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ABSTRACT OF DISSERTATION

MICROPHONE ARRAY OPTIMIZATION IN IMMERSIVE ENVIRONMENTS 

The complex relationship between array gain patterns and microphone distributions limits 
the application of traditional optimization algorithms on irregular arrays,  which show 
enhanced  beamforming  performance  for  human  speech  capture  in  immersive 
environments.  This  work  analyzes  the  relationship  between  irregular  microphone 
geometries and spatial  filtering performance with statistical  methods.  Novel geometry 
descriptors are developed to capture the properties of irregular microphone distributions 
showing their impact on array performance. General guidelines and optimization methods 
for  regular  and  irregular  array  design  are  proposed  in  immersive  (near-field) 
environments  to  obtain  superior  beamforming  ability  for  speech  applications. 
Optimization  times  are  greatly  reduced  through  the  objective  function  rules using 
performance-based geometric descriptions of microphone distributions that circumvent 
direct  array  gain  computations  over  the  space  of  interest.  In  addition,  probabilistic 
descriptions  of  acoustic  scenes  are  introduced  to  incorporate  various  levels  of  prior 
knowledge  for  the  source  distribution.  To  verify  the  effectiveness  of  the  proposed 
optimization methods,  simulated gain  patterns  and real  SNR results  of  the optimized 
arrays are compared to corresponding traditional regular arrays and arrays obtained from 
direct  exhaustive  searching  methods.  Results  show large  SNR enhancements  for  the 
optimized arrays over arbitrary randomly generated arrays and regular arrays, especially 
at  low microphone densities.  The  rapid  convergence  and  acceptable processing times 
observed during the  experiments  establish the  feasibility  of  proposed  optimization 
methods for array geometry design in immersive environments where rapid deployment 
is required with limited knowledge of the acoustic scene, such as in mobile platforms and 
audio surveillance applications. 
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Chapter 1    Introduction

1.1    Microphone Array Signal Processing 

Microphone arrays use spatial diversity of element positions to capture acoustic signals in 

higher quality and reduce degradation brought on by reverberation and noise. Inspired by 

traditional radar and sonar technology, as early as 1970's microphone arrays have been 

involved in the research of audio signal processing to capture speech signals, and then 

achieved  significant  performance  improvement  by  applying  digital  signal  processing 

technology in 1990's. Nowadays, microphone arrays have been widely applied in many 

applications,  such as  speech enhancement, talker  tracking,  teleconference,  multi-party 

telecommunication, hands-free human-machine interfaces, acoustic surveillance systems, 

and computer games [1, 2]. 

   The main  objective of microphone array processing is  to use the temporal-spatial-

frequency information  captured  by dispersed  microphones  to  extract  interested  signal 

components from interferences, and estimate relevant acoustic parameters [2]. Depending 

on applications, performance of array is usually assessed by its ability to locate, track, 

and separate sound sources in the Field of View (FOV) [1].  Critical  factors affecting 

performance include acoustic environment, source spectral content, processing algorithm, 

and  microphone  geometry. The  main  focus  of previous  research  is  usually  on  the 

improvement of  algorithm to process the information available at  the output of array, 

which  contains two  aspects, estimation  of  source  parameters  and  beamforming 

technology.  Source  parameter  estimations  use  the  received  multichannel  signal  to 

estimate  the  direction,  position,  and  frequency  contents  of  single  or  multiple  sound 
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sources.  Generally,  they  can  be  divided  into  three  classes:  maximum  output  power 

beamforming  [3],  high  resolution  spectral  estimation  [4],  and  localization  based  on 

TDOA  [5,  6].  Because  the  localization  based  on  TDOA  has  less  computational 

complexity and is more applicable for real-time system, it has been widely studied and 

applied.  Other  approaches such as maximum likelihood,  linear  prediction,  Music  and 

ESPRIT are also considered as the classical spectral estimation algorithms. Beamforming 

technology  considers  spatial  filter  to  sum  weighted  signals  from  microphones,  and 

provides enhanced Signal-to-noise Ratio (SNR) in desired fields by generating distinct 

responses of array output pattern in different spatial directions or points. The common 

used  criteria  of  beamforming includes  Minimum Mean Square  Error  (MMSE),  Least 

Square  (LS),  maximum  SNR,  Linear  Constrained  Minimum  Variance  (LCMV),  and 

maximum likelihood [7, 9]. However, the actual performance of array might be  greatly 

different  from  the  theoretical  evaluation,  due  to  the  various  errors  existing  in  real 

applications,  such  as  source  location  errors,  quantization  errors  of  weight,  and  finite 

sampling errors.   One possible  solution for this  problem is  accurately estimating and 

correcting  these  errors,  while  the  other  is  applying  robust  adaptive  algorithms.  For 

example, paper [10] applies diagonal loading to correct the errors of covariance matrix, 

and  paper  [11,  12]  applies  eigenspace  and  orthogonal  projection  as  the  adaptive 

algorithm. The impact of array placement errors is also evaluated in paper [13, 14].

    Most of these approaches for microphone array signal processing are directly derived 

from radar, sonar, antenna array theories with the assumption of narrow-band, far-field, 

and  stationary data mode, which have been studied for a long period of time [15-20]. 

However,  microphone array applications  work  in  a  different  way.  For  example,  it  is 

known  that  the  far  field  analysis  is  used  to  approximate  the  wave  field  where  the 

distances from source to sensors are longer than r=2 d 2/ . (d is the array aperture, 

and  is the signal wavelength.)  For some cases requiring lower sidelobes and zero 

nulls [21], this distance limitation needs to be extended as r=10 d 2/ . If applying 8 

microphones with the inter distance as /2 for a 2000Hz acoustic signal, which is the 

most  important  frequency band for  human  understanding  of  speech  according  to  the 

Speech  Intelligibility  Index  (SII),  the  far  field  assumption  is  only applicable  for  the 

source located farther than 4.2 meters, which is not common for most applications of 
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microphone array in indoor environments. In addition, other main differences between 

microphone array problems and the traditional antenna array analyses are listed as below 

[2]:

• Speech is a broad band signal.

• The spectrum of noise and desired speech signal are usually overlapped.

• The number of microphone and the size of array are usually restricted by the room 

size. 

• High  reverberation  or  severe  multipath  effect  could  occur  in  the  acoustic 

environment. 

• Signals and propagation environments are highly non-stationary.

• The extremely wide dynamic range of human hearing and the hearing sensitivity 

for week tails require high performance of processing filter.

These differences  limit  the performance of traditional  algorithms,  which cannot  work 

well  in  real  acoustic  problems.  Therefore,  more  studies  focus  on  microphone  array 

processing in immersive environments are necessary.

    From the studies in paper [24-26], it has been demonstrated that array geometry plays 

an important role in the formulation of processing algorithms. For a fixed number of 

microphones it is the dominant factor for performance. As discussed before, in order to 

simplify the problem of estimation and directly borrow the traditional narrow-band array 

processing technologies, previous works about array geometry have largely focused on 

regular arrays in far-field. These results are not as useful for immersive geometries that 

typically  occur  for  surveillance  and  smart  room  applications.  Our  work,  therefore, 

focuses  on  the  relationship  between  microphone  distribution  properties  and  spatial 

filtering performance that is more suited for cases when the focal point is close to the 

arrays  and  the  arrays  have  irregular  placements.  Classes  of  irregular  and  regular 

geometries  for  immersive  environments  are  statistically  analyzed  to  identify  key 

geometric  characteristics  related  to  array  performance.  Then,  effective  optimization 

algorithms are proposed to optimize/design the array geometries based on the knowledge 

of acoustic environment providing superior SNR performance. 

   As  mentioned  before,  regular  arrays  (elements  arranged  under  a  regular  spacing 

constraint) have been studied for a long time, such as uniformly spaced linear, planar, and 
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circular arrays [2]. Due to the regularity of element arrangements, their geometries can be 

specified by a simple parameter set, such as aperture and number of elements or their 

spacings, which are directly related to aspects of performance [2, 27]. In general, most of 

these analyses have been done for narrow-band far-field cases where spatial aliasing is 

directly related to microphone spacing and resolution to aperture. Irregular arrays, which 

diversify  microphone  positions,  can  potentially  achieve  better  performance  as 

demonstrated in [24, 25, 28]. Instead of limited optimal range of signal frequencies for 

regular array applications, irregular arrays can result in a more consistent performance 

over a broader range of frequencies, such as those associated with speech [27]. 

   Although special arrays that deviate from simple Cartesian arrangements have been 

studied for better performance, such as spherical arrays to better capture and render sound 

fields [29, 30], and minimum redundancy arrays to achieve maximum spatial resolution 

with fixed number of microphones [31-33], they still retain certain regularity of element 

placements and are restricted by previous limitations of regular arrays. This kind of array 

configurations  mutated  from  traditional  regular  structures  will  be  generalized  and 

developed in Chapter 4 to meet the requirements of microphone array applications in 

indoor environments. Furthermore, in order to completely break the symmetry/regularity 

of microphone placements as in traditional  regular structures, which results  in severe 

sidelobe leakage on interferences, our study focuses on the arrays with totally random 

microphone distribution. We constrain the microphone geometries to a plane, but allow 

for any arrangement of elements and compare geometries with similar relationships to the 

focal point.  For example, Figure 1.1 shows 3 planar arrays with the same centroid and 

dispersion focused on the center source 0.2 meter below the array centroid. (Dispersion is 

analogous  to  aperture.)  Array gains  over  the  FOV were  computed  via  simulation  by 

moving a colored noise source of unit power with speech-like frequency distribution over 

the grid points of the FOV, and then computing the received power from the beamformed 

focal point as described in [28, 34]. The microphone positions are superimposed over 

their array gains showing the irregular array in Figure 1.1(b) having larger gains at the 

non-focal points than regular array in Figure 1.1(a), while the irregular array in Figure 

1.1(c) shows lower gains at non-focal points. These performance differences cannot be 

explained  by previous  analyses  of  regular  geometries.  Although paper  [35,  36]  have 
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introduced optimization approaches for irregular geometries by minimizing the residues 

between  desired  gain  pattern  and  actual  pattern  computed  from  each  microphone 

position, it is still not clear which geometric properties are crucial for the performance of 

the irregular arrays (such as aperture and element spacing for regular arrays). Direct and 

effective  design/optimization  methods  for  irregular  geometries  according  to  given 

environmental limitations are still lacking.  Therefore, our study will  identify the novel 

geometric descriptors with a relationship to performance that are useful for explaining the 

performance differences of irregular  arrays,  and further  develop feasible  array design 

methods without the restriction of regular placements.   

 

(a)

                                     (b)                                                              (c) 

Figure 1.1: Top view gain patterns of arrays with 16 microphones. Each array has the 

same centroid and dispersion, focused on the same point at the center. The white dots 

represent microphone positions. (a) Regular planar array. (b) Irregular array with inferior 

performance. (c) Irregular array with superior performance. 
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1.2    Beamforming

Beamforming is a spatial filtering technology originally derived from antenna arrays. It 

can modify the enhanced signal source region without physical movement of microphone 

positions by combining the received signals in a coherent manner according to the target 

positions. Generally, it contains two processes. The first is synchronization, which adds 

proper  compensating  time  delays  to  the  signals  received  by elements  to  synchronize 

captured target components and decorrelate the noise components. And the second step is 

to  weight  and  combine  the  aligned  coherent  signals  to  form  the  output  providing 

enhanced SNR  [1, 2]. Normally, the first process decides the steering direction of one 

array, and the second process controls the mainlobe width and sidelobe shape of the array 

gain pattern,  which  is  the hotspot  of  most  previous  research  to  adaptively adjust  the 

weighting coefficients based on the features of target and noise [2].   

   The effect of beamforming relates on the accuracy of sound source localization and the 

incoherent level of received signals from the target and interferences. The array geometry 

plays an important role on deciding the relevant array ability. An optimal distribution of 

microphone positions for certain acoustic scenario should provide stronger incoherence 

of  received  signals  over  all  possible  occurrences  of  source  distribution,  and  bring 

enhanced  SNR  performance  no  matter  which  beamforming  algorithm  is  applied. 

Therefore, in our work, to focus on the optimal microphone distribution, the simplest 

Delay and Sum Beamforming (DSB) technology using an inverse distance weighting is 

applied to generate the array gain pattern.   

   In order to reveal the impact of microphone distribution on beamforming performance, 

the following two sections present the formulations to compute the three dimensional 

array  gains  of  microphone  arrays  relative  to  a  focal  point.  Parametric  performance 

metrics are directly computed from these gain patterns. 

1.2.1    General Formulation of Sound Propagation and Array Capture

Consider  microphones and sound sources distributed in a three dimensional space.  Let 

u t ;r s  be the target source located at position r s , and n t ;r k be the  kth noise 
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source located at position r k . r s and r k are the position vectors denoting the x, y, 

and z coordinates. The waveform received by the p th microphone can be expressed as:  

v t ; rs , r p=u t ;r s∗h t ; r s , r p∑
k =1

K

nt ; rk∗h t ; rk , r p ,               (1)

where  h(.)  represents  the  impulse  response  of  propagation  path  from  source  to 

microphone. For a reverberant room, the impulse response can be given by:

                 h t ;r s , r p=asp0 t− sp0∑
n=1

∞

aspn t− spn ,                        (2)

where a spnt  is  the  response  related  to  the n th propagation  path  of  target  signal,

 spn is the corresponding time delay, and n=0 represents the direct path from source 

to microphone.  In  frequency domain the received signal of Eq. (1) over a finite time 

frame can now be expressed as:

V  ; rs , r p= U  ; rs Asp0  exp - j  sp0 U  ;r s∑
n=1

∞
Aspn  exp - j   spn

∑
k =1

K
N  ;r k∑

n=0

∞
Akpn  exp - j   kpn

 

,  (3)

where the hat notation expresses the Fourier transform of corresponding time domain 

quantity. 

1.2.2    The Delay and Sum Beamformer

With the purpose to suppress undesired noise terms by incoherence (the second and third 

additive terms on the right side of Eq. (3)), the beamformer time-shifts the received signal 

of each microphone according to the direct path propagation delay from the target source, 

then weight-sums these aligned signals to obtain the recovered target signal. 

   Denote the desired focal point as r i , which is ideally identical with r s but usually 

slightly dislocated due to the source localization errors. The impulse response of DSB is 

given by:
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w t ;r i , r p= Bip t ip0 ,                                             (4)

Then the recovered target signal from DSB's output is computed as:

y t ;r s , ri=∑
p=1

P

w t ;r i , r p∗v t ;r s , r p ,                                 (5)

If the exact position of target source is known, r i=r s . Eq. (5) is rewritten as: 

y t ;r s , r i=u t ;r s∗∑
p=1

P

Bip asp0 t ut ; rs∗∑
p=1

P

B ip∑
n=1

∞

a spnt ip0− spn

∑
k=1

K

n t ;r k∗∑
p=1

P

Bip∑
n=0

∞

akpnt ip0− kpn , 

(6)

where  P is  the  total  number  of  microphones. Bip is  a  scalar  representing  filter 

coefficient related to focal point r i and microphone position r p . For results in this 

dissertation the coefficient was set to the inverse distance from microphone to the focal 

point as Bip=1 /d ip , d ip=∥r i−r p∥ , which is considered as a compensation to cancel 

out the direct-path-propagation attenuation a sp0 t  . 

   It can be seen that in the recovered signal, the first term of Eq. (6) represents the desired 

signal component almost identical with the original target signal u t ;r s . The second 

and third terms represent the noise components which are expected to be canceled out by 

the incoherent time delays derived from distributed microphones. Therefore, the SNR of 

the beamforming output can be given as:

SNR r s , r i=

∣u t ;r s∗∑
p=1

P

B ipa sp0t ∣
2

∣u t ;r s∗∑
p=1

P

Bip∑
n=1

∞

aspn t ip0− spn∑
k=1

K

nt ;r k∗∑
p=1

P

Bip∑
n=0

∞

akpnt ip0− kpn∣
2

,

(7)
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where  ∣ . ∣2 denotes the expected time average of signal power.  If  the  beamforming 

algorithm is determined, the numerator of SNR expression is only related to the target 

signal power, while the denominator depending on the sums of time delays derived from 

microphone positions and the power ratio of target and noise sources (the input SNR of 

beamformer).  Therefore, the objective in selecting a optimal microphone distribution can 

be stated as increasing the incoherent level of the time delays of microphone signals to 

minimize  the  sum of  the  noise  terms  and  provide  enhanced SNR performance.  This 

optimization criterion of array geometry can be expressed as: 

G opt= argmax
G ∈mic space

〈 E
rs∈

target
space

[SNR  rs , r i ,G ] 〉
,                                 (8)

where G is  the set  of  P microphone positions representing a particular  geometry. 

E[.] denotes the probabilistic average of SNRs over all target sources with localization 

errors, given as [1]:

E
r s∈

target
space

[SNRr s , ri , G]= ∫
rs∈ target space

{∫ SNR r s , r i ,G , p r i |r sd ri} p r sd rs ,   (9)

where p r s are the probability density functions representing interested target region. 

And  p r i | rs are the probability density functions for dislocating focal point at r i  

when the actual  interested source located at r s . This criterion will be applied later in 

this dissertation for our works of array optimization, which usually set the goal to find 

microphone geometries maximizing beamformer SNR for given distribution of target and 

specified acoustic scenes. 

1.2.3    Generating and measuring 3D Beampatterns 

The traditional far-field analyses of array pattern only apply one dimensional parameter 

of  the  steering  angle  of  beamformer,  which  cannot  resolve  the  sound  waves  from 

collinear or rotationally symmetrical sources with respect to the array center. In order to 

analyze the beamforming behavior of microphone array in common three dimensional 

space, the three dimensional beampattern as the function of the Cartesian coordinates is 

generated and assessed.
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   Because our major concern is the array ability to capture and extract interested human 

speech  from  other  interferences,  which  is  the  common  scenario  for  the  immersive 

applications such as audio surveillance and cocktail party, the source signal is simulated 

by a colored noise with a spectrum equivalent to the band importance function from SII, 

which emphasizes the frequency bands most important to human understanding of speech 

[26]. The applied SII band importance function is shown in Figure 1.2.

Figure 1.2: SII band importance spectrum 

   The 3D beampattern of an array geometry is generated by moving a sound source with 

constant power over all spatial points in FOV, while the focal point is fixed at the target. 

The DSB output power is computed and normalized as the beamforming gain for the 

source at each spatial point to form the 3D beampattern. In order to ensure that no more 

than  a  3dB  change  occurred  at  adjacent  spatial  points  [26,  37],  the  resolution  of 

beampattern should be chosen smaller than 

 
grid=

0.4422 c
d f max

= 0.4422
d

min ,                                      (10)

where d is the dimension of FOV (3 for our case). f max is the highest target signal 

frequency  (or  one  that  bounds  most  of  the  relevant  energy),  and  min is  the 

corresponding wavelength. In our later study of array beampattern, the size of spatial grid 

in FOV is chosen as 0.04m covering the highest peak of SII band importance spectrum as 

2000Hz. 
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   In addition, paper [26] has indicated that for generating beampattern via DSB in a small 

room,  where  sound  attenuation  through  air  can  be  neglected  according  to  the  3dB 

threshold of beamforming gain variation for the spatial grids, the operation of holding the 

focal  point  and  moving  a  sound  source  in  FOV is  equivalent  with  the  operation  of 

holding  the  sound  source  and  moving  the  focal  point  in  FOV.  Because  the  second 

operation avoids repeating the simulation of signal propagation from each source, which 

is very time consuming, it is the actual operation applied in our experiments to generate 

the beampattern for a specified array geometry. 

   In order to visually inspect the beamfield of one microphone array, paper [26] provides 

methods to visualize the three dimensional beampattern in a Cartesian coordinate system 

by applying intensity-dependent transparency on the volumetric plot. A Matlab GUI is 

developed based on these methods giving the audiences a direct view and corresponding 

measures about whether this array geometry have superior beamforming ability for the 

specified target space, as shown in Figure 1.3.

Figure 1.3: Matlab GUI of volumetric beampattern plot through DSB
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  Two  metrics  are usually  applied  to  quantitatively  assess  the  array beamforming 

performance  based  on  the  spatial  gain  pattern  of  DSB:  Mainlobe  Width  (MLW) 

associated with resolution, and Mainlobe-to-peak-sidelobe Ratio (MPSR) associated with 

noise suppression ability [34]. In our works, the size of mainlobe is characterized by the 

dimensions of the surface consisting of spatial points with gains 3 dB below that at the 

focal point (maximum gain). Let xδ, yδ, and zδ denote the projections of the 3dB mainlobe 

contour onto the x, y, and z axes, respectively. The MLW can then be expressed as: 

B3dB=x
2 y

2z
2 ,                                                (11)

Let S  r i , r s denote  the  power  gain  of  the  beamformer  focused  on r i with  a  unit 

power source at r s . The MPSR for a beamformer focused on r i can be expressed as:

 i=
S r i , r i

max
r s∉ML

[S  r i , r s] ,                                              (12)

where  the  maximum is  taken  over  all  possible  source  positions r s outside  the  3dB 

mainlobe region (ML) in FOV.  This metric  represents the worst case leakage. Because 

there is  normally a tradeoff between  B3dB and  i,  the common criterion to decide the 

optimal  array  beampattern  is  to  limit  the  MLW to  a  tolerable  spatial  resolution  and 

maximize the MPSR in FOV. In the later chapter of this thesis, statistical analyses of 

Monte  Carlo  simulation  results  will  be  presented  to  assess  the  impacts  of  important 

geometric properties on these performance metrics and demonstrate their relationship in 

immersive  or  near-field  applications  to  guide  the  optimization  of  microphone  array 

geometry.

1.3    Hardware Resources of Audio Lab

All our works about the distributed microphone arrays in immersive environment are 

developed at the Audio Lab in the Center for Visualization and Virtual Environments of 

the University of Kentucky. The main focus of this lab is to develop technologies for 

enhancing and extending distributed audio system applications, such as the smart room 

and audio surveillance system. The hardware resources applied in the study of geometry 
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optimization involve the audio recording system conducting the experimental evaluation, 

and  the  supercomputer  cluster  which  performing  algorithm  development,  signal 

processing, and simulations. 

   The audio recording system includes a audio cage and a audio server. As shown in 

Figure 1.4, all our experiments are performed in this 3.58x3.58x2.29m aluminum cage, 

where  the  absorbing  foam walls  can  be  mounted  on  the  cage’s  faces  to  change  the 

reverberation characteristics. Microphone capsules, composed of 6mm omnidirectional 

Panasonic  electret  condenser  microphones  (WM-61A),  can  be  attached to  the  Velcro 

panels  of  the  ceiling  or  mounted  on  the  beams  of  the  cage  to  form arbitrary  array 

geometry. The audio server can operate up to 48 channels of data from/to the distributed 

microphone/speakers. The recording sample rate is up to 96 kHz and the resolution up to 

24 bit. Other detailed information of applied equipments is shown as below. 

• Low-noise computer 

• Ubuntu Studio Linux Distribution

• 2 RME HDSP9652 Sound Cards

• 6 RME Octamic-D Microphone Preamps

• 6 RME ADI 8-DS A/D-D/A Converters

• Apogee Big Ben Reference Clock Generator

• JACK Audio Server 

   The computer cluster consists of 11 Dell Poweredge 2950 computers in a ROCKS 

Linux cluster configuration, providing 88 CPUs, 188G RAM and 1.5TB disk space. The 

installed Sun Grid Engine enables us to run parallel jobs in the cluster, which greatly 

reduces  the  time  consuming  of  Monte  Carlo  experiments  and  makes  the  real-time 

processing become possible for high quality audio signals. 
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Figure 1.4: Photos of audio cage and recording system 

1.4    Organization of Dissertation

The dissertation is organized as follows: Chapter 2 analyzes important geometric features 

of  microphone  distribution  related  to  irregular  array  beamforming  performance.  The 

relationships between proposed geometry descriptors and key performance metrics are 

concluded  as  general  guidelines  for  the  irregular  array  design  in  various  scenarios. 

Chapter 3 presents the basic principles and criteria for the microphone array optimization 

procedure. Chapters 4 generalizes and develops the array design methods based on the 

mutations of regular geometry. Chapter 5 proposes novel optimization methods for the 

irregular geometry design. Finally, the conclusions and direction of further research are 

presented in Chapter 6.
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Chapter 2    Geometry Factors related 

to Beamforming Performance

It  has  been  introduced  in  Chapter  1  that  some  irregular  arrays  show  better  noise 

suppression ability than regular arrays.  Performance analysis  for arrays  with irregular 

geometries typically requires direct computation of beamforming gains over the spatial 

and frequency ranges of interest. The computation can be very time consuming and limit 

synthesis  methods  for  applications  that  require  rapid  answers,  as  in  the  case  of 

surveillance and mobile platforms. A better understanding of microphone arrangements 

and their  impact  on  performance  can  result  in  more  efficient  objective  functions  for 

optimizing array performance. This chapter, therefore, analyzes the relationship between 

irregular  microphone  geometries  and  spatial  filtering  performance  with  Monte  Carlo 

simulations. Novel geometry descriptors are developed to capture the properties of both 

regular  and  irregular  microphone  distributions  showing  their  impact  on  array 

performance.  Performance metrics are computed from three-dimensional beampatterns 

through DSB with a fixed number of microphones for irregular arrays and comparable 

regular  arrays.  Statistical  analysis  and  Multi-way  Analysis  of  Variance  (ANOVA) 

establish  relationships  between  key  performance  metrics  and  proposed  geometry 

descriptors, which can be applied as the objective functions for the optimization methods 

of  microphone  array and  provide  the  general  guideline  and  insight  for  the  irregular 

microphone cluster design.
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2.1    Problem Formulation

As discussed in section 1.2.1 and 1.2.2, the optimal array with enhanced beamforming 

SNR should  increase  the  incoherent  level  of  the  time  delays  provided  by distributed 

microphones to decorrelate the noise components. In order to further explore the noise 

suppression ability of microphone arrays on specified source distributions, the received 

signal  of  pth microphone (as  Eq.(1))  can  be decomposed as  the superposition  of  the 

signal from each source (including the target and noises) in FOV. In frequency domain, 

the received signal derived from source u t ;r s at r s is expressed as:

V  ;r s , r p= U  ; rs Asp0  exp - j   sp0 U  ;r s∑
n=1

∞
Aspn  exp - j   spn

,    (13)

where the hat notation expresses the Fourier  transform of corresponding time domain 

quantity. And u t ;r s can represent arbitrary sound source in FOV. Denote the desired 

focal point as r i and express the DSB output as:

G  ;r i , r s=∑
p=1

P

Bip
V  ;r s , r pexp j   ip ; ,                        (14)

where  P is  the  total  number  of  microphones. Bip is  a  scalar  representing  the  filter 

coefficient, which in this dissertation was set to the inverse distance from r i to r p . 

The total output power of this filtered sum is computed by:    

S  ri , rs=∫∑
p=1

P

∑
q=1

P

Bip Biq
V  ; r s , r p V * ;r s , rqexp  j   ip− iqd  ,  (15)

   In order to obtain simplified formulation that is useful for analysis and understanding 

the geometric relationship, consider only the direct paths in Eq. (13). With the assumption 

that  the  beamformer  coefficients  and  propagation  attenuation  product  factors  are 

uncorrelated with the path differentials, S  r i , rs can be rewritten as: 
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S  ri , r s=P2∫∣ U  ; rs∣
2 E [ B ip Biq

Asp  A sq
* ]

E [exp  j  sq− sp ip− iq  ]d   ,         (16)

where E[·] denotes the expected value operator over all microphone pairs generated by 

the double summation of Eq. (15), and S  r i , rs is the output power of beamformer 

targeting r i with actual sound source at r s . Therefore, considering all the sources in 

FOV, the total output power of beamformer can be obtained from the superposition of

S  ri , rs of each source. When r s=r i , S  ri , ri represents the power component 

at  beamformer  output  derived  from  the  target  source.  And S  ri , rs , r s≠r i , 

represents the power derived from the noise source.

   To investigate the beamforming performance in relation to array geometry, the time 

delays are expressed in terms of spatial distances and signal wavelengths: 

S  r i , r s=P2∫∣ U  ; r s∣
2 E[ Bip B iq

A sp  Asq
*  ]

E [ exp j 2 
d sq−d sp




d ip−d iq


 ]d  ,        (17)

where  d sp denotes the distance from sound source r s to microphone position r p , 

and d ip denotes  the  distance  from  focal  point r i to  microphone  position r p . 

Therefore,  the formulation of beamforming gain for sources in FOV is separated into 

three  parts;  the  signal  power  in  the  time  window,  the  propagation  environment  and 

beamforming algorithm, the microphone distributions which is useful for array geometry 

design.  For  arrays  with  fixed  number  of  microphones  and  constant  coefficients  of 

beamformer, S  ri , rs only  depends  on  the  average  of  exponential  terms  over  all 

microphone pairs derived from the microphone positions and source signal frequencies. 

For the case where a signal source is located at the beamformer focal point, r s=r i , the 

arguments of the exponents are 0 and the signal is enhanced by the coherent addition of 

complex exponential terms. Sources not located at the focal point, r s≠r i , will have 

reduced  power  due  to  the  incoherent  phases  of  exponential  terms.  The  objective  in 

selecting a microphone distribution is to minimize the average value of the exponential 

terms  in  Eq.  (17)  when  r s≠r i while  maximizing  the  average  when r s=r i for  all 

possible target and noise positions in the FOV. If the weights of the DSB are fixed, the 
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summations  will  always  be maximized  when  r s=r i (exponential  arguments  are  all 

zero). Therefore, a more practical optimization strategy would be stated as minimizing 

the maximum value of S  r i , rs when  r s≠r i for all r s and  r i in the FOV. The 

metric  based  on  this  notion,  MPSR,  will  be  used  in  later  simulations  to  assess 

performance. 

   Eq. (17) identifies the phase terms responsible for minimizing the power gain when

r s≠r i ,  related  to  the  source  wavelength  and  the  Differential-path-distance  (DPD) 

distribution of all (p, q) microphone pairs given by:

             p qr i , r s=d sq−d sp d ip−d iq  ,                                   (18)

where r i is the focal point of beamformer (target position), and r s is the interfering 

source position. Note that  p qr i , r s is the exponential argument in Eq. (17) without 

the wavelength scaling. 

   Ideally, if the DPDs of a given microphone geometry result in the complex exponential 

arguments distributing uniformly from − to  over all pairwise microphones, the 

expected power is zero when targeting r i . That is to say, in order to minimize gains for 

the interference/noise sources (r s≠r i) , the corresponding DPDs should be distributed 

as  widely  as  possible  relative  to  the  source  wavelength  (incoherence).  For  the  case 

beamforming at the desired source, all the phase terms in Eq. (17) will be close to zero 

(coherent), and result in a maximum power gain in the target position. Even if the sound 

source localization errors might bring some dislocation between the target source position 

and the focal point of beamformer, r s=r i rerror≈ ri , because the variance of DPDs 

derived from the localization errors  is  usually much smaller  than the wavelengths of 

significant  speech  signal  frequencies,  the  phases  of  exponential  arguments  are  still 

limited  to  a  small  range  and result  in  significant  coherent  sums.  Therefore,  Eq.  (17) 

demonstrates the impact of the DPD distribution over all microphone pairs on the array's 

ability to  enhance  target  and suppress  noise signals.  The beamforming gain for  each 

source when steering at target is related to the spread and uniformity of corresponding 

DPD distribution. The optimal microphone geometry should provide a widely spread and 

even distributed DPDs for the noise source positions to decorrelate the noise from target 
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signals. Statistics assessing the uniformity of DPD distributions are proposed in the next 

section as the novel geometric descriptors to explain the variations of array beamforming 

performances, especially for irregular arrays.

2.2    Proposed  Geometry Descriptors related to Performance

Analysis in previous section suggests a correlation between array beamforming gains and 

microphone  distributions.  This  section  proposes  several  geometric  characterizations 

applicable to irregular arrays and related to array performance. In addition, descriptors for 

regular arrays, such as the aperture size and microphone spacings, will be generalized for 

irregular array geometries.

2.2.1    Centroid Offset and Dispersion  

Derived  from  regular  array  research,  the  important  array  properties  impacting 

performance are its distance from the focal point (determining near/far field behaviors) 

and the spread of its elements (related to aperture). The array centroid offset is defined as 

the distance between array focal point r i=x i , yi , z i and the centroid of array elements 

given by [34]: 

L= x0−x i
2 y0− y i

2 z0−zi
2 ,                       (19)

where r 0=x0, y0, z0 denotes array centroid as:

r 0=x0, y0, z0= 1
P ∑

p=1

P

x p , 1
P ∑

p=1

P

y p , 1
P ∑

p=1

P

z p ,                     (20)

where P is the number of microphone and r p= x p , y p , z p denotes the position of the 

pth microphone. 

   Array dispersion, analogous to the aperture size, is a measure of average microphone 

spread about the centroid, computed by [34]:

a= 1
P ∑

p=1

P

[ x p−x0
2 y p− y0

2 z p−z 0
2 ] ,           (21)
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   Note that L and a can be applied to characterize both regular and irregular geometries, 

as shown in Figure 1.1. For regular arrays  a directly impacts resolution (MLW), and 

determines  the  microphone  spacing  in  conjunction  with  P,  which  affects  sidelobe 

behavior. The distance  L indicates whether sound sources are effectively located in the 

near field (small L for immersive application), or far field (large L),  where the terms 

small and  large  are used relative to the source wavelengths. The typical near and far 

fields derived from antenna array are shown in Figure 2.1 [38], where D represents 

array  aperture  analogous  to  dispersion  defined  in  Eq.  (21).  For  acoustic  fields  with 

microphone  arrays,  there  will  be  no  non-radiative  reactive  zone  considered.  Array 

beamforming behaviors according to microphone distributions will change greatly when 

moving from near field (Fresnel zone) to far field. In the research of this dissertation 

focusing on the broadband human speech applications, which is simulated by the colored 

noise generated by the SII band importance spectrum, L0 approximately equals to 3 

times of array dispersion. When the distances from sources to array centroid are larger 

than L0 ,  the  array takes  on  more  characteristics  of  a  far-field  application,  and  the 

impact  of  proposed geometry descriptors  on array performance changes  dramatically. 

Relative analysis will be given in Section 2.3. 

Figure 2.1: Typical antenna field regions (adapted from [38])
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2.2.2    Statistics of  Differential-path-distance   

Traditional descriptors L and a can be applied to characterize both regular and irregular 

geometries. Arrays with the same P, L and a are usually considered as the same class to 

compare the performance of regular and irregular geometries. However, as illustrated by 

the examples in Figure 1.1, these descriptors are limited in their ability to explain the 

beamforming behavior when additional degrees of freedom are allowed as in the case of 

irregular  arrays.  Therefore,  additional  descriptors  involving  DPD  distribution  for  all 

microphone pairs to points in FOV are proposed as metrics.

    From the analysis of Section 2.1, a limited DPD distribution increases the likelihood of 

unexpected  coherence  at  non-target  locations,  especially  when  DPDs are  less  than  a 

quarter wavelengths at significant signal frequencies. DPD distributions can be examined 

via histograms or characterized with various statistics. One potentially useful statistic is 

the standard deviation of the DPDs over all microphone pairs. In [39, 40] closed form 

expressions were presented for the expected value of the exponential terms in Eq. (17). 

With a normal distributed DPDs over all microphone pairs, the expected value of the 

exponential terms is given by:

E [exp j 2pq r i , r s
 ]=exp−2  r i , r s

 
2 ,              (22)

where  presents the DPD standard deviation. If the DPDs are uniformly distributed, 

the expected value becomes 

E [exp j 2pq r i , r s
 ]=sinc 12r i , rs

  ,                  (23)

In both cases the expected value of the exponential terms approaches zero for increasing

 .  When r i=r s ,  the DPDs are  zero for  all  microphone pairs  resulting a  DPD 

variance of 0. Thus, the scaling provided by the DPD exponential factor of Eq. (17) is at a 

maximum of 1, which is desired when the source and focal point are identical. Consistent 

with  previous  conclusion,  the  more  widely  spread  of  DPDs  (large  ),  the  better 

ability  of  the  array to  extract  target  signal  at r i and  decorrelate  signals  from noise 
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source at r s . Therefore, standard deviation can be  applied as an effective measure that 

describes performance of irregular arrays. For particular focal and noise source locations, 

the DPD standard deviation is defined as: 

 r i , rs= 1
P2 ∑

p=1

P

∑
q=1

P

pq ri , r s
2 ,                           (24)

   In addition, with the same standard deviation, the expected value of the exponential 

terms approaches zero for decreasing  , representing better noise suppressing ability 

for the signals in high frequency bands. Wider spread of DPDs are needed to decorrelate 

the  signal  source  with  low  frequencies,  such  as  in  the  case  of  male  voices.  In  this 

dissertation,  in  order  to  focus  on  the  impact  of  DPDs derived  from array  geometry, 

colored noise generated by SII mode is applied as the excitation of the simulations to 

compute performance metrics.

   From  Eq.  (22)  and  Eq.  (23),  different  DPD  distributions  can  also  impact  the 

incoherence level of beamforming.  Figure 2.2 provides  a real  case example of linear 

arrays. Figure 2.2(a) shows 2 linear arrays in a planar FOV with microphone positions 

denoted by O markers. Two sound sources represented by X markers are located in the 

FOV, while one source is considered as the target (focal point of beamformer) and the 

other is the noise source. Colored noise from each source is recorded separately, and the 

received  signals  of  microphones  are  normalized  by  the  average  rms  value  over  all 

channels and superimposed. The SNR is computed as the power ratio of beamformed 

signal from target source over that from noise source. The DPD histograms of both arrays 

are shown in Figure 2.2(b) and Figure 2.2(c), respectively. The beamforming SNR results 

are  provided  in  Table  2.1.  An analogous  simulation  of  the  array  recording  was  also 

performed and presented in this table. For both the real and simulated recordings it can be 

seen that although these two arrays have the same  , array 2 shows a 2 to 3 dB SNR 

improvement over array 1 for both targets due to the reason that array 2 provides a more 

uniform  DPD  distribution  over  the  source  spectrum,  thus  demonstrating  a  need  for 

another statistic related to DPD diversity. Therefore, Pielou's evenness index [41], which 

is a normalized Shannon entropy, is  introduced to numerically assess the diversity of 

DPD distribution as:
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J r i , r s=
H r i , r s

H max r i , r s
=

−∑
k=1

K

 pk ln p k

−∑
k=1

K

 1
K ln  1

K 
=

−∑
k=1

K

 pk ln p k

ln K ,         (25)

where  K is the total number of DPD bins for the histogram estimate, and  pk  is the 

percentage  of  DPDs  within  the  kth bin, H r i , r s is  the  Shannon  entropy,  and 

H max r i , rs is the maximum possible entropy for the given number of bins, which 

represents  an  ideal  uniform  distribution  of  DPDs.  This  normalization  avoids  the 

variations  from  different  ranges  of  DPD  distributions  and  different  numbers  of 

microphones. Note that, the DPD range is binned by constant intervals whose size should 

be associated with the quarter wavelengths of significant signal frequencies to result in 

reasonably smooth histograms of DPDs related to the incoherent level of phase terms of 

beamforming gain. For the results in this dissertation bin size is set to 0.1 meter, which is 

less than a quarter wavelength of the important frequency band around 800 Hz for male 

voice intelligibility [42]. 

Figure 2.2: Linear arrays with the same standard deviations of DPD distributions. O's 

represent microphones. X's represent sound sources. (a) FOV diagram. (b) Histogram of 

DPDs for array 1 with lower entropy distribution. (c) Histogram of DPDs for array 2 with 

higher entropy  distribution.  

23



Table 2.1: SNR results of linear arrays

Target at 
Source1 

Target at 
Source 2

Simulations
Array 1 7.70 dB 7.28 dB

Array 2 10.20 dB 9.11 dB

Real 
Recordings

Array 1 4.10 dB 3.52 dB

Array 2 6.33 dB 6.48 dB
  

2.2.3    Interrelations of Descriptors

Therefore, four geometry descriptors {L, a,  ,  J} are proposed to characterize both 

regular  and  irregular  microphone  distributions  and  show  their  impact  on  array 

beamforming performance.  As summarized in  Table 2.2,  these  descriptors  depend on 

various geometric aspects of the application environment. Descriptors {L, a} are related 

to microphone coordinates or beamforming focal point. They are usually applied together 

as a basis for comparing similar arrays. The descriptors {  ,  J} vary with each array 

geometry instance and also depend on the characteristics of possible target and noise 

source distributions. This dependency brings the expectation of stronger correlation with 

array performance based on different acoustic scenes. 

Table 2.2: Dependencies of geometry descriptors 

Mic 
Coordinates 

Target 
Space

Noise 
Space

L √ √

a √

 √ √ √

J √ √ √

                                      

    In addition, because {L, a} and{  , J} are both related to the microphone positions, 

they are not independent with each other. The interactions among them should also be 

studied  and  considered  when  analyzing  array  performance.  In  order  to  show a  clear 
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relationship  between DPD statistics  and  traditional  descriptors  {L,  a},  consider  array 

centroid  as  the  origin  of  coordinate  system.  Assuming  microphones  are  uniformly 

distributed  about  centroid,  the  coordinates  of  pth microphone  can  be  expressed  as 

r p= x p , y p , z p , where x p , y p , z p~U 0, a2 . The DPD for microphone pair (p, q) 

associated with target r i and noise source r s can be given as: 

 p qr i , r s=d sq−d sp d ip−d iq=∣ r s−rq ∣−∣ rs−r p ∣∣ r i−r p ∣−∣ r i−rq ∣ ,  (26)

Then,  by  applying  multi-variable  Taylor  series  expansion  about  origin  in  Cartesian 

coordinate system to approximate the distance from microphone to source point, Eq. (26) 

can be simplified as:

 pqr i , rs≈
x s

∣r s∣
−

x i

∣r i∣
x p−xq

y s

∣r s∣
−

y i

∣r i∣
 y p− yq

z s

∣r s∣
−

zi

∣r i∣
 z p− zq ,   (27)

Therefore, for a specified source pair of target and noise where r i and r s are fixed, 

DPD can be approximated by a linear function of microphone coordinates. The mean and 

standard  deviation  of  the  DPD  distribution  containing  all  microphone  pairs  can  be 

computed as

E r i , rs=
xs

∣r s∣
−

x i

∣r i∣
E x p−xq

ys

∣rs∣
−

yi

∣ri∣
 E  y p− yq

zs

∣r s∣
−

zi

∣ri∣
E  z p−zq=0

, (28)

2 r i , r s=
xs

∣rs∣
−

x i

∣r i∣


2

2 x p− xq
ys

∣r s∣
−

y i

∣r i∣


2

 2 y p− yq
z s

∣rs∣
−

z i

∣ri∣


2

2 z p− zq

, (29)

2 r i , r s=4 a21−
rs⋅r i

∣r s∣∣r i∣
=4a21−cosr s ri

  ,                       (30)

    Eq. (30) shows a general relation between array dispersion and the standard deviation 

of  DPDs,  where  the  proportion  related  to  the  angle  between target  and  noise  source 
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position vectors. Arrays with widely spread microphones have more chance to generate a 

high incoherent level between received target and noise signals  (large  ).  With the 

same array dispersion, large spread of  DPDs (large  ) results from large directivity 

difference  between  target  and  noise  positions  according  to  the  array  centroid,  while 

independent with the distances from each source to the array. This interrelationship limits 

the capability of DPD standard deviation to explain the performance variance between 

similar regular and irregular geometries classified by {L, a}. 

   Another DPD statistic  J, as the entropy of DPD diversity, shows more independence 

with a, which means increasing the spread of microphones does not necessarily enrich the 

diversity of DPD distribution or further result in better ability to suppress noise. Take the 

linear  arrays  in  Figure  2.2(a)  for  example,  which  have  different  noise  suppression 

abilities.  Figure  2.3  shows  the  variation  of  DPD statistics  when  scaling  microphone 

coordinates  to  increase  dispersion.  It  can  be  seen  that  even  with  different  array 

geometries, the  values of bad and good arrays are similar and changed together with 

the values of dispersion, which cannot reflect the difference of performance. However, J 

is  not  sensitive  to  the  change  of  array  dispersion  and  still  showing  relative  stable 

difference of DPD diversity between these two arrays, and can better explain different 

noise suppression abilities  in  this  case.  Therefore,  the entropy based statistic  J  is  not 

restricted  by the  value  of  array  dispersion,  which  are  expected  to  better  explain  the 

performance  differences  for  the  class  of  irregular  and  regular  arrays  with  similar 

traditional descriptors. 

                                     (a)                                                                     (b)  

Figure 2.3: DPD statistics with different dispersions of scaled linear arrays. Array 2 has 

superior  noise  suppression  ability.  (a)  DPD standard  deviation.  (b)  Pielou's  evenness 

index of DPD.
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   The next section presents further discussion about the impact of proposed descriptors 

on array performance related to the acoustic environment, such as field regions and the 

number of microphone. The proposed geometry descriptors are applied to characterize 

different  stochastic  array  geometries,  and  their  relationships  with  key  performance 

metrics of 3D beampattern are analyzed with Monte Carlo simulations. 

2.3    Impacts of Geometry Descriptors on Performance 

To  reveal  the  relationship  between  proposed  geometry  descriptions  and  array 

performance, experiments are performed using Monte Carlo simulations to analyze 3D 

beampatterns  by  uniformly  distributed  microphones  over  a  planar  design  space.  The 

simulation flow chart is shown in Figure 2.4. 

   

Figure 2.4: Flow chart of Monte Carlo experiments
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   The FOV is a 10x10x2 m3 room and microphone positions are randomly generated with 

a uniformly distribution on the ceiling plane. Then the microphone coordinates are shifted 

and scaled to obtain desired array centroid and dispersion. For immersive environment or 

near-field  study, array centroid values range from the center of ceiling to the edge at 1 

meter intervals along x axis, while 5 levels of dispersion are applied with each centroid. 

For each combination of centroid offset and dispersion level, 300 independent arrays are 

generated by Monte Carlo experiments. The 3D beampattern of each array is obtained by 

moving a sound source with constant power over all spatial points in FOV, while the 

focal point is fixed in the center of room. The DSB output power is computed for the 

source at each spatial point in FOV to form the 3D beampattern.  As presented in Section 

1.2.3, two  metrics  are  applied  to  assess  array  performance,  MLW  associated  with 

resolution and MPSR associated with noise suppression ability. Their relationship with 

proposed geometry descriptors is established through statistical analyses, which will be 

applied directly to guide ad hoc (not computer aided) optimal microphone placements in 

immersive environment in the Section 2.4.

   Since the main applications considered for our study involve speech (as in the case of 

surveillance in a cocktail party environment), the excitation of the arrays need to compute 

the  beampattern  and  performance  metrics  is  colored  noise  with  the  same  spectral 

distribution as the band importance function used SII. This provides a compact summary 

statistic that is relevant for application where speech intelligibility is important. Because 

the impact of each geometry descriptor also depends on microphone number, irregular 

arrays with 16, 25, 36, 49 and 64 microphones are examined with comparable regular 

arrays and logarithmic arrays. The logarithmic array consists of 3 superimposed regular 

subarrays used for octaves from 800Hz~3200Hz to generate a relative uniform frequency 

response over the important frequency bands. Statistical analyses of simulation results are 

presented in the next two sections to assess the impacts of proposed geometry descriptors 

and demonstrate their relationship with performance metrics in immersive or near-field 

applications. For comparison, these relationships in far field are also studied in the same 

manner by assess the arrays with centroid offset over 10 times of the longest important 

wavelength  of  300Hz  signal.  (The  high-pass  pre-filter  of  beamformer  to  suppress 

background noise are usually set to 300Hz).
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2.3.1    Relationship Plots

Plots from Monte Carlo simulations are presented to reveal relationships between each 

geometry  descriptor  and  performance  metrics.  Figures  2.5-2.8  present  the  geometry 

descriptors versus MLW and MPSR, where the error bars span ± one standard deviation 

about the mean. For comparison sake a regular planar array and logarithmically spaced 

array with the same geometry descriptors are also marked in the figures.

   Figure 2.5 indicates the impact of centroid offset on array performance. From Figures 

2.5(a)(b),  it  can be seen that for fixed array dispersion, increasing the centroid offset 

increases the MLW and reduces MPSR, representing degradation of array performance. 

The standard deviation of  MLW increases  with the growing of  centroid offset,  while 

±1dB variance of MPSR is observed for each centroid offset value with fixed dispersion. 

Logarithmic arrays show much larger increases in MLW than regular and irregular arrays 

because the microphone density is high near array centroid causing a longer mainlobe in 

the direction of the offset. Although better MPSR can be observed for logarithmic arrays 

with large centroid offset, it does not necessarily represent superior ability to suppress 

non-target  sources.  The  lower  sidelobe  levels  are  primarily  the  result  of  FOV being 

included in a huge mainlobe. Therefore, logarithmic array has a major limitation on target 

space, and cannot adjust well to focal points away from array centroid. Figures 2.5(c)(d) 

show variations of performance metrics along centroid offset when dispersion is fixed at 

a small value. For the centroid offset values below 2.5m, the trends of MLW and MPSR 

over centroid offset levels are as expected with more sensitivity for arrays with smaller 

dispersion (microphones closer together on average) when compared to Figures 2.5(a)(b). 

For the centroid offset values beyond 2.5m (exceeding 5 times that of the dispersion), the 

MLW becomes very large relative to the size of FOV. The apparent improvement in the 

MPSR after  this  is  artefactual  because the mainlobe dominates  the FOV pushing the 

significant sidelobes outside the FOV. The observed high MPSR values, therefore, cannot 

be associated with superior beamforming performance when the centroid offset is large 

relative  to  the  dispersion.  In  every  case  there  is  a  significant  portion  of  randomly 

generated arrays that perform better than the logarithmic and regular arrays as seen by 

their marker positions relative to the standard deviation range of the irregular arrays.
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(a)                                                                   (b)

 

(c)                                                                (d)

Figure 2.5: Centroid offset (in meters) and performance metrics with fixed dispersions, 

showing error bars at ±1 standard deviation. (a) MLW for a dispersion of 3.5. (b) MPSR 

for a dispersion of 3.5. (c) MLW for a dispersion of 0.5. (d) MPSR for a dispersion of 0.5.

   Figure 2.6 presents the impact of array dispersion for a fixed centroid at the center of 

ceiling. It can be noted that small dispersions result in better MPSR for all geometries 

(closer average spacings between microphones); however, most of the irregular arrays 

perform better than either the regular or logarithmic arrays. With the centroid offset fixed, 

when array dispersion increases in the horizontal microphone plane, the MLW decreases 

along the horizontal direction; however, the MLW along vertical direction grows. This 

phenomenon is illustrated in Figure 2.7. When moving microphones away from the array 

centroid/target, the differential distances from each microphone to target point and the 

nearby  locations  reduce,  resulting  in  higher  coherent  power  for  these  points  in  Z 
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direction, thus extending the mainlobe. The sensitivity of these variations to dispersion is 

inversely related to the centroid offset. As the centroid offset becomes large relative to the 

dispersion,  beamforming  on  a  focal  point  is  not  practical  (no  longer  an  immersive 

environment).  The  array takes  on  more  characteristics  of  a  far-field  array where  the 

vertical direction MLW is so large that one only considers the angle or look direction 

instead of a focal point. In summary, for a fixed number of microphones there is tradeoff 

between MLW and MPSR that is  dependent on the dispersion, as would be expected 

given the similarities  between dispersion and aperture.  In  addition,  by inspecting the 

standard deviation of error bars along each level of dispersion when array centroid is 

fixed,  it  can be seen that the variance of MLW increases with growing dispersion.  A 

MPSR variance of ±1~1.5 dB is observed for each dispersion level with fixed centroid. 

Therefore, additional  geometry descriptors based on the DPD distribution are expected 

to explain part of these variations of array performance. 

 

(a)                                                                             (b)

Figure 2.6: Array dispersion (in meters) and performance metrics with array centroid at 

the center of ceiling and centroid offset equal to 1, showing error bars at ±1 standard 

deviation. (a) Dispersion vs. MLW. (b) Dispersion vs. MPSR.
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Figure 2.7:  Differential distances of microphones in vertical direction of FOV

   Results in Figures 2.5 and 2.6 demonstrate the impact of geometry descriptors related to 

aperture  and  array  distance  from focal  points,  which  are  largely  consistent  with  the 

expectations.  In  all  cases  a  portion  of  the  randomly generated  irregular  arrays  were 

superior to the regular arrays. In order to resolve between classes of irregular arrays, the 

following paragraphs analyze geometry descriptors based on DPD statistics with fixed 

centroids and dispersions, and demonstrate their ability to identify classes of irregular 

geometries with similar performance properties. 

   For a fixed centroid offset and dispersion, Figure 2.8 shows a relationship between 

array geometry DPD statistics and performance. Figures 2.8(a)(b) present the results for 

the  arrays  with  similar  centroid  offset  and  dispersion  values,  while  Figures  2.8(c)(d) 

present  arrays  with  small  centroid  offset  and  large  dispersion.  And  Figures  2.8(e)(f) 

present arrays applied in far field with  large centroid offset over 10 times of the longest 

significant wavelength of 300 Hz. The results for the regular and logarithmic arrays are 

also  plotted  for  reference.  Figures  2.8(a)(b)  demonstrate  that  larger  DPD  standard 

deviations and Pielou's  evenness indices  result  in improved MPSR. These results  are 

consistent  with theoretical  analysis  indicating  that  wider  and more  evenly distributed 

DPDs create more incoherence in the phase terms of Eq. (17) and suppress noise better. 

Pielou's evenness index shows more sensitivity to the MPSR than the standard deviation, 

primarily because with a fixed dispersion, the standard deviation has limited range. Note 
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that the relative performance of logarithmic array in Figure 2.8(a) shows it with a very 

high standard deviation but not consistent with the trends of the irregular array, while for 

Pielou's index the MPSR of both the regular and logarithmic array are more consistent 

with irregular array performances. 

   When the array dispersion becomes much larger than centroid offset in Figure 2.8(c)(d), 

improvements of MPSR with increasing standard deviation or Pielou's index are not as 

dramatic. That is because arrays with large dispersion and small centroid offset typically 

generate a large DPD distribution spread (demonstrated by the increasing range of DPD 

standard  deviation  in  Figure  2.8(c))  extending  over  many wavelengths  in  the  useful 

frequency range. In these cases, Pielou's evenness index does not correlate as well with 

the  beamforming  gain  as  in  Figure  2.8(b)  because  of  the 2 modularity  of  the 

exponential argument. For a frequency of interest, the DPDs scaled by the wavelength are 

mapped to the [− ,] range by the modulo operation.  The evenness index can be 

computed after this operation for frequency specific measures related to beamforming 

gains. In addition, results of Figures 2.8(c)(d) show that almost any irregular distribution 

will perform better than the regular geometry, and approximately 50% will perform better 

than  the  logarithmic  array.  Also,  the  relative  performance  of  regular  and  logarithmic 

arrays  is  more  consistent  with  the  trends  of  the  irregular  array according  to  Pielou's 

evenness index than to standard deviation. 

   When the centroid offset becomes larger than 3 times of dispersion, the array takes on 

more characteristics of a far-field application. These cases do not fit with the primary 

focus of this analysis for immersive environments. As shown in Figure 2.8(e)(f), the DPD 

variations are limited and inappreciable over the FOV relative to the signal wavelength 

and large centroid offset  (indicated by the observed dropping range of DPD standard 

deviations and Pielou's evenness indices). Variations in the microphone distributions will 

have  little  impact  on  performance,  unlike  for  near-field  applications.  Centroid  offset 

becomes  the  dominating  factor  affecting  array  beamforming  performance,  and  the 

behavior of microphone array approaches the behavior of a single element in these far-

field cases.  

   The  results  analyzed  above demonstrate  the  impact  of  DPD distribution  on  array 

beamforming  performance.  Geometry  descriptors  based  on  the  statistics  of  DPD 
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distribution  show  a  correlation  with  array  performance  when  the  focal  points  and 

microphone distributions are typical for immersive or near-field applications. These DPD 

statistics  explained  the  variations  in  performance  when  array  centroid  offset  and 

dispersion  were  fixed.  For  a  fixed  number  of  microphones,  increases  in  dispersion 

improved resolution,  but also degraded noise suppression,  while increases in centroid 

offset degraded both of these performance metrics. However, as shown in Figure 2.8, 

with  fixed  centroid  and  dispersion,  ±  0.5~1dB variances  of  performance  metrics  are 

observed for each bin of DPD statistics. Although these variations of performance metrics 

partly result from the quantization errors of DPD statistics, other geometry parameters 

may exist that can further reduce these variations.  

    In addition, it is noted that during our simulations,  the main processing errors result 

from three sources, quantization errors of DPD statistics, missing data in some levels of 

geometry descriptors, and pseudo-randomness of source signal generator based on SII. In 

order to reduce these errors, quantization steps should be set smaller than 10% of the 

mean values of corresponding geometry descriptors. And all  data levels  with missing 

cells are removed before applying any statistical analysis.     
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 (a)                                                                        (b)

 (c)                                                                        (d)

                                     (e)                                                                      (f)

Figure 2.8: DPD statistics and performance metrics for fixed dispersions and centroids, 

showing error bars at ±1 standard deviation. Each bin of DPD statistics shown in the 
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figure contains over 10% samples (over 30 arrays) of the total experiments. (a) DPD 

standard deviation vs. MPSR for a centroid of 1 and dispersion of 1. (b) Pielou's evenness 

index vs. MPSR for a centroid of 1 and dispersion of 1. (c) DPD standard deviation vs. 

MPSR for a centroid of 1 and dispersion of 4. (d) Pielou's evenness index vs. MPSR for a 

centroid of 1 and dispersion of 4. (e) DPD standard deviation vs. MPSR for for a centroid 

of 13 and a dispersion of 3.5. (f) Pielou's evenness index vs. MPSR for a centroid of 13 

and a dispersion of 3.5.

2.3.2    Analysis of Variance

To further investigate the significance of the proposed geometry descriptors' impact on 

performance,  ANOVA  is  applied,  which  is  useful  for  investigating  the  effect  of 

independent factors on observations [43]. The performance metric variation is partitioned 

into portions attributed to the effect of independent factor (between-group variation) and 

portions attributed to random error (within-group variation). An F statistic is computed 

using the ratio between these variances and tested for significance. Tables 2.3 and 2.4 

show the  3-way ANOVA results  for  MLW and MPSR values,  respectively.  Centroid 

offset, dispersion, DPD statistics, and their interactions are considered as the independent 

factors impacting the performance metrics. By examining the results, it can be seen that 

the p values for these geometry descriptors and their interactions are all highly significant 

(all  less than 0.01) for their  impact on MLW and MPSR. In addition,  high R-Square 

values indicate that 99.7% of the variation in MLW data can be accounted for by these 

independent  factors,  so  does  82% data  of  MPSR.  Therefore,  it  is  demonstrated  that 

proposed geometry descriptors, including centroid offset, dispersion and DPD statistics, 

have strong correlations with array performance. 

   Finally, through statistical analysis and  ANOVA the relationships between proposed 
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geometry descriptors and array performance are established and demonstrated. However, 

because the number of microphone determines the number of DPDs, the impact of each 

geometry descriptor varies with the number of microphone.  In order to analyze these 

differences, data collected from Monte Carlo experiments of irregular arrays with 16, 25, 

36,  49  and  64  microphones  are  compared.  All  the  experiments  were  performed  in 

immersive environments with comparable values of centroid offset and dispersion. Table 

2.5  provides  the  R-Square  results  of  least  squares  method  by  fitting  General  Linear 

Model (GLM) of selected geometry descriptors on MPSR. It is noted that even with this 

simplest  regression  model,  over  50%  variation  of  MPSR  can  be  accounted  for  by 

GLM{L, a,  ,  J}. This percentage increases to 70% ~ 90% when applying higher 

order  fitting  functions  of  geometry  descriptors  (nonlinear  regression  models).  With 

increasing microphone number, better R-Square values are obtained. 

   By comparing the results of GLM{L, a} derived from array apertures and positions 

with GLM{L, a,  ,  J}   taking account  of DPD distributions'  impact,  at  least  10% 

improvements  of  R-Square  values  are  observed.  Especially  for  the  arrays  with 

microphone density larger than 0.5 mic/m2, the impact of {L, a}  are reduced greatly due 

to  the  increasing  possibilities  of  microphone  arrangements  with  fixed  centroid  and 

dispersion, while the DPD statistics show stronger correlation with array performance. 

Furthermore,  by  comparing  the  trends  of  R-Square  values  of  GLM{L, a,  } and 

GLM{L, a, J} with increasing microphone number, DPD standard deviation assessing the 

spread of DPD distribution shows a little stronger correlation with MPSR for arrays with 

microphone density less than 0.2 mic/m2,  while Pielou's evenness index assessing the 

diversity of DPD distribution has greater impact on MPSR for array with density larger 

than 0.2 mic/m2. The reason for this phenomenon is that low microphone density cannot 
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provide enough DPD samples to measure the entropy (Pielou's evenness index), and DPD 

standard deviation representing the average spread of DPDs about zero is more reflective 

for characteristics of the DPD distribution related to the beamforming gain.

Table 2.3: 3-way ANOVA  results of MLW

Factors F Value p value (Pr>F)

Main 

Effects

Centroid Offset 1955.98 <0.0001

Dispersion 3327.62 <0.0001

Pielou's Evenness Index 2.20 0.0031

Interactions Centroid*Dispersion 2725.46 <0.0001

Centroid*Pielou 1.63 0.0004

Dispersion*Pielou 2.20 <0.0001

R-Square 0.9967
   

Table 2.4: 3-way ANOVA results of MPSR

Factors F Value p value (Pr>F)

Main 

Effects

Centroid Offset 25.60 <0.001

Dispersion 1.99 <0.0366

Pielou's Evenness Index 26.21 <0.0001

Interactions

Centroid*Dispersion 52.55 <0.0001

Centroid*Pielou 3.83 <0.0001

Dispersion*Pielou 5.50 <0.0001

R-Square 0.8169
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Table 2.5: R-Square results for general linear models of geometry descriptors on MPSR

Number of 

Mics

Mic Density

(mic/m2)

R-Square  of 

GLM{L, a}

R-Square  of 

GLM{L, a, σ}

R-Square of 

GLM{L, a, J}

R-Square of 

GLM{L, a, σ, J}

16 0.16 41.93% 46.72 % 46.56 % 50.33%
25 0.25 53.84% 58.25 % 58.81 % 62.72%
36 0.36 60.81% 64.80 % 66.49 % 69.32%
49 0.49 68.77% 73.20 % 74.04 % 77.31%
64 0.64 63.61% 80.09 % 81.69 % 86.97%

2.4    General Guidelines for the Design of Optimal Array 

Previous analyses identified the important characteristics for irregular microphone arrays 

that  directly  related  to  beamforming  performance  for  human  speech  applications. 

Combined  with  descriptors  analogous  to  traditional  geometry  parameters  for  regular 

arrays (i.e.  array centroid and dispersion),  novel geometry descriptors involving DPD 

statistics  described  both  regular  and  irregular  arrays.  Simulations  demonstrated  that 

irregular microphone geometries typically exceed the performance of regular geometries, 

and arrays with high DPD entropy and wide DPD spread correspond to arrays with better 

noise suppression ability. These results are primarily applicable for microphone arrays in 

near-field applications, such as in immersive environments.

   The  relationships  between  geometry  descriptors  and  beamforming  performance 

developed in  previous sections can be applied to predict the array SNR performance in 

given acoustic environments, and further act as the objective functions (as in Eq. (8)) in 

the optimization procedure to search for the optimal microphone distributions. Note that 

the  results  of  this  dissertation were  based  on  Monte  Carlo  experiments  with  planar 

microphone arrays,  which are  more applicable  for  indoor  applications,  such as  audio 

surveillance  systems.  So  far,  the  DPD  statistics  do  not  have  simple  geometric 

interpretations and must be computed based on all the microphone positions and desired 

focal  points.  In  order  to  directly  generate  a  microphone  array  with  good  values  of 

proposed  geometry  descriptors  or  guide  ad  hoc microphone  placements,  this  section 
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discusses  the  methods  and  guidelines  for  the  design  of  array  pattern  with  desired 

geometry descriptors {L, a,  , J}, providing good performance in specified scenarios. 

2.4.1    Methods to Build Arrays with Desired Geometry Features

From previous analyses,  good values of geometry descriptors  {L, a,  ,  J}  result in 

enhanced  SNR  performance  in  corresponding  environment,  where  the  term  good is 

assessed based on  previous conclusions about relationship between geometry descriptors 

and performance metrics. With the knowledge of acoustic scene,  such as possible source 

distribution  or  desired  FOV,  methods  to  directly  design  a  microphone  distribution 

providing desired {L, a,  , J}  levels are needed to guide ad hoc (not computer aided) 

optimal microphone array design in immersive environment.

   As applied in the Monte Carlo simulations, different values of array centroid offset and 

dispersion can be generated by shifting and scaling microphone coordinates according to 

the origin. Since array dispersion is related to centroid,  the transfer function from array 

with centroid r 0 and dispersion a0 to array with centroid r 0 ' and dispersion a' can be 

given as:  

[ r 1 ' ,.. , r p ' ,.. , r P ' ]=
[r 1 , .. , r p ,.. , r P ]−r 0

a0

a '

r0 '
,                       (31)

where r p and r p ' are the original and transferred positions of pth microphone.

   DPD statistics have been demonstrated as the novel geometry features showing strong 

correlation  with the  noise  suppression  ability of  microphone array.  Unlike  traditional 

descriptors, {  , J} are the statistics for DPD distribution according to specified target 

and  noise  positions,  which  do not  have  simple  geometric  interpretations  and  were 

computed based on pre-generated microphone positions in the Monte Carlo experiments. 

Usually, for specified source distributions arrays with large {  , J} are discovered by 

random or  heuristic  searching  methods,  which  can  be applied  in  the  computer  aided 

optimization cases as discussed in Section 5.2. For ad hoc (not computer aided) optimal 

microphone array design,  although the interrelationship between array dispersion and 

DPD standard deviation (discussed in Section 2.2.3) can control  in some degree by 
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changing array dispersion,  direct  geometric design methods related to good values of 

entropy J are still lacking. Therefore, a novel cluster design method based on hyperbola 

curve is proposed to directly generate geometries with large values of DPD statistics. 

   The definition of DPD in Eq. (18) can be rewritten as:

  p qr i , r s=d sq−d iq−d sp−d ip ,                                     (32)

where the DPD is explained as the difference of the differential distances from each mic 

to two spatial  positions { r i , r s } in FOV. Because a hyperbola curve can be defined 

equivalently as  the locus  of  points  where the  absolute  value of  the  difference of  the 

distances to the two foci is a constant (equal to the distance between its two vertices), it 

can be applied in here to distinguish microphones with different values of d sq−d iq  . 

As shown in Figure 2.9(a), { r i , r s } are considered as the focuses. Microphones located 

on  the  same  hyperbola  curve  (marked  in  the  same  color)  have  identical  values  of 

d sq−d iq  , while microphones located inside the hyperbola curve show larger absolute 

values of differential distance. Take the light red curve for example, microphones on the 

curve  have d sq−d iq=1.5 ,  while  microphones  located  in  the  dark  red  area  have 

d sq−d iq1.5 . Therefore,  with specified { r i , r s } , in order to obtain good statistics 

of DPD distribution over all microphone pairs, some microphones should be distributed 

inside the dark red hyperbola area and some inside dark blue hyperbola area to generate 

a  set  of  DPDs with possible  largest  spread.  The  DPD values  between this  range are 

obtained by the nearby microphone pairs located in the same area, providing a smooth 

entropy. Note that there is no need to put microphones in the middle area of { r i , r s } . 

Figure 2.9(b) gives a irregular array clustered according to the hyperbola theory.  One 

target and three interferences are considered for this scene. The hyperbola areas for each 

target-noise pair are marked in dashed lines with different color. Microphones are divided 

into four clusters uniformly distributed in these areas. Simulation results demonstrated 

that this hyperbola clustered array has comparable or even better SNR performance than 

arrays picked by heuristic searching methods. And large SNR improvement is observed 

when comparing with similar regular arrays. More information of  the hyperbola cluster 

array design will be discussed in Section 5.3.1. 
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                                              (a)                                                     

(b)    
Figure  2.9:  Top  view  diagrams  of  hyperbola  theory.  Triangles  represent  target.  X's 

represent  noise  sources.  Microphones  are  marked  as  O's.  (a)  Hyperbola  areas.  (b) 

Hyperbola clustered array. 

2.4.2    Guidelines for Good Geometries in Scenarios

To summarize previous analyses about important geometry features related to superior 

performance,  general  guidelines  to  create  good microphone distributions for  common 

scenarios are presented in this section, which can be directly implemented or visualized 

by humans in the interested fields. Note that because all our conclusions are derived from 
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Monte  Carlo  experiments  with  ceiling  arrays,  there  are  several  limitations  for  the 

application of these guidelines: 

(1)   Indoor environments, such as audio surveillance systems.

(2)   Near-field applications, where array distances from the Sources of Interest (SOI) 

have comparable values (less than three times) with array apertures. (Centroid offset 

should be smaller than three times of array dispersion.)

(3)  Human speech applications, such as cocktail party.

   Three acoustic scenarios are created to represent common cases in real application, 

where an approximate rectangular/cubic room is assumed as the FOV. Guidelines for the 

optimal microphone distributions in immersive environment are provided as below.

(1)   When SOI positions/regions and major interferences are known

•   High microphone density should be clustered near the target and interference 

positions. If the interferences are located in certain regions, some microphones 

should  be  placed  to  surround  these  regions,  instead  of  distributing  over  the 

regions.  Relative  examples  of  the  optimal  irregular  geometries  are  given  in 

Figure 2.10.

•    If higher resolution is required, the spread of microphones from targets should 

be increased, and the centroid of microphone array should be close to the target 

region.  However,  the  noise  suppression  ability  will  be  degraded  with  the 

increase of dispersion. 

•   To be specified, microphones should be placed in the hyperbola areas of each 

pair of target and interference positions to generate a DPD distribution with rich 

entropy, and further improve array noise suppression ability. Relative optimal 

geometry is  given in Figure 2.9(b),  where microphones  (marked by O's)  are 

clustered inside the hyperbola areas as many as possible, according to each pair 

of target and interference in FOV (marked by triangles and X's). 
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                   (a)                                             (b)                                             (c)

Figure 2.10:  Top view gain patterns  on target  plane  of  optimal  irregular  arrays.  Red 

circles represent microphone positions. Red cross or green square is the possible noise 

space. Red triangle or yellow square is the desired target space. (a) and (b) focus on the 

center target in the room. (c) focuses on the top left corner of target space.

(2)   When SOI positions/regions are known

•   High microphone density should be clustered near the target positions/regions. 

•   If high resolution for each position in the target region is required, the spread of 

microphones should be increased, and the array centroid should be close to the 

target region. However, the noise suppression ability will be degraded with the 

increase of dispersion.  If  the target  region and microphone design space are 

parallel square planes, such as ceiling array in cocktail party, rough functions 

derived  from  statistical  analyses  can  be  given  to  compute  the  minimum 

dispersion to obtain desired 3dB resolution as:

a0=
3dB−0.7d−0.047 L0−0.784

−0.077
,                               (33)

or

 a0=
3dB0.17d 2−1.12 d−0.045 L0

30.02 L0−0.565
−0.04

,                 (34)

where a0 represents  required  minimum  array  dispersion. 3dB represents 

desired 3dB resolution (minimum distance with more than 3dB change of array 
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gains). d represents  dimension  of  target  plane. L0 represents  distance 

between target and microphone planes.

(3) When neither are known 

•   Microphones should be spread all over the FOV with an uniform distribution to 

ensure a full coverage.

•   If the FOV has an irregular shape with protruding walls, the half-blind areas 

should  have  higher  microphone  density  than  uniform distribution,  while  the 

blind areas should have lower microphone density than uniform distribution. As 

shown in Figure  2.11,  the  red  protruding  walls  block  the  direct  propagation 

paths  of  sound  wave  from/to  the  dark  blue  area.  The  optimal  irregular 

geometries generally have uniform distribution of microphones over the entire 

FOV, while with higher mic density in the triangle half-blind areas on the right 

and lower mic density in the triangle blind areas on the left.

Figure 2.11: Top view diagram of irregular FOV 

   Therefore, by following these guidelines, good microphone placements which have 

high  possibility  to  show  enhanced  beamforming  performance  in  specified  acoustic 

environments  can  be  directly  visualized  or  set  by  humans,  such  as  indoor  audio 

surveillance or  mobile platform applications where rapid deployment is required with 

limited knowledge of the acoustic scene. However, these guidelines only provide general 

instructions for the microphone placements applied in simple scenes. If more information 

of environment is known, the computer aided  heuristic searching methods can be more 
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effective  to  sort  out  the  superior  irregular  geometries,  which  require  closed-form 

objective functions derived from the relationship between important geometry features 

and performance. Relative discussion will be provided in the next section.   

2.5    Relationship  Function  of  Geometry  Descriptors  with 

Performance 

This section presents the closed-from relationship functions between important geometry 

descriptors  and  key  performance  metrics  from  statistical analyses.  They can  be 

effectively applied to predict the SNR performance based on the geometry features, and 

provide a simple and feasible solution for the optimization of microphone arrays.

2.5.1    Data Collection and Fitting Steps

As mentioned in Section 2.3, the data sets applied in the fitting procedures are derived 

from the Monte Carlo experiments by uniformly distributed microphones over a ceiling 

planar design space in a 10x10x2 m3 room. Since the main applications considered for 

our study involve speech (as in the case of surveillance in a cocktail party environment), 

the excitation of the arrays is colored noise with the same spectral distribution as the band 

importance  function  used  SII.  Arrays  with  16,  25,  36,  49  and  64  microphones  are 

examined. As immersive environment  or near-field  study,  array centroid values  range 

from the center of ceiling to the edge at 1 meter intervals along x axis, while 5 levels of 

dispersion are applied with each centroid.  For each combination of centroid offset and 

dispersion  level,  300  independent  arrays  are  generated  by Monte  Carlo  experiments, 

while the DPD statistics are computed directly from the microphone positions. The 3D 

spatial gains computed over the FOV are used to directly estimate the MLW and MPSR. 

And their  relationships  with  proposed  geometry  descriptors  are  explored  through 

nonlinear regression procedures, respectively. The details are shown as below.

Step  1:  Apply  multi-way  ANOVA to  investigate  the  significance  of  the  impact  of 

proposed  geometry  descriptors  and  their  interactions  on  each  performance 

metric, as well as  the number of microphone. Pick the significant ones as the 

independent factors applied in corresponding fitting procedure.
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Step 2:  Examine the mean plot of each independent factor vs. the performance metric to 

obtain the qualitative conclusion about the relationship function,  such as the 

general  shape  of  curve  between  each  independent  factor  and  performance 

metric, or interactions among independent factors affecting the shape of curve. 

Step 3: Apply nonlinear regression to search for the optimal transformation from each 

independent variable to dependent variable (performance matrix), based on the 

highest  R-Square value  of  the  regression  model  and  the  results  of  residual 

analysis (such as moments, skewness index, and normality plots of residuals to 

validate the assumptions of regression analysis that residuals are normal with 

constant variance over the values of dependent variable). 

Step 4: Ordered by the significance of independent variables, combine the nonlinear 

functions of each independent variable by additive and multiplicative operators, 

while the weight of each nonlinear term is expressed as the function of related 

interactions  discovered  in  step  2.  Use  the  resulting  coefficients  of  each 

nonlinear transformation in step 3 as the initial conditions of Gauss nonlinear 

regression procedure to obtain the final model by iteration.

Step 5: Determine the best model and combination stepwise, according to R-Square, p-

value, moments, and normality of integrated model residuals.    

2.5.2   Closed-form Relationship Functions     

The fitting results of closed-form relationship function for each performance metric based 

on geometry features are presented in this section. For MPSR, the mean plots in step 2 

indicate the following characteristics of  i  L , a , , J , P :

•  i  is a monotone increasing function of the number of microphone P.

•  i  is a decreasing function of centroid offset L. The slope is related to array 

dispersion a, and the parallel displacement is related to the number of microphone P. 

(Smaller a results in sharp slope, while more microphones bring higher  i .)

•  i  is a decreasing function of array dispersion  a.  The parallel displacement 

of curve is related to the number of microphone  P,  where more microphones bring 

higher  i . The slope of curve is related to DPD statistics, where Pielou's evenness 
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index J shows  greater  impact  than  DPD  standard  deviation  .  When  DPD 

statistics decrease, the value of slop decreases from near zero to negative levels. 

•  i  is  a  increasing  function  of  DPD  standard  deviation  . The  parallel 

displacement  of  curve  is  related  to  the  number  of  microphone  P,  where  more 

microphones bring higher  i .  

•   i  is a increasing function of Pielou's evenness index J. When the number of 

microphone increases, slop increases from near zero to positive levels. When array 

dispersion increases, slop decreases from positive to negative levels.  

   For 3D MLW, the characteristics of B3dB L , a , P are developed in the same manner, 

as provided below:

• B3dB  is a decreasing function of the number of microphone P. 

• B3dB  is a increasing function of centroid offset L, where the slope is related to 

array  dispersion  a  and  the  parallel  displacement  is  related  to  the  number  of 

microphone  P.  (Smaller  a results  in  sharp  slope,  while  more  microphones  bring 

smaller B3dB .)

• B3dB  is a decreasing function of array dispersion a, where the slope of curve 

is related to P and L. (Smaller P and large L result in sharp slope.) 

   The closed-form functions derived from corresponding subset data are provided in 

Table 2.6 and 2.7, which will be applied to form the objective functions of microphone 

array optimization in different application cases.
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Table 2.6: Results of nonlinear regression procedure for MPSR

Formulation R-Square Mean of 

Residuals 

Validated Applicable 

Areas

Model 1 :

 i=Exp1[ L]Cubic[a ]Cubic[ J ]
Cubic [ ]

78.35% 2.24E-8

Planar arrays with mic 

density of 0.04 ~ 4 

mic/m2. Linear arrays 

with mic density of 0.4 

~ 3.6 mic/m. 
Model 2: 

 i=Cubic[ P ]Cubic[ P ]Exp1[ L]
Cubic [ P]Cubic [a ]
Cubic [ P]Cubic []
Cubic [ P ]Cubic[ J ]

84.22% -1.73E-10

The best model for 

planar array with mic 

density of 0.16 ~ 7.84 

mic/m2. Linear arrays 

with mic density of 1.6 

~ 3 mic/m. Spherical 

ceiling  arrays with 

mic density of 0.16 ~ 

7.84 mic/m2. 
Model 3: 

 i=Cubic[ P ]Cubic[a ]Cubic [ L]
Cubic [ J ] Exp2[a]Exp2 []
Cubic[ P ]Exp1[a ]Cubic [ J ]

78.54% -1.22E-3

Planar arrays with mic 

density from 0.25 to 

0.4 mic/m2 .

Note:  The optimal  nonlinear  transformations in  step 3 are  listed as below: Cubic[x]: 

a+bx+cx^2+dx^3; Exp1[x]:  (a+bx+cx^2);   Exp2[x]:  exp(a+b/x).   The  coefficients 

{a,b,c,d} in each nonlinear base are obtained during iteration.  
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Table 2.7: Results of nonlinear regression procedure for MLW

Formulation R-

Square

Mean of 

Residuals 

Validated Applicable 

Areas

Model 1: 

B3dB=Cubic [L ]Exp1[a]

99.13% -4.87E-7 Derived from arrays with 

64 microphones. 

Model 2: 

B3dB=Cubic [a]Cubic [ P ]
Cubic [a ]Exp1[ L]

Cubic [ P ]Cubic[ L]Cubic [a ]

69.86% 2.67E-8

Applied for arrays with 

mic density smaller than 

0.5 mic/m2

Note:  The optimal  nonlinear  transformations in  step 3 are  listed as below: Cubic[x]: 

a+bx+cx^2+dx^3; Exp1[x]:  (a+bx+cx^2).  The coefficients  {a,b,c,d} in each nonlinear 

base are obtained during iteration.  

     Table 2.6 and 2.7 show the fitting results of several nonlinear models. From the R-

Square values it  can be seen that about 70% ~ 90% of the variation of performance 

metrics  can  be  explained  by these models.  Note  that  moments,  skewness  index,  and 

normality  plots  of  residues  were  checked for  every regression  model  to  validate  the 

assumptions of regression analysis (residuals are normal with constant variance over the 

values of predicted Y). These conditions were met for all the resulting models provided 

in Tables. Therefore, the proposed geometry features provide a reasonable correlation 

with array performance, and the key metrics are successfully expressed by the functions 

of proposed descriptors. Combined with the prior knowledge of acoustics scene (possible 

distributions  of  interested  target  and  major  interferences),  these  geometry-based 

performance  functions  can  be used  as  the  objective  functions  in  the  computer  aided 

optimization procedure to search for the optimal irregular arrays  with enhanced SNR 

performance. The details of relative optimization strategies involving heuristics searching 

will be proposed in Chapter 5.
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Chapter 3  Principles  of  Microphone 

Array Optimization 

3.1    Problem Formulation

The goal of microphone array optimization in our study is to find microphone geometries 

maximizing  beamformer  SNR for  given  distribution  of  target  and  specified  acoustic 

scenes.  As  analyzed  in  Section  1.2,  the  important  factors  affecting  array  SNR 

performance include microphone positions, target and noise source regions, significant 

signal frequency bands, propagation transfer functions of acoustic environment and the 

beamforming  algorithm.  Let  represents  the  3D  acoustics  space. RT ⊂  and 

RN⊂  denotes the target and noise space containing all possible target positions r i

and noise source positions r k . Note that RT and RN can be continuous or discrete 

space derived from the preknowledge of acoustic scene. Arrays with P microphones are 

distributed in  the  design  space  RM  , where  a  specified  geometry  is  represented  by 

G={ r1, .. , r p , .. , r P } .  
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Figure 3.1: Propagation environment (adapted from [44]). RM  is the microphone design 

space, including all the possible microphone positions. RT  represents the interested target 

space. RN  represents the noise space. The solid arrows represent target signal propagation 

paths. The dashed arrows represent the noise signal propagation paths. 

   Therefore,  the signals  received by the array with geometry  G  can be expressed in 

frequency domain as [44] :

V  ;G=∫r i∈RT

H  ;r i ,Gd U  ; ri ∫rk∈R N

H  ; rk ,G d N  ;r k ,  (35)

where V  ;G=[ V  ;r1 , .. , V ; r p ,.. , V  ;r P ]T is  the vector denoting signal 

received by each element of array.
H  ;r s ,G =[ H ; r s , r 1 , .. , H  ;r s , r p ,.. , H  ; r s ,r P ]T , r s∈ is the transfer 

function corresponding two spatial points in  , which is supposed to be known by the 

propagation  laws  applied  in  specified  environment. d U  ;r i , d N ; rk are  the 

target and noise signal components in frequency domain, respectively. Note that in Eq.

(35) the hat notation represents corresponding frequency domain component and the bold 

notation represents vector. If single target and uncorrelated noise sources are considered. 

Eq.(35) can be rewritten to the common used model as: 

 V  ;r i ,G = U  ;r i H  ;r i ,G  N  ;G ,                       (36)

Then the output of beamforming filter W  can be expressed as: 
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Y  ;r i ,G = W H  V  ;r i ,G 
Y ; ri ,G = W H   H  ;r i ,G  U  ;r i

W H  N  ;G  ,       (37) 

Usually, the beampattern is defined as the gain between the output and the original target 

signal as [44]:                                

 ;r i ,G = W H   H  ; r i ,G ; r i∈RT ,                           (38)

And the output of beamformer Y  ;r i ,G can be considered as the linear estimator 

of  the  original  target  signal U ; ri  ,  where  the  the  estimated  target  signal  are 

expressed as [44]: 

U E  ;r i ,G =
W H  V  ;r i ,G 
W H   H  ; ri ,G ,                              (39)

    In our study, in order to focus on the impact of microphone geometry, the beamforming 

algorithm are fixed to DSB. And all the source signals applied in the experiments are 

derived from normalized colored noise of SII model to simulate the important frequency 

bands of human speech. Combined with the analysis of Eq (7), it can be seen that the 

array gain pattern is the dominate factor determining the array ability to recover target 

signal,  and has strong correlation with SNR performance in  specified acoustic  scene. 

Therefore, the relationship function derived from the statistical analyses of the array gain 

pattern measures according to array geometry features can be applied as the objective 

function in the microphone optimization problems, to represent superior target extraction 

ability  of  arrays.  In  the  next  section,  based  on  these  system models,  several  criteria 

applied in microphone array optimization are proposed to assess array performance in the 

search of optimal microphone geometries.

3.2    Optimization Criteria and Constrains

Because  different  application  environment  has  different  requirements  for  array 

performance, selecting suitable optimization criterion is the first step to search for the 

optimal  array  geometry.  Several  common  used  criteria,  which  can  reflect  different 
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capabilities of microphone array, are  introduced  in this section.

        C1:  Array pattern distances [25, 44]

        C2:  Function of performance metrics [28]

        C3:  Minimum noise power of beamforming estimator [2, 44]

        C4:  Information capacity between source positions and array [44]

3.2.1    C1:  Array Pattern Distances

As discussed in Section 2.1, the optimal microphone arrangements should provide strong 

coherent addition in the target regions and  near zero power gain over the noise regions to 

enhance target signals and filter out the noises. The objective in selecting a microphone 

distribution, therefore,  can be stated to minimize the difference between desired ideal 

pattern and actual array pattern at the interested points in the FOV. 

    Let 0 ;r s ,r s∈ denote the desired beampattern, which normally is defined as a 

set  of  impulses  in  the  target  positions 0 ;r s=r s−r i ;ri ∈RT .  The  residual 

distance between this ideal pattern and actual array pattern given in Eq.(38) is expressed 

as [25, 44]:

d q ;G =[∫r s∈RT∪R N ∥
 ; r s , G− 0 ;r s∥

q d  ; rs ]1 /q ,         (40)

where  ;r s is the weight to combine the pattern difference at each spatial point and 

frequency band. It can be derived from the Power Spectrum Density (PSD) measures 

over  source  areas  to  assign different  importance  to  specified  spatial  region  or  signal 

frequency band  [44]. Or it can denote  the probability density function representing the 

likelihood of positions for the desired target and possible noise sources locations, which 

is  related  to  the  behavior  pattern  of  interested  sources.  In  the  case  when  no  prior 

knowledge is available,  , r s  is normally set to uniform values, and contains larger 

values for some region expecting low errors.  Therefore, the criterion to select optimal 

array geometry can be written as:  

Gopt=argmin
G⊂RM

〈d q ;G 〉 ,                                       (41)
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Or it can be stated as a minmax problem over spatial positions in FOV, as show below. 

Gopt=argmin
G⊂RM

〈 max
rs∈RT∪RN 

[d q '  ; r s , G ]〉 ,                          (42)

where d q '  ;r s ,G =; r s⋅∥
 ; rs ,G − 0 ; r s∥q measuring  the  residues 

between desired and actual patterns to reflect how well the actual pattern approximates to 

the desired pattern at interested spatial sample points. 

3.2.2    C2:  Function of Performance Metrics

The  optimization  in  this  dissertation  seeks  to  find  a  microphone  distribution  within 

predefined design space that maximizes the beamformer SNR over a given distribution of 

target  and  noise  sources.  As  defined  in  Section  1.2.3,  two  performance  metrics  that 

related directly to key aspects of the array gain pattern are applied in our study, MLW 

associated with resolution and MPSR associate with noise suppression ability. In order to 

avoid the expensive computations associated with a direct array gain computation over 

the space of interest,  important geometric descriptors showing strong correlation with 

array performance are proposed in Chapter 2.  The nonlinear relationships of proposed 

descriptors  on  each  performance  metric  for  human speech applications  in  immersive 

environments  are  developed  and  demonstrated  in  Section  2.5.  These  relationship 

functions  can  be  combined together  as  the  objective  function  for  array optimization, 

which directly considers the features of gain pattern related to the SNR performance and 

avoids the redundant definition of desired pattern in traditional optimization method. 

    From the conclusions of previous research, there is usually a trade-off between these 

two performance metrics. For example, increase the dispersion of microphones can result 

in better resolution (small MLW), but bring higher sidelobes (lower MPSR) degrading 

noise suppression ability. In order to consider these two criteria simultaneously, a limit on 

MLW is set by enforcing a penalty on the function of MPSR through a multiplier  to 

form the objective function of optimization. For a given focal point ri and noise source at 

rk , the objective function can be written as:

F L ,a , , J , r i , r k=−  L ,a , , J , ri , rk+⋅max [ B3dBL ,a , , J , r i- ,0] , (43) 
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where  represents the limit on the maximum MLW,  and {L, a,  , J} is the set of 

geometric  descriptors  measured  from  a  particular  array  geometry  G.  The  maximum 

operation ensures a penalty added when MLW exceeds limit. 

    For a specified acoustic scene, probability density functions derived from the behavior 

pattern  of  speakers  can  be used  to  model  the  possible  source  distributions.  Then  the 

objective function of Eq. (43) can be expanded as

F ' G =∫r i∈RT {∫r k∈RN
F G , ri , r k  p  rk |r id r k} p r i d r i ,             (44)

where p r i and p r k |r i are  the  probability  density  functions  representing  the 

likelihood of positions for the desired target and noise sources. In the case when no prior 

knowledge is available, these can simply be set to uniform distributions. Therefore, the 

criterion to search for optimal array geometry is represented by  

G opt=argmin
G⊂RM

〈 F ' G  〉  ,                                             (45)

This  criterion  combining  performance-based  geometric  descriptors  and  probabilistic 

descriptions of acoustic scenes will be applied as the objective function for the irregular 

array  optimization  strategies  in  Section  5.2,  which  greatly  reduces  the  optimization 

processing time. Also the large SNR improvements observed in the experiments and real 

recordings for the optimized array geometries indicate the strong correlation between 

proposed objective function rules and array beamforming SNR performance for human 

speech in immersive environments. 

3.2.3    C3:  Minimum Noise Power of Beamforming Estimator

As discussed in Section 3.1, for a unbiased linear estimator, the recovered target signal 

can be given by:

U E  ;r i ,G =
W H  V  ;r i ,G 
W H   H  ; ri ,G 

= U ; r i∫r k∈RN

W H   H  ; rk , G
W H   H  ; r i ,G 

d N  ;r k
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U E  ;r i ,G = U ; ri ∫rk∈RN

H H  ;r i ,G  H  ;r k ,G 
H H  ;r i ,G  H  ;r i ,G 

d N  ;r k
,    (46)

With the assumption that the target and noise signal propagation functions are orthogonal 

over RN , U E  ;r i ,G  are  perfectly  led  to  U  ;r i [44],  while  the  integral 

noise part of Eq.(46) approaching zero. For the case without this orthogonal assumption, 

the optimal array should minimize the noise component at  the output of estimator to 

better recover the target signal. Therefore, for the case with single target r i , the noise 

power  in  the  output  of  estimator  can  be  considered  as  the  criterion  to  assess  array 

beamforming performance, as defined by [44]:

   Sn ;r i ,G =∫rk∈RN ∣ H H  ;r i ,G  H  ; r k , G 

∣ H  ;r i ,G ∣2 ∣
2

d n ; rk ,       (47)

where d n ; r k is  the PSD measure  over  the  noise space RN .  For  multi-source 

applications, Eq.(47) is rewritten as:

S nG =

∫∈Speech∫r i ∈RT
∫r k∈RN ∣ H H  ; ri ,G  H  ;rk ,G 

∣ H  ;r i ,G ∣2 ∣
2

d n ;r kd u  ; ri d 
, 

(48)

where d u  ;r i is  the  PSD  measure  over  the  interested  target  space RT .  The 

criterion for the optimal array selection is expressed as:

Gopt=argmin
G⊂R M

〈 S nG  〉 ,                                           (49)

    For the Minimum Variance Distortionless Respond (MVDR) filter application, which 

is  the most  widely used adaptive  beamformer,  the  beamforming algorithm is  defined 

based on the maximum likelihood rule as [2, 44]:  
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W =
CNN

-1  ;G  H  ;r i ,G 
H H  ;r i ,G C NN

-1  ;G H  ; ri ,G ,                  (50)

where C NN  ;G is the auto covariance matrix of received noise signals, computed as:

C NN ;G =E [ N H ;G  N  ;G]=∫rk∈RN

H H ; rk , G H ; rk , Gd n ; rk

,  (51)

The estimated target signal is computed from:

 U E  ;r i ,G = W  V ; ri ,G   ,                                (52)

which has 

E [ U E  ;r i ,G ]= U  ;ri 

2[ U E ;r i ,G ]= 1
H H  ;r i ,G C NN

-1  ,G  H  ; ri , G  ,               (53)

Note  that  Eq.  (53)  is  independent  with  the  beamforming  algorithm.  Therefore,  the 

minimum  variance  of  the  output  of  estimator  indicates  the  smallest  error  between 

recovered and original target signals and represents better target signal extraction ability 

of array. The criterion to search for the optimal array geometry can be expressed as [44]:

 
S MVDRG =∫∈speech∫r i∈RT

1
H H  ;r i ,G C NN

-1  ,G  H  ;r i ,G 
d u  ;r id 

 

Gopt=argmin
G⊂R M

〈 S MVDR G 〉 ,                                         (54)

3.2.4    C4:  Information Capacity of Array

In order  to  represent  superior  signal  extraction ability against  noise,  previous  criteria 

focus on minimizing the power of the noise components at the output of beamformer by 

varying  array  geometry  according  to  specified  beamforming  algorithm  and  acoustic 

environment.  Another  thought  to represent  enhanced SNR performance of  array is  to 

58



maximize the proportion of target component  in the received signals of array by varying 

microphone positions.

    As shown in Eq.(35) and Eq.(36), the signals received by the array can be divided into 

two parts. One is the transmitted target signal component, and the other is the transmitted 

additive noise component. Better target extraction ability in the presence of noise can be 

specified by high similarity or dependency between the transmitted target component and 

the total received signal of array. Take the single target and uncorrelated noise case for 

example  (modeled  by  Eq.  (36)),  high  dependency  observed  between

U  ; r i  H  ;ri ,G  and V  ;r i ,G  received by specified array G represents 

the superior noise suppression ability of this array. In order to assess this dependency, 

mutual  information  derived  from the  Shannon  information  theory  in  communication 

system are applied, as [44]:   

I { U H ; V }=H { U H }−H { V | U H }=H { U H }−H {N } ,           (55)

where H {.} denotes the entropy per sample of the corresponding random vector. For 

the single target at r i it can be rewritten as [44]:  

I r i ,G = I { U H ; V }

=∫∈Speech log [1 H H  ;r i ,G C NN
-1  ;G  H  ;r i ,GCUU  ;r i ] d 

,(56)

where CUU  ;r i=E [∣ U  ;r i ∣
2] denotes the auto covariance of the original target 

signal.  Therefore,  considering all  the interested targets, the criterion to search for the 

optimal array geometry can be expressed as [44]:

I G=∫∈Speech∫r i ∈RT
log[1 H H  ; ri ,G C NN

-1  ;G  H  ;r i ,G d u  ;r i ]d 

Gopt=argmax
G⊂RM

〈 I G  〉 ,                                              (57)
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3.2.5    Constrains

Four criteria used to optimize and assess array beamforming performance are introduced 

in the previous sections. In applications, according to specific needs and prior knowledge 

of  environment,  the  most  appropriate  criterion  need  to  be  selected  as  the  objective 

function applied to evaluate the array performance in the search of optimal geometries. In 

addition,  the  microphone  array  optimization  problems  normally  come  with  several 

constrains  derived  from  the  physical  environment  and  subjective  conditions  of 

application, such as the largest array size, minimum spacing between elements to avoid 

unwanted coupling, and specific element placing area and topography. Also in order to 

maintain a constant output power, the coefficients of beamformer should be normalized 

according  to  the  propagation  functions.  During  the  optimization  procedure,  the  array 

pattern  need  to  be  controlled  in  certain  ways  to  minimize  or  maximize  the  selected 

criterion. For example, when MLW is chosen as the object function, the system might 

have constrain that the sidelobe levels should be always smaller than a specific threshold, 

or some pattern nulls should be located in specific locations [45].  

    The  ideal  to  address  these  constrained  optimization  problems  is  to  build  a  new 

objective function combining the original criterion and the constrain conditions. Then the 

problems are turned into the normal optimizing problems without constrains. Lagrange 

multipliers can be used in developing this kind of optimization criteria for both equality 

and inequality constrained problems [46, 47]. As shown in Eq. (43), Lagrange multiplier 

is  applied  to  combine  the  criterion  of  maximizing  MPSR  and  adding  penalty  for 

violating MLW constrain. By adjusting the value of  , more emphasis can be assigned 

to the desired part. In addition to the Lagrange multiplier approach, subspace theory is 

another common solution for the constrained optimization problems. Paper [48] solved 

the constrains problem by projecting the desired pattern function into the intersection 

lines of the subspace containing solution set of minimizing pattern residuals in the ML 

region and the subspace satisfying the sidelobe constrains.   

3.3    Optimization Approaches

From the  study of  engineering  optimization  theory  [46,  47],  it  is  known that  if  the 
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expression of objective function and constrains are the simple,  continuous,  differentiable 

functions of design variables (microphone placements), the classical analytical methods 

using differential  calculus in locating the optimum points can be applied,  such as the 

regular array optimization problems in far field. In contrast, if the objective function and 

constrains  cannot  be  stated  as  a  clear  function  of  design  variables  or  they  are  too 

complicated to manipulate, such as the irregular microphone array problems in immersive 

environment,  numerical  optimum seeking  methods  are  more  useful  than  the  classical 

ones. In general, numerical methods of nonlinear programming cases can be expressed by 

the following scheme [47]: 

Step 1: Set a initial point of design vector  X 1 , which represents one specified 

array geometry in our cases.

Step  2:  Search  for  a  suitable  direction  S i
* ,  pointing  to  the  general  optimum 

direction, i is the number of iteration. In the microphone array optimization 

problems,  this  optimum  searching  direction  represents  the  way  moving 

microphones to reach superior SNR performance. 

Step 3: Find a suitable step length i
* for moving X 1 along the direction S i

* , 

which  is  related  to  the  minimum distance  between  microphones  and  the 

number of microphone being moved in one iteration.

Step 4: Get the new approximation X i1 , as X i1=X ii
* S i

* .

Step 5: Evaluate whether X i1 is the optimal solution by the objective function. If 

yes, stop the iteration. Otherwise, let i=i1 and return to step 2. 

   Note  that  this  optimization  process  contains  two  key aspects,  the  optimal  search 

direction and the optimal step size. If the search direction is specified, the optimal step 

size can be considered as a one dimensional optimization problem. Increasing the step 

size can reduce the computational work, while reducing step size can be applied after 

bracketing the optimum range to increase accuracy. According to the searching method of 

the optimal direction, the optimization approaches can be divided into two classes: the 

direct searching methods and descent methods. Descent methods require the first/second 

order  derivatives  of  the  objective  function  to  seek  the  optimum point  along gradient 

direction, such as the Newton's method applied to search for the optimal irregular array 

by adding spatial perturbations to the regular placements (will be discussed in Section 
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5.1) [25, 49-58].  They have fast convergence speed, but might converge on local extreme 

point instead of global.  The direct  searching methods,  such as the Genetic Algorithm 

(GA) methods applied to search for the optimal random microphone arrangements (will 

be discussed in Section 5.2), require only the objective function values, and are more 

suitable  for  simple  problems involving  small  number  of  design  variables.  They have 

lower converge speed and higher computational complexity. They are less efficient than 

the descent methods, due to the reason that the moving direction of design variables are 

chosen all around, regardless of the gradient of the objective function. On the other hand, 

this  kind  of  random search  also  bring  benefit  of  less  possibility  to  miss  the  global 

optimum point. The lower converge rate and higher computational complexity can be 

improved by adding certain guide to choose the moving direction. Therefore, it can be 

seen that there is a tradeoff between efficiency and reliability in search of optimum. The 

randomness of searching direction ensures to obtain global optimum, but brings more 

computing  complexity  and  lower  convergence  speed.  Searching  along  the  descent 

direction can get fastest  convergence speed but might miss the global optimal solutions. 

In order to take advantage of both methods, they are combined together in our study by 

the following principles: 

(1) Parallel  combination,  which  means  adding  general  direction  guide  for  direct 

search method, or adding random perturbation of searching direction to each iteration of 

descent methods.

(2) Series Combination. First applying direct method and large step size to search for 

the global optimum range, then applying descent method in this range to obtain a fast 

convergence rate. For example, for the irregular microphone array problems, GA can be 

used to search globally with a large step size and take the resulted array geometry as the 

initial condition of Gaussian iteration, which has a fast converging speed for the local 

optimum, to add small perturbations on the element positions of initial array to obtain the 

best SNR performance. 

   By following these principles, feasible optimization methods for the design of regular 

and irregular arrays in immersive environments for speech applications will be proposed 

and evaluated in the Chapter 4 and Chapter 5. 
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3.4    Performance Evaluation

After applying the optimization approaches,  a class of arrays providing good values of 

selected objective  function  are  sorted  out,  which  are expected  to  show  optimal 

beamforming  performance  based  on  the  probabilistic  rules  in  corresponding  acoustic 

environment. In order to demonstrate this prospect and  assess the real  performance of 

these arrays for speech signals, Monte Carlo experiments are performed to  simulate the 

SNR  performance of  each  array  from the  last  iteration  of  the  optimization  searching 

procedure  with  various  target  and  noise  occurrences according  to  the  knowledge  of 

acoustic scene. Human voice samples or colored noise generated by the SII model which 

emphasizes the  frequency bands most important to speech intelligibility are applied as the 

excitations for both target and noise sources. The typical choices  [14]  of the physical 

conditions of acoustic environment are given in Table 3.1, and the evaluation procedure is 

describe as below:

Step  1:  Choose  the  environmental  parameters  according  to  the  preknowledge  of 

acoustic scene, including  room size, reverberation level,  probability density 

functions p r i or PSDs of the target and noise positions.

Step 2: Pick one array from the last iteration of the optimization procedure. Measure 

the geometry descriptors of  this array for later discussion about the optimal 

pattern of microphone clusters.

Step 3: Generate a set of target sources with SII spectrum, while the source positions 

are chosen according to predefined statistic measures of target space, such as 

p r i and PSD.

Step 4:  Distribute the noise sources:  (1)  the interfering noise is simulated by a set 

of  speech  signal  sources  distributed  in  the  noise  space  according  to

p r k | r i , the probability density function representing the likelihood of 

positions  for  the  noise  sources.  The  noise power  can  be  obtained  by the 

predefined  power  ratio  of  target  to  noise  source.  In  our  experiments,  the 

power  of  target  and  noise  sources  are  all  normalized  to  1;  (2)  the 

reverberation noise is simulated by using the image method to add additional 
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noise sources as shown in Figure 3.2. The amplitude of reverberated signal is 

attenuated by 1/d and the reflection coefficient of corresponding wall, where 

d is the propagation distance.

Step 6: With the beamformer focused at each target position (ignore the localization 

errors), estimate the received target signals by microphones and the output of 

beamformer derived from the target source. 

Step 7: With the beamformer focused at each target position (ignore the localization 

errors), estimate the received noise signals by microphones and the output of 

beamformer derived from all the noise sources. 

Step 7: Compute the SNR when beamformer focusing on each target. Then compute 

the average and the variance of SNRs over all target sources by probabilistic 

rules according to p r i and PSD. 

Step 8: Discuss the SNR performance of each array according to  the application 

requirements (details will be discussed in Section 5.2.2), choose three top 

performed arrays as the optimal ones for real recording. 

Table 3.1: Physical parameters of acoustic environment 

Room Size
（meter3）

Reflection 
Coefficient 

Power Ratio of Target and 
Noise Source 

Multi-path 
Simulation 
Level

Small room         3*3*2 Low         0.2 Choose form the range
-50dB to 50dB

8th images as 
shown in 
Figure 3.2Medium room     5*5*2 Medium   0.5

Large room      10*10*2 High        0.8
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Figure 3.2: Image method to simulate multi-path effect. S1', S2', and S3' represent the 

virtual reverberation noise sources.

    This chapter introduced the basic principles about the microphone array optimization 

problems,  including  the  general  problem  formulation,  common  used  criteria  and 

constrains, general optimization approaches, and the experimental evaluation. Based on 

these principles, the next two chapters will discuss the optimization strategies for revised 

regular arrays and irregular arrays, providing enhanced SNR performances in immersive 

environment applications.  

65

Copyright © Jingjing Yu 2013

Mic

Source

S1'S1' S3 '

S2 '

...

...



Chapter 4    Array Design Based on 

Regular Geometry

After a general review of microphone array processing technique, building the problem 

formulation, and applying appropriate criteria and constrains to describe concerns and 

restrictions  in  real applications,  common  used  array  geometries  and  optimization 

approaches derived from the regular arrangements are discussed in this chapter. Most of 

previous optimization approaches are directly derived from antenna array theories based 

on  far-field  propagation  mode,  which  usually  assume  a  uniform and  regular  spaced 

microphone  arrangement  to  simplify  the  problem  formulation  and  apply  analytical 

solutions  to  compute  the  optimal  microphone positions.  Since the regular  equispaced 

arrays are limited in their ability in speech capture, these results are not as useful for 

immersive environment that typically occur for surveillance and smart room applications. 

This chapter, therefore, introduces geometries mutated from the traditional equispaced 

arrays to overcome their limits and provide superior SNR performance for speech capture 

in immersive environments, while certain regularity of element arrangement is reserved 

for easy installation and operation.      

4.1    Limitations of Equispaced Arrays

The traditional equispaced array suffers from several significant problems. First of all, 

due to the spatial aliasing problem caused by the regularity of element placements, it only 

works for narrow-band signals. According to Nyquist sampling theory, in order to avoid 
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spatial aliasing, the inter-element spacing cannot exceed min /2 [59, 60]. Considering 

human speech signals with the frequency range from 50Hz to 8000Hz, elements should 

be placed as closed as 2 centimeters to each other. Obviously, it is not achievable in real 

cases. Even if  this  condition can be met,  the spatial  resolution for the low frequency 

bands will be sacrificed greatly. In addition, since the array aperture should be no smaller 

than max /MLW , where the denominator is the mainbeam width in radians, the number 

of microphone should be greater than 2max /MLW min [44, 59]，which might be too 

large for most indoor applications. 

    Secondly, because the traditional equispaced linear arrays for far-field applications only 

have one parameter  for steering and the elements spread all in one dimension, they 

cannot resolve sources located at the rotationally symmetrical positions of array or the 

sources  from the same direction [26,  61].  In other  words,  these arrays  have only one 

degree of spatial selectivity, which usually not sufficient for real applications. Therefore, 

extension  to  2D and 3D arrays  with  unequal  spacing  is  necessary for  human speech 

applications in immersive environments. 

4.2    Mutation of Regular Configurations

This section discusses several array geometries mutated from the traditional equispaced 

arrays,  that  overcome  the  limitations  of  equispaced  arrangements  and  keep  certain 

regularity of microphone positions for easy installation.   

4.2.1    Harmonic Nested Array

In order to eliminate the problem of spatial aliasing and extend applicable bandwidth for 

broad-band signal capture, harmonic nested array is applied [14, 61]. The main ideal of 

this  array geometry is  to  divide  the broad signal  band into several  subbands and use 

equispaced subarrays to capture each narrow-band signal. Through a proper division of 

subbands and changing the inter-mic distance in subarrays, the beam width of recomposed 

pattern can remain constant over frequencies. And the total number of microphones can be 

reduced by sharing elements in the overlapping positions of each subarray.  Figure 4.1 

shows 3 subarrays used for each octave, and inter-mic spacing is halved across next band. 
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The simulation results in paper [14] shows that for the harmonic array with 41 elements, 

the beam width remains constant over 6 octave interval, which is sufficient to cover 50Hz 

to 7000Hz signals without spatial aliasing. In addition, this array can be expanded to 2D 

and 3D arrays to achieve a better spatial selectivity.

Figure 4.1: A harmonic array with 9 microphones (adapted from [14]). d is the unit 

distance.

   The procedure to build this type of logarithmically spaced array can be described as 

below. First, set up the uniform spaced array for highest subband. Then progressively add 

more element for lower band on both end.  The general expression of this procedure is 

given as [27]:

                                   

r p= p
min

2
, when 0≤ p≤ Q

2

r p1=
Q

Q−1
r p , when pQ

2
, r pQ−1

max

2
r−p=−r p  ,                  (58) 

where  the  origin  is  located  in  the  center  of  array.  r p is  the  distance  of  the pth 

microphone from origin.  r− p represents the symmetric microphone of  r p . Q is a 

constant related to the division of subband. When Q = 2, the harmonic nested array is 

produced. 

   The  simulated  gain  patterns  of  harmonic  nested  arrays  with  9  microphones  and 
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corresponding equispaced arrays are shown in Figure 4.2. Figure 4.2(a)(c)(e) present the 

gain patterns for 1500Hz signal, while Figure 4.2(b)(d)(f) present gain patterns for human 

speech signals  simulated by SII model.  It can be seen that the harmonic nested array 

containing  three  subarrays  (Figure  4.2(c))  eliminated  the  severe  aliasing  problem for 

1500Hz signal,  as shown for the equispaced arrays in Figure 4.2(a). Figure 4.2(e)(f) give 

the results of harmonic nested array with the same dispersion of equispaced array. When 

comparing with Figure 4.2(a)(b), a comparable spatial resolution (MLW) is provided by 

the  harmonic  array,  while  the  spatial  aliasing  problem  are  successfully  eliminated. 

Therefore,  with  fixed  array centroid  and aperture,  harmonic  nested  array can  provide 

better beamforming performance for speech applications. In the later section, it will be 

applied in 2D and 3D space for extra degree of spatial selectivity.
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                                (a)                                                                     (b)

                                   (c)                                                                 (d)

                                (e)                                                                   (f)

Figure 4.2:  Top view gain patterns of equispaced arrays  and corresponding harmonic 

nested arrays with 9 microphones. The beamformer is focused on the same point at the 

center marked by star, where white dots represent microphone positions. (a) Equispaced 

array with 10cm inter-mic distance and 1500Hz signal. (b) Equispaced array with 10cm 
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inter-mic distance and SII signal. (c) Harmonic nested array with the largest inter-mic 

distance of 10cm and 1500Hz signal. (d) Harmonic nested array with the largest inter-mic 

distance of 10cm and SII signal.  (e) Harmonic nested array with the same dispersion of 

the  equispaced  array  and  1500Hz  signal.  (f)  Harmonic  nested  array  with  the  same 

dispersion of the equispaced array and SII signal. 

4.2.2    Minimum Redundancy Array        

From previous study, the size of main beam and the maximum intensity of gain patterns 

relatively won't be affected by the precise element positions, while the array aperture and 

number of element is fixed [2, 45, 62]. The goal of Minimum Redundancy Array (MRA) 

is to achieve maximum spatial resolution for a given number of elements by reducing 

redundant inter-mic spacings as suggested in [31-33, 59, 63-68]. This kind of arrays focus 

on the pairwise distance of elements based on the assumption that the inter-mic spacings 

always be a multiple of unit distance, while having the covariance matrix with the least 

repeated  entries.  As  shown  in  Figure  4.3(b),  for  a  array  with  N  elements,  the  zero 

redundancy  array  samples  the  spatial  frequency  spectrum  at  uniform  intervals  with 

uniform distribution,  while  providing  identical  lags  with  a  equispaced linear  array of

1
2

N N−11 elements. 

                                         (a)                                                                (b)

Figure  4.3:  Spatial  frequencies  of  MRA and corresponding equispaced array (adapted 

from [31]). d is the unit distance. (a) Equispaced linear array. (b) Zero redundancy linear 

array.     
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   The methods to search for microphone placements with low redundancy have been well 

studied and published in many papers. In [31], Moffet shows several possible sampling 

schemes of MRA. A fast computing method to search for linear MRAs is proposed by 

Linebarger [64]. In paper [65], a table of  MRAs without missing lags has been compiled 

by Leech. Christopher [67] uses a numerical implementation of annealing process to guide 

the random search for the low redundancy linear array and shorten the running time for the 

arrays  with  large  number  of  elements.  Therefore,  in  our  experiment,  the  microphone 

placements of MRA according to the predefined unit distance are selected directly from a 

table including possible arrangements of MRA with different number of microphones. A 

part of this table is shown in Table 4.1 [31, 68].

   Paper [32, 66] compared the performance of MRA with uniformly spaced linear array 

for different number of elements in terms of interference cancellation. Take the array with 

5 microphones for example. Figure 4.4 gives the gain patterns and histograms of inter-mic 

distance of MRA and corresponding equispaced linear array. Figure 4.4(d)(e)(f) show the 

MRA with same unit distance of equispaced array. Figure 4.4(g)(h)(i) show scaled MRA 

with  the  same  dispersion  of  equispaced  array.  It  is  proved  that  by  minimizing  the 

redundancy of inter-mic distance, MRA can greatly reduce the number of elements while 

following the ML region of uniformly spaced array, but the cost of this improvement is a 

higher sidelobe level of beampattern. In conclusion, for a given number of elements, MRA 

can provide maximum spread of microphone to achieve best spatial resolution by reducing 

redundant inter-mic spacings. Other techniques, such as adaptive beamformer aiming at 

suppressing sidelobe level,  need to be considered as the compensation when applying 

MRA.
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Table 4.1: MRA configurations

Number of 

Mics.

Aperture Configuration 

(inter distance between 

nearby mics )

5

9

11

1 3 3 2

1 3 5 2

   ….

6

13

17

1 5 3 2 2 

1 3 6 2 5

   ….

7

17

25

1 3 6 2 3 2

1 3 6 8 5 2

   ….

8
23

34

1 3 6 6 2 3 2

1 3 5 6 7 10 2

9

29

44

1 3 6 6 6 2 3 2

1 4 7 13 2 8 6 3

   ….

10

36

55

1 2 3 7 7 7 4 4 1

1 5 4 13 2 8 6 3 

   ….

11
43 1 2 3 7 7 7 7 4 4 1

   ….
                         Note: All distances are expressed as the multiples of unit distance d.
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                    (a)                                             (b)                                          (c)

                    (d)                                              (e)                                         (f)

                    (g)                                              (h)                                          (i)

Figure 4.4: Spatial frequencies and gain patterns of MRA and corresponding equispaced 

array with 5 microphones. The unit distance is set to 0.5 meter. The beamformer is focused 

on the same point at the center marked by star, where white dots represent microphone 

positions. (a) Histogram of inter-mic distance of equispaced linear array. (b) Gain pattern 

of equispaced array for SII signal. (c) Gain pattern of equispaced array for 300 Hz signal. 

(d) Histogram of inter-mic distance of MRA. (e) Gain pattern of MRA for SII signal. (f) 

Gain pattern of MRA for 300 Hz signal. (g) Histogram of inter-mic distance of MRA with 

the  same  dispersion  of  equispaced  array.  (h)  Gain  pattern  of  MRA with  the  same 

dispersion of equispaced array for SII  signal.  (i) Gain pattern of  MRA with the same 
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dispersion of equispaced array for 300 Hz signal.

4.2.3    Spatial Extension of One Dimensional Configurations

Previous sections introduced the limitation of equispaced linear array and two mutated 

regular linear arrays with performance improvements. In order to obtain extra degree of 

spatial selectivity, these linear arrays are extended to 2D and 3D space for the speech 

applications in immersive environments. 

   The basic regular one dimensional configurations applied for array spatial extension in 

our study are listed as below:

• Equispaced linear arrays (ELA)

• Harmonic nested arrays (HNA)

• Minimum redundancy arrays (MRA)

   In order to show similar performance improvements in multidimensional space, these 

one dimensional configurations are extended to 2D and 3D design space to result in extra 

degree of spatial selectivity. Several common used configurations are shown as below:

(1)   Two dimensional extending arrays. 

• Perimeter arrays, as in Figure 4.5(a).

• Planar arrays, as in Figure 4.5(b).

• Cross arrays, as in Figure 4.5(c).

• Wheel arrays, as in Figure 4.5(d), where the linear configurations are arranged as 

the spokes in a wheel and tilted the same angle from the radial direction of the 

center [69].

Note that  the linear configurations (as shown in the black box) applied in  these two 

dimensional arrays can be selected from any of the basic one dimensional arrays to obtain 

different performance improvement. The typical gain patterns of these two dimensional 

extending arrays for speech signals are shown in Figure 4.6 and 4.7. From Figure 4.6, it 

can be seen that the perimeter array derived from ELA exhibits high sidelobes along the 

directions of symmetric lines of microphone arrangements. And the perimeter array of 

MRA eliminates these high sidelobe ridges by breaking the uniformity of microphone 
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placements of ELA while following the area of main lobe. Figure 4.7 compared the gain 

patterns of wheel array and corresponding cross array. Since each spoke of wheel array is 

tilted the same angle away from the radial direction, their positions can be defined by the 

vertical  distance  d  from spoke to the center of wheel.  And the cross array shown in 

Figure 4.7(b) can be considered as a special case of four-spokes wheel array when d=0. 

As show in Figure 4.7, by adding the lateral offset d of each linear spoke from the array 

center, the maximum sidelobe ridges of cross array protruding along the vertical direction 

of microphone lines are successfully suppressed by the wheel array, while the MLW of 

wheel array is only slightly broaden.

(2)   Three dimensional extending arrays.

• 3D arrays by applying regular 1D configuration in each direction of Cartesian 

coordinate axes, as shown in Figure 4.8(a). 

• Platonic solid arrays, such as equilateral triangle, tetrahedron in Figure 4.8(b)

Figure 4.9 gives the top view and 3D gain patterns of tetrahedron arrays for example. It 

can be seen that when the target is located outside the tetrahedron, due to the symmetry of 

microphone  placements  of  tetrahedron  array,  high  sidelobes  are  observed  in  the 

symmetrical positions according to the microphone arrangements. Meanwhile, this kind 

of arrays show superior beamforming ability for the targets inside the tetrahedron space 

near the centroid, as shown in Figure 4.9(c).
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                                            (a)                                                                      (b)

                                         

                                         (c)                                                                 (d)

Figure  4.5:  Two  dimensional  extending  arrays.  (a)  Perimeter  arrays  derived  from 

equispaced linear array and MRA. (b) Planar array derived from equispaced linear array. 

(c) Cross array derived from MRA. (d) Wheel array derived from MRA.
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(a)

(b)

Figure 4.6: Top view gain patterns of perimeter arrays derived from ELA (left) and MRA 

(right)  with  the  same  dispersion  for  speech  applications.  Black  circles  represent 

microphones. (a) Steering at the center of FOV.  (b) Steering at the spatial point [1, 2.5] in 

FOV.
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(a)

(b)

Figure 4.7: Gain pattern comparison. (a) wheel array with four spokes. (b) Corresponding 
cross array. Blue circles represent microphones. 
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                              (a)                                                                       (b)

Figure  4.8:  Three dimensional  extending  arrays.  d is  the  unit  distance  of  microphone 
spacing. (a) Regular 3D extending array. (b) Platonic solid array.

         (a)              
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(b)

(c)

Figure 4.9: Gain patterns of tetrahedron array. White dots represent microphones. Stars 

represent target points. (a) Four top view gain patterns: small ceiling array steering at the 

center of FOV, small ceiling array steering at the left corner of FOV,  large array with the 

centroid in the center of room when steering at the center of FOV, large array with the 

centroid in the center of room when steering  at the left corner of FOV. (b) 3D View of 

small ceiling array, when steering at the center of FOV (left) and the left corner of FOV 

(right). (c) 3D View of large array with the centroid in the center of room, when steering at 

the center of FOV (left) and the left corner of FOV (right).
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4.2.4    Edge Cutting of Regular Configurations

Inspired by the theory of exciting current tapering in antenna array, it is proved that by 

cutting  some fringe  or  corner  microphones  of  planar  array can  reduce  the  maximum 

sidelobe level greatly [54].  GA are applied in paper [54] to “turn on/off” the elements in 

the  fringe  areas  and  search  for  the  theoretical  optimal  geometries  with  the  mini-max 

sidelobe  levels.  Two  similar  approaches  are  applied  in  our  study  to  adjust  the  edge 

elements of regular arrays to obtain the best MPSR performance.

• Based  on  the  regular  configurations  proposed  in  the  previous  two  sections, 

directly cut the corner elements as shown in Figure 4.10. Then assign a set of 

binary wights for each elements located in the fringe areas, while 1 represents 

“turn on” the microphone and 0 represents “turn off” the microphone. Apply GA 

to search for the optimal set of these binary wights until the sidelobe levels of 

array  gain  pattern  meet  required  threshold.  Finally,  according  to  the  optimal 

choice of the binary wights, a new array configuration are generated.

• Based on the traditional theory of adaptive beamformer, according to the assigned 

weights of elements in the regular configurations as proposed in previous two 

sections,  remove  the  elements  whose  weights  are  lower  than  the  predefined 

threshold, and keep the others with the higher weights.  

                     

Figure 4.10:  Edge cutting of regular planar arrays (adapted from [54]). The blue dots 

represent  microphones.  Black  boxes  represent  corner  areas,  while  red  dashed  boxes 

represent fringe areas.
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   In  order  to  evaluate  the  performance  of  edge  cutting  arrays,  Table  4.2  gives  the 

simulated results of edge cutting arrays based on the regular planar configuration with 

17*17 elements. The corresponding microphone arrangements are given in Figure 4.11, 

and the gain patterns are shown in Figure 4.12. Four corner areas of  3*3 elements are cut 

for the corner cutting array, while four triangle corner areas of 6 elements are removed to 

form the half corner cutting array. The four fringe areas of 3*11 elements are optimized 

by GA to  minimize maximum sidelobe level while steering at zenith. It can be seen that, 

even with less elements than equal spaced planar arrays, the corner cutting array and GA 

arrays  can  efficiently  reduce  the  sidelobe  level  at  desired  steering  angle,  while  only 

slightly broaden the mainbeam width due to the decrease of array dispersion. In other 

steering direction (large array centroid offset), because the equal spaced planar array has 

the most microphones and largest spread, it shows a more stable performance than the 

others for the targets away from the centroid, but these edge cutting arrays can still obtain 

several good results at some angles. Furthermore, their performance can be improved by 

changing  the  optimization  objective  function  of  GA,  or  increasing  the  number  of 

elements. 

Table 4.2: Performance comparisons of edge cutting planar arrays 

Steering 
Angle

Performance 
Metrics

Equispaced 
Planar Array

Half-corner-
cutting Array

Corner-
cutting
Array

Corner-cutting 
& GA Array 

0o MLW 6.1276o 6.2840o    6.2623o 6.7306o

MPSR 18.82dB 19.21dB 19.3dB 19.63dB

15o MLW 6.3345o 6.5256o 6.6962o 7.1917o

MPSR 17.92dB 17.95dB 18.24dB 17.39dB

30o MLW 6.3223o 8.0005o 7.8390o 8.3250o

MPSR 17.55dB 17.1dB 15.57dB 16.09dB
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                    (a)                                             (b)                                            (c)

Figure 4.11: Examples of edge cutting arrays for the performance comparison based on 

17*17 regular planar array. (a) Half corner cutting array.  (b) Corner cutting array.  (c) 

Corner cutting & GA array.

(a)
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(b)

(c)
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(d)

     

Figure 4.12: Gain pattern comparisons of equispaced planar array vs. corner cutting & 

GA array on the 5*5 m2 target plane. Blue dots represent microphones. (a) Equispaced 

planar array with  0o steering angle. (b) Equispaced planar array with  30o steering 

angle. (c) Corner cutting & GA array with 0o steering angle. (d) Corner cutting & GA 

array with 30o steering angle.

4.2.5    Spiral Array

It  has  been  discussed  before  that  due  to  the  periodicity  of  element  placements,  the 

application  of  regular  equispaced  arrays  for  broadband  speech  signals  is  limited. 

Generally, the highest frequency band forces the inter-mic spacing to be smaller to avoid 

spatial  aliasing  problem,  while  the  lowest  frequency  band  determining  the  tolerant 

minimum array aperture for required spatial resolution. Also, it has been demonstrated 

from previous gain pattern analyses that the high sidelobe ridges occur in the direction of 

symmetric/periodic  line  of  microphone  arrangements.  Therefore,  the  irregular  arrays 

which  break  the  periodicity  of  element  placements  are  expected  to  show  better 
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beamforming  performance  for  speech  applications.  Figure  1.1  gave  the  example  of 

completely randomly distributed array with superior performance when comparing with 

corresponding regular planar array. Chapter 2 identified the important statistic geometry 

descriptors of these irregular arrays to predict or control the beamforming performance 

for speech signals. However, since the microphone positions are totally random, this kind 

of irregular arrays are difficult to manufacture and operate in some application cases [69]. 

Spiral  arrays,  which  maintaining  certain  regularity  for  easy  manufacturing  and 

eliminating  the  periodicity/redundancy  of  microphone  spacing  of  traditional  regular 

planar array to suppress sidelobe levels, are proposed in this section.  

   Inspired by the  natural  growing pattern  of  sunflower head,  several  spiral  arcs  are 

developed by following two basic principles, the most uniform angular distribution of 

branches/flowers  (by  applying  the  golden/Fibonacci  angle),  and  most  uniform  area 

distribution of seeds (by applying different spiral arcs) [70], where the seeds and flowers 

are considered as the microphones in our study. These principles of the uniform coverage 

eliminate the possibility of redundant or symmetric microphone placements according to 

the target, and suppress the worse-case sidelobes greatly. The general formulation of the 

spiral arcs in polar coordinates r , can be expressed as:

 p= p ; r p= f  p ; p=1,2,... ,P ,                              (59)

where p is the order of microphone counting outward from the center. P is the number of 

microphone.  is  the  radiation  angle  difference  from  center  between  nearby 

microphones, which is usually set to 137.5o as the golden angle to uniformize the element 

distribution over the circle [70].  f . is the function defining the shape of spiral arc. 

Normally, there are two classes of spiral arc definitions. The first class can be expressed 

as: 

 r p=ab p
1 / k ,                                                (60)

where the value of  k determines  the type of spiral  arc,  affecting microphone density 

distribution. 

   when k = 1, it  represents  Archimedean spiral with equal space between  successive 

turnings as shown in Figure 4.13(a), where changing a turns the spiral and b controls the 
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distance between successive turnings [71]. The area for single seed/microphone can be 

computed as: 

S
p
=

ab p
2

p
=a2

p
b22 p2ab ,                        (61)

Because  the  microphone  area  is  a  monotonic  increasing  function  of  the  microphone 

number  p,  arrays  generated by this  spiral  have the highest  microphone density at  the 

center and decreasing density when moving outward from the center, as shown in Figure 

4.14(a). 

   when k > 1,  Eq.  (60) represents spirals  with decreasing space between  successive 

turnings, which add more microphones in periphery areas of the arrays. One important 

example is Fermat's spiral with a = 0 and k = 2, as: 

r p=b p ,                                                   (62)

Then, the area for single seed/microphone is computed as:

S
p
=

b p
2

p
= b2  ,                                     (63)

Therefore,  the  area  provided  for  each  microphone  is  the  same  regardless  of  the 

microphone order  p,  which represents  a  uniform microphone density over the design 

space. A corresponding array is shown in Figure 4.14(b).

    In addition, if 0 < k < 1 in Eq. (60), it reprents increasing space spirals which show 

ever higher microphone density at the center. When k < 0,  it also represents increasing 

space  spirals, but the end of curve will not converge  as shown in Figure 4.13(b). This 

kind of arrays can be applied for the design cases with irregular room or design space. 
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    (a)                                                                 (b)         

Figure 4.13:  Spirals. (a)  Archimedean spiral with b = 0.8. The red arc is with a = 0.2, 

and the blue arc is with a = 3. (b) Increasing space spiral with k = -2, while the end of 

curve cannot converge (a = 0, b = 1).

 (a)                                                           (b)

Figure 4.14: Arrays  derived from spiral  arcs  (adapted from [70]).  White  dots  reprent 

microphones/seeds. (a) Archimedean spiral. (b) Fermat's spiral. 
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    The second class of spiral arcs is the logarithmic spiral (equiangular spiral or growth 

spiral)  which  is  a  special  kind  of  spiral  curve  often  appearing  in  nature.  It  can  be 

expressed as:

 r p=a eb p ,                                                    (64)

where  b controls the shape of spiral and  a controls the size of spiral. Normally, it is a 

increasing space spiral and approaches a Archimedean spiral r p≈a 1b p when b is 

small. The area for each microphone can be computed as   

S
p
= a e2b⋅e p

p
,                                               (65)

Therefore, the microphone density of this kind of arrays is decreased from the center to 

the periphery of array. It shows an even higher decreasing rate of microphone density 

when comparing with corresponding Archimedean spiral array, as given in Figure 4.15.

   Figure 4.15: Microphone density comparison.

   Previous discussions introduced the formulations of common used spirals applied for 

the microphone array design. The important parameters controlling the geometric shapes 

of  spiral  related  to  the  microphone  density  are  analyzed,  and  further  affect  the 

performance of beamformer. Generally, there is a trade off between MLW and MPSR. 

Arrays with microphones concentrating near the periphery areas show smaller ML area 
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and higher sidelobe levels, while arrays with high microphone density near center will 

have  broader  ML and  lower  sidelobe  levels.  Take  the  logarithmic  spiral  arrays  for 

example.  As  shown  in  Figure  4.16,  the  array  with  more  microphones  in  the  center 

provides  a  narrower  mainlobe,  while  broader  area  with  relative  high  sidelobes  are 

observed inside the FOV. Therefore, the proper choice of microphone density distribution 

controlled by the formulation of spiral arcs and the values of corresponding parameters 

should be made according to the knowledge of acoustic scenes and source behaviors in 

the real case applications.

   The  simulated  beamforming  result  of  a  spiral  array  is  given  in  Figure  4.17.  Its 

performance  is  compared  to  corresponding  regular  planar  array  with  identical 

microphone density and design space. It can be seen that, by eliminating the translational 

periodicity of element placements according to the focal point, the spiral array suppresses 

the  highest  sidelobe  ridges  in  the  symmetrical  directions  of  regular  planar  array.  It 

performs better than the traditional regular array in noise suppression, while maintaining 

the good directivity of regular array by providing a uniform coverage over the FOV. 

Although the optimized irregular arrays based on the descriptors proposed in Chapter 2 

can  perform better  than  the  spiral  arrays,  they  are  difficult  for  installation  [28,  69]. 

Therefore,  as  a  mutated  regular  array,  the  spiral  array  combines  the  enhanced 

beamforming  performance  with  easy  operation  which  is  feasible  for  the  speech 

applications in immersive environments.  

   In  conclusion,  this  chapter  presented  array  geometries  derived  from  the  regular 

structures.  By  adding  mutation  to  the  traditional  regular  microphone  arrangements, 

proposed geometries overcame the limitations of regular structures and provided superior 

SNR performance for speech captures in immersive environments. In addition, because 

these mutated arrays still retain certain regularity of element arrangements, they can be 

easily  installed  and  operated.  Simple  geometry  parameters  were  proposed  for  each 

mutated array to identify exact microphone positions. By controlling these parameters, 

good  microphone  density  distribution  providing  superior  noise  suppression  ability  in 

specified scene can be easily generated according to the prior knowledge of possible 

source distribution.  
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    (a)                                                                       (b)

Figure  4.16:  Top  view  gain  pattern  comparison  for  arrays  derived  from logarithmic 

spirals. (a) The Array with higher microphone density in the center. (b) The Array with 

lower microphone density in the center.

                                  (a)                                                                  (b)

Figure 4.17: Top view gain pattern comparison when steering at the center of FOV. Red 

circles represent microphones. (a) Spiral array. (b) Regular planar array.
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Chapter  5     Irregular  Microphone 

Array Design

The limitations of traditional regular equispaced arrays for broadband speech signals are 

discussed in previous chapter. Several array geometries which mutated from the regular 

configurations  to  break  the  periodicity  of  microphone  arrangements  according  to  the 

FOV are proposed, showing enhanced beamforming performance. However, these arrays 

still retain certain regularity of microphone placements, which is demonstrated to restrict 

the  uniformity  of  DPD  distribution  and  result  in  severe  sidelobe  leakage  on  the 

interferences. Some irregular arrays with near random or completely random distribution 

of  microphone are  expected  to  achieve  better  performance  for  the  broadband speech 

signals. 

   Due to the randomness of microphone placements of irregular array, it is difficult to 

control  or  predict  the  array  performance.  The  traditional  optimization  methods  of 

irregular array design are numerically very demanding, resulting from the large degree of 

freedom  of  element  spacing  [69].  In  our  study,  as  discussed  in  Chapter  2,  statistic 

measures are applied to identify the array geometry properties related to performance, 

instead of unit distance and aperture applied for regular array analysis. By controlling 

these  important  geometry  features  of  array  configurations  related  to  performance, 

irregular  arrays  with  superior  performance  evaluated  by  the  preselected  objective 

function can be sorted out. By following the principles introduced in Chapter 3, several 

optimization  methods for  the  irregular  microphone array design  are  proposed in  this 
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chapter.      

5.1   Spatial Perturbation based on Regular Configurations

From  previous  discussion,  it  can  be  seen  that  the  regular  structured  arrays  have 

predictable gain patterns but suffering from the spatial aliasing problem for broadband 

signals.  This problem results  from the periodic  Direction of Arrival  (DOA) of sound 

wave from the  source  to  microphones  according  to  the  inter-mic  spacing.  Therefore, 

nonuniform irregular arrays breaking the periodic nature of DOA are considered to be 

more  effective  to  suppress  the  coherent  level  of  received  signals  and  further  reduce 

sidelobe levels. 

   The basic ideal of spatial perturbation method for irregular microphone array design is 

adding  perturbation  to  each  element  position  of  uniformly  spaced  regular  array  to 

suppress sidelobe levels. By applying the first two terms of Taylor series expansion to 

approximate the complex and nonlinear pattern function, the residuals between desired 

array gain pattern and an initial regular pattern are expressed as the linear combinations 

of spatial perturbations from regular positions. Then the optimal perturbations to form the 

irregular geometry can be calculated by a linear iteration procedure [53-58, 72, 73]. 

   Consider  the  ideal  situation  for  traditional  far-field  array  design,  where  this 

optimization  method  is  originally  developed, the  radiation  field  pattern  of  an  even 

equispaced linear array with uniform excitation can be described as: 

 E r θ=∑
p=1

P

A p exp j x p u= 2
P ∑

p=odd

P - 1

cos p
2

u ,                      (66)

where u=d sin θ−sin θ0 .  =2/ .  θ 0 is  the  array steering  angle. d is 

the unit inter spacing of elements. By adding spatial perturbation vector e p to the  pth 

microphone position of regular array, the new element position can be expressed as:

 x p= pe pd ,                                                 (67)

Then the gain pattern is rewritten as:
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E θ= 2
P ∑

p=odd

P -1

cos  p
2

e pu

E θ =E r θ  2
P ∑

p=odd

P -1

[ cos  p
2

u⋅cos e p u−sin p
2

u⋅sin e p u−cos  p
2

u]
 

, (68)

If all the perturbations are very small, after picking up the first item of Taylor series, the 

approximation  can  be  made  as cos e p u =1 ;sine p u=e p u . Then  the  residuals 

between the pattern of perturbed microphones and the reference pattern can be written as:

 E−E r=
−2u

P ∑
p=odd

P - 1

e psin  p
2

u ,                                      (69)

which is a linear combination of e p . 

   Analytically, e p can  be  computed  by  the  formula  of  Fourier  coefficients 

e p=
P
 ∫

-/2

/2 1
u

E r−E sin  pu
2

du ,  as  Harrington  proposed  in  [73],  where  the 

approximation is restricted to small perturbation and minimizes the mean square error of 

pattern.  Hodjat  [55]  and Kogan  [56]  directly  chose  the  residual  between the  desired 

pattern and the original pattern of equispaced regular array as the objective function, then 

defined a multiplier f(u) to designate a arbitrary percentage of residual reduction for each 

iteration,  as E−E r=−E r f u=R .  After  defining  the  important  spatial  points

u1, u2...u N for  gain  pattern  control  (eg.  possible  noise  and  target  positions)  and 

corresponding sidelobe reduction levels R1, R2. .. RN , N/2 linear equations of  e p are 

listed. (Usually let N=P.) Due to the symmetry of array, these equations can be solved to 

get the values of perturbation ( e p , p = 1, 2, ..., P) as the results of the first iteration. 

Then the new gain pattern can be calculated by Eq. (68). In the next iteration, this new 

pattern  are  considered  as  the  reference  pattern E r ,  and  the  computation  can  be 

continued in the same manner until the desired pattern is achieved. 

   In  addition,  other  optimization  criteria,  such  as  minmax  pattern  distance  [72]  (as 
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discussed in 3.2.1) and  minimum square difference  C= 1
2∑

n=1

N

[ E un−E r un]
2  [53, 

57, 58], can also be applied as the objective functions for the linear programming routine 

(eg. Gauss-Newton algorithm) to compute the optimal perturbations to generate desired 

gain  pattern.  The  constrains  of  these  objective  functions  can  be  transferred  by  the 

subspace theory and Lagrange multipliers as mentioned in Section 3.2.5.

    In conclusion, the spatial perturbation methods apply linear approximation to transfer 

the  nonlinear  nonuniform  spacing  problem  of  irregular  array  pattern  to  a  linear 

combination of  microphone perturbations  based on the  regular  geometry.  Then apply 

traditional linear programming algorithms to compute the proper values of perturbation 

providing desired gain pattern. Simulation results show that these approaches can reduce 

the first sidelobe level significantly, while only slightly broaden the MLW. 

   However, it can be seen that the traditional  spatial perturbation methods are derived 

with  two  limitations:  the  far-field  propagation  mode  and  the  initial  regular  array 

geometry. Since the typical scene for the speech capture of microphone array is near-field 

and immersive environment, far-field approximation might bring serious pattern errors. 

In addition, the approximation of the nonlinear pattern has the limitation that the element 

spatial perturbations should be very small, which means these optimization methods can 

only slightly adjust  the configuration of the initial regular array.  The choice of initial 

array is very important for resulting in global optimal positions, instead of local optimum. 

In previous optimization procedures, only regular equispaced arrays are applied as the 

initial  arrays  for  the  pattern  approximation  to  simplify  the  problem.  Further 

diversification of the microphone arrangements is restricted. Therefore, a new problem 

function for completely arbitrary microphone placements in immersive environment is 

needed. 

   By applying DSB, the general gain pattern expression based on the spherical wave 

propagation is derived as:

 

E r , , ,=∑
p=1

P Bp

d p
exp [− j  p− ' p]

=∑
p=1

P B p

d p
exp {− j [d pr , ,−d ' p r0 ,0 ,0]} ,             (70)
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where =2/ , θ and  are elevation and azimuth angles. r p= r p ,p ,p is the 

position  vector  of  the  pth microphone. r=r , , is  the  spatial  position  vector 

representing assumed source position. r i= ri ,i ,i is the focal point of beamformer 

(maximum radiation  position). d p is  the  distance  between  pth microphone  and  the 

source, which equal to

                 ∥r p−r∥=r p
2 r 2−2 r p r [cosp cossin psin  cosp−] ,          (71) 

d ' p is the distance between pth microphone and focal point r i , which equal to 

                 ∥r p−r i∥=r p
2 r i

2−2 r p r [cos p cosisin p sinicos  p−i] ,        (72) 

With fixed focal point r i= ri ,i ,i and signal frequency  , any spatial point of 

beampattern  can  be  expressed  as  the  function  of  microphone  position  vectors 

r p= r p , p , p , p=1,2,... , P .  Since the objective functions of array optimization are 

usually expressed as the functions of beampattern, they can be transferred to the functions 

of elements positions, such as pattern distances proposed in section 3.2.1. Therefore, the 

optimization  procedure  can  be  described  as  varying  the  design  vector 

r p ,p , p , p=1. .. P in possible design space to search for the extreme point of the 

objective functions. For regular linear array along x axes with equal inter-mic space d ,

r p= r p ,p ,p= pd , 
2

,0 ,  and d p= p d sin cos in  far-field  mode.  The 

pattern function turns into  E=∑
p=1

P

B pexp {− j  p d sin cos−sin i cosi} , which 

is consistent with the formulation used in traditional spatial perturbation approaches. For 

irregular array, the design vector can be assigned in any possible position sets without the 

limitation of classical regular array geometry.   

   However,  by  abandoning  the  simplification  mode  of  far  field  and  regular  array 

geometry expression which is not very suitable for microphone array applications, the 

objective  function  become  very  complicated  when  applying  analytical  optimization 

approaches. Therefore, instead of far-field mode, multi-variable Taylor series expansion 

is applied to simplify Eq. (71) and Eq. (72) to the polynomials of design vectors. For 
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example, for a specified spatial point r (interested spatial sample of beampattern), the 

second order Taylor series approximation of Eq. (71) about origin r *=0,0,0 is given 

by: 

f r p=∥r p−r∥≈ f r *d f  r* 1
2 !

d 2 f r *

≈r−r p cos −r p p sincos r p
2 sin2 

2 r
≈a∗r p

2b∗r p pc∗r pd ,                  (73)

where  a,  b,  c,  d are the coefficients of polynomial, computed from r=r , , . In 

Cartesian coordinate system, this Taylor approximation is given by: 

 

f r p=∥r p−r∥≈ f  r *d f r * 1
2 !

d 2 f r *

≈ x2 y2 z2− x
 x2 y2z 2

x p−
y

 x2 y2 z2
y p−

z
 x2 y2 z2

z p

≈a∗x pb∗y pc∗z pd ,   (74) 

where  a,  b,  c,  d are  also  expressed  as  the  functions  of  spatial  sample  position 

r=x , y , z  .  Therefore,  for  a  fixed  spatial  point,  the  coefficients  a,  b,  c,  d is 

consistent, and the differential distance can be approximated by a polynomial of r p . 

Then the complex objective functions  of  optimization  can  be  transferred  to  a  simple 

mode of design vectors, which can be solved by traditional optimization algorithms as 

discussed earlier in this section. It is noted that the expansion point r * should be near 

the variable r p to reduce the approximation error. In real cases, r * is usually set as 

the  centroid  of  microphone  positions,  or  other  suitable  spatial  point  associated  with 

specified  type  of  Taylor  series  expression  and  the  shape  of  possible  microphone 

arrangement region. 

   In order to compare the approximation errors between traditional far field mode and 

proposed approach, Figure 5.1 gives the plots of approximation errorbars for 8 spatial 

samples  in  the  circle  of r=4, 0/2, =±/2 with  the  microphone  design 

space  in 0 x p1.5, −1.5 y p1.5, 0z p1.5 .  It  can  be  seen  that,  because  the 

microphone design space can be expressed in a relative small range of x p , y p , z p  

but  large  range  of  p ,  p ,  the  multi-variable  Taylor  expansion  in  Cartesian 
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coordinate system has the smallest approximation error, while the Taylor expansion in 

spherical coordinate system doesn't work well. In order to avoid this problem, in Figure 

5.1(c)  Taylor  approximation for  single  variable r p in  spherical  coordinate  system is 

applied to minimize approximation error, while the second order expansion is actually the 

same with the traditional far field expression. Therefore, by choosing suitable expansion 

point  and  Taylor  series,  the  pairwise  distances  in  beampattern  computation  can  be 

expressed by a polynomial of design variables r p within a acceptable approximation 

error  range,  which  makes  it  possible  to  apply  traditional  analytical  optimization 

approaches  to  solve  the  objective  function  of  microphone  array  optimization  in  an 

immersive environment.

(a)

(b)

(c)

Figure 5.1:  Errorbar plots of Taylor series approximation. (a) Errorbars of multi-variable 

Taylor expansion in Cartesian coordinate system. (b) Errorbars of multi-variable Taylor 

expansion in spherical coordinate system. (c) Errorbars of Taylor expansion for signal 

variable r p in  spherical  coordinate  system,  where  the  second  order  expansion  is 

identical with tradition far-field mode.

99

1 1.5 2 2.5 3 3.5 4

-1

0

1

di
st

an
ce

 e
rr

or

Cartesian Coordinate

1 1.5 2 2.5 3 3.5 4

-1

0

1

di
st

an
ce

 e
rr

or

Multivariables of Spherical Coordinate

1 1.5 2 2.5 3 3.5 4

-1

0

1

di
st

an
ce

 e
rr

or

Rm of Spherical Coordinate

1 1.5 2 2.5 3 3.5 4

-1

0

1

di
st

an
ce

 e
rr

or

Order of Taylor Series

Far field

Tayl or Seri es Approxi mati on of  Di stance

far
field

                                                                                                               

Order of Taylor Series

Order of Taylor Series

1 1.5 2 2.5 3 3.5 4

-1

0

1

di
st

an
ce

 e
rr

or

Cartesian Coordinate

1 1.5 2 2.5 3 3.5 4

-1

0

1

di
st

an
ce

 e
rr

or

Multivariables of Spherical Coordinate

1 1.5 2 2.5 3 3.5 4

-1

0

1

di
st

an
ce

 e
rr

or

Rm of Spherical Coordinate

1 1.5 2 2.5 3 3.5 4

-1

0

1

di
st

an
ce

 e
rr

or

Order of Taylor Series

Far field

Tayl or Seri es Approxi mati on of  Di stance

far
field

                                                                                                               

Order of Taylor Series

1 1.5 2 2.5 3 3.5 4

-1

0

1

di
st

an
ce

 e
rr

or

Cartesian Coordinate

1 1.5 2 2.5 3 3.5 4

-1

0

1

di
st

an
ce

 e
rr

or

Multivariables of Spherical Coordinate

1 1.5 2 2.5 3 3.5 4

-1

0

1

di
st

an
ce

 e
rr

or

Rm of Spherical Coordinate

1 1.5 2 2.5 3 3.5 4

-1

0

1

di
st

an
ce

 e
rr

or

Order of Taylor Series

Far field

Tayl or Seri es Approxi mati on of  Di stance

far
field

                                                                                                               



5.2    Heuristic Optimization Strategy

5.2.1    Introduction 

The beamforming performance of microphone array is often assessed in terms of array 

spatial  gain  pattern,  which  is  a  complex  and  nonlinear  function  of  the  microphone 

geometry.  This  complex  relationship  limits  the  application  of  traditional  optimization 

algorithms  on  irregular  arrays.  Previous  optimization  approaches  apply  linear 

approximation  and  spatial  perturbations  based  on  regular  geometries  to  simplify  the 

problem. The residuals between desired array gain pattern and an initial regular pattern 

are expressed as the linear combinations of spatial perturbations from regular positions to 

calculate the optimal geometry by linear iteration procedure [53-57, 72, 73]. Although 

this  method  can  effectively  sculpture  gain  pattern  shape,  it  is  limited  to  small 

perturbations to ensure prerequisite of linear approximations. Several new works [74, 75] 

introduce numerical approaches to minimize the residues between desired gain pattern 

and the actual pattern, which has to be computed point to point based on microphone 

positions.  Random or exhaustive search methods can also be used in search of optimal 

geometry, which evaluate each candidate via Monte Carlo simulations. These methods 

are very flexible, but time consuming for large spaces and complex acoustic scenes [1]. 

This limits their feasibility for applications where rapid deployment is required, such as 

in  the  case  of  mobile  platforms  with  changing  acoustic  scenes  and  surveillance 

applications. To address this limitation, this section proposes a genetic algorithm for the 

array optimization problem in conjunction with efficient objective functions and flexible 

acoustic scene descriptions, as discussed in Section 2.5 and Section 3.2.2.

   Derived from the theory of natural selection, GA exploits the historical information of 

evolution  procedure  to  guide  the  searching  path.  It  predicts  the  new generation  with 

expected better performance based on the probabilistic rules, and has been demonstrated 

as an effective tool in the area of nonlinear optimization problems [76-79]. This section 

introduces  GA to  the  microphone  array  optimization  problem  with  the  purpose  of 

obtaining superior interference reduction for speech applications. Instead of computing 

the beamforming performance of every candidate via Monte Carlo simulations, functions 
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based  on  microphone  geometric  descriptors  showing  strong  correlations  with  array 

performance  are  applied  as  the  objective  functions  (C2 proposed  in  Section  3.2.2). 

Experiments in three acoustic scenes with different possible noise and target distributions 

are performed to validate the effectiveness and feasibility of proposed method. Three 

types of design surface for microphone distribution considered here are the 1D (linear 

design space), 2D (square surface), and 3D arrays (spherical surface). Results in terms of 

SNR are compared to comparable regular arrays, randomly generated irregular arrays, 

and  optimal  arrays  obtained  by  a  direct  exhaustive  search  method  to  assess  the 

performance of proposed method. The comparisons for the impacts of GA operators are 

also presented to improve the robustness of the optimization for different applications. 

Evaluation of reliability and results from real recordings are also provided to demonstrate 

feasibility. 

5.2.2    Settings of GA

Chapter 2 analyzed the relationship between irregular microphone array geometries and 

spatial filtering performance with Monte Carlo simulations. Novel geometry descriptors 

were developed to capture the key properties of microphone distributions showing their 

impact on array performance.  It has been demonstrated that in conjunction with array 

centroid offset  and dispersion, statistics of DPD distribution can explain variations of 

performance metrics  when steering at  targets  for  immersive or near-field  microphone 

applications. The optimization of our study seeks to find a microphone distribution within 

predefined design space that maximizes the beamformer SNR over a given distribution of 

target and noise sources. In order to avoid the expensive computations associated with a 

direct array gain computation over the space of interest, these geometric descriptors are 

applied to characterize irregular microphone distributions with similar performance. By 

applying the objective functions (C2 proposed in Section 3.2.2) using performance-based 

geometric  descriptions  of  microphone  distribution  that  circumvent  direct  array  gain 

computations  over  the  space  of  interest,  the  optimization  time  of  GA can be  greatly 

reduced.  In  addition,  probabilistic  descriptions  of  acoustic  scenes  are  introduced  to 

incorporate various levels of prior knowledge for the source distribution.

    After determining the objective function of optimization experiments, the settings of 
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GA procedure are introduced in this section. It is noted that the GA approach exploits 

historical information of the evolution procedure to predict new generation with better 

fitness (smaller value of the objective function). Following the rules of “survival of the 

fittest”  [76-79],  the genes  of  individuals (the microphone coordinates  of arrays)  with 

higher fitness will have more chance to be inherited by offspring, while perturbations are 

introduced randomly to the population to enhance diversity of the evolution. In our case, 

all coordinates of specified array are considered as an individual, and the fitness value is 

assessed  by  the  objective  function  C2.  Parents  are  selected  based  on  fitness  values 

undergoing crossover and mutation to give birth to the new generation. The evolution 

procedure continues until reaching acceptable fitness value or the limitation of iteration 

number. The general flow chart is shown in Figure 5.2. 

Figure 5.2: The flow chart of GA
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   Different  with  traditional  optimization  algorithms,  which  search  from one  single 

solution to another, GA is based on the group evolution of possible solutions, effectively 

reducing  the  possibility  of  being  trapped  in  local  optima  [76].  Also  the  collective 

searching  of  GA,  where  the  change  of  each  individual  affects  multiple  offspring, 

enhances  the  effectiveness  of  evolution,  and  all  required  information  of  solution  is 

included in the coding of individuals to ensure the simplicity of the algorithm [76-79]. In 

order  to  control  the  optimization  procedure  properly  for  various  microphone  array 

problems, different choices of GA scheme are introduced and compared in three typical 

experiments to search for relative optimal microphone distributions. The important steps 

of GA applied in our study are discussed as below.

   Coding  of  Individual: Different  coding  selection  of  GA can  greatly  affect  the 

evolution path and convergence characteristics. Usually two types of coding scheme are 

applied, the multi-variable integer coding (IC) and the binary coding (BC) [76, 77]. In IC 

scheme, the coordinates of each microphone can be used directly as the individual. Or 

they can be discretized into the sequence number of locations by the minimum tolerable 

distance  of  adjacent  microphones.  In  BC  scheme  the  microphone  locations  are 

represented by a n bit binary code, while 2nM and M is the number of all possible 

microphone arrangements. The performance of each coding scheme for the microphone 

optimization problem will be assessed later in the experimental section. 

      Parent Selection:  With the idea of “survival of the fittest”, parent selection is trying 

to  assign  a selection  probability  function  with  the  bias  toward  these  high  fitness 

individuals, who are more likely to generate good offspring. The probability to select the 

ith individual can be computed as [76]:

                P i =
f i

∑i=1

N
f i

 ,                                               (75)

where f i is  the  fitness  value  of  ith individual  and N is  the  population  of  each 

generation.  In  order  to  avoid  high-fitness  domination  problem during  evolution,  this 

selection  probability  can  also  be  assigned  as  a  function  of  the  fitness  ranks,  while 

different  functions  reflect  different  tendencies  to  select  top  ranked  individuals 

independent with the fitness values [76, 77].
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     Crossover: In our experiments, to maintain a reasonable balance between inheritance 

and exploration of  the  offspring,  60% of  parents  are  devoted into crossover  process, 

which is implemented by randomly copying information from the corresponding parents' 

coordinates in each dimension. However, the impact of this process greatly depends on 

the choice of coding schemes.  As show in Figure 5.3,  if  applying IC whose element 

exclusively represents one dimension of microphone coordinates, the offspring will be a 

random  combination  of  parent  coordinates.  For  BC,  by  exchange  binary  bits  the 

coordinates of parents will not be retained in the offspring. Crossover under IC ensures 

the inheritance of good genes from parents, while crossover under BC adds diversity to 

the  inheritance  procedure  but  might  lose  focus  on  fittest.  Therefore,  experimental 

comparison is performed to explore the benefits of these coding schemes on microphone 

array problems.  

     Mutation:  Other than crossover, the remaining 40% of parents undergo mutation, 

which adds random perturbations to each bit of the parents' codes as shown in Figure 5.3. 

In IC case, the perturbations directly represent spatial displacements to each dimension of 

parents' coordinates, and are generated from a normal distribution N  0 ,  2n  in our 

study, as [78]:

                n=0 
n -1 ,                                                  (76)

where n is the iteration number, and 0 is the initial standard deviation related to the 

wavelengths  of  signal. 01 is  a  constant  to  control  the  rate  of  shrinkage  of 

perturbation along generations. The idea here is to add large perturbation at the beginning 

of  iteration  to  increase  searching  diversity  avoiding  GA trapped  in  local  optimum. 

Because large perturbations interrupt a search path from an optimal direction and reduce 

convergence speed, n is  reduced to speed up the convergence when the optimal 

searching direction becomes more specified along with the iteration. Mutation of BC is 

performed in a similar manner by flipping bits according to the probability of P n , 

where P n plays the same role with n to adaptively control the level of added 

diversity during iteration.  
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Figure  5.3:  Crossover  and  mutation  for  arrays  with  P microphones.  The  black  box 

represents each dimension of microphone coordinate. The blue dashed box represents the 

bit of parent's coding used for crossover and mutation. The mutations are based on the 

second parents. 

   Balance of Inheritance and Diversity: The art of a successful GA optimization is to 

maintain the balance between  inheritance and exploration to suit different optimization 

problems. A tradeoff exists between inheritance pressure of good genes from parents and 

searching diversity of distributing offspring into the problem space. Inheritance pressure 

can be assessed by the bias to select high-fitness individuals as parents, and the ratios of 

crossover and mutation. Searching diversity is measured by the level of distractions from 

current searching path, and is related to the population size and standard deviation of 

perturbations of GA. High inheritance pressure increases concentration on high-fitness 

individuals  while  losing  diversity  of  offspring  and  risking  trapping  in  local  optimal 

solution. However, too much searching diversity could blur the guided direction from the 

information of  older  generation,  and  slow down the  convergence  speed of  evolution. 

Therefore,  in  order  to  balance inheritance  and exploration,  appropriate  choice  of  GA 

parameters  are  necessary.  Several  methods  to  control  the  inheritance  pressure  and 

searching diversity are applied in this paper as below.   
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   (1)  Immortal elite

   Although information of parents are exploited to guide the searching path, there is no 

guarantee that the high-fitness individuals will survive during the generation transition 

[76]. The potential best solution may be lost forever. Therefore, immortal elite method 

ranks the fitness of the offspring together with the old generation and sorts out the new 

generation with the same population to ensure the survival of  elite.

   (2)  Adaptive selection probability function 

   During the parent selection, bias to select high-fitness individuals is controlled by the 

selection probability function based on fitness value or fitness rank of individuals. For 

specified optimization problem, this probability function needs to be adjusted to meet the 

requirement  of  inheritance  and  searching  diversity.  Adaptive  selection  probability 

function  assigns  a  moderate  bias  at  the  beginning  of  GA to  enhance  diversity,  and 

adaptively increases this  tendency along iterations to speed up convergence when the 

optimal searching direction becomes more specified through evolution. Our experiments 

applies Rank Adaptive Probability Function (RAP) for the parent selection, and compares 

its  performance  with  the  traditional  Constant  Probability  Functions  based  on  Fitness 

Values  (FCP) and  Fitness  Rank (RCP).  In  RAP,  the probability to  select  ranked  ith 

individual is defined as:

          
P i = 1

1i
i E


ceil n

10
1 ,                                           (77)

where n is the number of iterations and iE is the cutoff number of elite, which can be 

computed from the population of each generation and the predefined percentage of elite. 

As  shown  in  Figure  5.4,  the  shape  of  probability  function  is  adjusted  every  10 

generations,  and converge to RCP when the iteration number becomes very large.

   (3)  Forced mutation

   Because of the limitation derived from the physical conditions of acoustic environment, 

illegal  individuals  may  be  generated  during  iteration,  which  are  outside  defined 

microphone design space, or repeat with the other individuals. Forced mutation [76, 77] 

directly replaces these illegal individuals by random generated individuals to increase 

mutation rate and add more searching diversity to ensure focusing on global optimum.
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Figure 5.4: Rank adaptive probability (RAP) function for parent selection, where n is the 

iteration number.

   Selection Criteria based on SNRs:  After the iteration,  the last  generation of GA 

contains  individuals with the achievable highest fitness assessed by proposed objective 

function, which is derived from the experiential relations between important geometric 

characteristics of microphone array and performance metrics. These individuals in the 

last  generation  representing  specified  microphone  distributions  are  expected  to  show 

optimal  beamforming  performances  based  on  the  probabilistic  rules.  In  order  to 

demonstrate  this  prospect  and  select  the  optimal  arrays  for  specified  acoustic  scene, 

Monte Carlo experiments (as discussed in section 3.4) are performed to simulate the SNR 

performance  of  each  array  in  the  last  generation  with  various  target  and  noise 

occurrences. In this dissertation, simulated sources consist of colored noise generated by 

the band important function of the SII model [34], which emphasizes the frequency bands 

most important to speech intelligibility. For each array in one specified acoustic scene, 30 

second simulation is performed to compute the SNR while the target and noise sources 

are  reselected  every  0.5  second  under  predefined  corresponding  probability  density 

function of source distribution.

   The criterion to select top 3 optimal geometries from the last generation in terms of 

simulated 60 SNR results of each array depends on specified requirement of application, 

such as strong robustness, optimal average performance and high stability. Four selection 
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criteria are proposed to fit different applications,  as shown below:

   SC1: Maximum average SNR over the 30s Monte Carlo experiment, to pick up the 

array geometry with best overall beamforming performance.

    SC2: Smallest standard deviation of SNRs along different target and noise occurrences 

in the 30s simulation, related to the stability of beamforming performance in different 

situations.

   SC3: Maximum minimum SNR or 10% SNR percentiles over the 30s simulation, to 

pick up the array with the optimal worst case performance.  

  SC4:  Limitations  of  the  SNR  percentiles  (10%,  25%,  50%  and  75%)  over  30s 

simulation, combining the previous three criteria together to meet multiple requirements 

of array beamforming performance.

   In the next section,  SC1 is applied in all the experiments to pick up the optimal array 

from the last generation of GA, where the beamforming performance of each array is 

assessed by the average SNR over the 30s simulation.

5.2.3    Experiments and Discussions

This section evaluates the effectiveness of optimizing irregular microphone distributions 

with the GA using the geometric-based objective functions. Optimization experiments 

over  3  design  spaces  are  performed,  which  include  the  1D  linear  array,  2D  planar 

irregular array, and 3D spherical array. Results in terms of SNR are compared to regular 

arrays with the same number of microphone and dispersion, as well as the optimal array 

obtained  through  a  direct  exhaustive  search  (representing  the  upper  limit  for 

performance). In addition, comparisons for different GA parameters are also presented to 

assess their impact on optimization performance, and provide general guidelines for GA 

settings based on the application.

5.2.3.1    Experimental Settings

The space of interest for all the experiments was within a 10×10×2 m3 room. The goal of 

the optimization procedure was to find the distribution with superior noise suppression in 

given acoustic scene (source and interferer distribution and activity). Each source and 

interferer consisted of colored noise generated from the band importance function of the 
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SII to simulate the frequency range of human speech. The details of each optimization 

problem are given in Table 5.1. The basic settings related to GA inheritance and diversity 

are given in Table 5.2. In order to test the performance of the resulting arrays, Monte 

Carlo  simulations  are  applied  over  each  acoustic  scene  to  estimate  the  SNR for  the 

proposed  geometries,  as  discussed  in  previous  section.  A  30  second  recording  is 

simulated for each scene, where a target/noise occurrence is randomly changed every 0.5 

seconds  under  predefined  probability  density  function  of  the  source  distributions 

introduced in Eq. (44). To assess the effectiveness of the proposed objective functions C2, 

the average SNR over all the geometries in the last generation are compared to randomly 

generated  irregular  geometries  of  the  first  generation,  in  addition  to  the  regular  and 

optimal  geometries  picked  by  exhaustive  search  method.  The  convergence  speed, 

reliability, and computational complexity of this optimization method are also examined. 
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Table 5.1: Optimization scenarios. 

Design Spaces Acoustic Scenes

Case 1: Linear over 

middle beam of 

ceiling

3 uniformly generated source positions in the vertical plane 

of middle beam. One is arbitrarily selected as target, while 

others act as interference.

p ri=
1
3

, i=1,⋯ ,3 ;

p r s |r i=1 , s=1,⋯,3, s≠i

(Target and noise space are completely overlapped.)
Case 2: Planar over 

ceiling

10 uniformly generated source positions.  The target is 

arbitrarily selected from 4 of them. Except for the target 

position, the other 9 are considered as interferences. Each 

has 4/5 chance to make sound. 

p ri=
1
4

, i=1,⋯, 4 ;

p r s |r i=
4
5

, s=1,⋯,10, s≠i

(Target and noise space are partly overlapped.)
Case 3: Spherical cap 

ceiling 

(radius of the 

sphere= 36m; 

center  = 

[5,5,37.6]; 

height of the cap 

= 0.7013m)

5 uniformly generated source positions. The target is 

arbitrarily selected from 2 of them (predefined interested 

positions), while the other 3 acting as interferences. Each 

one has a 3/4 chance to be active. 

p r i=
1
2

, i=1,2 ;

p r s |r i=
3
4

, s=3,⋯,5

(Separated target and noise space.)
Note: The minimum inter-mic distance for all geometries was limited to 0.1m.
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Table 5.2: Fixed GA settings

 Pop. Elite 

Percentage 

Ratio of 

Crossover

Ratio of 

Mutation

Iteration 

Threshold

Case 1: 80 25% 60% 40% Iter. No. =  100
Case 2: 100 25% 60% 40% Iter. No. =  120
Case 3: 100 25% 60% 40% Iter. No. =  120

5.2.3.2    Results in terms of SNR

Table 5.3 shows the SNR results of each optimization scenario. The mean SNRs with ± 

one standard deviation over the arrays in the first and last generation of GA are presented. 

It can be seen that the randomly selected irregular arrays in the first generation contain 

both superior and inferior arrays relative to the regular array. By comparing the first and 

last  generation  of  the  GA  large  SNR  improvements  are  observed  as  a  result  of 

optimization under the geometry-based objective function rules, no matter which coding 

scheme is applied. Also for all the three problems, the SNR variance along arrays in the 

last generation are reduced, indicating that the optimization procedure sorts out the good 

irregular arrays with increased performance consistency. The optimal array obtained by 

an exhaustive search method provides a benchmark to evaluate the SNR improvement 

resulting  from GA.  By comparing  the  SNR of  the  top  performing arrays  in  the  last 

generation (estimated by the 3rd quartile SNR representing performance of upper half 

generation arrays) with the optimal array from exhaustive searching, about 60% of the 

maximum possible SNR improvement is achieved by GA for each case. Take case 1 GA-

BC  for  example,   the  3rd  quartile  SNR  of  the  last  generation  arrays  =  22.88  dB,

22.88−17.51
25.87−17.51

=64.23% . 
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Table 5.3: SNR comparison (dB)

Last 
Generation 
of GA-IC

Last 
Generation 
of GA-BC

First 
Generation

 of GA

Regular 
Planar

Exhaustive 
Search 

Case 1: 20.62
(±2.10)

21.27
(±2.06)

17.51
(±2.90)

18.32 25.87

Case 2: 6.93
(±0.75)

6.57
(±0.75)

3.02
(±1.59)

2.20 10.24

Case 3: 12.91
(±1.82)

11.44
(±1.79)

8.78
(±2.52)

9.32 17.09

Note: the results are for arrays with 16 microphones.

   Figure 5.5 provides the SNR improvements vs.  microphone densities for the three 

optimization scenarios with different coding scheme. Figures 5.5(a)(c)(e) show the SNR 

results when applying GA-IC. Generally, the SNR improvements brought about by the 

GA optimization reduce with increasing microphone density. Microphone placements are 

more critical for low densities. If the microphone density is very high, it is not necessary 

to  perform the  optimization  procedure,  since  an  arbitrary  array  can  provide  a  good 

beamforming SNR. While the critical density values are dependent on the design spaces 

and  acoustic  scenes,  the  numbers  from  Figure  5.5  provide  a  general  idea  of  when 

optimizing  the  microphone  placement  is  important.  Each  graph  plots  the  SNR  gain 

between the last generation and the first as well as the last generation and the regular 

array. The critical microphone density for the linear array is 2.5 mic/m, for the planar 

array is 6 mic/m2, and for the spherical array in problem 3 is 4 mic/m2.

   Figures 5.5(b)(d)(f) show the SNR results when applying BC for generational changes. 

It can be seen that, because BC doesn't copy the coordinates of old generation directly, it 

adds more perturbations to the evolution, while losing some inheritable information. Its 

SNR improvements degrade severely with the increase of microphone density. However, 

due to the same reason, it also provides more chance to catch optimal points outside the 

original searching path, obtaining unexpected SNR improvements in certain cases, such 

as the 1.5 mic/m case in Figure 5.5(b) and 2.5 mic/m2 case in Figure 5.5(f). These results 

demonstrate that proposed optimization method provides important SNR improvement 
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when  the  FOV needs  to  be  covered  by small  number  of  microphones  in  immersive 

scenarios. If microphone density is in the comfortable range (smaller than the critical 

density  value),  IC is  the  proper  and effective  choice.  If  the  diversity  of  microphone 

coverage is restricted (high microphone density) or the population size is limited, BC is a 

good choice for finding singularities with superior beamforming performance. Note for 

each  case,  according  to  the  type  of  array and microphone number,  proper  geometric 

relationship function derived from the simulation data  of corresponding array type is 

selected to form the objective function [28, 80], which makes the SNR gain trend varied 

for each plot.

         (a)

       (b)
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(f)

Figure 5.5: SNR gains through GA optimization vs. microphone densities. (a) Case 1 with 

IC. (b) Case 1 with BC. (c) Case 2 with IC.  (d) Case 2 with BC. (e) Case 3 with IC. (f) 

Case 3 with BC. 

5.2.3.3    Observation of GA Evolution 

As mentioned before, the balance between inheritance and exploration is crucial for the 

success  of  GA.  The size  of  population,  the  coding  scheme,  and the  parent  selection 

probability  function  are  the  important  factors  impacting  the  searching  diversity  and 

convergence.

   Figure  5.6  shows the  GA convergence  with  16  microphones  for  the  optimization 

problem 3. Figure 5.6(a)(b) give the results using IC-RCP and IC-FCP schemes. It can be 

noted  that,  insufficient  size  of   population  (eg.  30  in  Figure  5.6(a))  cannot  be 

compensated for by increasing iterations. It traps the evolution in a local optimum. On the 

other hand, excessive population sizes only result in limited improvements, while greatly 

increasing  the  computational  complexity  (eg.  160  in  Figure  5.6(a)).  Therefore,  the 

traditional GA using RCP is very sensitive to the population size. Choosing a moderate 

size of  population  is  critical  for  the success  of  the  optimization.  For  the FCP parent 

selection function, it can be seen that although FCP based on the fitness value of each 

individual  shows  slower  convergence  speed  than  RCP,  it  has  more  robustness  with 

different choices of population size. 

   Figure 5.6(c) shows the convergence of IC-RAP, as defined in Eq. (77). It can be seen 
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that the new adaptive selection function results in a fast convergence speed as RCP, and 

meanwhile  shows enhanced robustness  along different  population  sizes.  Therefore,  in 

conclusion,  RAP is  the  better  choice  for  the  parent  selection  in  microphone  array 

optimization problem. With sufficient population size, RCP has the fastest convergence, 

while FCP can be applied to bring more iteration diversity to compensate for limited size 

of array population.    

   Figure 5.6(d) shows the convergence of  the BC scheme. When compared with IC 

(Figure 5.6(a)), the size of population has less impact on the BC convergence, while more 

iterations  are  needed  to  reach  the  optimum.  In  addition,  from  Figure  5.6(e),  the 

convergence of BC is very sensitive to the microphone density. In the optimization of 

problem 3, with the same size of population and iteration number, the converged value of 

BC  degrades  severely  with  the  increase  of  microphone  density,  which  explains  the 

relative small SNR improvement in Figure  5.5(f).  

   Table 5.4 summarizes the general comparisons of GA schemes for microphone array 

problem. In order to further demonstrate our conclusions, Figure 5.7 gives the average 

repeat rate of individuals of the first 20 iterations and 80 iterations with different GA 

schemes.  By comparison,  IC-RAP is  the  most  efficient  scheme providing  the  lowest 

repeating  rate  to  rapidly  update  new  geometries  with  better  fitness  in  the  early 

generations.  BC-RCP and IC-FCP also perform effective  evaluation  by providing the 

lowest repeat rate of individuals along 80 generations. These results are consistent with 

the previous conclusions of GA schemes. The optimal GA settings combine the coding 

scheme and parent  selection function  with complementary features  of  robustness  and 

convergence. Take IC-FCP for example, the slow convergence speed of FCP is offset by 

the fast speed of IC, while FCP brings more robustness with  insufficient population size.
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(d)

(e) 

Figure 5.6: The convergence of GA for arrays with 16 microphones in problem 3.  (a) IC-

RCP.  (b)  IC-FCP.  (c)  IC-RAP.  (d)  BC-RCP.  (e)  Converged  values  with  RCP  vs. 

microphone density. The smaller the converged value of the objective function, the higher 

the fitness is.
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Table 5.4: Comparisons of GA schemes

Convergence

Speed

Robustness 

along

 Pop. Size

Robustness 

along Mic 

Density

Ability to 

Discover 

Singularity

Coding IC fast bad good bad

BC slow good bad good

Parent 

Select

RCP faster bad good good

FCP slow better good bad

RAP fast good good good
Note:  Two types  of  coding  are  compared  to  each  other,  providing  relative  good/bad 

results. Results of 3 parent selection functions are provided from the similar manner.

Figure 5.7: Repeat rate of individuals along iterations

5.2.3.4    Reliability 

For all optimization problems, all the possible source positions were randomly chosen in 

FOV. In order to evaluate the reliability of this optimization algorithm for arbitrary source 

distribution in FOV, 30 experiments with 16 microphones are performed in the similar 

optimization scenes, where the source positions in each problem are randomly shifted in 

FOV. The results are provided in Table 5.5. 

   For the optimization results of planar arrays (case 2) and spherical arrays (case 3),  the 
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large majority of GA optimized irregular arrays have better beamforming performance 

than regular arrays, as well as the randomly generated irregular arrays, representing high 

successful rate of the optimization algorithm over the similar acoustic scenes. In addition, 

IC shows higher reliability than BC in these cases. For the linear array problem (case 1), 

where the one dimensional  design space lacks resolution for rotationally symmetrical 

positions,  the  optimization  won't  be  successful  if  sources  are  placed  in  these  blind 

positions.  Also,  with  fixed  number  of  microphone,  the  limited  choices  of  possible 

microphone positions reduce the diversity of possible solutions, and restrict the potential 

improvement thorough the objective functions. In these cases, consistent with previous 

SNR  analysis,  BC  shows  stronger  ability  to  find  the  optimal  array  with  superior 

beamforming performance.

   The average number of iterations needed to reach convergence are also given in Table 

5.5. Similar with previous conclusion, IC has faster convergence speed than BC, while 

BC has larger chance to discover super good arrays for problem with limited diversity of 

solution (as in  case 1).  The cpu processing times of GA are compared to exhaustive 

random searching methods with the same number of assessed array geometries. Results 

show a reduction in time by about 3 orders of magnitude. 

Table 5.5: Optimization reliability and processing speed

Similar Scene with: Case 1 Case 2 Case 3

Coding of GA: IC BC IC BC IC BC

Outperform 

Initial Generation 33% 57% 100% 93% 90% 80%
Outperform 

 Regular Array 33% 20% 100% 100% 100% 97%
Convergence Speed

(in iterations) 138 82 59 200 126 200
Computation Time 0.50% of the random search method

Note: take case 3-BC for example,  97% means that in 29 experiments out of 30,  the 

average SNR of the last generation arrays of GA outperforms corresponding regular array.
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5.2.3.5    Experimental Recording Results

To  further  demonstrate  the  beamforming  performance  of  GA  optimized  arrays, 

experimental recordings of planar ceiling arrays using 25 omnidirectional microphones 

are performed in a 3.58x3.58x2.29m space of interest bounded by aluminum struts as 

shown  in  Figure  1.4.  The  microphone  density  for  both  arrays  is  1.95  mic/m2.  The 

microphone signals were amplified with RME Octamic-D preamplifiers, sampled with 

RME HDSP9652 sound card at 44.10 kHz, and downsampled to 8kHz for processing. 

Four  loud  speakers  were  placed  in  the  FOV  to  play  prerecorded  human  speeches 

(including two male voices and two female voices) as the acoustic sources. These voices 

were normalized for power and the duty ratios for each source are 0.62, 0.56, 0.61, 0.54, 

so each speaker had similar volume levels. The optimization was performed assuming the 

sources as SII colored noise signals. The acoustic distribution was limited to 4 source 

positions, where each one is considered as a target and the others as interferers over 4 

possible combinations. The optimized array was expected to show the best target signal 

enhancement relative to the interferers summed over the 4 possible cases. 

   Three separate recordings of 28 seconds were made by each microphone geometry, 

where  the  optimal  irregular  array was  selected  by 50  iterations  of  GA-IC-RCP.  The 

Steering Response Coherent Power (SRCP)  images [40] averaged over all  frames are 

shown in Figure 5.8. It can be seen that the optimized irregular array shows stronger 

responses in the source positions, which is primarily a result of optimizing this array to 

provide the best beamforming performance over all sources. In addition,  the recovered 

waveforms from the output of beamformer when targeting at the right source are shown 

in Figure 5.9. By inspecting the waveforms and listening to the outputs of beamformer, it 

can be seen that in the time slots when the target source is active (marked by red points), 

the  recovered  signal  of  optimized  array  shows  enhanced  beamforming  gain  than  the 

regular array. 

   In order to assess the SNR enhancement relative to each target focal point over the 

interferers,  the inactivity periods for the target  speaker  were segmented out  from the 

output of beamformer, and the average power values were computed to denote the noise 

leaking into beamformed signal from the other speakers. The average power values for 

the active segments were computed as well. Results of SNR evaluations are presented in 
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Table 5.6. Note that when targeting at the top and right source the optimized irregular 

array shows better  SNR performance,  while  regular  array provides  better  SNR when 

targeting at the bottom and left source. The optimized irregular array provides a 0.94 dB 

overall  SNR  enhancement  over  the  regular  array.  This  result  is  consistent  with  the 

optimization criteria since it aimed at the best average performance and did not require 

the enhancement be evenly distributed over all the sources. In this instance it configured 

most of the microphones between the top source and all others. This pattern typically 

happens  when one  target  position  is  selected  against  the  others.  In  addition  to  these 

numeric results, the listening comparisons between beamformed signals can also confirm 

that the GA optimized geometry has better overall noise suppression ability, most notable 

in the top and right target sources. This example, therefore, demonstrates the ability and 

behavior of the optimization approach on a real recording, as well as the ability of the 

geometry-based  objective  functions  derived  from  the  simulation  data  to  improve 

performance through irregular microphone placements.

                              

                    

                                                 

                     (a)                                                            (b)                    

Figure 5.8: Top view power images. Red circles represent microphones. Four sources with 

the elevated power levels are located at the top, bottom, right and left in the FOV. (a) 

Regular array. (b) Optimized irregular array.
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Figure 5.9: Waveforms of the original signal from the right source  (row 1), beamforming 

output of optimized irregular array (row 2) and regular array (row 3) when targeting at the 

right source. The red dots represent the time slots when the target source is active (making 

sound). 

Table 5.6: SNR comparison (dB)

Arrays Right Target Bottom Target Left Target Top Target

Regular 6.06 6.07 1.65 4.54

Optimized Irregular 6.64 4.06 1.11 7.45

5.2.4   Conclusion

This  section  applied  geometry-based  objective  functions  for  optimizing  the  irregular 

microphone distributions with superior SNR performance for specified acoustic scene. 

Several  GA schemes  controlling  the  balance  between  inheritance  and  exploration  of 

searching procedure were evaluated and compared in the real optimization problems of 

microphone array.   

   Simulation results demonstrate that proposed optimization method effectively sorts out 
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these superior irregular geometries with large SNR improvements when comparing with 

randomly generated irregular arrays and regular arrays. The proper setting of GA should 

choose the population size,  coding scheme, parent selection function,  array type,  and 

other  parameters  with  complementary  features  of  convergence  and  robustness  of 

iterations for different optimization problems. In addition, the acceptable processing time 

observed during the experiments and the validation of real  recordings indicate strong 

correlation  between  proposed  objective  function  rules  and  array  beamforming  SNR 

performance for human speech. Also, the feasibility of proposed method is established for 

array geometry design in immersive environments where rapid deployment is required 

with limited knowledge of the acoustic scene,  such as in mobile platforms and audio 

surveillance applications. 

5.3    Cluster Design

5.3.1    Hyperbola Cluster

By visually  inspecting  optimal  random array  geometries  obtained  from the  heuristic 

optimization  methods  in  the  previous  section,  similar  patterns  of  microphone  cluster 

distribution are observed. Figure 2.10 [28] has provided several GA optimized irregular 

arrays with top SNR performance in specified acoustic scenes. It can be noted that for the 

case with discrete noise sources, high microphone densities exist in the area near target 

and noise positions.  For  the  cases  with continuous noise space,  the optimal  irregular 

arrays have sparse microphones over the noise space, but place microphones surrounding 

the noise area from the edge to the other side of room to generate a set of DPDs with 

large  dispersion.  This  kind  of  spatial  density  distribution  of  optimal  microphone 

arrangements can be successfully explained by the Hyperbola Area proposed in Section 

2.4.1. It concluded that for one pair of target and noise positions, the largest spread DPDs 

will be generated if microphones are clustered inside the hyperbola areas with target and 

noise positions as focuses. For example, Figure 5.10(a) gives a irregular array with top 

SNR  performance  resulted  from  GA  optimization,  where  one  target  and  three 

124



interferences are considered for this scene. The hyperbola areas for each target-noise pair 

are marked in dashed line with different color. It can be seen that most of microphones in 

the GA-optimized array are clusted in these hyperbold areas (grey areas). In order to 

demonstrate this conlcusion, Figure 5.10(b) provides a example for the irregular array 

clustered based on the hyperbola theory in the same scene. Microphones are divided into 

four  clusters  uniformly  distributed  in  these  four  hyperbola  areas. Simulations are 

performed with human speech signals in corresponding acoustic scenes. The SNR results 

as in Table 5.7 demonstrate previous conclusion by showing that the hyperbola clustered 

arrays have comparable or even better SNR results than GA optimized arrays, while great 

SNR  improvements  are  observed  in  both  of  these  geometries  compared  with 

corresponding regular arrays.  

     

   (a)                                                                 (b)

Figure 5.10:  Top view of GA-optimized irregular array and hyperbola clustered array. 

Blue circles represent microphones. Red crosses represent the possible noise space. Red 

triangle  is  the  desired  target  space. (a)  GA-optimized  irregular  array.  (b)  Hyperbola 

clustered array.
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Table  5.7:  SNR  comparison  of  hyperbola  clustered  arrays  and  corresponding  GA 

optimized arrays

Acoustic

Scenes

Hyperbola 

cluster

array set 

(50 arrays)

GA optimized 

irregular array set

(50 arrays  in the 

last generation of 

GA )

Randomly 

distributed 

irregular array set

(50 arrays in the 

1st generation of 

GA )

Regular 

array

Top 3 

SNR

(dB)

Average

SNR 

(dB)

Top 3 

SNR

(dB)

Average 

SNR 

(dB)

Top 3 

SNR

(dB)

Average 

SNR 

(dB)

SNR

(dB)

64 mics arrays with 

continuous noise 

space

8.92

8.87

8.71

6.81 9.03

8.99

8.98

8.45 6.47

5.67

5.49

3.83 3.40

64 mics array

with discrete noise 

sources

28.04

27.38

27.03

24.76  26.33

 25.78

 25.63

 23.83  22.61

 22.18

 22.09

17.96 17.28

9 mics array with 

discrete noise 

sources

21.83

21.07

20.69

17.93 18.24

17.71

17.65

 16.56 17.78

17.62

17.20

9.01 8.89

    Five separate recordings with different signal power levels were performed for the GA-

optimized array with 9 microphones, the hyperbola clustered array and regular planar 

arrays over the ceiling of the aluminum cage, where colored noise generated by the band 

importance function from the SII model are played through the speakers and varied for 

each recording. As shown in Figure 5.11, the SRCP images are created  to validate the 

superiority  of  GA-optimized  irregular  array  and  hyperbola  clustered  array  when 

comparing with regular array.
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          (a)    

     (b)                                                               (c)

Figure 5.11: Top view SRCP images averaged overall time slots. The red circles represent 

source  positions.  (a)  Regular  planar  array.  (b)  GA-optimized  irregular  array.  (c) 

Hyperbola clustered arrays. 

   In  conclusion,  the  hyperbola  theory successfully  explains  the  optimal  microphone 

density distribution from the results of optimization approaches in some degree.  To be 

specified,  microphones should be clustered in  the hyperbola  areas  of  each target  and 

interference position pair to generate a DPD distribution with rich entropy, and further 

improve  array  noise  suppression  ability.  By  following  this  conclusion,  hyperbola 

clustered arrays can be directly generated according to the prior knowledge of acoustic 

scene,  and provide comparable  SNR performance with the GA-optimized arrays.  The 

hyperbola cluster design method has been demonstrated to be a easy and feasible method 
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for the ad hoc (not computer aided) microphone array design.    

5.3.2    Multilayer Cluster 

Previous  section  proposed  a  array  design  method  with  the  element  clustered  in  the 

hyperbola areas, while  microphones are uniformly distributed in each cluster (subarray). 

Inspired by the theory of cell division and differentiation, this cluster design method can 

be  extended  to  different types  of  subarray  and  cluster  distribution,  which  can  be 

generalized as the multilayer cluster design method. The details are provided as below.

   Step 1: According to the prior knowledge of the acoustic scene, choose several initial 

configurations as the bases of array geometry, which can be either irregular or regular 

arrangements as discussed in section 4.2. The basic configurations set can be expresses as 

{ G } . 

   Step 2: Based on the predefined objective function, search for the optimal combination 

of {g , L ,a , , J }, g∈G as the initial layer of array, where g represents a basic array 

configuration  in G . L ,a , , J are  the  key  geometry  descriptors  to  identify  the 

microphone positions in g .

   Step 3: If the total number of microphone P is larger than the number of element P' in 

the initial  layer with {g , L ,a , , J } ,  consider  each element  as  the centroid of  one 

subarray. This problem turns into P' subarrays design problems with the same objective 

function. With fixed centroids, pick the optimal combination of {g ,a , , J } for each 

subarrays to form the final array configuration. This division process will continue until 

all microphones are used. 

   Table  5.8  generalizes the  possible  initial  configurations of G and  related  key 

geometrical parameters. The characteristics of beampattern of these configurations have 

be discussed in section 4.2. The configurations provided in this table can be considered as 

the bases of array geometry in each layer. Moreover, when applying Clustering Analysis 

(CA) to evaluate the beampattern of a complex array with large number of microphone, 

Table  5.8  can  also  be  considered  as  the  definitions  of  the  type  of  small  clusters  to 

decompose the original array, which is actually the inverse process of multilayer design 

approach.

128



Table 5.8: Several  basic array configurations and related geometry descriptors

Number of 

Microphones

 Array Configuration Geometry Descriptor

2 {L ,a} or directly use 

microphone coordinates
3 {L , a}

4 {L , a}

Large number Uniformly distributed in the design space {L ,a , , J }

   Figure 5.12 and Figure 5.13 provide a simple example for a 2 layer 2D array design 

case of 6 microphones. In this example, a pairwise array and related geometry parameters 

are chosen as the initial layer to meet the requirement of MLW in interested steering 

angle. Then each element in the initial layer is transferred to a triangle subarray to reduce 

the sidelobe levels. It can be seen that the final result of beampattern generally keeps the 

initial  width of main lobe,  while greatly reducing the sidelobe levels  and adding one 

dimension spatial resolution along y axis. Moreover, because the optimizing procedures 

only search for two geometrical parameters of two elements in the initial layer to meet 

MLW requirement, and one geometrical parameter of two sub-triangle arrays in the final 

layer to  meet  MPSR,  the  computational  complexity  has  been  greatly  reduced  when 

comparing with the heuristic searching method.
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Figure 5.12: Two layer array design. Circles represent microphones. Step 1: obtain the 

optimal red positions as initial layer. Step 2: extend each red dot to a subarray marked as 

the blue positions.

Figure 5.13: Resulted beampatterns of the arrays in Figure 5.12
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   Figure 5.14 gives another example  [81]  for the multilayer array design, where spiral 

arrays are considered as the initial layer and each element of spiral is transferred to a 

circular  subarray  as  the  final  layer.  By  controlling  the  {  , a , b }  of  spiral  array 

(geometry parameters as discussed in section 4.2.5) in the first step and the number of 

elements in each circular subarray, the microphone density distribution can be adjusted 

according  to  the  source  distribution.  As  discussed  in  [81],  this  kind  of  arrays  with 

circularly symmetry and zero redundancy of inter-mic spacing can substantially eliminate 

the grating lobes  over  a  broad range  of  frequencies  in  near  field,  while  the  required 

number of microphone is greatly reduced than a regular structure.

      (a)                                                                (b)  

 Figure 5.14: Circularly symmetric and non-redundant planar arrays (adapted from [81]) 

   In  conclusion,  the  basic  ideal  of  multilayer  cluster  design method  is  to  use 

combinations  of  regular  basic  configurations  to  represent  or  decompose  random 

arrangements, which brings the benefit of irregular element placements. By breaking the 

design  problem  into multilayer  subarrays,  the variables  of  optimization  are  greatly 

reduced.  In addition, in terms of searching direction of optimization, these array design 

approaches search  the  optimal  microphone  placements by  the  guide  of  basic 

configurations while the centroids of subarray are obtained from previous step. It will 

greatly reduce the computational complexity.   
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   The complex relationship between array gain patterns and microphone distributions 

limits the application of traditional optimization algorithms on irregular arrays.  Due to 

the randomness of microphone placements, it is difficult to control or predict the irregular 

array performance.  This chapter introduced three kinds of optimization methods for the 

irregular array design in immersive environments with broadband signals. The traditional 

analytical methods based on spatial perturbation were extended to the arbitrary irregular 

array  in  near-field  applications.  Based  on  the  relationships  of  important  geometry 

descriptors with performance measures, heuristic searching methods were proposed with 

the  probabilistic  functions  of  acoustic  scene  to  incorporate  various  levels  of  prior 

knowledge  of the source distribution. By successfully controlling the statistic geometry 

features  of  array  configurations  according  to  the  source  distribution,  cluster  design 

methods  were  also  introduced  to  reduce  the  degree  of  freedom  in  the  optimization 

procedure  of  irregular  array,  which  make it  possible  for  the  adhoc array design (not 

computer aided) with easy operation and installation. Simulation and experimental results 

have  demonstrated  that  these  optimization  methods  are  feasible for  the  irregular 

microphone  array  applications in  immersive  environments where rapid deployment  is 

required with limited knowledge of the acoustic scene, such as in mobile platforms and 

audio surveillance applications. 

      Moreover, as discussed before, no matter which optimization approach is applied, due 

to the restrict  of small  perturbations and possible ill-condition of iteration,  the proper 

choice of initial array configuration is crucial for resulting in global optimum solutions, 

as well as reducing computational complexity and improving the converging speed of the 

optimization  procedure. Instead  of  equispaced  linear  and  planar  arrays  in  traditional 

methods,  various basic array configurations were applied in our research to  meet the 

requirements of different applications. Based on the conclusions of Chapter 3-5 for the 

array design, in the real cases the initial array configurations and related optimization 

approaches can be chosen flexibly or combined together. For example, (1) MRA can be 

applied first to obtain desired spatial resolution, then use spatial perturbation method to 

slightly adjust the element placements to obtain minmax sidelobe level. (2) Apply GA to 

search globally, and take the resulted array as the initial condition of Gaussian iterations, 

which has a fast converging speed for local optimum. In summary, a smart initial guess of 
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array configurations can provide a faster convergence to the optimal solutions, improve 

the  robustness,  and  efficiently  reduce  the  computational  complexity  of  optimization 

procedure.   
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Chapter 6    Conclusions and Future 

Work  

Irregular arrays, which diversify microphone positions, can achieve better performance 

than traditional regular arrays, especially for human speech applications in immersive 

environments. Due to the randomness of element positions, it is difficult to control or 

predict  the  behavior  of  irregular  arrays,  while  the  geometry  parameters  applied  for 

regular array analyses are limited for explaining the performance differences of irregular 

arrays. 

   Our  work,  therefore,  analyzed  the  relationship  between  irregular  microphone 

geometries  and spatial  filtering  performance  with statistical methods.  Combined with 

descriptors analogous to traditional parameters for regular arrays (i.e. array centroid and 

dispersion),  novel  geometry  descriptors  involving  DPD  statistics  were  developed  to 

capture the properties of both irregular  and regular  microphone distributions showing 

their impact on array performance. It has been demonstrated that arrays with enhanced 

noise suppression ability should provide a DPD distribution with wide spread and high 

entropy to  decorrelate  the noise from target  signals.  Feasible  optimization  algorithms 

were proposed with the objective function rules using established relationship functions 

and probabilistic descriptions of acoustic scenes to incorporate various levels of prior 

knowledge of the source distribution.  General  guidelines in real scenarios and cluster 

design methods were also introduced to effectively control the key geometry descriptors 

related to microphone density distributions, and directly build arrays with superior SNR 

performance.  In  addition,  arrays  mutated  from  the  regular  configurations  were  also 
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introduced to overcome the limitations of regular arrays, and  provide good SNR results 

for speech signals with easily installation. To verify the effectiveness of these proposed 

methods,  simulated  gain  patterns  and  real  SNR results  of  the  optimized  arrays  were 

compared  to  corresponding traditional  regular  arrays  and arrays  obtained  from direct 

exhaustive  search  method.  Large  SNR enhancements  and  acceptable  processing  time 

were observed  in  most  of  these cases,  which  make  the  proposed  design  methods 

applicable for the environments required rapid deployment, such as in mobile platforms 

and audio surveillance applications. 

   The results  of  this  dissertation were based on the data  derived from Monte Carlo 

experiments with  ceiling arrays,  most  of  the conclusions  are  more  applicable  for  the 

human speech signals in indoor environments and near-field applications, where array 

distances from SOI have comparable values (less than three times) with array aperture. 

(Centroid  offset  should  be  smaller  than  three  times  of  array dispersion.)  In  addition, 

although  proposed  DPD measures  explained  most  of  the  performance  differences  of 

irregular arrays with fixed centroid and dispersion, there are still ± 0.5~1dB variances of 

performance  metrics  observed  for  each  level  of  DPD  statistics.  Other  more  direct 

geometry parameters with simple geometric interpretations may exist  that  can further 

reduce these variations and be operated easily.
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