. Light micrographs of G. carolinianum seeds: (A) top view of water-gap 
(the line A–A’ indicates the increasing size of the palisade cells); (B) longitudinal 
section through micropylar region of a dormant seed (the two short thick white 
arrows demarcate the widened light line in the micropylar region); (C) periclinal 
section through the water-gap with the hinged valve; (D) longitudinal section of 
water-gap; (E) periclinal section of the palisade layer away from the water-gap; (F) 
longitudinal section of the seed coat away from the water-gap; (G) close-up of a 
longitudinal section of a water-gap (the short thick white or black arrow indicates 
subpalisade cells with smooth or rough outer periclinal walls, respectively. 
Abbreviations: Bpa, bent palisade cells; Cr, crack demarcates the margin of the 
water-gap; Cv, cell lumen; Em, embryo; Hv, hinged valve; ll, light line; ll*, widened 
light line in the micropylar region; ll’’, raised light line in the tanniferous cells; Mi, 
micropyle; Mmo, multi-layered middle parenchyma cells; Mo, single layer of middle 
parenchyma cells; Op, outermost polygonal parenchyma cell layer; Pa, palisade 
cells; PaL, elongated palisade cells of micropylar region; Spa, subpalisade cells; 
SpaL, elongated subpalisade cells of micropylar region; Sv, seed-coat vascular 
tissue; Tf, tanniferous cells in palisade layer; Wg, water-gap open; [Wg], water-gap 
closed. 
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Figure 2.7. Scanning electron micrographs of Geranium carolinianum seeds: (A) 
micropylar area of a dormant seed; (B) micropylar area of a non-dormant (heat-
treated) seed immersed in water for 10 min; (C) micropylar area of a non-dormant 
seed without outer permeable cell layers; (D) raised hinged valve of a non-dormant 
seed without outer permeable cell layers (soaked in water for 10 min); (E) relatively 
smooth inner periclinal cell walls of water-gap palisade cells near the micropyle; (F) 
convex-shaped inner periclinal cell walls of water-gap palisade cells near radicle 
end; (G) water-gap opening of a non-dormant seed without outer permeable cell 
layers and hinged valve dislodged (soaked in water for 20 min). Abbreviations: Cr, 
crack demarcates the margin of the water-gap; Hi, hilum; Hv, hinged valve (opened); 
[Hv], hinged valve (closed); Mi, micropyle; Mo, single layer of middle parenchyma 
cells; Op, outermost polygonal parenchyma cell layer; Pa, palisade cells; PaL, 
elongated palisade cells of the micropyle; SpaL, elongated subpalisade cells; *, 
subpalisade cells with smooth outer periclinal cell wall; **, subpalisade cells with 
concave outer periclinal cell wall. The large white short arrow in (G) indicates the 
region of initial water uptake. 



46 
 

 

   



47 
 

Figure 2.8 (continued) 
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Figure 2.8. Scanning electron micrographs of water-gaps of Geraniaceae species: (A)  
H. Pimpinellifolia; (B) C.  macrophylla; (C) G. grandistipulatum ; (D) G. 
sessiliflorum; (E) G. Disectum; (F) G. bohemicum; (G) G. tuberosum; (H) G. 
polyanthes; (I) G. ocellatum; (J) G. molle; (K) G. pusillum; (L) G. pyrenaicum; (M) 
G. lucidum; (N) G. madrense; (O) E. taxanum; (P) E. ciconium; (Q) E. cicutarium; 
(R) E. manescavii; (S) E. moschatum; (T) M. angustifolia; (U) P. alternans; (V) P. 
crithmifolium; (W) P. nanum; (X) P. vitifolium; (Y) P. australe; (Z) P. dolomiticum; 
(AA) P. mirrhifolium; (AB) P. alchemilloides; (AC) P. quinquelobatum; (AD) P. 
tongaense. Mi, Micropyle; (Mi) location of the micropyle before it is dislodged due to 
imbibition. Abbreviations: Pa, palisade cells; SpaL, elongated subpalisade cells of the 
micropylar region; Wg, water-gap. 

 

 

 

 

 

 

 

 

 

Figure 2.9. Micropylar region of G. carolinianum seeds exhumed after 4 months of 
burial in soil at 2 cm depth: (A) impermeable seed; (B) permeable seed. 
Abbreviations: Hi, hilum; Mi, micropyle; Wg, water-gap open; [Wg], water-gap 
closed. 
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CHAPTER  3 

Acquisition of physical dormancy and ontogeny of the micropyle-water gap 

complex in developing seeds of Geranium carolinianum L. (Geraniaceae) 

 

INTRODUCTION 

 

Seeds or fruits with physical dormancy (PY) acquire water impermeability during the 

final stages of maturation drying (Baskin and Baskin, 1998; Li et al., 1999a; 

Jayasuriya et al., 2007b; Qu et al., 2010). One or more water-impermeable palisade 

cell layers in the seed- or fruit-coat along with closed micropyle, hilum and chalaza 

form physical barriers for water entry, thus causing PY (Egley, 1989; Baskin and 

Baskin, 1998; Baskin et al., 2000). Initial uptake of water on breaking of PY occurs at 

the water gap, a morpho-anatomically specialized area in the seed or fruit coat(s) of 

species with PY (Baskin et al., 2000; Jayasuriya et al., 2007a; Gama-Arachchige et 

al., 2010). Throughout the dormancy period, the water gap, which acts as an 

environmental signal detector, remains occluded by various specialized structures that 

must be disrupted or dislodged for the seeds to become permeable (Baskin et al., 

2000). 

 

PY is known to occur in seeds or fruits of 18 angiosperm plant families and is 

unknown in gymnosperms (Nandi, 1998; Horn, 2004; Baskin et al., 2000; Baskin 

2003; Koutsovoulou et al., 2005; Baskin et al., 2006; APG III, 2009; Tsang, 2010). 

Acquisition of PY during seed development has been studied in several families, 

including Anacardiaceae (Rhus aromatica, Rhus glabra) (Li et al., 1999a), Bixaceae 

(Bixa orellana) (Yogeesha et al., 2005), Convolvulaceae (Ipomoea lacunosa) 
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(Jayasuriya et al., 2007a), Cucurbitaceae (Sicyos angulatus) (Qu et al., 2010), 

Fabaceae (Vicia faba, Peltophorum pterocarpum) (Ellis et al., 1987; Mai-Hong et al., 

2003 ) and Malvaceae (Sida spinosa) (Egley, 1976). However, acquisition of PY in 

Geraniaceae has not previously been investigated. 

 

Water gap anatomy, morphology, origin and location differ among families as well as 

within the same family (Baskin et al., 2000). In addition, the anatomy and 

morphology of the water-gap region differ from that of the rest of the seed/fruit coat. 

Twelve different water-gap types have been characterized to date in seven of the 18 

angiosperm families with PY (Baskin and Baskin, 1998; Li et al., 1999b; Baskin et 

al., 2000; Baskin, 2003; Jayasuriya et al., 2007a, 2008; Hu et al., 2008; Turner et al., 

2009; Gama-Arachchige et al., 2010). However, developmental studies have been 

carried out on only a few of these water-gap types: the bulge adjacent to the 

micropyle in Convolvulaceae (Jayasuriya et al., 2007a), the carpellary micropyle in 

Anacardiaceae (Li et al., 1999a), the chalaza in Malvaceae–Malveae (Winter, 1960; 

Egley and Paul, 1982), the lens in Fabaceae–Caesalpinioideae (Manning and Van 

Staden, 1987) and the raphal scar in Cannaceae (Grootjen and Bouman, 1988). 

 

Various aspects of development in the physically dormant seeds of Geraniaceae have 

been described by several authors. Boesewinkel and Been (1979) documented seed 

development in Geraniaceae and described development of the ovule, embryo and the 

seed coat. Development of the light line in the Geraniaceae seed coat has been 

described by Meisert et al. (2001) using transmission electron micrographs. However, 

the development of the water gap in Geraniaceae (hinged valve gap) remains 
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uninvestigated although its anatomy and morphology have been characterized by 

Gama-Arachchige et al. (2010). 

 

The current study focuses on Geranium carolinianum, an herbaceous winter annual of 

Geraniaceae that is native to eastern North America (Piper, 1906; Small, 1907; Aedo, 

2000). The species is a widely distributed weed in North America (Spencer, 1976; 

Haragan, 1991) and has been reported to be a naturalized weed in China, Japan, 

northern Europe, South America and Taiwan (Peng, 1978; Xu and Aedo, 2008; 

Nishida and Yamashita, 2009). Flowers of G. carolinianum open early in the morning 

and are imperfectly proterandrous, i.e. the stigma becomes receptive a few hours prior 

to anthesis. By noon, the flowers are selfed unless insect-pollinated. Seeds mature 

within 2–3 weeks after pollination. Usually five seeds are borne in a fruit, which are 

ultimately released by an explosive mechanism (Robertson, 1893; Dubay and Murdy, 

1983). 

 

Freshly matured seeds of G. carolinianum exhibit PY and a low level of physiological 

dormancy (PD). Also, a small fraction of innately permeable seeds is produced. PY is 

caused by a layer of water-impermeable palisade cells and tightly closed micropyle 

and chalaza (Gama-Arachchige et al., 2010). 

 

The objectives of the current study were to (1) determine the stage of acquisition of 

PY by the developing seeds of G. carolinianum; (2) identify the stages of 

physiological changes in developing seeds; and (3) compare the simultaneous 

development of the water-gap region, seed coat, chalaza and micropyle. 
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MATERIALS AND METHODS 

 

Growing plants 

One hundred rosettes of Geranium carolinianum growing on the campus of the 

University of Kentucky, Lexington, KY, USA, were transplanted into 15-cm-diameter 

plastic pots filled with garden soil in March 2010 and kept on benches inside a non-

heated greenhouse. The plants were watered as necessary. 

 

Pollination 

In mid-April 2010, flowers were selfed by touching their stigmata with anthers with 

the aid of a needle around 1100 h. Subsequently, each pollinated flower was tagged to 

identify the date of pollination. To prevent seed dispersal after 18 d after pollination 

(DAP), rostra of fruits were tied with a piece of thread. 

 

Ovule and seed collection 

 Flower buds at different stages of development were collected. After 

pollination, fruits were collected daily, from 0 to 21 DAP. The collected material was 

placed in ZipLoc bags and taken to the laboratory immediately. Another set of 50 

fruits from each DAP was collected, stored in cloth bags and dried for 2 weeks inside 

a non-heated greenhouse. 

 

Measurement of seeds 

Thirty ovules/seeds (hereafter seeds) were separated from collected fruits of each 

DAP. The length and width of each seed were measured using a dissecting 

microscope with a calibrated micrometer eyepiece. From each DAP, five replicates of 
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five seeds each were weighed (fresh mass). Subsequently, the weighed seeds were 

oven dried at 105 °C to achieve a constant mass (dry mass). Weights were recorded to 

the nearest 0.0001 g. Seed moisture content was calculated (fresh mass basis). 

 

Morphological changes in seeds during development 

Using a dissecting microscope (Zeiss STEMI SVII) equipped with an Olympus DP25 

digital camera, micrographs of developing seeds (0–20 DAP) were taken to compare 

morphological changes that occur during seed development. 

 

Imbibition and germination of developing seeds 

Experiments were conducted to determine percentage imbibition, germinability and 

acquisition of PY in developing seeds of G. carolinianum. Two hundred seeds each 

from 0 to 21 DAP were selected. Embryos were isolated from 100 seeds of each 

sample under a dissecting microscope using forceps and a razor blade. The other 100 

seeds were left intact. Five replicates of 20 isolated embryos and of intact seeds were 

incubated on moist sand at 20/10 °C (12 h/12 h) under a 14 h/10 h daily light/dark 

period. Photon irradiance during the light phase was approx. 40 mol m–2 s–1, 400–

700 nm and the light source was cool white fluorescent tubes. 

 

Seeds were considered germinated when the radicle emerged at least 2 mm in intact 

seeds or when it grew at least 2 mm beyond the tip of cotyledons in isolated embryos. 

The number of imbibed intact seeds and germinated seeds (both embryos and intact) 

was counted after 4 weeks. 
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Imbibition of mature seeds with different moisture contents 

To determine the seed moisture content at which impermeability is acquired, 50 seeds 

at 18 DAP were removed from fruits and ten each were transferred to wire mesh 

screens placed over water inside five humid (closed) boxes. They were placed inside 

an incubator at 25 °C for 3 h to maintain 99 % relative humidity (RH) in order for the 

seeds to reach the maximum possible seed moisture content (to compensate for 

desiccation). The seeds were then placed in open Petri dishes and weighed (initial 

mass) using an electric balance. They were allowed to dry on the same balance under 

laboratory conditions (approx. 23 °C and 50–60 % RH) until the mass reached the 

value corresponding to the desired moisture content, as calculated from the following 

formula (Baalbaki et al., 2009): 

 

WF = [(100 – MCi) – (100 – MCa)] × WI 

 

where WF is the  final mass of seeds per replicate, WI is the initial mass of seeds per 

replicate, MCi is the initial seed moisture content and MCa is the adjusted seed 

moisture content. The initial moisture content (MCi) of seeds at the same 

developmental stage (18 DAP) was calculated after allowing the seeds to reach the 

maximum possible seed moisture content. This procedure was followed to achieve 40, 

35, 30, 25, 20, 15, 14, 13, 12, 11, 10, 9 and 8 % seed moisture content. 

 

Five replicates of ten seeds each from the seeds with the above adjusted moisture 

content values were placed inside Petri dishes lined with moist filter papers and sealed 

with Parafilm. The number of imbibed seeds in each sample was counted daily for 4 

weeks. 
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Imbibition and germination of slow-dried developing seeds 

To determine the developmental stage at which seeds achieve impermeability if they 

are subjected to drying, 200 seeds were selected from those dried inside the non-

heated greenhouse (0–21 DAP), and 100 of them were scarified mechanically with a 

razor blade at places on the seed coat away from the micropylar and chalazal ends 

without damaging the embryo. The other 100 seeds were left intact. All seeds were 

germinated as described above. The number of imbibed and germinated seeds were 

counted after 4 weeks. 

 

Anatomical changes in seeds during development 

To study anatomical changes in the ovules and seeds during development, ten 

randomly selected flower buds at different stages of development and fruits 0–20 

DAP were kept fixed in formaldehyde – acetic acid until used. They were then 

dehydrated in a series of tertiary-butanol and embedded in paraffin wax. 

Subsequently, 12-m longitudinal sections of the buds and fruits were cut using a 

microtome (LEICA RM 2135). Sections were stained with 1 % safranin and 2 % fast 

green solutions. The micropylar and chalazal regions and the seed coat away from 

micropyle and chalaza were observed and photomicrographed using an Olympus 

BX40 light microscope and an Olympus DP25 digital camera. Drawings of different 

types of mature palisade cells and subpalisade cells in the seed coat were made using 

the photomicrographs. To examine the anatomy of unstained seeds, longitudinal 

sections through the chalaza and the micropyle of mature seeds were taken using a 

VIBRATOME 1500 sectioning system and photomicrographed using the same 

microscope and camera. 
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Statistical analysis 

Percentage germination and imbibition data were normalized by arcsine-

transformation prior to analysis. Normalized germination and imbibition data were 

analysed by one-way ANOVA, and Duncan’s multiple range test was used to 

determine significant differences between each treatment (P < 0.05). All analyses 

were carried out using SAS ver. 9.2 software. Non-transformed data were used for 

graphical representations. 

 

RESULTS 

 

Measurement of seeds 

Immediately after pollination (0 DAP), seed width was slightly greater than seed 

length (Fig. 3.1A). After 2 DAP, this was reversed, making seed length greater than 

seed width. Thereafter, both seed length and width showed a similar pattern of 

increase. Both parameters increased up to 7 DAP and then remained more or less the 

same until 16 DAP. Subsequently, following a slight increase, the length and width 

declined until 19 DAP but did not change thereafter. 

 

Seeds 0–3 DAP could not be weighed due to their extremely low mass. From 4 DAP 

onwards, seed moisture content declined throughout the period of development (Fig. 

3.1B). The decline was gradual from 4 DAP (93.1 ± 0.4 %) to 18 DAP (50.4 ± 1.0 %) 

and rapid from 18 DAP to 19 DAP (12.4 ± 1.3 %). Thereafter, the moisture content 

decreased gradually and reached 11.1 ± 0.9 % by 21 DAP. Average dry mass 
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increased until 14 DAP, when the seed reached physiological maturity and it 

remained the same afterwards. 

 

Morphological changes in seeds during development 

Developing seeds undergo a series of morphological changes from the ovule stage to 

the fully matured stage. Changes are apparent with respect to seed shape, colour and 

coat transparency. 

 

During the early stages of development, seeds of G. carolinianum exhibited dramatic 

changes in shape. At 1 DAP, seeds were trigonal but became wedge-shaped by 3 DAP 

(Fig. 3.2A, B). At 4 DAP, seeds were bullet-shaped (Fig. 2C). They changed into an 

oblong shape due to increasing width at 6 DAP (Fig. 3.2D) and remained so until 18 

DAP. By 20 DAP, when the seeds were ready for dispersal, they were ovoid (Fig. 

3.2J). 

 

At 0 DAP, ovules assumed a dull greyish green colour. They gradually turned into a 

brighter green around 12 DAP (Fig. 3.2E) which persisted until 14 DAP (Fig. 3.2F). 

By this stage, the micropylar area had become clearly visible as a small white patch 

close to the radicle end. An orange–brown tinge appeared at the radicle end by 15 

DAP (Fig. 3.2G) which gradually spread throughout the seed and turned the whole 

seed coat orangey brown by 18 DAP (Fig. 3.2H, I). When ready for dispersal at 20 

DAP, seeds assumed a dark mauve colour (Fig. 3.2J). 
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In developing and mature seeds, the seed coat remained translucent. After 15 DAP 

(Fig. 3.2G), with deposition of tannin in cells of the palisade layer, opaque spots 

appeared throughout the seed coat. 

 

Imbibition and germination of developing seeds 

From 0 to 18 DAP all the seeds imbibed but by 19 DAP, only 37 ± 16 % did so (Fig. 

1C). By 20 DAP, all the seeds were impermeable. A low percentage (6 ± 1 %) of 

developing seeds gained germinability on 9 DAP (Fig. 3.1D). Thereafter, 

germinability gradually increased to its maximum on 16 DAP (97 ± 2 %). However, 

the seedlings produced from 9 to 12 DAP were abnormally small. After 18 DAP there 

was a rapid decrease in percentage germination, and by 20 DAP none germinated. 

This rapid decrease in percentage germination coincided with the decrease in 

imbibition 19 DAP (Fig. 3.1C). 

 

Similar to intact seeds, isolated embryos started to germinate 9 DAP, yet at a higher 

percentage (51 ± 12 %; Fig. 3.1E) than intact seeds (6 ± 1%; Fig. 1D). From 13 DAP, 

germination of isolated embryos (43 ± 9 %) increased gradually to the maximum (100 

± 0 %) by 16 DAP, and remained the same until 21 DAP. As seen in fresh intact 

seeds, seedlings produced from 9 to 12 DAP were abnormally small. 

 

Imbibition of mature seeds with different moisture contents 

All the seeds having moisture contents from 40 to 13 % imbibed (100 %; Fig. 3.3A). 

However, the percentage of imbibed seeds declined to 94 ± 6 % when the moisture 

content was 12 % and on further drying, all the seeds became impermeable at a 

moisture content of 11 % or less. At a moisture content of 13 %, all the seeds imbibed 
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within 24 h (Fig. 3.3B), but those dried to 12 % moisture content required 11 d for 94 

± 3 % of them to imbibe. On further drying to 11 % moisture content, none of the 

seeds imbibed. 

 

Imbibition and germination of slow-dried developing seeds 

Seeds up to 8 DAP could not be used for experiments as their seed coats cracked on 

drying. Dried developing seeds showed a rapid reduction in imbibition from 9 DAP 

(100 %) to 13 DAP (0 %; Fig. 3.4A). Thereafter, all the seeds remained completely 

impermeable. Accordingly, the germination of dried developing seeds remained low, 

from only 25 ± 6 % on 9 DAP to 0 % by 13 DAP, indicating complete seed 

impermeability (Fig. 3.4B). 

 

All the dried and scarified developing seeds were permeable throughout the 

experiment (Fig. 3.4C). The germination of dried and scarified developing seeds at 9 

DAP was low, but markedly increased by 12 DAP (Fig. 3.4D). From 15 DAP 

onwards, germination was 100 %. 

 

Anatomical changes in seeds during development 

 Development of integuments in ovules. 

Formation of an outer integument (o.i.) and an inner integument (i.i.), each with two 

cell layers originating from the dermatogen, can be identified in developing ovules of 

unopened flower buds (Fig. 3.5A). However, a cluster of cells forms in the tip of the 

o.i. Fully developed ovules become six-seriate by periclinal cell division of the inner 

cell layer of each integument (Fig. 3.5B). At this stage, cells of the outermost layer of 
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the o.i. and of the middle and innermost layers of the i.i. can be distinguished from the 

other cell layers, owing to their larger cell size. 

 

 Seed coat development. 

From 1 DAP to 4 DAP, cells of the integuments continue to enlarge without 

noticeable differentiation (figures not shown). By 6 DAP, a significant degree of cell 

differentiation has taken place (Fig. 3.5C). Cells of the outer parenchymal layer of the 

o.i. become enlarged and in certain places in the seed coat, the middle parenchymal 

layer of the o.i. becomes multi-layered. By this stage, cells of the innermost layer of 

the o.i. and outermost layer of the i.i. are longitudinally elongated, forming the 

palisade layer and the subpalisade layer. Cells of the former are smaller than those of 

the latter and bear conspicuous nuclei closer to the lower periclinal wall (Fig. 3.5C). 

These palisade cells enlarge and achieve full size by 8 DAP (Fig. 3.5D). The light line 

is feebly visible at a level approximately one-third below the outer periclinal wall of 

the cells of the palisade layer. Also, fine short crystals appear in the palisade cells. 

During this stage, the inner parenchymal cells of the i.i. start to contract due to the 

compression exerted by the developing embryo (Fig. 3.5D). 

 

By 13 DAP, the outermost and the middle parenchyma of the o.i. have started to 

collapse and the light line in the palisade layer has become more conspicuous (Fig. 

3.5E). Cytoplasm of palisade cells appears to be confined to the region near the inner 

periclinal wall of cells. Deposition of tannin in certain enlarged cells of the palisade 

layer becomes visible at this stage. In these tanniferous cells, the light line appears to 

be curved slightly outwards. Cell walls of the subpalisade layer have thickened. 
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The seed coat is fully developed by 18 DAP. In the palisade layer, cell walls are 

thickened (Fig. 3.5F). Lumens containing crystals have developed in the region close 

to the inner periclinal wall of palisade cells (Fig. 3.6A). In tanniferous cells, tannin 

deposition has become extensive (Fig. 3.6A). Middle and inner parenchyma of the i.i. 

have become compressed. By 20 DAP, a golden yellow colour can be observed in the 

palisade layer in unstained specimens, while all the other layers are colourless (Fig. 

3.7A–D). 

 

 Development of the micropyle and water gap. 

Development of the water gap takes place in a region of the integuments opposite to 

the hilum and adjacent to the micropyle. In developing ovules, due to anticlinal cell 

division, integuments gradually surround the nucellus, forming the micropyle (Fig. 

3.8A–C). Soon after pollination, cells of the micropylar region start to differentiate. 

At 01 DAP, cells of the inner layer of the o.i. (pro-palisades) and outer layer of the i.i. 

(pro-subpalisades) start to elongate radially (Figs 3.9A and 3.10A). At 3 DAP, pro-

subpalisades start to divide periclinally (Figs 3.9B and 3.10B), resulting in multiple 

layers by 4 DAP (Figs 3.9C and 3.10C). Due to elongation, pro-palisades and pro-

subpalisades have acquired the typical palisade cell shape. However, directly interior 

to the micropylar opening, some of the subpalisade cells do not elongate but divide 

periclinally to form a stack of much shorter subpalisade cells. Other subpalisade cells 

are much longer than the palisade cells. At this stage (Fig. 3.9C), the palisade cells 

close to the micropyle divide periclinally, adding 1–2 layers of parenchyma cells 

towards the middle layer of the o.i. Also the middle parenchyma layer immediately 

above the water-gap palisades has become multilayered. Cells of the outermost layer 

of the o.i. are smaller near the micropyle than they are in the rest of the seed coat 
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(Figs 3.9C and 3.10C). By 6 DAP, the upper part of the elongated palisade cells of the 

micropyle bends sideways (Figs 3.9D and 3.10D). 

 

At 8 DAP, walls of palisade and subpalisade cells have thickened, and the cytoplasm 

in those cells appears to be confined to the centre of the cells (Fig. 3.10E). Cell width 

is less in water-gap palisades adjacent to the bent palisades and increases towards the 

radicle end of the seed coat. Similarly, cell width of subpalisades gradually increases 

outwards from the micropyle. At this stage, the light line appears faintly as a 

discontinuous line in the palisades of the water-gap region. Close to the micropyle, 

the middle layer of the i.i. is compressed (Figs 3.9E and 3.10E). 

 

At 14 DAP, the light line appears as a continuous and conspicuous line, and at the 

stretched palisades of the micropyle, it appears as two broad lines (Figs 3.9F and 

3.10F). Consequently, cytoplasm in these cells exists in three zones. Most of the 

cytoplasm is seen in the zone above the light lines, and smaller amounts of cytoplasm 

can be seen in zones between and below the lines. However, in the water gap, the 

light line appears as a single line in the palisades, with cytoplasm restricted to the 

portion below the light line. Lumens are visible in the upper portion of the palisades. 

By this stage, the inner periclinal walls of water-gap palisades are flat near the 

micropyle and become convex towards the radicle end (Wpa-I and II; Fig. 3.6A). 

Accordingly, the outer periclinal walls of water-gap subpalisades are flat and concave 

(SpaL-I and II; Fig. 3.6B). In the subpalisade layer, lumens have appeared at the 

expense of the cytoplasm (Figs 3.9F and 3.10F). 
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By 18 DAP, the light line is more resolved (Figs 3.9G and 3.10G). Lumens in 

palisades are prominent, and deposits of these cells appear to be pushed towards the 

inner periclinal wall. In the micropyle, the parenchymal cells that originated from the 

palisade cells assume a rectangular shape in longitudinal section (Fig. 3.10G). The 

two light lines in the stretched palisades in the micropyle appear to be broader by this 

stage. Stacked shorter subpalisade cells directly below the micropylar opening are 

clearly visible by this stage (Spas; Fig. 3.6B). The middle layers of the i.i. appear to 

be compressed further (Figs 3.9G and 3.10G). 

 

When the seeds are ready for dispersal 20 DAP, the outer and middle parenchyma 

layers of the o.i. are noticeably compressed (Figs 3.9H and 3.10H). In stretched 

palisades of the micropyle, the golden yellow colour is paler than in other regions 

(Fig. 3.7A, B). The palisade layer resembles an atoll by this stage, due to the 

differential cell length of the middle (PaL-I and II; Fig. 3.6A) and bent palisades 

(Bpa; Fig. 3.6A) of the micropyle. By this stage, sparse development of chlorophyll is 

evident in several cells of the middle layer of the i.i., which align with the micropylar 

opening. Such chlorophyll development is not seen anywhere else in the seed coat 

(Fig. 3.7A). 

 

Throughout the development and even after dispersal, the exostome remains open at 

the outer parenchymal layer of the o.i. (Fig. 3.10C). It becomes closed at the middle 

parenchymal and palisade layers of the o.i. in later stages of development, while the 

endostome is closed at all the layers of the i.i. after pollination. Due to maturation 

drying, which commences around 19–20 DAP, palisade cells shrink, sealing the 

micropylar opening and the water gap (Figs 3.9H and 3.10H). 
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 Development of the chalaza. 

At initial stages of development of the integuments, a cell mass that is not 

differentiated into integument tissues can be identified between the bases of the two 

integument primordia (Fig. 3.8A, B). This undifferentiated cell mass (hypotase) forms 

the chalazal opening in developing and mature seeds. In developing ovules, the 

chalaza and micropyle are located at opposite ends of the same axis. After pollination, 

their relative locations shift and orient their axes 90° to each other. 

 

In mature ovules, the vascular tissue can be identified developing along the middle 

parenchyma of the o.i. This middle parenchymal layer consists of multiple cell layers 

in the region between the hilum and chalaza. This condition is prominent near the 

chalazal end. In ovules at 0 DAP, cells of the chalazal opening do not show any 

noticeable differentiation (Fig. 3.11A). Radial elongation of pro-palisades and pro-

subpalisades is apparent by 2 DAP (Fig. 3.11B). However, these cell layers are not 

continuous at the chalazal opening. Nevertheless, the undifferentiated cells in the 

opening divide increasing the cell number, and they are arranged compactly. These 

chalazal parenchyma cells filling the discontinuation of the palisade layers are radially 

stretched (Fig. 3.11B). 

 

By 3 DAP, pro-palisades, pro-subpalisades and chalazal parenchyma are stretched 

further (Fig. 3.11C). Accumulation (presumably) of suberin, which persists hereafter 

in the middle parenchymal layers of the o.i. and nucellar tissue adjacent to the 

chalazal opening, is visible. These deposits are contained in enlarged parenchyma 

cells. Due to cell elongation, pro-palisades and subpalisades appear as typical 
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palisades by 6 DAP (Fig. 3.11D). As in the micropyle, chalazal palisades and 

subpalisades are also stretched more than those in the rest of the seed coat but to a 

lesser extent than those in the micropyle. Moreover, these palisades are oblique near 

the chalazal opening. 

 

By 10 DAP, thickening of the radial walls of palisade cells causes the cytoplasm to 

appear in a bowling pin shape (Fig. 3.11E). The light line is discernible as a 

discontinuous line in the palisade layer, but is absent in palisade cells adjacent to the 

chalazal opening. The chalazal opening has become narrow 17 DAP. The light line 

appears to be continuous in the palisade layer and is absent in the chalazal opening 

and in palisades immediately adjacent to the opening (Pal, Fig. 3.6A; Fig. 3.11F). Cell 

wall thickening in the palisades has become extensive, restricting the deposits to the 

cell base. Cytoplasm of subpalisades appears to be depleted, and large lumens are 

visible in cells (Fig. 3.11F). 

 

In mature seeds, the uniseriate outer parenchymal layer and the multilayered middle 

parenchymal layer of the o.i. are compressed and crushed. This causes suberin 

deposits in the middle parenchymal cells near the chalazal opening to compress 

towards palisades, forming a plug from the outside (Fig. 3.11F). Similarly, the 

chalazal opening is clogged from the inside of the subpalisades with suberized cells of 

the hypotase. Chalazal parenchyma cells are crushed due to contraction of palisades 

and subpalisades. Consequently, the chalazal opening is sealed tightly (Fig. 3.8C, D). 

 

DISCUSSION 
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The time span of development of seeds of G. carolinianum from pollination to 

dispersal, according to the current study, was 20 d. This result is in agreement with 

the study of Dubay and Murdy (1983) on the same species. During the period between 

2 and 7 DAP, active cell division and cell expansion were indicated by a rapid 

increase in seed length and width. Seeds attained physiological maturity at 14 DAP, 

when the highest dry matter content was recorded. The steep decline of moisture 

content from 18 to 19 DAP signifies the loss of vascular supply to the seed and the 

commencement of maturation drying (Fig. 3.12). Consequently, seed size declined 

rapidly from 17 to 19 DAP due to the shrinkage of tissues. 

 

Extensive cell division in the region opposite to the chalaza of ovules and young seeds 

results in a dramatic change in seed shape. Until 15 DAP, the seed coat remains 

translucent, revealing the colour of the embryo sac or embryo. The greyish green 

colour of the seed at 0 DAP turns into a brighter green with the growth and 

chlorophyll development of the embryo. By 15 DAP, an orangey brown colour 

develops in the seed coat, probably due to oxidation of polyphenolic compounds in 

the palisade layer (Marbach and Mayer, 1975; Werker, 1997). This masks the green 

colour of the embryo. However, the seed coat remains translucent even after this 

stage, yet to a lesser extent. Compaction and compression of the palisade layer after 

maturation drying and probably the chemical changes taking place in the seed coat 

(Werker, 1997) cause its colour to turn mauve. Tannin deposits in tanniferous cells of 

palisade layer appear as brown opaque spots scattered throughout the seed coat 

(Boesewinkel and Been, 1979). 
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Colour change of the seed coat during development is reported in other PY species 

(Werker, 1997). Nevertheless in PY species, seeds with their mature colour developed 

can still be permeable even though the seed coat is already impermeable, due to 

incompletely sealed openings. The micropyle, hilum and chalaza have been reported 

to be the openings through which water loss takes place during the final stages of 

maturation drying, and these very sites have been reported to allow water entry as 

well, i.e. into seeds with its mature colour developed (Egley et al., 1983; Jayasuriya et 

al., 2007b). In Ipomoea lacunosa, approx. 45 % of seeds with their mature colour 

developed remained permeable due to incomplete sealing of hilar fissure (Jayasuriya 

et al., 2007b). In Sida spinosa, permeability of seeds even after the development of 

mature colour is caused by an incompletely sealed chalaza (Egley et al., 1983). At the 

end of maturation drying, these permeable seeds become impermeable with the 

completion of sealing of the openings. In G. carolinianum, the micropyle and/or 

chalaza might be the sites of final water loss. However, it was not determined in the 

current study due to high rate of drying and small size of seeds, which make it 

impossible to block the micropyle and chalaza individually. 

 

The simultaneous and significant reduction of imbibition and germination percentages 

indicates that seeds of G. carolinianum start to acquire PY on 19 DAP, and by 20 

DAP all the seeds are impermeable. Maturation drying, which occurs at the same 

stage, plays a role in causing impermeability of the seed coat. When the seed moisture 

content was 11.4 % at 19 DAP, 37 % of the seeds imbibed. According to seed 

moisture experiments, none of the seeds imbibed at a seed moisture content of 11 %. 

Therefore, the critical seed moisture content at the acquisition of PY is 11 %. This 

critical moisture content varies among species with PY. However, most of the 



68 
 

determined critical moisture content values lie within the range 3–15%. For example, 

this value is 3 % in Lupinus arboreus (Hyde, 1954) and Abelmoschus esculentus 

‘Lousiana Green Velvet’ (Standifer et al., 1989), 4.7 % in Ormosia arborea 

(Brancalion et al., 2010), approx. 7 % in Peltophorum pterocarpum (Mai-Hong et al., 

2003), 8.9 % in Lupinus varius (Quinlivan, 1970) and in the endocarp of Rhus glabra 

(Li et al., 1999a), 11 % in Crotolaria spectabilis (Egley, 1979), 12 % in Gossypium 

hirsutum (Patil and Andrews, 1985) and Bixa orellana (Yogeesha et al., 2005), 13 % 

in Ipomoea lacunosa (Jayasuriya et al., 2007b), 13.6 % in the endocarp of Rhus 

aromatica (Li et al., 1999a), approx. 14% in Trifolium pratense and Trifolium repens 

(Hyde, 1954), 14.3 % in Sida spinosa (Egley et al., 1983) and 14.6 % in Sicyos 

angulatus (Qu et al., 2010). 

 

Until the critical moisture level is reached, imbibition is not completely hindered. At 

12 % moisture content, i.e. when the moisture content is slightly above this critical 

value, the number of imbibed seeds increases slowly, showing a considerable 

resistance to water uptake. This may be an indication of incomplete sealing of 

openings and/or partial impermeability of the seed coat. A similar relationship 

between seed moisture content and impermeability was reported by Quinlivan (1970) 

in seeds of three species of Lupinus. In Lupinus varius, at 10.5 % moisture content, 

the percentage of imbibed seeds increased slowly for 12 weeks to reach 95 %. At 8.9 

% moisture content, the percentage of imbibed seeds was 10 % during the same 

period. The results were similar for the two other species of Lupinus in that study. 

 

Germination of fresh, intact seeds of G. carolinianum does not occur until 9 DAP, 

presumably due to incomplete development of the embryo. Although seeds are 
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germinable from 9 DAP until PY is achieved, seedlings produced from seeds 

harvested 9 DAP to the stage of physiological maturity (14 DAP) are abnormally 

small. This indicates that developing embryos cannot produce normal seedlings until 

they reach physiological maturity at 14 DAP. When the seed coat is removed, a higher 

germination percentage of the isolated embryos than of intact seeds was observed 

from 9 to 12 DAP, as a consequence of elimination of the obstruction for the 

protrusion of the radicle imposed by the seed coat. A similar increase in germination 

percentage after scarification of developing seeds was observed in Abutilon 

theophrasti (Winter, 1960) and Sida spinosa (Egley, 1976). In G. carolinianum, 

maximum germination (100 %) of both intact seeds and isolated embryos was attained 

16 DAP, 2 d after physiological maturity. However, these embryos or intact seeds at 

permeable stages did not begin germination within the first 2 weeks of incubation. 

This is evidence for the small amount of PD in developing seeds after physiological 

maturity as reported in mature fresh seeds of G. carolinianum by Baskin and Baskin 

(1974) and Gama Arachchige et al. (2010). 

 

Slow drying can cause the time of acquisition of PY to be shifted to an earlier stage of 

development. Slow-dried intact seeds acquired impermeability at 13 DAP, i.e. 1 d 

prior to physiological maturity. Comparably, in Trifolium ambiguum, acquisition of 

PY in slow-dried seeds occurred at a developmental stage approx. 20 d earlier than in 

untreated seeds (Hay et al., 2010). Slow-dried scarified seeds of G. carolinianum 

germinated to 33 % on 9 DAP. Thus, some seeds of G. carolinianum are desiccation-

tolerant from at least 9 DAP, and all the seeds were desiccation-tolerant from 12 DAP 

onwards. Therefore, as expected, seeds become desiccation-tolerant before they 

achieve impermeability. Germination from 9 to 11 DAP is improved by slow drying 
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when compared with fresh intact seeds. A similar result was observed with slow-dried 

seeds of Abelmoschus esculentus (Damir, 1997) at early stages of development and in 

Vicia sativa (Samarah et al., 2004) during middle and later stages of development. 

After 12 DAP, none of the dried intact seeds of G. carolinianum germinated as they 

were already impermeable. However, dried scarified seeds gave almost 100 % 

germination 12 DAP onwards, a significant increase in germination when compared 

with that of fresh isolated embryos. Thus, the improved germination after slow-drying 

is masked by the early occurrence of PY. 

 

Ontogeny of integuments and the seed coat of G. carolinianum is comparable with 

that of G. pratense (Boesewinkel and Been, 1979). Similar to G. pratense, 

integuments of the ovule of G. carolinianum originate from the dermatogen. The 

origin and development of each cell layer in integuments is also similar in these two 

species. As yet, the development of the water gap has not been investigated in any 

species of Geraniaceae. 

 

Palisade cells form the main barrier for water uptake in the seed coat in Geraniaceae 

(Schulz et al., 1991; Meisert et al., 1999). The innermost cell layer of the o.i. of the 

ovule develops into palisade cells in the seed coat in G. carolinianum. This endotestal 

origin of the seed coat palisades of Geraniaceae is an exception as palisade cells of all 

the other seeds of families with PY are either exotestal or exotegmic in origin. In 

Cannaceae, Convolvulaceae, Cucurbitaceae, Fabaceae and Sapindaceae, palisade cells 

are exotestal in origin whereas in Bixaceae, Cistaceae, Cochlospermaceae, 

Dipterocarpaceae, Malvaceae, Rhamnaceae and Sarcolaenaceae they are exotegmic in 

origin (Baskin et al., 2000). In Geraniaceae, the subpalisade layer is exotegmic in 
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origin and it provides mechanical support to the seed coat (Boesewinkel, 1997; 

Meisert, 2002). The current study revealed that cells in the palisade and subpalisade 

layers in mature seeds are of various forms in terms of their overall shape, size and 

deposits, depending on their location in the seed coat (Fig. 3.6A, B). 

 

In the micropyle and chalaza of G. carolinianum, cell division and differentiation take 

place to a greater extent than in the rest of the seed coat. Consequently, these sites 

possess more cell layers and particular anatomical features. In the i.i. of the seed coat 

at the micropyle, the middle layer and the outer layer (subpalisade layer) become 

multilayered, and palisade cells are radially stretched. Further, the current study 

reveals that the formation of multiple layers of rectangular-shaped parenchyma cells 

(originating from palisades) contribute to the formation of a dome-shaped structure at 

the micropyle of G. carolinianum. This type of specialization is necessary to 

strengthen and seal this opening to maintain water impermeability (Werker, 1997). In 

G. carolinianum, chalazal palisades and subpalisades stretch, possibly providing the 

mechanical strength required to prevent the seed coat from collapsing during 

desiccation. The gap between palisade cells of the chalaza is filled with a chalazal 

plug (= suberized stopper, sensu Boesewinkel and Been, 1979) originating from the 

hypotase. In Malvanae, the chalaza is a highly anatomically specialized structure that 

is blocked by lignified cells at maturity and subsequently, at the breaking of 

dormancy, this same site acts as the water gap (Simpson, 1940; Nandi, 1998). 

Conversely, although the chalaza is an anatomically specialized location in the seed 

coat of G. carolinianum, it does not act as the water gap (Gama-Arachchige et al., 

2010). 
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In G. carolinianum, the water gap develops near the micropyle (Gama-Arachchige et 

al., 2010). As these two structures are located very close to each other, a clear 

demarcation of the two regions is difficult. Therefore, the ontogeny of both regions 

was studied collectively. The palisade layer which forms the ‘hinged valve’ of the 

water-gap opening is endotestal in origin, similar to the seed coat. In the course of 

development of the micropylar area, palisade cells take five different morphological 

forms (Fig. 3.6A). Some of the palisades of the water gap are longer than those in the 

rest of the seed coat. Similarly, longer palisades are encountered in the lens (the water 

gap) in Indigofera parviflora and Trifolium repens (Manning and Van Staden, 1987; 

Martens et al., 1995). However, the water-gap palisades of G. carolinianum are 

unique due to the presence of elongated bent palisades. As in the bulge of Ipomoea 

lacunosa (Convolvulaceae) (Jayasuriya, 2007a) and the raphal scar of Canna 

tuerckheimii (Cannaceae) (Grootjen and Bouman, 1988), palisades similar in length to 

those at the rest of the seed coat are present in the water gap of G. carolinianum. 

However, cell width of these palisades is less than that of normal palisades (Fig. 

3.6A). Moreover, the absence of tanniferous cells in the palisade layer as opposed to 

the rest of the seed coat adds to the uniqueness of the water gap. 

 

Meisert et al. (2001) studied the development of the light line of Geraniaceae and 

documented that it was generated by later deposition of electron-dense substances in 

the already existing secondary cell wall. Also, they observed the development of a 

multiple light line pattern within idioblast (tanniferous) cells. In the current study, 

development of two broad light lines was observed in the stretched palisades of the 

micropyle. Around 14 DAP, the cytoplasm of stretched palisades appears to exist in 

three zones. This could be due to the deposition of secondary cell-wall material as two 
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bands. Subsequent deposition of electron-dense material on these thickenings as 

documented by Meisert et al. (2001) may be the cause for these double light lines. 

 

At the water gap, development of palisade and subpalisade cells takes place in such a 

way that a perfect fit at the walls of contact of these two cell layers is ensured by the 

curvature of the walls. Near the micropyle end of the water gap, this contact is weaker 

as the contacting walls are flat (Fig. 3.6A, B). This is probably to aid in opening the 

water gap on dormancy-break as palisades and subpalisades of the water gap start to 

separate at the micropyle end, indicating sensitivity of the site to dormancy-breaking 

treatments (Chapter 5). Analogously, in Indigofera parviflora, the lens is a specialized 

area of intrinsic sensitivity to PY-breaking treatments in the seed coat (Manning and 

Van Staden, 1987). 

 

From the results of the current study, the major events of development in seeds of G. 

carolinianum can be summarized (Fig. 3.12). After reaching physiological maturity at 

14 DAP, seeds remain permeable for approx. 06 d until they achieve PY. The effect of 

drying on PY is highlighted as artificial slow-drying shifts the stage of acquisition of 

PY to earlier stages of development. The effects of other environmental conditions on 

PY during seed development are yet to be studied. A marked level of cell 

differentiation that makes these sites different in anatomy from the rest of the seed 

coat is evident at the micropyle and chalaza. The micropyle of G. carolinianum is an 

anatomically complex structure, and the water gap is an extension of the micropyle. 

Therefore, it is highly possible that the micropyle is also involved in breaking of PY. 

Thus, the term ‘micropyle–water-gap complex’ is more appropriate than simply 

‘water gap’. 
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Figure 3.1 Length, width, moisture content, accumulation of dry matter, imbibition 
and germination of intact seeds and isolated embryos during seed development in G. 
carolinianum: (A) seed length and width (mean ± s.e.); (B) moisture content and dry 
matter accumulation (mean ± s.e.); (C) percentage of fresh intact seeds that imbibed 
(mean ± s.e.); (D) germination of fresh intact seeds (mean ± s.e.); (E) germination of 
isolated embryos (mean ± s.e.). Different letters indicate significant differences 
between values (P < 0.05). 
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Figure 3.2. Morphological and colour changes in developing seeds of G. 
carolinianum: (A) 1 DAP, (B) 3 DAP, (C) 4 DAP, (D) 6 DAP, (E) 12 DAP, (F) 14 
DAP, (G) 15 DAP, (H) 16 DAP, (I) 18 DAP, (J) 20 DAP. 

Figure 3.3. Effect of seed moisture content on imbibition of developing seeds of G. 
carolinianum harvested at 18 DAP: (A) relationship between seed moisture content 
and imbibition (mean ± s.e.); (B) imbibition of seeds with different moisture 
contents during 14 d (mean ± s.e.) under ambient temperature. 
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Figure 3.4. Effect of slow-drying on imbibition and germination of developing seeds 
of G. carolinianum: percentage of slow-dried intact seeds that (A) imbibed and (B) 
germinated (mean ± s.e.); percentage of slow-dried scarified seeds that (C) imbibed 
and (D) germinated (mean ± s.e.). Different letters indicate significant differences 
between values (P < 0.05). 
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Figure 3.5. Longitudinal sections of the seed coat in developing seeds of G. 
carolinianum: (A) ovule stage-I, (B) 1 DAP, (C) 6 DAP, (D) 8 DAP, (E) 13 DAP, 
(F) 18 DAP. Abbreviations: Cr, crystals; i.i., inner integument; Ip, parenchyma cells 
of the inner layer of the i.i.; ll, light line; Mmo, parenchyma cells of the middle 
multi-layers of the o.i.; Mo, parenchyma cells of the middle layer of the o.i.; Moa, 
pro-parenchyma cells of the middle layer of the o.i.; Mp, parenchyma cells of the 
middle layer of the i.i.; Nu, nucellus; o.i., outer integument; Op, parenchyma cells of 
the outer layer of the o.i.; Pa, palisade cells; Paa, pro-palisade cells; Spa, subpalisade 
cells; Spaa, pro-subpalisade cells; Tf, tanniferous palisade cells. 
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Figure 3.6. Types of palisade and subpalisade cells in the mature seed coat of G. 
carolinianum: (A) palisades; (B) subpalisades. Abbreviations: Bpa, bent palisade 
cells of the micropyle; Pa, palisade cells; PaL-I, PaL-II, elongated palisade cells of 
the micropyle; Pal, elongated palisade cells of the chalaza; Spa, subpalisade cells; 
Spal, elongated subpalisade cells of the chalaza; SpaL-I, SpaL-II, elongated 
subpalisade cells of the micropyle; Spas, short subpalisade cells of the micropyle; Tf, 
tanniferous palisade cells; Wpa-I and II, palisade cells of the water gap. 
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Figure 3.7. Longitudinal sections of the micropyle and chalazal region of a mature 
seed of G. carolinianum: (A) Micropylar region; (B) Close-up of the micropylar 
region; (C) Chalazal region; (D) Close-up of the chalazal region. Bpa, bent palisade 
cells of the micropyle; Ch, chlorophyll; Chl, chalaza; Cot, cotyledon; Hy, hypostase; 
Ip, parenchyma cells of the inner layer of the i.i.; ll, light line; ll**, broad double light 
line; Mi, micropyle; Mmi, parenchyma cells of the middle multi-layers of the  i.i.; 
Mmo, parenchyma cells of the middle multi-layers of the  o.i.; Mp, parenchyma cells 
of the middle layer of the i.i.; Op, parenchyma cells of the outer layer of the o.i.; Pa, 
palisade cells; PaL, elongated palisade cells of the micropyle; Pal, elongated palisade 
cells of the chalaza; Pch, Parenchyma cells of the micropyle; Ra, radicle; Sep, septum; 
Spa, subpalisade cells; SpaL, elongated subpalisade cells of the micropyle; Spal, 
elongated  subpalisade cells of the chalaza; Wpa, palisade cells of the water gap. 
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Figure 3.8. Longitudinal sections of the micropylar region in developing ovules of G. 
carolinianum: (A) Ovule stage-I; (B) Ovule stage-II; (C) Ovule stage-III; (D) 00 
DAP; En, endostome; Es, embryo sac; Ex, exostome; Hi, hilum; i.i., inner integument; 
Mi, micropyle; o.i., outer integument; Op, parenchyma cells of the outer layer of the 
o.i. 
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Figure 3.9. Longitudinal sections of the micropylar and water-gap regions in 
developing seeds of G. carolinianum from 1 to 20 DAP: (A) 1 DAP, (B) 3 DAP, (C) 
4 DAP, (D) 6 DAP, (E) 8 DAP, (F) 14 DAP, (G) 18 DAP, (H) 20 DAP. 
Abbreviations: Bpa, bent palisade cells of the micropyle; Es, embryo sac; Hi, hilum; 
Ip, parenchyma cells of the inner layer of the i.i.; ll, light line; ll**, broad double 
light line; Mi, micropyle; Mmi, parenchyma cells of the middle multi-layers of the 
i.i.; Mmo, parenchyma cells of the middle multi-layers of the o.i.; Mmoa, pro-
parenchyma cells of the middle multi-layers of the o.i.; Nu, nucellus; Op, 
parenchyma cells of the outer layer of the o.i.; PaL, elongated palisade cells of the 
micropyle; Pch, parenchyma cells of the micropyle; SpaL, elongated subpalisade 
cells of the micropyle; SpaLa, pro-subpalisade cells of the micropyle; Spas, short 
subpalisade cells of the micropyle; Wpa, palisade cells of the water gap; Wpaa, pro-
palisade cells of the water gap. 
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Figure 3.10. Longitudinal sections of the water gap in developing seeds of G. 
carolinianum: (A) 1 DAP, B) 3 DAP, (C) 4 DAP, (D) 6 DAP, (E) 8 DAP, (F) 14 
DAP, (G) 18 DAP, (H) 20 DAP. Abbreviations: Bpa, bent palisade cells of the 
micropyle; ll, light line; ll**, broad double light line; Mi, micropyle; Mmo, 
parenchyma cells of the middle multi-layers of the o.i.; Mmoa, pro-parenchyma cells 
of the middle multi-layers of the o.i.; Op, parenchyma cells of the outer layer of the 
o.i.; PaL, elongated palisade cells of the micropyle; Pch, parenchyma cells of the 
micropyle; SpaL, elongated subpalisade cells of the micropyle; SpaLa, pro-
subpalisade cells of the micropyle; Wpa, palisade cells of the water gap; Wpaa, pro-
palisade cells of the water gap. 
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Figure 3.11. Longitudinal sections of the chalazal region in developing seeds of G. 
carolinianum: (A) 0 DAP, (B) 2 DAP, (C) 3 DAP, (D) 6 DAP, (E) 10 DAP, (F) 17 
DAP. Abbreviations: Chp, parenchyma cells of the chalaza; Es, embryo sac; Hy, 
hypostase; Ip, parenchyma cells of the inner layer of the i.i.; ll, light line; Mmi, 
parenchyma cells of the middle multi-layers of the i.i.; Mmo, parenchyma cells of 
the middle multi-layers of the o.i.; Mp, parenchyma cells of the middle layer of the 
i.i.; Nu, nucellus; Op, parenchyma cells of the outer layer of the o.i.; Pal, elongated 
palisade cells of the chalaza; Pala, pro- palisade cells of the chalaza; Spal, elongated 
subpalisade cells of the chalaza; Spala, Pro-subpalisade cells of the chalaza; Su, 
suberin deposits. 
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Figure 3.12. Timeline summary of the events of seed development in G. 
carolinianum. 
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CHAPTER  4 

Timing of physical dormancy-break in two winter annual species of Geraniaceae 

by a stepwise process 

 

INTRODUCTION 

 

Breaking of physical dormancy (PY) in seeds at the onset of autumn is of survival 

advantage for winter annuals in that it provides them with favourable conditions for 

germination and establishment of seedlings (Taylor, 1996a, b). In the absence of 

physiological dormancy (PD), breaking of PY may lead to immediate germination of 

seeds upon imbibition (Baskin and Baskin, 1998). Germination of winter annual 

species in summer may result in loss of seedlings due to prevailing drought conditions 

(Baskin and Baskin, 1971). Therefore, in winter annuals with PY, timing of PY break 

must be set to synchronize with the onset of autumn. 

 

Taylor (1981) presented a temperature-dependent two-stage conceptual model for 

breaking of PY. In the first or pre-conditioning stage, the seeds are made sensitive to 

the second or the PY-breaking stage (Taylor, 2005). This two-stage model is known 

to occur in seeds of several annual species of Fabaceae [Medicago polymorpha 

(Taylor, 1996a, b), Ornithopus compressus (Taylor and Revell, 1999), Trifolium 

subterraneum (Taylor, 1981), Melilotus albus, Medicago lupulina, Lotus corniculatus 

and Trifolium repens (Van Assche et al., 2003)] and Convolvulaceae [Ipomoea 

lacunosa (Jayasuriya et al., 2008a), Ipomoea hederacea (Jayasuriya et al., 2009c) and 

Cuscuta australis (Jayasuriya et al., 2008b)]. The two-stage model consists of two 

distinct temperature- and/or moisture-dependent processes (Taylor, 2005; Van Assche 
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and Vandelook, 2006; Jayasuriya et al., 2009a). Involvement of two stages in 

breaking of PY can be used to explain the PY-breaking behaviour and timing of 

germination under natural conditions (Taylor, 2005). 

 

Geranium carolinianum and Geranium dissectum are herbaceous winter annual 

species of Geraniaceae. Geranium carolinianum is native to eastern North America 

(Piper, 1906; Small, 1907; Aedo, 2000), while G. dissectum is native to Europe (Aedo 

et al., 1998b; Rhoads and Block, 2007) and is an introduced species in North America 

(Piper and Beattie, 1915). Both species are widely distributed weeds in North 

America and usually grow in disturbed habitats such as roadsides, old fields, waste 

places, gardens, and fallow and cultivated fields (McCready and Cooperrider, 1984; 

Abbas et al., 1995; Wilson and Clark, 2001). Moreover, both species are reported to 

be naturalized weeds in many parts of the world including Australia, China, Great 

Britain, Japan, Italy and South America (Mueller, 1885; Dunn, 1905; Macbride, 1949; 

Peng, 1978; Aedo et al., 1998b, 2005; Benvenuti et al., 2001; Xu and Aedo, 2008; 

Nishida and Yamashita, 2009). 

 

As in most species of Geraniaceae, PY is known to occur in seeds of G. carolinianum 

and G. dissectum (Meisert, 2002; Van Assche and Vandelook, 2006; Gama-

Arachchige et al., 2010). Freshly matured seeds of both species also exhibit shallow 

non-deep PD, thus the seeds have combinational dormancy (PY + PD). However, the 

shallow PD is lost during a short after-ripening period (Baskin and Baskin, 1974; 

Gama-Arachchige et al., 2010). The water-gap (small opening) formed in the water-

impermeable seed or fruit coat during breaking of PY allows the seed to take up 

water. Opening of the water-gap involves dislodgment or disruption of water-gap 
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structures that act as environmental ‘signal detectors’ for germination (Baskin et al., 

2000). The hinged-valve gap (water-gap) of the seeds of Geraniaceae is located near 

the micropyle. On breaking of PY, the changes in the palisade layer of the water-gap 

region are externally visible as a colour change from dark brown to brownish orange 

(Gama-Arachchige et al., 2010). Thus, seeds with a colour change in the water-gap 

region are permeable (Gama-Arachchige et al., 2010). 

 

In a study of the ecological factors involved in breaking of PY in G. carolinianum, 

Baskin and Baskin (1974) concluded that PY breaking takes place under dry or 

alternate wet–dry conditions at high summer temperatures. They concluded that the 

water-impermeable seed coat, conditional dormancy of the freshly matured embryo 

and the inability of seeds to germinate at high summer temperatures delay 

germination of seeds until autumn. However, examination of a sample of seeds from 

their study revealed that the seeds they used were G. dissectum, not G. carolinianum 

(N.S. Gama-Arachchige et al., unpubl. res.). Furthermore, a new preliminary study 

showed that unlike the seeds used by Baskin and Baskin (1974), PY of G. 

carolinianum can be broken under wet conditions, further supporting the fact that the 

seeds they used were G. dissectum (N.S. Gama-Arachchige et al., unpubl. res.). In a 

study of germination ecology of several species of Geraniaceae, including G. 

dissectum, Van Assche and Vandelook (2006) showed that subsequent drying of 

exhumed impermeable seeds in a desiccator for 1 week at approx. 20 °C markedly 

stimulated germination at 23 °C [see table 7 in Van Assche and Vandelook (2006)]. 

Meisert (2002) observed that seeds of certain species of Geraniaceae, including G. 

dissectum, became permeable under dry storage for 5 years at room temperature. 

Seeds of G. bicknellii, G. bohemicum and G. lanuginosum germinated (>90 %) after 
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exposure to wet heat at 55–95 °C (Granstrom and Schimmel, 1993), suggesting that 

those three species do not require drying for the breaking of PY. 

 

Occurrence of a temperature-dependent process with two steps in the breaking of PY 

is unknown in Geraniaceae. Furthermore, none of the previous studies has clearly 

explained the environmental factors involved in the timing of PY break and 

germination of G. carolinianum under field conditions. 

 

Therefore, the objectives of the current study on G. carolinianum and G. dissectum 

were to (1) determine the number of steps involved in the PY-breaking processes; (2) 

identify the temperature and moisture regimes that activate the dormancy-breaking 

process at each stage; and (3) develop a conceptual model for dormancy break and 

germination phenology under field conditions. 

 

MATERIALS AND METHODS 

 

Seed collection 

Stems of Geranium carolinianum bearing mature fruits were collected at Spindletop 

Farm, Lexington, KY, USA, on 9 June 2010 (GC 2010) and 1 June 2011 (GC 2011). 

Similarly, stems of G. dissectum were collected from the same location on 30 May 

2010 (GD 2010) and 20 May 2011 (GD 2011). They were covered with a mesh cloth 

and allowed to dry for 3 d inside a non-heated greenhouse. Seeds released naturally 

were collected and stored at room temperature (approx. 23 °C and 50–60 % relative 

humidity, dry storage) until used. According to imbibition tests, >98 % of fully 

matured seeds of both species were impermeable (data not shown). Therefore, fully 
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matured seeds were used for all the experiments, which were started within 2 weeks 

of seed collection. 

 

In the case of alternating incubation temperatures, high and low temperatures in the 

incubators were supplied on a 12 h/12 h daily basis under light/dark conditions (14 

h/10 h; approx. 40 mol m–2 s–1, 400–700 nm, cool white fluorescent light). The same 

photon irradiance and 24 h continuous light were used for constant temperatures. 

 

Breaking of PY under dry storage 

Experiments were carried out to investigate the effects of dry storage under constant 

and alternating temperatures and subsequent exposure to autumn temperatures (20/10 

°C) on breaking of PY. 

 

Seeds collected in 2011 were stored dry at constant temperatures of 5, 10, 15, 20, 25, 

30, 35 and 40 °C and at alternating temperatures of 15/6, 20/10, 25/15, 30/15, 30/20 

and 40/25 °C in Petri dishes. From seeds stored under each temperature, a sample of 

200 was retrieved every month. One hundred seeds from each sample (five replicates 

of 20 seeds) were incubated at the same storage temperature on sand moistened by 

adding distilled water heated or cooled to the respective storage temperature. The 

remaining 100 seeds (five replicates of 20 seeds) were incubated at the average 

autumn temperature (20/10 °C) on sand moistened by adding distilled water at 20 °C. 

The number of imbibed seeds was counted after 14 d. The same procedure was 

repeated for five consecutive months. 
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Sensitivity of seeds of G. carolinianum to changes in temperature 

To determine the increase of sensitivity in seeds of G. carolinianum to the change in 

temperature, GC 2011 were stored dry in Petri dishes under alternating temperature of 

40/25 °C (to simulate summer soil temperatures) and under constant 30 °C 

(approximately the average of 40/25 °C). Seven hundred seeds each were retrieved 

from both storage temperatures at 0 (fresh), 2 and 4 months and were incubated on 

moist sand at 10, 15, 20, 25, 30, 35 and 40 °C (five replicates with 20 seeds in each). 

The number of imbibed seeds was counted after 14 d. 

 

Breaking of PY by simulated natural temperatures 

To determine the effect of temperatures that the seeds of G. carolinianum and G. 

dissectum would experience in nature during the PY-breaking period, seeds (GC 2011 

and GD 2011) were subjected to a sequence of temperature conditions simulating the 

average daily maximum and minimum temperatures in Lexington in June (30/15 °C), 

July (30/20 °C), August (30/20 °C), September (25/15 °C) and October (20/10 °C) 

under constant wet and dry conditions. 

 

 Wet storage. 

Seeds were placed in Petri dishes filled with sand wetted with distilled water and their 

lids were sealed with Parafilm®. Then five replicates (with 20 seeds each) were 

subjected to the three temperature schemes shown in Table 4.1. Seeds were kept 

under each temperature for 1 month and then transferred to the next temperature. At 

the end of each month, the number of imbibed seeds was recorded. Distilled water 

was added as required to maintain the wet condition. The procedure was continued for 

five consecutive months. 
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 Dry storage. 

Five samples each containing five replicates of 20 seeds each from both species were 

placed on dry sand in Petri dishes. They were subjected to the three temperature 

schemes in Table 4.1. At the end of each month, one sample was watered and left 

under the same temperature, and all the other samples were moved to the next 

temperature in the sequence. This procedure was followed for five consecutive 

months. Each watered sample was observed for imbibition after 14 d. 

 

Effect of moisture regime on breaking of PY in G. dissectum 

To determine the effect of different moisture regimes on breaking of PY in G. 

dissectum, fresh mature seeds (GD 2011) were subjected to four moisture regimes in 

an incubator at 40 °C. Twenty samples each containing five replicates of 20 seeds 

were placed on sand in Petri dishes. Five samples were subjected to each of the four 

moisture regimes. (1) Constant wet; seeds were kept under constant wet conditions by 

adding distilled water weekly. (2) Constant dry; seeds were kept dry. (3) Alternate 

wet–dry; seeds were alternated between wet and dry (2 weeks under each condition) 

for 10 weeks starting with the wet condition. (4) Alternate dry–wet; seeds were 

alternated between dry and wet (2 weeks under each condition) for 10 weeks starting 

with the dry condition. In the case of alternating moisture regimes, distilled water was 

added once a week during wet periods and no water was given during dry periods. For 

all moisture regimes, at the end of each 2 week interval one sample was tested for 

imbibition at 40 °C, and in the case of alternate moisture regimes all the other samples 

were moved to the next moisture condition. Imbibition in each sample was recorded 

after 14 d. 
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Breaking of PY under semi-natural conditions 

To determine the effect of temperature on timing of PY break under semi-natural 

conditions, 100 seeds (GC 2010, GD 2010, GC 2011 and GD 2011) were placed on 

dry sand in plastic Petri dishes (five replicates of 20 seeds). The Petri dishes then were 

placed in trays filled with potting soil inside a non-heated greenhouse [second week 

of June 2010/11 (GC 2010 and GC 2011), first week of June 2010 (GD 2010) and last 

week of May 2011 (GD 2011)]. The water-gap region of seeds was observed weekly 

under a dissecting microscope. Seeds with colour change from dark brown to 

brownish orange in the water-gap region were considered permeable (Gama-

Arachchige et al., 2010). Air temperature inside the greenhouse was recorded in 30 

min intervals using a Thermochron ibutton® (DS 1921G#F50), and daily maximum 

and minimum temperatures were obtained from the recordings. 

 

Effect of soil moisture regime on breaking of PY 

To determine the effect of the soil moisture regime on breaking of PY in both species, 

seeds (GC 2010, GC 2011 and GD 2011) were maintained under three soil moisture 

regimes (wet, wet–dry and dry). Five replicates each containing 300 seeds from each 

species were prepared separately for each moisture regime by sowing the seeds on 

plastic trays (30 × 30× 5 cm) filled with a 3 cm layer of dry potting soil and covering 

them with 0.5 cm of the same dry soil layer. The trays containing G. carolinianum 

and G. dissectum were placed inside a non-heated greenhouse in the second week of 

June (2010/11) and the last week of May (2011), respectively. Seeds maintained 

under the wet soil moisture regime were watered to field capacity and were covered 

with aluminium foil to minimize evaporation of water. Soil in those trays was kept at 
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or near field capacity until the end of the experiment by watering once a week. Seeds 

in the wet–dry regime were watered once a week to field capacity and allowed to dry 

under ambient conditions. Seeds in the dry regime were left without watering until the 

second week of October 2010/11, after which they were watered to field capacity 

once a week. Seed germination was checked at 7 d intervals until the end of the 

experiment. The air temperature inside the greenhouse was recorded at 30 min 

intervals using a Thermochron ibutton® (DS 1921G#F50), and daily maximum and 

minimum temperatures were obtained from the recordings. 

 

Breaking of PY under natural conditions 

To determine the timing of breaking of PY under natural conditions, three replicates 

of 100 seeds (GC 2010, GC 2011 and GD 2011) were placed in nylon mesh bags and 

buried at a depth of 2 cm in soil for 5 months [May to October (GD 2011) and June to 

November (GC 2010/11)] in an open area on the campus of the University of 

Kentucky in 2010 and 2011. The soil temperature at a depth of 2 cm was recorded at 

30 min intervals using a Thermochron ibutton® (DS 1921G#F50) sealed in a plastic 

bag, and daily maximum and minimum temperatures were obtained from the 

recordings. Manual weeding of the buried area was done when necessary during the 

burial period. Three bags each were exhumed every month and the numbers of intact, 

dead, swollen and germinated seeds were counted. The micropylar region of intact 

seeds was observed under a dissecting microscope. Seeds with a colour change from 

dark brown to brownish orange in the water-gap region were considered permeable 

(Gama-Arachchige et al., 2010). Then, all the intact seeds without the colour change 

were placed on moist soil and incubated at 20 °C. The number of imbibed and 
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germinated seeds was counted after 14 d. The permeable seed fractions (initial and 

after exposure to 20 °C) were calculated as follows: 

 

Initial permeable seed percentage = [(Ci + Di + Gi + Si)/total] × 100 

 

Final permeable seed percentage = [(Ci + Di + Gi + Si + Cf + Gf + Sf)/total] × 100 

 

where Ci is the number of seeds with a colour change in the water-gap region at each 

sampling time; Di is the number of dead seeds at each sampling time; Gi is the number 

of germinated seeds at each sampling time; Si is the number of swollen seeds at each 

sampling time; Cf is the number of seeds with a colour change in the water-gap region 

after exposure to 20 °C; Gf is the number of germinated seeds after exposure to 20 °C; 

and Sf is the number of swollen seeds after exposure to 20 °C. 

 

Statistical analysis 

A completely randomized design was used in all experiments. Percentage imbibition 

and permeable fraction data were normalized by arcsine transformation prior to 

analysis. Data for percentage permeable seed fractions in burial experiments were 

compared using paired t-tests (P = 0.05). All other imbibition percentage and 

germination rate data were analysed by one-way analysis if variance (ANOVA). 

Duncan’s mean separation procedure was used to compare treatments (P = 0.05). All 

analyses were carried out using SPSS ver. 19 software. 

 

RESULTS 
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Breaking of PY under dry storage 

In both species, imbibition did not take place in seeds stored under dry conditions at 

constant temperatures below 15 °C even for 5 months (Fig. 4.1A, G; results for 

storage under 5 and 10 °C not shown). The minimum storage temperature at which 

imbibition occurred was 20 °C (Fig. 4.1B, H). With increasing storage temperature 

and time, the fraction of imbibed seeds increased (Fig. 4.1B–F, H–L). However, in G. 

carolinianum, incubation at 20/10 °C caused a significant increase in the fraction of 

imbibed seeds compared with imbibition at each storage temperature, whereas in G. 

dissectum, no such change in imbibition was observed. 

 

In G. carolinianum, <2 % of seeds stored under 15/6 and 20/10 °C imbibed (Fig. 

4.2A, B). Generally, the percentage imbibition increased with increasing storage time 

(Fig. 4.2C–F). Higher imbibition percentages were observed at 30/15, 30/20 and 

40/25 °C than at lower alternating temperatures (Fig. 4.2D–F). At 40/25 and 30/20 °C 

storage temperatures, the percentage of seeds that imbibed during subsequent 

incubation under 20/10 °C was significantly higher than those at the corresponding 

storage temperature after storage for 1 and 2 months, respectively. However, at 25/15 

and 30/15 °C, no such significance was observed between percentage imbibition 

values after 3 months of storage (Fig. 4.2C, D). 

 

In contrast to G. carolinianum, no significant difference was observed in imbibition 

between seeds incubated under alternating storage temperatures and those incubated 

at 20/10 °C in G. dissectum (Fig. 4.2G–L). Also, imbibition was low (<9 %) in seeds 

stored at 15/6 and 20/10 °C (Fig. 4.2G, H). At the other storage temperatures, 
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imbibition increased rapidly with storage time, reaching approx. 100 % after 2–4 

months of storage (Fig. 4.2I–L). 

 

Sensitivity of seeds of G. carolinianum to changes in temperature  

Only 0–3% of fresh seeds (0 months) imbibed at all incubation temperatures (Fig. 

4.3A, D). Seeds stored at 40/25 °C for 2 months showed significant imbibition at 10 

and 15 °C (>92 %; Fig. 4.3B). The highest temperature at which a significant 

imbibition was observed was 20 °C (16 %). At higher incubation temperatures, 

imbibition was very low (<4 %). After 4 months of storage, imbibition had increased 

at all the incubation temperatures (Fig. 4.3C). At 20 °C, >86 % of the seeds had 

imbibed, while at 25 °C, 61 % of them had done so. At incubation temperatures >25 

°C, the imbibed seed fraction remained between 20 and 30 %. An identical pattern, 

but lower percentages, of imbibition was observed for seeds stored at 30 °C (Fig. 

4.3E, F). 

 

Breaking of PY by simulated natural temperatures 

In G. carolinianum, imbibition increased drastically in seeds transferred to 25/15 °C 

(September), from approx. 0 to 70 % in dry-stored seeds and from approx, 0 to 30 % 

in wet-stored seeds (Fig. 4.4A). On transfer of seeds to 20/10 °C (October), imbibition 

increased to >95 % in seeds stored under both dry and wet conditions. Unlike in G. 

carolinianum, imbibition (53 %) was first observed in G. dissectum when dry-stored 

seeds were transferred to 30/20 °C (July) (Fig. 4.4D). Under the same conditions the 

following month (August), the fraction of imbibed seeds increased up to 100 %. In 

wet-stored seeds, imbibition increased only up to 16 % even after 5 months of storage 

under the same alternating temperature scheme. 
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At simulated monthly maximum temperatures under wet and dry conditions, 

imbibition up to 16 and 31 %, respectively, was observed in G. carolinianum after 

transfer of seeds to 25 °C (Fig. 4.4B). Subsequently, at 20 °C imbibition increased to 

>90 %. In the case of G. dissectum, all the dry-stored seeds imbibed after 2 months of 

storage at 30 °C, while only 28 % of the wet-stored seeds imbibed even after 5 

months of storage (Fig. 4.4E). Imbibition of both species was negligible after wet and 

dry storage with the average monthly minimum temperature scheme (Fig. 4.4C, F). 

 

Effect of moisture regime on breaking of PY in G. dissectum 

After the first 2 weeks of storage under all four moisture regimes at 40 °C, a low 

percentage of seeds imbibed (<4 %; Fig. 4.5A–D). During the remaining 8 weeks at 

the constant wet regime, the percentage of imbibed seeds increased gradually to 

approx. 60 % whereas under the constant dry regime, it increased rapidly to 100 % 

(Fig. 4.5A, B). After 4 weeks of storage (following the first dry period) under the 

wet–dry regime, a significantly higher percentage of seeds imbibed (approx. 80 %) 

(Fig. 4.5C). During the following 2 weeks of wet storage, imbibition increased to 94 

%. After 4 weeks of storage under the dry–wet regime (Fig. 4.5D) (i.e. after the first 

wet period), a significant but low percentage of seeds imbibed (7 %). A marked 

increase in imbibition was then observed in the following dry period (100 %). 

 

Breaking of PY under semi-natural conditions 

In 2010, the minimum temperature recorded inside the greenhouse during the first 12 

weeks after sowing the seeds was 17.5 °C (Fig. 4.6A). During that period, no colour 

change was observed in the water-gap region of the seeds of G. carolinianum (GC 
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2010) (Fig. 4.6B). A colour change was first observed in 22 % of seeds in the last 

week of August, following a weekly minimum temperature of 19.5 °C (Fig. 4.6A, B). 

Thereafter, the percentage of seeds with colour change gradually increased during late 

summer to early autumn, coinciding with the decrease in temperature. By the first 

week of October (early autumn), all seeds showed a colour change. 

 

In 2011, the minimum temperature recorded inside the greenhouse during the first 7 

weeks after sowing the seeds was 17 °C (Fig. 4.6D). During that period, no colour 

change was observed in the water-gap region of the seeds of G. carolinianum (GC 

2011) (Fig. 4.6E). A colour change was first observed in 5 % of seeds in the first 

week of August, following a weekly minimum temperature of 21 °C (Fig. 4.6D, E). 

Thereafter, the percentage of seeds with colour change gradually increased during late 

summer to early autumn, coinciding with the decrease in temperature. By the last 

week of September (end of summer), all the seeds showed a colour change. 

 

In both years, the colour change in G. dissectum was first observed about 2 months 

earlier (i.e. early summer) than that in G. carolinianum. The percentage of seeds with 

colour change gradually increased during summer and reached 100 % by the end of 

summer (Fig. 4.6B, E). 

 

Effect of soil moisture regime on breaking of PY 

In both years, G. carolinianum kept under the constant wet and wet–dry moisture 

regimes began to germinate in early September (late summer) and reached maximum 

germination by early October (>80 %; early autumn) as the temperature began to 

decrease (Fig. 4.6C, F). However, germination under the wet–dry regime was lower 
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than that under the constant wet regime. After watering in early October, seeds kept 

under the dry–wet regime started to germinate within a week and reached >93 % by 

early November (Fig. 4.6C, F). 

 

In G. dissectum (GD 2011), timing of germination under the three moisture regimes 

was similar to that of GC 2010 and GC 2011 (Fig. 4.6G). However, compared with G. 

carolinianum, germination of G. dissectum was lower under constant wet (22 %) and 

wet–dry (61 %) moisture regimes (Fig. 4.6G). 

 

Breaking of PY under natural conditions 

In G. carolinianum (GC 2010 and 2011), neither fresh seeds nor those exhumed after 

1 month of burial (July) were permeable (Fig. 4.7B, C, J, K). When these seeds were 

transferred to 20 °C, only those that had been subjected to 1 month burial in 2010 

became permeable (4 %). After transferring the seeds that had been buried for 2 

(August) or 3 (September) months to 20 °C, a significant increase in the fraction of 

permeable seeds was observed (>36 and >94 %, respectively; Fig. 4.7D, E, L, M). 

Further, a considerable permeable fraction (>20 %) was observed in seeds exhumed 

after 3 months of burial (September) following the monthly minimum temperatures of 

20 (2010) and 18 °C (2011) (Fig. 4.7A, E, I, M). More than 90 % of the seeds 

exhumed after 4 (October) or 5 (November) months of burial were permeable. 

However, transfer of seeds to 20 °C did not cause a significant increase in the 

permeable fraction (P < 0.05; Fig. 4.7F, G, N, O) 

 

All the fresh seeds of G. dissectum (GD 2011) were impermeable and they did not 

become permeable even after incubation at 20 °C (Fig. 4.7P). During the 5 month 



100 
 

burial period, the permeable fraction of seeds increased up to 39 % (Fig. 4.7Q–U). 

None of the samples exhumed during the burial period showed a significant increase 

in permeability after incubation at 20 °C (P < 0.05). 

 

DISCUSSION 

 

Storage of G. carolinianum seeds at constant temperatures 20 °C followed by 

incubation at 20/10 °C resulted in a significant increase in the permeable seed fraction 

compared with seeds incubated under constant temperatures (P < 0.05). This 

observation suggests the involvement of two steps in breaking of PY in G. 

carolinianum seeds. Insensitive seeds are made sensitive at temperatures 20 °C 

during step-I, followed by step-II, where sensitive seeds become permeable at lower 

temperatures (i.e. 20/10 °C). However, under alternating storage temperatures with 

the daily maximum >20 °C and minimum <20 °C (e.g. 25/15, 30/15 °C), seeds 

became permeable without the requirement for incubation at 20/10 °C. Also, under 

alternating temperatures in which the daily minimum was 20 °C (e.g. 30/20, 40/25 

°C) a significantly lower percentage of seeds became permeable than at 20/10 °C (P < 

0.05). Thus, it can be assumed that seeds achieve permeability when the alternating 

temperature itself satisfies the temperature requirements for the completion of step-I 

(by the daily maximum) and step-II (by the daily minimum). Therefore, the 

requirement for step-II is not necessarily an alternating temperature, but it has to be 

20 °C. 

 

Fresh insensitive seeds of G. carolinianum did not become permeable at any of the 

incubation temperatures (10–40 °C; Fig. 4.3A, D). Dry storage under 40/25 °C (mean 
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summer soil temperatures) or constant 30 °C for 2 months induced sensitivity. 

However, they became permeable only at temperatures 20 °C during subsequent 

incubation. Four months of dry storage at the same temperatures increased the 

sensitivity of seeds. A significantly high percentage of seeds (>61) became permeable 

at temperatures 25 °C but not at temperatures 30 °C (Fig. 4.3C, F). In relation to 

the mean temperature at step-I, sensitive seeds responded to a temperature decrease 

rather than an increase in step-II. Thus, sensitive seeds do not require alternating 

temperatures to become permeable at step-II. Furthermore, the amplitude of the 

decline in temperature required in step-II decreases and eventually may reach zero as 

seeds become more and more sensitive with time. Therefore, during the progression 

from the less sensitive stage to the highly sensitive stage, the temperature range at 

which seeds can become permeable (completion of step-II) gradually increases from 

low to high. 

 

Simulation of temperatures of each month during summer and autumn provides 

further evidence for the occurrence of two steps in the PY-breaking process of G. 

carolinianum. During the first 3 months of storage, step-I may be completed due to 

high summer temperatures. However, since seeds had low sensitivity during June 

(30/15 °C) and were not exposed to temperatures <20 °C during July and August 

(30/20 °C), step-II might have been suspended during the first 3 months of summer. 

After exposing sensitive seeds to autumn temperatures (25/15 and 20/10 °C), seeds 

became permeable upon the completion of step-II. Results were similar in the 

simulation of constant high temperatures of each month. In this temperature 

simulation experiment, the storage moisture condition (wet or dry) did not affect step-

I or step-II in PY breaking of G. carolinianum. 
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Based on the results of laboratory experiments, 20 °C was selected as the temperature 

threshold for the completion of step-II for greenhouse and burial experiments. Similar 

to laboratory experiments, seeds sown in the non-heated greenhouse that were 

exposed to hot summer temperatures showed the colour change in the water-gap (= 

PY break) of G. carolinianum when the daily minimum temperature declined to 20 

°C in mid to late summer. In early summer, those seeds did not respond to low 

temperatures, possibly because they were insensitive or less sensitive to low 

temperatures at that time. 

 

Increase of sensitivity to low temperature (20 °C) in G. carolinianum was also 

observed in seeds buried in the soil. Seeds exhumed in early summer did not respond 

to 20 °C, while seeds exhumed during mid to late summer responded significantly (P 

< 0.05). Even though seeds were sensitive to low temperature during mid to late 

summer, a majority of them did not become permeable in the soil, since the minimum 

soil temperature remained >20 °C. When the minimum soil temperature dropped 

below 20 °C in early autumn, seeds became permeable. 

 

Seeds of G. dissectum become permeable under temperatures 20 °C (dry) without 

the requirement for a subsequent low temperature (20/10 °C) treatment. Similarly, the 

colour change in the water-gap region (= PY break) of seeds occurred much earlier in 

the non-heated greenhouse under dry conditions than in G. carolinianum in summer 

under high temperatures. These results suggest that in contrast to G. carolinianum, 

breaking of PY in G. dissectum involves only a single step under one temperature 

regime (20 °C). 
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According to temperature simulation and moisture regime experiments conducted in 

the laboratory and greenhouse, it is evident that seeds of G. dissectum achieve 

permeability regardless of the moisture conditions (dry or wet storage). However, the 

dry condition is much more effective than the wet condition in breaking of PY (Figs 

4.4D, E and 4.5A, B). Also, the initial moisture treatment affects the PY-breaking 

behaviour. If the seeds are initially exposed to a wet period, subsequent drying can 

make a significant fraction of them permeable (Fig. 4.5C). On the other hand, 

exposure of seeds initially to a dry period followed by a wet period delays their 

becoming permeable until the next dry period (Fig. 4.5D). However, the similar 

fractions of permeable seeds observed under constant dry (after 4 weeks) and wet–dry 

(2 weeks wet followed by 2 weeks dry) storage indicate that during the wet period, 

seeds progress towards PY break, possibly by becoming sensitive to drying (Fig 4.5B, 

C). 

 

During the 5 month period of burial in the soil at 2 cm depth, <40 % of G. dissectum 

seeds became permeable. It is possible that the moisture or the high relative humidity 

in soil delays permeability in >60 % of the seeds. Furthermore, Van Assche and 

Vandelook (2006) demonstrated that when immediately buried, fresh seeds of several 

species of Geraniaceae (including G. dissectum) remain impermeable until they are 

exposed to drying. This may be considered a moisture-dependent, conditional 

stepwise PY-breaking process (Table 4.2). However, we found that breaking of PY in 

G. dissectum can take place in a single step under any moisture regime although at a 

different rate. Therefore, induction of sensitivity in seeds under wet conditions may be 

an essential step for seeds buried in soil but not for the seeds lying on the soil surface 

since they are constantly exposed to dry conditions during summer. The requirement 
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for drying for breaking of PY may be an environmental cue that makes seeds 

permeable only from the upper layers of soil during summer, while seeds in the 

deeper moist layers maintain a soil seed bank (Van Assche and Vandelook, 2006). 

 

Of the 18 families with PY (Baskin and Baskin, 1998; Nandi, 1998; Baskin et al., 

2000, 2006; Baskin, 2003; Horn, 2004; Koutsovoulou et al., 2005), involvement of 

two steps in PY breaking has been demonstrated only for Fabaceae and 

Convolvulaceae (Table 2). Also, Van Assche and Vandelook (2006) suggested the 

existence of a moisture-dependent, stepwise PY-breaking process in Geraniaceae. 

However, our study shows that seeds of G. dissectum do not behave in accordance 

with this pattern. Therefore, we suggest it to be considered a conditional two-step PY-

breaking process. 

 

Our study is the first report of a temperature-dependent, two-step PY-breaking 

process in Geraniaceae (G. carolinianum). Neither of the steps in the PY-breaking 

process of G. carolinianum were affected by the soil moisture regime, and both of 

them can be completed at constant temperatures (Table 4.2). Moreover, highly 

sensitive seeds may not require a second temperature condition to complete step-II. 

Therefore, it is possible that some seeds may become permeable without the second 

treatment. 

 

Winter annuals in Fabaceae that have been reported as having a two-stage PY-

breaking process require alternating temperatures in both step-I and step-II (except 

Trifolium subterraneum; only in step-II) to complete the process (Table 2). However, 

the effect of constant low temperatures in step-II has not been tested in the studies 
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with Fabaceae species. Therefore, it is possible that those species may respond to the 

decline in temperature in early autumn below a certain threshold (as in G. 

carolinianum). PY breaking of the summer annual Ipomoea lacunosa requires low 

temperatures in the first step and high temperatures in the second step, which is the 

reverse of the PY-breaking requirement in the winter annual G. carolinianum. This 

pattern may ensure that the PY break takes place during spring and summer in I. 

lacunosa and during early autumn in G. carolinianum. 

 

Cycling between sensitivity and insensitivity in PY breaking previously has been 

reported in some species of Fabaceae and Convolvulaceae (Table 4.2). Neither seeds 

of G. carolinianum nor those of G. dissectum demonstrated such cycling behaviour. 

Thus, they depend on a stepwise PY-breaking behaviour in timing their germination. 

In G. carolinianum, breaking of PY involves two moisture-independent steps 

regulated by temperature (Fig. 4.8A). Low temperature is the environmental cue that 

triggers PY breaking in late summer and subsequent germination in early autumn. In 

G. dissectum, PY breaking takes place in early summer, either in two steps or in a 

single step, the number of steps being determined by the moisture condition of the 

environment (Fig. 4.8B). However, the inability of imbibed seeds to germinate under 

high temperatures delays germination until autumn (Fig. 4.9). By means of these 

different dormancy-breaking strategies, seedling establishment in the two species is 

ensured to occur under favourable environmental conditions in autumn.



Table 4.1. Temperature conditions for each month of the three storage temperature schemes 

Temperature scheme

Month 

June (1) July (2) August (3) September (4) October (5)

        
1. Alternating 30/15 °C  30/20 °C  30/20 °C  25/15 °C  20/10 °C 

2. Constant high 30 °C  30 °C  30 °C  25 °C  20 °C 

3. Constant low 15 °C  20 °C  20 °C  15 °C  10 °C 
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 Table 4.2. Life form, time of germination and conditions involved in the two-step model for breaking of PY 

Breaking of PY 

Family/species Life 
form 

Germina
-tion Step I Step II 

Reference 

Convolvulaceae 

Cuscuta australis* 
A Summer 15/6 °C (dry) 35/20 °C 

(wet) 
Jayasuriya et al. (2008a) 

Ipomoea hederacea* SA Summer ≥25 °C 35/20 °C (dry) Jayasuriya et al. (2009b) 

Ipomoea lacunosa* 
SA Summer  ≥20 °C (wet) 35 °C         

(RH >90 %) 
Jayasuriya et al. (2008b) 

Fabaceae 

Medicago polymorpha WA Autumn 60/15 °C 35/10 °C Taylor (1996a, b) 

Medicago lupulina SA Spring 5 °C 15/6 °C Van Assche et al. (2003) 

Melilotus albus* B Spring 5 °C 15/6 °C Van Assche et al. (2003) 

Ornithopus compressus* WA Autumn 60/15 °C 48/15 °C Taylor and Revell (1999) 
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Table 4.2 (continued) 

Trifolium subterraneum WA Autumn ≥15 °C 60/15 °C Taylor (1981) 

Geraniaceae 

Geranium carolinianum WA Autumn ≥20 °C ≤20 °C This study 

Erodium cicutarium  WA Autumn If seeds buried in soil (wet) Drying Van Assche and Vandelook (2006) 

Geranium columbinum WA Autumn If seeds buried in soil  (wet) Drying Van Assche and Vandelook (2006) 

Geranium dissectum† WA Autumn If seeds buried in soil  (wet) Drying Van Assche and Vandelook (2006) 

Geranium lucidum WA Autumn If seeds buried in soil  (wet) Drying Van Assche and Vandelook (2006) 

 Geranium molle WA Autumn If seeds buried in soil  (wet) Drying Van Assche and Vandelook (2006) 

Geranium pusillum WA Autumn If seeds buried in soil  (wet) Drying Van Assche and Vandelook (2006) 

A, Annual; B, Biennial; SA, summer annual; WA, winter annual; RH, relative humidity
* Species known to have sensitivity cycling (sensitive ↔ insensitive)
† The present study shows that seeds of G. dissectum can become permeable under wet conditions without drying, hence they also  
have a one-step PY-breaking process.          
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Figure 4.1. Percentage of imbibed seeds (mean ± s.e.) of (A–F) G. carolinianum and 
(G–L) G. dissectum at constant temperatures and at 20/10 °C after dry storage at 
different constant temperatures (15–40 °C) for 1 – 5 months. An asterisk indicates a 
significant difference in imbibition between the two incubation temperatures in each 
month. Different upper- and lower-case letters indicate a significant difference 
between different months in imbibition under a constant temperature and under 
20/10 °C, respectively (P < 0.05). 
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Figure 4.2. Percentage of imbibed seeds (mean ± s.e.) of (A–F) G. carolinianum and 
(G–L) G. dissectum at alternating temperatures and at 20/10 °C after dry storage at 
different alternating temperatures for 1–5 months. An asterisk indicates a significant 
difference in imbibition between the two incubation temperatures in each month. 
Different upper- and lower-case letters indicate a significant difference between 
different months in imbibition under a particular alternating temperature and under 
20/10 °C, respectively (P < 0.05). 

 

 
 
 
 



111 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Figure 4.3. Percentage of imbibed seeds (mean ± s.e.) of G. carolinianum incubated 
at different constant temperatures after dry storage (A–C) at 40–25 °C and (D–F) at 
30 °C. Different letters indicate significant differences in imbibition percentages 
between the incubation temperatures (P < 0.05). 
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Figure 4.4. Percentage of imbibed seeds (mean ± s.e.) of (A–C) G. carolinianum and 
(D–F) G. dissectum stored under dry and wet conditions (as indicated) under 
temperature sequences: (A, D) alternating; (B, E) daily maximum; and (C, F) daily 
minimum temperature simulating natural temperature conditions of each month. 
Different upper- and lower-case letters indicate significant differences in imbibition 
percentages between the incubation temperatures under dry storage and wet storage, 
respectively (P < 0.05). 
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Figure 4.5. Percentage of imbibed seeds (mean ± s.e.) of G. dissectum at 40 °C, after 
storage under different moisture regimes at 40 °C. The moisture conditions of each 
week during the storage period are indicated on the axis: W, wet; and D, dry. 
Different letters indicate significant differences between imbibition percentages 
within each moisture regime (P < 0.05). 
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Figure 4.6. PY breaking of G. carolinianum and G. dissectum seeds under 
greenhouse conditions in 2010 and 2011. (A, D) Daily minimum and maximum air 
temperatures in the non-heated greenhouse in 2010 and 2011, respectively. 
Percentage (mean ± s.e.) of seeds with colour change from dark brown to brownish 
orange in the water-gap region of G. carolinianum and G. dissectum under dry 
conditions, (B) in 2010 and (E) 2011. Seed germination percentage (mean ± s.e) in 
G. carolinianum under the three moisture regimes in (C) 2010 and (F) 2011. (G) 
Seed germination percentage (mean ± s.e.) of G. dissectum in 2011 under the three 
moisture regimes. 
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Figure 4.7. PY breaking in buried seeds of G. carolinianum in 2010/11 and G. 
dissectum in 2011. (A, I) Daily minimum and maximum soil temperatures at 2 cm 
soil depth in 2010 and 2011, respectively. Percentage (mean ± s.e.) of permeable 
seeds of G. carolinianum of (B) fresh seeds and after incubation at 20 °C; (C–G) at 
the time of exhuming and after incubation at 20 °C, in 2010. Percentage (mean ± 
s.e.) of permeable seeds of G. carolinianum of (J) fresh seeds and after incubation at 
20 °C; (K–O) at the time of exhuming and after incubation at 20 °C, in 2011. 
Percentage (mean ± s.e.) of permeable seeds of G. dissectum of (P) fresh seeds and 
after incubation at 20 °C; (Q–U) at the time of exhuming and after incubation at 20 
°C, in 2011 An asterisk indicates a significant difference between treatments. 
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Figure 4.8 (continued) 

 

 

Figure 4.8. Conceptual models for breaking seed dormancy in (A) G. carolinianum 
and (B) G. dissectum. 
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 Figure 4.9. Percentage germination (mean ± s.e.) of manually scarified seeds of (A-
C) G. carolinianum and (D-F) G. dissectum at different constant temperatures after 
dry-storage at ambient room conditions for 0, 2 and 4 months. 
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CHAPTER  5 

Quantitative analysis of the thermal requirements for stepwise 

physical dormancy-break in seeds of the winter annual 

Geranium carolinianum L. (Geraniaceae) 

INTRODUCTION 

Temperature is the primary factor involved in breaking of physical dormancy (PY) 

(Taylor, 2005). Depending on the species, PY-break in seeds can take place either in 

one step or two steps (Gama-Arachchige et al., 2012). The process of PY-breaking in 

seeds of certain annual species takes place in two steps controlled by two different 

temperatures (Taylor, 1981, 2005) and/or moisture regimes (Gama-Arachchige et al., 

2012). During the first step, PY-seeds become sensitized to dormancy breaking 

treatment(s), yet they remain impermeable. During the second step, seeds become 

permeable upon exposure to the appropriate environmental conditions (Jayasuriya et 

al., 2008a, 2009c, Gama-Arachchige et al., 2012). 

The concept of thermal time, i.e. the exposure to a temperature above a threshold 

level for a particular time period has been successfully applied in determining and 

comparing the rates of various physiological events in plants and poikilothermic 

invertebrates (Trudgill et al., 2005). This concept has been employed in describing 

and quantifying physiological dormancy (PD)-break by after-ripening (Bradford, 

2002; Batlla et al., 2009) and single step PY-break (McDonald, 2000). However, the 

concept of thermal time has not been used for the explanation of stepwise PY-

breaking processes. 
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G. carolinianum is a winter annual weed, native to eastern North America and is 

reported to be a naturalised weed in many parts of the world including Australia, 

China, Great Britain, Japan, Italy and South America Mature seeds of G. 

carolinianum exhibit PY and shallow PD (Aedo et al., 1998b; Aedo, 2000; Gama-

Arachchige et al., 2012).  

The water-gap region is a morpho-anatomically specialized area in the seed or fruit 

coat in species with PY that opens during PY-breaking and allows the entry of water 

into the seed during imbibition. In Geraniaceae, a small opening near the micropyle 

(hinged-valve gap) acts as the water-gap (Gama-Arachchige et al., 2010). PY-break in 

G. carolinianum, a temperature and time dependant process, occurs in two 

temperature-dependant steps. During the first step, seeds become sensitive when 

stored at temperatures ≥20 oC. In the second step, sensitive seeds are made permeable 

when exposed to temperatures ≤20 oC (Gama-Arachchige et al., 2012).  

On breaking of PY, the water-gap region in seeds of G. carolinianum becomes visible 

in brownish orange colour. Application of pressure causes a similar colour change in 

the palisade cells of the water-gap region while making the seeds permeable (Gama-

Arachchige et al., 2010). It has been shown that the pressure that builds up upon 

heating under the palisade layers of the lens in seeds of Acacia kempeana (Hanna, 

1984) and under the bulges in seeds of Ipomoea lacunosa (Jayasuriya et al., 2008a) 

causes the water-gap palisades to pop off, forming the water-gap opening(s). 

However, the colour change in the water-gap region of G. carolinianum takes place 

when sensitive seeds are placed at a lower temperature than the sensitivity-inducing 
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temperature. Therefore, a pressure buildup under the water-gap palisades in G. 

carolinianum is unlikely. 

The objectives of the current study on seeds of G. carolinianum were to (1) 

investigate the role of temperature in driving the two steps of PY-breaking, (2) 

establish a thermal time (degree-weeks) model to explain sensitivity induction 

quantitatively and (3) propose a mechanism to explain PY-breaking, focusing on the 

water-gap region. 

MATERIALS AND METHODS 

Seed collection and preparation 

Stems of Geranium carolinianum bearing mature fruits were collected from plants 

growing on Spindletop Farm, Lexington, KY, USA, on 1 June 2011. They were 

covered with a mesh-cloth and allowed to dry for 3 days inside a non-heated 

greenhouse. Seeds released naturally were collected and stored in a refrigerator 

(approx. 5 oC, dry storage) until used. Experiments were started within two weeks of 

seed collection.  

Step-I: Induction of sensitivity 

Sensitivity induction test 

To calculate the thermal time required for sensitivity induction, seeds were stored dry 

at constant temperatures of 5, 10, 15, 20, 25, 30, 35 and 40 oC in Petri dishes for 20 
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weeks. Cool white fluorescent light at 400-700 nm was supplied continuously, at 

approx. 40 µmol m-2 s-1.  

 

Due to the lack of visible changes, insensitive seeds cannot be distinguished from 

sensitive seeds (Gama-Arachchige et al., 2010). Therefore, the ability to imbibe water 

after exposure to low temperatures (≤20C) was selected as an indication of sensitivity 

(Gama-Arachchige et al., 2012). A sample of 100 seeds was retrieved from each 

storage temperature every week and incubated at 10 oC (under same the light 

conditions) on moist sand in five replicates of 20 seeds each. The number of imbibed 

seeds was counted after 2 weeks.  

 

To study the relationship between storage temperature and sensitivity induction, the 

Arrhenius plot was constructed using sensitivity induction rates 1/T50 (where, T50 = 

storage time taken for 50% of the seeds to become sensitive) plotted against 

reciprocal of storage temperature (1/T). 

 

Development of the model 

The model was developed based on the assumptions that seed sensitivity induction is 

irreversible and the base temperature to induce sensitivity is constant for all the sub-

populations (Gama-Arachchige et al., 2012).     

 

The induction of sensitivity (step-I) was assessed in relation to the accumulation of 

thermal time. The thermal time units required for induction of sensitivity were 

calculated using the following function (1),  
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 .  

 

where PY is the thermal time (oCweeks) to induce sensitivity, Ts the temperature at 

which seeds were stored (oC), Tb the base temperature to induce sensitivity (oC) and 

tPY the storage time (weeks).  

 

The base temperature was estimated using the reciprocal of the time required for 

sensitivity induction (rate of sensitivity induction). The PROBIT procedure in SAS 

ver. 9.2 was applied to estimate the time required for the induction of sensitivity in 

sub-populations of 25%, 50% and 75% of seeds. The rates of sensitivity induction 

were plotted against storage temperature and a linear regression model was fitted to 

estimate the x-intercept for each percentile. The average value of x-intercepts was 

considered as base temperature (Steinmaus et al., 2000; Bazin et al., 2011). 

 

To determine the best model that describes the distribution of PY within a population, 

Gompertz, Hill, Logistic, Sigmoid and Weibull functions were applied using global 

curve fitting option in Sigmaplot ver. 12.0. The best fit was first examined by 

superimposing the curve on the data points (Motulsky and Ranasnas, 1987). Then, to 

select the best model the candidate models were compared with corrected Akaike 

Information Criterion (AICc) (function 3) that considers model complexity and 

modelling accuracy (Burnham et al., 2011; Symonds and Moussalli, 2011; Eizenberg 

et al., 2012),  

  

AICc 2 ln RSS

 
 

(1) 

(2) 
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where k  is the number of fitted parameters in the model, n the number of observations 

in the model and RSS the residual sum of squares. A lower AICc value indicates 

better fit of the model to the observed data, with the best approximating model being 

the one with the lowest AICc value (Symonds and Moussalli, 2011). 

 

The model was evaluated based root mean square error (RMSE) (function 3), 

 

 1 n ∑   

 

where yobs and ypred are the observed and predicted imbibition values, respectively, 

and n the number of observations in the model. Smaller RMSE values indicate better 

fit of the model to the observed data.  

 

Model validation 

The model validation was performed using the results from sensitivity induction by 

alternating storage temperatures and non-heated greenhouse experiments.  

 

Alternating temperatures: Seeds were stored at alternating temperatures of 15/6, 

20/10, 25/15, 30/15, 30/20 and 40/25 oC in Petri dishes. High and low temperatures 

were supplied on a 12 h/ 12 h daily basis under light/dark conditions (14/10 h; under 

the same light conditions as described above). From each storage temperature, a 

sample of 100 seeds was retrieved every week and incubated at 10 oC on moist sand 

in five replicates. The number of imbibed seeds was counted after 2 weeks. 

 

(3) 
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Non-heated greenhouse: Twenty seeds each were placed on dry sand in 100 plastic 

Petri dishes, which were placed on trays filled with potting soil inside a non-heated 

greenhouse. Air temperature inside the greenhouse was recorded in 30-minute 

intervals using a Thermochron ibutton (DS 1921G#F50) and daily average 

temperatures were calculated. Each week, five Petri dishes were retrieved and the 

sand was moistened with distilled water. They were incubated at 10 oC under the 

same light conditions. The number of imbibed seeds was counted after two weeks. 

 

The thermal time units required for induction of sensitivity for the alternating 

temperatures 30/20, 35/20, 40/25 oC and non-heated greenhouse experiments were 

calculated using  function (4) and for alternating temperatures where low temperature 

period is ≤ 15 oC  using function (5),  

 

 .  

 

 . /2 

 

where PY is the thermal time (oCweeks) to induce sensitivity, Tavg the average 

temperature at which seeds were stored/average daily temperature in the greenhouse 

(oC), Th the high temperature period (oC), Tb the base temperature to induce 

sensitivity (oC) and tPY the storage time (weeks).  

 

Cumulative percentage of sensitive seeds from alternating temperature and 

greenhouse experiments were plotted against thermal time and the developed thermal 

time model (three-parameter Gompertz) was superimposed to compare the actual 

(4) 

(5) 
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thermal induction and predicted thermal time by the model. Goodness of fit of the 

developed model was estimated for each alternating storage temperature and non-

heated greenhouse data according to RMSE values. 

  

Step-II: Breaking of PY 

Effect of temperature on PY-break 

To determine the effect of temperature on PY-break in step-II, seeds were stored at 30 

oC in Petri dishes for 4 months to induce sensitivity. A ~2 mm layer of moulding clay 

was spread inside a Petri dish and 20 sensitive seeds without the colour change in the 

water-gap region were embedded so as to point the water-gap upwards. The open 

Petri dish was immersed in a temperature-controlled water bath and observed for 

colour change at the water-gap as an indication of PY-break. The number of seeds 

with a colour change was counted in 15 sec intervals for 1 hour. The procedure was 

repeated with five replicates for each temperature regime (5, 10, 15, 20, 25, 30, 35 

and 40 oC). Water bath temperature of 5, 10, 15 and 20 oC was maintained using ice, 

while a hot plate was used to achieve the higher temperatures.      

 

To study the relationship between incubation temperature and PY-break, the 

Arrhenius plot was constructed using PY-breaking rates 1/T50 (where, T50 = 

incubation time taken for 50% of the seeds to become permeable) plotted against the 

reciprocal of incubation temperature (1/T). 

 

Determination of separation force 

To determine the force required for separation of the water-gap palisade cell layer 

from sub-palisade layer during the PY-breaking step, 50 seeds made sensitive by 
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storing them at 25 oC for 5 months and 50 insensitive seeds (untreated) were cut 

transversely into two halves. The halves with the micropyle were glued at the cut 

surface onto wooden blocks (Fig. 5.1). The separation force was measured with a 

Chatillon DFM10 penetrometer. A probe with a blunt tip 0.2 mm in diameter was 

fixed to the penetrometer and the micropyle was touched with the tip of the probe. As 

the stage of the penetrometer was moved upwards, observations were made under a 

microscope until a colour change was seen at the micropyle-water-gap region, at 

which time the maximum force reading was recorded. 

 

The effect of external cooling 

To determine the internal temperature of seeds upon external cooling, 60 seeds made 

sensitive by storing them for five months at room temperature (approx. 23 oC).  Using 

a 0.45 mm drill bit, a hole was drilled in each seed up to the subpalisade layer of the 

water-gap end, starting at the widest point of the seed at the end opposite to the water-

gap. The probe of a type K micro-thermocouple (0.432 mm width) was inserted into 

the drill-hole of a seed. The water-gap end of the seed was placed on the water surface 

in a temperature-controlled water bath and the internal temperature of the seed was 

recorded at 1 second intervals for 1 minute using LASCAR  EL-USB-TC data 

loggers. The minimum temperature recorded during the 1 minute period was used for 

calculation. The procedure was repeated for 15 seeds each, for 0, 5, 10, 15 and 20 oC. 

For 0 oC, ice was used instead of water.   

 

Role of moisture in opening of the water-gap 

To evaluate the role of moisture level in opening of the water-gap, permeable (heat 

treated) seeds were incubated at different relative humidity levels. Eight-hundred 
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seeds were made permeable by them storing under 30 oC for five months followed by 

exposure to 10 oC for 24 hr. Five replicates (20 seeds each) were placed on a wire 

mesh platform suspended in accelerated aging plastic boxes filled with 100 ml of 

saturated salt solutions as follows, to maintain different RH levels: H2O, 100 %; KCl, 

83.5%; NaCl, 75%; MgCl, 32%; and LiCl, 11.5% at 30 oC; NaNO2, 65% at 25 oC; 

Mg(NO3)2 50.5% at 35 oC; and CaCl, 40% at 5oC (Weston et al., 1992; Fang and 

Moore, 1998; Baalbaki et al., 2009). After 24 hours of incubation, the number of 

seeds with a water-gap blister was recorded. 

 

Morphological changes during early imbibition 

To observe the morphological changes during early imbibition, 40 untreated seeds 

were soaked in water for two hours and the outer permeable layers were removed with 

a tooth-pick (Gama-Arachchige et al, 2010). They were made permeable by drying at 

40 oC for two months followed by exposure to 10 oC for 24 hr. To observe the 

morphological changes during early imbibition, seeds were allowed to imbibe water 

under ambient conditions for 0 to 20 min.  Three seeds each were removed from water 

at two min intervals for 20 min of imbibition and blotted dry. Three sensitive 

(impermeable) seeds (outer permeable layers removed) were used as a control. All the 

seeds were mounted on scanning electron microscopy specimen stubs using double-

sided carbon tapes. Then, the samples were sputter-coated with gold-palladium (15 

nm), scanned with an S-3200 Hitachi scanning electron microscope at an acceleration 

voltage of 5.0 kV and micrographs taken.  

 

RESULTS 
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Step-I: Induction of sensitivity 

 

Sensitivity induction test 

Seeds stored at temperatures ≤15 oC did not become sensitive even after 20 weeks of 

storage (Fig. 5.2A; results for storage under 5 and 10 oC not shown). The minimum 

storage temperature at which seeds became sensitive was 20 oC. With increasing 

storage temperature and time, the fraction of sensitive seeds increased. The time 

required for 50% of the seeds to acquire sensitivity decreased exponentially with 

increasing temperature (R2=0.98; Fig. 5.3A).  

 

The Arrhenius plot for sensitivity induction (step-I) showed a negative relationship 

between the rate of sensitivity induction and the reciprocal of storage temperature. 

Temperature coefficient values (Q10) were between 3.5 and 2.0 (R2=0.97; Fig. 5.3B). 

 

Development of the model 

Linear extrapolation of the sensitivity induction rate data of three sub-populations 

resulted in an average x-intercept of 17.22 oC (Fig. 5.4). Based on the RMSE values, 

all the candidate functions strongly fitted with the sensitivity induction data at 

constant temperatures (Table. 5.1). However, four-parameter Weibull and three-

parameter Gompertz functions were the best two models based on AICc values with 

265.002 and 265.388, respectively (Table 5.1). Therefore, the model with fewer 

parameters (Gompertz) was selected as the best model due to the ease of explanation 

of data, function (6), 
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S % 100    

 

where S is the cumulative percentage of sensitive seeds, b the rate of increase, x the 

thermal time (oC weeks) and  xo  the lag phase until the induction of sensitivity.  

 

The values of parameters of the best fitted model are b=19.8380±1.2937 and xo= 

54.6846±0.9600 (n=65, RMSE=7.43; Fig. 5A). Therefore, the three-parameter 

Gompertz model for the sensitivity induction in PY-seeds of G. carolinianum can be 

expressed as function (7), 

 

S % 100  
 .

.   

 

During the lag phase, sensitivity was not detected in seeds until a thermal time of 

24.39 oCweeks was supplied (Fig. 5.5A). Thereafter, 25, 50 and 75 % of the seeds 

became sensitive at 48.02, 61.96 and 79.40 oCweeks, respectively.  

 

Model validation 

Seeds stored at 15/6 and 20/10 oC alternating temperatures did not become sensitive 

even after 20 weeks of storage (Fig. 5.2B; results for storage under 15/6 and 20/10 oC 

not shown). At 25/15 oC, ~60% of seeds were sensitive by 20 weeks while, at all the 

other storage temperatures 100% of seeds were sensitive by 20 weeks. 

 

The developed three-parameter Gompertz model fitted well for the observed values of 

the sensitivity induction at alternating temperatures with RMSE values ranging from 

(6) 

(7) 
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4.28 to 16.33 (Fig. 5.5B, Table 5.2). Moreover, the fitted model showed good 

agreement with the non-heated greenhouse data RMSE=11.91 and with the 40/25 oC 

(average summer soil temperature; Gama-Arachchige et al., 2012) data, RMSE=12.40 

(Fig. 5.5B; Table 5.2). However, the fitted model slightly over-estimated the 

sensitivity induction under non-heated greenhouse conditions and 40/25 oC. Also the 

model slightly underestimated the sensitivity induction under 30/15, 30/20 and 35/20 

oC. 

 

Step-II: Breaking of PY 

 

Effect of temperature on PY-break 

T50 colour (minutes), the time taken for the colour change (= PY-break) in 50 % of the 

seed population, decreased  exponentially from ~62 minutes at 25 oC to ~15 seconds 

at 5 oC (Fig. 5.3A). At temperatures ≥30 oC, none of the seeds indicated a colour 

change even after 24 h.  

 

The Arrhenius plot for PY-break (step-II) showed a positive relationship between the 

rate of PY-break and the reciprocal of storage temperature with temperature 

coefficient (Q10) values between 0.02 and 0.1(R2=0.98; Fig. 5.3B). 

 

Determination of separation force 

The force required for the separation of water-gap palisade cell layer from the sub-

palisade cell layer was significantly reduced from insensitive seeds (2.59±0.07 N) to 

sensitive seeds (1.60±0.05 N) (P< 0.05). 
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The effect of external cooling 

The temperature difference between the water bath and seed interior decreased linearly 

with increasing water bath temperature (Fig. 5.6A).  

 

Role of moisture in opening of the water-gap 

The relationship between the storage relative humidity and the fraction of seeds with a 

water-gap blister followed a sigmoidal pattern (RMSE=4.32; Fig. 5.6B). The water-

gap blister formed in seeds stored under a RH of >40%. With increasing RH, the 

fraction of seeds with a water-gap blister increased rapidly and reached 100% at 80% 

RH.  

 

Morphological changes during early imbibition 

No difference was observed in the morphology of water-gap palisade cells of sensitive 

(impermeable) and permeable (heat-treated) seeds prior to imbibition (Fig. 5.7A,B). 

After two minutes of imbibition, a slight rise began to appear in the water-gap 

palisade layer of permeable seeds and it had risen further by 4 minutes of imbibition 

(Fig 5.7C). Upon further imbibition, the water-gap palisades continued to rise until a 

crack was formed in the periphery of the raised area by eight minutes (Fig. 5.7D). On 

continued imbibition, the raised area detached at the crack while still hinged to 

the palisades at the micropyle (hinged-valve) after 12 minutes (Fig. 5.7E). By 20 

minutes, the hinged-valve was completely dislodged, revealing the water-gap (Fig. 

5.7F).  

 

DISCUSSION 
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Physical dormancy break in G. carolinianum is a moisture-independent, two-step 

process controlled by temperature (Gama-Arachchige et al., 2012). In the present 

study, a mathematical model was developed for the induction of sensitivity during 

step-I in PY-breaking in G. carolinianum seeds.  The time required to attain 

sensitivity in seeds held under constant temperatures was described well by the 

developed three-parameter Gompertz model (RMSE=7.43). The developed model was 

robust enough to successfully predict the acquisition of sensitivity for alternating 

temperatures and semi-natural non-heated greenhouse conditions (RMSE=4.28-

16.33). Thus, the developed model described the thermal requirements for sensitivity 

induction in each fraction of the seed population (Fig. 5.5A,B). 

 

The parameter values of the model indicate that induction of sensitivity takes place at 

temperatures above the base temperature 17.22 oC, and the higher the temperature 

above this value, the higher would be the rate of sensitivity induction. The base 

temperature for thermal models for dormancy break in PD seeds is assumed to be 

constant for all seed fractions of a population (Bradford, 2002). Similarly, in this 

study the value for the base temperature obtained by extrapolating the rates of 

sensitivity showed a constant value for all seed fractions (Fig. 5.4).  

 

Mott et al (1981) and McDonald (2000) reported that the base temperature for PY 

break in several tropical and subtropical legume species growing in northern Australia 

ranged between 40-55 oC. The high summer soil temperatures of those sites usually 

exceed this base temperature, hence a considerable amount of seeds become 

permeable during summer and germinate in the autumn (McDonald, 2000). Similarly, 

> 90% of the G. carolinianum seeds buried at a depth of 2 cm in an open area on the 
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campus of the University of Kentucky became sensitive during the summer of 2011 

and germinated in autumn 2011 (Gama-Arachchige et al., 2012). The average summer 

soil temperature at this location was ~28 oC and therefore all the seeds can become 

sensitive within ~12 weeks during summer. Thus, the formation of a long term soil 

seed bank in Lexington is highly unlikely. 

 

A negative correlation between the reciprocal of storage temperature and the rate of 

sensitivity induction during step-I can be observed in Arrhenius plots (Fig. 5.3B). In 

this study, Q10
 values for step-I ranged between 2.0 and 3.5. Q10 values for chemical 

processes are generally in the range of 2-3 (Atwell et al., 1999). Therefore, the 

involvement of a chemical process(es) during the sensitivity induction stage can be 

inferred in seeds of G. carolinianum. A similar observation (Q10 values 3.4-5.1) has 

been obtained for PY-break in Medicago arabica (Van Assche and Vandelook, 2010).  

 

Significant reduction in the force required to separate water-gap palisade cells from 

sub-palisade cells indicates weakening of the bond between these two cell layers 

during the sensitivity induction step. Zeng et al (2005) demonstrated that when seeds 

are exposed to field conditions, PY-break in several legume species is related to loss 

of lipids in the seed coat. Further, they suggested that the polymeric structure of lipids 

changes on exposure to high summer temperatures, due to weakening of hydrophobic 

bonds which increase the thermal degradation of lipids. In G. carolinianum seeds, a 

similar process can be expected to take place. During step-I, weakening of the 

polymeric lipids in the seed coat loosens the bonding between palisade and 

subpalisade layers. This phenomenon may be more prominent in the water-gap 

region, where the connection between the two layers is weak. The thermal 
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requirements to complete the weakening process (sensitivity induction) can be 

estimated from the model developed in this study. According to the results, 

weakening of the seed coat takes place at temperatures above 17 oC and ~135 

oCweeks are required for all the seeds to become sensitive.  

 

Data from the non-heated greenhouse fitted well (RMSE=11.91) with the developed 

thermal time model. Therefore, this model is capable of predicting sensitivity 

induction under semi-natural conditions. However, further field experiments are 

required to test the application of this thermal time model to predict sensitivity 

induction under natural conditions. 

 

Step-II 

A positive correlation was observed for the reciprocal of incubation temperatures and 

the rate of step-II (PY-break) with Q10 values between 0.02 - 0.1. As Q10 values below 

1.5 indicate purely physical processes (Clearwater et al., 2000), it can be assumed that 

a physical process is responsible for step-II. Based on the results from present study 

and Gama-Arachchige et al (2012), it was observed that the base temperature for PY-

break in step-II varied with the storage temperature in step-I. Therefore, in the present 

study no thermal time models were developed for this step. However, further studies 

should be carried out to evaluate the possibility of developing a thermal time model 

for this step. 

 

Sensitive G. carolinianum seeds can be made permeable when exposed to 

temperatures lower than the sensitivity induction temperature (Gama-Arachchige et 

al., 2012). In the present study, the internal seed temperatures were always higher by 
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several degrees than the external temperature of the seed coat (= temperature of water 

bath). This temperature difference can create a tensile stress across the seed coat. Mott 

(1979) observed that seeds of several species of Stylosanthes became permeable only 

at the lens when in contact with a high temperature (140 - 150 oC) metal plate for a 

short period (15 - 60 s). He also found that when seeds were made to contact the 145 

oC metal plate, the internal temperature of the seeds reached only ~100 oC after 60 

seconds. Since the seeds were agitated during the high heat treatment, only a very 

small portion of them were momentarily heated, while a larger portion remained 

cooler. This differential temperature might have imposed a considerable mechanical 

stress on the seed coat, causing the metastable (weak) palisade cells at the lens to 

fracture.  

 

Based on the previous observations by Taylor (1996a, b) and Jayasuriya et al (2008a), 

the completion of the step-II in PY-break is much faster than the step-I in Medicago 

polymorpha and Ipomoea lacunosa, respectively. A similar pattern was observed in 

the PY-break of G. carolinianum. However, the completion of step-II in G. 

carolinianum takes place at a rate much faster than that in other species studied. At 5 

oC, only 15 seconds were required for 50 % of the seed population to complete step-

II. Therefore, it can be assumed that step-I enables the seeds to maintain 

impermeability and thus survive in adverse conditions while progressing towards 

sensitivity. In sensitive seeds, step-II is triggered immediately on sensing the 

environmental cues that signal the commencement of favourable conditions for 

germination.  

 

Mechanism involved in the opening of the hinged-valve 
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Sensitive G. carolinianum seeds cannot be distinguished from the insensitive seeds 

based on morpho-anatomical features (Gama-Arachchige et al., 2010). When 

sensitive seeds are exposed to temperatures lower than the sensitivity-induction 

temperature, a colour change can be seen near the micropyle (Fig. 5.8A-F; 5.9A, B). 

When a temperature difference builds up across the seed coat, palisade and 

subpalisade layers may shrink differentially (Fig. 5.9A). Consequently, the two cell 

layers may slip, forming a gap between them (Fig. 5.9B). Since the periclinal cell 

walls in contact in these two layers are smooth at the micropyle and gradually become 

corrugated towards the radicle (resulting in friction when slipping), the formation of 

the gap initiates at the micropyle and develops towards the radicle (Fig. 5.7F, 5.8A-F). 

This gap causes the incident light to refract, revealing a ‘clam shell’ shaped lighter 

colour area near the micropyle (water-gap) (Fig. 5.8F). The same colour change is 

imparted on applying a mechanical force at the water-gap region. According to the 

penetrometer experiment, this force is significantly lower for sensitive seeds than for 

insensitive seeds. This is a good indication of weakening of the connection between 

palisade and subpalisade layers in the water-gap region during sensitivity induction 

(step-I). A similar colour change in the water-gap region has previously been reported 

in Sida spinosa, upon application of pressure (Egley and Paul, 1981). 

 

Opening of the water-gap is controlled by the availability of moisture during 

imbibition (Fig. 5.6B). A web of cracks (a few micrometers in depth) can be found in 

the upper periclinal walls of the palisade cell layer of mature seeds (insensitive, 

sensitive and permeable) (Fig. 5.7A,B). Water can enter through these cracks, causing 

the upper part of the palisades to swell. However, the lower part of the palisades 

cannot expand since the lower periclinal walls of the palisades are tightly bound to 



139 
 

sub-palisades throughout the seed coat in sensitive and insensitive seeds. This stops 

further imbibition. After PY is broken, the water-gap palisade cells can continue to 

swell since they are not connected to the water-gap subpalisade cells (Fig. 5.9C). This 

causes the deepening of the cracks in palisades and makes the cells permeable. 

Subsequently, as imbibition proceeds, the palisades of the whole water-gap region 

swell and bend outward forming a blister (hinged-valve) (Fig. 5.9D). Then, due to the 

tension, the water-gap palisades separate from subpalisades along the water-gap 

margin. Eventually, with further swelling the hinged-valve dislodges from the seed 

coat revealing the water-gap (Fig. 5.9E,F).  

 

In conclusion, induction of sensitivity by temperature during the first step of PY-

break in G. carolinianum can be best explained by the thermal time model using a 

three-parameter Gompertz model. The developed thermal time model is also able to 

predict sensitivity induction in G. carolinianum under semi-natural conditions. 

Differential thermal contraction of the palisade layer in the water-gap region may be 

the reason for the colour change and PY-break. Thus the water-gap region acts as a 

thermal sensor that detects the onset of autumn. 

 

 



Table 5.1. Summary of the model selection statistics for models fitted to sensitivity induction at constant temperature 
storage. 

 Candidate models Equation RSS RMSE k n AICc 

1 Gompertz, 3 parameter Y = a*exp(-exp(-(x-x0)/b)) 3473.6894 7.43 3 65 265.002 

2 Sigmoid, 3 parameter Y = a/(1+exp(-(x-x0)/b)) 3789.4080 7.76 3 65 270.656 

3 Logistic, 3 parameter Y = a/(1+abs(x/x0)^b) 3587.7317 7.55 3 65 267.101 

4 Logistic, 4 parameter Y = Y 0+a/(1+abs(x/x0)^b) 3567.8018 7.59 4 65 269.012 

5 Weibull, 4 parameter Y = a*(1-exp(-(abs(x-x0+b*ln(2)^(1/c))/b)^c))) 3374.2916 7.38 4 65 265.388 

140
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Table 5.2. Evaluation of the thermal time model for induction of sensitivity in seeds 
of Geranium carolinianum under alternating temperatures and non-heated 
greenhouse conditions. 

Temperature condition n RMSE 

25/15 21 4.28
30/15 17 16.33
30/20 17 12.14
35/20 17 9.28
40/25 12 12.40

Non-heated greenhouse 18 11.91 
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Figure 5.1. Experimental setup for the measurement of separation force of palisade 
cells from subpalisade cells in the water-gap of seeds of G. carolinianum: Mi, 
micropyle; Pa, palisade cells; Pr, probe of the Chatillon DFM10 penetrometer; Spa, 
subpalisade cells; SpaL, elongated water-gap subpalisade cells; Wpa, water-gap 
palisade cells. 
 
 

 
 

 

 

 

 

 

 

Figure 5.2. Cumulative percentage of sensitive seeds (mean ± s.e) at the end of two 
weeks incubation at 10 oC after dry storage at different (A) constant temperatures and 
(B) alternating temperatures or non-heated greenhouse conditions. 
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Figure 5.3. (A) Time taken for 50% of seeds to become sensitive under different 
storage temperatures (step-I; red line) and to show colour change in the water-gap 
region (step-II; blue line) under different incubation temperatures. Vertical dash 
lines indicate the minimum temperature limit (Tb) for the induction of sensitivity 
(step-I; red) and the maximum temperature limit (Tm) for the induction of colour 
change in the water-gap region (step-II; blue). R2 values were derived from 
exponential regression lines. (B) Arhenius plots of sensitivity induction rate ln (T50 

weeks)-1 (step-I; red line) and PY-break rate ln (T50 minutes)-1 (step-II; blue line) 
plotted against 1/temperature (K) x 10-3. R2 values were derived from linear 
regression lines.  
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Figure 5.4. Sensitivity induction rates of seed subpopulations (25%, 50% and 75%) 
of G. carolinianum plotted against the storage temperature. Extrapolation of the 
linear regression to the x axis yielded the base temperature (Tb). R2 values were 
derived from linear regression lines.  
 
 

 
 
Figure 5.5. Cumulative sensitivity induction (%) of seeds of G. carolinianum as a 
function of sensitivity induction thermal time (oCweeks). (A) Symbols represent the 
observed percentage of sensitive seeds at different constant storage temperatures. 
The solid line corresponds to the three-parameter Gompertz model [equation (7)]. 
(B) Validation of the developed thermal time model for sensitivity induction (solid 
line) for alternating temperatures and non-heated greenhouse conditions.  
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Figure 5.6. (A) Difference between internal and external temperatures of seeds of G. 
carolinianum plotted against the seed external temperature (water bath). R2 value 
was derived from the linear regression line. (B) Percentage of seeds with water-gap 
blister (mean ± s.e) after incubating for 24 h under different relative humidity levels. 
RMSE value was derived from the sigmoidal regression line.  
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Figure 5.7. Scanning electron micrographs of the micropylar-water-gap region of G. 
carolinianum seeds without the outer permeable cell layers: (A) sensitive seed 
(impermeable); (B) seed with colour change  in the water-gap (permeable); (C) 
permeable seed soaked in water for two minutes with slightly raised water-gap 
palisades forming a blister; (D) permeable seed soaked in water for eight minutes 
with raised water-gap palisades; (E) permeable seed soaked in water for twelve 
minutes with raised water-gap palisades (hinged-valve) still attached at the 
micropylar end; (F) permeable seed soaked in water for 20 minutes with revealed 
water-gap opening after the dislodgement of the hinged-valve. Abbreviations: Cr, 
cracks on the palisade layer; Mi, micropyle; Pa, palisade cells; PaL, elongated 
palisade cells of the water-gap; SpaL, elongated subpalisade cells of the water-gap; 
Wpa, water-gap palisades; *, subpalisade cells with a smooth outer periclinal cell 
wall; **,  subpalisade cells with a corrugated outer periclinal cell wall. 
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Figure 5.8. Schematic diagrams of the morphological changes in the water-gap region 
of sensitive seeds of G. carolinianum during different stages of PY-break (step-II). 
(A-F) The colour change starts at the micropyle and develops towards the radicle. 
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Figure 5.9. Schematic diagrams of median longitudinal sections of the water-gap 
region of G. carolinianum depicting the proposed mechanisms for PY-breaking and 
opening of the water-gap: (A) a sensitive seed exposed to cold temperature; arrows 
indicate differential shrinking of the palisade layer (green) and subpalisade layer 
(black); (B) a permeable seed; light-brown colour of the water-gap palisades depict 
the colour change visible externally after PY is broken; note the gap between the 
palisade and subpalisade layers. (C to F) A permeable seed during different stages of 
early imbibition: (C) expansion of water-gap palisades;  blue arrows indicate the 
expansion of water-gap palisade cells due to imbibition; (D) formation of the blister; 
(E) formation of the hinged-valve; (F) water-gap revealed after the dislodgement of 
the hinged-valve. Abbreviations: Cr, cracks on the palisade layer; Hv, hinged-valve 
(composed of PaL and Wpa); Mi, micropyle; Pa, palisade cells; PaL, elongated 
palisade cells of the water-gap; SpaL, elongated subpalisade cells of the water-gap; 
Wpa, water-gap palisade cells; Wg, water-gap opening; *, subpalisade cells with a 
smooth outer periclinal cell wall; **,  subpalisade cells with a corrugated outer 
periclinal cell wall; yellow arrows indicate the direction of dislodgment of the hinged-
valve. 
 
 
 
 
 
 
 

Copyright © Nalin Gama Arachchige 2013 
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CHAPTER  6 

Identification and characterization of 10 new water gaps in seeds and fruits with 

physical dormancy and classification of water-gap complexes. 

 

INTRODUCTION 

 

Physical dormancy (PY) is caused by a water-impermeable palisade cell layer(s) in 

seed or fruit coats (Baskin et al., 2000) along with tightly sealed chalaza and 

micropyle openings (Gama-Arachchige et al., 2010). PY has been demonstrated or 

inferred to occur in species of 18 angiosperm plant families and it is unknown in 

gymnosperms (Nandi, 1998; Horn, 2004; Baskin et al., 2000; Baskin 2003; 

Koutsovoulou et al., 2005; Baskin et al., 2006; Horn, 2004; APG III, 2009; Tsang, 

2010).  Seeds of some species with PY also have physiological dormancy (PD); 

hence, they are considered to have combinational dormancy (CD). The breaking of 

PY involves disruption or dislodgement of ‘water-gap’ structures causing the 

seeds/fruits to become permeable. The water-gap region is a morpho-anatomically 

specialized area and it differs from the rest of the seed or fruit coat. Location, 

anatomy, morphology and origin of water-gaps can differ between and even within 

families (Baskin et al., 2000, Jayasuriya et al., 2009). Twelve different water-gap 

regions in seven families have been characterized previously. However, the water-

gaps previously have not been characterized in Biebersteiniaceae, Cucubitaceae, 

Fabaceae (clade Cladrastis), Lauraceae, Malvaceae (subfamilies Bombacoideae, 

Brownlowioideae and Bythnerioideae), Nelumbonaceae, Rhamnaceae, Sapindaceae 

(subfamily Sapindoideae) and Surianaceae. 
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Water-gap structures in seeds/fruits act as environmental signal detectors for seed 

germination (Baskin et al., 2000). The ability of water-gap structures to sense 

environmental conditions allows seeds with PY to become permeable just prior to the 

commencement of conditions favourable for germination and plant establishment 

(Taylor, 1996a, b; Jayasuriya et al., 2008a, 2009; Gama-Arachchige et al., 2012). The 

mechanisms of sensing environmental signals for PY-break by water-gap structures 

differ between species (Jayasuriya et al., 2008a, 2009; Gama-Arachchige et al., 

2013). Since the water-gap region plays a major role in maintaining and breaking of 

PY and thus in plant survival and fitness via timing of seed germination, it is 

important to characterize the diversity of this structural complex as a basis for 

understanding how it functions under natural conditions. Such a study also will 

provide information for further investigations into how PY evolved in different plant 

lineages. 

 

In the literature, the term ‘water-gap’ is used interchangeably to define both the 

opening formed during the PY-break and the whole specialized region of the seed or 

fruit coat (Jayasuriya et al., 2007; Turner et al., 2009; Gama-Arachchige et al 2010; 

Karaki et al., 2011; De Paula et al., 2012). Moreover, Gama-Arachchige et al (2011) 

studied the development of the water-gap region of Geranium carolinanum and 

reported that the micropylar water-gap region of G. carolinianum is an anatomically 

complex structure. They introduced the term ‘water-gap complex’ to define this whole 

water-gap region of G. carolinianum. However, to date no attempt has been made to 

define the different structures involved in early imbibition or to classify water-gap 

regions.  
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Our general objectives were to (1) identify the water-gaps in seeds/fruits of 

Biebersteiniaceae, Cucurbitaceae, Fabaceae (clade Cladrastis), Malvaceae 

(subfamilies Bombacoideae, Brownlowioideae and Bythnerioideae), Lauraceae, 

Nelumbonaceae, Rhamnaceae, Sapindaceae (subfamily Sapindoideae) and 

Surianaceae and (2) devise a classification system for water-gap regions based on the 

information from previous studies and from the current study. Such a system would 

greatly facilitate the evaluation of evolutionary relationships between species with 

water impermeable seed/fruit coats with regard to the morpho-anatomy of PY and 

PY-break. However, fruits of Biebersteiniaceae and Lauraceae could not be obtained. 

Thus, water-gaps of those two families were not studied. 

 

For some of the study species, information on PY-break and/or seed/fruit coat 

anatomy is available. Nandi (1998) studied the seed coat anatomy of eight species of 

Malvales s.s. (including Bixa orellana and Helianthemum nummularium) and 

compared the anatomical similarities of the specialized chalazal region (Bixoid 

chalaza). Based on the complex structure of the chalzal region, Baskin et al (2000) 

suggested that the Bixoid chalaza may act as the water gap in seeds of Bixaceae and 

Cistaceae. Razanameharizaka et al. (2006) and Turner and Dixon (2009) tested the 

effect of boiling water on PY breaking in the eight species of Adansonia. Two of the 

species were non-dormant and the other six species had PY. Boiling for 15 s - 5 min 

(depending on the species) was effective in PY-breaking. PY of seeds of Ceanothus 

americanus can be broken by exposing them to hot or boiling water (Table 1, 

Schramm and Johnson, 1981). Exposing seeds of C. velutinus to dry heat resulted in 

irreversible opening of the hilum (Gratkowski, 1962; Conard et al., 1985). Based on 

these observations, the hilar slit can be assumed to be the water gap in Ceanothus spp. 
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Geneve (2009) blocked the whole hilar region of seeds of Cercis canadensis that had 

been boiled for 1 min and concluded that the hilar area is the water-gap. However, the 

roles of pseudolens, micropyle and hilar slit in imbibition were not studied. Ohga 

(1926) and Shaw (1929) studied the fruit anatomy of Nelumbo nucifera and N. lutea, 

respectively, and characterized a specialised area in the fruit coat known as the 

protuberance. However, none of these studies focused on identification and 

characterization of the water-gap regions. 

 

Thus, the specific objectives of the current study were to (1) morpho-anatomically 

describe the water gap  for the families Fabaceae (clade: Cladrastis), Cucurbitaceae, 

Malvaceae (subfamilies Bombacoideae, Brownlowioideae and Bythnerioideae), 

Nelumbonaceae,  Rhamnaceae, Sapindaceae (subfamily Sapindoideae) and 

Surianaceae; (2) re-evaluate the water gap of Fabacae (section Cercideae); (3) confirm 

(or not) the morpho-anatomy of the water-gaps of Bixaceae and Cistaceae;  and  (4) 

devise a classification scheme for water-gap regions and their morpho-anatomical 

features. 

 

MATERIALS AND METHODS 

 

Seed sources 

Mature fruits and seeds for the present study were obtained from commercial and 

personal seed collections from Australia, China, France, Taiwan and United States of 

America (Table 6.1). All seeds were stored at room temperature (approx. 23 
o
C and 

50-60 % relative humidity, dry storage) until used. In this study only the impermeable 
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seeds in the seed lots were used. To select the impermeable seeds/fruits fraction, 

seeds/fruits of each species were allowed to imbibe in distilled water in glass beakers 

for 3 d at ambient room conditions and any imbibed seeds/fruits were discarded prior 

to experiments. 

 

 PY- breaking 

Wet and/or dry heat treatments were used to break PY in each study species (Table 

6.1). Dormancy breaking treatments were selected based on unpublished research of 

Gama-Arachchige et al.: (1) Wet heat, depending on availability of seeds five 

replicates of 1, 5 or 20 seeds were placed in a hot water bath; (2) Wet-dry heat, three 

replicates of 25 fruits of N. nucifera were subjected to alternating wet and dry heat by 

immersing them in boiling water for 5 min and then drying in an incubator at 40 
o
C 

for 24 hr (repeated 10 times); (3) Dry heat, seeds of K. paniculata and  S. saponaria  

(5 replicates of 10 seeds each) were heated in an oven at 60 
o
C for 7 days and then 

stored in paper bags under ambient room conditions for 1 month; and (4) Open flame, 

the hilar end of the seed of S. angulatus was held ~5 cm over a Bunsen burner flame 

for 30 sec. 

 

Morphological changes in the seed coat after PY- breaking 

To study the ultra-morphological changes in the putative water-gap region after PY is 

broken, impermeable and permeable (heat treated) seeds were mounted on scanning 

electron microscope specimen stubs using double-sided carbon tapes. Seeds were 

sputter-coated with gold-palladium (15 nm), scanned with an S-3200 Hitachi scanning 

electron microscope at an acceleration voltage of 5.0 kV and micrographs were taken. 
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Dye tracking 

Dye-tracking experiments were performed to determine the initial site of water entry 

into permeable seeds during imbibition. Heat-treated seeds (of all study species) were 

dipped in concentrated solutions of acid fuchsin or methylene blue. Three seeds each 

of each species were removed after 30 sec, 1 min, 5 min and 10 min intervals and 

their longitudinal bisections were observed for staining under a dissecting microscope 

(ZEISS STEMI SVII). The fruits of N. nucifera were examined at 1 day intervals. The 

pathway of the dye was observed and micrographs were taken using a digital camera 

(Olympus DP25).  

 

Blocking experiment  

To study the role of the pseudolens, the micropyle and hilar slit in the early stages of 

imbibition of seeds of C. canadensis, seeds were immersed in boiling water for 10 sec 

and then dried overnight at room temperature. One hundred seeds (five replicates of 

20) each were blocked with Vaseline with a sharpened toothpick at (1) hilar slit and 

micropyle, (2) pseudolens and micropyle and (3) pseudolens, micropyle and hilar slit. 

Non-blocked seeds were used as a control. Seeds were incubated in plastic Petri 

dishes filled with water for 7 days at 25 oC. The number of imbibed seeds (larger in 

size and lighter in colour) was counted at intervals of 24 h. The final imbibition 

percentage data were normalized by arcsine-transformation and analyzed by one-way 

ANOVA using SAS ver. 9.2 software to determine significant differences between 

blocking treatments (P < 0.05). 

 

Light microscopy 
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To compare the anatomy of the water-gap region and the general seed/fruit coat, 

microtome sections were used. Seeds/fruits of the study species were manually 

scarified and allowed to fully imbibe in water at ambient room temperature. Then, 

these seeds/fruits were glued to wooden blocks by applying Super-Glue to one side 

of the specimen. Subsequently, depending on the species, 10-20 µm sections 

(longitudinal and transverse) were cut using a microtome (LEICA RM 2135). 

Sections were stained with 1% safranin and/or 2% fast green solutions when 

necessary and observed under a light microscope (Olympus BX40) equipped with a 

digital camera (Olympus DP25) and micrographs were taken and compared. 

 

RESULTS 

 

Morphological changes in the seed coat after PY- breaking 

Wet-heat treatment caused the chalazal cap and plug to be dislodged, hence opening 

the chalaza in seeds of B. orellana and H. apenninum (Fig. 6.1A,B).  

 

The hilar slit is tightly closed in PY seeds of S. angulatus and after the open-flame 

heat treatment, it forms a concave slit-like opening (Fig. 6.1C). No other opening or 

morphological change was observed between impermeable and permeable seeds.  

 

The micropyle and hilar slit are located perpendicular to each other in the hilar end of 

the seeds of C. canadensis. After 10 sec in boiling water, a blister (pseudolens) 

formed immediately adjacent to the micropyle (Fig. 6.1D). Moreover, the micropylar 

and hilar openings widened. Unlike C. canadensis, only the pseudolens popped open 
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in B. acuminata seeds after the PY-breaking treatment (Fig. 6.1E). In C. kentuckea 

seeds, the lens split and formed a narrow slit after the wet-heat treatment (Fig. 6.1F).  

 

After the wet-heat treatments, a circular opening formed in the chalaza of A. digitata 

and G. ulmifolia, while a narrow oval-shaped opening formed in the chalaza of B. 

cordifolia (Fig. 6.1G-I).  

 

The protuberance of impermeable N. nucifera was visible as a slightly raised area in 

the fruit wall near the persistent style (figure not shown). After the heat treatment, the 

outer epidermal layer and palisade layer in the protuberance became dislodged and a 

circular gap was formed revealing the sclerenchyma cell layer and a narrow opening 

to the cavity of protuberance (Fig. 6.1J).   

 

In wet-heat treated seeds of C. americanus, the hilar slit ruptured and widened (Fig. 

6.1K). No other visible changes on the seed coat were observed. The outermost layer 

of the heart-shaped aril region of C. halicacabum consists of spongy mesophyll cells, 

whereas palisade cells form the outermost layer of the other part of the seed (Fig. 

6.1L). After wet-heat treatment, a slit was formed along the margin of the aril region 

starting at the micropyle (Fig. 6.1L). After wet-heat treatment, the hilar plug in seeds 

of K. paniculata separated from the palisade cells, thus widening the hilar rim (Fig. 

6.1M). The dry-heat treatment caused the palisade cells to crack and blisters formed 

all over the seed (Fig. 6.1N,O). However no changes were observed on the hilar 

region. The hilar slit opened in seeds of S. saponaria after the PY-break (Fig. 6.1P). 

Moreover, perpendicular splits in the palisade layer formed in the hilar region. These 

splits extended up to the sclerenchyma layer beneath the palisade layer. After the wet-
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heat treatment, a suture originated at the carpellary hilum of S. spathulatum and 

continued around the radicle side of the endocarp (Fig. 6.1Q). The suture did not form 

on the vascular bundle side of the endocarp. 

 

Dye tracking 

The time taken for entry of the dye into seeds varied among species. In H. apenninum 

and G. ulmifolia,  dye  was first observed in the chalazal opening after 30 sec (Fig. 

6.2A,B; 6.3A,B), while in  B. orellana, B. cordifolia and A. digitata,  it  was first 

observed in the chalazal opening after 1, 1 and 10 min, respectively (Fig. 6.2C-E; 

6.3C-E). In C. americanus, S. angulatus and S. saponaria, the dye entered into seeds 

via the hilar slit and was observed in adjacent tissues after 30 sec (Fig. 6.2F-H; 6.3F-

H). In fruits of S. spathulatum, the dye entered into the endocarp through the 

carpellary slit and carpellary-hilar suture and reached the embryo after 1 min (Fig. 

6.2I; 6.3I). The dye did not enter through the vascular bundle side of the endocarp. N. 

nucifera fruits imbibed very slowly and the dye was first observed in the cavity of the 

protuberance after 48 hr (Fig. 6.2J;6.3J). In C. halicacabum seeds, the dye was first 

observed in the micropylar slit after 1 min (Fig. 6.2K;6.3K). Dye entered through the 

hilar rim in wet-heat treated seeds of K. paniculata and was observed in inner tissues 

after 3 min (Fig. 6.2L;6.3L), while in dry-heat treated seeds the dye entered through 

blisters (figure not shown).  

 

During the dye tracking experiment, the pseudolens of C. canadensis swelled but was 

not dislodged (Fig. 6.2M; 6.3M). Dye was observed in the palisade cells of the 

pseudolens and in the upper portion of the hilar and micropylar palisade cells, but not 

in the pseudolens opening even after 4.5 hr (Fig. 6.2M; 6.3M). However, after 4.5 hr, 
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moisture was observed in the sclerenchyma cells under the pseudolens near the 

micropyle. Dye entered into the seeds of B. acuminata and C. kentuckea through the 

pseudolens gap and lens slit, respectively, and it was observed in these regions after 

30 sec (Fig. 6.2N,O; 6.3N,O). 

 

Blocking experiment 

Blocking the pseudolens+micropyle+hilar slit of C. canadensis completely inhibited 

the water uptake during the incubation period of 120 h, while 97% of the non-blocked 

seeds imbibed within the first 24 h (Fig. 6.4). Imbibition in seeds with the hilar 

slit+micropyle or the pseudolens+micropyle blocked was slower than it was in 

nonblocked seeds, with the former category imbibing faster (90% by 48 h) than the 

latter (10% by 48 h). The rank-order of imbibition rate was non-blocked > hilar slit 

blocked + micropyle blocked > pseudolens + micropyle blocked > pseudolens + 

micropyle + hilar slit blocked. 

 

Light microscopy 

An epidermal layer, multiple subepidemal layers, a palisade layer and three layers of 

mesophyll cells comprise the seed coat of S. angulatus (Fig. 6.5A). The embryo is 

encased by the nucellar-endosperm casing. Palisade cells have narrow lumens that 

branch near the upper and lower periclinal walls (Fig. 6.5B). The light line runs very 

close to the upper periclinal wall. Near the hilar slit, palisade cells gradually become 

shorter (Fig. 6.5C).  Furthermore, several layers of flattened subepidemal parenchyma 

cells are present near the hilar slit (Fig. 6.5D). Two bulges, each with two lobes, are 

located at the hilar end (Fig. 6.5E). These bulges are formed by loosely arranged 

thick-walled sclerenchyma cells (Fig. 6.5F). 
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The seed coat of C. canadensis consists of a palisade layer and several layers of 

sclerenchyma cells (Fig. 6.6A). Near the hilar slit, the palisade cells are slightly 

longer than those elsewhere in the seed coat. At the hilar slit, palisade cells are 

slightly shorter and curved (Fig. 6.6A,C). The light line runs through the upper one-

fourth of the palisade cells and near the hilar slit and ascends to the lower one-fourth 

of the cell. The palisade cells of the pseudolens are similar in length to those of hilar 

palisades (Fig. 6.6A,B,D). A thick layer of sclerenchyma cells is present at the hilar 

end of the seed and vascular bundles penetrate through this layer (Fig. 6.6A).  The 

sclerenchyma cells are tightly arranged on the pseudolens side and loosely arranged 

on the vascular bundle side (Fig. 6.6A,B,D).  

 

Seed coats of both A. digitata and B. cordifolia consist of an exotegmic palisade layer 

that varies little throughout the seed coat (figures not shown). However this layer is 

discontinued at the chalazal opening. Palisade cells at the margin of the chalazal 

opening are slightly shorter and more curved than those in the rest of the seed coat. 

The chalazal plug is located below the palisade layer of the chalazal region. Tightly-

packed, dark-coloured, thin-walled sclerenchyma cells of the upper portion of the 

chalazal plug fill the gap in the chalazal opening. 

 

The pericarp of N. nucifera is composed of an epidermal layer, a subepidermal 

palisade layer, a wide layer of sclerenchyma and several layers of parenchyma cells 

(Fig. 6.7A). The protuberance organ is located in the sclerenchyma layer near the 

stylar end of the fruit (Fig. 6.7B). It is outlined by modified sclerenchyma cells and 

crystalliferous cells (Fig. 6.7B-E). The cavity of the protuberance organ is formed by 
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degeneration of crystalliferous cells (Fig. 6.7B,E). Its mouth is occluded by slightly 

shorter palisade cells and elongated sclerenchyma cells (Fig. 6.7C).  Vascular bundles 

run through the paremchyma cell layer and one of them ends at the protuberance 

organ (Fig. 6.7B,F).  

 

In C. americanus, a palisade layer and several layers of crushed mesophyll cells 

located below the palisade cells comprise the seed coat (Fig. 6.8A). Palisade cells near 

the hilar slit are ~1.5 times longer than those located elsewhere in the seed coat (Fig. 

6.8B). In palisade cells away from hilum, the light line runs very close to the upper 

periclinal wall and near the hilum it gradually descends to one-third of the length of 

the cell.  

 

The seed coat of C. halicacabum is composed of a single layer of palisade cells and 

multiple layers of sclerenchyma cells (Fig. 6.9A,B). The palisade cells of the aril 

region differ from those of the micropylar region (Fig. 6.9C,D). Palisade cells of the 

aril region are irregular in size, slightly convex, lack a light line, are hyaline and have 

small lumens containing rhomboidal oxalate crystals (Fig. 6.9C). Moreover, several 

layers of parenchyma cells can be seen attached to the outer periclinal walls of the 

palisade cells of this region. The micropylar palisade cells are columnar, uniform with 

large lumens containing a brownish material and possess a light line (Fig. 6.9D). The 

sclerenchyma layer is thinner near the micropyle due to the presence of the radicle 

(Fig. 6.9E). Near the micropyle, a slightly discernible marking (rupture line) separates 

the micropylar sclerenchyma cells from hilar sclerenchyma (Fig. 6.9F). Blisters were 

observed on imbibing seeds and were formed due to rupturing of palisade cells at the 

light line (Fig. 6.9G). 
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The seed coat of K. paniculata consists of a palisade cell layer and multiple layers of 

sclerenchyma cells, except at the hilar region (Fig. 6.10A-D). The light line of the 

palisade cells runs through the outer one-third of the cell (Fig. 6.10D). The hilar-

micropylar region is closed with a hilar plug formed by sclerenchyma cells and 

mesophyll cells (Fig. 6.10A-C). A part of the plug protrudes outwards of the palisade 

layer. The plug is formed by a mass of sclerenchyma cells of which the region 

embedded in the seed coat is lined by an outer annulus of several layers of spongy 

mesophyll cells. The bottom of the plug is lined by crushed remnant cells of the 

endosperm (Fig. 6.10A). An opaque spongy mesophyll cell mass is located at the 

micropylar region, closer to the bottom of the hilar plug (Fig. 6.10B,C). A vascular 

bundle runs through the hilar plug and continues beneath the sclerenchyma layer, 

diverging from the micropylar side.  Blisters on the seed coat were observed in dry-

heat treated seeds (Fig. 6.10E,F). Microtome sections through these blisters showed 

that they are formed at the light line of the palisade layers due to the formation of 

cracks (Fig. 10E); these cracks continued to form ruptured areas in the palisade cells 

(Fig. 6.10F). 

 

The seed coat of S. saponaria is composed of a palisade cell layer and multiple layers 

of sclerenchyma cells (Fig 6.11A). At the hilar slit, absence of these cell layers results 

in a dome-shaped cavity (Fig. 6.11B). The palisade cells near the hilum are almost 

twice the length of those away from the hilum (Fig. 6.11B,C). They gradually become 

shorter towards the hilar slit (Fig. 6.11B). The light line of the palisade cells runs near 

the center of the cells in the hilar region but closer to the upper periclinal wall 
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elsewhere (Fig. 6.11A, B). Blisters similar to those in seeds of K. paniculata were 

observed in seeds of S. saponaria after dry heat treatment (Fig. 6.11D,E). 

 

The pericarp of S. spathulatum consists of two discernible areas: (1) The outer 

mesocarp with spongy mesophyll cells bound on the outside by a thin exocarp (not 

shown in figures) and on the inside by crystalliferous cells and (2) the inner endocarp 

with a single palisade layer that has a thick light line and a broad layer of irregularly 

oriented hyaline sclerenchyma cells (Fig. 6.8C). The inner endocarp epidermis is 

bound by radially elongated, brownish parenchyma cells (Fig. 6.8D,E). The endocarp 

discontinues at the carpellary-hilar opening. The sclerenchyma cells of the endocarp 

suture are brownish in colour. The circumlinear endocarp suture is formed by 

rupturing of palisade cells and by slightly yellowish coloured sclerenchyma cells of 

the endocarp (Fig. 6.8E).  

 

DISCUSSION 

 

In the present study, 10 new water-gaps were identified and characterized 

morphologically and anatomically in seven families and two water-gaps in Bixaceae 

and Cistaceae previously hypothesized to exist by Baskin et al (2000) were 

confirmed. Information on all water-gaps known to occur in angiosperms is 

summarized on Table 6.2. Based on the location, anatomy and morphology, there are 

24 different kinds of water-gap regions in 16 families; water-gaps in fruits of 

Bibersteiniaceae and Lauraceae remain to be characterized (Table 6.2).  New names 

were assigned to certain water-gaps that had been previously reported in the literature 

for clarity and to avoid ambiguity. Circular water-gaps with plug-like structures 
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occluding the opening were given the name ‘oculus’ (eye), circular water-gaps 

occluded by lid-like structures formed from palisade cells  ‘gap’ and narrow linear 

water-gaps ‘slit’. Jayasuriya et al (2009) characterized the water-gap regions of 

Convolvulaceae and called it the bulge gap adjacent to the micropyle, except for 

Cuscuta, in which the water-gap is the hilar slit. However, the two bulges are located 

on the opposite ends of the hilar slit. Thus they are more closely located to the hilum 

than to the micropyle and could possibly be an extension of the hilum itself. For these 

reasons, the water-gap was renamed “bulge gap adjacent to the hilum”. 

 

The lens gap acts as the water-gap in most PY species in Fabaceae. The lens and 

micropyle in this family are usually located on the opposite side of the hilar slit 

(Lersten et al., 1992). However, in the case of seeds of subfamily Caesalpinioideae 

tribe Cercideae the lens is located next to the micropyle on the same side of the hilar 

slit; thus, this structure is called the ‘pseudolens’ (Lersten et al., 1992). Based on the 

results of dye tracking and blocking experiments, it was shown that pseudolens acts as 

the water-gap in seeds of C. canadensis and B. accuminata. However, in C. 

canadensis the micropyle and hilar slit are also responsible for initial water 

imbibition. Therefore, all three structures are involved in initial water uptake. This is 

the first report on the role of pseudolens as the water-gap, thus adding a new kind of 

water-gap to the family Fabaceae. Moreover, similar to other clades in Papilinoideae 

except Genistoids s.l. (where water-gap is the hilar slit), the lens slit acts as the water-

gap in the clade Cladrastis.  

 

In the present study, three new water-gaps were identified in the subfamily 

Sapindoideae (Sapindaceae).  Three of the four kinds of water-gap regions in this 



164 
 

family are associated with the hilum, and only the water-gap of tribe Paullinieae is 

associated with the micropyle (Turner et al., 2009; Table 6.2). In seeds of K. 

paniculata, dry and wet heat treatments act differently on PY-break, causing the 

formation of two different openings in the seeds. Wet-heat dislodged the hilar plug 

allowing the seeds to imbibe water through the hilar oculus. After dry-heat treatment, 

on the other hand, blisters formed all over the seed coat, especially near the hilar 

region and they functioned as the water-gap. This indicates that water-gap formation 

can differ depending on the PY-breaking treatment. However, seeds collected in the 

spring of 2012 under the trees (possibly dispersed the previous autumn) on the 

campus of University of Kentucky had dislodged hilar plugs, indicating that hilar 

oculus acts as the water-gap under natural conditions (Gama-Arachchige, personal 

observations). The water-gap region of the K. paniculata is similar in several ways to 

the chalazal oculus of Bixaceae, Cistaceae, Malvaceae, Sarcolaenaceae and 

Sphaerosepalaceae. In seeds of all of these species, the water-gap is occluded by a 

plug-like structure formed by water impermeable sclerenchyma cells. During PY-

break, this plug is pushed slightly into the seed and forms a circular opening (oculus) 

through which the seeds imbibe water. 

 

In the family Surianaceae only the Genus Stylobasium that has been shown to contain 

a water impermeable endocarp (Baskin et al., 2006). The water-gap of Stylobasium is 

rather different from all the other water-gap regions. Unlike water-gap regions in 

other taxa, a suture (Endocarp circumlinear suture) is formed all around the endocarp 

as PY is broken.  Moreover, compared to other species the water-gap complex of 

Stylobasium is morpho-anatomically simple.  
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Ohga (1926) studied the pericarp anatomy of N. nucifera and reported a specialized 

structure known as the protuberance organ near the stylar end in the fruit. In the 

present study, dye tracking experiments confirmed that the initial imbibition of water 

takes place through the protuberance organ after the palisade cells at the mouth of the 

protuberance are dislodged. Moreover, one of the vascular bundles ends at the 

protuberance organ and thus it can be assumed that this organ may be involved in 

water flow regulation in young fruits and also during maturation drying.  

 

The hilar slits of S. angulatus and C. americanus act as water-gaps in the families 

Cucubitaceae and Rhamnaceae, respectively. Even though the water-gaps of these two 

families are morphologically similar, their anatomy shows several variations. 

Moreover, the mechanism of opening of the water-gap differs in the two species. In 

seeds of C. americanus, the hilar slit splits at the narrow ends, while in S. angulatus it 

expands with the PY-breaking treatment. 

 

The order Malvales includes six families with species whose seeds are water 

impermeable, i.e. Malvaceae, Bixaceae, Cistaceae, Sarcolaenaceae, 

Sphaerosepalaceae and Dipterocarpaceae. In the present study, the chalazal oculus 

was confirmed as the water-gap in Bixaceae and Cistaceae. However, due to the 

unavailability of seeds of Sarcolaenaceae, Sphaerosepalaceae and Dipterocarpaceae, 

water-gaps of PY species of these families could not be studied. In the family 

Malvaceae, water-gap complexes of subfamilies Bombacoideae (A. digitata) and 

Brownlowidoideae (B. cordifolia) are described for the first time as the chalazal 

oculus and chalazal cleft, respectively. Water-gaps of these subfamilies are similar to 

those previously reported in other closely related subfamilies of Malvaceae. Based on 
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the current data, there are six different kinds of water-gap regions associated with the 

chalaza, present in those six aforementioned families (Table 6.2).  

 

Water-gap complex 

Gama-Arachchige et al (2011) introduced the term ‘water-gap complex’ to describe 

the water-gap region of G. carolinianum (Geraniaceae). In general, the water-gap 

complex in all species with PY is a morpho-anatomically complex structure and is 

composed of (1) an opening formed after PY-break, (2) specialized structures that 

occlude the gap and (3) associated specialized tissues. Therefore, the term ‘water-gap 

complex’ is an appropriate term to define the whole water-gap region and the term 

‘water-gap’ is suitable when referring to the actual opening. Based on the morphology 

of the opening and the anatomy of the occluding structures, the water-gap complexes 

can be divided into three types: Type-I, Type-II and Type-III (Fig.6.12). Type-I 

water-gap complexes are the water-gaps with narrow-linear openings usually 

occluded by modified elongated palisade cells. Type-II water-gap complexes have 

circular or broad openings occluded by lid-like structures formed by the palisade cells 

and Type-III water-gap complexes are either narrow-linear or circular openings 

occluded by plug-like structures usually formed by water impermeable sclerenchyma 

cells.  

 

In some species, more than one opening is involved in the early stages of imbibition 

after PY is broken (Table 6.2). In genera such as Canna, Cercis, Geranium, 

Kosteletzkya, Rhus, Sida and Stylobasium, the water-gap along with other closely 

located structures such as micropyle, chalaza, hilum, carpellary hilar slit or carpellary 

micropyle are involved in initial water uptake. In the case of Ipomoea spp., two 
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identical water-gap openings are involved in early imbibition. Therefore water-gap 

complexes can be divided into two groups based on the number of openings involved 

in early imbibition: (1) simple water-gap complex, where only one opening is 

involved in initial water imbibition; and (2) compound water-gap complex, where two 

or more openings are involved in initial imbibition.  

 

The current study is the most recent and most detailed analysis of different water-gap 

complexes in seeds and fruits of PY/CD species. In this study, for the first time: (1) 

ten new water-gaps were morpho-anatomically characterized in seven families with 

PY/CD; and (2) a scheme was proposed for classifying water-gap complexes in 16 of 

the 18 angiosperm families known to have PY. The classification recognizes three 

basic types (I, II and III) which are further subdivided into simple and compound 

water-gap complexes based on the number of openings involved in the initial water 

uptake. Moreover, the outcomes of this study provide a basis for developing an 

identification key for different kinds of water-gap complexes in PY seeds/fruits.  



Table 6.1. Habit, life form, dormancy class, PY-breaking conditions and seed source of the study species 

Species Family Habit 
Life 
form 

Seed source
Dormanc

y class 
PY-breaking treatment

Bixa orellana Bixaceae Shrub P B and T World Seeds 
Company, Paguingan, FR 
(July, 2012) 

PY 100 oC wet for 2 min 

Helianthemum apenninum Cistaceae Shrub P B and T World Seeds 
Company, Paguingan, FR 
(July, 2012) 

PY 100 oC wet for 10 min 

Sicyos angulatus Cucubitaceae  vine SA University of Kentucky, 
Lexington, KY, USA 
(October, 2010) 

CD Open flame for 30 sec 

Cercis canadensis Fabaceae  Tree P University of Kentucky, 
Lexington, KY, USA 
(September, 2011) 

CD 100 oC wet for 10 sec 

Cladrastis kentukea Fabaceae Tree P University Kentucky,
Lexington, KY, USA (July, 
2012) 

PY 100 oC wet for 2 min 

Bauhinia acuminata Fabaceae Tree P B and T World Seeds 
Company, Paguingan, FR 
(July, 2012) 

PY 100 oC wet for 30 sec 
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Table 6.1 (continued) 

Adansonia  digitata Malvaceae Tree P Whatcom Seed Company, OR, 
USA (May, 2012)         

PY 100 oC wet for 2 min 

Berrya cordifolia Malvaceae  Tree P Kenting, Pingtung County, 
TW (December, 2007) 

PY 100 oC wet for 2 min 

Guazuma ulmifolia Malvaceae Shrub/ 

tree 

P Trade Winds Fruit Company, 
CA, USA (August, 2012) 

PY 100 oC wet for 1 min 

Nelumbo nucifera Nelumbonaceae Aquatic 
herb 

P Taipei Botanical Garden, 
Taipei, TW (October, 2011) ; 
XTBG, Yunnan Province, CN 
(April, 2012) 

PY 100 oC wet for 5 min and 

dry 40 oC for 24 h (10 
cycles) 

Ceanothus americanus Rhamnaceae  Shrub P Pairie Moon Nursery, MN, 
USA (April, 2010) 

CD 100 oC wet for 1 min 

Cardiospermum 
halicacabum 

Sapindaceae  Vine A Montgomery County, TN, 
USA (October, 2000) 

PY 60 oC wet for 7 days 

Koelreuteria paniculata Sapindaceae  Tree P University of Kentucky, 
Lexington, KY, USA 
(October, 2011) 

CD 60 oC wet for 7 days 

Sapindus saponaria Sapindaceae  Tree P University of Hawaii, HI, USA 
(July, 2010) 

PY 100 oC wet for 20 min 
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Table 6.1 (continued) 

Stylobasium spathulatum Surianaceae Shrub P Kalabari, WA, AUS (2002) PY 100 oC wet for 5 min 

A, annual, P, perennial; SA, summer annual 

CD, Combinational Dormancy; PY, Physical Dormancy 
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Table 6. 2. Water-gaps and secondary opening(s) involved in early imbibition of seeds or fruits with physical or combinational dormancy 
in 18 angiosperm families. 

Taxa Species Water-gap 
Secondary 
opening(s) 

Reference 

1 Anacardiaceae 

 Subfam. Anacardioideae 

    Tribe. Rhoeae Rhus  glabra Carpellary blister 
gap1 

Carpellary 
micropyle 

Li et al., 1999 

2 Bixaceae Bixa orellana Chalazal 
oculus§‡2 

Nandi, 1998

3 Biebersteiniaceae Biebersteinia heterostemon ?

4 Cannaceae Canna indica Gap adjacent to 
hilum3 

Hilum and 
micropyle 

Graven et al., 1997 

5 Cistaceae Helianthemum apenninum Chalazal 
oculus§‡4 

Nandi, 1998

6 Convovulaceae 

  Clade Convolvuloideae   Ipomoea lacunosa Bulge gap  
adjacent to hilum5

Jayasuriya et al., 2007 
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Table 6.2 (continued) 

  Clade Dicranostyloideae Jacquemontia ovalifolia Bulge gap  
adjacent to hilum5

Jayasuriya et al., 2009 

    Tribe 
Cardiochalamyeae 

Cardiochlamys 
madagascariensis 

Bulge gap  
adjacent to hilum5

Jayasuriya et al., 2009 

    Tribe Cuscuteae Cuscuta australis Hilar slit 6 Jayasuriya et al., 2008b 

7 Cucurbitaceae 

 Subfam. Cucurbitoideae  

  Tribe  Sicyeae:  

      Subtribe Sicyinae Sicyos angulatus Hilar slit7 This study

8 Dipterocarpaceae 

 Subfam. Monotoideae Monotes kerstingii Chalazal oculus§4 Nandi, 1998

  Subfam. Pakaraimoideae Pakaraimaea dipterocarpacea Chalazal oculus§4 Nandi, 1998

9 Fabaceae 

  Subfam. 
Caesalpinioideae  

    Tribe Cercideae Cercis canadensis Pseudolens  gap8 Micropyle and hilar 
slit 

This study 

Table 6.2 (continued) 
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Bauhinia acuminata Pseudolens gap9 This study

    Tribe.  Cassieae 

      Subtribe Dialiinae Dialium guianesis Lens  gap§10 Lersten et al., 1992 

      Subtribe Cassiinae Senna macranthera Lens gap10 De Paula et al., 2012 

    Tribe  Detarieae s.l. Sindora supa Lens gap§10 Lersten et al., 1992 

    Tribe Caesalpinieae Gleditsia triacanthos Lens gap10 Geneve, 2009

 Subfam.  Mimosoideae 

    Tribe  Acacieae Acacia kempeana Lens gap10 Hanna, 1984

    Tribe  Mimoseae Leucaena leucocephala Lens gap10 Serrato-Valenti et al., 
1995 

    Tribe Ingeae Albizia lophantha Lens gap10 Dell, 1980

 Subfam. Papilinoideae 

  Clade Cladrastis  Cladrastis kentukea Lens slit11 This study

  Clade Genistoids s.l. Sophora alopecuroides Hilar slit12 Lens  slit Hu et al., 2009 

  Clade Dalbergioids s.l. Stylosanthes hamata Lens  slit11 Mott, 1979

Table 6.2 (continued) 
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  Clade Millettioids s.l. Derris scandens Lens  slit11 Jayasuriya et al., 2012 

  Clade Robinioids Robinia pseudoacacia Lens  slit11 Karaki et al., 2011 

  Clade IRLC Trifolium subterraneum Lens  slit11 Hagon and Ballard, 1970 

  Clade Mirbelioid Daviesia alata Lens  slit11 Morrison et al., 1998 

10 Geraniaceae Geranium carolinianum Hinged valve 
gap13 

Micropyle Gama-Arachchige et al., 
2010 

11 Lauraceae Cassytha  pubescens ?

12 Malvaceae 

 Subfam. Bombacoideae Adansonia digitata Chalazal oculus14 This study

 Subfam. Malvoideae 

     Tribe Gossypieae Gossypium hirsutum Chalazal oculus14 Christiansen and Moore, 
1959 

     Tribe Hibisceae Kosteletzkya virginica Chalazal slit 15 Chalazal blister gap Poljakoff-Mayber et al., 
1994 

     Tribe Malveae Sida spinosa Chalazal blister 
gap16 

Chalazal cleft Egley & Paul,1981 

 Subfam. Tilioideae Tilia  platyphyllos Chalazal 
oculus§14 

Nandi, 1998

Table 6.2 (continued) 



175 

  Subfam. 
Brownlowioideae 

Berrya cordifolia Chalazal slit17 This study

 Subfam. Grewioideae Apeiba tibourbou Chalazal 
oculus§14 

Daws et al., 2006 

  Subfam. Bythnerioideae Guazama ulmifolia Chalazal oculus14 This study

13 Nelumbonaceae Nelumbo nucifera Protuberance 
organ18 

This study

14 Rhamnaceae 

  Clade Ziziphoid Ceanothus americanus Hilar slit19 This study

15 Sapindaceae 

 Subfam. Dodonaeoideae 

    Tribe Dodonaeeae Dodonaea  viscosa Gap adjacent to  
hilum20 

Turner et al., 2009 

 Subfam. Sapindoideae 

    Tribe Koelreuterieae Koelreuteria paniculata Hilar oculus21 micropyle This study 

    Tribe Sapindeae Sapindus saponaria Hilar slit22 This study

    Tribe Paullinieae Cardiiospermum halicacabum Micropylar slit23 This study

Table 6.2 (continued) 

16 Sarcolaenaceae Leptolaena pauciflora Chalazal oculus§4 Nandi, 1998
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17 Sphaerosepalaceae Dialyceras parvifolium Chalazal oculus§2 Horn, 2004

18 Surianaceae Stylobasium spathulatum Circumlinear 
endocarp suture24 

Carpellary  hilar  
slit 

This study 

Same superscript number on each water-gap indicates similar water-gap types 
§ Water-gaps  inferred based on seed coat anatomy
‡ Inferred water-gaps  confirmed by dye tracking in this study 
 Inverted-repeat-lacking clade 
 Seeds of Helianthemum apenninum were investigated in the present study and   Helianthemum nummularium  in the study by Nandi 
The classification of  families into  subfamilies, clades, tribes and subtribes  is based on  Alverson et al (1999); Nandi (1998); Yi  et al 
(2004); Wojciechowski  et al (2004); Richardson  et al (2004); Harrington  et al  (2005); APG III (2009); Jayasuriya  et al  (2009). 
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Figure 6.1.  Scanning electron micrographs of water-gap regions of non-dormant (heat 
treated) seeds or fruits: (A) Chalazal region of  Bixa orellana without outer permeable 
cell layers; (B) Chalazal region of seeds of Helianthemum apenninum without outer 
permeable cell layers; (C) Hilar region of Sicyos angulatus; (D) Hilar region of Cercis 
canadensis; (E) Pseudolens (open) of Bauhinia acuminata; (F) Lens (open) of 
Cladrastis kentuckea; (G) Chalazal region of Adansonia digitata without outer 
permeable cell layers; (H) Chalazal region of Guazuma ulmifolia without outer 
permeable cell layers; (I) Chalazal region of Berrya cordifolia without outer 
permeable cell layers; (J) Protuberance (open) of fruit of Nelumbo nucifera without 
outer permeable cell layers; (K) Hilar region of Ceanothus americanus; (L) 
Micropylar region of Cardiospermum halicacabum; (M) Hilar region of wet-heat 
treated Koelreuteria paniculata; (N) Hilar region of dry-heat treated Koelreuteria 
paniculata; (O) Seed coat away from the hilar region of dry-heat treated Koelreuteria 
paniculata; (P) Hilar region of Sapindus saponaria; (Q) Endocarp circumlinear suture 
of Stylobasium spathulatum without outer permeable meso and endocarp cell layers. 
Ar, aril; Bg, bulges of the hilar region; Bl, blisters formed in the palisade layer; Cho, 
chalazal oculus; Chp, chalazal plug; Chs, chalazal slit; Crh, carpellary hilar slit; Crm, 
crystalline cells of the mesocarp; Ecs, endocarp circumlinear suture; Ep, epidermal 
cell layers; Hc, hilar cracks; Hp, hilar plug; Hs, hilar slit, Hsr, ruptured hilar region; 
Ls, Lens slit; Mi, micropyle; Ms, micropylar slit; Pl, pseudolens; Plg, pseudolens gap; 
Pm, mouth of protuberence; Pr, protuberence gap. 
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Figure 6.2. Light micrographs of longitudinal sections of water-gap regions of seeds 
or fruits imbibed in acid fuchsin/methylene blue for different periods of time: (A), 
(B), (C), (D) and (E) chalazal region of Helianthemum apenninum , Guazuma 
ulmifolia, Bixa orellana, Berrya cordifolia and Adansonia digitata, respectively; (F), 
(G) and (H) Hilar region of Ceanothus americanus, Sicyos angulatus and Sapindus 
saponaria, respectively; (I) Carpellary hilar region of the endocarp of Stylobasium 
spathulatum; (J) Protuberance region of fruit of Nelumbo nucifera; (K) Aril-
micropylar region of Cardiospermum halicacabum; (L) Hilar region of Koelreuteria 
paniculata; (M) and (N) Hilar region of Cercis canadensis and Bauhinia acuminata; 
(O) Hilar-lens region of Cladrastis kentuckea. Ar. Aril; Bg, Bulges of the hilar region; 
Cho, chalazal oculus; Chp, chalazal plug; Chs, chalazal slit; Crh, carpellary hilar slit; 
Crm, crystalline cells of the mesocarp; Dy, dye; Em, embryo; En, endosperm; Ep, 
epidermal cell layers; Hc, Hilar cracks; Hp, hilar plug; Hs, hilar slit; L, lens; ll, light 
line; Mi, micropyle; Pa, palisade cells; Plg, pseudolens gap; Ra, radicle; Sc, 
sclerenchyma; Sy, style; Vb, vascular bundle. Time given in each figure is the 
duration of imbibition in the dye.  
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Figure 6.3. Light micrographs of the surface view of water-gap regions of seeds or 
fruits imbibed in acid fuchsin/methylene blue for different periods of time: (A) and 
(B) chalazal regions of Helianthemum apenninum and Guazuma ulmifolia, 
respectively, with outer permeable layers removed to expose the chalaza; (C), (D) and 
(E) chalazal regions of Bixa orellana, Berrya cordifolia and Adansonia digitata, 
respectively of which the outer permeable and impermeable palisade layers removed 
to expose chalazal plug; (F), (G) and (H) Hilar regions of Ceanothus americanus, 
Sicyos angulatus and Sapindus saponaria, respectively; (I) Carpellary hilar region of 
the endocarp of Stylobasium spathulatum; (J) Protuberance region of fruit of Nelumbo 
nucifera; (K) Aril-micropylar region of Cardiospermum halicacabum, impermeable 
palisade layer removed to expose radicle; (L) Hilar region of Koelreuteria paniculata; 
(M) and (N) Hilar region of Cercis Canadensis and Bauhinia acuminata; (O) Hilar-
lens region of Cladrastis kentuckea. Ar. Aril; Bg, Bulges of hilar region; Cho, 
chalazal oculus; Chp, chalazal plug; Chs, chalazal slit; Crh, carpellary hilar slit; Crm, 
crystalline cells of the mesocarp; Dy, dye; Ep, epidermal cell layers; Hc, Hilar cracks; 
Hp, hilar plug; Hs, hilar slit; L, lens; ll, light line; Mi, micropyle; Pa, palisade cells; 
Plg, pseudolens gap; Ra, radicle. Time mentioned in each figure is the duration of 
imbibition in the dye.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4. Percentages (mean± s.e.) of Cercis canadensis seeds imbibed  during 120 
hr of incubation at ambient room temperature with hilar slit+micropyle blocked, 
pseudolens+micropyle blocked, pseudolens+micropyle+hilar slit blocked and no 
structures blocked. Different letters indicate significant differences between 
treatments (P<0.05) 
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Figure 6.5. Longitudinal sections of  hilar and non-hilar regions of seed coat of Sicyos 
angulatus: (A) Seed coat of non-hilar region; (B) Close-up of palisade cells of seed 
coat; (C) Hilar region; (D) Close-up of hilar region (one side); (E) Seed coat of bulges 
adjacent to hilar region; (F) Close-up of sclerenchyma cells of bulge. Em, Embryo; 
Ep, epidermal mesophyll cells; Hs, hilar slit; ll, light line; Lu, lumen of palisade cell; 
m1, m2 and m3, mesophyll layers of seed coat; Pa, palisade cells; Sc, sclerenchyma; 
Sub, subepidermal mesophyll cells; Sum, multiple layers of subepidermal mesophyll 
cells; Sw, palisade cell wall. 
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Figure 6.6. Longitudinal sections of hilar and non-hilar regions of seed coat of Cercis 
canadensis: (A) Hilar region; (B) Close-up of palisade and sclerenchyma cells of 
pseudolens; (C) Close-up of hilar slit; (D) Close-up of palisade and sclerenchyma 
cells of vascular bundle region. En, endosperm; Hs, hilar slit; ll, light line; Pah, 
palisade cells of hilar slit; Pap, palisade cells of pseudolens; Pav, palisade cells of the 
vascular bundle side; Scp, sclerenchyma cells of pseudolens; Scv sclerenchyma cells 
of vascular bundle side; Vb, vascular bundle.  
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Figure 6.7. Longitudinal sections of the stylar and non-stylar regions of the pericarp 
of Nelumbo nucifera: (A) pericarp of non-stylar region; (B) pericarp of stylar region 
including protuberence organ; (C) Close-up of palisade cells of protuberence mouth; 
(D) Close-up of sclerenchyma cells of wall of the protuberence organ; (E) Close-up of 
crystalliferous cells of wall of protuberence organ; (F) Close-up of vascular 
connection to protuberence organ. Ac, aerenchyma cells; Em, embryo; Ep, epidermal 
mesophyll cells; Ep*, multiple layers of epidermal mesophyll cells; Esc, elongated 
sclerenchyma cells of protuberence mouth; Ic, inner cavity of protuberence organ;  
Lc, crystalliferous cells of protuberence organ; ll, light line; M, mesophyll cells of 
endocarp; Oc, outer cavity of protuberence organ; Pa, palisade cells; Pap, palisade 
cells of pseudolens mouth; Pas, palisade cells of stylar base; Sb, base of style; Sc, 
sclerenchyma cells of pericarp; Sc* sclerenchyma cells of wall of protuberence organ; 
Stc, stylar canal; Vb, vascular bundle. 
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Figure 6.8. Longitudinal sections of hilar and non-hilar regions of the seed coat of 
Ceanothus americanus and endocarp of Stylobasium spathulatum: (A) Seed coat of 
non-hilar region of C. americanus; (B) Hilar region of C. americanus; (C) Endocarp 
of non-carpellary hilar region of S. spathulatum; (D) Carpellary hilar region of S. 
spathulatum; (E) Inner part of endocarp of non-carpellary hilar region of S. 
spathulatum. Crm, crystalliferous cells of mesocarp; Crh, carpellary hilar slit; Eip, 
epidermal cells of inner wall of endocarp: En, endosperm; Hpa, hilar palisade cells, 
Hs, hilar slit; ll, light line; Mms, multiple layers of mesophyll cells of seeds coat; Pa, 
palisade cells; Sc, sclerenchyma; Sc*, yellowish sclerenchyma cells of endocarp. 
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Figure 6.9. Longitudinal sections of the micropylar and non- micropylar regions of 
seed coat of Cardiospermum halicacabum: (A) Seed coat of micropylar region; (B) 
Seed coat of aril region; (C) Close-up of seed coat of aril region; (D) Close-up of seed 
coat of micropylar region; (E) Seed coat of micropylar region; (F) Close-up of 
micropylar region; (G) Seed coat of imbibing seeds with blisters. Bl, blisters; Cs, 
crystals; Em, epidermal mesophylls; ll, light line; Mi, micropyle;  PaA, palisade cells 
of aril region; PaM, palisade cells of micropylar region; Sc, sclerenchyma. 
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Figure 6.10. Longitudinal sections of hilar and non-hilar regions of seed coat of 
Koelreuteria paniculata: (A) Hilar region; (B) Close-up of micropylar side of hilar 
region; (C) Close-up of vascular bundle side of hilar region; (D) Seed coat (dry heat-
treated) of non-hilar region without blisters; (E) Initial stage of blister formation of 
palisade cells of seed coat (dry heat-treated) of non-hilar region; (F) Seed coat (dry 
heat-treated) of the non-hilar region with blisters. Bl, blisters; Cr, cracks of palisade 
cells at light line; En, endosperm; Hp, hilar plug; ll, light line; Mi, micropyle;  Pa, 
palisade cells; Sc, sclerenchyma; Sp, spongy mesophyll cells; Sp*, spongy mesophyll 
cell mass of hilar plug; Vb, vascular bundle. 
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Figure 6.11. Longitudinal sections of hilar and non-hilar regions of  the seed coat of 
Sapindus saponaria: (A) Seed coat of non-hilar region; (B) Hilar region; (C) Palisade 
cells of hilar region; (D) Initial stage of blister formation of palisade cells of non-hilar 
region; (E) Seed coat of non-hilar region with blisters. Bl, blisters; Cr, cracks of 
palisade cells at light line; Hs, hilar slit; ll, light line;  Pa, palisade cells; Pa*, 
elongated palisade cells of hilar region; Sc, sclerenchyma.  
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Figure 6.12. Schematic diagrams of the three basic water-gap types. Type-I, narrow-
linear opening margined by modified palisade cells; Type-II, circular opening 
occluded by a lid-like structure formed by modified palisade cells; Type-III, narrow-
linear or circular water-gap opening margined by palisade cells and opening occluded 
by a plug like structure formed by sclerenchyma cells. 
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CHAPTER 7 

Summaries and general conclusions 

 

The results of this dissertation expand the understanding of the role of temperature in 

PY-breaking and in morphology, anatomy and development of the water-gap complex 

of the family Geraniaceae and its relation to the other water-gap complexes in 15 

other families with PY. The dissertation presents the first-ever report of (1) the 

introduction of the term water-gap complex to describe the water-gap region, (2) a 

classification system for water-gap complexes in PY seeds/fruits of 16 angiosperm 

families, (3) the water-gap complex in PY seeds of Geraniaceae and seven other 

families and (4) a thermal-time model that quantifies the thermal requirement for 

sensitivity induction in seeds of Geranium carolinianum. The summary of each 

chapters two to six and general conclusions are briefly discussed below. 

 

CHAPTER SUMMARIES 

 

Chapter 2: Identification and characterization of the water-gap in physically 

dormant seeds of Geraniaceae, with special reference to Geranium 

carolinianum L. 

 

 A detailed morpho-anatomical characterization of the water-gap region in 

Geraniaceae was carried out on seeds of G. carolinanum, and water-gap regions were 

compared in 30 species of Geraniaceae (Genera California, Erodium, Geranium, 

Hypseocharis, Monsonia and Pelargonium). Location, anatomy and morphology of 

the water-gap of seeds of G. carolinanum were characterized using free-hand and 



192 
 

microtome tissue sectioning, light microscopy, scanning electron microscopy, dye 

tracking, blocking and seed-burial experiments. After dry heat treatment, a colour 

change was observed near the micropylar region of seeds of G. carolinianum, and 

blocking of this region and dye tracking experiments confirmed the location of the 

water-gap in this region. Anatomical studies revealed that the micropylar region is 

more anatomically complex than the rest of the seed coat.  

 

Scanning electron micrographs of the micropylar region of imbibing seeds of G. 

carolinianum revealed a small circular opening connected to the micropyle. This 

opening is occluded by a lid-like structure hinged at the micropylar side, formed by 

modified palisade cells. Based on the morpho-anatomical features, the water-gap of 

G. carolinianum was given the name ‘hinged valve gap’. The water-gaps of 

California, Erodium, Monsonia and Pelargonium species were similar to that of 

Geranium, and slight variations in morphology were observed within and between 

genera. Moreover, due to the lack of enough seeds, the water-gap of Hypseocharis 

could not be identified. 

 

Chapter 3: Acquisition of physical dormancy and ontogeny of the micropyle-

water-gap complex in developing seeds of Geranium carolinianum L. 

(Geraniaceae) 

 

Seeds of G. carolinianum were studied from the ovule stage until dispersal. The 

developmental stages of acquisition of germinability, physiological maturity and PY 

were determined by seed measurement, germination and imbibition experiments using 
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intact seeds and isolated embryos of both fresh and slow-dried seeds. Ontogeny of the 

seed coat and water gap was studied using light microscopy.  

 

Developing seeds achieved germinability, physiological maturity and PY on days 9, 

14 and 20 days after pollination (DAP), respectively. The critical moisture content of 

seeds on acquisition of PY was 11 %. Slow-drying caused the stage of acquisition of 

PY to shift from 20 to 13 DAP. Greater extent of cell division and differentiation at 

the micropyle, water gap and chalaza than at the rest of the seed coat resulted in 

particular anatomical features. Various forms of palisade and subpalisade cells 

develop in these sites. Ontogeny of the micropyle and water-gap regions takes place 

simultaneously and the micropyle and water-gap cannot be considered as two separate 

entities, thus forming an anatomically complex structure. Therefore, the term ‘water-

gap complex’ was introduced to describe the water gap-region. In Geraniaceae the 

water-gap region was named the ‘micropyle-water-gap complex’.  

 

Chapter 4: Timing of physical dormancy-break in two winter annual species of 

Geraniaceae by a stepwise process 

 

The primary aims of the research reported in this chapter were to determine whether a 

temperature-controlled stepwise PY-breaking process occurs in seeds of the winter 

annuals G. carolinianum and G. dissectum and to study the roles of temperature and 

moisture in synchronization of PY-break and germination with the onset of autumn. 

Seeds of G. carolinianum and G. dissectum were stored under different temperature 

regimes to test the effect of storage temperature on PY break. The roles of 

temperature and moisture regimes in regulating PY break were investigated by 
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treatments simulating natural conditions. Greenhouse (non-heated) experiments on 

seed germination and burial experiments (outdoors) were carried out to determine the 

PY-breaking behaviour in the natural habitat. Irrespective of moisture conditions, 

sensitivity to the PY-breaking step in seeds of G. carolinianum was induced at 

temperatures 20 °C, and exposure to temperatures 20 °C made the sensitive seeds 

permeable. Sensitivity of seeds increased with time. In G. dissectum, PY break 

occurred at temperatures 20 °C in a single step under constant wet or dry conditions 

and in two steps under alternate wet–dry conditions if seeds were initially kept wet. 

 

Chapter 5: Quantitative analysis of the thermal requirements for stepwise 

physical dormancy-break in seeds of the winter annual Geranium carolinianum 

L. (Geraniaceae) 

 

A thermal time model was developed to quantify the thermal requirement for 

sensitivity induction, and a mechanism was proposed for stepwise PY-breaking in 

Geranium carolinianum. Seeds of G. carolinianum were stored under dry condition at 

different constant and alternating temperatures to induce sensitivity (step-I). 

Sensitivity induction was analyzed based on the thermal time approach using 

Gompertz function. Effect of temperature on step-II was studied by incubating 

sensitive seeds at cool temperatures. Scanning electron microscopy, penetrometer 

techniques and different humidies and temperatures were used to explain the 

mechanism of stepwise PY-break.  
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The base temperature (Tb) for sensitivity induction was 17.2 oC and constant for all 

seed fractions of the population. Thermal time for sensitivity induction during step-I 

in the PY-breaking process agreed with the three-parameter Gompertz model. Step-II 

(PY-break) did not agree with the thermal time concept. Q10 values for the rate of 

sensitivity induction and PY-break were between 2.0 - 3.5 and 0.02 - 0.1, 

respectively. The force required to separate the water-gap palisade layer from the sub-

palisade layer was significantly reduced after sensitivity induction. 

 

Chapter 6: Identification and characterization of 10 new water-gaps in seeds and 

fruits with physical dormancy and classification of water-gap complexes 

 

The primary aims of this study were to identify the water-gaps of Cucurbitaceae, 

clade Cladrastis of Fabaceae; subfamilies Bombacoideae, Brownlowioideae and 

Bythnerioideae of Malvaceae; Nelumbonaceae; subfamily Sapindoideae of 

Sapindaceae; Rhamnaceae; and Surianaceae and to classify all the known water-gap 

regions based on their morpho-anatomical features. 

 

Breaking of PY in 15 species was done by exposing seeds or fruits to wet or dry heat 

under laboratory conditions.  Identification and characterization of water-gap regions 

were done using microtome sectioning of seeds and fruits, light microscopy, scanning 

electron microscopy, dye tracking and blocking experiments. 

 

Ten new water-gap regions were identified in eight different families and two 

previously hypothesized ones were confirmed. Water-gap complexes consist of (1) an 

opening that forms after PY is broken, (2) a specialized structure that occludes the gap 
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and (3) associated specialized tissues. In some species, more than one opening is 

involved in the initial imbibition of water. 

 

GENERAL CONCLUSIONS 

 

Acquisition of PY in seeds of G. carolinianum occurs after physiological maturity and 

is triggered by maturation drying. The micropyle and water-gap region cannot be 

considered as two separate entities, and thus it is more appropriate to consider them 

together as a ‘micropyle–water-gap complex’. Dislodgment of swollen ‘hinged valve’ 

palisade cells adjacent to the micropyle caused the water gap to open in physically 

dormant seeds of G. carolinianum, and it was clear that initial water uptake takes 

place through this gap and not via the chalazal opening as previously reported. The 

water-gap complex of Geraniaceae (‘hinged valve gap’) differs from those previously 

described for other families in morphology, anatomy and location in the seed coat.  

 

Timing of seed germination with the onset of autumn can be explained by a PY-

breaking processes involving (a) two temperature-dependent steps in G. carolinianum 

and (b) one or two moisture-dependent step(s) along with the inability to germinate 

under high temperatures in G. dissectum. Geraniaceae is the third of 18 families with 

PY in which a two-step PY-breaking process has been documented. Step-I and step-II 

in PY-breaking of G. carolinianum are controlled by chemical and physical processes, 

respectively. This study indicates the feasibility of applying the developed thermal 

time model to predict or manipulate sensitivity induction in seeds with two-step PY-

breaking processes. The model is the first and most detailed one yet developed for 

sensitivity induction in PY-break. Moreover, a mechanism was proposed for PY-
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break in seeds of G. carolinianum, based on differential thermal contraction of the 

palisade layer in the water-gap region.  

 

Based on the morpho-anatomical features, three basic water-gap complexes (types I, 

II and III) were identified in species with PY in 16 families.  Depending on the 

number of openings involved in initial imbibition, the water-gap complexes were 

subdivided as simple and compound. The proposed classification system enables 

understanding of the relationships between the water-gap complexes of taxonomically 

unrelated species with PY.  
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