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ABSTRACT OF DISSERTATION 

 

ACTIVE OPTIMAL CONTROL  

STRATEGIES FOR INCREASING  

THE EFFICIENCY OF PHOTOVOLTAIC CELLS 
 

Energy consumption has increased drastically during the last century. Currently, the 

worldwide energy consumption is about 17.4 TW and is predicted to reach 25 TW by 

2035. Solar energy has emerged as one of the potential renewable energy sources. Since 

its first physical recognition in 1887 by Adams and Day till nowadays, research in solar 

energy is continuously developing. This has lead to many achievements and milestones 

that introduced it as one of the most reliable and sustainable energy sources. Recently, the 

International Energy Agency declared that solar energy is predicted to be one of the 

major electricity production energy sources by 2035.  

 

Enhancing the efficiency and lifecycle of photovoltaic (PV) modules leads to significant 

cost reduction. Reducing the temperature of the PV module improves its efficiency and 

enhances its lifecycle. To better understand the PV module performance, it is important 

to study the interaction between the output power and the temperature. A model that is 

capable of predicting the PV module temperature and its effects on the output power 

considering the individual contribution of the solar spectrum wavelengths significantly 

advances the PV module designs toward higher efficiency.  

 

In this work, a thermoelectrical model is developed to predict the effects of the solar 

spectrum wavelengths on the PV module performance. The model is characterized and 

validated under real meteorological conditions where experimental temperature and 

output power of the PV module measurements are shown to agree with the predicted 

results.  

 

The model is used to validate the concept of active optical filtering. Since this model is 

wavelength-based, it is used to design an active optical filter for PV applications. 

Applying this filter to the PV module is expected to increase the output power of the 

module by filtering the spectrum wavelengths. The active filter performance is optimized, 

where different cutoff wavelengths are used to maximize the module output power. It is 

predicted that if the optimized active optical filter is applied to the PV module, the 



 

module efficiency is predicted to increase by about 1%. Different technologies are 

considered for physical implementation of the active optical filter. 

 

KEY WORDS: Thermoelectrical Modeling, Photovoltaic Energy, Experimental 

Parameterization, Active Optical Filtering, Performance 

Optimization  
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CHAPTER 1.  

PREFACE 

1.1. Introduction 

 

Energy demand and consumption has increased drastically during the last century. 

Currently, the worldwide energy consumption is about 17.4 TW and it is predicted to 

increase to 25 TW by 2035 as shown in Figure 1.1. The energy consumption of the 

United States between 2004 and 2008 is demonstrated in Table 1.1. The data calculation 

shows that the United States has consumed 3.3242 TW in 2008. The main contribution to 

this consumption is fossil fuels. According to the International Energy Agency (IEA), the 

dominance of fossil fuels in the fuel mix through 2035 is a consistent theme in the global 

demand analysis [1]. As shown in Figure 1.2, IEA indicates a continuing reliance of 

fossil fuel use through 2035. This predicted continued reliance will lead to a quicker 

depletion of our known fossil fuel reserved as well as continued emission of carbon 

dioxide. In fact, the world's energy-related carbon dioxide emissions in 2007, as stated by 

the Energy Information Administration (EIA), were 29,914 million metric tons of carbon 

dioxide. In 2008 only, the United States emitted 5.405 million metric tons of carbon 

dioxide [2]. The current and the predicted data of carbon dioxide release increase the 

pollution and further affect the global warming issue. 

 

Given the current and the predicted world reliance on fossil fuels, the energy research 

community has devoted more attention to finding new sources of energy. These new 

sources not only need to be environmentally friendly and clean, but also renewable, 

sustainable, and reliable. 

 

Renewable energy can be generated from several resources such as wind, solar, 

geothermal, and hydro. These sources are clean, reliable, renewable, and freely available. 

Recently, the energy organizations and research communities have focused more 

attention to develop and utilize the renewable energy resources in order to reduce the 
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reliance on fossil fuels. IEA stated in 2010, that the net consumption of electricity power 

generated from renewable energy sources increases over time to become by 2015 the 

major portion as shown in Figure 1.3. Consequently, the growth rates in renewable 

energy sources are higher than the growth rates in the non-renewable sources.  

 

 

Figure 1.1. World energy consumption, 2007–2035 (QB, 1QB / year = 33.43 GW) [1] 

 

Table 1.2. U.S. Energy consumption by energy source, 2004 to 2008 (QB) [3] 
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The energy generation in the United States from renewable sources increases as the 

demand increases in most of the states [1]. In fact, the predicted future share of energy 

generation from renewable sources will grow from 8.5% in 2007 to 17.0% in 2035 as 

shown in Figure 1.4. 

 

 

Figure 1.2. World marketed energy use by fuel type, 1990-2035 (QB) [1] 

 

 

Figure 1.3. Net electricity generation in OECD (Organization for Economic Co-operation 

and Development) Europe, 2007-2035 (Trillion KWh) [1] 



4 

 

Figure 1.4. Net electricity generation in North America, 2007 and 2035 (percent) [1] 

 

One of the most important energy sources is the sun. One could argue that all energy on 

earth is derived from the sun with the exception of volcanic and tide based energy. The 

solar energy is increasingly becoming more efficient to produce electricity. As shown in 

Figure 1.5, IEA projected that the contribution of solar energy in producing electricity 

will rapidly increase over the projected period. This can be attributed to the incentives 

offered and policies adopted by governments in order to construct new solar power 

generation fields and facilities. While fossil fuel and nuclear power plants generally 

produce heat to create steam to drive electric turbines, contrastingly, solar energy is far 

more versatile and can be utilized to create electricity through photovoltaic cells, heat 

water, and even produce steam. 

 

More specifically, solar energy can be collected to heat the water in pipes which could be 

supplied to buildings for daily use and also could be used for heating purposes. The solar 

thermal power plants focus the sun rays using mirrors to heat a fluid to high temperatures. 

The fluid is then circulated through pipes to transfer the heat to the water in order to 

produce steam. The steam, in turn, is converted into mechanical energy in a turbine and 
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into electricity by a conventional generator coupled to the turbine [1]. Furthermore, solar 

energy can be used to produce electricity using photovoltaic effect which can be obtained 

by solar or also known as photovoltaic (PV) cells. Briefly, when light hits these cells, 

electrons in the PV cell material are excited and collected to produce electrical current.  

 

 

Figure 1.5. World renewable electricity generation by energy source, excluding wind and 

hydropower, 2007-2035 (Billion KWh) [1] 

 

At the end of 2008, the United States had the largest solar energy plant in the world in 

California. Out of total 11 plants, nine of them in California, one in Arizona, and one in 

Nevada. Larger plants are proposed for construction in the future.  

 

While solar power plants need to be located in areas that are highly exposed to sunlight, 

these plants are quiet, safe, and require a minimal number of workers to maintain them. 

At the recently opened Sempra 48 MW Solar Plant in El Dorado, Nevada only four 

workers are needed to staff the facility. 
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1.2. Photovoltaic cells, motivation historical view 

 

Photovoltaic (PV) is the process of converting sunlight directly into electricity using solar 

cells. In these cells, when the light photons hit the semiconductor material (the material 

of the solar cells) excite the electrons to break the bonds and leave their atoms. These 

electrons in addition to the impurities (doped in the semiconductor material) are called 

free carriers which cause a current flow (short circuit current) and built in voltage (open 

circuit voltage) as shown in Figure 1.6. 

 

 

Figure 1.6. Illustration for the photovoltaic effect 

 

The photovoltaic effect is based on the fundamental physical phenomena that are firstly 

observed in the 19th century. In 1839, Edmond Bequerel observed that when metal plates 

(platinum or silver) were immersed in a suitable solution (electrolyte) then were exposed 

to light, small voltage and current were produced [4]. Later in 1878, Adams and Day 

followed up on the Smith's work [5] on selenium photoconductivity, and published the 

first report directly attributed to the PV effect in a solid state substrate. In 1954, Chapin, 
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Fuller, and Pearson of Bell Telephone Laboratories developed a silicon solar cell [6], 

which generated a significant amount of current when it was exposed to light. The 

efficiency of this solar cell is about 6% under the irradiance condition that was used. 

 

Solar energy these days is rapidly growing as renewable alternative source to the 

conventional fossil fuel electricity generation. However, compared to other electricity 

generating technologies, it is relatively novel, with the first practical photovoltaic devices 

demonstrated in the 1950s as mentioned above. Research and development of 

photovoltaics received its first major boost from the space industry in the 1960s which 

required a power supply separated from the grid power for satellite applications. These 

space solar cells were more expensive than they are today by several thousand times. The 

perceived need for an electricity generation method apart from grid power was still a 

decade away. Solar cells became an exciting scientific variation to the rapidly expanding 

silicon transistor development with several potentially specialized niche markets [7]. The 

oil crisis in the 1970s focused the attention on the desirability of alternate energy sources 

for terrestrial use. This in turn promoted the exploration of photovoltaics as means to 

generate terrestrial power. Despite the oil crisis did not last long and the financial 

incentives to develop solar cells abated, solar cells had entered the arena as a power 

generating technology. Their application and usefulness to the remote power supply area 

was recognized by the investors and prompted the development of terrestrial 

photovoltaics industry. Small scale transportable applications (such as calculators and 

watches) were utilized and remote power applications began to benefit from 

photovoltaics. [7] 

 

The efficiency of photovoltaics is affected and most probably reduced by several factors. 

Some of them are related to design issues such as the semiconductor material and the 

mismatching resistances, and others are related to irradiance conditions. Temperature was 

found to be a critical factor that significantly affects the PV cell efficiency since 

temperature is part of the physics that control its operational performance. The 

temperature increases mainly due to the excess photonic energy in the desired spectrum 

wavelengths. In addition, the undesired spectrum wavelengths might be absorbed by the 
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PV module layers and convert into heat that accumulates by time causing efficiency 

reduction.   

 

Increasing the efficiency of photovoltaics to reduce the production costs is the most 

important issue for the researchers. In the 1980s research in silicon solar cells produced 

an increase in solar cell efficiency. In 1985 silicon solar cells achieved the milestone of 

20% efficiency [7]. Over the next decade, the photovoltaic industry experienced steady 

growth rates of between 15% and 20%, largely promoted by the remote power supply 

market. In the year 1997 the growth rate jumped into 38% [7]. In theory, the maximum 

efficiency of a solar cell made of single semiconductor layer reported by researchers is 

limited to 40%. [8] 

 

Today, solar cells are recognized as means to produce power and to enhance the quality 

of life to those who do not have grid access. Moreover, they significantly reduce the 

environmental damage caused by conventional electricity generation technologies in the 

advanced industrial countries [7]. It was found that covering 4% of the world's desert 

area with photovoltaic panels could supply the equivalent of all of the world's electricity. 

The Gobi Desert (area of 1,295,000 km
2
 (500,002 sq mi)) alone could supply almost all 

of the world's total electricity demand. [9] 

 

According to Lowis [10], out of the 1.2 × 10
5
 TW of solar energy that strikes the earth’s 

surface, only 600 TW is the practical power potential. To produce 20 TW of carbon-free 

power using 10% efficient photovoltaic modules, 0.16% of the earth’s surface should be 

covered or equivalently 5 × 10
11

 m
2
.  

 

The estimate of energy consumption of the United States in 2000 was 3.3 TW [10]. The 

total land area of USA including Alaska is 9.1 × 10
12

 m
2
. The area of the land that should 

be covered by 10% efficient photovoltaic modules with nominal output power 200W/m
2
 

will be 1.6 × 10
11 

m
2
. This represents 1.7% of the USA lands. So increasing the efficiency 

will highly reduce the needed area to produce the demanded power. For instance, if the 

efficiency of the modules enhanced to 20%, the needed land will be reduced to half.  
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1.3. Research statement 

 

The main objective of this research is to enhance the efficiency of the photovoltaic cells 

using optimal control strategies to design an active filtering process that increases the 

output power through controlling the input power. In this research, lean and sustainable 

design and implementation of the filtering process will be highly considered and utilized. 

This helps to satisfy the sub-objectives of this research which are not only decreasing the 

manufacturing and implementation costs of the active filter, but also increasing the 

lifecycle of the PV module. These sub-objectives can be accomplished by achieving the 

following research goals: 

 

1. Understanding and observing the photovoltaic effect of converting light into 

electricity 

 

2.  Understanding the limitations of light-to-electricity conversion efficiency 

especially the ones that are related to thermal aspects, and addressing the 

conducted efforts of the researchers to override these limitation 

 

3. Developing a mathematical wavelength-based model that uses computational 

methods to predict the temperature of the PV module, and its effects on the 

output power. This model should reflect the individual contribution of the solar 

spectrum wavelengths on the module efficiency 

 

4. Designing and building the required experimental setup to validate the 

developed model 

 

5. Using the validated model to proof that active filtering scheme would be 

effective in increasing the productivity of the photovoltaic process 

 

6. Obtaining a penalty function that accurately reflects the contribution of various 

parameters to the photovoltaic process 
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7. Designing an active controller filter using the optimization techniques to find the 

optimal values of variables of the penalty function obtained in number 6 

 

8. Exploring different means that can be used to physically implement the designed 

active controlling filter 

 

9. Building the described filter if it is physically and economically feasible 

 

 

1.4. Dissertation layout 

 

The dissertation consists of seven chapters. In Chapter one, an introductory preface, 

historical preview of the photovoltaic cells, research objectives, and dissertation layout 

are presented. In Chapter two, the literature review of the research efforts in the areas of 

temperature effects, modeling PV cells, spectrum splitting and filtering, active filtering of 

solar spectrum, and optimization are presented. The problem to be solved in this research 

and the concept of active filtering and its effects on the PV module efficiency are 

introduced in Chapter three. The detailed mathematical derivation and description of the 

proposed wavelength-based thermoelectrical model are discussed in Chapter four. An 

optical model that predicts the overall light absorption, reflection, and transmission of the 

PV module layers is also introduced in Chapter four. In Chapter five, characterization 

procedures for the different unknown quantities of the model introduced in Chapter four 

are proposed. The experimental setups and measurements used to characterize the model, 

the validation of this proposed model, and the results of the different covers for the PV 

module simulation are also described in Chapter five. Chapter six focuses on the optical 

filtering and its benefits on the PV module efficiency. The optimization process to find 

the optimal cutoff wavelength and the optical technologies that can be used to implement 

the active filter are also discussed in Chapter six. Chapter seven comprises the 

conclusions, the contributions of this research, and the recommendations for future work. 

 

Copyright © Sharif Z. Aljoaba 2013 
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CHAPTER 2.  

BACKGROUND 

2.1. Introduction 

 

As a renewable energy source and environmentally friendly technology, photovoltaic 

(PV) energy is considered one of the most important sustainable energy sources. This 

motivated researchers to enhance the performance of the PV cells by thoroughly 

investigating, understanding, and studying the physics that control their performance. The 

first PV effect was reported in 1878 and the first PV cell was made in 1954 [6] with an 

efficiency rating of approximately 6%. Since that time, several breakthroughs and 

milestones have been accomplished with theoretical efficiencies crossing 40%.   

 

Recent development in photovoltaics research resulted in decreasing their manufacturing 

costs, increasing their lifecycle, and more importantly, enhancing their efficiencies. 

Specifically, researches ([11], 1987), ([12], 1981), ([13], 2000), ([14], 2005), ([15], 

2004), ([16], 2005) on various semiconductor materials has led to economically viable 

and more efficient photovoltaic cells. Even greater efficiency can be fulfilled by using 

better lattice match alloys and different band gap materials. Other studies ([17], 2004) 

show that by concentrating the amount of incident light, using concentrators, solar cell 

efficiency is further enhanced. The concentrators are used to increase the incident 

irradiance from one sun (1000 W/m
2
) to several hundred suns. This enhances the output 

power, but also increases the PV cell temperature. Another approach to enhance the 

output power is to employ special invertors and better load-resistance matching devices. 

Furthermore, researchers enhanced the PV cell efficiency by tracking the maximum 

power point of its current/voltage characteristic diagram using special devices designed 

for this purpose ([18], 2006), ([19], 2010). Moreover, some efforts were exerted to 

increase the PV efficiency by increasing the amount of light that hits the cell's surface 

using solar tracking systems, and light trapping coatings to confine the light ([20], 2009). 

Other researchers worked on splitting the spectrum into bands in order to take the 
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advantage of all wavelengths of the incident light by stacking several solar cells of 

different band gab semiconductor materials ([21], 2010).  

 

Temperature is a critical parameter that considerably affects the PV cell performance. 

Controlling the temperature is an approach that has been followed in order to increase the 

PV efficiency. Reducing the temperature of the solar cells enhances its efficiency. It is 

reported that PV module loses up to 23% of its output power when its temperature 

increase is about 35 K [22]. Several experimental and theoretical methodologies were 

conducted to reduce the module temperature. These efforts can be classified as one of the 

following: 

 

1. Coating filters (passive filters) were designed in order to split the solar spectrum 

into accepted and unaccepted bands ([21], 2010), ([17], 2004). The accepted band 

contains the part of light (short wavelengths) that is converted into electricity, 

while the unaccepted one contains the part of light (long wavelengths) that may 

convert into heat.  

2. Active cooling systems as water and air conditioning were integrated with the PV 

arrays. This created combination is called photovoltaic/thermal hybrid system 

([23], 2010), ([22], 2003). In the hybrid PV/T system, the coolant (water or air) 

flows through pipes in the back of the module. The coolant in one hand cools the 

PV panel down and on the other hand, it can be used for heating purposes.  

3. Finally, employing phase change materials to absorb the produced heat ([23], 

2010), [24], 2010). These materials change their physical state when the heat 

accumulates in the module. This accordingly reduces the module temperature. 

 

Part of these methods were conducted theoretically using models for PV cells, modules, 

and arrays ([25], 1985), ([26], 1999), ([27], 2010). Some researchers used simulation 

models from literature to study the effects of their contributions on the PV cell 

performance ([28], 2007), and ([29], 2008). Others presented thermal models to study the 

effects of irradiance and temperature on PV modules performance ([30], 2001), ([31], 

2008), ([32], 2007).  
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In general, these subjects inspire researchers in the different fields of the photovoltaics. 

Therefore, more detailed reviews are presented in the next section to cover the efforts that 

are highly related to the objectives and motivation of this research. Mainly these fields 

include: the early efforts of PV cells, modeling, temperature effects, filtering structures, 

and optimizations.  

 

 

2.2.  Literature review 

 

This section presents a detailed literature review of the theoretical and experimental 

efforts that are directly related to the main objective of this research. As discussed in 

chapter one, our main goal is to enhance the efficiency of the photovoltaic modules using 

optimal control strategies to design an active filtering process that increases the output 

power through controlling the input power. The most significant works that were 

conducted in the fields of temperature and thermal effects, temperature control, spectral 

filtering and controlling processes, and modeling and optimization attempts will be 

reviewed.   

 

2.2.1. Introduction to photovoltaics  

 

Green ([33], 1993), ([34], 2009) presented a review of the progress that has been made on 

silicon solar cells from 1874, with its rectifying properties, to the date of his reports in 

1993 and 2009. Green discussed the milestones achieved by researchers which increased 

the solar cell efficiency from less than 1% to 25% as shown in Figure 2.1. These 

accomplishments will be discussed by their importance to the history of photovoltaic 

cells as Green introduced them.  

 

Oh1 of Bell Laboratories, ([35], 1941) discovered the wells defined as barriers in 

polycrystalline ingots that were grown from some lots of commercial high-purity silicon. 

The grown-in junctions resulted from impurity segregation during the recrystallization 

process. Oh1 found that one side of the junction reached a negative potential when 

samples were illuminated or heated. The same side had to be biased negatively to show 
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low resistance to current flow across the barrier or across the point of contact to this 

material. This led to the terminology of ‘negative’ or ‘n-type’ silicon for the material on 

this side of the junction and the material of the opposite side was named ‘positive’ or ‘p-

type’. Apparently, it was only after this initial experimental work that the role of donor 

and acceptor impurities in producing these properties was shown. 

 

 

Figure 2.1. Evolution of silicon solar cell efficiency [34] 

 

In 1941, the first photovoltaic devices based on these grown-in junctions were described 

[35]. Figure 2.2 shows the geometry of cells cut from the recrystallized material. Contact 

was made at the periphery of the top of the device, and over the entire rear surface. No 

energy conversion efficiency figures were reported for these cells, although an analysis of 

the data suggests the efficiency is well below 1%.  

 

Kingsbury and Oh1 reported more controllable method of junction formation in 1952 

[36]. These cells used recrystallized silicon fabricated from pure source material to 

prevent grown-in junctions being formed. They used helium ion bombardment of the 

surface to form the rectifying junction. The used contacting scheme is similar to the 

earlier devices. These devices showed quite respectable spectral responsiveness, although 
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energy conversion efficiencies were also not reported. Efficiency was estimated to be 

somewhere around 1%.  

 

Improved techniques for crystal growth producing single-crystal wafers of silicon were 

developed at Bell Laboratories, as were techniques for doping using high-temperature 

diffusion of impurities. This led to the first report of a modern silicon cell in 1954 by 

Pearson, Fuller and Chapin of Bell Laboratories [6]. In the first cells lithium diffusion is 

used to form the junction and had an efficiency of about 4.5%. The lithium diffusion was 

soon replaced by boron diffusion with a 6% efficiency increase. These cells had the dual 

rear contact structure and opened up the first real prospects for power generation using 

photovoltaics as shown in Figure 2.3. Improvement in the cell structure led to 

demonstration of 10% efficiency within 18 months of the initial report [37] in 1954. An 

application was identified in space on satellites, and this formed the major application of 

the PV cells until the early 1970s and provided the major incentive for their continued 

development. 

 

 

Figure 2.2. Si solar cell reported in 1941 with junction formed by impurity segregation in 

the recrystallized Si melts [33] 

  

The development of cells for space resulted in further refinements such as the use of 

contact grids on the top surface presented by Mandelkorn et al. ([38], 1962). This 

increased the cell efficiency to 14% at live sunlight illumination in the early 1960s. 
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Figure 2.3. First modern Si cell fabricated on single-crystalline Si wafers in 1954 [33] 

 

In the early 1960s, the superior radiation resistance of boron-doped substrates became 

apparent. This led to a shift from the phosphorus-doped substrates that were previously 

preferred. Despite this change, reduced initial cell efficiency, it created a cell capable of 

withstanding the high-energy particles present in the space environment [33]. Cell design 

then stabilized, for a decade, to the structure shown in Figure 2.4. Cell size was 

standardized at 2 cm x 2 cm, six metal contact fingers formed by the vacuum evaporation 

of a Ti/Ag multilayer (subsequently Ti/Pd/Ag) and were generally used to conduct 

carriers generated over this area to a 1 mm wide busbar (not shown). In addition,  a 

silicon monoxide quarter-wavelength antireflection coating was used to reduce reflection 

from the top surface of the cell [33]. 

 

 

Figure 2.4. Space Si cell design developed in early 1960s [33] 
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In the first half of the 1970s several innovations were introduced into cell design. The 

first results observed from alloying the aluminum into the rear of the produced cell 

improved current and voltage output. The effect was initially attributed to the settling of 

impurities in the cell bulk by the aluminum ([39], 1973). It was subsequently explained in 

terms of the heavily doped p-type layer produced at the rear surface by the alloyed 

aluminum [40], [41]. Recently, this is commonly described as “back surface field effect”, 

although the effect can be more usefully described in terms of reduction in the effective 

recombination velocity at the rear of the cell.  

 

Further improvement was obtained at Comsat Laboratories by Lindmayer and Allison 

([42], 1973) by applying the photolithographic techniques developed for microelectronics 

to the definition of the top metal contact. This produced much finer metallization fingers 

than possible with the previous technique of evaporation through a metal shadow mask. 

Finer metal fingers meant that fingers could be more closely spaced without excessive 

shadowing of the top surface of the cell. This allowed much shallower diffusions to be 

used to form the top junction, eliminating dead layers which resulted from excessive 

dopant concentrations near the surface in earlier cells [42]. Using this approach, the 

response of the cells to light of wavelengths at the blue end of the spectrum was greatly 

improved, since this light is strongly absorbed near the surface of silicon. Furthermore, 

new antireflection coatings which do not absorb such light were developed to take 

advantage of this new ability [42]. Meanwhile, the use of anisotropic etching to expose 

crystal planes in silicon was being explored in microelectronics. This technique was 

extended, also by Comsat Laboratories ([43], 1974), to produce pyramids randomly 

located on the top surface of (100) plane silicon. In this approach, the square-based 

pyramids are formed by intersecting (111) plane crystallographic planes. This approach 

reduces reflection from the top surface of the cell as well as coupling the light obliquely 

into the cell, allowing it to be absorbed closer to the most active region of the cell near 

the top junction. Figure 2.5 shows a cell incorporating all the previous advanced features, 

which resulted in cells of approximately 17% efficiency under terrestrial sunlight ([44], 

1976). This performance figure was unrivaled for nearly a decade [33]. 
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Figure 2.5. Textured top surface with antireflection coated Si solar cell developed in 1976 

[33] 

 

The next improvement in cell performance came primarily as a result of increased output 

voltage due to improved passivation of the electronic activity at the top surface of the 

cell. This improved passivation resulted from the use of thermally grown oxide to pacify 

non-contacted areas of the cell and the use of a variety of techniques to reduce the 

activity at the interface with the top metal contact. The pacified emitter solar cell (PESC) 

used a reduced area of contact at the top surface to minimize the effects of such activity. 

Due to the improved top-surface properties of this cell, it was able to take fuller 

advantage of high-quality starting wafers than earlier designs. By using high-quality 

float-zone wafers relatively highly doped with boron, 20% efficiency was surpassed with 

this structure in 1985 ([45], 1985).  

 

The next advance in cell design resulted from extending oxide passivation to both front 

and rear surfaces of the cell. The first successful design of this type was the point contact 

solar cell developed by Sinton et al. ([46], 1985). In this design, the effects of contact 

recombination were further reduced by localizing contacts to small points on the non-

illuminated surface of the cell. These cells depend on having both extremely good 

passivation of cell surfaces and extremely high-quality bulk properties. Processing the 

ce1ls presents challenges, not only does bulk and surface quality have to be maintained 

during processing, but excellent rear oxide integrity is also essential. Defects in this oxide 

can cause shunting between the rear contacts and the substrate ([47], 1990). These novel 
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cells were the first to exceed 22% efficiency under normal terrestrial testing, although 

27% efficiency has been demonstrated under highly concentrated sunlight ([48], 1986).  

 

The highest terrestrial silicon cell efficiency confirmed till 1993 has been developed by 

Green et al. ([49], 1987) and obtained by the pacified emitter, rear locally diffused 

(PERL) cell as shown in Figure 2.6. This cell essentially combines the best features of the 

two previously discussed designs which gave cell efficiencies above 23% [49].  

 

The previous discussion presents the most significant progress that was accomplished by 

different researchers since the first interest in photovoltaics in 1878 until the early 1990s. 

Beyond this period more developments have been carried out by different researchers 

using different cell designs and materials (i.e. tandem cells, thin film cells...etc). These 

efforts will not be reviewed here since they are beyond the scope of this research. 

 

 

Figure 2.6. Pacified emitter, rear locally-diffused cell with 23% efficiency [33] 

 

2.2.2. Temperature effect 

 

It is well known that PV cell temperature considerably affects the cell performance, i.e., 

voltage, output power, fill factor, and conversion efficiency. 

 

From the physical aspects, the deteriorations of the PV cell output power and conversion 

efficiency when temperature increases are attributed to ([50], 2003): 
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 Increase of the thermal lattice vibrations, leading to electron-phonon scattering 

 Decrease of charge carriers mobility 

 Reduction of the p-n junction built-in voltage and junction ability to separate 

electrons from holes in the photogenerated pairs 

 

In order to reduce these effects, it is useful to decrease the module temperature by 

removing the heat produced by [50]: 

 Non-active absorption of photons, which do not generate pairs 

 Recombination of electron-hole pairs 

 Photocurrent (Joule’s heat generated during the current flow in the series 

resistance of the p-n junction) and parasitic currents 

 Lack of effective cooling of the module  

 

The following paragraphs represent detailed samples of the work that have been 

theoretically and experimentally conducted by researchers in order to demonstrate the 

effects of temperature on PV modules performance. 

 

Radziemska ([50], 2003), ([22], 2003) studied the influence of temperature and 

wavelength on electrical parameters of crystalline silicon solar cell and a solar module. 

Radziemska experimentally and theoretically investigated the temperature influence on 

the light absorption mechanism and the radiation performance of silicon solar cell 

working at constant temperature. Furthermore, he experimentally investigated the 

temperature performance of a PV silicon solar module working at constant irradiance. 

Radziemska used a copper plate as heat sink in order to cool the PV cell when it becomes 

overheated (80  ). As shown in Figures 2.7 and 2.8, Radziemska found that output 

power and efficiency of the solar cell decrease dramatically as temperature increases. He 

also observed that the decrease of the output power is -0.65% / K, the fill factor is -

0.2% / K, and the conversion efficiency is -0.08% / K. He concluded that PV modules 

should be well designed and cooled in order to reduce the temperature increase to 

enhance its performance. 
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Figure 2.7. Output power as a function of open-circuit voltage at different temperatures 

[50] 

 

 

Figure 2.8. Maximum power of single crystalline Si PV cell as function of temperature 

[50] 

 

Shaltout et al. ([51], 2000) measured the spectral response of monocrystalline silicon 

solar cell at different cell temperatures. They also measured other cell parameters: 

maximum power, fill factor, and cell efficiency at different illumination levels (1154, 

1329, 1740, 2812, and 4010 W/m
2
). Figures 2.10, 2.11, and 2.12 show the short circuit 

current, open circuit voltage and cell maximum power as a function of the cell back 

temperature. They reported that the temperature has a direct influence on the cell 

performance, and its spectral response is temperature dependent. They also concluded 
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that when high illumination is applied on a one-sun Si solar cell, at high temperatures, 

high illumination is of no use in the cell unless some type of cooling is used. 

Furthermore, they found that at high temperature and illumination values, the cell has its 

lowest value of efficiency. 

 

 

Figure 2.9. Variation of short-circuit current as a function of cell temperature at different 

illuminations [51]  
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Figure 2.10. Variation of open-circuit voltage as a function of cell temperature at 

different illuminations [51]   

 

 

Figure 2.11. Variation of M.P as a function of cell temperature at different illuminations 

[51]  
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Akopalki and Palyovs ([52], 2009) provided a review comparison of several researchers 

efforts conducted in order to study the operating temperature of one-sun commercial 

grade silicon based solar cells/modules and its effect upon their electrical performance. 

They gave tabulations for most of the known algebraic forms proposed by different 

researchers which express the temperature dependence of PV cells efficiency and, 

equivalently, solar power. They also provided the temperature coefficients measured and 

calculated by those researchers, which could be used to find the PV efficiency correlation 

coefficients. In their review, Akopalki and Palyovs concluded that the operating 

temperature plays a central role in the photovoltaic conversion process. Both the 

electrical efficiency and the power output of a PV module depend linearly on its 

operating temperature and decrease as it increases. The various correlations that were 

proposed in the literature represent simplified working equations which apply to PV 

modules or PV arrays mounted on free-standing frames, to PV/Thermal collectors, and to 

BIPV arrays. These correlations involved basic environmental variables, while the 

numerical parameters are not only material dependent but also system dependent. Thus, 

care should be exercised in applying a particular expression for the electrical efficiency 

or the power output of a PV module or array. 

 

Gaitho et al. ([53], 2009) investigated the effect of heat flow through the solar cell 

materials in order to determine the thermal conductivity of the silicon film since it is a 

factor of operating temperature of the solar cell. They have used a single crystal silicon 

solar cell coated with zinc oxide thin film, where this coating offers an optical 

improvement. They used the transient line heat source (TLHS) method to measure the 

thermal conductivity where the heat source is placed against the inner and outer surfaces 

of the solar cell to provide heating and to sense the temperature changes at the same time. 

Figures 2.13 and 2.14 show the thermal conductivity as a function of temperature and 

thermal conductivity as a function of the efficiency respectively. They found that there is 

rapid decrease in thermal conductivity from 1.26×10
2
 Wm

-1
 K

-1
 to 9.63e2 Wm

-1
 K

-1
 as 

temperature increases from 297 K to 320 K. Then there is a small decrease to 8.84×10
2
 

Wm
-1

 K
-1

 at elevated temperatures. They have reported that the general trend is that as the 

temperature increases thermal conductivity decreases. They have attributed that decrease 
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in thermal conductivity to the increase in operating temperature of the cell. Their 

conclusion for the single crystal silicon cell performance is that low temperatures present 

more efficient photo-conversion. 

 

 

Figure 2.12. Reverse relation between thermal conductivity and temperature [53] 

 

 

Figure 2.13. Relationship between thermal conductivity and solar cell efficiency [53] 
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2.2.3. Modeling the photovoltaic cell 

 

Several researchers have introduced numerical models in order to model the solar cell by 

introducing equivalent circuits and also to simulate the effects of the operating 

parameters on its performance. These parameters are usually material related, solar 

irradiance, and temperature. Some other researchers combined thermal and electrical 

models in one hybrid thermo-electrical model to provide more accurate results. The most 

related efforts to the research objectives are discussed herein. 

 

Gow and Manning ([26], 1999) developed a general circuit-based model which is the first 

fundamental model that could be implemented for simulation software programs mainly 

MATLAB and PSPICE. This model is also designed to be used by power electronics 

specialists. The inputs to the model are the temperature and irradiance, and the outputs 

are the current and voltage which form cell characteristics. They proposed two models, 

the first is double-exponential model given in Equation (2.1), and the second is single-

exponential model given in Equation (2.2). The double-exponential model is accepted to 

reflect the behavior of cells constructed from polycrystalline silicon, while the single-

exponential model is used to reflect the behavior of amorphous silicon. Both models are 

derived from the physics of the pn-junction. From Equation (2.1), the equivalent circuit 

given in Figure 2.14 is derived. In these non-linear models, five parameters should be 

found for each module: Iph, ID1, ID2, Rs, and Rsh/Rp. Gow and Manning introduced these 

parameters as functions of temperature and irradiance and some other constants which are 

given in ([26], 1999). These constants can be found by curve fitting with experimental 

data, which are different for different PV modules. This modeling effort reflects the 

significant performance degrading effect of temperature on the PV module parameters.  

 

            
        

           
        
       

     
   

 (2.1) 

 

           
        

      
     
  

 (2.2) 
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Figure 2.14. Equivalent circuit of PV cell [26] 

 

Shekoofa and Taheraneh ([28], 2007) introduced a circuit-based model for the PV cell, 

module, and array. They used two diodes to model a single layer silicon cell which is 

given in Figure 2.15. All the parameters of this model are temperature (T) and irradiance 

(G) dependent. They implemented the model in Matlab/Simulink in order to find the 

parameters given in Figure 2.15. The module and array models are based on the cell 

model. The module model differs from the cell model by the values of the shunt and 

series resistances (Rp and Rs) , while the array model differs also by the values of 

photocurrent and diode-current densities as shown in Figures 2.16 and 2.17 respectively. 

They also conducted some thermal analysis of the solar panel for space satellite 

applications. Furthermore, they investigated the influence of each panel model's 

parameters on the simulation results.  

 

 

Figure 2.15. Two diode equivalent circuit-based PV cell model [28] 

 

Karatepe et al. ([54], 2005) presented a neural network based approach for improving the 

accuracy of the electrical equivalent circuit of a photovoltaic module. According to them, 

the conventional PV models are not accurate since their parameters do not depend on 
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solar irradiation and cell temperature. Therefore, the accuracy and the reliability of the 

performance estimation cannot be sufficient for all operating conditions. In their 

approach, the equivalent circuit parameters of a PV module mainly depend on solar 

irradiation and temperature. They used a set of current–voltage curves to investigate the 

dependency of the module parameters on environmental factors. They utilized an 

artificial neural network to overcome the nonlinear relations among these parameters. 

The equivalent circuit parameters were estimated by only reading samples of the solar 

irradiation and the temperature very quickly without solving any nonlinear implicit 

equations. They demonstrated the accuracy and the generalization of their proposed 

model by comparing the test results with the actual data. The comparison between the 

measured values and the proposed model results showed higher accuracy than the 

conventional model for all operating conditions.  

 

 

Figure 2.16. Module equivalent circuit [28] 

 

Fahmy and Hefnamwi ([55], 1998) presented a numerical model to calculate the 

temperature distribution at steady state on the different layers of a PV cell structure at 

different seasons, solar irradiation and air temperature. Their results showed that the 

performance of the PV cell is inversely affected by the temperature increase due to the 

reduction in the open circuit voltage, and reduction in the fill factor despite a slight 

increase in the short circuit current. 
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Figure 2.17. Array equivalent circuit [28] 

 

Jones and Underwood ([30], 2001) introduced a non-steady state thermal model for the 

photovoltaic module. In this model the PV module temperature is predicted considering 

all energy transfer processes that may affect it. This includes short wave radiation, long 

wave radiation, convection and electrical energy production as shown in Figure 2.18. The 

resulting rate of temperature change with time can be expressed as the sum of these 

contributions as given in Equation (2.3). They developed the expression of each term as 

given in Equation (2.4) which is the whole thermal model. The model terms given in 

Equation (2.3) are in the same order that is given in Equation (2.3). 

 

 

Figure 2.18. Heat transfer and energy exchange at PV module [30] 
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(2.4) 

 

where        is the module heat capacity,    is the module temperature,      is the 

ambient temperature,   is the incident irradiance (W/m
2
),    heat transfer coefficient, and 

    is the filling factor of the module. The rest of the symbols are constants and their 

values given in the reference ([30], 2001). Johns and Underwood found that the predicted 

results of their model agree with the response of the measured module temperature to 

transient changes in irradiance. Their model is found to be accurate to within 6 K of the 

measured temperature values for 95% of the time in cloudy conditions. The best accuracy 

is obtained in the clear and the overcast conditions when the irradiance is subjected to 

fewer fluctuations.  

 

Tina and Scrofani ([31], 2008), presented two mathematical models: electrical and 

thermal. Both models are combined to determine the module temperature based on the 

field monitored real data, i.e., ambient temperature, wind speed, wind direction, relative 

humidity and electrical operating point (voltage and current). The parameters of the 

electrical model are calculated using the least-squares fitting of the equivalent model 

current-voltage (IV) characteristic curve with the measured one. Further, they studied the 

module thermal behavior for non-steady state conditions (i.e. considering variations of 

both environmental and electrical variables). Tina and Scrofani noticed that there are 

more than one set of parameters to be considered, depending on ambient variables 

(incident irradiance, ambient temperature…etc). Furthermore, since it is difficult to 

calculate the optimal parameters, it could be useful to adopt different sets of parameters 

depending on the range of the main ambient variables. They also found that using a set of 

parameters formed by parameters close to the average values, regardless of the climate 
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conditions, the IV-characteristic curve of the module is very close to the measured one. 

Using a set of chosen parameters, Tina and Scrofani claimed that the proposed model 

allows performing sensitivity analysis for the effect of the meteorological variables on the 

module performance. 

 

Petal and Agarwal ([56], 2008) presented a Matlab-based modeling and simulation 

scheme to study the IV and P-V characteristics of a PV array under a non-uniform 

insolation due to partial shading. They also claimed that their model can be used for 

developing and evaluating new maximum power point tracking techniques, especially for 

partially shaded conditions. It can also be used as a tool to study the effects of shading 

patterns on PV panels having different configurations. They observed that, for a given 

number of PV modules, the array configuration (how many modules in series and how 

many in parallel) significantly affects the maximum available power under partially 

shaded conditions. Their results showed that PV curves have multiple peaks under 

partially shaded conditions. Therefore, the existing MPPT schemes, which assume a 

unique maximum power point, remain inadequate. The magnitude of the global peak is 

dependent on the PV array configuration and shading pattern besides the commonly 

known factors, i.e., insolation level and array temperature. In addition, they claimed that 

if the likely shading pattern on the PV array is known, the simulation model is handy to 

design the most optimum configuration of the PV array to extract the maximum power. 

They also claimed that the results of this model can be effectively used with off-line 

capabilities of Matlab/Simulink to investigate the effectiveness of MPPT methods 

working under non-uniform insolation conditions. 

 

Gonzalez et al. ([57], 1994) examined the variation of modeled and observed cell 

efficiency with the atmospheric variations. They considered that the efficiency of the 

solar cell is a function of atmospheric conditions, such as, cloudiness, total column 

ozone, turbidity, and perceptible water because the total intensity and spectral distribution 

of sunlight.  They used the SPCTRAL2 solar spectral radiation model to simulate the 

effects of turbidity and water vapor content variations. Gonzalez et al. coupled the 

simulation results with spectral response functions of the monocrystalline and amorphous 
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silicon solar cells then used them to model the efficiency of these cells. They have found 

that the major factors cause variations in operational efficiency are the ambient 

temperature and the total irradiance intensity. They also observed an increase of apparent 

efficiency of the amorphous cell with decreasing the energy in the red region of the solar 

spectrum. In their simulation results Gonzalez et al. have found that beyond 500 W/m
2
 

the efficiency of the cells is temperature limited. Furthermore, they found that the 

efficiency of monocrystalline panels decreases approximately 0.06 in absolute value per 

degree increase, while for the amorphous cells, efficiency increases with temperature 

especially in humid (low red light) conditions.  

 

Balog et al. ([58], 2009) Presented a thermal model and simulation methodology based 

on the energy conservation principle using historically measured insolation and 

meteorological data to compute the temperature of the PV module. The principle of their 

modeling is similar in the essence with the modeling approach proposed by Jones and 

Underwood ([30], 2001) which is based on energy balance. However, Balog et al. did not 

present a model for the output power term of their thermal model; instead, they assumed 

a constant efficiency for the module in their modeling ignoring the effects of the 

temperature on its actual value and accordingly on the predicted temperature. Their 

results show that the module temperature is lower than 70   for 99% of its operating 

time and the peak temperature reached 81  . 

 

Armstrong and Hurley ([59], 2010) proposed a thermal model that incorporates the 

atmospheric conditions, effects of PV panel material composition and mounting structure. 

They used the analogy to the RC circuit in their modeling approach. They demonstrated 

the ability of this model to determine the speed of response the PV panel to changing the 

input conditions. Their model provides the means of predicting the thermal time constant 

of a PV panel under varying atmospheric conditions. They expressed the thermal 

properties of PV panels in terms of their electrical equivalents by means of an RC circuit 

as shown in Figure 2.19. They investigated the heat transfer from the surface of a PV 

panel under varying wind conditions. They discussed different models from literature that 

can be used to determine the free and forced heat transfers of the PV panels. They 
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measured the time constant for three different wind speeds with a step change of solar 

irradiance, and compared them with the predicted time constants. Their results show that 

the worst case accuracy is 13.98% with an average error of 7.26%. 

 

 

Figure 2.19. Photovoltaic thermal resistance network [59] 

 

2.2.4. Spectrum splitting and filtering  

 

The following paragraphs contain examples of the efforts, approaches, and studies of 

different researchers who attempted to enhance PVs efficiencies by light filtering and 

spectrum splitting. Only the passive optical filters and light traps are presented in this 

section, while the active filtering will be discussed in the next section. 

 

Imenes and Mills ([17], 2004) presented a review of spectral beam splitting techniques 

and filtering processes used to split the solar spectrum in order to increase the conversion 

efficiency of the solar concentrating systems. According to their study, there are several 

filtering categories for PV cells that have been described in the literature, mainly: 

dielectric multilayer filters, heat reflectors, refraction or prism spectrum splitting, 

holographic filters, fluorescent methods, and liquid absorption filters. For systems 

include PV cells only, the filtering techniques that were reported in the literature were 

carried out using either the tandem-cell approach or splitting approach. In the tandem-cell 

approach two or more solar cells of different semiconductor materials are mechanically 

or monolithically stacked in series and arranged in a decreasing order of band-gap 

energy. In the splitting approach the optical filter separates the light into spectral 

components directed to individual cells of different band-gap energies. For thermo-

photovoltaic systems, the PV cells are built with a thermal solar collector such that part of 
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the spectrum is filtered out by PV cells for electricity production. The remaining portion 

is absorbed by a fluid to be used for thermal applications. For more details about these 

techniques, refer to ([17], 2004). 

 

Fahr et al. ([60,61], 2008) suggested a design for a coating to be applied on top of any 

solar cell having at least one diffusing surface. Their coating acts as an angle and 

wavelength selective filter. It increases the average path length and absorption at long 

wavelengths without altering the solar cell performance at short wavelengths as shown in 

Figure 2.20. Their designed filter should reflect light with wavelengths higher than 

870 nm and angle of incidence larger than 2.5
o
 while for other conditions; light should be 

perfectly transmitted to the solar cell. The base of their filter design is the continuous 

variation of the refractive index in order to minimize the undesired reflection losses. They 

used numerical procedures to optimize the filter for a 10 µm thick mono-crystalline 

silicon solar cell. They also discussed the feasibility of fabricating such filters 

considering a finite available refractive index range. Fahr et al. neglected the absorption 

and dispersion in the top coating. They used a realistic model for the absorbing layer and 

had at least one Lambertian surface. They also observed that in order to obtain high 

transmission, low indices of refraction are necessary. They found that the calculated 

efficiency could be increased from 28.7% for cell with zero front side reflection up to 

30.1% for cell equipped with the angle selective filter. 

 

Green and Ho-Baillie ([62], 2010) implemented an approach in order to enhance the solar 

cells efficiency. Their approach is to subdivide the broad solar spectrum into smaller 

energy ranges to convert each range with a cell of appropriately matched bandgap. This 

can be achieved by using monolithic or mechanical stack of cells arranged in order of 

increasing bandgap, with the highest bandgap cell uppermost. This represents an 

automatic filtering of incident sunlight so that each cell absorbs and converts the optimal 

spectral range. Their schematic diagram is shown in Figure 2.21, where non-stacked cells 

are used in order to steer light in different wavelength bands. In their work they found 

that an improved combination of independently confirmed results gives a composite 
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efficiency of 43% under the global ASTM G173-03 spectrum, the highest reported 

efficiency to date from any such combination of photovoltaic devices.  

 

 

Figure 2.20. Transmission of the unpolarized light in the ideal wavelength and angle 

selective filter [61] 

 

 

Figure 2.21. Schematic illustration of the spectral ranges involved in the cell 

measurements [62] 

 

Peters et al. ([63], 2009) theoretically and experimentally investigated the photonic light 

trap which is a combination of angular selective filter and light scattering process. They 

studied two optical filters: Bragg-like and opal. They have identified that Bragg effect is 

the principal of creating angular selectivity of the investigated filters. Bragg-like system 

in addition to the bandgap filter represents the photonic light trap which is applied on a 

thin-film solar cell of amorphous silicon. Their results showed that the light absorption 

increased by 25% and accordingly the quantum efficiency is increased by 25%. 
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Zeng et al. ([64], 2006) developed a backside reflector scheme for solar cells in order to 

enhance the light-trapping efficiency by enhancing the optical path length using textured 

photonic crystal. As shown in Figure 2.22, the scheme comprises a reflection grating 

etched on the backside of the substrate and a one-dimensional photonic crystal deposited 

on the grating. Their scheme works in the following scenario. The grating is dominated 

by the incidence, diffraction angles, wavelength of the incident light and the refractive 

index of the solar cell material. Using the 100% reflective Distributed Bragg Reflector 

(DBR) at the backside of the solar cell (no light escapes the solar cell) increases total 

internal reflection at the front surface of the cell (active region) for further absorption. 

Their results showed that the external quantum efficiency (EQE) is significantly 

improved for light wavelengths within the range of 1000 to 1200 nm, with enhancement 

up to 135 times. They also concluded that the efficiency can be enhanced much more for 

cells of smaller thickness and finer grating periods.  

 

 

Figure 2.22. Schematic of the back reflector [64] 

 

Goetzberger et al. ([65], 2008) introduced a light trap combined of two other light traps. 

It converts light into voltage with separate solar cells optimized for different frequency 

bands, which are covered by spectral selective mirrors. Their first light trap as shown in 

Figure 2.23 employs concentrated radiation incidents on a small volume. The light is 

focused by the lenses then the concentrated beam enters the light trap through the 
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openings. Then the light is diffused inside the trap. The attached mirrors to the solar cells 

reflect the light that the solar cells could not use. By this trap, the light is selectively 

concentrated onto different cells. They concluded that the efficiency of the system 

depends on the ratio of solar cell area to the input area (aperture area). The second light 

trap is based on using a photonic structure covering the surface of the system as shown in 

Figure 2.24. The photonic structure has a critical acceptance angle Өc. The light scatters 

after diffusion into angles larger than Өc will be trapped. There are also spectrally 

selective mirrors covering the solar cells. They showed that the trapping efficiency above 

90% is achievable. They also found that the light trapping principle can be applied to 

large area stationary modules. Their work represents the fundamental theory, and 

experimental work should be conducted in order to study the feasibility and applicability 

of this basic principle.   

 

 

Figure 2.23. Design of first light trap [65] 

 

Barnett et al. ([66], 2009) developed an integrated optical system with photovoltaic 

modules for portable applications in order to operate at efficiency greater than 50%. In 

their system, they integrated the optical design with the solar cell design. As shown in 

Figure 2.25, their system architecture is based on a ‘‘parallel or lateral” optical 

concentrating system (dichroic mirrors), which splits the incident solar spectrum into 

several bands, and allows different optical and photovoltaic elements in each band. In 

their optical system, there is no need for moving tracking system due to the use of high 

Reflective surface 

with openings 

Light trap 

Diffuse reflector 
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efficiency (93%) optical system. The module efficiency consists of the optical system 

efficiency and sum of the solar cells’ efficiencies. In their experimental work, they 

divided the spectrum into three sections with the GaInP/GaAs cell measured above the 

GaAs band gap, 871 nm, the GaInAsP/GaInAs cell with light beyond 1100 nm, and the 

silicon below 871 nm. Barnett et al. found the efficiencies of these three cells as follows: 

GaInP/GaAs = 31.7%, Silicon (filtered by GaAs) = 5.4%, GaInAsP/GaInAs (filtered by 

Si) = 5.6% with total efficiency = 42.7±2.5%. 

 

 

Figure 2.24. Design of second light trap [65] 

 

 

Figure 2.25. Schematic of solar system architecture: optical and solar elements [66] 
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Ulbrich et al. ([67], 2008) developed a directional light selective and trapping filter. It 

should be applied on top of Lambertian surface crystalline silicon cell. They assumed that 

the light will ideally be filtered according to its incidence angle and energy level. They 

investigated the impact of angularly dependent transmittance of the incident solar 

spectrum on the photovoltaic conversion efficiency to evaluate the advantages and 

disadvantages of angle selective structures. They considered normal incidence and 

compared the cell efficiency of three different types of solar cells; a planar cell, a cell 

with Lambertian surface and a cell with Lambertian surface and selective filter as shown 

in Figure 2.26. They investigated the gain and loss in the annual energy yield depending 

on the filter characteristics, irradiance and tracking mode. Three cell thicknesses of 1 µm, 

10 µm and 100 µm were used in simulation with solar spectrum for two different 

locations. They also assumed that all direct circumsolar light incidents under angle of less 

than 2.5
o
 is normal incident light and considered as the threshold angle of the selective 

filter. Thus the whole incident spectrum is transmitted into the solar cell. Ulbrich et al. 

found their simulation results that the optimum filter has threshold angle of 2.5° and 

threshold energies in the range of 1.8–2.0 eV, depending on the local spectrum. This filter 

brings about an increase of 32.5% in the annual gain for a tracked 1 µm thick crystalline 

silicon solar cell. The effect decreases with cell thickness to an increase of 9% for a 

100 µm thick cell. Also one-axis polar tracking implies an improvement of up to 10%. In 

case of no tracking at all, large angle range under which the cell faces the sun leads to 

larger losses that increase with small threshold angles and larger energies. They 

suggested two feasible filter designs, Rugate filter and inverted opal structure. Their 

simulations proved that these non-ideal structures still involve a significant increase of up 

to 5% (Rugate filter) and 7.5% (inverted opal layer) in the annual gain. 

 

Yoon et al. ([68], 2006) used an infrared reflecting (IRR) coverglass on multijunction III-

V solar cells. The purpose of such a filter is to remove IR wavelengths that are converted 

into photogenerated current by the smallest bandgap material in the 3-junction PV cell, 

which is usually in the bottom of the cell. They claim that this large-wavelengths 

generated current will be transformed into heat in the PV cell since it exceeds the 

produced current from the rest of the PV cell materials. Accordingly, the efficiency of the 
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PV cell can be enhanced by reflecting the IR part of the spectrum as a trade-off between 

the temperature and the photonic current reduction. The 3-junction GaInP/GaAs/Ge PV 

cell is used in their study, where the Ge subcell produces nearly 2x of the other two 

subcells. Ge subcell responds to wavelengths up to 1800 nm of the solar spectrum, where 

the excess current is produced from wavelengths larger than 1250 nm. However, an 

optimized cutoff wavelength should be designed. They used available data in their 

calculations to validate their proposed design of such a filter. They found that a good 

cutoff wavelength for Ge subcell is 1300 nm with a 2.2% power increase after accounting 

for the slight current reduction due to lower temperature. 

 

 

Figure 2.26. Three different Si cells studied, A) Planer cell, B) Si cell with Lambertian 

surface, C) Si cell with Lambertian and angular filter [67] 

 

Beauchamp and Hart ([69], 1995) proposed a UV/IR reflecting cover for solar cells 

applications. They proposed a multilayer coat to transmit only the spectral region that the 

PV cell responds to. The main reason of proposing such a filter is to enhance the 

efficiency of the PV cell by reducing its temperature through reflecting some portions of 

the solar spectrum that are outside the cell bandgap response.  
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2.2.5. Active filtering of solar spectrum 

 

In the previous section, samples of the passive optical filtering efforts are discussed. 

Passive filtering means that whatever the conditions are (panel temperature, day time, 

location, and weather conditions), the same filtering process is carried out. In this section, 

the efforts of using active filtering processes will be discussed. Unfortunately, few studies 

were found in the literature that reported active or smart optical devices for PV 

applications. These studies were focused on application rather than efficiency 

enhancement. 

 

Anjaneyulu and Yoon ([70], 1985) designed an optical shutter using liquid crystal (LC) 

cells to control the solar energy. The main purpose of their study was to study the 

usability and the controllability of the liquid crystal cells in the solar applications without 

focusing on the produced electricity. They fabricated large number of testing cells using 

the three most commonly used types of liquid crystal cells: dynamic scattering, twisted 

nematic and guest-host. In their investigation, they found that phase change guest-host 

(PCGH) cell type with black dye as the guest material is better to fabricate large size LC-

cell. They fabricated a 12.5 cm length, 12.5 cm width, and 6 µm thick LC-window using 

PCGH-LC mixture. Their experimental results of controlling the transmittance of the 

PCGH-cell are shown in Figure 2.27. They found that this LC-window has large 

transmission controllability up to more than 99% accuracy in the 575 to 675 nm spectral 

region. They concluded that thickness variation of the liquid crystal cell is major problem 

in fabricating a large size window. 

 

 

Figure 2.27. Transmitted beam through 9µm thick Nπ twist PCGH-cell: a) No voltage, b) 

5 Vrms, c) 15 Vrms [70]   
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Chen and Lo ([71], 2009) integrated a translucent hydrogenated amorphous silicon (a-

Si:H) solar cell with a twisted nematic liquid crystal cell (TN-LC) incorporated with a 

sub-wavelength metal grating polarization beam splitter. They have attached the TN-LC 

cell to the bottom of the solar cell as shown in Figure 2.28. As shown, the controllability 

of reflecting the light back to the PV cell is by switching TN-LC on and off. Their main 

input is through the novel idea of integrating the sub-wavelength metal grating 

polarization beam splitter in the TN-LC cell instead the conventional polarizer. This new 

polarizing technique is of higher light transmission efficiency and is not affected by the 

ultraviolet waves as the conventional polarizer sheets do. Figure 2.29 shows a 

comparison between the transmittance characteristics of the stand alone PV cell 

incorporated with the conventional and novel TN-LC cell.  

 

 

Figure 2.28. Schematic of passing and reflecting of the unpolarized light in two 

controlling states: a) off state, b) on state [71] 
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Their novel TN-LC cell is better in reflecting the light back at large wavelengths while it 

transmits the small wavelengths (ultraviolet wavelengths) compared to the conventional 

TN-LC cell. They also studied the performance of the PV cell integrated with the 

conventional and the novel TN-LC cells. In both cases, as shown in Figure 2.30, the 

output power is enhanced. However, the enhancement using their novel design is more 

than the conventional one. They found that the efficiency of the stand alone PV cell is 

2.074%, while it is 2.087% and 2.089% for the PV cell integrated with the conventional 

TN-LC cell for the off and on states respectively. For the PV cell integrated with novel 

TN-LC, the off and on state efficiencies are 2.283% and 2.491% respectively, which 

represents the highest values. They have concluded that this proposed device represents 

an ideal solution to all applications that require adjustable brightness PV cells. 

 

 

Figure 2.29. Transmittance of light through a-Si:H PV cell with and without conventional 

or novel TN-LC [71] 

 

Huang et al. ([72], 2012) developed a photovoltaic electrochromic (PV-EC) device for 

photovoltaic and green applications such as self powered smart glass. They used a semi-

transparent silicon thin-film solar cell (Si-TFSC) substrate, an electrochromic solution, 

and a transparent non-conductive substrate. The electrochromic solution is disposed 

between the non-conductive substrate and the Si-TFSC substrate as shown in Figure 2.31. 

When the device is illuminated by sunlight, portion of the generated current will be 
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converted into ionic current to change the shade of the PV-EC device and the remaining 

will power the connected load. They studied the effect of the potential produced by the 

cell on the shading of the electrochromic glass, where the more potential is applied, the 

more shading is obtained and vice-versa. This self shading-bleaching device is a good 

application for green buildings technology.  

 

 

Figure 2.30. IV-curve of the PV cell integrated with different TN-LC cells [71] 

 

 

(a) 
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(b) 

Figure 2.31. (a) Schematic prespective view of the solution type PV-EC device, (b) A 

schematic cross-sectional view of the solution type PV-EC device [72] 

 

 

2.3.  Optimization in the photovoltaics 

 

The optimization efforts of the research community address a number of different fields 

in the photovoltaic energy area. Some researchers interested in optimizing the 

semiconductor material growth and the cell design ([73], 2008), ([74], 2009). Other 

researchers have used optimal numerical methods as the neural network and the artificial 

genetic algorithms for modeling the PV modules and to extract their parameters ([18], 

2006), ([75], 2008), ([76], 2005). Some optimization efforts were conducted in order to 

increase the PV cells efficiency as optimizing light trapping filters, tilt angles, and sun 

tracking systems ([77], 2003), ([60], 2008), ([78], 2009), ([79], 2009). Only a sample of 

the optimization efforts that are within the scope of this research will be discussed. 

 

Zaho et al. ([80], 2010) used autoregressive and moving average (ARMA) method to 

model two indices, the radiation loss and the amended clearness. Both indices are used to 

predict the radiation and the optimal tilt angle of the PV panels. They used the records of 

one year of solar radiation to investigate the importance of using the optimal tilt angle 

and to calculate this value. They concluded that, since the radiation value is the only 
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parameter used to build the model, the results are not accurate as using other complicated 

methods such as intelligent network. In addition, they found that since the solar radiation 

is location dependent; long term data is needed in order to develop more accurate model. 

Their experimental results showed that tilting the PV panel angle to a specific optimal 

value increases the received energy which increases its output energy. The proposed 

model can also be used to predict average distribution of solar radiation in a specific 

period of time and can give acceptable results. They reported that more accurate 

predictions can be made if more data is given.  

 

Park and Yu ([81], 2004) suggested that the optimal voltage for maximum power point 

tracking system (MPPT) can be obtained by only the solar cell temperature. Their idea is 

to use the optimal voltage as indication to the optimal output power. The optimal voltage 

is not remarkably affected by the amount of the irradiance but by the cells temperatures. 

Therefore, the maximum output power will be tracked if the input voltage to the inverter 

is the optimum. Using a voltage-type converter can maintain the desired input voltage. 

Accordingly, determining the optimal voltage from the cells temperature and 

simultaneously controlling the converter input voltage to be at its optimal value, the 

maximum power point can be tracked without failure. They introduced experimental 

measurements to show the dependency of the output voltage on the cells temperature as 

shown in Figure 2.32. Furthermore, they introduced an empirical formula to calculate the 

optimal output voltage as a function of the cells temperature and other experimental 

parameters. The values of these parameters are irradiance dependent. They provided three 

field data measurements: sunny day, cloudy day, and rainy day. In their experimental 

apparatus, they used a multi-crystalline Si that is of 18% efficiency cells and commercial 

module of 14% efficiency. They have found that the conversion efficiency between the 

PV panel and the converter of the proposed control scheme was much better than the 

power comparison MPPT control. In addition, they found that the output voltage of PV 

panel was extremely stable when the optimal voltage for MPPT is obtained by only solar 

cell temperature.  
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Figure 2.32. Relation between open-circuit voltage and cell temperature [81] 

 

Xuan et al. ([82], 2011) presented a method in order to design and analyze the 

performance of the solar thermophotovoltaic (STPV) device. STPV is a light-electricity 

conversion system consists of solar concentrator, emitter, filter, and cooling system. 

Compared with the conventional PV cells, STPV utilizes the adjusted spectral light by the 

emitter which emits light correspondent to the bandgap of the solar cells by controlling 

the emitter's temperature and installing a spectral filter. They worked on optimizing the 

emitter spectrum in order to reflect the unused part of radiation. They designed two 

filters: periodic and non-periodic microstructure band-pass filters. The filter is positioned 

between the emitter and the PV cells. They used the genetic algorithm to optimize the 

non-periodic microstructure filter. Figure 2.33 shows the reflectivity of both the 

optimized and the periodic filter structures. They have concluded that the spectral filter 

plays an important role in recycling the radiation energy. They found that the optimized 

non-periodic filter has better performance than the periodic filter. In addition, they 

observed that increasing the series resistance and the cells temperature exerts negative 

effects on the electrical output power and the system efficiency. They recommended 

using high performance cooling system to maintain the cells temperature below 50  . 
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Figure 2.33. Comparison of the reflectivity of the two filters [82] 

 

 

2.4. Conclusion 

 

The literature review demonstrated that there are several approaches to enhance PVs 

efficiencies. However, each of them has its own shortcomings. Some of these limitations 

are: complexity, lack of the physical implementation, high cost, and drawbacks (i.e. 

increases the panel temperature) that waste the gains. Despite of the intensive studies that 

were reported on thermal and thermoelectrical modeling of PV cells and modules, there 

are no proposed thermal models that consider the individual wavelength perspectives. 

Such models introduce a thorough grasp and better understanding of the optical behavior 

of the PV modules. This accordingly enables better assessment for optical filtering 

applications especially if integrated with PV modules. Additionally, no studies are found 

in the literature focus on enhancing the PV module efficiency using active methodologies 

such as light filtering and trapping.  

Copyright © Sharif Z. Aljoaba 2013 
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CHAPTER 3.  

PROBLEM STATEMENT 

The problem statement and the motivation are introduced in this chapter. The concept of 

active filtering is presented as one of the promising solutions to the proposed problem 

and as a new contribution to the photovoltaic research community. The functional 

operation of such a filter is also discussed. 

 

 

3.1. Research motivation 

 

The photovoltaic (PV) module temperature is a function of the incident radiant power 

density, the output electrical power, the thermal properties of the materials composing the 

module, and the heat transfer exchange with the surroundings.  

 

The incident solar irradiance is the main input power to the module. Portions of the 

irradiance spectrum that are associated with long wavelengths do not contribute to 

electricity production due to their low energy levels. However, light with such 

wavelengths either reflects, passes through, or is absorbed as heat into the module layers. 

This heat increases the solar cell temperature as well. The photo-current increases slightly 

with increasing operating temperature due to band gap shrinkage. However, this gain is 

not sufficient to compensate for the drop in open-circuit voltage and PV cell fill factor 

[83]. Accordingly, the optical properties of the PV module affect the input power which 

directly impacts its temperature and output power.  

 

Higher temperature of the PV module leads to cyclic stresses at the upper and the lower 

surfaces of the cell. This may cause cracks at the center part of the cell surface. These 

cracks reduce the cell open-circuit voltage, the short-circuit current, and accordingly the 

fill factor. In addition these cracks cause fatigue failure that reduces the cell lifecycle 

[84]. The effect of temperature on the PV module efficiency varies with cell material. For 
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a crystalline silicon (Si) cell, the open-circuit voltage drops by 2 mV / K and output 

power decreases by 0.4% / K – 0.5% / K of temperature increase, from a base of 298 K 

[85-87]. For amorphous Si, the decrease is approximately 0.1% / K [88]. Table 3.1 [23] 

summarizes the loss percentage in the efficiency of any PV system as a result of different 

operational parameters and conditions reported by several researchers [23]. It can be 

observed from column 2 of Table 3.1 that the temperature causes a significant efficiency 

reduction.  

 

Table 3.1. Percentage of losses in PV systems due to different parameters [23] 

 

 

In conclusion, changes in temperature considerably alter the PV cell performance and 

lifecycle. Therefore, there is a great need to reduce the temperature increase that is taking 

place in the PV modules which enhances both the efficiency and lifecycle. 

 

Different approaches can be used to reduce the PV module temperature [23]. These 

approaches are active cooling systems such as air conditioning, assisted PV systems such 

as air-to-air heat exchangers, passive systems such as optical coatings and phase change 

materials which remove the heat by absorption [23].  
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Despite of its advantages, controlling the PV module temperature using active cooling 

systems increases the complexity of the solar system as well as its maintenance cost. 

Such a hybrid photovoltaic thermal (PVT) system requires additional output power from 

the PV module. However, the reduction in the temperature increases the output power 

more than the cooling pumps power consumption. The consumed power could be gained 

if other cooling methods are used such as the solar spectrum filtering. The hybrid PVT 

system is generally used for small scale solar power systems such as powering houses 

where hot water can be utilized. Nevertheless, the complexity and the high cost make the 

active cooling is not the preferred solution for large PV powering fields. The assisted PV 

system approach usually requires some power; however, is not as the same as active 

cooling, and also requires less maintenance. Phase change materials remove heat from the 

PV modules by changing its physical state by absorbing the heat from the module. Solar 

systems with phase change materials require additional maintenance and high initial 

investment cost as well. The passive systems might not reduce the temperature as other 

methods do, but it requires much lower initial investment cost and it is also maintenance 

free. In addition, passive systems as optical filters are reliable to be used for large scale 

PV energy field applications. 

 

As mentioned above, the main input power to the PV module is the solar irradiance. The 

incident solar spectrum consists of vast range of wavelengths that contain high and low 

energy levels. The PV material does not usually respond to photons associated with large 

wavelengths (infrared light) and accordingly, it will not absorb them. The energy level of 

these photons is usually lower than the PV material bandgap energy. Therefore, they 

either escape the module or most probably are absorbed by other layers within the 

module and convert into heat. The photons associated with small wavelengths (ultraviolet 

light) are usually of higher energy levels than the bandgap of the PV material. The excess 

energy of these photons will be converted into heat.  

 

Consequently, removing part of the solar irradiance reduces the heat and accordingly the 

module temperature. In Chapter two, several attempts of filtering efforts reported in the 

literature have been discussed. All of these efforts were focusing on designing and 



52 

developing passive filters (coatings) and light traps in order to increase the module 

efficiency. The optical filters were designed to passively filter the light according to 

wavelengths and angle of incidence. Although these passive filters enhance the output 

power at a specific time period, they ignore the effect of irradiance and temperature 

changes during the day course on the module performance. Accordingly, part of the light 

might be lost due to continuously changing incident angles which reduces the output 

power. Additionally, these optical coats are not capable of blocking the sun light if 

temperature reaches critical point that may end the module lifecycle. Furthermore, most 

of the reported designs are focused on a specific threshold wavelength, which is usually 

in the infrared (IR) region, and ignoring the ultraviolet (UV) light. Therefore, an active or 

dynamic filter would be a good solution for the passive filter limitations.   

 

Designing an optical filter, whether passive or active, for PV applications will be a 

challenge due to the optical behavior of the PV module. It is not intuitive to determine the 

cutoff wavelengths to split or block some portions of the solar spectrum. The different 

optical properties (reflection and absorption) of the PV module layers and the light 

internal reflections between them affect the overall light reflection and absorption of the 

module. Light reflection and absorption of the PV module have to be a function of 

wavelengths for better designs. This implies that obtaining the optical properties of the 

module layers as a function of wavelengths is also a challenging issue. Therefore, there is 

a great need for an optical model that is able to predict the overall optical properties of 

the module using the ones of its layers. 

 

In addition, a mathematical thermoelectrical model that is capable of considering the 

different factors that affect the module temperature is important for better temperature 

and module performance predictions. 

 

In conclusion, developing, designing, and implementing an active optical filter for 

photovoltaic applications using a wavelength-based thermoelectrical model is crucial. 

This will not only enhance the PV module efficiency, but also will add a novel 
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contribution in the field of solar energy by taking the advantage of the progress achieved 

in other fields (control, optics, and filtering). 

 

 

3.2. The concept of active optical filtering  

 

As discussed above, the passive optical filters have some limitations which are mainly 

blocking some light wavelengths that generate electrons and also lack of adaptive 

behavior to accommodate the meteorological changes. In addition, a fixed cutoff 

wavelength filter is not capable of blocking more light when it is necessary to enhance 

the lifecycle of the PV module especially for space applications. Applying an active 

optical filter reduces these limitations. The concept of the active optical filtering is 

simple. An ideal active optical filter should remove portions of the incident solar 

spectrum based on the module temperature. The cutoff wavelengths are from IR and UV 

regions. The higher the module temperature is, the larger the UV cutoff wavelength and 

the smaller IR cutoff wavelength. The cutoff wavelengths are optimally calculated, and 

filtering decisions should be made such that the output power is maximized. An optional 

filtering action can be used for total light blocking once the temperature exceeds the 

yielding point of the PV material which may lead to plastic deformation that might 

destroy the module. The optical filter can either be attached to the cover of the module as 

shown in Figure 3.1, or can be used as the cover to reduce optical losses. An approximate 

schematic for the proposed conceptual active filtering system integrated with the PV 

module is shown in Figure 3.2. 

 

Most of the manufactured PV cells are fabricated with a reflection layer at the bottom of 

the cell to reflect light back to the top of the cell in order to enhance the light absorption 

and also to increase the light path within the cell to improve its efficiency. In the cases 

where such a reflection layer does not exist, using an active optical filter might add some 

value to the output power if it is used as fully blocking or fully transmitting filter based 

on the module temperature. 
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Figure 3.1. The optical filter integrated with the PV module 

 

 

Figure 3.2. Schematic diagram of the active filtering system 

 

 

Copyright © Sharif Z. Aljoaba 2013 
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CHAPTER 4.  

WAVELENGTH BASED THERMOELECTRICAL MODEL 

4.1. Introduction 

 

The majority of the thermal and thermoelectrical models that predict the photovoltaic 

(PV) module temperature, output power, and the interaction between them have two 

major drawbacks. First, the calculated input power in these models relies on the 

assumption that the generated current is proportional to the total power density of the 

incident solar irradiance neglecting the wavelength-specific effects. It is well known that 

the PV cell responds to a specific wavelength range of the solar irradiance to generate 

electricity. This range depends on the PV material. Therefore, only this portion of the 

solar irradiance should be considered to calculate the input power to the PV material. 

Second, these models use a constant absorption coefficient for all wavelengths ignoring 

the different optical properties of the different module layers and the internal light 

reflections between these layers. This potentially affects the model input and output 

power predictions. 

 

At each wavelength some energy is reflected, some is absorbed in the PV cells 

(contributing to electricity production), some is absorbed in other module materials, and 

some is transmitted through the module. A model capable of predicting this wavelength-

specific behavior will generally allow better assessment of the module performance 

especially when it is combined with various subsystems such as optical filters. 

 

In this chapter, a detailed derivation of a mathematical thermoelectrical model is 

introduced. This model is developed to consider the wavelength-specific effects, allowing 

for improved temperature and module performance predictions. All terms of the model 

are discussed. An optical model to calculate the overall light reflection and absorption of 

a PV module is also proposed.  
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4.2. Model Derivation 

 

The PV module temperature is a function of the incident radiant power density, the 

output electrical power, the thermal properties of the materials composing the module, 

and the heat transfer exchange with surroundings. The PV model proposed herein is 

based on consideration of energy exchange [30], [58], [59]. All of the heat transfer modes 

will be considered; i.e., conduction, convection, and radiation. However, the heat 

conducted from the module to the structural framework is considered negligible due to 

the small area of contact points [30]. The electrical power produced by the module is also 

considered. The main heat transfer paths and energy flow to and from the module are 

shown in Figure 4.1. 

 

 

Figure 4.1. Heat transfer and energy exchange in the PV module 

 

The rate of change in the module temperature is a function of the incident light which is 

referred to it as shortwave radiation    , longwave radiation    , heat convection to the 

surroundings      , and output power      [30]. This can be expressed as 

 

         
   
  

                      
(4.1) 
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Table 4.1 contains the definitions of all symbols used herein. The terms given in Equation 

(4.1) are discussed in the following sections. 

 

Table 4.1. Nomenclature 

Symbol Definition 

        module heat capacity (J/K) 

   module temperature (K) 

    shortwave radiation absorbed by module (W) 

    longwave radiation (W) 

      heat convection to the surroundings (W) 

     output power (W) 

  area of module (m2) 

   depth of material in module (m) 

  area of module (m2) 

   starting wavelength (nm) 

   ending wavelength (nm) 

  absorption coefficient 

    solar spectral irradiance (W/(m2nm)) 

  wavelength (nm)  

    absorption coefficient of cell, cover, insulation stack 

    absorption coefficient of cover, air, insulation stack 

  number of cells in module  

   area of the p-n junction (m
2
)  

  Stefan–Boltzmann const. (5.669×10
8
 W/(m

2
K

4
)) 

         tilt angle measured with the horizontal (degrees) 

     emissivity of sky (0.95) 

     effective sky temperature (K) 

     emissivity of surface of ground (0.95) 

     ground temperature (K) 
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Table 4.1 (continued) 

Symbol Definition 

   constant (20 K) 

   emissivity of PV module (0.9) 

   convection coefficient (W/(m
2
K)) 

     ambient temperature (K) 

          forced convection coefficient (W/(m
2
K)) 

        free convection coefficient (W/(m
2
K)) 

   wind speed (m/s) 

  load current (A) 

  load voltage (V) 

    photonic current (A) 

   saturation current (A) 

   series resistance (Ω) 

    shunt resistance (Ω) 

  Boltzmann const. (1.38×10
−23

 J/K) 

  quality factor depending on the technology (1–2)  

  charge of electron (1.6×10
−19

 C) 

    photonic flux (1/(m
2
nms)) 

   absorption coefficient of PV cell 

  Planck's const. (6.626×10
−34

 Js) 

  light speed (3×10
8
 m/s) 

  photon energy (J) 

    reference saturation current (A) 

   reference temperature (K) 

   bandgap energy (eV) 

    short-circuit current (A)  

    open-circuit voltage (V) 

   load resistance (Ω) 

    fill factor 



59 

Table 4.1 (continued) 

Symbol Definition 

     maximum output power (W) 

   normalized open-circuit voltage 

       new maximum output power (W) 

     new fill factor 

    characteristics resistance (Ω) 

   specific heat capacity of material (J/(kgK)) 

   depth of material in module (m) 

   density of material (kg/m) 

   area of material (m
2
)  

  time (s) 

   probability at time step   

    state transition matrix 

   reflection of layer x 

   absorption of layer   

N index of the bottom layer of the module 

 

The temperature throughout the module is assumed to be homogenous. This assumption 

is justified in Chapter 5. 

 

4.2.1. Shortwave Radiation 

 

Shortwave radiation is the input power to the PV module through its front surface. The 

input power is a function of the power density of the global solar irradiance that is 

absorbed in the module layers. Mathematically, this can be represented as 

 

                   
  

  

  (4.2) 
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The value of     depends on the sun position (time), the module location, and the sky 

conditions (clear, cloudy, or overcast). The absorption coefficient  , which is a function 

of wavelength, depends on the optical properties of the module layers. The value of   

specifies the fraction of the incident irradiance associated with a specific wavelength that 

is absorbed by the module. 

 

Generally, PV modules contain three major layers: cover, cell, and insulation material. 

The insulation layer represents another source of input power to the module since it 

absorbs light. The input power given in Equation (4.2) can be divided into two parts. The 

first part represents the power that is absorbed by the area where the PV cells are present. 

The stack of layers that contains cover, cell, and insulation has absorption coefficient    . 

The second part represents the power that is absorbed by the area where the PV cells are 

not present. The stack of layers that contains cover, air, and insulation has absorption 

coefficient    . Accordingly, the shortwave radiation given in Equation (4.2) becomes 

 

 

                    
  

  

      

                 
  

  

          

(4.3) 

 

The absorption coefficients are determined by considering the optical properties of the 

module layers and the interfaces between them.  

 

The range       includes the wavelengths that hold the majority of the solar irradiance 

energy. Only some of these wavelengths excite electrons. For example, the range of 

wavelengths that generate electricity from silicon PV cells is 350–1110 nm, while the 

remaining wavelengths do not. These wavelengths may be absorbed by other layers in the 

module and this would be represented by the absorption coefficients of the layers for 

those wavelengths. 
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The novelty of the proposed method used to calculate the input power is breaking the 

overall module absorption coefficient   into sub-absorption coefficients that are layers 

dependent and yet functions of wavelength. This method differs from the most reported 

approaches in the literature [30], [89] that use   as constant for the whole module, 

neglecting the different optical properties of the module layers. The proposed method can 

be extended to any number of layers without losing the generality.  

 

4.2.2. Longwave Radiation 

 

The heat exchange between the PV module, the ground, and the sky is given as [30] 

 

 

        
               

 
        

 

 
               

 
        

      
   

(4.4) 

 

The ground temperature is assumed to be the same as the ambient temperature because 

the testing position is close to ground. The tilt angle          is measured for each 

experiment. The sky temperature      is different for different sky conditions [30]. For 

clear sky condition, sky temperature can be calculated using 

 

              (4.5) 

 

where    is constant and equals 20 K [30]. For overcast condition, the sky temperature 

equals the ambient temperature [30]. 

 

4.2.3. Convection heat transfer 

 

The heat convection that takes place between the PV module and the ambient air can be 

calculated using [30] 
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                   . (4.6) 

 

The coefficient of heat convection    is calculated from the coefficients of free and 

forced convective heat transfer as [90] 

 

            
                 

 
 

  (4.7) 

 

Jones et al. [30] and Armestrong et al. [59] discussed different approaches to find the 

coefficients of convection heat transfer. The coefficient of free heat transfer         of the 

PV module can be found using the empirical formula [30] 

 

                   
     (4.8) 

 

The coefficient of free heat transfer given in Equation (4.8) accounts for the heat lost 

from the back side of the module. 

 

The coefficient of forced heat transfer           depends on wind speed. Armestrong et 

al. [59] presented several linear relations to calculate           as function of wind speed. 

Jones et al. [30] provided a wide range of constant values for the forced heat transfer 

from 1.91 to 9.1 W/(m
2
K) for different wind speed ranges. Finally, Kemmoku et al. [91] 

optimized the coefficient of forced heat transfer such that the predicted temperatures fit 

the experimentally measured ones. 

 

It is found that using a constant           over a specific time results in a large error. This 

can be attributed to the fact that wind speed unpredictably fluctuates on a short time scale 

(i.e., within seconds) which critically affects the heat transfer process. Therefore, using a 

formula to calculate           reflects the wind speed dynamic changes.  
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For outdoor experiments, Armestrong et al. [59] discussed three formulas (Test, Sturrock, 

and Sharples) that could be used to calculate           as a function of wind speed. 

Testing procedure and conditions help to select the most convenient formula that predicts 

temperature values close to the experimental measurements. Since in most cases the PV 

module is tilted, and the wind speed is measured at a location beside the module 

(windward), Sharples-windward empirical formula given as  

 

                
 

   
         

 

   
  (4.9) 

 

is expected to predict accurate values for          . 

 

4.2.4. Output Power 

 

As discussed in Chapters two and three, the output power of the PV cell is highly affected 

by its temperature. The relation between the thermal and the electrical aspects of the PV 

cell is interactive. The output power of   series connected PV cells is given as 

 

          (4.10) 

 

The load-current   can be derived from the single-diode equivalent model [26] as 

 

              
        

    
     

     
  

  (4.11) 

 

The shunt resistance    is assumed to be sufficiently large that the third term of Equation 

(4.11) is negligible. The voltage   across a load resistance    equals    , therefore, 

Equation (4.11) becomes 

 

              
         

    
      (4.12) 
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The photonic current can be found using [92] 

 

                               
  

  

   (4.13) 

 

The number of photons traveling in the same wavelength can be calculated using  

 

                    (4.14) 

 

where     is the solar irradiance and   is the photonic energy which is calculated as [93] 

 

            (4.15) 

 

The reverse saturation current changes dramatically with PV cell temperature. Therefore, 

a model is required to calculate the reverse saturation current as a function of 

temperature. The formula is given as [94] 

 

                                          (4.16) 

 

The reference saturation current     should be determined under reference conditions. 

These conditions are: temperature, open-circuit voltage, and short-circuit current. The 

reference saturation current     can be approximated using [94] 

 

                                (4.17) 

 

The open-circuit voltage     and the short-circuit current     that are used in 

Equation (4.17) should also be measured or calculated at the reference temperature.  

 

In the case of maximum power point tracking, the maximum output power can be found 

by numerically solving Equation (4.11) for the current that produces the maximum output 
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power. Alternatively, empirical relations can be utilized. The maximum output power can 

be found using  

 

                (4.18) 

 

It is assumed that the effect of the series resistance on the short-circuit current is 

negligible, i.e.        . The open-circuit voltage     can then be expressed as 

 

     
    
 

   
   
  
     (4.19) 

 

The fill factor of the PV cell is function of its temperature, mainly due to the changes in 

the open-circuit voltage as given in Equation (4.19). A commonly used empirical formula 

to calculate the fill factor is presented in [95] and given as  

 

     
              

    
 (4.20) 

 

where    is the normalized open-circuit voltage that can be calculated using 

 

    
 

    
     (4.21) 

 

The effect of the series resistance on the fill factor can be estimated using the following 

method [95]. The new maximum power will be the maximum power in absence of the 

series resistance minus the power lost into the series resistance as 

 

                     
                    

 
  (4.22) 

or 

                       (4.23) 
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where             . Substituting Equation (4.18) in Equation (4.23) leads to  

 

 
                           

            

(4.24) 

 

where 

 

                      (4.25) 

 

Thus, the output power can be used for various loading conditions including resistive and 

maximum power point loadings.  

 

4.2.5. Heat Capacity 

 

The heat capacity of PV module is the sum of heat capacities of the individual layers that 

are composing the module. For each component made of a specific material signified by 

 , the heat capacity of the module is given as 

 

                     (4.26) 

 

4.2.6. Model Integration 

 

The thermoelectrical model of a PV module can be integrated by substituting Equations 

(4.3), (4.4), (4.7), (4.10), and (4.26) in Equation (4.1) as  
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(4.27) 

 

This model is nonlinear and can be solved numerically. For example, the Euler method 

can be implemented to calculate the module temperature at every time step 

 

                         
   
  

 (4.28) 

 

 

4.3. Optical Model for PV modules 

 

The absorption coefficients of different combinations of the PV module layers 

considerably affect the input and output power calculations for the thermoelectrical 

model. The optical properties of the PV module determine the absorption of light through 

the module layers. Therefore, the optical properties of the PV module depend on its 

layers and their materials. Measuring the optical properties of these layers and identifying 

the interfaces between them is critical to understand the behavior of light within the 

module. 

 

The conventional method that is often used to find the absorption coefficient of the PV 

module is to multiply the absorption coefficient of the PV cell and the cover optical 

efficiency. Most researchers [30], [89] have used constant values for both of these 
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parameters. It is well known that the optical properties of the silicon wafer and the cover 

are functions of wavelengths [96]. Therefore, it is important for a high-fidelity to treat the 

absorption coefficients of PV module layers as functions of wavelength. However, the 

simple multiplication of these wavelength-specific optical properties might not be 

accurate to find the net light absorption in the PV cells. This can be attributed to the 

internal reflections that take place at the interfaces between the module layers. These 

reflections can significantly affect the overall light absorption of the module layers. 

 

In this research, an optical methodology is used to calculate the overall light absorption 

and reflection of the module layers. This methodology considers the light reflections at 

the interfaces between the module layers assuming that the light is propagating through 

the module in one dimension. 

 

Once photons hit the module, some will be absorbed, and some will escape. The location 

at which a photon may be thought to exist is called light pocket (or state). A photon may 

exist in one of the following light pockets: top going down (TD), top going up (TU), 

absorbed into the layer (AB), bottom going down (BD), or bottom going up (BU) as 

shown in Figure 4.2. The same pattern repeats for each layer except for the top and 

bottom air layers where A, B, C, and D represent the light pockets in these two layers. 

 

 

Figure 4.2. Light pockets in the PV module 
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A Markov chain is used to describe the probability of finding a photon at a specific state 

in the module layers depending on their optical properties (absorption and reflection). 

The basic concept depends on the probability of finding a photon in a future state from its 

current state. Mathematically, this can be expressed as  

 

          (4.29) 

 

where   is the state transition matrix that contains the conditional probabilities of a 

photon transitioning from one state to another. The transition matrix size equals the 

number of light pockets in the module. For example, in the stack of layers shown in 

Figure 4.2, there are 19 light pockets, hence   is 19   19. Using Figure 4.2, Equation 

(4.29) is expanded as  

 

          (4.30) 

 

                                  (4.31) 

 

            
                                   

                                         
  (4.32) 

 

                         (4.33) 

 

                                       (4.34) 

 

                         (4.35) 

 

            
                                   

                                        
  (4.36) 

 

                                  (4.37) 
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          (4.38) 

 

The subscripts can be expressed as in the example         which refers to the probability 

of a photon being in the state (light pocket) top going down in layer   at the step  . The 

entries of the state transition matrix   are dependent on the surface reflectance    

between layers   and     and on the absorption    of layer  . 

 

The initial states vector is           , where a photon initially strikes the 

module at its surface traveling down. The final state vector    represents the fraction of 

photons that remain in a given pocket. Photons can ultimately be reflected from the 

module (    ), absorbed in one of the layers (       ), or transmitted through the module 

(    ). As an example, the contents of the   vector during the Markov chain’s evolution 

for 30 steps for a photon with 600-nm wavelength striking the acrylic-covered PV 

module are plotted in Figure 4.3. It can be observed that the steady-state for all states is 

reached after approximately 5 steps. All states decayed to zero after this number of steps 

except two states. The first state (Pocket 10) corresponds to photons being absorbed in 

the PV cell. The second state (Pocket 2) corresponds to photons being reflected from the 

module. This behavior depends on the optical properties of the layers which are inputs to 

the optical model. The reflection and absorption of each layer in the module are required 

as a function of wavelength.  

 

The optical model proposed herein can be used to find the overall light absorption 

coefficients of the different layer combinations throughout the module, i.e.,     and    , 

as functions of wavelengths as it will be discussed in the next chapter. 
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Figure 4.3. Final light pocket occupancy probability for 600 nm. 
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CHAPTER 5.  

EXPERIMENTAL PARAMETERIZATION AND MODEL VERIFICATION 

5.1. Introduction 

 

The parameterization procedure of a computational model is crucial to determine its 

parameters and hence allows using it to simulate various conditions. A characterization 

procedure allows the model to predict the performance of a PV module under various 

meteorological conditions and to use the model for other PV materials. To validate the 

model proposed in Chapter four, each term presented in Equation (4.26) should be 

characterized for any photovoltaic (PV) module. The experimental parameterization 

advances the use of the model to predict the temperature and the output power of a given 

PV module at various locations and meteorological conditions (solar irradiance, ambient 

temperature, and wind speed). 

 

In this chapter, a method to characterize the proposed thermoelectrical model is 

presented. The experiments that are used to parameterize and validate the model are 

described. A comparison between the experimental and the simulated results is discussed. 

Different PV module covers are tested. 

 

 

5.2. Model Parameterization 

 

In this research, two photovoltaic modules are built to characterize and to validate the 

model. Each of the modules consists of three layers: cover (acrylic or glass), PV cells 

(monocrystalline silicon), and insulation board (polystyrene) as shown in Figure 5.1. The 

experimental setup used to collect data for model characterization and validation is 

shown in Figure 5.2. The data acquisition system, which is shown in Figure 5.2, is 

designed and built to serve the goals of this research. It is basically designed to log the 

temperature measurements using four thermocouple inputs, and also to obtain the 

characterization curve (IV-curve) of the PV module continuously at a specific time rate 
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that can be changed. This would allow tracing the IV-curve of the module at different 

temperatures to monitor its performance. In addition, this system is capable of calculating 

the maximum power point from the IV-curve, which can be used to calculate the optimal 

load for the module, and also shows the effect of temperature on the module 

performance. The acquisition system will be discussed later in more details. 

 

 

Figure 5.1. Lab-built monocrystalline Si PV module 

 

 

Figure 5.2. Experimental setup 
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5.2.1. Module optical properties 

 

The optical model proposed in Chapter four requires the optical properties of the PV 

module layers to be defined as functions of wavelength. These properties can be obtained 

using experiments and optical models. In this section, light reflection and absorption of 

the module layers stacked into different combinations will be discussed. All symbols 

used in this section are defined in Table 5.1  

 

Table 5.1. Nomenclature 

Symbol Definition 

    antireflection coat thickness (nm) 

   maximum  irradiance wavelength (600 nm)  

    refraction index of the AR coat  

    refraction index of silicon 

   refractive index of the layer i. i =1,2,3,.. 

    p-polarized reflection 

    s-polarized reflection 

    Amplitude reflectance 

    average reflection 

  reflection 

       total transmission 

  incident angle 

  light power density (W/m
2
) 

 

The PV cell is coated with an antireflection (AR) coat. It is assumed that the AR coat is a 

single-layer thin film. If a light beam is incident on a thin-film coat, some of it will be 

reflected at the front surface, some will be reflected at the rear surface, and the remainder 

will be transmitted to the following medium. For thin films, the material absorption and 

the light scattering can be ignored [97]. Therefore, the light reflection at the interface 

between the cover and the PV cell depends on the behavior of the AR coat. The AR coat 
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light transmission depends on light angle of incidence, coat thickness, number of AR 

layers, and refraction indexes of AR layers and the materials surrounding them.  

 

The optimal thickness of a single AR coat can be calculated using [61] 

 

               (5.1) 

 

where    is the wavelength at which the irradiance is maximum, which is 600 nm, and 

the AR is assumed to have this thickness. For optimal thickness, the optimal     is found 

for the value of     at 600 nm wavelength. Accordingly, the optimal refraction index of 

the AR coat can be calculated using [61] 

 

               (5.2) 

 

To calculate the reflection of AR coat, the angles of refractions into the materials 

surrounding the coat are required. As shown in Figure 5.3, these angles are   ,   , and 

  . For the case of normal incidence,     . 

 

 

Figure 5.3. Refraction angles through PV cell 

 

In this work, only normal incident is considered to calculate the reflection of the AR coat. 

However,    can be any value between 0
º
 and 180

º
. In this case (    ), the light 

refraction angles inside the AR coat and the layer below can be calculated using [97] 
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  (5.3) 

 

and  

 

           
          
     

   (5.4) 

 

The single interface amplitude reflectance for the parallel ( ) and the normal (s) 

polarizations are given as [97] 

 

          
               
               

 (5.5) 

 

          
                 
                 

 (5.6) 

 

          
               
               

 (5.7) 

 

          
                 
                 

  (5.8) 

 

The subscripts          and          are the amplitude reflectances for the s-polarized and 

p-polarized light, respectively, at the interface between layers i and j. Layer i is the cover, 

layer j is the AR coat, and layer j+1 is the PV cell. 

 

The reflection of the AR coat considering both interfaces (top and bottom) for both phase 

differences between the reflected waves are [97] 

 

     
        
            

                             

          
           

                             
 (5.9) 
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 (5.10) 

 

The variable   is the phase difference in the external medium between waves reflected 

from the first and second surfaces of the AR coat. It is given as [97] 

 

   
  

 
                

(5.11) 

 

Accordingly, the average reflection is [97] 

 

     
       

 
   (5.12) 

 

To calculate the reflection of the AR coat, the refraction indexes of the surrounding 

mediums are required. The PV modules are usually covered with special low iron glass 

that has a refraction index equals 1.5 [92]. The refraction index of acrylic is nearly 

constant over the desired wavelength range (300–1100 nm) and equals to 1.49 [98]. It can 

be observed that the refraction indexes are almost similar for both covers. The refraction 

index of silicon is function of wavelength as shown in Figure 5.4 [96]. At the optimal 

wavelength (600 nm), the optimal refraction index and optimal thickness of the AR coat 

using the refraction index of the glass are found equal 2.4226 and 61.917 nm, 

respectively. Assuming optimal thickness, for normal incident light, the reflection of the 

AR coat is shown in Figure 5.5 as function of wavelength. 

 

The reflection of the cover layer should also be obtained as function of wavelength. The 

refraction index of acrylic is almost constant over the desired wavelength range due to 

nearly constant light transmission over this range which is experimentally measured as 

shown in Figure 5.6. The data shown in Figure 5.6 represent the overall light 

transmission of the sheet. However, the surface reflection is not the complement of the 

total transmission. This is due to the internal reflections that occur between top and 

bottom surfaces of the acrylic sheet.  
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Figure 5.4. Refraction index of silicon 

 

 

Figure 5.5. Reflection of AR coat between silicon and acrylic/glass 
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Figure 5.6. Total light transmission of 3.2-mm thick acrylic sheet 

 

The same optical model that is proposed in Chapter 4 can be used to obtain the acrylic 

surface reflection. Assuming that both surfaces of the acrylic sheet have the same 

reflection, it is found that the total light transmission can mathematically be represented 

as 

 

                  
 

   

 (5.13) 

 

The geometric series given in Equation (5.13) can be expressed as 

 

        
   

   
 (5.14) 

 

Accordingly, the surface reflection of the acrylic sheet is 
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  (5.15) 

 

The same concept can be followed to obtain the light reflection of the glass cover. In this 

research, a 3.2-mm thick low-iron glass that is commercially known as Solarphire [99] is 

used. The light transmission of this glass is shown in Figure 5.7. 

 

 

Figure 5.7. Total light transmission of 3.2-mm thick Solarphire PV glass 

 

The polystyrene board is tested to find its light transmission, reflection and absorption 

when it is covered only with acrylic. It is assumed that the cover does not absorb light, 
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sun (1000 W/m
2
) of light to serve the goals of this research as shown in Figure 5.8. The 

irradiance is distributed over 14 in by 14 in area with accuracy of  50 W/m
2
. According 

to Guvench et al. [100], the combination of metal-halide and quartz halogen light sources 

generates an artificial light that has a spectrum close to the standard solar spectrum. A 

spectrometer is fixed in a spot that does not block any light.  
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The testing procedure is performed as follows. First, a Lambertian-surface black board is 

placed at the floor of the simulator assuming that no light will be reflected back from it. 

The light noise from surroundings is measured. Second, the acrylic-covered polystyrene 

board is positioned at a specific distance from the light source where 1000 W/m
2
 is 

approximately received. Third, the light reflected from this assembly is measured. This 

measurement includes the noise from surroundings which is already measured, so it 

should be subtracted. Fourth, the spectrometer is attached to the back side of the 

assembly at a point that is perfectly aligned with the point at which the reflected light is 

measured. This setup measures the transmitted light. It is found that the assembly of the 

board covered with acrylic transmits about 4.1%, reflects about 29.3%, and absorbs 

66.6% of light which converts into heat. It is assumed that these numbers are close to the 

case of using glass cover due to the similarity of light transmissions in the desired 

wavelength range. 

 

 

Figure 5.8. Large area solar simulator 
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The same experimental setup is used to measure the light absorption of the polystyrene 

that is covered by the PV cell. It is found that the PV cell does not pass light through. 

This implies that it is fabricated to reflect all light that hits its bottom in order to increase 

its efficiency by increasing the light path.  

 

Using the proposed experimental and predicted data, the overall light absorption 

coefficients of the different layer combinations can now be found as given below using 

the methodology discussed in Chapter four.  

 

5.2.2. Input power 

 

The input power term requires the absorption coefficients        and       . These 

parameters can be obtained using the proposed optical methodology. The overall 

absorption coefficient of the silicon PV cell that is sandwiched between acrylic cover and 

polystyrene board is shown in Figure 5.9. The overall absorption coefficient of the 

polystyrene insulation board covered with acrylic is shown in Figure 5.10. In the case of 

glass cover, the absorption coefficients        and        are shown in Figures 5.11 and 

5.12 respectively. The value of        and       .per each wavelength represents the 

fraction of photons propagate with this wavelength that will be absorbed in that stack of 

layers. Since it is assumed that the covers do not absorb light, and the PV cell is assumed 

to have a reflection coat at its back surface; all the light that hits the three layers stack 

will be absorbed in the PV cell by a fraction that is specified by       . In case of the 

stack where the PV cell layer does not present, the fraction defined by        represents 

the light absorbed by the polystyrene board.  

 

5.2.3. Output power 

 

The terminologies used herein to distinguish between the PV modules built to serve the 

goals of this research are module 1 (M1) which is usually covered with glass and module 

2 (M2) which is usually covered with acrylic. Both covers can be switched between the 

modules. The output power model requires four unknown quantities that are properties of 

the PV module under test. These quantities are photonic current    , reverse saturation 
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current   , series resistance   , and quality factor  . As presented in [101],    can be 

calculated from the reference saturation current     that can be calculated at reference 

conditions. At the reference conditions, both currents are identical. The least square error 

method is used to find the optimal values of the unknown quantities.  

 

At least four data points should be used to solve the nonlinear output current equation for 

the unknown quantities. To obtain these points, the PV modules are loaded with two 

different resistive loads (0.35-Ω, and 1.08-Ω). Each of PV modules is exposed to sun 

light (1065 W/m
2
, at 3:30 pm on 04/06/2012, Lexington, Kentucky) until its temperature 

reached the steady state (343 K).  

 

 

Figure 5.9. Absorption coefficient of acrylic-covered Si PV cell 
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Figure 5.10. Absorption coefficient of acrylic-covered polystyrene material 

 

 

Figure 5.11. Absorption coefficient of glass-covered Si PV cell 
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Figure 5.12. Absorption coefficient of glass-covered polystyrene material 
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spectrum for this work. The spectral irradiance values are obtained using SMARTS 2.9.5 

[103] for 04/06/2012 as shown in Figure 5.13. Obtaining the spectral irradiance will be 

discussed later in more details. The solar light power density   is measured in location, 

where the spectrometer used for measurements is of  5% accuracy. The tilt angle is 

selected in order to get normal incident light with   is 1060 to 1070 W/m2. Accordingly, 

the tilt angle          lies in the range    –   . It is found that   calculated using 

SAMRTS for 04/06/2012 is 1053 W/m
2
, which is close to the spectrometer 

measurements. 

 

Table 5.2. Experimental data and calculated unknown quantities of M1 and M2  

Parameter Glass-covered module 1 Acrylic-covered module 2 

    (A) 4.28 4.62 

    (V) 2.084 2.069 

Load 1 (I, V) 3.51, 1.275 3.3, 1.198 

Load 2 (I, V) 1.63, 1.76 1.58, 1.712 

    (A) 4.2806 4.6209 

    (A) 120.5 10
-7

 7.2403 10
-7

 

   (Ω) 0.0377 0.0505 

   1.38 1.12 
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Figure 5.13. Global solar irradiance, 3:30 pm, 04/06/2012, Lexington, KY 

 

As a result, the characteristic curves of the PV modules M2 and M1 are obtained based 

on the optimally derived quantities are shown in Figure 5.14 and Figure 5.15 
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Figure 5.14. Numerically optimized IV-curve of the PV module M2. 

 

 

Figure 5.15. Numerically optimized IV-curve of the PV module M1. 
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Several sources can cause the error between the calculated and the measured data points. 

Some of these sources are: tolerance in the resistive load values, changes of resistive 

loads when they heat up, the uncounted wiring resistive loads, and the minor changes of 

solar isolation due to time changes when the experiments are conducted. 

 

5.2.4. Forced heat transfer 

 

The coefficient of forced heat transfer           depends on the wind speed. For outdoor 

experiments, as mentioned in Chapter four, Armestrong et al. [59] discussed three 

formulas (Test, Sturrock, and Sharples) that could be used to calculate           as 

function of wind speed. In this research, the PV module is tilted, and the wind speed is 

measured at a location beside the module (windward), Sharples-windward empirical 

formula given as  

 

                
 

   
         

 

   
  (5.16) 

 

is expected to predict accurate values for          .  

 

The temperatures of the loaded and unloaded module using the three formulas are shown 

in Figures 5.16 and 5.17 respectively. It can be observed that both Sharples and Test 

methods predict           such that the predicted module temperature is very close to the 

experimental measurement. However, Sharples is selected in this work because it 

provides more accurate predictions in the case of the unloaded module as shown in 

Figure 5.17. In addition, it corresponds with the physical arrangement of the module 

under consideration. 
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Figure 5.16. Various formulas of          , loaded module under live one sun solar 

irradiance. 

 

 

Figure 5.17. Various formulas of          , unloaded module under live one sun solar 

irradiance. 
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5.3. Spectral irradiance 

 

Solar irradiance is vital to validate the developed thermoelectrical model. As discussed in 

Chapter four, the main input energy to the PV module is the solar irradiance. Measuring 

or predicting the solar irradiance as function of wavelengths for a specific date, time, and 

location is important for characterizing and validating the model. There are two standards 

of solar spectrum defined for terrestrial use specified as ASTM G-173-3 in 1992 with an 

extra terrestrial solar constant that equals 1366.1 W/m
2
. First is the AM1.5 Global 

spectrum which is designed for flat plate modules and has an integrated power of 1000 

W/m
2
. Second is the AM1.5 Direct (plus circumsolar) spectrum that is defined for solar 

concentrator work. It includes the direct beam from the sun plus the circumsolar 

component in disk 2.5 degrees around the sun. The direct plus circumsolar spectrum has 

an integrated power density of 900 W/m
2
 [104]. However, a newer spectral irradiance 

was proposed by Gueymard in 2004 [105], which is reported as more accurate than the 

ASTM G-173-3 with equal extra terrestrial solar constant value. This new solar spectrum 

is adopted in this research.  

 

The location of all experiments conducted in this research is Lexington, Kentucky, USA. 

This location has the coordinates of 34N latitude and 84W longitude, height of 305 m 

above sea level, and -5 hours time difference zone [106].  

 

The spectral irradiance of this location is obtained using SMARTS 2.9.5 (Simple Model 

of Atmospheric Radiative Transfer of Sunshine) software developed by Gueymard at 

NREL (National Renewable Energy Laboratory) [107], [108]. SMARTS computes the 

clear sky spectral irradiances (including direct beam, circumsolar, hemispherical diffuse, 

and total on a tilted or horizontal receiver plane) for the specified location and the desired 

atmospheric conditions. The earlier version SMARTS 2.9.2 was the basis for American 

Society of Testing and Materials (ASTM) reference spectra (ASTM G-173 and ASTM G-

177) used for photovoltaic performance testing and materials degradation studies. Using 

SMARTS, the global spectral irradiance for the location mentioned above is obtained for 

different dates and times at which experiments are conducted. For example, the spectral 
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irradiance on 06/15/2010, from sunrise at 5:30 am to sunset at 20:00 pm is obtained every 

half an hour. The spectral irradiance is obtained for the wavelengths range of 280 to 4000 

nm with 0.5 nm step for 280–400 nm, 1 nm step for 400–1700 nm, and 5 nm step 1700–

4000 nm. A 3-dimentional plot is created for the obtained spectral irradiances for the 

wavelength range 300–2700 nm versus time as shown in Figure 5.18. Out of this data, a 

window of wavelengths that depends on the semiconductor material is used in the 

simulation for input and output powers calculations. For silicon, this window is 300 nm 

to 1100 nm.  

 

 

Figure 5.18. Solar spectral irradiance, Lexington, KY, on 06/15/2010 
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simple system consists of 4 thermocouple amplifier digital chips (MAX6675), a 

transistor, operational amplifier, current-sensor resistor (CSR), and microcontroller kit as 

shown in Figure 5.19. The electrical circuit layout of this system is shown in Figure 5.20.  

 

 

Figure 5.19. Actual data acquisition system 

 

The temperatures are simply read by the microcontroller (MC) through the digital inputs 

where the thermocouple chip converts the analog voltage signal sent by the K-type 

thermocouples into digital. The digital signal will be read by the MC which processes this 

signal and converts it into temperature measurements.  

 

The IV-curve tracer part of the DAS uses the current sink principle, where the analog 

signal generated by the MC is applied to the operational amplifier. The operational 

amplifier and the MOSFET connected to each other as shown in Figure 5.20 create 

current sink. The current sink works as a gate that passes no current when no signal is 

applied to the op-amp. Once the op-amp receives a signal from the MC, then it passes the 

generated current gradually through the MOSFET until it becomes fully opened gate. The 
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current passes through the current-sensor resistor creates a voltage drop across it. The 

voltage drop is measured by the analog input of the MC and the current is internally 

calculated using Ohm’s low and the value of the CSR. The voltage across the PV module 

is measured using the analog input. Both, the calculated current and the measured voltage 

represent the characteristics of the module to create its IV-curve. There always be a 

voltage drop across the CSR, therefore, the voltage won’t reach zero once the module is 

considered in short circuit condition. The value of this drop depends on the rated short-

circuit current of the PV module and the value of the CSR. However, the current usually 

reaches its steady state value which is the short-circuit current at voltage value that is 

close to zero. This can be overcome by using smaller CSR that is able to hold large 

current values. 

 

 

Figure 5.20. Electrical circuit layout of the data acquisition system 

 

The IV curves of the PV Modules M1 and M2 are generated by the IV-curve tracer and 

compared against the numerical IV-curves as shown in Figures 5.21 and 5.22 

respectively. As shown, the IV-curve tracer overestimates the current values that are 
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numerically obtained. The IV-curve tracer is calibrated to accurately measure the short-

circuit current and the open-circuit voltage. However, the calibration is not linear to 

enhance the tracer capabilities of measuring the remainder of the operating points on the 

curve. This behavior might be caused by the fast sweeping process of the current sink 

which is faster than the voltage changes across the module which may lead to the error 

shown in the plots. This error might be reduced by slowing down the current sink through 

using higher time delays between the ADC and DAC. The code of the MC is modified 

such that the user is able to modify these values as desired.  

 

 

Figure 5.21. Numerical versus tracer IV curves of M1  
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the PC through RS323 cable. One of these options is the maintenance tools as shown in 
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the series and shunt resistors from the curves. The cost of the hardware components of 

this system is less than $300 including the MC kit. 

 

 

Figure 5.22. Numerical versus tracer IV curves of M2  

 

 

Figure 5.23. Data acquisition system communication menus  
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5.5. Model validation 

 

The model is validated using the experimental setup that is shown in Figure 5.2. The 

ambient temperature and the wind speeds are measured at the same location. The model 

is validated using the data collected for the PV module M2 that is covered with acrylic. 

The data used to validate the model are date, time, tilt angle, and meteorological data. 

The meteorological data are: ambient temperature, wind speed, and solar spectrum. The 

ambient temperature and wind speeds are measured at the location where the experiments 

are conducted. These data are collected on 02/02/2012 at Lexington, Kentucky, USA. 

The experimental data that are used to validate the model are different from the data used 

to characterize it. This would indicate the robustness of the characterized model.  

 

The temperature of the module is measured at three different locations. Two 

thermocouples (1 and 2) are attached to the back of two different cells. A third 

thermocouple is attached to the top of the insulation board in the space between the cells, 

as shown in Figure 5.24. The assumption of temperature homogeneity throughout these 

layers is justified using the experimental measurements shown in Figure 5.25. It can be 

observed that the temperature measurements of the PV cells are very close to the 

temperature measurements at the interface between the cover and the insulation board. 

The measurements are most similar in the steady-state. Transient dissimilarities can be 

attributed to the difference in the heat capacity and heat conductivity of these layers. 

Nonetheless, the heat transfer between the layers becomes greater with larger temperature 

difference, correcting the deviations that arise. The heat capacity of the module is 

calculated using the data given in Table 5.3. The experimentally measured electrical 

characteristics of the PV module are given in Table 5.4. 

 

The model is validated for temperature and output power predictions. These validations 

are obtained by measuring the temperature of the module, the load-current, and the load-

voltage. The model predictions of temperature are validated for transient and steady-state 

responses. To do this, the PV module is suddenly exposed to 1060 W/m
2
 of live sunlight 

measured at its location. The ambient temperature and the wind speeds are also measured 
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at the same location. The wind speed is found to have a critical effect on the temperature 

of the PV module. It not only affects the coefficient of forced heat transfer, but it also 

affects the local ambient temperature.  

 

 

Figure 5.24. Layout of thermocouples immersed into the module 

 

 

Figure 5.25. Temperature measured through the PV module layers 
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Table 5.3. Lab-made PV module heat capacity data 

Element of module 
   

(kg/m
3
) 

   

(J/(kgK)) 
   (m) 

Monocrystalline 

silicon PV cells [30] 
2330 677 2×10

−4
 

Acrylic cover [98] 1470 1190 3.2×10
−3

 

Polystyrene board[109] 121.7 1300 5×10
−3

 

Glass cover[99] 2510 858 3.2×10
−3

 

                (J/K) 397.6 

              (J/K) 474.3 

 

Table 5.4. Electrical characteristics of M2, acrylic-covered at 298 
˚
K 

Parameter Value 

Short-circuit current,     4.31 A 

Open-circuit voltage,     2.43 V 

Series resistance,    0.0377-Ω 

Area of cell,    148.25 cm
2
 

Number of cells in series,   4 

Area of the PV module,   655 cm
2
 

Internal quantum efficiency,     0.69 

 

Two cases are validated: the module with a 0.356-Ω resistive load and the unloaded 

module. The experimental and simulation temperature results for these cases are shown 

in Figures 5.26 and 5.27, respectively. It is observed that, in both cases, the model 

underestimates the module temperature in the transient response by about 2.8 K. 

However, this is only at the initial period of the transient response. This might be 

attributed to the transient internal temperature variations due to the initial lack of 

temperature homogeneity within the module as discussed above and shown in 

Figure 5.25. In the steady-state response, the model accurately predicts the module 
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temperature. It can also be observed that the temperature for the loaded module is lower 

than the temperature for the unloaded module.  

 

Figure 5.28 shows the load-voltage as function of the module temperature. The 

experimental measurements of the load-voltage and the load-current at 297 K are 1.415 V 

and 3.99 A, respectively. At the steady-state temperature (329 K), the measurements are 

1.31 V and 3.677 A, respectively, which are close to the predicted values as shown in 

Figure 5.28. The current is related to the voltage by the resistive load value. The drop in 

the load-voltage due to the temperature increase of 32 degrees is 8.07% which represents 

a drop of 0.25% per degree. The output power is dropped by 15.49% which represents a 

drop of 4.8% per degree. These numbers agree with reported values in the literature as 

discussed in Chapters two and three. 

 

 

Figure 5.26. Temperatures of loaded module on 02/02/2012 
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Figure 5.27. Temperatures of unloaded module on 02/02/2012 
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Figure 5.28. Predicted load-voltage as temperature increase. 
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Figure 5.29. Temperature of glass versus acrylic covered loaded module  

 

 

Figure 5.30. Output power of glass versus acrylic covered loaded module 
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CHAPTER 6.  

OPTICAL ACTIVE FILTERING 

6.1. Introduction   

 

The main objective of this research is to enhance the efficiency of the photovoltaic (PV) 

module using an optimal active optical filtering process. The wavelength-based 

thermoelectrical model that is developed in Chapter 4 and parameterized in Chapter 5 

helps to understand the light behavior within the PV module and improves the vision 

toward designing the desired optical filter for wavelength-based filtering purposes. 

 

In this chapter, the electrothermal model is used to design an active optical filter in order 

to enhance the output power of the PV module. The optical filter actively specifies the 

cutoff wavelength by which a portion of the solar spectrum is blocked. This chapter 

comprises the discussion on (1) the effect of light filtering on the PV module 

performance, (2) the optimization strategies that can be used to find the optimal cutoff 

wavelength, (3) the results of the optimization process (4) the effects of the time period 

length by which the active filter is applied, and (5) the technologies that can be harnessed 

to physically implement the desired filter.  

 

 

6.2. Light filtering effects on the PV module performance 

 

The intervals of the incident solar spectrum that are associated with long wavelengths 

(infrared light) do not contribute to electricity production due to their low energy levels. 

Light with such wavelengths partially passes through the module layers while the 

remainder is either reflected or absorbed as heat into them. On the other hand, the light 

associated with short wavelengths (ultraviolet light) hold higher energy level than the 

bandgap of the PV material. The excess energy converts into heat. The absorbed heat 

from both, the short and the long wavelengths, increases the PV module temperature 

which reduces its efficiency. Therefore, blocking both; the wavelengths that generate heat 
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more than electricity and the ones that do not generate electricity, reduces the PV module 

temperature and accordingly enhances its efficiency.  

 

The effect of light filtering on the module temperature can be learned using the developed 

wavelength-based model. The undesired wavelengths are simply blocked by excluding 

them from the calculations of the generated photonic current. The remaining wavelengths 

after filtering are dependent on the PV module temperature and the PV material. In other 

words, the cutoff wavelengths are properties of the module material and temperature. In 

this research, monocrystalline silicon PV cells are used. Silicon bandgap responds to 

wavelength range 300–1110 nm. Therefore, light associated with wavelengths longer 

than 1110 nm are not expected to generate current, but rather, they might dissipate in the 

PV module layers as heat. Accordingly, blocking these wavelengths passively (all 

wavelengths longer than 1110 nm) might eventually increase the output power. On the 

other hand, short wavelengths hold energy exceeds the required level to generate 

electrical current which converts into heat. It is expected that these wavelengths degrade 

the efficiency of the PV module more than their electrical contribution. Hence, blocking 

some of this light may also enhance the module efficiency.  

 

To study the effect of light filtering, different infrared (IR) and ultraviolet (UV) light 

filters are applied to the PV module. The temperature of the PV module is calculated 

using the model. Figure 6.1 shows the predicted module temperature without filters 

compared to its temperature with IR filter that has 1110 nm cutoff wavelength. It can be 

noticed that the difference between the temperatures is negligible. The IR light with 

wavelengths longer than 1110 nm is absorbed only by layers other than the PV cells. The 

amount of input heat to the module from this portion of light is very small, so filtering it 

out does not have potential effect. Figure 6.2 shows the predicted module temperature 

without filters compared to its predicted temperature with different UV cutoff wavelength 

filters. It can be observed that the effect of the UV light on the module temperature is 

considerable compared to the IR light. The more blocked UV light, the lower is the 

temperature. Table 6.1 presents a comparison between different UV cutoff wavelengths 

and their effects on the module steady state temperature and output power.  
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Figure 6.1. Predicted temperature of M2 with and without IR filter 

 

 

Figure 6.2. Predicted temperature of M2 with and without UV filter 
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Table 6.1. Effect of different UV cutoff wavelengths on the PV module 

Cutoff wavelength (nm) PV module temperature (K) Output power (W) 

300 (No filter) 328.5 4.8446 

340 328.2 4.8526 

360 327.8 4.8622 

375 327.6 4.8659 

380 327.4 4.8650 

 

Figure 6.2 and Table 6.1 show that filtering part of the UV light that generates electricity 

reduces the temperature and accordingly increases the output power. The tradeoff 

between the photo-current generated by the blocked UV light and the excess heat is 

beneficial. In other words, reducing the module temperature enhances the output power 

more than required to compensate for the lost power due to filtering out the UV light. 

 

Figure 6.3 presents a comparison between the module output power without filtering and 

the module output power with UV and IR filters that have 375 nm and 1110 nm cutoff 

wavelengths respectively. It can be seen that the effect of the filters gradually increases as 

temperature reaches the steady state as shown in Figure 6.4. 

 

In summary, the IR filter can be passive filter with a fixed cutoff wavelength that depends 

on the bandgap of the PV material. The UV filter can be active with a tunable cutoff 

wavelength that depends mainly on the PV module temperature. 
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Figure 6.3. Output power of PV module with and without filtering 

 

 

Figure 6.4. Temperature of PV module with and without filtering 
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6.3. Optimization strategy to find the optimal UV cutoff wavelength 

 

The values of the UV cutoff wavelengths given in Table 6.1 are selected arbitrarily 

regardless of the module temperature. These values should be specified such that the 

output power is maximized. In this section, an optimization methodology is used to find 

the optimal cutoff wavelength in order to maximize the output power.  

 

Several optimization methodologies are examined in order to select the most convenient 

method that is capable of solving this optimization problem. These methods are genetic 

algorithm, gradient descent, and Fibonacci search. These methods require a cost function 

that is function of a single or multiple variables. The cost function is minimized or 

maximized at the optimal value of the variable. The optimization problem of the active 

filter is to determine the value of the cutoff wavelength (variable) that maximizes the 

output power. From the model given in Equation (4.26), the output power is related to 

wavelength through the photonic current. The output power is also function of the 

module temperature and other variables as given in Equation (4.16). Therefore, the output 

power (cost function) can’t be obtained as an explicit function of wavelength, and hence, 

the aforementioned optimization techniques can’t directly be used to solve the active 

tuning optimization problem. 

 

To overcome the limitation of the cost function, two optimization options can be used to 

find the optimal cutoff wavelength. The first option is space scanning, where the model 

given in Equation (4.26) is solved as many times as the UV cutoff wavelength increments 

until it reaches the IR cutoff wavelength. The output power can be collected each time the 

model is solved. The maximum value in the output power vector and the UV cutoff 

wavelength associated with this output power value represent the optimal solution for this 

problem. This approach is time and memory consuming and requires a potential 

computational power. The second option can be utilized by any of the optimization 

methods that are mentioned above. However, the gradient descent method is used in this 

work for optimization purposes since it is the simplest among them. In this option, the 

model is solved at each wavelength value that is calculated using the output power 
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gradient. Once the gradient changes its polarity form positive to negative, a maximum 

value for the output power is found and the wavelength value used to find it is the 

optimal cutoff wavelength. This approach is simple and much faster than the first option. 

Therefore, the gradient descent optimization method is recommended to be used. This 

method looks for the global maximum output power value for a specific time period. The 

optimization process works as shown in Figure 6.5.  

 

 

Figure 6.5. Schematic of the optimization process 

 

Initially, the model calculates the output power for two cases, with and without UV filter 

where the initial cutoff wavelength is 301 nm. The steady state output power in both 

cases is delivered to the optimization block as shown in Figure 6.5. The steady state 

output powers and the cutoff wavelengths are used to calculate the gradient as 

 

          
    

        
 

               
                       

   (6.1) 
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For the initial calculations of the gradient, the wavelengths 300 nm and 301 nm are used 

as the old and the new cutoff wavelengths respectively. Once the gradient value is 

calculated, the new cutoff wavelength can be calculated as 

 

                                       (6.2) 

 

Table 6.2 contains the definitions of the symbols that are used in Equations (6.1) and 

(6.2). The new cutoff wavelength will be used to run the model again to calculate the 

steady state output power. This output power value is used to calculate the new gradient 

using Equation (6.1) and then the new cutoff wavelength using Equation (6.2). This 

scenario continues as long as the gradient value is positive. When the gradient value 

becomes negative, a global maximum output power value is found which is         and 

the optimal cutoff wavelength is            . Once the optimal UV cutoff wavelength is 

specified, the filter should only pass the wavelengths longer than it and shorter than the 

IR (passive) cutoff wavelength. 

 

Table 6.2. Nomenclature 

Symbol Definition 

Gradient gradient constant (W/nm) 

    steady state output power (W) 

        new steady state output power (W) 

        old steady state output power (W) 

        cutoff wavelength (nm) 

            old cutoff wavelength (nm) 

            new cutoff wavelength (new) 

  descent increase factor (1 is used ) 
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6.4. Simulation results of optimization process 

 

The approach discussed in the previous section is used to find the optimal UV cutoff 

wavelength for the active filter. The experimental PV module and the meteorological data 

that are used in Chapter 5 are also used herein for the optimization simulation.  

 

Figure 6.6 shows the values of the gradient and the steady state output power as a 

function of UV cutoff wavelengths. The output power is 4.85 W when only IR filter with 

cutoff wavelength 1110 nm is applied. It can be observed that the output power gradually 

increases as the UV cutoff wavelength increases to reach its optimal value at 372 nm 

where the maximum value of the output power is found using the optimization process. It 

can also be observed that the optimization process stopped when the gradient value 

changed from positive to negative.  

 

 

Figure 6.6. Output power of M2 and gradient values during the optimization process 
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The UV cutoff wavelength, as mentioned previously, changes as the module temperature 

changes. Figures 6.7 and 6.8 show different optimal cutoff wavelengths for lower and 

higher ambient temperatures at similar wind speeds and solar irradiance. It can be 

observed that the higher the ambient temperature (higher module temperature) is, the 

higher the cutoff UV wavelength and the lower the steady state output power. Table 6.3 

lists different optimal cutoff wavelengths that are found for different ambient 

temperatures which are lower, equal, and higher than the experimentally measured 

temperature. All of the results are predicted for the same incident irradiance and wind 

speeds.  

 

 

Figure 6.7. Optimal cutoff wavelength, average ambient temperature is 281 
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Figure 6.8. Optimal cutoff wavelength, average ambient temperature is 321 K 
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The optimization algorithm is able to identify the optimal cutoff wavelengths for different 

covers with different optical properties. This can be justified by running the optimization 

algorithm for other covers such as the low iron glass. The simulation is conducted for the 

PV module M2 covered with glass instead of acrylic. The only difference between the 

simulations is the optical and material properties of the cover as well as the electrical 

properties of this module when covered with glass. The meteorological simulation data 

(wind speed, ambient temperature, and incident irradiance) are similar to those used in 

the simulations for acrylic cover.  

 

Figure 6.9 shows the steady state output power when different UV cutoff wavelengths are 

used. The maximum output power is obtained when the cutoff wavelength is 406 nm 

(gradient becomes negative for higher wavelength). This optimal value is different from 

the optimal cutoff wavelength (372 nm) that is found for similar meteorological 

conditions using different cover (acrylic) as shown in Figure 6.6.  

 

 

Figure 6.9. Steady state output power of glass-covered M2 
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Table 6.4 shows the simulation results for different ambient temperatures. The optimal 

cutoff wavelengths are different for different covers at all ambient temperatures as given 

in Tables 6.3 and 6.4. These results demonstrate that the optimization algorithm is 

capable of finding the optimal cutoff wavelength and the maximum steady state output 

power for different module temperatures. 

 

Table 6.4. Optimal UV cutoff wavelengths, glass- covered M2 

Average ambient 

temperatures (K) 
281 290 298 306 314 321 

Optimal Cutoff UV filter 404 409 413 417 420 424 

SS Temp., IR filter 319.3 327.6 335.8 344.1 352.3 360.5 

SS Temp., UV, IR filters 317.4 325.5 333.6 341.7 349.9 358.0 

SS Output Power, IR filter 5.142 4.876 4.615 4.361 4.112 3.869 

SS Output Power, UV, IR filters 5.155 4.890 4.631 4.377 4.129 3.886 

Enhancement Percentage 0.255 0.297 0.338 0.377 0.413 0.446 

 

 

6.5. Benefits of active filter over time 

 

The results of using an optical UV active filter shown in Figures 6.3 and 6.4 are 

calculated using an 18 minutes real time experimental data. In other words, the 

experimental meteorological data used to predict the model temperature and output 

power are continuously collected for 18 minutes. The optimization algorithm is applied 

on these data and therefore the enhancement percentages of the predicted output power 

shown in Tables 6.3 and 6.4 are for this short period of sunlight exposure. The efficiency 

enhancement is expected to increase when applying the active filter for longer time of 

sunlight exposure.  

 

Simulating the model for longer time periods is potentially time and memory consuming 

process since the optimization algorithm is running simultaneously with the model 

simulation. In addition, the meteorological data (solar irradiance, ambient temperature, 
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and wind speed) are collected every time step. The smaller the time step, the more 

accurate the predictions are. Therefore, the data required to run the simulation, especially 

the solar irradiance, are hard to be obtained for short time steps (for example, 1 second) 

over the entire day. However, this limitation can be conquered by collecting the 

meteorological data for an entire day on short time rate. The data between the actually 

measured data points are either can be interpolated or the simulation time step can be 

used as the same as data collection time rate. Therefore, to learn the trend of applying 

active optical filtering over an entire day, the meteorological data are collected for 

Lexington, Kentucky, on 06/15/2010 at the rate of 15 minutes. The ambient temperature 

and the wind speeds are experimentally measured by a local weather station [110]. 

Ambient temperature and wind speed values are assumed to be equal to their first 

experimentally sampled value until reaching the next sampling time. This assumption is 

valid since the history of the experimental data provides the average value of the 

measurements. The spectral irradiance is obtained using SMARTS as discussed in 

Chapter five.  

 

The temperature of the module changes drastically over the entire day, therefore, the 

optimal cutoff UV wavelength changes to associate with the temperature variations. 

Accordingly, the optimization algorithm is run at the same time rate of meteorological 

data collection (15 minutes). The PV module temperature and output power calculations 

are based on tracking the maximum output power point of the module. The PV module 

used in the simulation is covered with acrylic (M2). The optimal cutoff wavelength is 

calculated for each time period (15 minutes) such that maximizing the steady state output 

power during that period. This optimal wavelength is then used for the entire period. The 

calculated optimal cutoff UV wavelengths over the entire day are shown in Figure 6.10. 

The predicted temperature and output power of the module without and with optical 

filters are shown in Figures 6.11 and 6.12, respectively. It can be observed that the 

calculated optimal cutoff UV wavelength changes in accordance to the temperature 

changes such that the output power is maximized. This agrees with the observations 

discussed above, where the higher the module temperature is, the higher the cutoff 

wavelength. It can also be observed from the predicted data, that the optical filtering has 
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the most effect on the module performance at the time when the maximum solar 

irradiance is received.  

 

 

Figure 6.10. Optimal cutoff UV wavelengths over the entire day 
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are based on the input power with no optical filtering. The enhancement in the output 

power is expected to increase for higher ambient temperatures and also for larger PV 

modules area. 

 

If the PV module is loaded at a point that is not the maximum output power, the optical 

filtering may have different effect on its performance. The following example is for the 

PV module loaded with a resistive load that is not associated with its maximum power 

point. Since the optical filtering has the most effect when the solar irradiance is 

maximum (noon time), the optimization algorithm is run for 72 minutes when 

approximately 1 sun of solar irradiance is received. The meteorological data used in the 

simulation are collected on 02/02/2012. For the 72 minutes time period, the angle of 

incidence slightly changes which can be neglected. The module temperature dynamically 

changes during the 72 minutes time period. Therefore, several optimal cutoff UV 

wavelengths can be used. The optimization algorithm is run four times during this time 

period, one time each 18 minutes. The predicted temperatures of the PV module without 

and with optical filters (UV and IR) are shown in Figure 6.13. The variations in the 

module temperature are associated with the variations of the wind speed. It is found 

based on the predicted temperature that the optimal cutoff wavelengths are 373 nm, 

373 nm, 373 nm, and 374 nm, respectively. Figure 6.14 shows the predicted output power 

of the PV module without and with the optical filters. The variations in the output power 

values are associated with the variations of the module temperature. The output power 

over the 72 minutes increased from 2.1021×10
4
 J (5.84 W.hr) without filters to 

2.1134×10
4
 J (5.87 W.hr) when filters are applied. Energy increased by 113 J. The 

efficiency of the module increased from 9.99% to 10.05% with 0.60% increase.  
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Figure 6.11. Module temperature over the entire day 

 

 

Figure 6.12. Module maximum output power over the entire day 
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As discussed above, for higher ambient temperatures, the effect of using the filters 

increases over time. In areas such as Arizona, Texas and sometimes in Kentucky, the 

summer time ambient temperature is relatively high. For example, if the ambient 

temperatures used in the simulation are in average close to 40  , the predicted PV 

module temperature and output power are shown in Figures 6.15 and 6.16, respectively. 

The optimal cutoff wavelengths in this case are 381 nm, 378 nm 379 nm, and 379 nm. 

 

It is found that the output power of the PV module over the 72 minutes increased from 

1.8077×10
4
 J (55.0214 W.hr) without filters to 1.8197×10

4
 J (5.0547 W.hr) with filters. 

The produced energy increased by 121 J. The efficiency of the PV module increased 

from 8.59% to 8.65% with an increase by 0.73%. 

 

 

Figure 6.13. Predicted temperature of M2 for 72 minutes of 1 sun irradiance 
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on the output power. Furthermore, it can be observed that the longer the optical filter is 

applied, the higher its effect will be on the output power. Moreover, the effect of optical 

filtering is better when the loading point of the module is not the maximum output power 

loading point.  

 

  

Figure 6.14. Predicted output power of M2 for 72 minutes of 1 sun irradiance 
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Figure 6.15. Predicted temperature of M2, higher ambient temperature 

 

 

Figure 6.16. Predicted output power of M2, higher ambient temperature 
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6.6. Proposed physical implementation of the active UV optical filter 

 

An ideal physical active optical filter must be able to block the IR light at the desired 

cutoff wavelength which is material dependent. It also must be able to actively change its 

UV cutoff wavelength that depends on the PV module temperature. This filter is a band-

pass optical filter that passes only the desired wavelengths band. Both cutoff wavelengths 

(IR and UV) can be actively changed. However, the IR cutoff wavelength is fixed for a 

specific photovoltaic material while the UV cutoff wavelength actively changes based on 

the optimization process that mainly depends on the module temperature.  

 

In this section, some of the technologies that can be harnessed to implement the proposed 

active filter are discussed. These technologies are used for applications other than 

photovoltaics. These applications are either optical devices or smart glass for construction 

applications.  

 

The tunable filters that are designed for optical devices applications [111], [112] 

represent an ideal implementation for the desired active optical filter for PV applications. 

These filters are controlled (tuned) using an electrical signal that affect the orientation 

(polarization) of nano-sized particles such as liquid crystal (LC) droplets targeting a 

specific wavelength threshold. The power required to tune these particles is less than a 

watt and their response time is milliseconds. However, these optical filters are intended to 

be for small surface areas and to affect an artificial light that propagates into closed 

channels such as optical fibers. In addition, the available technologies of these filters 

affect a very narrow wavelength band (spikes). Therefore, these filters might not be a 

feasible solution for large area PV applications and wide wavelength bands. 

 

Smart glass technologies are basically used for construction purposes to reduce carbon 

footprint effects toward green environment by saving heating and air conditioning power. 

This technology is used also for internal design purposes and to create private areas for 

occasional activities such as meeting rooms. Examples of these technologies are 

electrochromic glass [113], suspended particle devices (SPDs) [114], polymer dispersed 
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liquid crystal devices (PDLCs) [115], and micro-blinds [116]. The basic operating 

principle of all these devices is the applied electrical voltage that bleaches or colors the 

device as desired. The electrochromic glass requires the electrical signal every time 

changes its state from opacity to transparency or vice versa. The electrical signal is not 

required to maintain a particular shade or state that is reached. The normal state of the 

PDLC glasses is opaque since the LC droplets are randomly arranged resulting in 

scattering the light as it passes through. When a voltage signal is applied to the device, 

the electrical field generated between the device electrodes rearranges the dissolved LC 

droplets and converts it into transparent state. This makes the light to pass through the 

device with no scattering. The electrical signal is required all time to maintain translucent 

state. The SPDs are similar to the PDLCs in their operational concept. However, they are 

different in materials and response time. The micro-blinds smart glass technology is still 

under ongoing development. Basically, these devices are composed of rolled thin metal 

blinds and other substrates. If an electrical signal is applied to the device, the generated 

potential difference between the rolled metal layer and the transparent conductive layer 

causes the metal micro-blinds to stretch and block the light. Once the electrical field is 

removed, the device returns back to be translucent.  

 

The differences between the smart glass technologies are listed in Table 6.5. This table 

represents a decision matrix by which one of these technologies can be selected for PV 

applications. It can be observed that the electrochromic smart glass with its high light 

transmission, flexible controllability, durability, and low power consumption is attractive 

to be integrated with PV panels. 

 

Smart glass technology has been integrated with PV panels for self powering smart glass 

products. Such applications are introduced by different researchers as Huang et al. [72] 

and Dep [113] who only focused on the electrochromic smart glass technology.  

 

The electrochromic smart glass can be used for optical filtering applications for PV 

panels since it overcomes the shortcomings of the optical filters that are discussed above. 

The advantages of the smart glass are the applicability for large area surfaces, durability, 
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performance stability, and designed for natural incident sunlight. The main disadvantage 

of using the smart glass as an active or tunable optical filter is lack of controllability over 

the desired wavelength range and it is also not able to block the light at a specific cutoff 

wavelength. When an electrical controlling signal is applied to the smart glass, the 

spectrum wavelengths are equally affected by the new glass transmittance as shown in 

Figure 6.17.  

 

Table 6.5. Decision matrix, smart glass technologies  

Technology Electro-

chromic 

Device 

PDLC SPD Micor-

Blinds 

Device 
Comparison 

Aspect 

Input power 

(VAC) 
50–100 32–75 30–120 NA 

Energy 

consumption 

(W/m
2
) 

Peak: 2.69  

Avg: 0.43 
5.38

 
0.646

 
NA 

Switching time 
Less than 1 

second 
Milliseconds 

Milliseconds 

to seconds 
Milliseconds 

Transparency 60–95% 75–80% 50–70% NA 

Opacity 3–10% 5–55% 1–5% NA 

Operation 

temperature ( ) 
-20–60 -10–60 0–60 NA 

Power down 

default 

Opaque or 

clear 
Opaque Opaque Clear  

Intermediate 

state 

(dimmable) 

Yes No Yes No 

Thickness (mm) 20 
Glass: 8 

Polycarbonate: 1.6 
3 NA 

Manufacturer 

(Supplier) 
SageGlass LTI Smart Glass 

Inspechtech 

Aero-Services 

Under 

developments 

by “Canadian 

National 

Research 

Council” 

Cost for 12 in
2 

 $350  $225  $850 NA 

 

Despite of this major limitation, electrochromic glass can be used to protect the PV 

panels at high ambient temperatures such as space applications. This protection is a 

tradeoff between the output power and the PV panel lifecycle. The extreme temperatures 
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generate thermal stresses that significantly reduce the lifecycle of the PV panels. The 

electrochromic filter can be controlled using an electrical signal that depends on the panel 

temperature. This is a different optimization problem but similar in concept to the 

optimization process discussed above that is based on maximizing the output power. The 

electrochromic layers can be monolithically integrated with the PV material, where both, 

the PV cells and the filter layers are combined into a single unit. This would improve the 

light transmittance through the layers than stacking two units (PV panel and 

electrochromic glass) on top of each other. 

 

 

Figure 6.17. Effect of electrochromic smart glass on solar spectrum [113] 

 

In conclusion, the currently available optical technologies do not highly assist to 

implement the desired active optical filter. However, this creates new opportunities for 

future joint projects with other engineering disciplines and research fields such as optics 

which may lead to create such an application. 

 

 

Copyright © Sharif Z. Aljoaba 2013 
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CHAPTER 7.  

CONCLUSIONS AND CONTRIBUTIONS 

In this chapter, the research dissertation is concluded. The progress achieved in the goals 

and objectives of this work and the accomplished milestones are discussed. The 

contributions to the photovoltaic (PV) research communities are highlighted. In addition, 

recommendations for future research opportunities are proposed. 

 

 

7.1. Research goals status 

 

As proposed in Chapter one, the main objective of this research is to enhance the 

efficiency of the photovoltaic modules and increasing their lifecycle. In this research, a 

thermoelectrical wavelength-based model is developed as a fundamental prerequisite for 

optical filtering. This model shows the contribution of each wavelength in the solar 

spectrum to the PV module temperature and output power. Accordingly, the model is 

capable of quantifying the effects of optical filters that are either passive or active. 

Therefore, this model is a key milestone toward designing and optimizing these filters. 

The contribution of both, the model and the optical filter are an important foundation 

toward achieving the research main objective. The following are the goals used to 

measure the progress of research work to develop the model and the optical filter:  

 

1. Understanding and observing the photovoltaic effect of converting light into 

electricity  

 

2.  Understanding the limitations of light-to-electricity conversion efficiency 

especially the ones that are related to thermal aspects, and addressing the 

conducted efforts of the researchers to override these limitation 
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3. Developing a mathematical model that uses computational methods to predict 

the temperature of the PV module, and its effects on the output power. This 

model should reflect the individual contribution of the solar spectrum 

wavelengths on the module efficiency 

 

4. Designing and building the required experimental setup to validate the 

wavelength-based developed model 

 

5. Using the validated model to proof that active filtering scheme would be 

effective in increasing the productivity of the photovoltaic process 

 

6. Obtaining a penalty function that accurately reflects the contribution of various 

parameters to the photovoltaic process 

 

7. Designing an active controller filter using the optimization techniques to get the 

optimal values of the variables of the penalty function obtained in number 6 

 

8. Exploring different means that could be used in order to physically implement 

the designed active controlling filter 

 

9. Building the described filter if it is physically and economically feasible 

 

The goals listed from 1 to 8 are completed. In Chapter six, it is concluded that the goal 

number 9 is not feasible using the available optical technologies. However, more research 

work in this area is promising to achieve this goal. 

 

 

7.2. Conclusions  

 

The following conclusions are observed while working on this research: 
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1. The proposed thermoelectrical model is able to predict the interaction between 

the module temperature and its output power. 

 

2. It is observed that understanding the light behavior within the module is critical 

toward developing a wavelength-based model.  

 

3. It is found that selecting the appropriate heat transfer coefficient model is a 

critical factor for the accuracy of the results.  

 

4. The parameterization methodology proposed in this work to characterize the 

developed model represents a road map for characterizing the model for any 

given PV module at various locations and meteorological conditions. 

 

5. The proposed model is capable of predicting the module temperature for various 

loading conditions, including open circuit, resistive, and maximum power point 

loadings. 

 

6. The proposed model is capable of predicting the module temperature output 

power for various light angles of incidence. This would extend the model to be 

used over the entire day. 

 

7. It is learned that the ultraviolet light degrades the performance of the PV module 

more than it contributes to generate electrical current. On the other hand, the 

infrared light with wavelengths longer than the PV material response may 

degrade the module performance if absorbed in other layers. 

 

8. It is observed that optical filtering enhances the performance and the lifecycle of 

the PV module. The optical filtering can be passive or active. 
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9. Active optical filtering has an advantage over the passive filter, where based on 

some operational conditions, the filter performance can be optimally controlled 

to maximize the output power. 

 

10. It is found that the available optical and smart glass technologies are not reliable 

to be utilized to implement the active optical filter for photovoltaic applications. 

 

 

7.3. Contributions  

 

The work conducted in this research is expected to have an impact on the PV research 

community through the following contributions: 

 

1. Developed and validated a wavelength-based thermoelectrical model that 

predicts the effects of the spectrum wavelengths on the PV module 

performance 

 

2. Developed an optical model that is able to predict the overall optical 

properties of the PV module using the optical properties of its layers 

 

3. Designed and built a portable data acquisition system that can be used to 

measure the PV module temperature, output power, IV-characterization curve, 

and finds the maximum output power loading point 

 

4. Validated the concept of active optical filtering for photovoltaic applications 

 

5. Designed an active optical filter and optimized it for maximum output power 

performance. It is predicted that the efficiency of the PV module increased for 

some meteorological conditions by 0.73% over 72 minutes of applying the 

filter 
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6. Developed a large scale solar simulator and built two monocrystalline silicon 

solar modules 

 

7. Presented in the 37
th

 and 38
th

 IEEE Photovoltaic Specialist Conferences, and 

nominated for the best student presentation award. The two papers are 

published in the conference proceedings 

 

8. Published two journal papers, modeling and characterization, in the IEEE 

Journal of Photovoltaics  

 

The contributions listed from 1 to 5 can be considered of high impact on the photovoltaic 

research community. The rest of the contributions are of high impact on the academic 

performance of the student. 

 

 

7.4. Recommendations and future work 

 

The most novel aspect of the proposed wavelength-based electrothermal model is the 

method of calculating the absorption coefficients of the module layers as a function of 

wavelength which can be very useful in many photovoltaic researching areas. Since the 

photovoltaics have emerged as a promising renewable energy source, many research 

areas of solar energy are continuously developing and many others come into sight. In 

this research, several researching fields are recognized and recommended to be a 

continuous effort for the work started herein. The following are recommended developing 

opportunities where the work conducted in this research can be extended:  

 

1. Investigate the feasibility of implementing the “ideal” active optical filter 

jointly with the optical fields’ experts. 

 

2. Validate the active filtering concept using experimentally designed filter and 

compare with predicted results. 
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3. Develop the model to be capable of predicting the temperature and output 

power of the III-V multijunction PV modules.  

 

4. Develop the active filtering concept to be applicable to the III-V multijunction 

PV modules. It is expected that the active filtering concept will be more 

beneficial for these PV materials since they target wide and different ranges of 

the solar spectrum.  

 

5. Apply the model and its filtering capabilities to predict the performance of the 

PV module when shading is occurring due to clouds existence. Clouds 

deteriorate the solar spectrum and apply random filters that degrade the output 

power of the module. The behavior of the PV module under this condition can 

be predicted using the proposed model. 

 

6. Develop the model to be applicable for space applications, where the 

extraterrestrial irradiance hits the module surface with harmful UV and IR 

light. Filtering the light in space applications will be more effective and more 

efficient than it appears for the terrestrial solar irradiance. 

 

7. Investigate the effect of the light filtering on the lifecycle of the PV module. 

Two aspects can be recognized as major lifecycle factors; temperature effects 

and harmful light.  

 

 

 

 

 

 

 

 

Copyright © Sharif Z. Aljoaba 2013 
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