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Neurobiology of Disease

Targeting Astrocytes Ameliorates Neurologic Changes in a
Mouse Model of Alzheimer’s Disease

Jennifer L. Furman,' Diana M. Sama,* John C. Gant,' Tina L. Beckett,> M. Paul Murphy,>> Adam D. Bachstetter,’

Linda J. Van Eldik,>* and Christopher M. Norris!>

Departments of 'Molecular and Biomedical Pharmacology, 2Molecular and Cellular Biochemistry, and *Anatomy and Neurobiology, “Graduate Center for
Gerontology, and 3Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, Kentucky 40536

Astrocytes are the most abundant cell type in the brain and play a critical role in maintaining healthy nervous tissue. In Alzheimer’s
disease (AD) and most other neurodegenerative disorders, many astrocytes convert to a chronically “activated” phenotype characterized
by morphologic and biochemical changes that appear to compromise protective properties and/or promote harmful neuroinflammatory
processes. Activated astrocytes emerge early in the course of AD and become increasingly prominent as clinical and pathological symp-
toms progress, but few studies have tested the potential of astrocyte-targeted therapeutics in an intact animal model of AD. Here, we used
adeno-associated virus (AAV) vectors containing the astrocyte-specific Gfa2 promoter to target hippocampal astrocytes in APP/PS1
mice. AAV-Gfa2 vectors drove the expression of VIVIT, a peptide that interferes with the immune/inflammatory calcineurin/NFAT
(nuclear factor of activated T-cells) signaling pathway, shown by our laboratory and others to orchestrate biochemical cascades leading
to astrocyte activation. After several months of treatment with Gfa2-VIVIT, APP/PSI mice exhibited improved cognitive and synaptic
function, reduced glial activation, and lower amyloid levels. The results confirm a deleterious role for activated astrocytes in AD and lay

the groundwork for exploration of other novel astrocyte-based therapies.

Introduction
Astrocyte activation, characterized by hypertrophic somata and
processes, is pervasive in most neurodegenerative conditions, in-
cluding Alzheimer’s disease (AD) (Verkhratsky et al., 2010; Vin-
cent et al., 2010; Sidoryk-Wegrzynowicz et al., 2011). Signs of
astrocyte activation appear early in the clinical progression of AD
(Schipper et al., 2006; Owen et al., 2009; Carter et al., 2012) and
are especially conspicuous in later disease stages when amyloid
and neurofibrillary tangle pathology are extensive. Despite the
clear physical association between activated astrocytes and AD
biomarkers, the functional impact of these cells and their thera-
peutic potential have remained elusive. However, recent ad-
vances in cell-type-specific gene delivery techniques have helped
identify unique beneficial and detrimental roles of astrocytes in
other neurodegenerative disorders (Sofroniew, 2009), suggesting
that astrocytic signaling cascades can be selectively exploited for
treating AD.

Astrocytes host a complex network of signaling pathways,
providing an abundance of potential molecular targets. Many
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activated astrocytes in AD brain tissue and AD mouse models
express high levels of calcineurin (CN) (Norris et al., 2005; Celsi
et al., 2007; Abdul et al., 2009), a protein phosphatase widely
known for orchestrating immune/inflammatory responses (Im
and Rao, 2004). Mounting evidence suggests that CN signaling is
increased during AD (Liu et al., 2005; Abdul et al., 2009; Wu et al.,
2010; Mohmmad Abdul et al., 2011) and linked to numerous
disease biomarkers, including synapse loss/altered plasticity, re-
duced neuronal viability, and impaired cognition (Shankar et al.,
2007; Agostinho et al., 2008; Reese et al., 2008; Dineley et al.,
2010; Mohmmad Abdul et al., 2011; Hudry et al., 2012). In astro-
cytes, CN strongly promotes the activated phenotype through
dephosphorylation of NFAT (nuclear factor of activated T-cells)
transcription factors involved in cytokine production, phenotype
switching, and many other functions (Crabtree and Olson, 2002;
Horsley and Pavlath, 2002). CN/NFAT signaling is robustly acti-
vated in astrocytes by neurotoxic factors implicated in AD, in-
cluding amyloid peptides and cytokines (Fernandez et al., 2007;
Canellada et al., 2008; Sama et al., 2008; Abdul et al., 2009; Fur-
man et al., 2010). In turn, hyperactivation of astrocytic CN/
NFAT induces numerous transcriptional programs associated
with aging and early-stage AD (Norris et al., 2005).

Disrupting the physical interaction between CN and NFATs
with the synthetic peptide VIVIT prevents NFAT activation
(Aramburu et al., 1999) and reduces immune/inflammatory sig-
naling in many model systems. In primary neural cultures, dele-
terious actions of activated astrocytes on neighboring neurons
and glia are minimized by targeting VIVIT directly to astrocytes
using recombinant viruses (Sama et al., 2008; Abdul et al., 2009).
Here, we used adeno-associated virus (AAV) expressing the
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astrocyte-specific promoter Gfa2 and the CN/NFAT inhibitor
VIVIT to target astrocytes in an intact mouse model of AD. Bi-
lateral administration of Gfa2—VIVIT into the hippocampus
of 7- to 8-month-old APP/PS1 mice, before extensive amyloid
pathology, was associated with reduced glial activation, lower
amyloid levels, improved synaptic plasticity, and greater cog-
nitive function at 16—17 months of age. The results reveal a
deleterious role for activated astrocytes in neurologic function
and lay the groundwork for exploring similar astrocyte-based
strategies in the treatment of AD.

Materials and Methods

Animals. Male transgenic (Tg) mice expressing a chimeric mouse/human
amyloid precursor protein (Mo/HuAPP695°"¢) and a mutant human
presenilin 1 (PSEN1“") under the control of a mouse prion protein
promoter were purchased from The Jackson Laboratory (stock #005864).
Homozygotes from the same colonies lacking these mutations [i.e., wild
type (WT)] served as control (Ct) animals. All animals were provided
with food and water ad libitum and were maintained on a 12 h light/dark
schedule. Mice were treated in accordance with the National Institutes of
Health Guide for Care and Use of Laboratory Animals.

AAV-Gfa2 vectors. cDNA encoding enhanced green fluorescent pro-
tein (EGFP) from the pEGFPnl vector (Clontech) and VIVIT-EGFP
(gift from Dr. Anjana Rao, Harvard University, Boston, MA) was ex-
tracted and inserted into modified pAdlink vectors downstream of the
human GFAP promoter Gfa2 (gift from Dr. Michael Brenner, University
of Alabama, Birmingham, AL) as described previously (Abdul et al.,
2009). pGfa2—-EGFP and pGfa2—VIVIT-EGFP constructs were then in-
serted into pENN.AAV2/5 vectors for creation of high-titer (10'? infec-
tious units/ml) AAV2/5 vectors at the University of Pennsylvania Viral
Vector Core (Philadelphia, PA). Our previous work on primary cultures
shows that Gfa2-VIVIT-EGFP potently inhibits NFAT transcriptional
regulation and NFAT-dependent signaling, selectively in astrocytes (Ab-
dul et al., 2009).

Surgeries. All animals underwent stereotaxic surgery. Mice were anes-
thetized with isoflurane (2.5%) throughout the duration of surgery.
Once immobilized in a stereotaxic frame, AAV vectors (Gfa2—VIVIT or
Gfa2—EGFP) or 5% glycerol solution (i.e., vehicle) was delivered bilater-
ally into the hippocampus (4 pl/hemisphere) at a rate of 0.2 ul/min using
a stereotaxic injector (Stoelting). Syringe needles were left in place for 2
min after completion to limit reflux. Coordinates for injection relative to
bregma were +2.0 mm anteroposterior, 1.5 mm mediolateral, and
—1.5 mm dorsoventral.

Active avoidance. Methods for measuring avoidance behavior in mice
were similar to those used in our previous work (Thibault et al., 2012).
Animals were placed into the dark compartment of a two-compartment
light/dark apparatus. After 7 s latency, a 0.8 mA footshock was adminis-
tered in the dark chamber that lasted 24 s. Mice had free access to the light
chamber, in which no shock was given. On training days 1-3, animals
underwent four trials, with a 1 min intertrial rest period, in which they
learned to avoid footshock by escaping into the light chamber. On day 4,
a probe trial was administered, in which animals were placed into the
dark chamber but no footshock was given. On the probe trial, escape
latency to the light chamber was measured (with 31 s being the maximum
time allotted) for each mouse. Because these values necessarily showed a
non-normal distribution, performance of each mouse was ranked rela-
tive to all other mice (i.e., the lower the escape latency, the lower the
ranking) and compared across treatment conditions using a nonpara-
metric test (see below).

Immunohistochemistry. After electrophysiological recordings (see be-
low), sagittal slices from the rostral to middle region of the hippocampus
were fixed overnight in 4% paraformaldehyde, preserved in sucrose buf-
fer, and stored in phosphate buffer. Slices were further cut on a freezing
microtome to 50 wm thickness. When necessary, either heat-induced or
enzymatic epitope retrieval was performed to enhance antigen binding.
Sections were blocked in normal serum and incubated overnight with the
following primary antibodies: mouse anti-GFAP (1:50; Cell Signaling
Technology), rabbit anti-Iba-1 (1:400; Wako), or mouse anti-B-amyloid
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(AB) (1:50; Vector Laboratories). Iba-1 antibody was tagged with Cy3-
conjugated fluorescent secondary antibody (1:500; Wako). GFAP and
AP antibodies were tagged with biotinylated secondary antibodies (1:
100), amplified with the avidin-biotin complex, and visualized with
Nova Red or 3,3’-diaminobenzidine tetrahydrochloride. In some cases,
sections were counterstained with hematoxylin or DAPI (Invitrogen) to
identify neuronal cell layers. Unless stated otherwise, all reagents were
from Vector Laboratories. Images were visualized and captured on either
an Aperio ScanScope XT digital slide scanner (Aperio) or with an in-
verted epifluorescence confocal microscope (DMIRE-2; Leica).

Morphometrical analysis of astrocytes. GFAP-labeled astrocytes were
analyzed in 20X digital images acquired by an Aperio ScanScope. For
each slice (up to three per animal), multiple 400 wm ? fields spanning the
entire CAl stratum radiatum region were transferred to the MetaMorph
Image Analysis Software Suite (Molecular Devices), in which they were
thresholded and converted to binary images for automated and nonbi-
ased morphometric analysis. In this procedure, immunolabeled cells in
each field were automatically counted and assigned a pixel value based on
size (i.e., larger cells have larger pixel areas). These values were exported
to a spreadsheet in which the number of counted cells, along with corre-
sponding pixel areas, were averaged across slices for each animal (# in-
dicates the number of mice). Frequency histograms showing astrocyte
size distributions were constructed using SigmaPlot 12 software and sub-
sequently fit with a four-parameter Weibull Function (R* > 0.9).
Weibull function parameters corresponding to distribution amplitude
and width were compared across treatment groups using Z tests. In other
analyses, binarized astrocytes in each field were sorted into three broad
categories (i.e., “small,” “medium,” and “large”) based on pixel area (i.e.,
150-500, 500—1000, and >1000 total pixels). The percentage of cells in
each size category was calculated relative to the total number of cells
within each field and then averaged across fields within each animal for
statistical testing.

Quantitative image analysis of amyloid labeling. Amyloid-labeled hip-
pocampal slices were scanned with the Aperio ScanScope at 20X magni-
fication, and amyloid plaque load analysis was performed as described
previously (Bachstetter et al., 2012). Briefly, after setting color and inten-
sity thresholds, the Aperio-positive pixel count algorithm (version 9) was
used to distinguish amyloid-specific labeling (i.e., positive pixels) from
background (i.e., negative pixels) in the hippocampal CA1 region. Data
are presented as the percentage area occupied by immunolabeled AfB.

Tissue homogenate preparation. Immediately after the animals were
killed, one hippocampus was removed, snap-frozen in liquid nitrogen,
and then stored at —80°C until use. Tissue was Polytron homogenized in
ice-cold PBS supplemented with protease inhibitor mixture, phospha-
tase inhibitor mixture, and calpain inhibitor (all from Calbiochem).
Samples were centrifuged at 20,800 X g for 30 min at 4°C, and superna-
tant was collected. The resultant pellet was reextracted by sonication in
2% SDS (containing inhibitors) and centrifuged at 20,800 X g for 30 min
at 14°C. Supernatant was collected, and the remaining pellet was again
reextracted by sonication in 70% formic acid. Sample was centrifuged at
20,800 X g for 1 h at 4°C, and supernatant was collected. Samples were
stored at —80°C until use. Supernatant from the first extraction (i.e., PBS
fraction) was used for Western blot analyses. Supernatants from the
second and third extractions (i.e., SDS and formic acid, respectively)
were used for ELISA analyses of Af3 peptide levels.

AB ELISA. Methods for quantifying soluble and insoluble AB,_,,,
peptide levels were similar to those used in our previous work (McGowan
et al., 2005; Murphy et al., 2007; Abdul et al., 2009). SDS-extracted frac-
tions, representative of soluble AB, were diluted in antigen capture (AC)
buffer [20 mm Na;PO,, 0.4% Block Ace (AbD Serotec), 0.05% NaNj, 2
mm EDTA, 0.4 M NaCl, 0.2% BSA, and 0.05% CHAPS, pH 7] as needed.
Formic acid-extracted fractions, representative of insoluble A3, were
first neutralized by a 1:20 dilution with TP buffer (1.0 M Tris base and 0.5
M Na,HPO,) and then further diluted in AC buffer as needed. Immulon
4HBX plates were coated with 2.1.3 [end specific for AB,_,,)] capture
antibody (0.5 ug/well) and blocked with Synblock (AbD Serotec), as per
the instructions of the manufacturer. Synthetic human AB,_,,, was di-
luted in AC buffer and used to construct a standard curve. Protein stan-
dards and sample extracts were loaded in at least duplicate, and antigen
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was detected with 4G8 (AB17-24; Covance) biotinylated antibody. Re-
actions were developed with 3,3',5,5'-tetramethylbenzidine reagent,
stopped with 6% o-phosphoric acid, and read at 450 nm using a multiwell
plate reader. A levels were calculated relative to the standard curve.

Western blot analysis. Protein concentrations in PBS homogenates
were estimated using the Lowry method. Equal amounts of protein were
loaded into individual wells of pre-cast 4—20% gradient gels (Bio-Rad).
Proteins were resolved with electrophoresis and transferred to polyvi-
nylidene difluoride membranes for semiquantitative Western blot anal-
ysis using the Odyssey Sa Imager System. Membranes were preblocked
with Odyssey Blocking Buffer and incubated overnight in blocking buffer
plus primary antibodies, including the following: mouse anti-GFAP (1:
10,0005 Cell Signaling Technology), rabbit anti-Iba-1 (1:1000; Wako),
rabbit anti-B-secretase 1 (BACE1) (1:1000; Epitomics), rabbit anti-
insulin degrading enzyme (IDE) (1:750; Abcam), mouse anti-neprilysin
(1:750; Abcam), and anti-GAPDH (1:10,000; Abcam or Cell Signaling
Technology). Primary antibodies were tagged with IRDye-conjugated
fluorescent secondary antibodies (1:20,000; Li-Cor), and near-infrared
signal was detected on the Odyssey Sa Imager System (Li-Cor). Signal
intensity for resultant bands was calculated, and all protein signals were
normalized to internal control (i.e., GAPDH) bands.

Hippocampal slice preparation. All methods for harvesting brain slices
for electrophysiological recordings were similar to those described in our
previously published work (Norris et al., 1998; Norris and Scheft, 2009;
Mathis et al., 2011). Mice were deeply anesthetized with CO, and decap-
itated. Brains were removed and stored briefly in Ca?*-free, ice-cold,
oxygenated (95% O,, 5% CO,) artificial CSF (ACSF) containing the
following (in mwm): 124 NaCl, 2 KCl, 1.25 KH,PO,, 2 MgSO,, 26
NaHCO;, and 10 dextrose, pH 7.4. Four- hundred-micrometer-thick
sections from one hemisphere, chosen at random, were cut on a vibrating
microtome (Leica). Slices were then quickly transferred to netting in a
custom Plexiglas holding chamber and maintained in CaCl,-containing
(2 mm) ACSF at an interface with warm (32°C), humidified air. Slices
were permitted to equilibrate for at least 1.5 h before beginning electro-
physiological analysis.

Field EPSP recordings. Slices were submerged in oxygenated ACSF
(32°C) and perfused at a rate of 1-2 ml/min for 15-20 min before the
start of each recording session. CA3 Schaffer collaterals were activated
with a bipolar platinum—iridium electrode located in stratum radiatum
near the CA3 border. Stimulus intensity was controlled by a constant-
current stimulus isolation unit (World Precision Instruments), and stim-
ulus timing was controlled by Clampex 9.2 software (Molecular Devices).
Field EPSPs were recorded using a glass micropipette (1-6 M), filled with
ACSF and containing an Ag—AgCl wire, positioned in stratum radiatum
of CAl, ~1 mm away from the point of stimulation. Field potentials were
amplified 100X, Bessel filtered at 1 kHz, and digitized at 10 kHz using a
Multiclamp 700B amplifier and a Digidata 1320 digitizer (Molecular
Devices).

Synaptic strength and long-term potentiation measures. For each slice,
dual-stimulus pulses (S1 and S2), separated by 50 ms, were delivered at
nine different intensity levels (range of 30—500 mA) at a rate of 0.1 Hz to
establish a synaptic strength curve. Five field potentials at each stimulus
level were averaged and measurements of fiber volley (FV) amplitude (in
millivolts) and EPSP slope (millivolts per milliseconds) were performed
offline using Clampfit software (Molecular Devices). Averaged EPSP
slope measures were plotted against their corresponding FV amplitudes
to estimate the strength of CA3—CA1 synaptic contacts. Paired-pulse
facilitation (PPF) of the EPSP slope was calculated along the linear por-
tion of the synaptic strength curve by dividing the EPSP slope of S1 by the
EPSP slope of S2 and multiplying by 100. Following measurements of
synaptic strength, stimulation intensity was readjusted to elicit an EPSP
of ~1 mV, and stimulus pulses were delivered at 0.033 Hz until a stable
20 min baseline was established. High-frequency stimulation (two 100
Hz trains, 1 s each, 10 s intertrain interval) was then delivered at the
baseline stimulation intensity to induce long-term potentiation (LTP),
followed by an additional 60 min baseline. Within each group, EPSP
slope measures from the last 10 min of the post-LTP baseline were aver-
aged across slices within animal and compared with the pre-LTP baseline
slope average. For each animal, electrophysiological parameters were
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averaged across all slices within each animal (one to three slices), and the
n used for statistical comparisons reflects the number of animals per
genotype and treatment group. All electrophysiological recordings were
conducted and analyzed by personnel who were blind to genotype and
treatment conditions.

Statistics. ANOVA was used to detect differences in Western blot pro-
tein levels. Student’s ¢ test was used to analyze astrocyte size distributions
and amyloid levels. Z tests were used to compare Weibull distribution
parameters across Tg mice treated with and without AAV-Gfa2—VIVIT.
Values greater than |2| were considered statistically significant. Perfor-
mance across training days on the active avoidance task and changes in
synaptic efficacy after high-frequency stimulation were analyzed with
repeated-measures ANOVA. Fisher’s least significant difference test was
used for post hoc comparisons. The Kruskal-Wallis nonparametric test
was used to analyze ranked probe trial latency values in the active
avoidance task, and the Mann—Whitney U test was used for follow-up
pairwise comparisons. Statistical significance for all comparisons was
setat p = 0.05.

Results

Targeting astrocytes in APP/PS1 mice with AAV-Gfa2 vectors
AAV seems nearly ideal for obtaining long-lasting and wide-
spread transgene expression in the CNS. Here, the fluorescent
marker EGFP, with or without the CN/NFAT inhibitor VIVIT
(VIVIT-EGFP), was inserted into AAV2/5 vectors downstream
of the astrocyte-specific promoter Gfa2 (Lee et al., 2008). As
shown in Figure 1, a single injection of AAV-Gfa2 vectors directly
into the hippocampus of an adult mouse results in uniform EGFP
expression across the entire longitudinal (Fig. 1A) and sagittal
(Fig. 1 B) axes of the hippocampus. Moreover, transgene expres-
sion is very long lasting (>9 months) and limited almost exclu-
sively to astrocytes, with little to no EGFP found in other major
cell types, including microglia (Fig. 1C) and neurons (Fig. 1 D).
Although it is possible that very small amounts of VIVIT-EGFP
could be released by astrocytes and taken up in other cell types
(for instance, in dendritic spines of closely apposed neurons),
such cross-cell contamination was too low for detection using
fluorescent microscopy, even at very high magnifications (data
not shown).

APP*"/PSEN19* (Tg) mice received bilateral hippocampal
injections of AAV-Gfa2 vectors (EGFP, n = 8; VIVIT, n = 7) or
vehicle (n = 3) at ~7-8 months of age, a time when amyloid
pathology is relatively mild and astrocytic CN expression is just
starting to appear in this and similar animal models (Jankowsky
et al., 2004; Norris et al., 2005). Hippocampus was targeted be-
cause this structure is affected early in the progression of AD
(Daulatzai, 2010) and exhibits an AD-related increase in CN/
NFAT signaling (Norris et al., 2005; Abdul et al., 2009). After
injection, mice were aged for an additional 9 months to permit
the extensive presentation of multiple AD biomarkers, including
glial activation, amyloid deposition, synaptic dysfunction, and
cognitive impairment (Fig. 1 E) (Jankowsky et al., 2004). Gfa2—
EGFP and vehicle-treated mice were quantitatively similar on
every biomarker measure and were therefore combined into a
single control group (n = 11) for statistical comparisons. As a
genotype control, age-matched WT mice were also investigated
in parallel (Ct, n = 9; VIVIT, n = 7).

Astrocytic CN/NFAT inhibition blunts glial activation

Astrocyte activation is indicated by the appearance of hypertro-
phic somata and processes and is often accompanied by an in-
crease in the expression of GFAP, a major intermediate filament
protein specific for astrocytes (Fuller et al., 2009; Rodriguez et al.,
2009; Sofroniew and Vinters, 2010). Consistent with previous
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Figure 1.
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Assess Outcome Measures:
- Neuroinflammation
- Amyloid Deposition
- Cognition
- Synaptic Function

Aged to 16 mos

AAV—Gfa2 vectors drive long-lasting and astrocyte-specific transgene expression. A—D, Representative confocal fluorescent photomicrographs showing EGFP expression in brain

sections (4, longitudinal; B—D, coronal) prepared from mice that received a bilateral injection of AAV—Gfa2 vectors into the CA1 region of the hippocampal formation. At 2 months after injection (4),
the longitudinal axis of the hippocampus showed abundant EGFP expression, although the neocortex, which is enclosed by the white dashed line, mostly excluded EGFP expression. At 9 months after
injection (B-D), the hippocampal molecular layers, but not the dentate granule and CA1 pyramidal neuron layers (counterlabeled blue with DAPIin Band D), showed high levels of EGFP expression.
Microglial cells, positively labeled for the presence of Iba-1 (red), were similarly devoid of EGFP expression (C). In contrast to neurons and microglia, numerous GFAP-positive astrocytes (red)
colocalized with EGFP (green) (D), confirming that hippocampal astrocytes exclusively expressed the transgene (note EGFP/GFAP colabel appears orange/yellow). E illustrates the treatment
paradigm and endpoint measures investigated in this study. WT and Tg mice received injections of either vehicle, or AAV—Gfa2 vectors containing EGFP control or EGFP coupled to the NFAT inhibitor
VIVIT. We treated mice at ~7— 8 months of age, at the early stages of amyloid pathology, and then aged them to ~16 months, at which time they underwent behavioral characterization. After the
animals were killed, we assessed several AD-like biomarkers, including neuroinflammation, amyloid pathology, and hippocampal synaptic dysfunction.

results on other AD mouse models (Oakley et al., 2006; Yeh et al.,
2011), Western blot analyses of hippocampal tissue homogenates
(Fig. 2A) revealed a significant, nearly 300% increase in GFAP
protein levels in Tg Ct mice relative to age-matched WT Ct mice.
However, mice from both genotype groups exhibited lower
(>35%) GFAP levels when treated with Gfa2—VIVIT. For the Tg
group, the difference between Ct and Gfa2—VIVIT-treated mice
closely approached statistical significance (p = 0.06 for Tg Ct vs
Tg VIVIT).

Gfa2—-VIVIT treatment also markedly affected the physical ap-
pearance of hippocampal astrocytes, especially those in the Tg
group. Representative images showing immunolabeled GFAP in
area CAl are provided in Figure 2 B-E. At low magnification (Fig.
2BI-EI), GFAP labeling appeared similar across treatment con-
ditions. However, at higher magnification, many GFAP-positive
astrocytes in the Tg Ct group appeared larger and more ramified
compared with the Tg VIVIT group (Fig. 2D2 vs E2). To deter-
mine whether Gfa2—VIVIT treatment caused a shift in the size
distribution of astrocytes, 20X images spanning the entire CA1l
region were acquired from Tg Ct and Tg VIVIT mice and con-
verted to binary images for automated morphometric quantifi-
cation using MetaMorph software (Fig. 2F,I; binarized cells
shown in blue). Total area of each astrocyte was recorded and
used to construct average histograms (Fig. 2G), which were fit
with a Weibull function (Fig. 2 H). These comparisons revealed
no effect of Gfa2—VIVIT on the total number of GFAP-labeled
cells (Fig. 2]). However, relative to Tg Ct mice, the size histogram
for the Tg VIVIT group exhibited a higher peak (Z = —5.28) and
a narrower distribution (Z = 3.66), reflecting a shift toward
smaller astrocytes (Fig. 2G,H ). Consistent with this shift, average
astrocyte size exhibited a significant reduction in Gfa2—VIVIT
mice (p < 0.05; Fig. 2K).

To expand on this observation, we sorted astrocytes into three
broad groups based on cell size (Fig. 2I). Small astrocytes (pixel
area between 150 and 500), with relatively small somas and few
major processes, were most abundant in both treatment groups

but were observed in proportionally greater numbers (p < 0.001)
in Gfa2—VIVIT-treated mice (Fig. 2L). In contrast, medium as-
trocytes (pixel area between 500 and 1000), characterized by
thicker cell bodies and processes (Fig. 2 M), were significantly
reduced (p < 0.05) in the Gfa2—VIVIT group. Moreover, large,
highly ramified (i.e., hypertrophied) astrocytes (pixel area
>1000) (Fig. 2N) were rarely seen after treatment with Gfa2—
VIVIT (p < 0.001). Together, these results are consistent with
reduced astrocyte activation in Gfa2—VIVIT mice.

Activated astrocytes are widely believed to coordinate with
microglial cells to drive neuroinflammatory signaling in AD and
most other neurodegenerative conditions (Akiyama et al., 2000;
Skaper, 2007). Similar to astrocytes, microglia are strongly acti-
vated during the progression of AD and closely associated with
disease pathology (Tuppo and Arias, 2005; Van Eldik et al., 2007;
Lee and Landreth, 2010). As shown in Figure 3, Tg mice exhibited
significantly elevated hippocampal protein levels (p < 0.001; Fig.
3A) and displayed more intense immunohistochemical labeling
(Fig. 3B—E) of the microglial marker Iba-1, indicative of pro-
nounced microglial activation. Interestingly, the effects of Gfa2—
VIVIT on Iba-1 expression showed a strong interaction with
genotype. In Tg mice, Iba-1 levels were reduced by >35% (p <
0.05) after VIVIT treatment, similar to astrocyte measures shown
in Figure 2. However, WT mice exhibited an increase in Iba-1
levels after Gfa2—VIVIT treatment (p < 0.05). This observation
suggests that astrocytes and microglia may interact very differ-
ently depending on disease state. Nonetheless, results from Tg
animals demonstrate that key indicators of glial activation and
neuroinflammation associated with AD can be significantly
ameliorated through selective targeting of astrocytic signaling
pathways.

Astrocytic CN/NFAT inhibition ameliorates amyloid
pathology

Neurotoxic AB(,_,, peptides are the primary constituent of ex-
tracellular amyloid deposits in AD and serve as the molecular



Furman et al. @ Targeting Astrocytes in Alzheimer’s Mice

A WTCt WTVIV TgCt Tg VIV

GFAP = =vs o=

T R e ——

J. Neurosci., November 14, 2012 - 32(46):16129-16140 * 16133

= *
S 300
g -
R 200 T
K]
[
g 100
o
)
& .ty % %
[o3 1,,;’0, Cl
F Raw Image G
¥ ’* ){ 7\“9'/ H
S e T 4 _ —
o 50
b Tg Ct Tg VIV
¥ E )
«fﬂ\l - g
o R 2 301 >1000 | B
Binary Conversion ~l' o S
£ >1000 |8
3104 :
07200 400 600 800 1000 200 400 600 800 1000 Size
. . e
Astrocyte Size (pixel area)
1?3"220 + TOTAL AREA SMALL MEDIUM LARGE
£ 400 500 2100 + 25 8
.°m3 300 > ) 400 * § 80 20 . 6
“Medium” 3 o & 300 £ 60 15
5001000 9 200 £ 2 200 < 40 10 ¢
% 100 ge g 2 #
< Z 100 o 20 5
“Large” S o0 0 x 0 0 0
51000 TgCt Tg VIV TgCt Tg VIV Tg Ct Tg VIV TgCt TgVIV ~ TgCt TgVIV

Figure 2.

Gfa2-VIVIT reduces astrocyte activation in Tg mice. 4, Representative Western blots and mean == SEM protein levels for the astrocyte marker GFAP from hippocampal homogenates

of WT and Tg mice treated with vehicle and Gfa2—EGFP (Ct) or Gfa2—VIVIT (VIV). In the bar graph, GFAP levels are normalized to GAPDH internal controls and expressed as a percentage of the WT Ct
group ( *p << 0.001Tg Ctvs WT Ctand WTVIV; #p << 0.01Tg VIV vs WTVIV; *p << 0.05 Tg VIV vs WT Ct). B—E, Low-magnification (B1—ET) and high-magnification (B2—E2) representative images
of astrocytes immunohistochemically labeled in hippocampal CA1 for the presence of GFAP. CA1 s.p., CAT pyramidal cell layer. Scale bar, 500 wm. F, Representative region showing GFAP
immunoreactivity before (raw) and after conversion to a binary image (cells in blue) for quantification of possible changes in astrocyte size. G, Histograms of binary images showing the size of
individual astrocytes (total pixel area per cell) counted per unit area (mean == SEM) in CA1 of Tg Ct and Tg VIVIT mice. The last column in each histogram indicates the number of cells counted with
a total pixel area in excess of 1000. H, Weibull distributions for histograms shown in G. Curve parameters were compared using Z tests (see Results). /, Representative binary images of astrocytes
sorted into small-, medium-, and large-sized categories based on total pixel area. J, Total number of astrocytes (mean == SEM per square millimeter) counted in CA1 for Tg Ct and Tg VIVIT mice. K,
Mean = SEM astrocyte size (pixel area) for astrocytes counted in G. LN, The proportion of small, medium, and large astrocytes (mean == SEM, expressed as percentage of total cells) in area CA1

for Tg Ctand Tg VIV groups. For all panels, *p << 0.001, *p << 0.01, *p < 0.05.

target for several anti-AD therapeutics currently in clinical trials
(Morgan, 2011). The role of neuroglia in amyloid pathology is
controversial, with several studies showing that activated astro-
cytes and microglia can either exacerbate or reduce brain amyloid
levels (Sastre et al., 2006; Shaftel et al., 2007). Recent studies have
shown that blockade of systemic CN activity using commercially
available inhibitors results in lower brain amyloid levels in Tg
mice (Hong et al., 2010). Whether or not these beneficial effects
were attributable to specific actions on glial signaling was not
investigated. To determine the extent to which astrocytic CN/
NFAT activity influences amyloid pathology, we immunolabeled
hippocampal sections from Tg Ct and Tg VIVIT mice with a
monoclonal antibody that recognizes the human Af peptide
(Fig. 4 A, B). Absolute AB(,_,,, peptide levels were also estimated
in whole hippocampal homogenates using ELISA (Fig. 4 D-F).
As shown in Figure 4, A and B, Gfa2-VIVIT treatment was gen-
erally associated with fewer and smaller amyloid deposits in hip-

pocampal CAl, corresponding to a significant (p < 0.01)
reduction (>30%) in the percentage area occupied by immuno-
reactive AB (Fig. 4C). Similar to immunohistochemical mea-
sures, Gfa2—VIVIT also caused a significant, >20% reduction
(p < 0.05) in total AB(,_,,) peptide levels (Fig. 4F). This effect
was observed for both soluble (i.e., SDS-extractable; Fig. 4 D) and
insoluble (i.e., formic acid-extractable; Fig. 4E) AB(,_,,, frac-
tions, although differences for insoluble AB,_,,, were variable
and did not reach statistical significance. These results demon-
strate that astrocytic CN/NFAT signaling plays a regulatory role
in amyloid pathology.

Elevations in A peptide levels can arise from changes in sev-
eral enzyme pathways involved in A3 production and Af3 clear-
ance. The rate-limiting enzyme in AB production, BACE], is
found at elevated levels in human AD subjects (Ahmed et al.,
2010) and also in AD mouse models (Zhao et al., 2007), in which
it closely correlates to the severity of amyloid pathology. Mount-
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Figure3. Gfa2-VIVIT reduces microglial activation in Tg mice. A, Representative Western blots and mean == SEM protein levels for the microglial marker Iba-1from hippocampal homogenates
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group. Iba-1levels were significantly reduced in VIVIT-treated Tg mice relative to Tg controls. Interestingly, the opposite effect was seenin WT animals (*p < 0.01, *p < 0.05). Fluorescent labeling
of Iba-11in CA1 stratum radiatum of WT Ct (B), WT VIV (C), Tg Ct (D), and Tg VIV (E) mice corroborated these treatment effects. Scale bars, 250 m.
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Figure4.  Gfa2-VIVITreduces A3 pathology in Tg mice. A, B, Representative photomicrographs (scale bar, 100 um) and accompanying plaque load analysis (€, mean == SEM) illustrating differencesin the
immunohistochemical labeling of A3 deposits (brown) in Tg Ctand Tg VIV mice. Hematoxylin (blue) labels the pyramidal neuron layerin CA1. D—F show ELISA measures (mean == SEM) of soluble, insoluble, and
total (soluble + insoluble) AB,; _ 1, peptide levels in hippocampal homogenates of Tg mice. The Gfa2—VIVIT-treated group showed significantly lower (*p << 0.05) total peptide levels (F), attributable mostly
toasignificantreductionin the toxic, soluble A3 fraction (D). G-J, Representative Western blots (G) and mean == SEM protein levels (H—J) for A3 metabolicenzymes measured from hippocampal homogenates
of WT Ct, WT VIV, Tg Ct, and Tg VIV mice. Values are normalized to GAPDH internal controls and expressed as a percentage of the WT Ct group. H, BACET, the rate-limiting enzyme in A3 production, was
differentially affected by VIVIT treatment across genotypes ( “p < 0.01Tg Ctvs TqVIV; *p << 0.05 WT Ctvs WTVIV). 1, J, IDE and neprilysin, participants in amyloid clearance, were not affected by VIVIT treatment,
although neprilysin did show a genotype difference *p << 0.001 Tg Ctand Tg VIV vs WT Ct).

ing evidence also suggests that significant amounts of BACEl are  although a selective role for astrocytic CN/NFAT activity was not
produced in activated astrocytes during AD (Zhao et al., 2011).  investigated.

Interestingly, the CN/NFAT pathway was recently shown to up- Similar to previous studies, we also observed a significant in-
regulate BACEL in cell cultures and Tg mice (Cho et al., 2008),  crease in hippocampal BACE1 protein levels in Tg Ct relative to
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WT Ct mice (p < 0.05; Fig. 4G,H ). Furthermore, we found that
astrocytic CN/NFAT activity plays a significant role in BACE1
expression. However, the effects of Gfa2—VIVIT were very dif-
ferent for WT and Tg mice. In the Tg group, Gfa2—VIVIT
prevented BACEL elevations, consistent with a positive regu-
latory role as demonstrated in previous studies (Cho et al.,
2008). Conversely, BACEI levels were potentiated in WT mice
treated with Gfa2-VIVIT (Fig. 4G,H). These results suggest
that interactions between BACEL expression and astrocytic
CN/NFAT signaling depend critically on the presence of exist-
ing amyloid pathology.

In addition to BACEIL, we also measured protein levels of
enzymes consistently linked to Af clearance, including IDE and
neprilysin (Fig. 4G, L, ]). Of the two, neprilysin (Fig. 4]) showed
differences between WT and Tg mice (i.e., neprilysin was ele-
vated in the Tg group, p < 0.001), yet neither enzyme was
significantly altered by Gfa2-VIVIT treatment. The results
suggest that astrocytic CN/NFAT activity does not regulate
amyloid clearance in Tg mice, at least not through IDE and
neprilysin-mediated pathways.

Astrocytic CN/NFAT inhibition improves cognition
Impairment on hippocampal-dependent cognitive tasks is per-
haps the earliest and most well-recognized clinical feature of AD
and is also characteristic of several AD mouse models (Selkoe,
2001; Jankowsky et al., 2004; Mattson, 2004; Oakley et al., 2006).
Cognitive deficits in Tg mice were confirmed at ~16 months of
age using a standard hippocampal-dependent active avoidance
behavioral task, in which mice are given 7 s to escape from a dark
compartment to an illuminated compartment before a 24 s elec-
tric shock is delivered through the dark compartment flooring.
Successful avoidances, defined by escape before footshock, were
recorded across four training trials given each day for 3 d. On day
4 of the task, escape latency to the light compartment was mea-
sured for each mouse on a single probe trial in which no shock
was delivered.

As shown in Figure 5, Gfa2—VIVIT had little effect on avoid-
ance behavior in WT mice during training (Fig. 5A) or during the
probe trial (Fig. 5C). However, Tg mice treated with Gfa2—VIVIT
generally outperformed their Ct counterparts by the final train-
ing day (Fig. 5B). Similarly, Tg Ct mice were significantly im-
paired on the day 4 probe trial relative to all other genotype/
treatment groups (p < 0.05), whereas Tg mice treated with Gfa2—
VIVIT were nearly indistinguishable from the WT groups (Fig.
5C). These results demonstrate that cognitive performance in Tg
mice can be protected by selective inhibition of astrocytic CN/
NFAT signaling.

Astrocytic CN/NFAT inhibition ameliorates synaptic
dysfunction and plasticity
Because synaptic dysfunction is among the most reliable bio-
markers of impaired cognition, we also investigated the effects of
Gfa2—VIVIT on several synaptic transmission properties using
electrophysiological methods in acutely prepared sagittal brain
slices. For each brain slice, basal synaptic strength curves were
constructed in CA1 stratum radiatum by plotting EPSP slope
amplitudes against presynaptic FV amplitudes (Fig. 6 A—C). Pos-
sible genotype/treatment effects on PPF (Fig. 6 D) and popula-
tion spike threshold (Fig. 6 E) across synaptic activation levels
were also investigated.

In WT animals, Gfa2—VIVIT caused a slight depression
(rightward shift) of the synaptic strength curve (Fig. 6 A2) and
a modest, although insignificant (p = 0.19), reduction in the
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Figure 5.  Gfa2-VIVIT improves cognitive performance in Tg mice. Percentage avoidances
(mean == SEM) by WT (A) and Tg (B) mice exhibited on three training days (Day 1, Day 2, Day 3)
in a one-way active avoidance task. Gfa2—-VIVIT had little effect on avoidance behavior in WT
mice (A) but tended to improve performance in the Tg group by the end of training (B). On day
4 of the task, mice completed a single probe trial (C) in the absence of footshock and received
rankings (mean == SEM ranking) according to their escape times (lower ranks correspond to
quicker escape latencies). Mean rankings for the WTs and Tg VIVIT groups were very similar on
the probe trial and significantly lower than the Tg Ct group (* p > 0.05 Tg Ctvsall other groups).

EPSP/FV ratio (Fig. 6A2,C). Gfa2—VIVIT was also associated
with a slight reduction (p = 0.06) in the population spike
threshold (Fig. 6 E), suggesting that CAl neurons in Gfa2—
VIVIT mice may be more excitable, although synaptic effectiveness
is weakened somewhat. In contrast to WT mice, Gfa2—VIVIT
pushed the synaptic strength curve in Tg animals to the left (Fig.
6 B2) and significantly increased (p < 0.05) the EPSP/FV ratio
closer to WT Ct levels (Tg VIVIT vs WT Ct, p = 0.13; Fig. 6C).
The population spike threshold was also modestly but insignifi-
cantly elevated (p = 0.07) in Tg VIVIT mice relative to Tg Ct
mice (Fig. 6 E). There were no transgene and/or treatment effects
on PPF (Fig. 6 D).

After synaptic strength curves were established, stimulus in-
tensity was reset to evoke an ~1 mV EPSP at a rate of 0.033 Hz.
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Figure 6.  Gfa2-VIVITimproves synaptic function in Tg mice. Representative electrophysiological waveforms recorded in CAT stratum radiatum of brain slices from WT (A7) and Tg (B7) mice in
response to electrical stimulation of CA3 Schaffer collaterals. Calibration: 0.5 mV, 2.5 ms. Waveforms in each treatment group were matched to similar FV amplitudes to illustrate differences in the
amplitude of the corresponding postsynaptic response. A2 and B2 show synaptic strength curves for WT (42) and Tg (B2) mice in which mean EPSP slope (millivolts per milliseconds) amplitudes
(SEM, vertical error bars) are plotted against FV (millivolts) amplitudes (SEM, horizontal error bars) across nine stimulus intensity levels. €, Mean == SEM EPSP/FV ratios calculated from the upper two
stimulus intensity levels shown in A2 and B2. The Tg Ct group exhibited a significantly reduced EPSP/FV ratio relative to both the WT Ctand Tg VIVIT groups. D, In contrast to synaptic strength, levels
of PPF (mean == SEM) did not differ across treatment group. E, The mean == SEM EPSP slope amplitude at which a population spike appeared (i.e., population spike threshold) in the ascending phase
of the field potential (see A7 and B7). The WT VIVIT and Tg Ct groups showed a reduced population spike threshold compared with WT Ct and Tg VIVIT mice. This difference reached significance for

the Tg Ct group (p << 0.01vs WT Ct).

After a stable baseline period (=20 min), each slice received two
1-s-duration 100 Hz stimulus trains (10 s intertrain interval) to
induce LTP, a form of synaptic plasticity widely believed to un-
derlie learning and memory processes (Malenka, 2003). Many
animal models of aging and AD show impaired LTP coincident
with cognitive decline (Foster and Norris, 1997; Foster, 2002;
Marchetti and Marie, 2011; Spires-Jones and Knafo, 2012). As
shown in Figure 7A, Gfa2—VIVIT had little-to-no effect on LTP
levels in WT animals, whereas LTP in Tg mice was significantly
enhanced (p < 0.001; Fig. 7B) by Gfa2—VIVIT. Thus, of all treat-
ment groups investigated, LTP deficits were only observed in the
Tg Ct group (Fig. 7C). Together, the results demonstrate that
targeting CN/NFAT inhibitors selectively to astrocytes can im-
prove synaptic function and plasticity in AD model mice.

Discussion

In this study, we targeted astrocytic CN/NFAT signaling in a
mouse model of AD using novel AAV-Gfa2 vectors expressing
the CN/NFAT inhibitor VIVIT. AAV treatment administered to
Tg mice during early stages of disease progression reduced the
appearance of glial activation, amyloid pathology, cognitive def-
icits, and synaptic dysfunction assayed at mid-age. Our findings
suggest that activated astrocytes and/or astrocytic CN/NFAT sig-
naling play integral roles in driving or maintaining multiple path-
ological and clinical symptoms of AD and lay the groundwork for
future investigation of astrocyte-specific molecular targeting as a
therapeutic strategy.

Astrocytic CN/NFAT and glial activation

Advances in cell-specific manipulations and assays have greatly
increased our understanding of the role of activated astrocytes in
neurodegeneration. In recent years, several molecular pathways
involved in orchestrating glial activation such, as STAT3, NFkB,
and MAP kinases, have been investigated in injury/disease mod-
els, and their selective knockdown in astrocytes produces variable
degrees of benefit or detriment on neuroinflammation, lesion
repair, and functional recovery (Sofroniew, 2009; Munoz and
Ammit, 2010). In addition to these critical intracellular constitu-
ents, work from our laboratory and others has shown that the
CN/NFAT pathway also regulates several components of the ac-
tivated astrocyte phenotype, including cellular hypertrophy, cy-
tokine expression, and glutamate dysregulation (Norris et al.,
2005; Fernandez et al., 2007; Canellada et al., 2008; Sama et al.,
2008; Abdul et al., 2009). The VIVIT peptide provides a powerful
tool to disrupt this CN/NFAT signaling cascade. By mimicking
the endogenous CN/NFAT docking site (i.e., PxIXIT sequence),
VIVIT prevents CN-dependent dephosphorylation and activa-
tion of NFATSs (Aramburu et al., 1999), making it far more spe-
cific than other commercially available CN inhibitors, which
inhibit all CN signaling pathways and have off-target effects on
immunophilins. However, it deserves noting that PxIXIT, or sim-
ilar sequences, have more recently been identified in other CN
substrates (Li et al., 2011), allowing the possibility that some
VIVIT-mediated effects occur independently of NFATs. Never-
theless, our results show that targeting astrocytic signaling with
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Figure7.  Gfa2-VIVITimproves LTPin Tg mice. Time plots of mean == SEM EPSP slope values
in CA1 stratum radiatum from WT (A) and Tg (B) mice. Insets show representative EPSP wave-
forms averaged in individual slices immediately before (7) and 60 min after (2) the delivery of
two 15 trains of 100 Hz stimulation (arrow). Calibration: 0.5 mV, 5 ms. LTP levels did not differ
with Gfa2 treatment in WT mice (A); however, Tg Ct mice showed a substantial LTP deficit
relative tothe Tg VIVIT group (B). The bar graph in Cshows LTP levels (mean == SEM, percentage
of baseline) at 60 min after 100 Hz stimulation and illustrates the LTP deficit in Tg Ct mice
(*p < 0.001Tg Ct vs all other groups).

VIVIT or other molecular reagents could prove very useful in
pinpointing the role of activated astrocytes in a variety of neuro-
degenerative conditions.

The increased colocalization of CN to astrocytes occurs early
in the clinical progression of AD (Norris et al., 2005; Abdul et al.,
2009) when signs of glial activation and synapse dysfunction be-
gin to emerge (Carter et al., 2012; Mufson et al., 2012). The pres-
ent study suggests that early alterations in astrocytic CN/NFAT
signaling drives or exacerbates pathologic changes associated
with later disease stages. It seems likely that the deleterious effects
of astrocytic CN/NFATs are rooted, at least partly, in chronic
neuroinflammation. Indeed, astrocyte activation is generally re-
garded as a primary marker for neuroinflammation associated
with most neurodegenerative conditions (Verkhratsky et al.,
2010; Vincent et al., 2010; Sidoryk-Wegrzynowicz et al., 2011).
Moreover, the effects of Gfa2-VIVIT vectors in Tg mice, as
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shown here, are similar in many ways to those obtained previ-
ously with NSAIDs and other anti-inflammatory drugs (Rowan
et al., 2007; Kotilinek et al., 2008; Yirmiya and Goshen, 2011).
Previous work has shown that the transition of astrocytes from an
acute to a chronically activated “proinflammatory” state can di-
rectly arise from the dysregulation of CN/NFAT signaling (Fer-
nandez et al., 2007; Sama et al., 2008). Positive feedback
interactions between CN/NFATs and numerous other cytokines,
membrane receptors, and Ca** sources (Norris et al., 2005; Fer-
nandez et al., 2007; Canellada et al., 2008; Sama et al., 2008;
Norris et al., 2010) suggest that the astrocytic CN/NFAT pathway
is ideally suited to perpetuate harmful immune/inflammatory
signaling cascades. Consistent with this idea, delivery of Gfa2—
VIVIT to Tg mice in the present study not only suppressed mor-
phologic features of astrocyte activation (Fig. 2) but also
ameliorated signs of microglial activation (Fig. 3). In primary
cultures, hyperactive CN/NFAT activity can spread from one as-
trocyte population to another (Sama et al., 2008). Recent evi-
dence implicating the CN/NFAT pathway as a major regulator of
the proinflammatory microglial phenotype (Nagamoto-Combs
and Combs, 2010) suggests that CN/NFAT dysregulation in as-
trocytes may also spread to microglia and vice versa. It would
therefore be interesting to determine whether or not inhibition of
microglial CN/NFAT signaling in AD mice produces beneficial
effects comparable with Gfa2—VIVIT.

Astrocytic CN/NFAT and amyloid pathology

Several clinical and pathological features of AD appear to involve
a strong bidirectional interaction between Af peptides and CN/
NFAT signaling (Agostinho et al., 2008; Reese et al., 2008; Abdul
etal.,, 2009; Hong et al., 2010; Wu et al., 2010; Mohmmad Abdul
et al., 2011; Wu et al,, 2012). In the present study, AB peptide
levels and amyloid plaque load were reduced in Tg mice treated
with Gfa2—VIVIT (Fig. 4), suggesting that astrocytes are a critical
site for CN/NFAT-amyloid interactions. CN/NFATs would seem
to be more closely linked to AB production than to clearance,
because Gfa2—VIVIT significantly reduced BACELI levels but did
not affect the expression of either IDE or neprilysin (Fig. 4) in Tg
mice. Although AB pathology in these mice is attributable pri-
marily to the presence of human APP and PSEN1 gene muta-
tions, an increase in BACE] levels, as reported in other AD mouse
models (Zhao et al., 2007), would be predicted to exacerbate A3
production. BACEL1 is commonly found in neurons but is also
regulated by numerous glial-derived factors that may be affected
by Gfa2—VIVIT. For instance, BACE1 levels are increased in neu-
ral cultures treated with cytokines (Sastre et al., 2003), several of
which are produced in astrocytes and sensitive to CN/NFATs
(Sama et al., 2008). Gfa2—VIVIT may also directly influence as-
trocytic BACEI expression. Recent evidence suggests that BACE1
transcription depends critically on NFAT1 (Cho et al., 2008,
2009), the NFAT isoform preferentially activated in hippocampal
astrocytes during early stages of AD (Abdul et al., 2009). Al-
though BACE] levels are generally far lower in glial cells relative
to neurons (Vassar et al., 1999; Laird et al. 2005), the sheer abun-
dance of astrocytes in brain may still provide a significant source
for the generation of AB peptides (Zhao et al., 2011). There is also
some evidence to suggest that BACE1 is significantly elevated in
reactive astrocytes surrounding amyloid deposits (Rossner et al.,
2001). Clearly, future studies will be required to sort out the
mechanistic interactions between astrocytes, CN/NFAT signal-
ing, and A pathology.



16138 - J. Neurosci., November 14, 2012 - 32(46):16129-16140

Effects of Gfa2—VIVIT on WT mice

Although important biomarkers of neurologic function (e.g., ac-
tive avoidance learning and LTP) were not appreciably altered in
WT mice treated with Gfa2—VIVIT, other biomarkers (e.g., Iba-1,
BACE], and synaptic strength) changed in ways that may be det-
rimental, suggesting that astrocyte activation could serve dif-
ferent roles during normal versus pathologic aging. Astrocytic
CN/NFAT signaling, in particular, may coordinate both the
maintenance and the resolution of neuroinflammatory signaling
through its interactions with different transcription factors, in-
cluding Foxo3 and NF«kB (Fernandez et al., 2007, 2012). One
possibility is that astrocyte activation (or astrocytic CN/NFAT
signaling) provides a vital compensatory function that helps to
stem harmful neuroinflammatory responses during middle age
but then transitions to a primary mechanism for driving neuro-
inflammation and subsequent damage, during late aging and AD.
In this case, blockade of astrocytic CN/NFATs in healthy, mid-
aged subjects, similar to the ones modeled in this study, may be
predicted to exacerbate microglial activation and proinflamma-
tory cytokine production leading to increased BACE1 expression
(Sastre etal., 2003), synaptic dysfunction (Di Filippo et al., 2008),
or other problems. Future studies will need to investigate addi-
tional biomeasures and/or use more sensitive functional assays to
identify other possible Gfa2—VIVIT-induced changes during the
aging process. Such work could be critical for guiding potential
therapeutic strategies, especially in regard to older individuals
who are more likely to be seen in the clinic for memory problems
and/or other symptoms of AD.

Potential of AAV vectors in the treatment of AD

Our results, combined with recent work from another group
(Hudry et al., 2012), suggest that the targeted delivery of CN or
NFAT inhibitors to select brain regions and/or cell types with
AAV can help reduce AD-related biomarkers but also minimiz-
ing the possibility of detrimental off-target treatment effects.
Because of its specificity, lack of toxicity, and capacity for
widespread and long-lasting transgene expression, AAV appears
to be an ideal vehicle for directing therapeutics to astrocytes and
other cell types. In recent years, AAV has emerged as a promising
treatment option for muscle disease (DiPrimio et al., 2010), ret-
inal disorders (Stieger et al., 2011), and Parkinson’s disease (PD).
Intracranial delivery of AAV vectors to subcortical regions is
presently under investigation in Phase I and II clinical trials for
the treatment of PD, in which it has been shown to be safe and
well tolerated (Kaplitt et al., 2007; Bartus et al., 2011). Although it
will first be crucial to understand the response profile of healthy,
aged individuals, we suggest that a similar AAV-based strategy
targeting astrocytic CN/NFAT signaling, or other astrocytic cas-
cades, could lead to viable new treatment options for AD and
other neurodegenerative disorders.

Conclusions

This study is among the relatively few to directly confirm a dele-
terious role of astrocytes in the progression of multiple AD bio-
markers. The results also add to a rapidly growing body of
evidence implicating CN/NFAT signaling as an important, and
possibly driving, force in the pathophysiology of AD. We suggest
that astrocytes in general, and astrocytic CN/NFAT pathways in
particular, provide useful molecular targets for the development
of new anti-AD therapeutics.
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