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ABSTRACT	  OF	  DISSERTAION	  

	  

ROLE OF THE IMMUNE SYSTEM AND BIOACTIVE LIPIDS IN TRAFFICKING 
BONE MARROW-DERIVED STEM CELLS IN PATIENTS WITH ISCHEMIC 

HEART DISEASE 
	  

Acute myocardial infarction (AMI) triggers the mobilization of stem/progenitor 
cells from bone marrow (BMSPCs) into peripheral blood (PB). The underlying 
mechanisms orchestrating this mobilization and subsequent homing of BMSPCs 
to the myocardium are poorly understood. While the role of traditional 
chemokines in the mobilization and homing of hematopoietic stem cell (HSCs) to 
BM niches is undisputed, their role in directing BMSPCs to the highly proteolytic 
environment of the ischemic myocardium is debatable and other redundant 
mechanism may exist. Based on our observation that bioactive lipids, such as 
sphingosine-1 phosphate (S1P) and ceramide-1 phosphate (C1P), play an 
important role in regulating trafficking of HSCs; we explored if they also direct 
trafficking of BMSPCs in the setting of myocardial ischemia. While BMSPCs 
expressed S1P receptors regardless of the source, the expression of S1P 
receptor 1 (S1PR1) and receptor 3 (S1PR3), which are responsible for migration 
and chemotaxis, was elevated in BMSPCs in naïve BM cells and was reduced 
following mobilization. This expression correlated to differential response of 
BMSPCs to S1P in chemotaxis assays. By employing flow cytometry analyses, 
we observed an increase in circulating PB CD34+, CD133+ and CXCR4+ lineage 
negative (Lin-)/CD45- cells that are enriched in non-HSCs (P < 0.05 vs. controls). 
This corroborated our mass spectrometry studies showing a temporal increase in 
S1P and C1P plasma levels. At the same time, plasma obtained in the early 
phases following AMI strongly chemoattracted human BM-derived CD34+/Lin- 
and CXCR4+/Lin- cells in Transwell chemotaxis assays in an S1P dependent 
fashion. We examined other mechanisms that may contribute to the homing of 
BMSPCs to the infarcted myocardium due to the reduction of S1PRs upon 
mobilization. We observed that hypoxia induced higher expression of 
cathelicidins in cardiac tissues. Indeed, PB cells isolated from patients with AMI 
migrated more efficiently to low, yet physiological, gradient of SDF-1 in Transwell 
migration assays compared to SDF-1 alone. Together, these observations 
suggest that while elevated S1P plasma levels early in the course of AMI may 
trigger mobilization of non-HSCs into PB, cathelicidins appear to play an 
important role in their homing to ischemic and damaged myocardium.  

	  
	  

Ahmed	  Abdel-‐Latif	  
January	  10th,	  2013	  
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Chapter 1 

 

INTRODUCTION 

 

The prevalence of ischemic heart disease and acute myocardial infarction 

(AMI) has increased to alarming rates in the United States and the western world 

(1). Patients who survive the initial AMI suffer ischemic cardiomyopathy (ICM) 

which is often complicated by high mortality and poor overall prognosis (2, 3). 

Despite significant advances in medical therapy and revascularization strategies, 

the prognosis of patients with AMI and ischemic cardiomyopathy remains dismal 

(4, 5). The last decade has demonstrated significant progress and rapid 

translation of myocardial regenerative therapies particularly those utilizing stem 

cells isolated from adult tissues (6).  

Studies examining the potential therapeutic use of bone marrow (BM)-

derived cells in myocardial regeneration have overshadowed the growing 

evidence of innate cardiac reparatory mechanisms. Up until early 2000s it was 

believed that the human heart was a post-mitotic organ that is not capable of 

self-renewal, and therefore the AMI-damaged myocardium could not be 

regenerated.  However, this dogma has been continuously challenged in the last 

decade. Follow up of cardiac transplantation patients have demonstrated 

continuous replenishment of cardiomyocytes by recipient derived cells through 

poorly understood mechanisms (7). Repeated biopsies showed an increasing 

number of recipient derived cells that have differentiated to fully functional 
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cardiomyocytes, vascular smooth muscle cells and endothelial cells. In one study 

of a male heart transplant into a female recipient, a fraction of the 

cardiomyocytes were Y-chromosome-positive, providing direct evidence that 

these cells originated from the host to the myocardium of the grafted heart. The 

number of recipient-derived cardiomyocytes, vascular smooth muscle cells and 

endothelial cells increased significantly chronologically after the transplantation.  

Furthermore, these primitive cells, which probably originated in the bone marrow 

(BM), expressed stem cell antigens including c-kit, and MDR1. The migration of 

primitive cell populations to the grafted heart resulted in the loss of stem-cell 

markers, active proliferation, and acquisition of the mature phenotype followed by 

cell colonization and de novo formation of cardiomyocytes, coronary arterioles, 

and capillaries (7). Thus, all three major lineages of the heart are being renewed 

by cells from the recipient.  

To address the question of BM origin of chimeric cardiomyocytes, a follow-

up investigation analyzed hearts of patients who have undergone gender-

mismatched BM transplantation (8).  The key findings suggest that BM acts as a 

reservoir of “off-site” tissue committed stem cells that contribute to cardiomyocyte 

formation.  Interestingly, the potential origin and phenotype of marrow myocyte 

precursors included lineage-restricted mesenchymal, hematopoietic, and 

multipotent adult progenitor cells (9).  Together, these data established human 

bone marrow as a source of bone marrow stem/progenitor cells (BMSPCs) 

capable of de novo cardiomyocyte formation and possibly repair. However, the 
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mechanisms governing the mobilization of BM cells from their niches to the 

myocardium are poorly understood.  

Animal studies have confirmed cardiomyocyte chimerism to be a dynamic 

process responding to significant injury such as myocardial infarction and which 

is most apparent in the peri-infarct zone (10). Hsieh and colleagues describe the 

renewal of cardiomyocytes at baseline and after cardiomyocyte loss such as 

following AMI or pressure overload. While cardiomyocyte renewal was minimal 

under physiological conditions, the rates of newly formed cardiomyocytes 

increased significantly after AMI especially at the peri-infarct border suggesting a 

dynamic response to injury. The rate of diffuse chimerism was also dynamic 

during pressure overload conditions albeit at a lower rate than that seen in 

ischemic injury. Although this process appears to be robust enough to achieve 

the renewal of approximately 50% of all cardiomyocytes in the normal life span, 

very little is known about its underpinnings (11).  

Complex innate reparatory mechanisms are initiated by myocardial 

ischemia interacting with different elements of the immune system, the infarcted 

myocardium and bone marrow stem cells, culminating in BM-SPCs mobilization 

as we and others have demonstrated (12, 13). However, very little is known 

about the mechanisms and clinical significance of this mobilization. Animal 

studies show that mobilized BM-derived cells (BMCs) repopulate the infarct 

border, however the significance of this mobilization is unclear given the low rate 

of their differentiation into cardiomyocytes (14).  
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Adult bone marrow contains populations of pluripotent stem and primitive 

cells  

The bone marrow acts as a reservoir for a heterogeneous pool of tissue-

committed and non-committed stem cells. These populations contain progenitors 

that aid in the chimerism and cellular turnover of different organs as well as very 

rare populations of pluripotent and non-committed stem cells. The old dogma that 

adult tissues lack pluripotent stem cells (PSCs) has been continuously 

challenged during the last decade through multiple studies that isolated PSCs 

from adult humans’ and animals’ tissues. These populations were distinguished 

based on their morphology with small cell size, large nucleus demonstrating 

euchromatin and large nucleus to cytoplasm ratio. Furthermore, cell surface 

markers as well as nuclear transcription factors, such as SSEA1/4, Oct4 and 

Nanog, have been deployed. 

Very small embryonic like stem cells (VSELs) represent a rare yet 

pluripotent population of adult stem cells. They have been initially described by 

Dr. Ratajczak’s group in the murine BM based on their expression of Sca1 

(murine stem cell marker) and lack of expression of CD45 (pan–leukocytic 

marker) and differentiated lineage (Lin) markers (15). Following their isolation 

from murine tissues, VSELs were subsequently isolated from human BM, 

umbilical cord blood (CB) and peripheral blood based on the lack of expression 

of Lin/CD45 and the expression of the stem cell markers CD133, CXCR4 and 

CD34. Figure 1 illustrates the flow cytometry protocol for identifying and isolating 

VSELs from murine and human samples. VSELs were further characterized 
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using a multi-dimensional approach comprising molecular, protein and cell 

imaging techniques to confirm their pluripotent features (16). VSELs are 

morphologically similar to embryonic stem cells demonstrating small diameter 

compared to more committed progenitors/stem cells with large nucleus 

containing open-type chromatin surrounded with thin rim of cytoplasm and 

multiple mitochondria (16). VSELs exhibit multiple embryonic and pluripotent 

surface and nuclear embryonic markers such as Oct4, SSEA1/4, Nanog, and 

Rex1. In vivo and in vitro studies have demonstrated the capability of VSELs to 

differentiate into multiple cell lineages across germ lines including 

cardiomyocytes (15). 

The bone marrow harbors other multi- and pluri-potent stem cell 

populations such as the mesenchymal stem cells (MSC) (17, 18), multipotent 

adult progenitor cells (MAPC) (19), and marrow-isolated multilineage inducible 

cells (MIAMI) (20). Similar populations with cardiac differentiation potential have 

been also isolated from skeletal muscle and other tissues (21). However, it is 

conceivable that different investigators have isolated, using different methods, 

the same or very similar populations and named them differently. It is also 

possible that these populations at least in part contain VSELs that might explain 

their pluripotent potential. 

 

BM-derived stem cells are mobilized in the peripheral circulation following 

myocardial ischemia in animal models and humans 
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Myocardial ischemia, particularly large myocardial infarction, produce 

multiple stimuli include various chemokines, cytokines, kinins, bioactive lipids and 

members of the complement cascade, that lead to the mobilization and 

subsequent homing of BMSPCs. Indeed, several reports have confirmed that 

mobilization of committed stem cells originating from the BM occurs in response 

to myocardial ischemic injury (22-27) and heart failure (28). Similar observations 

were noted in patients with acute neurological ischemia (29) and patients with 

extensive skin burn (30).  

The first evidence for the mobilization of CD34+ mononuclear cells in AMI 

was demonstrated by Shintani et al (27). The authors demonstrated successful in 

vitro differentiation of circulating BMSPCs into endothelial cells that expressed 

CD31, VE-cadherin and the kinase insert domain receptor (KDR) (27). Leone et 

al demonstrated that the levels of circulating CD34+ cells in the setting of AMI 

were higher when compared to patients with mild chronic stable angina and 

healthy controls. The magnitude of CD34+ cell mobilization correlated with the 

recovery of regional and global LV function recovery as well as other functional 

LV parameters (23). Similarly, Wojakowski et al demonstrated the mobilization of 

multiple BMSPC populations in patients with AMI (31). In their following 

publication, the authors demonstrated the correlation between circulating BM-

SPCs and ejection fraction at baseline and lower brain natriuretic peptide (BNP) 

levels (24). Interestingly, the successful mobilization of multiple BMSPCs 

correlated with improved recovery of left ventricular (LV) functional parameters 

suggesting the clinical significance of this mobilization (32).  
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Figure 1. 
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Figure 1. Strategy for flow cytometric analysis of human and murine Very Small 

Embryonic-Like and hematopoietic stem cells. Nucleated cells are isolated by 

lysis of red blood cells and cells are then gated based on the cell size (>2 µm) 

using beads to set up the size gates.  

Panel A – Gating strategy for isolating human cord blood (CB)-derived VSELs. 

Morphology of total CB-derived nucleated cells is shown on dot-plot representing 

FSC and SSC parameters related to cell size and granularity/complexity, 

respectively. All objects larger than 2µm are enclosed in region R1 and further 

visualized on histogram showing the expression of markers of mature 

hematopoietic cells (lineage markers; Lin). Cells not expressing differentiated 

hematopoietic markers (Lin- in region R2) are then analyzed for CD34 and CD45 

expression. VSELs are identified as CD45-/Lin-/CD34+ cells (region R3), while 

hematopoietic stem cells (HSCs) as CD45+/Lin-/CD34+ cells (region R4).  

Panel B – Sorting of murine bone marrow (BM)-derived VSELs. Morphology of 

total murine BM-derived nucleated cells is shown on dot-plot presenting FSC and 

SSC parameters and all objects in range of 2-10µm in diameter are included in 

region R1. Lymphocytic cells including stem cell fraction is further analyzed for 

Sca-1 and differentiated hematopoietic lineages markers (Lin) expression and 

only Sca-1+/Lin- cells are included in region R2. Cells from this region are further 

seperated based on CD45 expression. Murine VSELs are distinguished as 

CD45-/Lin-/Sca-1+ cells (region R3), while HSCs as CD45+/Lin-/Sca-1+ cells 

(region R4).  
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Stem cell mobilization was initiated by stimuli from the infarcted myocardium and 

this mobilization was reduced by the successful revascularization of the culprit 

vessel in AMI that reduced the resultant damage (33). However, the majority of 

the above mentioned studies have focused on the mobilization of partially 

committed stem cells such as hematopoietic stem cells (HSPCs) and endothelial 

progenitor cells (EPCs).  

Multipotent Mesenchymal stromal cells (MSCs) are often isolated from the 

bone marrow, but have been identified in a number of tissues, including fetal and 

umbilical blood, lung, liver, kidney and adipose tissue (34).   It has recently been 

shown that cells surrounding epithelial cells in capillaries and microvessels and 

cells residing in the tunica adventitia share antigenic markers and behave 

similarly to MSC in culture (35, 36). Therefore, it has been proposed that the 

natural MSC niche is perivascular both within bone marrow and other tissues 

(35).  The defining characteristics and the isolation procedure of MSC differ 

among investigators due to lack of agreed-upon specific markers.  While 

historically MSCs were often isolated by plastic adherence and a fibroblastic 

appearance, more stringent guidelines for MSC identifications were recently 

released.  In 2006 The International Society for Cellular Therapy recommended 

three minimal criteria for defining MSCs: (i) plastic-adherent when maintained in 

standard culture conditions, (ii) Specific surface phenotype (must express 

CD105, CD73, CD90 and must lack expression of CD45, CD34, CD14 or CD11b, 

CD79α or CD19, HLA-DR), and (iii) In vitro differentiation into osteoblasts, 

adipocytes and chondroblasts (37).  MSCs express a number of chemokine 
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receptors allowing for their migration in response to chemokine gradients in 

damaged tissue (38).  While the data regarding the kinetics of MSC mobilization 

are not consistent and need confirmation (39), the SDF-1/CXCR4 signaling axis 

seems to be responsible for MSC migration which potentially leads to their 

homing to the infracted myocardium (40-42).  Given the above findings and their 

immune-privileged status, MSCs might be the optimal cells for cardiac repair.  In 

fact, numerous studies have described a positive effect of MSC therapy in tissue 

regeneration, specifically increased capillary density in infracted area or reduced 

scar formation after myocardial infarction (43-46). 

Hematopoietic stem/progenitor cells (HSCs) are multipotent cells that can 

differentiate into all the blood cell types, both in the myeloid and the lymphoid cell 

lineage and have unlimited capacity of self-renewal. HSCs are identified in the 

BM and PB fractions as being CD34+ and/or CD133+.  The number of CD34+ 

cells predicts hematopoietic recovery after blood stem cell transplantation and 

are thus used to assess the numbers of HSCs in the peripheral blood (47).  

Wojakowski et al demonstrated that HSC mobilization peaks within the first 12 

hours after acute MI, followed by a steady decrease in HSC plasma levels over 

the following 7 days (31).  Conversely, others have shown that maximum HSC 

efflux occurs 5 days after acute MI (23), suggesting a significantly delayed 

chemotactic signaling cascade. 

The mechanisms governing BMSPC mobilization after ischemic 

myocardial injury are still debatable. While a role for the SDF-1/CXCR4 axis in 

retention of BMSPCs in bone marrow is undisputed, its exclusive role in their 
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mobilization and homing to a highly proteolytic microenvironment, such as the 

ischemic/infarcted myocardium, is less established and redundant mechanisms 

may exist (48-50). The limited contribution of traditional peptide chemokine 

mobilization of BMSPCs to cardiac tissue maybe explained by their active 

degradation at the sites of inflammation and myocardial infarction by 

metalloproteinases (50-52). On the other hand, bioactive lipid mediators such as 

sphingosine-1 phosphate (S1P) and ceramide-1 phosphate (C1P) are resistant to 

proteases and exhibit potent chemotactic effects on SPCs. There is evidence 

that the levels of lysophosphatidic acid (LPA) and S1P are modulated at the sites 

of myocardial infarction and thrombosis where they have been implicated in 

preconditioning and myocardial protection (53-55). Moreover, recent evidence 

implicates a pivotal role for S1P in the mobilization of hematopoietic stem cells 

(HSCs) (56, 57). 

The homing of mobilized BMSCs is however a less understood 

phenomenon. Stimuli responsible for the mobilization and homing of BMSPCs in 

the setting of myocardial ischemia show similarities and differences with those 

involved in hematopoietic stem cells (HSCs) homing to the BM. Due to the above 

mentioned reasons, traditional chemokines play a limited role in the homing of 

BMSPCs to the infarcted myocardium and the peri-infarct zone where most of the 

regeneration begins. Therefore, more studies are needed to better define the 

pathways that are initiated by AMI and examine their therapeutic implications. 
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Figure 2. 
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Figure 2. Representative ImageStream images of VSEL and hematopoietic 

stem/ progenitor cell (HSPC) circulating in peripheral blood following acute ST-

elevation myocardial infarction. Cells were stained against: 1)  hematopoeitic 

lineges markers (Lin) and CD45 to be detected in one channel (FITC, green), 2) 

marker of pluripotency Oct4 (PE, yellow) and 3) stem cell antigen CD34 (PE-Cy5, 

cyan). Nuclei are stained with 7-aminoactinomycin D (7-AAD, red). Scales 

represents 10 µm. VSELs are identified based on the lack of expression of both 

Lin and CD45 markers and positive staining for CD34 antigen and nuclear 

appearence of Oct-4 transcription factor (Upper Panel). HSCs are identified as 

cell expressing Lin and/or CD45 markers as well as CD34 antigen; however, 

negative for Oct-4 (Lower Panel). 
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The above evidence suggests an innate, yet poorly understood, reparatory 

mechanism that culminates in the mobilization of BMSPCs following acute 

myocardial injury. However, the mobilization of pluripotent stem cells, which carry 

higher regenerative potential in IHD, has not ben examined before. Future 

studies aiming at selective mobilization of PSCs rather than the non-selective 

actions of agents such as granulocyte colony stimulating factor (G-CSF) may 

prove beneficial in the field of myocardial regeneration. Furthermore, the 

mechanisms of homing of mobilized cells are poorly understood and represent 

one of the cornerstones of future BM-based myocardial regenerative strategies. 

 

Sphingolipids: background and signaling 

The above findings directed the investigation towards proteolysis-resistant 

sphingolipids, specifically sphingophospholipids (sphingosine 1-phosphate and 

ceramide 1-phosphate), which were shown to be potent chemoattractants for 

BMSPCs.  Sphingolipids were first identified by a German neurochemist, J.L.W. 

Thudichum in ethanolic brain extracts in the 1870s and he named them after a 

mythological creature, the Sphinx (58).   In Greek mythology, the Sphinx is a 

treacherous and merciless human-animal hybrid: those who cannot answer her 

riddle are eaten whole and raw. Initially, sphingolipids were believed to be 

sheathing nerves, and the interest in their research remained confined to a small 

group of scientists.  As the evidence for pathophysiological importance of 

sphingolipids grew, so did their research field.  As of today sphingolipids are 

shown to be involved in a wide variety of biological responses in a diversity of cell 
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types including stimulation of cell proliferation, inhibition of apoptosis and 

regulation of cell shape and cell motility (59-61).   

Sphingolipids are important structural components of cell membranes and 

are derived from ceramide, the proverbial ‘core’ of sphingolipid metabolism.  

Ceramide can be deacylated to sphingosine which is then phosphorylated by 

sphingosine kinases (SPHK1 or SPHK2) to yield sphingosine 1-phosphate (S1P) 

(Figure 3).  Both transcripts of SPHK1 and SPHK2 are subject to alternative 

splicing resulting in multiple isoforms for each kinase	   (62).  Transgenic mouse 

studies have demonstrated partial redundancy of SPHK1 and SPHK2 since 

SPHK1-/- or SPHK2-/- mice were phenotypically normal while elimination of both 

genes resulted in embryonic death (63, 64) indicating that S1P is produced 

exclusively by SPHKs in vivo.  Ceramide 1-phosphate (C1P) can be generated 

by phosphorylation of ceramide (N-acyl sphingosine) by ceramide kinase (65).  

Both S1P and C1P have limited half-lives and their levels are kept in check by 

numerous enzymes.  S1P is irreversibly degraded by S1P lyase, and is also 

regulated by lipid phosphate phosphatases (LPP1–3) and S1P-specific 

phosphatases (SPP1 and SPP2) (66-69), C1P is regulated by LPP1–3 (66, 68).  

The major source of plasma S1P are red blood cells, activated platelets, albumin, 

high-density lipoproteins, and extracellular SPHK1 derived from vascular 

endothelial cells (70, 71); while the primary contribution to C1P plasma levels 

comes from intracellular C1P which has been released or ‘leaked’ from damaged 

cells (72).   
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Upon their release, both S1P and C1P interact with a variety of G protein–

coupled seven-transmembrane receptors.  There are 5 S1P receptor subtypes 

(S1PR1-5) that are widely expressed throughout mammalian tissues (Figure 3).  

S1PR4 and S1PR5 are expressed and function in the immune and nervous 

system, respectively, S1PR1-3 are most abundant throughout the cardiovascular 

system and are expressed on BMSPCs.  S1PR1 is coupled exclusively via Gi to 

Ras-MAP kinase, phosphoinositide (PI) 3-kinase-Akt pathway and phospholipase 

C pathway.   S1PR2 and S1PR3 are coupled to multiple G proteins, such as Gq, 

G12/13 and Gi to activate phospholipase C pathway and Rho pathway (59-61).  

The signaling cascade activated by S1P binding to either S1PR1 or S1PR3 is 

responsible for HSPC migration (73, 74).  Activation of S1PR2, however, yields 

an opposite effect - negatively regulating HSPC mobilization (75).  While the 

receptor for C1P is yet to be identified, its signaling is sensitive to pertussis toxin, 

thereby implicating a Gi protein coupled receptor (76, 77). 

 

Sphingosine 1-phosphate is a potent BMSPCs chemoattractant 

Once S1P receptors were discovered on BMSPCs, they were immediately 

characterized as G protein–coupled seven-transmembrane receptor thereby 

placing them in the same class as chemokine receptors.  This observation raised 

one important question: can S1P act as a direct chemoattractant for BMSPCs? 

Initially, Seitz et al. demonstrated a dose-dependent chemotactic effect of S1P 

on human HSPCs in a modified Boyden chamber assay (57).   
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Figure 3. 
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Figure 3.  Sphingosine 1-phosphate (S1P) metabolism and signaling in 

bone marrow stem and progenitor cells (BMSPCs).  Interconversion of 

membrane sphingolipids and final phosphorylation of sphingosine by SPHKs 

results in formation of S1P which signals through S1PR1, S1PR2 and S1PR3 

receptors in the BMSPCs.  These three receptors activate a distinct set of 

pathways through Gi, Gq, or G12/13 proteins which results in BMSPCs mobilization 

from the bone marrow niches (S1PR1 and S1PR3); inhibition of BMSPC 

mobilization from the bone marrow (S1PR2); and BMSPC homing to ischemic 

myocardium (S1PR1).   
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It is possible that polarizing doses of S1P promote signaling through the S1PR2 

receptor, which in contrast to S1PR1 inhibits HSPC chemotaxis (56). Subsequent 

studies established that the gradient of S1P between BM and PB is a major 

determining factor in HSPCs egress.  While SDF-1 still has a significant role in 

HSPCs mobilization, it was demonstrated that plasma derived from normal and 

mobilized PB strongly chemoattracts murine BM HSPCs independent of plasma 

SDF-1 levels (56).  This was especially evident when removal of lipids from 

plasma by charcoal stripping abolished HSPCs chemotaxis but did not affect 

responsiveness towards SDF-1 (56).  Ratajczak et al. further showed that steady 

state S1P plasma levels create a gradient favoring HSPCs egress from the BM.  

As previously described, HSPCs are actively retained in BM via SDF-1-CXCR4 

and VLA4-VCAM1 interactions. Ratajczak et al. corroborated the significance of 

S1P in HSPCs chemotaxis by demonstrating that disruption of these interactions 

via CXCR4 antagonist AMD3100 or triggering a proteolytic environment in the 

BM would release HSPCs form their niches and therefore free them to follow the 

bioactive lipids’ gradient to PB. Furthermore, Ratajczak et al showed that a 

robust innate immune response during G-CSF mobilization is responsible for 

increased plasma S1P levels. G-CSF is currently the most frequently used 

mobilizing agent that efficiently mobilizes BMSPCs after a few consecutive daily 

injections (78). 
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Figure 4. 
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Figure 4. Sources of S1P in the plasma and its distribution in the peripheral 

blood. Sphingosine-1 phosphate is abundant in the circulation with 

concentrations approximately 25 times that in the tissues. Most of the S1P is 

stored in red blood cells, platelets and endothelial cells. S1P in the plasma is 

90% bound to HDL and albumin with small portion present in the free form. The 

free form is presumed to be biologically active while the bound part of S1P is 

biologically inactive. 
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It has been established that G-CSF triggers complement complex 

activation which stimulates granulocytes to release proteolytic enzymes thereby 

perturbing SDF-1-CXCR4/VLA-4-VCAM1 interactions in BM niches and 

facilitating HSPCs release (79).  Remarkably, the lasting effect of G-CSF 

promotes complement activation and formation of the membrane attack complex 

(MAC) that was shown to interact with erythrocytes (80).  While erythrocytes 

serve as the major reservoir of S1P in the PB (81, 82), they are highly protected 

from MAC by CD59 and decay-accelerating factor (DAF) receptors (83).  

However, Ratajczak et al. demonstrated that expression of these receptors on 

erythrocytes does not give complete protection from activated MAC since G-

CSF-induced MAC exposure resulted in plasma S1P levels sufficient for HSPCs 

egress (56). 

While it has been established that S1P is responsible for HSPC trafficking, 

the mechanism to explain this regulation is still under investigation.  Recent 

evidence suggests that SDF-1 and S1P work synergistically to facilitate migration 

of primitive murine hematopoietic progenitor cells out of the BM (84).  Further in 

vitro studies on immature human CD34+ cells demonstrated that S1PR1 

upregulation decreases their chemotactic activity towards SDF-1 due to reduced 

cell surface expression of CXCR4 suggesting a potential interaction between 

S1P and SDF-1 (85).  These observations were recently corroborated by Golan 

et al showing that short-term inhibition of S1P/S1PR1 axis during steady state 

conditions or during CXCR4 inhibition (via AMD3100 administration) caused 

reduction of SDF-1 in the plasma (86). Interestingly, generation of reactive 
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oxygen species (ROS) via S1PR1 signaling were also implicated in HSPCs 

mobilization through the release of SDF-1 (87).  Since previous studies showed 

that ROS inhibition reduces SDF-1 secretion during AMD3100-induced 

mobilization (88) it was hypothesized that ROS signaling might also contribute to 

SDF-1 secretion.  Indeed, it was demonstrated that ROS signaling induced SDF-

1 secretion thereby facilitating HSPCs egress (86).   

S1P-SDF-1 interaction in HSPCs egress was further demonstrated with 

the help of FTY720, a potent S1PR1 desensitizing agent which causes S1P 

receptor internalization (89). Interestingly, administration of FTY720 for 24 hours 

resulted in increased plasma SDF-1 levels but had no effect on HSPCs egress.  

FTY720 treatment did reduce BM ROS signaling, due to S1PR1 downregulation, 

again pointing out the requirement of S1PR1 signaling in HSPC egress.  

Furthermore, mice that were treated with BM-specific S1P lyase inhibitor 4-

deoxypyrodixne (DOP) (90) had increased BM ROS levels and decreased HSPC 

egress (86).  Together these observations suggest that the increased 

concentrations of S1P and SDF-1 in the BM negatively affect HSPC egress, 

further highlighting the fact that both S1P and SDF-1 levels must be tightly 

regulated for balanced HSPCs mobilization. However, the role of S1P/S1PR1 

axis in the mobilization of non-HSCs is poorly understood and more importantly, 

the role of this axis in BMSPCs mobilization during acute myocardial ischemic 

injury has not been explored. 
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Therapeutic mobilization of BM-derived stem cells in myocardial 

regeneration 

Hematologists have used the concept of BM-derived stem cell mobilization 

using pharmacological agents such as G-CSF for a long time. Based on the 

available clinical experience and safety profile of these therapies, 

pharmacological stem cell mobilization in the setting of AMI has gained 

increasing enthusiasm. Multiple studies utilizing BM-derived stem cell 

mobilization in AMI have been conducted and demonstrated various degrees of 

success (91-98). Similar to BMC transplantation studies, the heterogeneous 

methodologies of the included studies confused the interpretations of the 

biological effects. The overall lack of efficacy with G-CSF BMC mobilization in the 

setting of acute myocardial infarction is somewhat incongruent with the salutary 

effects of BMC transplantation in humans and G-CSF therapy in animal models 

for myocardial regeneration.  

The largest study utilizing G-CSF in the setting of acute myocardial 

infarction was the REVIVAL-2 trial that included 114 patients (99). The study 

randomized AMI patients to 10 µg/kg of G-CSF vs. placebo and left ventricular 

functional parameters were assessed using cardiac MRI (CMR).  The study 

demonstrated no significant difference in the tested parameters between patients 

treated with G-CSF or placebo. However, baseline characteristics in the study 

population showed normal or near normal LV function and therefore the expected 

benefit is minimal. Patient selection was a methodological flaw that plagued 

some of the studies that utilized G-CSF. Indeed, with careful examination of the 
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available literature, patients with reduced LV function at baseline as well as those 

treated within the first 36 hours following AMI benefited the most (91, 100). On 

the other hand, safety concerns regarding a potentially increasing evidence of 

instent restenosis (101) and recurrent ischemia (102) have halted subsequent 

clinical trials. However, it is important to note that these safety concerns were not 

confirmed in large studies (99) or in the cumulative meta-analyses (91).  

Beyond the methodological flaws encountered in human trials, this lack of 

efficacy can be explained by multiple factors. While G-CSF and similar therapies 

mobilize a wide array of BMSPCs in the peripheral blood, homing factors may not 

be sufficient to guide them to the myocardial peri-infarct zone. Indeed, the 

homing of c-Kit+ cells to the infarcted myocardium improved when G-CSF 

therapy was combined with local administration of SDF-1 (103). The myocardial 

levels of chemoattractants peak within 24-72 hours following injury (104-106) and 

therefore delayed therapy in some human trials may have missed the	   homing 

window to the infarct zone (91). Moreover, different cytokines are known to 

preferentially mobilize somewhat different subsets of BMCs (107, 108). Future 

studies investigating the characteristics of G-CSF-mobilized cells will be 

necessary to glean additional mechanistic insights in this regard. 

Recently, a combined approach with stem cell mobilization and enhanced 

homing using therapies known to increase local SDF-1 or CXCR4 antagonists 

have been proposed and is currently being tested (109, 110). Going forward, the 

beneficial effects of BM-derived stem cell mobilization may be augmented by 

selective mobilization of undifferentiated BMSCs rather than differentiated 
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inflammatory cells. It is also important to remember that some of the G-CSF 

arbitrated effects can be mediated by its direct effect on cardiomyocytes which 

are known to express G-CSF receptor (111). G-CSF therapy may be inducing the 

proliferation of cardiomyocytes or the differentiation of resident cardiac stem 

cells. On a similar note, G-CSF therapy upregulates Akt (112) and may result in 

reducing apoptosis of ischemic cardiomyocytes if utilized early following the 

acute event. 

 

BM-derived stem cell transplantation for myocardial repair 

The use of BM-derived cells in myocardial regeneration has moved rapidly 

from the basic research lab to the clinical arena. The results from these studies 

varied widely probably secondary to the heterogeneous methodologies used with 

an overall marginal benefit with BM-derived cell transplantation compared to 

placebo. The underling mechanisms leading to the beneficial effect of 

transplanted BMCs are unclear. The observed benefits of BMCs transplantation 

is out of proportion with the observed rates of newly formed cardiomyocytes from 

BMCs’ origin (113). Indeed, recent evidence suggests a primarily paracrine effect 

of BM-derived stem cells following their transplantation by recruiting and 

stimulating resident cardiac stem cells (CSCs) (114). Furthermore, human 

purified CD34+ cells are a source of several growth factors including VEGF, 

cytokines and chemokines that may prevent apoptosis of dying cardiomyocytes 

and promote angiogenesis in damaged myocardium (115). Cell membrane 

derived microvesicles or exosomes that are enriched in S1P may contribute to 
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regeneration of myocardium and its re-vascularization (116). Hence, transplanted 

CD34+ cells may contribute to regeneration of damaged heart by paracrine 

signals and released microvesicals (117) and was recently confirmed by others 

(118).  

Multiple studies have utilized BM derived cells (BMCs) for myocardial 

regeneration. The majority of these studies, however, utilized unselected 

populations of BMCs and these studies provide the longest follow-up of up to 5 

years (119-122). The first large study that utilized unselected BM mononuclear 

cells (BMMNCs) is the REPAIR-AMI trial that included more than 200 patients 

with acute STEMI. The study randomized 204 patients to BMMNCs or placebo 

and subjects were followed for 4 months to assess the recovery of LV functional 

parameters and clinical endpoints at 1 year. At 4 months follow-up, patients 

treated with BM-MNCs demonstrated significantly better recovery of cardiac 

functional parameters tested such as global LV ejection fraction (LVEF), regional 

wall motion at the infarcted zone and LV end systolic volume (LVESV). Clinical 

follow-up demonstrated significant reduction of the prespecified combined 

endpoint of death, recurrent myocardial infarction, re-hospitalization for heart 

failure and revascularization at 1 year.  Patients with reduced cardiac function at 

baseline (left ventricular ejection fraction < 49%) and those treated at or after 4 

days following the acute event benefited most from BM therapy.  

Concurrently, multiple studies have examined therapy with BM-derived 

cells and they ranged widely in their methodologies regarding the cell type used 

from unfractionated BM cells to highly selected populations; the timing following 
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AMI which ranged from 1 day to few years; the route of delivery of cells; and the 

method of evaluating the LV function. Suffice it to say, the findings of the 

REPAIR-AMI study were negated with others who failed to demonstrate the 

same beneficial effects that could be related to the methodological differences 

noted above (123, 124). Nonetheless, the overall collective results of these small 

and methodologically heterogeneous studies demonstrate benefit with BM 

derived cells in patients when used in either acute MI or chronic ischemic heart 

disease (6, 125). Recent long-term follow-up studies demonstrated mixed results 

regarding the sustainability of the BMCs treatment benefit with ‘catch-up’ of the 

placebo treated patients  (119, 126, 127). In patients with chronic ischemic heart 

disease (IHD), the evidence to support BMC therapy is less robust despite 

promising small studies (119, 122). Similarly, smaller studies have demonstrated 

the anti-anginal effects of BMC in patients with non-revascularizable severe 

coronary artery disease	  (128). 

Selected BM-derived stem cell subpopulations represent an attractive 

substrate for cellular therapies since they lack the inflammatory cells, which 

contribute to the ongoing inflammatory response at the site of myocardial 

infarction, contained in the unselected BMCs populations. Furthermore, highly 

purified stem cell populations are more likely to induce myocardial regeneration 

through paracrine effects or by directly differentiating into cardiomyocytes. The 

largest study utilizing selected BM-derived stem cell population is the REGENT 

study which compared selected to non-selected populations of BMCs in patients 

with acute ischemic heart disease and reduced LV function at baseline (129). 
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While there were no significant differences between the groups, patients treated 

with selected CD34+/CXCR4+ cells showed trends of improvement in LV 

function when compared to controls.  

Other studies have used a similar approach utilizing more primitive 

populations of BMSCs such as CD133+ cells with reported improvement of LV 

function and perfusion. In patients with severe and non-revascularizable coronary 

artery disease, Losordo and colleagues demonstrated the beneficial and 

sustained effects of BM-derived CD34+ cells (128). BM-derived mesenchymal 

stem cells are prominent candidates for myocardial regenerative therapies due to 

their anti-inflammatory, anti-apoptotic effects and immunosuppressive properties. 

Therefore, multiple studies have examined their role in patients with acute (46, 

130) and chronic ischemic heart disease.  Overall, the results of these small 

studies suggest a beneficial role of BM-MSCs particularly with high dose (6 x 

1010) cell therapy. Other studies utilizing primitive populations of BM-SPCs such 

as CD133+ cells also have reported improvement of LV function and perfusion 

(131, 132).  

It is important to note that the above mentioned trials focused on surrogate 

endpoints rather than patient-important endpoints such as mortality, need for 

repeat revascularization, recurrent MI or hospitalization for congestive heart 

failure. While surrogate endpoints are important for mechanistic studies, patient-

important endpoints are quintessential for a therapy to achieve mainstream 

status and more work is needed in this growing area of cell based myocardial 

regeneration trials. Long-term follow-up studies demonstrated a ‘catch-up 
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phenomenon’ of the placebo treated patients, thus leading to mixed results 

regarding the sustainability of the BMCs treatment benefit (126, 127, 133). The 

benefit of BMC therapy is less robust among patients with chronic ischemic heart 

disease (IHD) (119, 134). Similarly, smaller studies have demonstrated the anti-

anginal effects of BMCs in patients with non-revascularizable severe coronary 

artery disease (128, 135). Nevertheless and despite the disparity in the 

methodologies of the conducted studies, the overall collective effect of BMCs’ 

transplantation suggests a small yet statistically significant benefit in myocardial 

regeneration (6, 125). 

However, homing of the transplanted stem cell populations remains a 

limiting factor. Overall, most of the studies demonstrate very limited retention of 

the transplanted cells with rates of 2.5-10%. This important limitation reduces the 

effect of the transplanted cells and renders the therapy largely ineffective. Going 

forward, therapies aiming at improving the homing and retention of the 

transplanted cells are needed to achieve clinically relevant results. 
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Key Questions 

 

 The mobilization of committed BM-derived stem cells in tissue injury 

especially following acute myocardial infarction is well documented in the 

literature. The underlying mechanisms of this mobilization are poorly understood 

and some of the well-established chemokines are degraded at sites of 

myocardial infarction, thus, reducing their contribution to stem cell mobilization 

and homing. Therefore, other and poorly understood redundant mechanisms 

may exist. Bioactive lipids such as sphingosine-1 phosphate play an important 

role in the trafficking of mature lymphocytes between lymph nodes and peripheral 

blood. Their role in the mobilization of hematopoietic stem cells is increasingly 

appreciated. However, the role of bioactive lipids in stem cell mobilization during 

tissue injury is poorly understood. We hypothesize that pluripotent stem cells are 

mobilized to the injured myocardium during acute ischemic injury and that 

bioactive lipids play an important role in this mobilization and homing. We utilized 

a multidisciplinary approach to examine some of the different pathways 

orchestrating the mobilization and homing of BM stem cells during and after 

myocardial ischemia. 

Our hypotheses will be tested in a well-established clinical/basic models 

using a broad multidisciplinary approach that will encompass diverse disciplines 

and techniques (cell biology, molecular biology, immunocytochemistry, flow 

cytometry, and protein chemistry on the basic research side). The clinical data 

will be collected via clinical follow up. Circulating primitive BMSCs, identified 
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based on surface and nuclear markers; and cellular morphology, will be isolated 

using fluorescent-activated cell sorting (FACS) and examined both on the nuclear 

and protein levels. 

 

Examine the mobilization of pluripotent stem cells in acute myocardial 

ischemia and the clinical factors influencing this mobilization. 

 Previous studies have demonstrated the mobilization of committed BM-

derived stem cells in myocardial ischemia. However, the mobilization of more 

primitive populations of BM-derived stem cells,	   which carry more regenerative 

potential, in the setting of tissue injury is poorly understood (136). PSCs express 

chemokine receptors and can respond to chemokine gradients. Moreover, the 

clinical factors that guide their mobilization and subsequent homing are not clear. 

We explored the mobilization of pluripotent cells at various time points following 

acute myocardial injury. We recruited a large sample size to enhance our 

statistical power which allowed us examine the different clinical factors that may 

influence this mobilization. 

 

Examine the role of innate immunity and bioactive lipids in stem cell 

mobilization after acute myocardial infarction. 

The complement cascade is activated in the setting of acute myocardial 

infarction. The terminal products of the complement cascade activation have 

been shown to play an important role in the mobilization and homing of 

hematopoietic stem cells from and to their BM niches	   (137-142). Furthermore, 
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the terminal products of the complement cascade activation and peripheral blood 

cells lead to the release of bioactive lipids and can potentially further contribute to 

the BMSPC mobilization. These pathways, which are activated in AMI, have not 

been explored and could present multiple therapeutic targets for myocardial 

regenerative therapies. We examined the changes in plasma bioactive lipids and 

their receptor expression in the setting of acute myocardial injury. We also 

examined the role of S1P receptor expression in guiding the mobilization and 

homing of BMSPCs. 

 

Explore alternative homing mechanisms for mobilized bone marrow-

derived stem cells to the infarcted myocardium. 

There is sufficient data that negates an exclusive role of traditional 

chemokines in the homing of BMSPCs to injured myocardium in AMI. Bioactive 

lipids such as S1P and C1P contribute to the homing of HSCs to the myocardium 

after BM radiation, an environment that is similar to the infarcted myocardium. 

The literature also suggests a crucial role for the immune system in homing of 

BM-derived HSCs. Cathelicidins are important highly conserved antimicrobial 

proteins that are ubiquitous to multiple tissues. Cathelicidins have been shown to 

improve the response to low, yet physiological levels, of SDF-1 similar to levels 

seen in the irradiated BM or the infarcted myocardium. We examined the role of 

these and other pathways in the mobilization and more importantly homing of 

BMSPCs in the setting of acute myocardial injury.  

Copyright	  ©	  Ahmed	  Abdel-‐Latif	  2013	  
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Chapter 2 

 

RESULTS 

 

Stem cell mobilization and homing in ischemic heart disease (12) 

 

BM derived tissue committed stem cells play an important role in 

cardiomyocyte chimerism (8). The literature is scarce on the mobilization of 

primitive and pluripotent stem cells in tissue injury. We are particularly interested 

in populations of BM-derived stem cells that are enriched in very small embryonic 

like stem cells (VSELs) such as Lin-/CD45-/CXCR4+, Lin-/CD45-/CD133+ and 

Lin-/CD45-/CD34+ cells. Moreover, the pathways involved in stem cell 

mobilization following ischemic injury and the clinical factors that influence this 

mobilization are poorly understood. We examined the mobilization of BM derived 

pluripotent stem cells in different scenarios of myocardial ischemia using a 

multidisciplinary approach.  

Traditional chemokines such as the SDF-1/CXCR4 axis are thought to be 

the universal mobilizing pathways for BM-derived stem cells. Using flow 

cytometry, we identified high numbers of circulating BM-derived stem cell with 

pluripotent surface markers during acute myocardial ischemia. The pluripotent 

nature of these cells was confirmed by imaging techniques such as ImageStream 

system and confocal microscopy. Gene expression for primitive, cardiac and 

endothelial genes was increased in circulating peripheral blood cells during the 
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early phases after myocardial injury. The increased gene expression was even 

more upregulated in enriched peripheral blood cells such as CD34+ cells.  

We explored the different pathways that could potentially contribute to the 

mobilization of BM stem cells in cardiac ischemic injury. The literature suggests a 

limited role of traditional chemokines, such as SDF-1/CXCR4 axis, in stem cell 

mobilization and homing to the ischemic myocardium. The limited contribution of 

SDF-1 to myocardial regeneration may be explained by its active degradation at 

the sites of inflammation and myocardial infarction by metalloproteinases (50-52). 

The acute inflammatory changes accompanying ischemic cardiac injury result in 

the upregulation of metalloproteinases and proteases at the sites of myocardial 

infraction, a process that starts as early as few hours after the event and lasts for 

a few weeks (143). We did not find correlation between the levels of chemokines 

and mobilized BM stem cells in the peripheral blood.  

The goal of these initial studies was to determine the mobilization of BM-

derived pluripotent stem cells and the dynamics and factors of this mobilization. 

We enrolled a study population that consisted of 100 patients with acute ST-

elevation myocardial infarction (STEMI) and age- and sex-matched subjects to 

the study population into the control (CTRL) group. The CTRL group is 

asymptomatic with no history of CAD but similar comorbidities to the study 

population (Table 1). Patients with STEMI were referred within 12 hours of 

symptom onset for primary percutaneous coronary intervention (PCI). Patients 

were excluded if they had a systemic inflammatory process, cancer, recent motor  
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Table 1. Demographic, clinical and laboratory characteristics of study population 

and controls. 

 
Controls 

(n = 12) 

STEMI 

(n = 30) 

Age (years) 47±9 61±11 

Female 50% 23% 

HTN 25% 72% 

DM 8% 19% 

Hyperlipidemia 25% 93% 

Smoking 8% 60% 

Peak Troponin NA 62±39 

Peak CK NA 2877±3240 

Peak CK-MB NA 210±114 
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vehicle accident, recent surgery, active infection, history of MI or 

revascularization (coronary artery bypass graft, PCI), unsuccessful 

revascularization, or onset of the symptoms >12 hours. Peripheral blood (PB) 

samples were obtained at presentation in all patients. In STEMI patients, PB 

samples were collected at presentation [(BSL) on average 4.5±3.2 hours after 

the onset of chest pain] and 12, 24, 48 and 72 hours after PCI. The study 

protocol complies with the Declaration of Helsinki and was approved by the 

institutional Ethics Committee. All patients provided written informed consent.  

 

Mobilization of pluripotent Oct-4+, SSEA4+ cells and VSELs in patients with 

myocardial ischemia 

The mobilization of BM derived committed stem cells have been 

previously described as detailed above. However, these committed stem cells 

have limited regenerative potential and the mobilization of more primitive and 

pluripotent populations is poorly understood. Therefore, we went on to examine 

the mobilization of BMSC-populations that exhibit pluripotent features such as 

small cell size, large nucleus, and the expression of pluripotent markers such as 

the surface marker SSEA-4 and the transcription factor Oct4. In myocardial 

ischemia, the absolute circulating number of Oct4+ VSELs, as analyzed by 

Image Stream system (ISS), was significantly higher than controls. 

Representative images of Oct-4+ primitive cells obtained by ISS are shown in 

Figure 5A. In matched controls, the number of circulating VSELs was low (0.5 ± 

0.1 cells/µl of PB). The absolute number of Lin-/CD45-/CD34+/Oct4+ cells was 
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higher among patients with STEMI (0.5 ± 0.1 vs. 2.2 ± 0.4 cells/µl of PB in 

controls vs. peak STEMI patients respectively, P < 0.05) (Figure 5B). In acute 

STEMI the number of Oct4+ VSELs reached peak at baseline (2.2 ± 0.4 cells/µl 

of PB) and decreased afterwards reaching a nadir of 0.3±0.1 cells/µl of PB at 48 

hours (Figure 5B). Based on the unique capabilities of ISS technology, we were 

able to quantify PSCs accurately by distinguishing real intranuclear Oct-4 

expression from false positives events. A similar pattern of mobilization was 

noted in the absolute numbers of circulating Lin-/CD45-/SSEA-4+ non-

hematopoietic PSCs assessed by conventional flow cytometry (0.5 ± 0.2 vs. 1.1 

± 0.2 cells/µl of PB in controls vs. peak STEMI patients respectively, P < 0.05). 

The same pattern was also noted with Lin-/CD45+/SSEA4+ cells (0.9 ± 0.5 vs. 

1.7 ± 0.7 cells/µl of PB in controls vs. peak STEMI patients respectively, P < 

0.05) (Figure 5C and 5D). 

 

Mobilization of non-hematopoietic stem cells (non-HSCs) in patients with 

acute myocardial ischemia 

Following the documentation of pluripotent stem cell mobilization, we 

directed our efforts to examining the mobilization of BM-derived stem cell 

populations enriched in VSELs which have great regenerative potential based on 

their pluripotent features and their ability to differentiate into cardiomyocytes and 

endothelial cells in vitro and in vivo. Mobilization of Lin-/CD45-/CD133+, Lin-

/CD45-/CD34+, and Lin-/CD45-/CXCR4+ stem cells enriched in VSELs was 

highest within the first 6 hours after presentation in STEMI patients (Figure 6).  
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Figure 5. 
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Figure 5.  Mobilizations of pluripotent VSELs in ischemic heart disease 

patients and controls. Peripheral blood cells were isolated from STEMI patients 

at the pre-defined time points and total nucleated cells (TNCs) were isolated 

following lysing of red blood cells using Pharmlyse buffer. TNCs were stained 

against: 1)  hematopoeitic lineages markers (Lin) and CD45 to be detected in 

one channel (FITC, green), 2) marker of pluripotency Oct4 (PE, yellow) and 3) 

stem cell antigen CD34 (PE-Cy5, cyan). Nuclei are stained with 7-

aminoactinomycin D (7-AAD, red). Scales represents 10 µm. VSELs are 

identified based on the lack of expression of both Lin and CD45 markers and 

positive staining for CD34 antigen and nuclear appearence of Oct-4 transcription 

factor (Panel A). TNCs were also analyzed using flow cytometry to quantify the 

number of circulating Lineage (FITC), CD45 (PE-Cy7), CD34 (APC), SSEA4 

(PE), and Oct4 (Alexaflour 780) cells. Lin-/CD45-/CD34+/Oct4+ cells (Panel B), 

Lin-/CD45-/SSEA4+ cells (Panel C), and Lin-/CD45+/SSEA4+ (Panel D) peaked 

in the early phase after STEMI. Data were analyzed using one-way ANOVA. Post 

hoc multiple comparison procedures (MCP) were performed using 2-sided 

Dunnett as appropriate with control samples as the control category. (* P < 0.05 

as compared to controls). BSL, baseline; PB, peripheral blood.  
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The absolute numbers of all three populations were significantly higher 

among STEMI patients at the time of presentation (BSL) and after 6 hours from 

revascularization as compared to control subjects (3-8 fold increase as compared 

to controls; P <0.01). The consistent peak of non-HSCs mobilization point to 

endogenous mechanisms which are responsible for orchestrating this 

mobilization. This is the first report of non-HSCs enriched in VSELs in humans 

following myocardial ischemia. 

Mobilization of hematopoietic stem cells (HSCs) in patients with myocardial 

ischemia 

The literature suggests an important role HSCs in the post-ischemic 

myocardial repair. HSCs and endothelial progenitor cells (EPCs) have a common 

origin from the hemangioblast and therefore can be valuable in myocardial 

regeneration. Our flow cytometry analyses detected significant mobilization of 

Lin-/CD45+/CD133+, Lin-/CD45+/CD34+, and Lin-/CD45+/CXCR4+ HSCs in 

patients with myocardial ischemia when compared to controls (Figure 7). Lin-

/CD45+/CXCR4+ but not Lin-/CD45+/CD133+ and Lin-/CD45+/CD34+ cells were 

significantly higher in STEMI patients as compared to other ischemic heart 

patients (2-4 fold increase; P <0.05). The higher numbers of mobilized Lin-

/CD45+/CXCR4+ cells early in STEMI patients can potentially be a reflection of 

the active recruitment by the infarcted myocardium via the SDF-1/CXCR4 axis. 

Similar temporal trends were noted with HSCs suggesting the involvement of 

similar mobilization pathways. 
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Figure 6. 
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Figure 6. Mobilizations of non-hematopoietic BMSPCs enriched in very 

small embryonic like stem cell populations in ischemic heart disease 

patients and controls. Peripheral blood cells were isolated from STEMI patients 

at the pre-defined time-points and total nucleated cells (TNCs) were isolated 

following lysing of red blood cells using Pharmlyse buffer. TNCs were stained 

against: hematopoeitic lineages markers (Lin) (FITC), CD45 (PE-Cy7), CD34 

(PE-Cy5), CD133 (APC), and CXCR4 (bioton-streptavidin-Alexaflour780). 

Populations enriched in VSELs are defined as events negative for lineage and 

CD45; and positive for CD34 (Panel A), CXCR4 (Panel B) and CD133 (Panel 

C). The figure represents bar graphs showing the absolute numbers of circulating 

BMSPC populations enriched in non-HSCs and VSELs in the peripheral blood of 

ischemic heart disease patients and controls; showing a peak mobilization early 

in STEMI patients. Data were analyzed using one-way ANOVA. Post hoc multiple 

comparison procedures (MCP) were performed using 2-sided Dunnett test as 

appropriate with control samples as the control category. (* P < 0.05 as 

compared to controls). BSL, baseline; PB, peripheral blood. 
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Figure 7. 
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Figure 7. Mobilizations of BMSPCs enriched in hematopoietic stem cell 

populations in ischemic heart disease patients and controls. Peripheral 

blood cells were isolated from STEMI patients at the pre-defined time-points and 

total nucleated cells (TNCs) were isolated following lysing of red blood cells using 

Pharmlyse buffer. TNCs were stained against: hematopoeitic lineages markers 

(Lin) (FITC), CD45 (PE-Cy7), CD34 (PE-Cy5), CD133 (APC), and CXCR4 

(bioton-streptavidin-Alexaflour780). Populations enriched in HSCs are defined as 

events negative for lineage markers, positive for CD45 and positive for CD34 

(Panel A), CXCR4 (Panel B) and CD133 (Panel C). The figure represents bar 

graphs showing the absolute numbers of circulating BMSPC populations 

enriched in HSCs in the peripheral blood of ischemic heart disease patients and 

controls; showing a peak mobilization early in STEMI patients. Data were 

analyzed using one-way ANOVA. Post hoc multiple comparison procedures 

(MCP) were performed using 2-sided Dunnett or Dunn tests as appropriate with 

control samples as the control category. (* P < 0.05 as compared to controls). 

BSL, baseline; PB, peripheral blood. 
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Expression of pluripotent, cardiac and endothelial markers in circulating 

cells by RT-PCR 

BM stem cells mobilized in the setting of acute myocardial ischemia 

represent a selected population that is destined to myocardial repair	   (106). 

Indeed, the expression of pluripotent, cardiac and endothelial markers by PB 

total nucleated cells (TNCs) was significantly higher in STEMI patients when 

compared to control subjects (Figure 8). The mRNA level of these genes peaked 

in STEMI patients at the time of presentation (BSL) and paralleled the peak 

mobilization of pluripotent stem cells. The fold change is as high as 15-fold 

difference between the early phase after STEMI compared to controls in primitive 

(Oct4 and Nanog) and cardiac (Nkx-2.5 and GATA4) markers.  

Recently, Wojakowski et al demonstrated significant expression of these 

markers in sorted VSELs (13). In agreement with Wojakowski’s data, the 

expression of pluripotent, cardiac and endothelial markers was significantly 

higher in sorted PB-derived CD34+ cells, isolated using magnetic beads, as 

compared to unfractionated PB-derived TNCs (Figure 9). This enrichment was 

confined to CD34+ cells sorted early after the acute injury. Cpompared to the 5-

15-fold increase in primitive and cardiac genes, we noted 40-60-fold increase in 

the expression of primitive, cardiac and endothelial genes in the CD34+ subset. 

This data indicates that the fraction of CD34+ cells is enriched in PSCs and 

VSELs. The use of beads-isolated CD34+ population can provide a clinically 

feasible strategy for therapeutic use as it provides reduced and fast ex vivo 

processing.  
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Figure 8. 
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Figure 8. Bar graphs showing the mRNA expression of pluripotent markers - 

Oct-4 and Nanog (Panel A and Panel B, respectively), cardiac markers - 

Nkx2.5/Csx and GATA4 (Panel C and Panel D, respectively), endothelial 

antigens – VE-Cadherin (Panel E) and vWF (Panel F) and CXCR4 (Panel G) in 

PB total nucleated cells isolated from ischemic heart disease patients and 

controls. Total nucleated cells were obtained from peripheral blood samples at 

the pre-defined time points and RBCs were lysed using PharmLyse buffer. The 

relative quantification value of target gene, normalized to an endogenous control 

(β2-microglobulin gene) and relative to a calibrator, was expressed as 2-ΔΔCt (fold 

difference), where ΔC = Ct of target genes - Ct of endogenous control gene (β2-

microglobulin), and ΔΔCt = ΔCt of samples for target gene - ΔCt of calibrator for 

the target gene. The expression of primitive, cardiac and endothelial genes was 

consistently higher in STEMI patients early after the acute event. Data were 

analyzed using one-way ANOVA. Post hoc multiple comparison procedures 

(MCP) were performed using 2-sided Dunnett test as appropriate with control 

samples as the control category. 
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Figure 9. 
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Figure 9. Bar graphs showing the mRNA expression of pluripotent markers - 

Oct-4 and Nanog (Panel A and Panel B, respectively), cardiac markers - 

Nkx2.5/Csx and GATA4 (Panel C and Panel D, respectively) and endothelial 

antigen - vWF (Panel E) in sorted CD34+ cells isolated from ischemic heart 

disease patients and controls. Total nucleated cells were obtained from 

peripheral blood samples at the pre-defined time points and RBCs were lysed 

using PharmLyse buffer. CD34+ cells were isolated using magnetic MACS beads 

sorting using positive selection technique. The relative quantification value of 

target gene, normalized to an endogenous control (β2-microglobulin gene) and 

relative to a calibrator, was expressed as 2-ΔΔCt (fold difference), where ΔC = Ct of 

target genes - Ct of endogenous control gene (β2-microglobulin), and ΔΔCt = ΔCt 

of samples for target gene - ΔCt of calibrator for the target gene. The expression 

of primitive, cardiac and endothelial genes was consistently higher in STEMI 

patients early after the acute event. Data were analyzed using one-way ANOVA. 

Post hoc multiple comparison procedures (MCP) were performed using 2-sided 

Dunnett test as appropriate with control samples as the control category. 
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Cellular size and immunophenotype of mobilized PSCs  

Some of the hallmarks of pluripotent and embryonic stem cell features are 

their morphological features such as small cells size, large nucleus and high 

nuclear to cytoplasm ratio (144). Sorted stem cell subpopulations enriched in 

VSELs were analyzed with ISS which confirmed their pluripotent phenotypic 

features such as their small size (7-8 µm on average) as well as their higher 

nuclear to cytoplasm ratio. Similarly, when assessed by confocal microscopy, 

VSELs appeared small in size with a large nucleus staining positive for Oct-4 

(Figure 10) surrounded by a small rim of cytoplasm and staining positive for 

SSEA-4 on the surface. However, it is important to note that these characteristics 

are shared with multiple pluripotent stem cells as well as other stem cells and 

cannot be used solely to distinguish PSCs (16). Therefore, these features should 

be considered in conjunction with other distinguishing features such as surface 

markers and differentiation capacity. The embryonic morphological 

characteristics of VSELs isolated from STEMI patients are in line with VSELs 

populations isolated form murine and human BM and different organs and point 

to rare but very primitive populations of stem cells in adult tissues especially the 

BM (16). 
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Figure 10. 
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Figure 10. Representative confocal microscopic images documenting the 

expression of primitive markers in circulating very small embryonic like stem cells 

(VSELs). VSELs were sorted from peripheral blood samples from AMI patients at 

time points showing peak mobilization (~ 6 hours after the acute event). VSELs 

were sorted, using MoFlo cell sorter, based on the expression of CD34/CD133 

and the lack of expression of lineage and CD45 surface markers. Sorted cells 

were plated on fibronectin-coated plates and stained for confocal microscopy as 

detailed in the methods section. Confocal images were then obtained at 40X 

using Zeiss-LSM confocal microscope. The pluripotent nature of circulating 

VSELs is evidenced by the positivity for the primitive surface marker SSEA-4 

(FITC, green) and the nuclear marker Oct-4 (TRITC, red). Circulating VSELs are 

negative for the expression of CD45 (Cy5, Magenta). Nuclei are stained with 

DAPI (blue). The merged image demonstrates the co-localization of Oct-4 in the 

nucleus and SSEA-4 on the surface. The scale indicates 5 µm. 
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Plasma cytokine levels after myocardial ischemia 

Traditionally, chemokines have been regarded as the primary mobilizing 

factors for BM-derived stem cells (145). However, the role of the SDF-1/CXCR4 

axis in cardiac repair after AMI has been disputed by a growing line of evidence 

(50). We examined the levels of chemokines in the plasma of patients with 

STEMI in relation to the mobilization of BM-derived stem cell populations. The 

levels of G-CSF, VEGF, HGF, and SCF showed minimal dynamic changes after 

STEMI and did not correlate significantly with the mobilization of PSCs, non-

HSCs or HSCs (Figure 11 and Table 1). This can be explained, at least in part, 

by the degradation of traditional chemokines at sites of myocardial injury and the 

subsequent upregulation of metalloproteinases (51, 143, 146). These data and 

other reports in the literature (49, 56, 147, 148) directed our attention to other 

possible pathways that could contribute to the BM-derived stem cell mobilization 

following myocardial ischemic injury.    

Demographic correlations of VSELs and HSCs mobilization in STEMI 

patients 

We examined the clinical factors that affect the mobilization of BM-derived 

stem cells in ischemic myocardial injury. We first examined the role of patient’s 

age in the ability to mobilize BM-derived stem cells after ischemic injury. The 

literature suggests limited repair capability of stem cells in older individuals and 

indeed older individuals have lower cardiomyocyte chimerism rates than younger 

subjects (11). Our data suggest that all three populations enriched in VSELs (Lin-
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/CD45-/CD133+, Lin-/CD45-/CD34+, and Lin-/CD45-/CXCR4+), PSCs and HSCs 

(Lin-/CD45+/CD133+, Lin-/CD45+/CD34+, and Lin-/CD45+/CXCR4+) in STEMI 

patients correlated negatively with patients’ age (Figure 12). These data 

provides logical explanation to the lower chimerism rates in older individuals and 

support a growing consensus that aging is a “stem cell deficiency state”. We also 

examined the influence of ischemic injury on the degree of stem cell mobilization 

response. Patients with larger ischemic injury as reflected by higher serum 

troponin T had significantly higher counts of circulating mobilized BM derived 

stem cells compared to those who suffered smaller injury (P < 0.05) (Figure 13). 

Furthermore, our exploration of other mobilizing factors that could contribute to 

the mobilization of BMSPCs lead us to the discovery of dynamic elevation of 

sphingosine-1 phosphate (S1P) which correlated temporally with the dynamics of 

BMSPC mobilization (Table 2). Therefore, we hypothesized that bioactive lipids 

could be playing an important role in stem cell mobilization in the setting of acute 

ischemic myocardial injury. 
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Figure 11. 
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Figure 11. Plasma levels of chemokines in controls and during the first 48 hours 

following myocardial injury in STEMI patients. The level of cytokines was 

measured using an ELISA kit and the analysis was performed according to the 

manufacturer’s protocol. Bar graphs of the levels of SDF-1 (Panel A) and stem 

cell factor (Panel B) in controls and patients with STEMI. Levels of both 

chemokines did not follow specific chronological pattern and did not correlate 

temporally with the mobilization of BM-derived stem cells described above. Data 

were analyzed using one-way ANOVA and did not reveal statistically significant 

differences between the STEMI and control groups or the different time points in 

the STEMI patients. SCF, stem cell factor; SDF, stromal cell derived factor.  
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Table 2. Plasma Cytokine Levels (pg/ml) in STEMI patients and Controls. 

 

 

 Control STEMI-BSL STEMI-24 
hours 

STEMI-48 
hours 

STEMI-72 
hours 

G-CSF 118±28 95±18 166±38 78±15 60±23 

VEGF 102±23 232±45 337±77 199±39 178±54 

SDF-1α 5344±1226 2198±458** 2514±577* 2837±592 3190±824 

HGF 1719±992 3866±1166 2327±776 2739±826 2486±939 

SCF 23±8 35±7 33±8 28±7 21±6 

S1P 78571±1786 137100±39903 143044±59712 119519±19159 68450±8991 

DH S1P 10143±2227 18507±2832 23920±8860 16892±3158 7568±1757 
 

 ** P < 0.01, * P < 0.05 
 

Data were analyzed using one-way ANOVA and posthoc analyses if the initial 

one-way ANOVA was significant was performed using the Dunnett’s method with 

the control arm used as the single control parameter. 
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Figure 12. 
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Figure 12. The negative correlation between the peak mobilization of different 

VSELs’ subpopulations (Panels A-C) and HSCs (Panels D-F) in STEMI patients 

and patients’ age. Total nucleated cells were obtained by lysis of RBCs and 

stained against the surface markers for VSELs and HSCs as detailed above. All 

three VSELs’ subpopulations showed significant negative correlation with patient 

age (P < 0.05). HSCs showed statistically significant or strong trends towards 

negative correlation with patients’ age. Data were analyzed using a simple linear 

regression analysis with the patient age on the Y-axis and separate analyses for 

each of the stem cell populations in the X-axis. 
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Figure 13. 
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Figure 13. The relationship between degree of ischemic myocardial injury and 

effectiveness of BM-derived stem cell mobilization in patients with STEMI. Total 

nucleated cells were obtained by lysis of RBCs and stained against the surface 

markers for populations enriched in VSELs as detailed above. The degree of 

myocardial injury was quantified using the serum levels of troponin at the same 

time point of BMSPC evaluation. Patients with larger ischemic injury as reflected 

by troponin T higher than median (black bars) have significantly higher numbers 

of circulating BM-derived non-HSCs that are enriched in VSELs as compared to 

those with smaller myocardial ischemic injury (dotted bars). The data were 

analyzed using the Student’s t-test (troponin T below vs. above the mean, P < 

0.05). TnT, troponin T. 
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Conclusions and discussion 

 

The ischemic myocardium releases a multitude of chemokines, growth 

factors and cytokines responsible for the dynamic mobilization, homing, and 

incorporation of BM-derived stem cells to the infarction zone (14, 149). Based 

upon the results presented here, we report the following findings: (i) BM-derived 

pluripotent stem cells (PSCs) are mobilized following acute myocardial infarction 

with an early peak, (ii) mobilized PSCs contain subpopulations enriched in 

VSELs that express multiple phenotypic and morphological properties of 

embryonic stem cells similar to their human and murine BM counterparts, (iii) 

mobilized BM-derived stem cells could be pre-destined to cardiac and endothelial 

fates and express corresponding genes, (iv) the mobilization of BM-derived stem 

cells correlate positively with the extent of myocardial injury and negatively with 

individuals’ age, and (v) changes in plasma chemokines do not explain the 

dynamic mobilization of BM-derived stem cells. Bone marrow-derived stem cell 

populations enriched in VSELs have been shown to differentiate into 

cardiomyocytes in vitro (15) and regenerate the myocardium in vivo (150, 151), 

highlighting the clinical relevance of the presented data.  

Adult bone marrow contains a multitude of non-committed, partially-

committed, and committed stem cell populations that contribute to the 

regeneration of non-hematopoietic tissues (117). The most primitive of these 

stem cells in adults are the pluripotent non-hematopoietic stem cells such as 

VSELs that express various pluripotent markers including Oct-4, Nanog and 
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SSEA-1/4 (152, 153). VSELs isolated from adult BM exhibit morphological 

features characteristic of embryonic stem cells such as small size, large nucleus 

with open euchromatin and high nuclear to cytoplasm ratio when compared with 

HSCs and differentiated PB cells (16). Upon appropriate stimulation, VSELs are 

capable of differentiating in vitro into cells of all three germ layers (ecto-, endo- 

and mesoderm) including cardiac cells (15). When transplanted in infarcted 

myocardium, BM-derived stem cell populations enriched in VSELs give rise to 

cardiomyocytes and improve left ventricular function (150, 151).  

The exclusive expression of Oct-4 in pluripotent and embryonic stem cells 

has been challenged by reports demonstrating its presence in differentiated PB 

cells (154). Therefore, in our studies, we examined the expression of Oct-4 and 

SSEA-4 with dual fluorescent immunostaining with the stem cell marker, CD34. 

We also excluded differentiated PB cells by excluding from our analyses cells 

staining positive for differentiated lineage antibodies. The influx of Lin-/CD45-

/CD34+/Oct4+ and Lin-/CD45-/SSEA4+ cells in PB was significantly higher 

among STEMI patients as compared to controls and other ischemic heart 

disease patients. However, the peak mobilization of Oct-4+ cells preceded that of 

SSEA-4+ cells and the explanation for this is not readily apparent. It is possible 

that pathways responsible for SSEA-4+ and Oct-4+ cell mobilization are different 

and hence the differences in the timing of their peak mobilization. It may also be 

the case that the cells with a different expression of these two markers represent 

cells with different level of maturation/primitivity which may explain the response 

of these cells to mobilizing chemokines. Our experience with human umbilical 
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cord blood (UCB) indicates that SSEA-4+ VSELs are scarcer and exhibit more 

primitive morphology than Oct-4+ cells (155).  This may indicate that 

primitive/pluripotent SSEA-4+ stem cells are anchored within their niches and/or 

more resistant to mobilization stimuli. Furthermore, we confirmed the pluripotent 

nature of isolated PB-derived VSELs on the morphological and phenotypic levels 

through our Image Stream and confocal microscopy analyses. PB VSELs 

isolated, based on their surface expression markers, from patients with 

myocardial ischemia are small in size (7-8 µm in diameter) and have a 

characteristically large nucleus surrounded by a narrow rim of cytoplasm similar 

to their BM and cord blood counterparts (Figures 5 and 10) (15, 156). 

Our data are consistent with previous reports from our group and others 

demonstrating the mobilization of stem cell subpopulations in acute myocardial 

infarction. Although there are discrepancies in the reported literature about 

changes and absolute numbers of circulating stem cells in AMI patients, these 

discrepant findings can be explained by the differences in patient characteristics, 

flow cytometry protocols used, or timing of blood sampling. Nonetheless, the 

majority of the literature supports significant and consistent stem cell mobilization 

in the early phase of myocardial infarction. Our experiments extend these 

observations to Oct-4+ and SSEA-4+ pluripotent stem cells. It is however 

important to mention that the surface markers outlined in our study are not 

unique to any given population of stem or pluripotent cells. CD34+ and CD133+ 

cells isolated from the peripheral blood have been shown to differentiate into 

endothelial cells in vitro and home to ischemic limbs in animal in vivo models 
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(157, 158). Thus, these lineage negative cells represent multiple overlapping 

subpopulations that are capable of repopulating the injured heart and aid in its 

regeneration.  

In conclusion, we present for the first time quantitative evidence of 

circulating Oct-4+ and SSEA-4+ cells in patients with various degrees of 

myocardial ischemia. The patients’ capacity to mobilize these pluripotent 

stem/primitive cells is hampered in the elder patients with STEMI. Understanding 

the significance and underpinnings of this mobilization will be crucial in planning 

future studies examining the role of VSELs and other primitive cell populations in 

myocardial regeneration and may reveal the optimal therapeutic window suitable 

for pluripotent cellular therapies for myocardial regeneration.  
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Chapter 3 

 

RESULTS 

The role of bioactive lipids and the immune system in myocardial ischemia 

induced stem cell mobilization	  (159) 

The mobilization of different stem cell populations that have been shown 

to contribute to myocardial regeneration presented in the previous chapter can 

carry important therapeutic implications. However, the pathways involved in this 

mobilization are poorly understood and the traditional chemokines seem to play 

minimal role in this process. Therefore, we explored other pathways that may 

contribute to this mobilization in an attempt to find therapeutic targets for 

myocardial regeneration.  

Cardiomyocytes undergo continuous renewal, maintained at least in part 

by bone marrow (BM)-derived non-hematopoietic stem cells (non-HSCs) that 

include populations such as of CD34+, CD133+ and CXCR4+ lineage negative 

(Lin-)/CD45- cells which are enriched in VSELs (7, 9, 160). While the 

mechanisms of cardiomyocyte renewal are poorly understood, this process is 

capable of renewing up to half of the cardiomyocytes during the normal life span 

(11). In rodents, this phenomenon is dynamic and responds to myocardial injury 

(10) and is maintained, at least in part, by BM derived cells (8). Acute myocardial 

infarction (AMI) in patients presented with STEMI initiates innate reparatory 

mechanisms through which non-HSCs are mobilized from bone marrow (BM) into 

peripheral blood (PB) and chemoattracted to the ischemic myocardium, a 
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process that can potentially contribute to myocardial regeneration as we have 

shown in the previous chapter and as has been reported in the literature (12, 13, 

24, 26, 27, 161). Nevertheless, very little is known about the underlying 

mechanism and clinical significance of this mobilization phenomenon. Clinical 

studies investigating stem cell mobilization as a strategy to augment repair of the 

infarcted myocardium have achieved limited success probably as result of a low 

number of mobilized non-HSCs homing to damaged heart tissue (91, 97-99). 

Similarly, the process of recruitment of stem cells from BM into PB itself is 

still not fully understood. The α-chemokine stromal derived factor-1 (SDF-1) has 

been identified as a potent stem cell chemoattractant present in PB plasma 

(145). Recently however, other factors such as bioactive lipids - sphingosine-1 

phosphate (S1P) and ceramide-1 phosphate (C1P) have been identified in PB as 

major HSCs chemoattractants that enhance their egress from BM into PB (48, 

56, 162, 163). SDF-1 has been also reported to become upregulated in a hypoxia 

inducible factor-1α (HIF-1α) dependent manner at sites of organ tissue injury 

(e.g., in infarcted myocardium) (164-166). While a role for the SDF-1/CXCR4 axis 

in stem cell trafficking is undisputed, its exclusive role in homing to a highly 

proteolytic microenvironment, such as the ischemic/infarcted myocardium, is less 

established and redundant mechanisms may exist (48-50). The limited 

contribution of SDF-1 to myocardial regeneration may be explained by its active 

degradation at the sites of inflammation and myocardial infarction by 

metalloproteinases (50-52). However, as recently demonstrated, despite SDF-1 

degradation by proteases, the chemotactic responsiveness of stem cells to even 
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low SDF-1 gradient could be significantly enhanced by members of the family of 

cationic antimicrobial peptides (CAMPs), products of complement cascade 

activation (anaphylatoxin C3a) (137, 138, 141, 167, 168) and fibroblast- and 

leukocyte-derived (cathelicidin and β-2 defensin) (169). Thus, an increase in level 

of CAMPs at sites of injury enhances responsiveness of stem cells to even very 

low level of SDF-1. The expression of S1P receptors is crucial for the cell 

response to S1P gradients and we examined the expression of various S1P 

receptors on BM-derived stem cells from different sources. We also explored the 

factors orchestrating the dynamic expression of S1P receptors and how to 

manipulate them to enhance this expression and the response to S1P gradients 

in various physiological and pathological conditions.  

Based on the above literature, we hypothesized that bioactive lipids (S1P 

and C1P) and elements of the innate immune system (cathelicidin and β2-

defensin) are upregulated during STEMI and can potentially contribute to non-

HSCs mobilization from BM into PB followed by their homing to the ischemic 

myocardium. 

 

Concurrent temporal elevation of plasma bioactive lipid levels and non-

HSCs numbers in peripheral blood following acute myocardial infarction 

Our recent studies demonstrated the critical role of bioactive lipids such as S1P 

ands C1P in the mobilization and homing of BM-derived HSCs (48, 49, 56). 

Since we expect that similar mechanisms are involved in the release of non-

HSCs from their BM niches in STEMI, we examined the changes in S1P levels in 

PB plasma following acute myocardial injury and as compared to controls. 
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Figure 14 shows that the levels of the bioactive lipid S1P were elevated following 

STEMI particularly in the early phases following myocardial ischemia and started 

decreasing following successful revascularization. The level of S1P tripled to 

0.31 ± 0.02 µM as compared to 0.14 ± 0.02 in controls (P < 0.01). S1P levels 

then decreased 6 hours after the acute event but continued to be elevated at 48 

hours compared to controls. The levels of ceramide-1 phosphate (C1P) followed 

similar trends but with earlier peak with C1P. 

The largest reservoirs of bioactive lipids in the peripheral blood are red 

blood cells (RBCs), platelets and endothelial cells (170). Our experiments 

confirmed these data and in whole blood, RBCs contain significantly higher 

concentration of S1P and C1P compared to plasma (Figure 15A). Release of 

S1P and CIP from RBCs could therefore account for higher plasma levels in the 

setting of STEMI. Activation of the complement cascade and the resultant 

generation of C5b-C9 (membrane attack complex) may enhance release of S1P 

from RBCs.  The complement cascade is activated in STEMI patients (171-175), 

and in our STEMI population, C5b-C9 levels were elevated in serum in the early 

phases after AMI and continued to be elevated at 48 hours after the acute 

ischemic event (Figure 16). Upon incubation with in vitro activated complement 

components, RBCs released S1P and C1P in a pattern similar to the elevated 

plasma levels of S1P and C1P in plasma of AMI patients (Figure 15B and 15C). 

We believe that part of the release is secondary to hemolysis of RBCs upon their 

incubation with C5b-C9 given the elevated level of free hemoglobin in our 

samples after their incubation with activated complement and the  
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Figure 14. 
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Figure 14. Elevated levels of bioactive lipids at early stage following acute 

myocardial infarction. Bar graphs showing the plasma levels of sphingosine-1 

phosphate (Panel A) and ceramide-1 phosphate (Panel B) in patients with ST-

elevation myocardial infarction and controls. Plasma isolated from patients 

admitted with STEMI and controls were analyzed using mass spectrometry for 

the concentrations of bioactive lipids. The graphs show an early peak of both 

members of the bioactive lipid family occurring at 6 hours with S1P and at 

baseline in the case of C1P. Data were analyzed using one-way ANOVA. Post 

hoc multiple comparison procedures (MCP) were performed using 2-sided 

Dunnett test with control samples as the control category. BSL, baseline denoting 

the time of arrival to the hospital; S1P, sphingosine-1 phosphate; STEMI, ST-

elevation myocardial infarction.  

 

 

 

 

 

 

 

 

 

 

 



	   73	  

Figure 15. 
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Figure 15. Red blood cells contain high concentrations of bioactive lipids 

that are released upon complement activation. PB samples were obtained 

from healthy donors. Plasma and red blood cells were isolated using 600g 

centrifugation. The content S1P and C1P were assessed in these fractions using 

mass spectrometry. RBCs were incubated with multiple components of the 

complement cascade, which are activated in vitro, alone or in conjunction with 

specific antibody against RBCs (CD235a). Bar graphs showing the content of 

S1P and C1P in the plasma and purified red blood cells (RBCs) (Panel A). 

Content of S1P and C1P is significantly higher in the RBCs compartment 

compared to plasma. Upon incubation with activated complement and activated 

complement together with antibodies against RBCs, cells release both S1P 

(Panel B) and C1P (Panel C) with a 3-fold increase in their free levels 

corresponding with the elevated plasma levels noted with STEMI. The content of 

S1P and C1P in different PB compartments were analyzed using the Student’s t-

test while the levels of S1P and C1P in Panels B and C were analyzed using 

one-way ANOVA. Post hoc multiple comparison procedures (MCP) were 

performed using 2-sided Dunnett test with control samples as the control 

category. (* P < 0.05 as compared to controls). C1P, ceramide-1 phosphate; 

RBCs, red blood cells; S1P, sphingosine-1 phosphate. 
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Figure 16. 
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Figure 16. Complement cascade component levels in the plasma following 

acute myocardial infarction. Bar graphs showing the increased plasma level of 

C5b-C9, one of the terminal products of the complement cascade activation in 

patients with acute myocardial infarction as compared to controls. The levels 

were significantly higher at the time of presentation and continued to increase for 

48 hours following revascularization.  Data were analyzed using one-way 

ANOVA. Post hoc multiple comparison procedures (MCP) were performed using 

2-sided Dunnett test with control samples as the control category. 
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Figure 17. 
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Figure 17. Incubation of red blood cells with activated complement results 

in their hemolysis that can explain the release of bioactive lipids. PB 

samples were obtained from healthy donors. Red blood cells were isolated using 

600g centrifugation. RBCs were incubated with multiple components of the 

complement cascade, which are activated in vitro, alone or in conjunction with 

specific antibody against RBCs (CD235a). The free hemoglobin levels, are 

elevated when RBCs are incubated with complement or complement + specific 

antibody against RBCs (CD235a) as compared to controls and RBCs incubated 

with antibody alone. Data were analyzed using one-way ANOVA. Post hoc 

multiple comparison procedures (MCP) were performed using 2-sided Dunnett or 

Dunn tests as appropriate with control samples as the control category (* P < 

0.05 as compared to controls). RBCs, red blood cells.  
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Figure 18. 
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Figure 18. Levels of C1P are elevated in cardiac tissues after ischemic 

injury and C1P is capable of chemoattracting murine and human MSCs. The 

levels of S1P and C1P were assessed in the myocardium at baseline and after 

40 minutes hypoxia followed by 40 minutes reperfusion using the Langendorf 

apparatus. The heart was then isolated and snap frozen using liquid nitrogen. 

Tissue was homogenized and levels of S1P and C1P were examined using mass 

spectrometry. There was a reduction in the level of S1P with ischemia 

reperfusion. On the other hand, the level of C1P as noted in the above bar graph 

increases to 5-7 fold compared to controls. Data were analyzed using Student’s 

t-test but no significant differences noted. Human and murine MSCs were 

obtained following culture of adherent BM cells for 3 passages in DMEM 

supplemented with 10% FBS. MSCs were seeded at a density of 3 × 104 

cells/well into the upper chambers of Transwell inserts (Costar Transwell; 

Corning Costar). The lower chambers were filled with SDF-1 (10 or 100 ng/mL), 

sphingosine-1-phosphate (0.1 µM), C16-ceramide-1-phosphate (1 mM), or C18-

ceramide-1-phosphate (0.1–10 mM) in 0.5% BSA DMEM or EBM (control). After 

24 hours, cells in the lower chambers were isolated and stained against lineage, 

CD45, CD34 (humans cells) and Sca-1 (murine) surface markers. C18-C1P was 

capable of chemoattracting primitive populations of BM-derived mesenchymal 

stem cells, particularly the C18-C1P sub-fraction, at a rate similar to that of S1P 

and high concentrations of SDF-1. Data were analyzed using one-way ANOVA. 

Post hoc multiple comparison procedures (MCP) were performed using 2-sided 

Dunnett test with control samples as the control category. 
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corresponding release of bioactive lipids (Figure 17). The higher C1P plasma 

levels at BSL may also reflect the release of C1P from damaged cardiomyocytes 

as we have recently shown and C1P is capable of chemoattracting murine and 

human BM-derived primitive cells such as mesenchymal stem cells (MSCs) 

(Figure 18). On the other hand, we noted reduction of S1P in the ischemic 

cardiac tissue that can be due to elevated activity of S1P lyase as previously 

described	  (176). 

We observed temporal correlation between the elevation in plasma levels 

of bioactive lipids and the peak mobilization of PSCs, non-HSCs and HSCs 

following acute myocardial injury as detailed in the previous chapter. The 

absolute numbers of non-HSCs populations such as Lin-/CD45-/CD34+, Lin-

/CD45-/CXCR+, and Lin-/CD45-/CD133+ cells peaked at the early stages 

following myocardial ischemia (4.8 ± 1.3 vs. 0.7 ± 0.04 cells/µl of PB, 8.6 ± 2.5 

vs. 0.7 ± 0.06 cells/µl of PB, and 1.7 ± 0.5 vs. 0.6 ± 0.03 cells/µl of PB; in PB 

samples obtained 6 hours after presentation in STEMI patients vs. control 

samples respectively, P < 0.05). This mobilization correlated with the early 

elevation of plasma levels of S1P and total C1P thus suggesting a chemotactic 

role for bioactive lipids. These data are in agreement with the increasingly 

recognized role of bioactive lipids in guiding HSCs mobilization and homing (49, 

56). 

 

BM-derived stem cells express S1P receptors 

Given the potential role of bioactive lipids in the mobilization of non-HSCs, 

we examined the expression of various S1P receptors (S1PRs) on the surface of 
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BMSPCs isolated from normal individuals and found high expression of type 1 

and type 3 S1P receptors - S1PR1 and S1PR3 respectively (Figure 19). These 

receptors play an important role in trafficking of lympho/hematopoietic cells (177, 

178). They have also been shown to orchestrate the mobilization, chemotaxis 

and homing of BM-derived HSCs in animal and human models	   (86, 163, 179). 

We focused on the subset of BM-derived cells Lin-/CD34+ cells that are enriched 

in stem and progenitor cells and flow cytometry analysis revealed that Lin-

/CD34+ express both S1PR1 (14.7±1.4%) and S1PR3 (9.9±0.9%) (Figure 20). 

Furthermore and as described with lympho/hematopoietic cells (180, 181), this 

expression was dynamic in that both receptors were internalized in the presence 

of S1P (Figure 20). The expression of S1PRs on peripheral blood lineage 

negative cells in the early phases following AMI was significantly lower than their 

counterparts isolated from the BM. The increased level of plasma S1P could 

explain the possible internalization of S1P receptors on circulating mobilized BM-

derived stem cells	   (182). The literature suggests the internalization of S1P 

receptor 1 and 3 with exposure to higher concentration of S1P and this process 

may be crucial for guiding the trafficking of lymphocytes between the peripheral 

blood and lymph nodes	   (183, 184). Indeed, in our hands the expression of 

S1PR1 and S1PR3 on the surface of Lin-/CD34+ BM-derived stem cells was 

significantly reduced after exposure to physiological levels of S1P (Figure 20). Of 

note, since C1P receptors are not identified yet, we could not perform similar 

receptor expression studies for this bioactive lipid.   
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Figure 19. 
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Figure 19. Experimental protocol showing the flow cytometry analysis of 

BM-derived stem cells for the expression of S1P receptors. Total nucleated 

cells (TNC) obtained after RBCs lysis were analyzed using side and forward 

scatter to gate the population of interest (Panel A).  TNC were then analyzed 

based on the expression of lineage commitment markers  (Panel B) and lineage 

negative cells were analyzed for the expression of the stem cell marker (CD34+) 

(Panel C). Cells negative for the commitment lineage markers and positive for 

the CD34 marker were examined for the expression of S1P receptor 1 (Panel D). 
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Figure 20. 
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Figure 20. S1P receptors are expressed on naïve BMSPCs and surface 

expression is reduced following exposure to S1P. Bar graphs showing the 

expression of S1P receptor 1, 2, 3 and 5 on the surface of BM derived Lin-

/CD34+ stem cells. BM cells were obtained from healthy donors and RBCs were 

lysed using PharmLyse buffer. Cells were the stained against lineage markers 

(FITC), CD34 (PerCP), S1P1 (PE), S1P2 (APC), S1P3 (goat primary antibodies 

followed by secondary anti-goat antibody labeled with PE-Cy7), and S1P5 (PE). 

Using flow cytometry (LSR II), we gated on the Lin-/CD34+ population and 

assessed the expression of S1PRs on these cells. The graphs show relatively 

higher expression of S1P receptors on the BM stem cells that are reduced 

significantly following 2 hours exposure to S1P (250 nM). Data were analyzed 

using the Student’s t-test. BM, bone marrow; S1P, sphingosine-1 phosphate. 
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The expression of S1PR1 and S1PR3 depends on surrounding S1P 

concentration 

Given the variable response of BM-derived stem cells from different 

sources to mobilization stimuli in transplantation studies, we examined the 

expression of S1P receptors especially S1PR1 and S1PR3 on the surface of 

stem cells isolated from naïve BM, mobilized peripheral blood cells (mPBCs) and 

cord blood cells from human donors. In these experiments we utilized human 

samples and the mPBCs were isolated from patients after 3-5 days of G-CSF 

therapy. We simultaneously examined the levels of S1P in their surrounding 

microenvironment.  The expression of S1PR1 and S1PR3 was highest amongst 

naïve BM-derived Lin-/CD34+ cells followed by mPBCs and finally cord blood 

cells. This differential expression of S1P receptors was inversely proportional to 

the concentration of S1P in the surrounding microenvironment of the cells 

suggesting its possible role in internalization of these receptors (Figure 20). This 

can explain the differential response of BM-derived stem cells from different 

sources to S1P gradients and their different homing potentials after BM 

transplantation. These findings have important clinical implications; the BM 

reconstitution capabilities of human mPBCs are variable and influence the 

success of BM transplantation. Using the expression of S1P receptors as an 

indicator for the success of BM transplantation can be of clinical importance and 

more clinical studies are needed to examine the clinical correlation between S1P 

receptor expression and the success of mPBCs transplantation.  
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Figure 21. 
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Figure 21. Differential expression of S1P receptors on stem cells isolated 

naïve BM, mobilized peripheral blood cells and cord blood cells. The 

expression of S1P receptors 1, 2, 3 and 5 on the surface of similar populations of 

BM-derived stem cells isolated from human naïve BM, G-CSF mobilized 

peripheral blood cells, and cord blood cells. BM and mPB cells were obtained 

from healthy donors and cord blood cells from human sample bank. Supernatant 

was isolated and examined for bioactive lipid content using mass spectrometry 

and RBCs were lysed using PharmLyse buffer. Cells were the stained against 

lineage markers (FITC), CD34 (PerCP), S1P1 (PE), S1P2 (APC), S1P3 (goat 

primary antibodies followed by secondary anti-goat antibody labeled with PE-

Cy7), and S1P5 (PE). The expression of S1PR1 and S1PR3, which are 

responsible for cell mobilization and homing, were highest among naïve BM cells 

that coexisted in an environment with relatively low levels of S1P. The expression 

of S1P receptors was lower among mPBCs and cord blood stem cells and 

correlated inversely with the levels of surrounding S1P. S1P was measured in 

the supernatant of BM, hMPB and hCB samples using mass spectrometry. Data 

were analyzed using one-way ANOVA. Post hoc multiple comparison procedures 

(MCP) were performed using 2-sided Dunnett test with control samples as the 

control category. hBM, hCB, human cord blood cells; human naïve BM cells; 

hMPB, human G-CSF mobilized peripheral blood cells; Lin, lineage combination 

of antibodies. 
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Expression of S1PR1 and S1PR3 receptors dictates the migration response 

of BM stem cells to S1P gradients 

Based on the above data confirming the significant role of surrounding 

environment on the expression of S1P receptors, we examine the migratory 

response of BM-derived stem cells isolated from different sources to S1P 

gradients. For these experiments we utilized naïve BM cells, G-CSF mobilized 

peripheral blood cells and human cord blood cells. We used S1P gradients of 

0.01, 0.1 and 1 µM in the lower chamber as our chemoattractant. By correlating 

the expression of S1P receptors with the chemotaxis response, we could identify 

the role of different S1P receptors in this process. Naïve BM-derived stem cells 

had the highest response to S1P gradients with a peak mobilization at 0.01 µM. 

This correlates with our previous and published data confirming the bell-shaped 

response of BM-derived stem cells to S1P gradients (162). However, BM-derived 

mPBCs and cord blood cells did not show significant chemotaxis to S1P 

gradients compared to vehicle controls (Figure 22). The response to S1P at 0.01 

and 1 µM was similar among all groups. The response at 0.1 µM was highest in 

naïve BM cells followed by mPBCs and finally cords blood cells. This is in strong 

correlation with the expression of S1P receptors, particularly S1PR1, on the 

surface of these cells.  

 

Expression of S1P receptors is dynamic and can be enhanced by a S1P 

free microenvironment leading to improved BM stem cell chemotaxis 

The BM-derived stem cells examined in the above experiments have the  
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Figure 22. 
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Figure 22. Differential chemotaxis of BM-derived stem cells isolated from 

naïve BM, mobilized peripheral blood cells and cord blood cells to S1P 

gradients. Bar graphs demonstrating the chemotaxis of BM-derived stem cells 

isolated from naïve BM, G-CSF mobilized peripheral blood cells and cord blood 

cells. RBCs were lyse and BM, hMPB and hCB cells were seeded at a density of 

1 × 106 cells/well into the upper chambers of Transwell inserts (Costar Transwell; 

Corning Costar). The lower chambers were filled with regular DMEM medium 

supplemented with sphingosine-1-phosphate (at concentrations of 0.01, 0.1 and 

1 µM). After 6 hours, cells in the lower chambers were isolated and stained 

against lineage, CXCR4 and CD34 surface markers. The chemotaxis was 

evident in naïve BM cells particularly towards 0.1 µM of S1P. On the other hand, 

chemotaxis was significantly reduced in mobilized peripheral blood and cord 

blood cells that demonstrated low expression for S1PR1 and S1PR3 receptors. 

Data were analyzed using one-way ANOVA. Post hoc multiple comparison 

procedures (MCP) were performed using 2-sided Dunnett test with control 

samples as the control category. 
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same origin from the BM, yet have significantly different expression of S1P 

receptors and response to S1P gradients. We hypothesized based on our earlier 

data that the expression of S1P receptors especially S1PR1 is dynamic and 

responds to S1P levels in the surrounding microenvironment. Therefore, we 

examined mPBCs immediately after their isolation and at 6 hours time intervals 

thereafter for the expression of S1P receptors and their response to S1P 

gradients in chemotaxis chambers. We used mPBCs in these experiments for 

their clinical implications as they are widely used in human BM reconstitution 

studies. We found that the expression of S1PR1 and S1PR3 is rather dynamic 

and incubation of mPBCs in S1P free medium (DMEM supplemented with 0.1% 

FBS) resulted in the re-expression of S1PR1 and S1PR3 on the surface of mPB 

Lin-/CD34+ stem cells (Figure 23). Starting at 12 hours after incubation, we 

noticed a dramatic increase in the percentage of Lin-/CD34+ cells expressing 

S1PR1 and S1PR3. The cell viability did not drop significantly with these long 

incubations. Furthermore, chemotaxis experiments demonstrated a significant 

increase in the mPB Lin-/CD34+ stem cell response to 0.1 µM S1P gradient in 

mPB cells incubated in S1P free medium as compared to cells form the same 

sample that were freshly isolated and in correlation with the re-expression of 

S1PR1 and 3 (Figure 23). This is strong evidence supporting a crucial role of 

S1PR1 and S1PR3 receptor expression in the mobilization and chemotaxis of 

BM-derived stem cells. The data presented herein has important implications for 

enhancing the efficiency of human BM transplantation practices. 
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Figure 23. 
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Figure 23. Dynamic expression of S1P receptors on mPB stem cells and its 

effect on their response to S1P gradients. Bar graphs demonstrating the 

percentage of G-CSF mobilized peripheral blood Lin-/CD34+ stem cells that 

express S1P receptors 1 and 3 immediately after isolation and at 6-hour intervals 

thereafter culture in DMEM supplemented with low concentration of FBS (0.1%) 

(Panel A) and the migration response of mPB stem cells immediately after 

isolation or 12 hours after incubation in S1P free medium (Panel B). G-CSF 

mobilized peripheral blood cells were lysed using PharmLyse buffer. Cells were 

then stained, at different time intervals after culture in DMEM supplemented with 

0.1% FBS, against lineage markers (FITC), CD34 (PerCP), S1P1 (PE), S1P2 

(APC), S1P3 (goat primary antibodies followed by secondary anti-goat antibody 

labeled with PE-Cy7), and S1P5 (PE). Starting 12 hours after incubation, cells re-

express the S1P receptors 1 and 3 at significantly high levels (Panel A). hMPB 

cells immediately after their isolation or after 12 hours of culture on DMEM with 

0.1% FBS were lysed and seeded at a density of 1 × 106 cells/well into the upper 

chambers of Transwell inserts. The lower chambers were filled with sphingosine-

1-phosphate (at concentrations of 0.01, 0.1 and 1 µM). After 6 hours, cells in the 

lower chambers were isolated and stained against lineage, CXCR4 and CD34 

surface markers. The re-expression of S1PR1 and S1PR3 was paralleled by 

increased responsiveness of mPB stem cells to S1P gradients in chemotaxis 

chambers (Panel B). Data were analyzed using one-way ANOVA. Post hoc 

multiple comparison procedures (MCP) were performed using 2-sided Dunnett 

test with control samples as the control category. 
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BM-derived stem cells migrate towards plasma isolated from acute 

myocardial ischemia patients in an S1P dependent manner 

Since the plasma levels of S1P were elevated simultaneously with the 

peak mobilization of non-HSCs at 6 hours following revascularization, we sought 

to examine the role of bioactive lipids in the migration of BMSCs using in vitro 

migration assays. Using plasma isolated from patients with STEMI at time points 

corresponding with the peak mobilization of BM-derived stem cells and S1P 

levels, we noted that plasma from STEMI patients was able to chemoattract BM 

stem cells at levels 6-12 folds higher than vehicle control. Figure 24A and 24B 

show that Lin-/CD34+ and Lin-/CXCR4+ BMSPCs migrate towards intact plasma 

isolated from STEMI patients at the peak mobilization of non-HSCs. This 

migration was inhibited by delipidation of the plasma (charcoal stripping-CSP), 

which removed > 90% of the S1P (Figure 24A, 24B and 24C). Additionally, 

pretreatment of BM cells with the selective S1PR1 antagonist, W146 (10 µM), or 

the S1PR1/S1PR3 receptors antagonist, VPC23019 (10 µM) also significantly 

reduced the migration of BM cells towards plasma from AMI patients. Neither 

W146 nor VC23019 altered cell viability (Figure 24D). Although we cannot 

isolate the effects of other factors present in the plasma in chemoattracting 

BMSCs, the significant reduction of this migration with delipidation of the plasma 

and S1P receptor blockers point to an important role of bioactive lipids in this 

process. This data in total supports a potential role for bioactive lipids present in 

the plasma of STEMI patients in the mobilization and egress of stem cells from 

the BM to the PB.  
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Figure 24. 
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Figure 24. BMSPCs migrate towards plasma from AMI patients in an 

S1P/S1PR dependent fashion.  Bar graphs showing the migration of lineage 

negative (Lin-)/CD34+ and CXCR4 positive cells towards plasma isolated from 

patients with acute myocardial infarction. As shown, Lin-/CD34+ (Panel A) and 

Lin-/CXCR4+ (Panel B) cells migrate towards plasma isolated from AMI patients 

at peak stem cell mobilization. Data were analyzed using one-way ANOVA. Post 

hoc multiple comparison procedures (MCP) were performed using 2-sided 

Dunnett test with control samples as the control category. BM cells were lysed 

and seeded at a density of 1 × 106 cells/well into the upper chambers of 

Transwell inserts. Some BM cells were incubated with 10 µM W146 or 

VPC20139 for 2 hours before the chemotaxis experiment. The lower chambers 

were filled with plasma isolated form STEMI patients at 6 hours following the 

acute event or DMEM with 0.1% FBS (vehicle). After 6 hours, cells in the lower 

chambers were isolated and stained against lineage, CXCR4 and CD34 surface 

markers. This mobilization was blunted by charcoal stripping of the plasma (CSP) 

and the use of selective S1P receptor 1 blocker (W146) and S1P receptor 1 and 

3 selective blocker (VPC20139); where the number of migrated BM stem cells 

was not significantly different from vehicle control. Delipidation using activated 

charcoal significantly reduces the levels of bioactive lipids (Panel C). Data were 

analyzed using Student’s t-test (* P < 0.05 as compared to controls).  Incubation 

with S1P receptor blockers does not influence BM cell viability as assessed by 

trypan blue as analyzed by two-way ANOVA (Panel D). CSP, charcoal stripped 

plasma; Lin-, lineage negative cells. 
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Migrated BM cells are enriched in populations expressing primitive, cardiac 

and endothelial genes 

We have previously shown that mobilized BMSCs in the setting of STEMI 

are enriched in primitive, cardiac and endothelial genes (Chapter 2) in agreement 

with other data in the literature (185). It is unclear whether the mobilization is 

selective for tissue specific stem cells that are enriched in these markers or if the 

mobilization stimuli/process initiates the differentiation of mobilized cells that 

respond to them. Nonetheless, the expression of Oct4, Nkx-2.5, GATA4, vWF 

and VE-Cadherin are elevated in mobilized cells at the peak mobilization in 

STEMI patients. We examined the expression of genes of cardiac and 

endothelial differentiation in migrated BM cells isolated from the lower chambers 

of the chemotaxis assays. The expression of various primitive, cardiac and 

endothelial genes were significantly higher in cells isolated from the lower 

chambers as compared to the total population of cells placed in the upper 

chambers as examined by qRT-PCR (Figure 25). We also noted increased 

expression of CXCR4 in migrated cells that correlates with previous data 

supporting the interaction of S1P and CXCR4 in enhancing stem cell mobilization 

and homing	  (163, 179). According to these studies, the activation of S1PR1 leads 

to the initiation of downstream pathways that increase the response of BMSCs to 

SDF-1 gradients in G-CSF mobilized peripheral blood CD34+ stem cells	   (179). 

This data also corroborates our overall hypothesis that mobilized stem cells with 

increased CXCR4 expression can home to the myocardium that has elevated 

SDF-1 expression after myocardial ischemic injury.  



	   100	  

Figure 25. 
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Figure 25. Migrated BM cells have higher expression of primitive, cardiac 

and endothelial genes examined by qRT-PCR compared to input cells. Bar 

graphs depicting the expression of primitive, cardiac, endothelial and CXCR4 

genes in BM cells isolated form the lower chamber of the previously described 

chemotaxis chambers (Figure 21) (black bars) compared to input cells (white 

bars). The real time RQ-PCR was performed as detailed above. The figure 

demonstrates significantly higher expression of primitive (Oct4 and Nanog), 

cardiac (Nkx-2.5 and GATA4), endothelial (vWF and VE-Cadherin) and CXCR4 

genes in migrated cells compared to input. Data were analyzed using Student’s t-

test and all differences expressed in fold change were significant with P value 

less than 0.05. 
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Ischemic cardiac tissues express cathelicidins that enhance 

responsiveness of circulating PB cells to an SDF-1 gradient 

Our data highlighted the potential role of S1P and the dynamic expression 

of its receptors in the chemotaxis of non-HSCs from the BM to the PB in the 

setting of STEMI. However, the reduced expression of S1PR1 and S1PR3 

following exposure to S1P levels similar to those encountered in the peripheral 

blood (~250 nM) in the early phases following AMI (Figure 20) suggest that other 

mechanisms than those involving bioactive lipids may be involved in their homing 

from PB to the myocardium. Moreover, the increased expression of CXCR4 in 

migrated cells point to possible contribution of the SDF-1/CXCR4 axis in the 

homing of mobilized cells to the infarcted myocardium. To support this further, 

previous experiments have indicated that S1P lyase activity is increased in the 

ischemic myocardium thus leading to S1P degradation, lower local levels of S1P 

and myocardial injury (176). Therefore, it is unlikely that S1P will play a major 

role in the homing of circulating non-HSCs to myocardium. 

Several reports suggests the involvement of the SDF-1 that is upregulated 

in an hypoxia inducible factor-1α (HIF-1α) manner in infarcted myocardium in 

homing of stem cells to damaged heart tissues (186). However, since the injured 

myocardium is enriched in proteolytic enzymes (e.g., metalloproteinases - 

MMPs) (143) that degrade SDF-1 (51, 52), its actual chemotactic gradient is 

usually low.  As we have recently demonstrated, despite SDF-1 degradation by 

MMPs, the chemotactic responsiveness of stem cells to even low SDF-1 gradient 

could be significantly enhanced by members of family of cationic antimicrobial 
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peptides (CAMPs) including products of complement cascade activation – 

anaphylatoxin C3a (187) and fibroblast- and leukocyte-derived cathelicidin and β-

2 defensin (169). Given the above data, we investigated the expression and 

potential role of CAMPs in homing of non-HSCs into infarcted myocardium.  

Our assessment of the complement cascade indicates that the time 

course of activation correlated with our observation of the peak elevation of the 

S1P (Figure 16). Thus, activation of complement may simultaneously release 

C3a in the plasma that enhances responsiveness of BM cells to low SDF-1 

gradient. Next, we investigated whether the myocardium expresses two other 

CAMPs (cathelicidin and β2-defensin) of which expression is regulated by 

hypoxia.  To address this question, we first employed the Langendorff apparatus 

(ex vivo cardiac reperfusion model) and murine cardiac ventricular tissues were 

subjected to ischemic/reperfusion injury (30 minutes ischemia followed by 20 

minutes reperfusion).  Figure 26A shows increased expression of both CAMPs 

in myocardial tissue following hypoxia/reperfusion as compared to control 

myocardium. We then examined cardiac fibroblasts subjected to hypoxia using a 

hypoxic chamber, and the expression of cathelicidin and β2-defensin was 

measured in parallel with expression of HIF-1. Figure 26B shows that both 

CAMPs were upregulated in hypoxia. Finally, we employed Transwell 

chemotactic assays to test the hypothesis that human PBSPCs respond to low 

gradients of SDF-1 in the presence of cathelicidin similar to our previous 

observations with HSCs (169).  Figure 26C shows that human cathelicidin 

(LL37) enhanced the migration of PBSPCs towards low SDF-1 gradients.  
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Figure 26. 
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Figure 26. Cardiomyocytes increase the expression of cathelicidins 

following ischemic injury and cathelicidins prime BMSPCs to lower levels 

of SDF1. The gene expression of cathelicidins was assessed in the myocardium 

at baseline and after 40 minutes hypoxia followed by 40 minutes reperfusion 

using the Langendorf apparatus as well as cultured cardiac fibroblasts isolated 

using enzymatic digestion of WT cardiac tissues. Real time RQ-PCR was 

performed as previously detailed. Bar graphs showing the increased mRNA 

expression of murine cathelicidins related antimicrobial protein (CRAMP) and β2-

Defensin in murine cardiac tissues with hypoxia/reperfusion (Panel A). The 

expression of CRAMP and defensin was also increased in cardiac fibroblasts 

subjected to 72 hours of hypoxia in hypoxic chambers followed by reperfusion as 

compared to 2 hours of hypoxia and controls (Panel B). Data were analyzed 

using the Student’s t-test showing significant increase in cathelicidin expression. 

Peripheral blood cells were isolated form STEMI patients at 6 hours after the 

acute event and utilized in migration chambers. Panel C demonstrates the 

migration of human lineage negative (Lin-)/CD34+ positive cells towards RPMI 

medium supplemented with 0.1% FBS alone (Vehicle), or supplemented with 

SDF-1 (2 ng/ml) or LL37 (2.5 ng/ml) alone or the combination of SDF-1 and LL37 

in the same concentrations. Data were analyzed using one-way ANOVA. Post 

hoc multiple comparison procedures (MCP) were performed using 2-sided 

Dunnett test with appropriate with control samples as the control category (* P < 

0.05 as compared to controls). 



	   106	  

The role of bioactive lipids in BMSCs mobilization under physiological 

conditions and in disease 

 

Elevated bioactive lipids in the plasma during metabolic syndrome and its 

effects on stem cell mobilization 

Obesity is approaching epidemic levels in the western world (188) and is a 

well documented risk factor for coronary artery disease, myocardial infarction and 

sudden cardiac death both in men and women independent of other well 

documented known CAD risk factors (189). Interestingly, stable outpatients as 

well as hospitalized obese and overweight individuals with cardiomyopathy 

appear to have better survival compared to lean individuals (190-192). This 

finding is paradoxical because obesity has been shown to increase the risk of 

and worsen prognosis of other cardiovascular diseases. The underlying 

mechanisms behind this protective effect are poorly understood but have been 

postulated to relate to greater metabolic reserve and possibly different 

pathophysiology of the congestive heart failure. Adipose tissue has an 

increasingly recognized role as a paracrine and endocrine organ secreting 

multiple angiogenic factors such as VEGF and HGF as well as cytokines and 

chemokines (193). Furthermore, stem cells have been isolated from animal and 

human fat and their capability to differentiate into cardiomyocytes has been 

proven (194). There is also growing evidence that the metabolism of bioactive 

lipids is altered in adipocytes secondary to insulin resistance resulting in the 

elevation of serum sphingosine and S1P (Figure 27) (195). However, the role of 

these changes in altering the S1P gradient is not understood. 
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Figure 27. 
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Figure 27. The effect of metabolic syndrome on the metabolism of bioactive 

lipids. Metabolic syndrome influences key regulatory enzymes involved in the 

metabolism of bioactive lipids. By stimulating acid and neutral sphingomyelinases 

as well as alkaline and acid ceramidases, substrates for the production of 

sphingosine and eventually sphingosine-1 phosphate are increased. This results 

in the elevation of S1P in adipose tissue and plasma	  (195).  
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Obesity in mice is associated with changes in bioactive lipid levels and 

corresponding changes in circulating BM-derived stem cells 

Given the available literature suggesting the alteration in bioactive lipid 

metabolism and levels in obese mice, we examined their plasma levels in relation 

to circulating BM-derived stem cells. Male C57BL/6 mice were placed on high fat 

(HF, defined as 60% fat) or low fat (LF, defined as 10% fat) diet for 6 months and 

HF fed mice were significantly more obese than LF fed mice. At 6 months, mice 

were euthanized and blood samples were obtained from the renal vein. Plasma 

examination using mass spectrometry demonstrated significantly higher levels of 

S1P and ceramide-1 phosphate (C1P). This correlated with significantly higher 

numbers of circulating peripheral blood Sca1+/cKit+/Lin- (SKL) cells (Figure 28). 

This supports our data regarding the role of bioactive lipids in the mobilization of 

BM-derived stem cells. The implications of these findings are not currently 

understood. Interestingly, obese individuals have better prognosis following AMI 

and whether this is related to the effect of bioactive lipids on the myocardium or 

better regeneration due to higher levels of circulating stem cells is still to be 

examined. 

 

Bioactive lipids and circulating BM-derived stem cells are higher in obese 

individuals after STEMI  

Our data demonstrate higher levels of bioactive lipids and consequently 

circulating BMSCs under physiological conditions. However, changes in plasma 

bioactive lipids in the setting of STEMI have not been explored before. Plasma 

collected from obese and lean patients admitted with STEMI demonstrated  
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Figure 28. 
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Figure 28. Elevated levels of bioactive lipids in obesity and their correlation 

with circulating murine stem cells. Mice were fed with high fat and low fat diet 

for 6 months and PB samples were obtained from obese and lean mice. Plasma 

was isolated after centrifugation at 1800 RPM and cells were lysed as detailed 

above. Plasma levels of bioactive lipids were assessed using mass spectrometry. 

PB cells were stained against lineage (FITC), Sca-1 (PE-Cy7) and cKit (PerCP) 

surface markers and analyzed using flow cytometry. Bar graphs demonstrating 

the plasma level of sphingosine-1 phosphate (Panel A) and ceramide-1 

phosphate (Panel B) in lean and obese WT mice. The differences are more 

prominent in C1P than they are in the S1P levels. This correlates with 

significantly higher number of circulating Sca1+/cKit+/Lin- stem cells in obese 

mice (Panel C). Data were analyzed using the Student’s t-test showing 

significant increase in bioactive lipids as well as circulating SKL cells in obese 

mice. The number of circulating Sca1+/cKit+/Lin- stem cells correlated with 

plasma levels of sphingosine-1 phosphate as assessed using simple linear 

regression analysis. C1P, ceramide-1 phosphate; S1P, sphingosine-1 

phosphate.  
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Figure 29. 
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Figure 29. Circulating BMSCs correlate with body mass index in patients 

admitted with acute myocardial infarction. Circulating numbers of multiple 

populations of BMSCs correlate with the patients’ body mass index (BMI) in 

patients admitted with STEMI. We isolated PB samples from patients with AMI 

with different BMI. RBCs were lysed using PharmLyse as detailed above and 

TNCs were stained against lineage markers, CD45 and multiple stem cell 

markers as previously described. The number of circulating Lin-/CD45-/CD34+, 

Lin-/CD45+/CD34+, Lin-/CD45-/CXCR4+ and Lin-/CD45+/CD133+ stem cells 

correlated with patient BMI as assessed using simple linear regression analysis. 

Overall, plasma levels of sphingosine-1 phosphate is higher among obese 

individuals, defined based on a BMI > 30, as compared to lean individuals with 

BMI < 30. We use the Student’s t-test to assess the significance of this difference 

but it was not statistically significant. BMI; body mass index. 
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dynamic S1P levels. Obese individuals had higher peak plasma levels of S1P 

compared to lean individuals. The peak levels of S1P, and other bioactive lipids, 

were noted early after the acute event (around 6 hours following the emergency 

room presentation). This temporal trend correlates with our published data 

demonstrating the early mobilization of different hematopoietic and non-

hematopoietic stem cells in the peripheral circulation (12). Moreover, the peak 

number of circulating BMSPCs following AMI correlated positively with body mass 

index (BMI) as shown in Figure 29. Obese individuals, with higher S1P levels had 

significantly higher number of circulating BMSPCs following AMI (Figure 29). 

 

Ability of S1P lyase inhibitors to alter plasma levels of S1P and their effect 

on stem cell mobilization 

The data presented in the above chapters indicate an important role of 

bioactive lipids, especially the more critically studied S1P in the mobilization of 

BM-derived stem cells in the setting of acute myocardial ischemia. Furthermore, 

current therapies targeting BM cell mobilization failed to demonstrate efficiency in 

treating ischemic heart disease due to multiple factors including their lack of 

specificity in the populations mobilized. The field of bioactive lipids has 

experienced many advances with emerging pharmacotherapies and designed 

molecules that target bioactive lipid metabolism and receptor expression. Based 

on our previous data, we hypothesized that increasing S1P levels in the plasma 

will create a strong chemotactic gradient that will increase the egress of BMSCs 

and the number of circulating PBSCs.  For these experiments, we utilized 
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tetrahydroxybutylimidazole (THI) at a concentration of 25 mg/l in drinking water of 

wild strain (WT) mice for 24 hours. THI has been shown to inhibit S1P lyase, one 

of the major enzymes responsible for the irreversible degradation of S1P (Figure 

29). At 24 hours after treatment, WT mice demonstrated elevated levels of 

plasma S1P in comparison to pre-treatment levels and controls in agreement 

with published literature (176) (Figure 31). A separate group treated with THI 

and AMD3100 to enhance the mobilization of BMSCs did not show significant 

differences compared to the group treated with THI alone in terms of plasma S1P 

levels. We included AMD3100 for its ability to create a proteolytic environment in 

the BM and reduce the interaction between BMSCs and osteoclasts in the BM 

niches. We have shown that this is an important step in initiating mobilization	  

(86). 

We simultaneously examined the number of circulating SKL cells in 

conjunction with the elevated levels of plasma S1P. Indeed, the number of 

circulating SKL cells were significantly higher at 24 hours after initiation of 

treatment in comparison with pre-treatment levels and controls. In contrast to our 

expectation, treating mice simultaneously with AMD3100 did not enhance the 

mobilization of SKL cells and the reasons behind this are not currently 

understood (Figure 31).  

Bioactive lipids play a role in the differentiation of BM-derived stem cells 

The role of bioactive lipids in the physiology of BM-derived stem cells 

extends beyond their mobilization and homing. We examine the role of S1P in 

the differentiation of mobilized stem cells isolated from the peripheral blood. Zhao  
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Figure 30. 
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Figure 30. The effect of THI on the metabolism of bioactive lipids. 

Tetrahydroxybutylimidazole (THI) inhibits S1P lyase (SPL), a rate-limiting 

enzyme in the degradation of S1P. S1P lyase is responsible for the irreversible 

degradation of S1P. Due to the differential expression of SPL in PB and BM cells, 

systemic inhibition of SPL results in the elevation of S1P in adipose tissue and 

plasma	  (176). 
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Figure 31. 
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Figure 31. Inhibiting S1P lyase using THI increases plasma levels of S1P 

and the number of mobilized SKL BM stem cells. Bar graphs demonstrating 

the plasma levels of S1P in control, THI treated and THI+AMD3100 treated mice 

(Panel A) and the corresponding number of circulating SKL cells (Panel B). WT 

mice were given THI (25 g/L) in drinking water for 24 hours and PB samples 

were collected for assessment of bioactive lipid levels (using mass spectrometry) 

and number of circulating stem cells (assessed by flow cytometry). AMD treated 

mice were given 1 dose of AMD3100 (25 mg) subcutaneously at the beginning of 

THI therapy. Control mice were treated with regular water. S1P levels were 

significantly elevated at 24 hours after THI and THI+AMD3100 therapies and 

returned to baseline levels 24 hours after stopping therapy (48 hours time point). 

Elevated levels of S1P correlated with an increase in the number of circulating 

SKL cells in THI and THI+AMD3100 treated groups. Data were analyzed using 

one-way ANOVA. Post hoc multiple comparison procedures (MCP) were 

performed using 2-sided Dunnett test with control samples as the control 

category. 
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et al examined the role of S1P in the differentiation of cord blood MSCs (196). 

After 10 days of culture in medium obtained from conditioned cardiomyocyte 

cultures and enriched with 1 µM of S1P, the authors noticed significantly higher 

numbers of MSCs expressing cardiac differentiation proteins and exhibiting the 

phenotypic characteristics of cardiomyocytes. Moreover, the authors were able to 

demonstrate the ability of the differentiated cells cultured in conditioned medium 

supplemented with S1P to generate electrical action potentials characteristic of 

cardiomyocytes, a hallmark of cardiomyogenic differentiation. Given the fact that 

cord blood cells are technically mobilized BMCs that are mobilized during the 

stress of late pregnancy and delivery, we examined similar populations of BM 

stem cells, namely mPB cells. After short incubation with S1P supplemented 

medium, mPB cells expressed cardiac and endothelial genes at the mRNA level 

(Figure 32). The fold increase ranged from 4-7 fold and was statistically 

significant compared to mPB cells cultured in DMEM medium supplemented with 

10% FBS alone. The gene expression at 48 hours paralleled protein expression 

of cardiac and endothelial proteins at 4 weeks of culture. Moreover, cells 

acquired the characteristic phenotype of cardiomyocytes and endothelial cells 

(Figure 32).  We further evaluated endothelial differentiation using the matrigel 

assay for endothelial tube formation. mPB cells, cultured in medium 

supplemented with S1P, were plated on matrigel for 6 hours and the ability to 

form endothelial tubes was assessed microscopically. Cells cultured with S1P 

supplementation showed significantly higher ability to form capillary tubes 

compared to controls.  
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Figure 32. 
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Figure 32. S1P plays an important role in the differentiation of mobilized 

peripheral blood cells. mRNA was isolated mobilized peripheral blood cells 

(mPBCs) at baseline and after 48 hours of culture in medium supplemented with 

1 µM of S1P for 48 hours (Panel A). Cells were continued in culture for 4 weeks 

with S1P supplementation every 48 hours and at 4 weeks were stained for 

various cardiac and endothelial specific proteins. The mRNA upregulation was 

associated with cells acquiring the cardiac and endothelial phenotype and 

expressing specific cardiac and endothelial proteins at 4 weeks of culture in S1P 

supplemented medium (Panel B). mPBCs were also trypsinized and plated on 

matrigel to assess endothelial differentiation. The endothelial differentiation of 

mPBCs was confirmed by their ability to form capillary like tubular structure when 

cultured on matrigel for 6 hours (Panel C). 
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Conclusion and discussion 

 

Acute myocardial infarction (AMI) initiates multiple innate reparatory 

mechanisms, including the activation of the complement cascade, that is 

responsible for the release of bioactive lipids such as sphingosine-1 phosphate 

(S1P) and ceramide-1 phosphate (C1P) from their natural reservoirs in red blood 

cells, platelets and local endothelial cells. In this chapter, we identified an 

important role of bioactive lipids in the mobilization of BMSPCs into the 

peripheral blood following acute myocardial infarction. Our experiments on 

human BM-derived stem cells isolated from naïve BM cells, mobilized peripheral 

blood and cord blood cells demonstrated dynamic expression of S1P receptors 

and the ability to respond to an elevated S1P gradients in the plasma. In our 

relatively large human sample, we observed elevation in the plasma levels of 

S1P and C1P early after the onset of AMI. S1P and its receptors play an 

important role in the mobilization of BMSPCs to the PB from their niches in the 

BM. We also demonstrated that AMI results in increased expression of 

cathelicidins in the myocardium demonstrating a potential role in priming 

circulating mobilized peripheral blood SPCs to physiological SDF-1 levels and 

hence potentially improving their homing to the ischemic myocardium. Taken 

together, these data suggest that while the levels of SDF-1 in the myocardial 

tissue may be influenced by the elevated levels of proteases, an increase in the 

level of CAMPs enhances the responsiveness of non-HSCs to a SDF-1 gradients 

and may potentially be aiding in their homing. Additional homing mechanisms for 
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mobilized BMSCs include locally elevated levels of C1P that act as a 

chemoattractant for BMSCs. These findings underscore the therapeutic potential 

of strategies targeting the modulation of bioactive lipids, cathelicidins and their 

receptors in BMSPCs based myocardial regenerative studies. 

It is well known that S1P is transported in PB mainly by erythrocytes and 

is also associated with albumin and HDL (81, 197). Our data showed a 4-7 fold 

higher content of S1P and C1P in erythrocytes compared to plasma (Figure 14). 

Erythrocytes can take up and release S1P and this buffering function likely 

explains the ~25x higher concentration of S1P in PB as compared to tissues. 

Innate immune system activation following ischemic myocardial injury, including 

the complement cascade (171-175), may play an important role in the release of 

S1P from blood components such as activated platelets (198-200), red blood 

cells (81, 201) and endothelial cells (56, 202). We demonstrated for the first time 

that plasma levels of S1P and C1P are significantly elevated following AMI 

(Figure 14). The elevated plasma levels corresponded with activation of the 

complement cascade as evidenced by elevated plasma levels of C5b-9 (Figure 

16). Furthermore, exposure of erythrocytes to activated complement ex-vivo 

resulted in the release of bioactive lipids (Figure 15), which could explain the 

correlation between elevated plasma levels of S1P in the setting of AMI and 

systemic complement activation. We also noted that at least some of the 

bioactive lipid release from RBCs is mediated by hemolysis as we have shown in 

Figure 17.  
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We have shown in the previous chapter the mobilization of BM non-HSCs 

following acute ischemic injury, which is in agreement with multiple reports in the 

literature (13, 22, 23, 25-27). Although the mobilization process has been 

postulated to be directed by a decrease in SDF-1–CXCR4 and VLA-4–VCAM-1 

interactions in BM, we did not find corresponding dynamic changes in plasma 

levels of cytokines or correlation between these factors and the number of 

circulating BMSPCs. The complement cascade is activated locally at sites of 

myocardial infarction with elevated levels of C5b-C9 both in the myocardium and 

plasma (175) and we have shown elevated plasma levels following STEMI 

(Figure 16). Recent evidence suggests a role for C5b-C9 and other members of 

the complement cascade in the mobilization and homing of BM stem cells (56, 

137, 138). Our experiments also indicate that the exposure of peripheral RBCs to 

activated complement results in the release of bioactive lipids and thus may 

explain the temporal correlation between the elevated levels of C5b-C9 and 

bioactive lipids in the plasma of patients with AMI (Figure 16). Taken together, 

these data support our hypotheses that AMI activates the complement cascade 

that in turn activates the release of bioactive lipids from RBCs.  

The literature suggests an important role for bioactive lipids in the 

mobilization and homing of HSCs that express S1P receptors. However, there is 

no data on the role of bioactive lipids in the mobilization of BMSPCs in ischemic 

heart disease. The data shown herein supports an important role of bioactive 

lipids in the mobilization of BMSPCs following MI. We noted an elevated level of 

S1P and C1P in the plasma of MI patients shortly after the onset of myocardial 
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ischemia. These levels showed temporal correlation with the increased numbers 

of circulating BMSPCs suggesting a role for bioactive lipids in this mobilization. 

Furthermore, plasma isolated from AMI patients at peak BMSPCs mobilization 

was capable of chemoattracting BMSPCs in migration assays, a phenomenon 

that was blocked by delipidation of the plasma and selective S1PR1 and S1PR3 

antagonists (Figure 24). Thus, our findings extend the role of bioactive lipids in 

myocardial ischemia to the mobilization and homing of BMSPCs.  

Recently, S1P and C1P have been shown to be important mediators in the 

signaling cascades involved in apoptosis/survival, proliferation, stress responses 

and cell trafficking (203, 204). The majority of these actions are achieved through 

the interaction between S1P and one of its five receptors. We demonstrated here 

that non-HSCs such as Lin-/CD34+ stem cell populations enriched in VSELs 

express S1P receptors on their surface in a dynamic fashion (Figures 19 and 

20). S1P receptor expression, especially that of S1PR1 and S1PR3, dictated the 

ability of stem cells to migrate towards S1P gradients (Figure 19). This 

expression was heavily influenced by the levels of S1P in the surrounding 

microenvironment and could be manipulated to enhance the migratory response 

of BM non-HSCs to S1P gradients (Figure 20). Indeed, mPB cells that were 

exposed to high levels of S1P in their microenvironment and did not express 

S1PRs could re-express S1PR1 and S1PR3 following incubation in S1P free 

medium which correlated with their improved chemotaxis to S1P in migration 

chambers. These findings can have very important implications in the fields of 
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clinical mPB and BM cell transplantation that clinically result in variable degrees 

of engraftment and success. 

Studies mobilizing BM derived cells using G-CSF or transplanting BM-

derived cells following ischemia-induced damage have faced limited engraftment 

and modest clinical success (6, 91, 93, 99, 119, 205, 206). Evidence from animal 

studies demonstrate that BM cells mobilized in the setting of AMI home to the 

myocardium but differentiate at very low rates to cardiomyocytes (14). Further 

evidence suggests that paracrine factors released from BMSCs such as cKit+ 

cells recruit and stimulate resident cardiac stem cells to proliferate, differentiate 

and repair the myocardium after ischemic injury (114). Regardless of the 

mechanisms of benefit, better engraftment of the transplanted cells is needed. 

Following myocardial infarction, there is elevation in the matrix 

metalloproteinases (MMPs) at the site of infarction as early as a few hours after 

the acute event (143). Elevated MMPs have been shown to degrade traditional 

chemokines such as SDF-1 (51) and Monocyte Chemoattractant protein (MCP) 

(52) among others thus lowering their chemoattractant activity. Recent evidence 

suggests a role for cathelicidins in priming BM-derived HSCs migration to lower 

levels of SDF-1 and their contribution to HSCs homing to the BM following 

irradiation injury (169). We demonstrated that CAMPs are overexpressed 

following myocardial ischemia in cardiac tissues as well as cardiac fibroblasts. In 

addition, the human CAMP-LL37 primed mobilized PBSPCs isolated from 

patients following AMI to low, yet physiological, levels of SDF-1 (2 ng/ml) (Figure 

26). This is in agreement with other studies which showed that pre-incubating 
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endothelial progenitor cells with LL37 enhanced their homing and recruitment to 

areas of hind limb ischemia and the process of neovascularization (207). Taken 

together, these data support a potential role for CAMPs in the homing of 

BMSPCs to the ischemic myocardium by enhancing their sensitivity to lower 

levels of SDF-1. These findings may have important therapeutic implications in 

planning future BMSPCs based myocardial regenerative studies. 

We further examined the levels of bioactive lipids and their effect on stem 

cell mobilization under physiological and pathological conditions as an extension 

to our work on their role in acute ischemic heart disease. Obesity and metabolic 

syndrome have been shown to alter the metabolism of bioactive lipids and 

increase the level of S1P in plasma and various tissues. We confirmed these 

findings in our experiments and demonstrated enhanced stem cell mobilization 

and a corresponding increased numbers of circulating SKL stem cells in obese 

mice compared to lean mice (Figure 28). Similar unique findings were also noted 

in obese individuals admitted with STEMI. The elevated plasma level of bioactive 

lipids and circulating stem cells in obese individuals may provide a mechanistic 

basis for the paradoxically enhanced survival of obese individuals with 

cardiomyopathy. The compelling data regarding a potentially beneficial role of 

bioactive lipids in acute ischemic heart disease led us to explore pharmacological 

pathways to increase their levels in plasma. Using tetrahydroxybutylimidazole 

(THI), we were able to temporarily increase the plasma levels of S1P. We 

demonstrate an elevated number of circulating SKL stem cells correlating with 

the elevated S1P levels. This confirmed its chemotactic role and opens the door 



	   129	  

for future therapeutic manipulation in the management of patients with acute 

ischemic heart disease. 

In conclusion, experiments detailed in this chapter highlight the potential 

role of bioactive lipids and cathelicidins in the mobilization and homing of BM 

derived cells to the ischemic myocardium with their potential role in 

cardiomyocyte chimerism. Multiple new therapies that modulate the plasma 

levels of S1P or S1P receptor expression are approved by the FDA and can be 

utilized in improving the mobilization of BM derived stem cells in myocardial 

ischemia. Similarly, priming of BM-derived cells with the human cathelicidin, 

LL37, can be used to improve their homing to the ischemic myocardium and thus 

overcome a major hurdle in stem cell regenerative myocardial therapies. We are 

currently examining both strategies in our laboratory to improve the mobilization 

and homing of BMSPCs to the ischemic myocardium.  
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Chapter 4 

 

Discussion 

 

Chronic diseases or non-communicable diseases such as cardiovascular 

diseases and stroke account for a significant portion of mortality worldwide with 

high mortality among people under the age of 60.  Out of all the chronic 

diseases, cardiovascular disease (CVD) remain the leading cause of death in the 

United States and the western hemisphere (1). While CVD encompasses a 

myriad of diseases including cardiomyopathy, hypertensive heart disease, heart 

failure, cor pulmonale, cardiac dysrhythmias, inflammatory heart disease, 

valvular heart disease, cerebrovascular disease (stroke), peripheral arterial 

disease, and ischemic heart disease (or coronary artery disease); ischemic heart 

disease (IHD) remains the biggest cause of morbidity and mortality worldwide 

being responsible for 12.2% of all deaths.  Interestingly, US CVD death rates 

have declined from 1997 to 2007 by 27.8%, yet the burden of IHD or myocardial 

ischemia remains high.  IHD caused 1 of every 6 deaths in the United States in 

2007 (1).  It has been estimated that 785,000 Americans will have a new IHD 

event every year, and ≈470,000 will have a recurrent attack.  Approximately 

every 25 seconds, an American will suffer from a myocardial infarction (MI) 

brought on by IHD, and approximately every minute, someone will die of an MI 

(1).   
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Acute myocardial infarction (AMI) and the resultant IHD are often 

complicated with high mortality and poor overall prognosis (2, 3). The loss of 

cardiomyocytes is the hallmark of IHD followed by replacement with fibrous 

tissue, resultant cardiac remodeling and reduced heart function. All available 

therapies for IHD are symptomatic and/or palliative and there are no available 

therapies that can replace the dead myocardium except for heart transplantation 

that is hampered by multiple inherent limitations including the very limited 

availability of donor organs. Cardiomyocyte chimerism is an emerging concept 

indicating the capability of cardiomyocyte renewal (7, 9, 160); a process that is 

maintained, at least in part, by BM-derived stem cells (8). The underlying 

mechanisms of cardiomyocyte chimerism are poorly understood but this process 

is dynamic (10) and is capable of renewing up to half of the heart’s population of 

cardiomyocytes during the normal life span (11). On the other hand, current 

myocardial regenerative therapies using transplantation of BM stem cell or their 

mobilization have achieved limited success in contrast to the success observed 

with innate mechanisms (11, 91, 97-99). Therefore, understanding the pathways 

involved in innate cardiomyocyte reparatory mechanisms would help establish a 

strong scientific framework for their utilization in successful human myocardial 

regenerative clinical trials.  

AMI initiates innate reparatory mechanisms through which BMSPCs are 

mobilized towards the ischemic myocardium and contribute to myocardial 

regeneration as we and others have demonstrated (12, 13, 24, 26, 27, 161). 

However, very little is known about the underlying mechanism and clinical 
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significance of this mobilization. The role of the SDF-1/CXCR4 axis and other 

traditional chemokines in the mobilization and homing of BMSPCs during AMI is 

disputed and is believed to be less important than its role in HSCs mobilization 

and homing during physiological conditions (48-50). This can be explained, at 

least in part, by the active degradation of chemokines at the sites of inflammation 

and myocardial infarction by metalloproteinases (50-52). On the other hand, 

bioactive lipid mediators such as sphingosine-1 phosphate (S1P) and ceramide-1 

phosphate (C1P) are resistant to proteases and exhibit potent chemotactic 

effects on SPCs. S1P lyase is upregulated in inflammation in cardiac tissue 

resulting in reduced cardiac levels. However, ceramidases are not influenced by 

MI and C1P levels are elevated locally following MI leading to a homing gradient 

for stem cells. In our studies, we demonstrated an important role for members of 

the inflammatory system, bioactive lipids and their receptors in the mobilization 

and homing of BM-derived stem cells in general and after acute myocardial 

infarction in particular. 

 

Bone marrow pluripotent stem cells are mobilized during myocardial 

ischemia 

Several reports have confirmed the mobilization of partially committed and 

committed stem cells originating from the BM in response to myocardial ischemic 

injury (24, 26, 27, 31, 106). Upon appropriate stimuli, BM-derived cells are 

mobilized in the circulation and migrate to the injured myocardium in a dynamic 

fashion following what was previously thought to be a cytokine gradient of SDF-1, 
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LIF and HGF (22, 208). In our initial experiments, we demonstrate consistent 

mobilization of BM pluripotent stem cell populations enriched in VSELs in 

peripheral blood of patients with acute myocardial ischemia (Figures 5-7). 

Mobilized PB cells strongly exhibit markers of pluripotency, cardiac and 

endothelial lineages (Figure 8) and hence can potentially contribute to the repair 

of the injured myocardium. Indeed, previous studies in humans and animals 

demonstrate the commitment of mobilized BM-derived stem cell populations 

enriched in VSELs and PSCs for myocardial and endothelial lineages (13, 150). 

Moreover, we observed the expression of these markers to be further up-

regulated in sorted CD34+ cells only in the very early phase after the acute injury 

(Figure 9). The temporal reduction in the expression of these markers may be 

related to “back homing” of CD34+ and other selected subpopulations not 

incorporated in the myocardium. Of note, multiple human studies have 

successfully utilized BM-derived CD34+ cells in myocardial regeneration (128, 

209).  

Losordo and colleagues examined the role of G-CSF-mobilized CD34+ 

cells in the treatment of patients with severe refractory non-revascularizable 

coronary artery disease (128). Patients received CD34+ cell injections via the 

intramyocardial route with guided delivery in ischemic yet viable segments of the 

myocardium to maximize the benefit. Patients treated with CD34+ cell therapy 

had fewer angina symptoms, required less antianginal medications and had 

relevant improvement in exercise time compared to controls treated with 

standard of care therapy alone.  In patients with acute ischemic heart disease, 

1A.	  

1B.	  
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Pasquet et al demonstrated the efficiency of G-CSF-mobilized CD34+ cells as 

well	   (209). Patients with AMI were treated with G-CSF mobilized CD34+ cells 

which expressed cardiac and endothelial cell characteristics in vitro. When 

transplanted through the intracoronary route, patients experienced significant 

improvement of multiple cardiac functional parameters. Importantly, there were 

no associated side effects with either CD34+ cell mobilization or transplantation 

confirming the safety of this approach.   

The mobilization of PSCs appears to be related to the extent of myocardial 

ischemia and the degree of myocardial damage. The number of circulating 

VSELs enriched populations was highest in patients with ST-elevation 

myocardial infarction (STEMI), particularly in the early phases following the 

injury, when compared to patients with lesser degrees of ischemia such as non-

STEMI (NSTEMI) and those with chronic ischemic heart disease (12). Moreover, 

the ability of patients to mobilize PSCs in the peripheral circulation in response to 

AMI decreases with age, reduced global LV ejection fraction (LVEF) and 

diabetes supporting the notion of an age/comorbidity related decline in the 

regenerative capacity (12, 13). Indeed, animal models confirm the reduction of 

number as well as pluripotent features of BM-derived VSELs with age (16). 

Similarly, studies have demonstrated a reduction in number as well as functional 

capacity of endothelial progenitor cells in diabetic patients (210).  

The pluripotent features of mobilized VSELs, including the presence of 

octamer-binding transcription factor-4 (Oct4) and stage specific embryonic 

antigen-4 (SSEA4), were confirmed both on the RNA and protein levels. Utilizing 



	   135	  

the capabilities of the ImageStream system, we demonstrated that circulating 

VSELs during AMI have very similar embryonic features similar to their BM and 

CB counterparts including the small size (7-8 µm), large nucleus and high 

nuclear-to-cytoplasm ratio (Figure 5). Furthermore, circulating VSELs during AMI 

express markers of early cardiac and endothelial progenitors which suggests that 

the mobilization is rather specific and that circulating VSELs are destined to aid 

in myocardial regeneration following injury (12, 13, 22). Indeed, there is evidence 

that the mobilization of CXCR4+ cells in the setting of AMI is correlated with 

LVEF recovery as well as myocardial reperfusion when assessed with cardiac 

MRI in humans	   (32). The pluripotent features observed in mobilized VSELs are 

similar to their counterparts isolated from the BM, cord blood and other organs in 

humans and animals suggesting a common origin. 

Studies in sex-mismatched heart- and bone marrow-transplantation 

demonstrate the role of BM-derived cells in the chimerism of cardiomyocytes 

reaching 50% of the total cardiomyocyte count during the normal human life span 

(7, 11, 160). In a seminal paper, de Weger et al. demonstrated that donor BM-

derived cells contribute to the chimerism of the recipient’s myocardium as well as 

other organs such as the liver	   (8). Mobilized BM-derived cells can potentially be 

contributing to the reparatory mechanisms by reducing apoptosis and stimulating 

the resident cardiac stem cells rather than differentiating into cardiomyocytes 

(211). Fukuhara et al showed that BM cells mobilized following AMI home to the 

ischemic myocardial border with 10% of the cells residing in the infarction border 

being mobilized BM cells. The authors found a significant increase in newly 
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formed cardiomyocytes and dividing cells where the BM derived cells resided. 

Interestingly, a very small portion of these newly formed cardiomyocytes and 

actively dividing cells were derived from the mobilized BM cells. This data whcoh 

is also supported by other studies indicate that the majority of beneficial effects 

with BMSPCs are paracrine in nature rather than transdifferentiation (14). 

The beneficial mechanisms for mobilized and transplanted stem cells in 

cardiomyocyte regeneration are poorly understood. The direct differentiation of 

BM cells into cardiomyocytes and vascular cells represent the logical explanation 

for the observed beneficial effects (212). However, there is limited evidence to 

support the capability of BM cells to trans-differentiate into major cardiac lineages 

in vivo (213, 214). The literature however supports other beneficial mechanisms 

such as inflammatory modulation, paracrine stimulation of angiogenesis or 

endogenous cardiac stem cells, reduction of apoptosis and ultimately inhibition of 

ventricular remodeling.  Loffredo et al. (114) examined the effect of transplanting 

c-Kit positive BM cells from wild type mice into the infarct zone after myocardial 

infarction in a genetic fate-mapping model where only cardiomyocytes express 

the GFP protein. The authors observed spontaneous cardiomyocyte chimerism 

with cells from non-GFP progenitors. This process was further enhanced by 

transplanting BM-derived c-Kit positive cells resulting in improved regeneration, 

improved cardiac function and reduced scar size. Interestingly, the beneficial 

effects of c-Kit positive cells was not observed in the early phase after AMI, but 

rather required 8 weeks to be realized. The authors performed extensive 

analyses to track the fate of transplanted c-Kit positive cells and found no 
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evidence of trans-differentiation into cardiomyocytes. Furthermore, the survival of 

transplanted cells in the myocardium beyond 3 weeks was limited suggesting 

other mechanisms other than trans-differentiation to account for the beneficial 

effects. Similarly, the authors ruled out cell fusion as a mechanism for the 

beneficial effects. We observed similar findings following the transplantation of 

VSELs after AMI in our murine model. While there was significant attenuation in 

left ventricular systolic dysfunction and hypertrophy, reduction in adverse 

remodeling and scar size, and increased viable myocardium; the numbers of 

transplanted cells in the infarct and peri-infarct zones was small and does not 

explain the observed benefit. Thus, the beneficial effect of VSELs transplantation 

following AMI could be due to paracrine effects of VSELs such as reduction of 

apoptosis and/or activating resident cardiac stem cells (150). 

 

Traditional chemokines do not explain BM stem cell mobilization 

The number of circulating HSPCs increases in PB in response to systemic 

or local inflammation, strenuous exercise and stress, tissue/organ injury, and 

pharmacological agents. We have shown in the previous chapter the mobilization 

of BM non-HSCs following acute ischemic injury, which is in agreement with 

multiple reports in the literature (13, 22, 23, 25-27). Overall, the mobilization 

process has been postulated to be directed by a decrease in SDF-1–CXCR4 and 

VLA-4–VCAM-1 interactions in BM, reversal of the trans-endothelial chemotactic 

gradient between the BM microenvironment and plasma, activation of the 

coagulation cascade, and finally, as recently postulated, activation of the 
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complement cascade (CC) (49, 56, 168). Interestingly, many of the above 

mentioned mechanisms and cells are activated in the setting of acute myocardial 

infarction.  

Lately, however, this paradigm was challenged by numerous observations 

supporting SDF-1–CXCR4-independent mobilization and homing of BMSPCs.  

Studies have shown that the plasma SDF-1 level does not always correlate with 

mobilization of BMSPCs (56, 57, 81, 215).  While some in vivo studies have 

observed chemotaxis of BMSPCs in response to an increased SDF-1 gradient, 

the SDF-1 was administered in these assays at supraphysiological 

concentrations (100-300 ng/ml) (216, 217), which is about 100 times higher than 

the SDF-1 concentrations measured in human or murine biological fluids (218).  

Furthermore, BM preconditioning for BM transplantation such as after irradiation 

therapy as well as AMI induce upregulation of several proteolytic enzymes, such 

as metalloproteinase 2 (MMP-2), MMP-9, cathepsin G and neutrophil elastase, 

thereby proteolytically inactivating SDF-1 and CXCR4, effectively neutralizing the 

chemotactic activity of SDF-1 towards BMSPCs (51, 52).  It is important to note 

that this proteolytic environment would promote HSPC mobilization by 

decreasing SDF-1–CXCR4-mediated retention (as well as attenuating VLA-4-

CD106 interaction) in the BM, however SDF-1 homing would be impaired due to 

enhanced proteolytic degradation of SDF-1 (219-221).  Together these 

observations imply that other, possibly protease-resistant chemoattractants are 

involved in HSPC mobilization in order to make up for the deficiency of the SDF-

1 gradient between the BM and PB. 
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 These data have important therapeutic implications. Studies examining 

the mobilization of BM stem cells have achieved limited success. This can be 

explained by the non-selective mobilization of BM stem cells and the limited role 

of SDF-1 and chemokines in their homing to the infarction border. Indeed, 

multiple animal studies have demonstrated a limited role of the SDF-1/CXCR4 

axis in myocardial regeneration following AMI (50, 114). It is prudent to explore 

and utilize alternative mechanisms that may be involved in BMSPCs mobilization 

and homing to design successful BM based regenerative therapies. 

 

BM stem cell mobilization is maintained by complex interplay between the 

immune system, bioactive lipids, chemokines and the BM niches 

The complement cascade (CC) is an evolutionarily conserved regulatory 

mechanism for sensing and responding to inflammation and organ injury. Multiple 

mechanisms including tissue hypoxia/injury and exposure to microorganisms can 

activate the CC through the classical, lectin or alternative pathways. Activation of 

the complement cascade has been documented with the use of several BM 

HSCs mobilizing agents such as G-CSF, zymosan and AMD 3100	   (139, 141, 

222). Following CC activation, multiple fragments such as C3a, C5a, or the 

membrane attack complex (MAC) are produced, which modulate the mobilization 

and homing of BM HSCs albeit with variable effects	  (56).  For instance, C3 (C3a 

or desArgC3) cleavage fragments contribute to BM HSPC retention in BM niches. 

On the other hand, C5 cleavage fragments (C5a or desArgC5) are involved in BM 

HSC egress from the BM, as evidenced in multiple animal studies (140, 168, 



	   140	  

187, 223). C3 fragments are shown to enhance the integration of CXCR4 into 

lipid rafts thus increasing the responsiveness of stem cells to SDF-1. 

Furthermore, C3 fragments increase the cross talk between different proteins 

such as the guanine nucleotide triphosphates (GTPases) Rac1 and Rac2 which 

are crucial for engraftment/homing of stem cells. On the other hand, C5 

fragments and the generation of the C5b-C9 membrane attack complex (MAC) 

activate BM myeloid cells which secrete proteolytic enzymes that are then 

responsible for degrading the SDF-1/CXCR4 and VCAM/VLA4 bonds between 

HSCs and their BM niches. The effect is to increase the permeability of the 

endothelial-PB barrier, releasing S1P from RBCs in the PB increasing the S1P 

gradient. All these actions culminate in the release of HSCs from the BM and 

their migration to the PB.   

The complement cascade is activated locally as well as systemically 

following myocardial infarction with elevated levels of C5b-C9 both in the 

myocardium and plasma (175). We confirmed the activation of the complement 

cascade in the plasma following acute myocardial infarction. Our experiments 

also indicate that the exposure of peripheral RBCs to activated complement 

results in the release of bioactive lipids which may explain the temporal 

correlation between the elevated levels of C5b-C9 and bioactive lipids in the 

plasma of patients with AMI in agreement with the available literature (Figure 

17). In addition to the role of CC activation in elevating plasma S1P levels, a 

potential role of increased myocardial tissue levels of C3a and C5a in homing 

BMSPCs to the ischemic myocardium need to be further explored. Taken 
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together, these data support our hypothesis that AMI activates the complement 

cascade that in turn activates the release of bioactive lipids from RBCs.  

The resultant S1P gradient chemoattracts BM derived stem cells including 

non-HSCs populations enriched in VSELs from their BM niches to the PB. In 

agreement with this hypothesis, we noted correlation between the peak levels of 

S1P and peak mobilization of non-HSCs in our patient population. Moreover, 

plasma from AMI patients chemoattracted BMSPCs in an S1P/S1PR1 dependent 

fashion. However, homing of mobilized BMSCs follow different and more 

complex pathways. Our experiments and other studies have shown that S1P 

levels are reduced in the ischemic myocardium due to the activation of S1P lyase 

(176). In addition, exposure of BMSPCs to S1P levels comparable to plasma 

levels after AMI resulted in the reduced surface expression of S1PRs. Therefore, 

other mechanisms are responsible for BMSPCs homing and we think there are 

multiple and redundant pathways contributing to this phenomenon: i) elevated 

levels of C1P which we have shown to be a potent chemoattractant of BM stem 

cells such as MSCs, ii) elevated levels of cathelicidins and ß2-defensins enhance 

the response of BMSCs to SDF-1 levels by incorporating CXCR4 into lipid rafts 

of the stem cell membrane, and iii) locally elevated complement cascade 

fragments also enhance the response of BMSCs to even low levels of SDF-1. 

We therefore propose a new paradigm in which complex interactions between 

the complement cascade, immune system members and bioactive lipids 

orchestrate the mobilization and subsequent homing of BMSCs following AMI 

(Figure 33). 
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 The role of bioactive lipids in stem cell mobilization was further confirmed 

by our experiments on S1P receptor expression. We confirmed the dynamic 

expression of S1PRs which responded very quickly to S1P levels in the 

surrounding microenvironment. Similar to the dynamic changes in the expression 

of S1PRs and their role in lymphocyte trafficking, S1PR expression on BMSPCs 

was reduced with elevated surrounding S1P levels. Thus, the expression of 

S1PRs and their response to S1P may play an important role in BMSPC 

mobilization and homing. However, we could re-express S1PRs by removing 

surrounding S1P and thus enhancing the response of BMSPCs to S1P gradients. 

These results may have very important implications in clinical BM and mPB 

transplantation therapies which show variable degrees of success. By enhancing 

the expression of S1PRs, we may be able to enhance the engraftment of BMSCs 

to the BM. Alternatively, examination of S1PR expression on BMSCs before 

transplantation may serve as a clinically relevant and easy to perform marker for 

the transplantation success.  

 Retention of transplanted BMSCs in the myocardium is poor with the 

average rate ranging from 2 to 7.5%. This may explain the limited success of 

clinical studies to demonstrate clinically relevant results. Our results point to 

possible pathways that can be further explored therapeutically to improve the 

outcomes of BM regenerative studies. Incubating stem cells with LL37 

(cathelicidins) significantly enhanced their chemotaxis to low, yet physiological, 

levels of SDF-1 and this phenomenon could be further explored in clinical 

settings. Indeed, homing of EPCs towards ischemic hind limbs and the resultant 
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neovascularization has been enhanced by incubating EPCs with LL37 prior to 

their transplantation. This pathway has not been explored before in the 

myocardial infarction model and could provide a solution to poor engraftment. 

Further pathways that include byproducts of the activated CC system activation 

such as C3 fragments also could be explored in this setting (140, 168, 187, 223).  
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Figure 33. 
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Figure 33.  Sequence of events in BMSPC mobilization from the BM 

towards ischemic myocardium during MI.  Acute MI initiates an inflammatory 

response resulting in release of proteases (by granulocytes and osteoclasts) in 

the BM (1) which proteolytically inactivate the SDF-1-CXCR4 interaction between 

BM osteoclasts and BMSPCs (2).  The now released BMSPCs follow an 

increasing SDF-1 and S1P/C1P gradients to exit the BM niches into the PB.  

Acute inflammation also promotes release of cathelicidins (LL-37) which facilitate 

clustering of CXCR4 into lipid rafts thereby increasing their sensitivity towards 

lower levels of circulating SDF-1.  Together, the increased sensitivity towards 

SDF-1 and S1P gradients facilitate BMSPCs homing towards ischemic 

myocardium.  
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Future directions 

The above-mentioned data supporting the mobilization of PSCs and 

VSELs, enriched in cardiac and endothelial markers, in ischemic heart disease 

have multiple clinical implications. Circulating PSCs can be regarded as markers 

of ischemic injury in humans and as predictors for myocardial recovery following 

large ischemic damage. Indeed, studies in humans have demonstrated a clinical 

correlation between the number of circulating stem cells and recovery of left 

ventricular parameters after AMI (32). However, the clinical outcomes relevance 

of this mobilization is not fully understood. On the other hand, the therapeutic 

application of VSELs in myocardial regeneration has proven beneficial in animal 

models although the beneficial mechanisms remain elusive and are probably 

mainly paracrine in nature (150). Nonetheless, smaller numbers of the pluripotent 

VSELs (10,000 cells per mouse) have proven to be more beneficial than larger 

numbers of the more committed HSCs (100,000 cells per mouse) indicating their 

greater therapeutic potential (150). Moreover, ex-vivo expansion and priming of 

VSELs have proven to be a successful strategy in animal models and their 

clinical applications are pending (150, 224).  

The role of bioactive lipids in BMSC mobilization can be further exploited 

using readily available FDA-approved therapeutics. The use of agents such as 

FTY720 in manipulating S1PR expression and response to S1P gradients may 

prove beneficial in myocardial regeneration following AMI. It is possible that 

enhancement of S1PR1/S1PR3 receptor expression can lead to enhanced 

mobilization of BM-derived stem cells including non-HSCs and the more potent 
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PSCs following AMI. We are currently planning animal studies utilizing specific 

receptor agonists for S1PR1 to enhance the mobilization and homing of BMSPCs 

to the injured myocardium following AMI. We will employ the selective S1PR1 

agonist SEW2871 [5-(4-phenyl-5- trifluoromethylthiophen-2-yl)-3-(3-

trifluoromethylphenyl)-(1,2,4)-oxadiazole (Calbiochem, La Jolla, CA)] at 20 mg/kg 

twice daily intra-peritoneal injection starting third day following AMI (225). Since 

S1PR2 inhibits chemotactic responsiveness of cells to S1P gradient (226, 227) 

and in order to increase BMSPC egress from BM in response to elevated plasma 

S1P gradient during AMI, we will block S1PR2 receptor on BMSPC by employing 

the S1PR2 antagonist, JTE-013 starting the third day after acute injury at 250 µM 

dose (228, 229). Dose response studies will be conducted to establish safety and 

timing for this compound by examining the peripheral blood cell count and 

circulating SKL cells as well as monitoring fro side effects at daily intervals for 1 

week. The rationale for using JTE-013 is supported by in vivo strategies to 

increase migration of neural progenitor cells toward the area of ischemia (229) 

and the fact that S1PR2-/- macrophages accumulate at higher level in sites of 

inflammation (75). We envision that this antagonist will improve signaling of S1P 

through S1PR1 and S1PR3 receptors and therefore enhance mobilization and 

homing of BMSPCs to the myocardium in the setting of acute myocardial 

ischemia.  

S1P lyase (SPL) is the rate-limiting step in S1P degradation leading to 

irreversible conversion of S1P into phosphoethanolamine and palimitaldhyde. 

Hence, SPL is a major regulator of the levels of S1P in the plasma as well as 
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different tissues (230). Interestingly, there is differential expression of SPL in BM 

cells, peripheral blood cells such as lymphocytes, endothelial cells and the 

lymphatic tissue. Borowsky et al described relatively low expression of SPL 

among hematopoietic cells in the BM in comparison to the higher expression in 

circulating lymphocytes and granulocytes (231). This differential expression 

suggests that systemic inhibition of SPL can result in higher gradients of S1P in 

the plasma thus facilitating the mobilization of BMSPCs. We have shown an 

almost 2-fold increase in plasma levels of S1P after 24 hours of 

tetrahydroxybutylimidazole (THI) (ST. Louis, MO) treatment. This correlated with 

a significant increase in circulating SKL stem cells at physiological conditions. 

Therefore, to better address the role of SPL inhibition in enhancing the 

mobilization and homing of BMSPCs to the injured myocardium, we will treat 

mice with at a dose of 25 mg/L THI + 10 g/L glucose in drinking water for 24 

hours following AMI (Glucose is added to improve palatability of THI solution). 

We will examine the role of THI in enhancing the mobilization and homing of 

BMSPCs to the myocardium and its effect on myocardial functional recovery 

following myocardial infarction. Beside the above-described role of bioactive 

lipids in BMSCs mobilization, S1P plays a role in the differentiation of stem cells 

into cardiac and endothelial lineages which can enhance the regenerative 

potential of mobilized cells. 

Improving the engraftment of mobilized as well as transplanted BMSPCs 

would be of great benefit in regenerative studies. Increasing the expression of 

cathelicidins and ß-defensins in the myocardium through gene therapy could 
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improve the homing of mobilized stem cells to the injured myocardium where the 

levels of SDF-1 are relatively elevated. Although this seems feasible, its clinical 

implications are limited due to the unpredictable nature of AMI. On the other 

hand, pre-incubating BMSCs with cathelicidins or C3a fragments of the CC 

pathway may be of great importance in increasing their retention in the infarction 

border following their transplantation and thus increasing their therapeutic 

potential. This approach has been successfully used in BM transplantation 

studies and has improved the engraftment of BM-HSCs to the BM stroma after 

transplantation into lethally irradiated mice	  (223).  We are currently examining the 

engraftment of BMSPCs in the ischemic myocardium after incubation with 

various members of the immune system such as CC proteins (C3a and C5a) and 

cathelicidins in animal models. 

Oxidative stress has been shown to impair the functional capacity of EPCs 

(232) and studies are underway examining the efficacy of factors mitigating 

oxidative stress such as eNOS overexpression in BMSC therapy for myocardial 

regeneration	   (233). Nuclear reprogramming to convert differentiated adult cells 

such as fibroblasts into induced pluripotent cells (iPS) has opened the door for 

creating patient-specific autologous pluripotent stem cells with multiple 

therapeutic opportunities	   (234). Further studies are needed to examine the 

feasibility as well as the safety of iPS particularly their tumorigenicity and 

immunogenicity before they can be explored in human studies.  

On the biotechnology frontier, multiple modifications of the transplanted 

cells (priming) and the host environment are being tested in humans to improve 
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the efficiency of BMSCs’ regenerative capacity. Researchers now have the tools 

to design three dimensional constructs that can be transplanted in the heart and 

provide a safe haven for attracting and homing transplanted and native resident 

stem cells to the sites of myocardial infarction and thus improving engraftment 

and retention (reviewed in Mooney et al (235)). These constructs can be 

supplemented with various cytokines and chemokines to enhance the 

engraftment and promote the survival and differentiation of stem cells.  Most 

importantly, the concept of multiple doses of stem cells to repair a complex 

environment such as the myocardium after myocardial infarction is gaining more 

traction. While the field of stem cell regenerative therapy for ischemic heart 

disease is still in its infancy, the accelerated advances in a wide array of 

biological and biotechnological areas have rapidly propelled the field from the 

bench to clinical applications.  
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Chapter 5 

 

Materials and Methods 

 

Human subjects 

The study population consisted of 60 patients with acute ST-elevation 

myocardial infarction (STEMI). We enrolled 30 age- and sex-matched subjects 

into the control (CTRL) group, which is asymptomatic with no history of CAD but 

with a similar risk factor profile to the STEMI group. Patients with STEMI were 

referred within 12 h of symptom onset for primary percutaneous coronary 

intervention (PPCI). Patients were excluded if they had a systemic inflammatory 

process, cancer, recent motor vehicle accident, recent surgery, active infection, 

history of MI or revascularization (coronary artery bypass graft, PCI), 

unsuccessful revascularization, or onset of the symptoms >12 h. Peripheral blood 

(PB) samples were obtained at presentation in all patients (BSL) followed by 

samples at 6, 12, 24, and 48 after PCI and only PPCI patients were enrolled. BM 

samples were obtained from normal individuals and the BM cells were examined 

by smear and flow cytometry for any pathological findings before being utilized in 

the chemotaxis experiments.  The study protocol complies with the Declaration of 

Helsinki and was approved by the institutional Ethics Committee. All patients 

provided written informed consent.  

Flow cytometric analysis and sorting of circulating primitive stem cells 

from PB 
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Erythrocytes were lysed twice using BD PharmLyse lysing buffer (BD 

Biosciences, San Jose, CA) at room temperature for 10 min and subsequently 

washed in phosphate-buffered saline (PBS) to yield total nucleated cells (TNCs). 

TNCs were subsequently stained for hematopoietic lineages markers (Lin) using 

the following fluorescein isothiocyanate (FITC) conjugated antibodies (Abs) 

against human: CD2 (clone RPA-2.10); CD3 (clone UCHT1); CD14 (clone 

M5E2); CD16 (clone 3G8); CD19 (clone HIB19); CD24 (clone ML5); CD56 (clone 

NCAM16.2); CD66b (clone G10F5) and CD235a (clone GA-R2). These 

antibodies were purchased from BD Biosciences. The cells were simultaneously 

stained for the panleukocytic marker - CD45 (PE-Cy7 conjugated Abs, clone 

HI30; BD Biosciences) and one of the following antigens: CXCR4 (APC 

conjugated Abs, clone 12G5, BD Biosciences), CD34 (APC conjugated Abs, 

clone 581, BD Biosciences), CD133 (CD133/1; APC conjugated Abs, Miltenyi 

Biotec, Auburn, CA), S1P receptor-1 (PE conjugated Abs, clone 218713 RnD 

systems, Minneapolis, MN, USA), SSEA-4 (PE conjugated Abs, clone E025016, 

eBioscience, San Diego, CA), and S1PR3 (Biotinylated antibody with a 

streptavidin secondary antibody labeled with PE-Cy7, Santa Cruz Biotechnology, 

Santa Cruz, CA, USA). Staining was performed in PBS with 2% fetal bovine 

serum (FBS, Invitrogen, Carlsbad, CA), at 40 C for 30 min. Cells were 

subsequently washed, re-suspended and analyzed using an LSR II (BD 

Biosciences). At least 106 events were acquired from each sample. The absolute 

numbers of PSCs and VSELs were calculated (individually for each patient) per 

1µl of PB based on the percentage content of these cells detected by flow 
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cytometry and the absolute number of white blood cells (WBCs) per 1 µl of PB. 

FlowJo software was used for analysis (Tree Star, Ashland, OR). 

Following lysis of erythrocytes, the populations of PB cells enriched in 

VSELs (Lin-/CD45-/CD133+, Lin-/CD45-/CD34+ and Lin-/CD45-/CXCR4+) were 

sorted using a multiparameter fluorescence-activated cell sorting (FACS) with a 

MoFlo cell sorter (Beckman Coulter, Fullerton, CA) according to previously 

published protocol (136) and used for immunocytofluorescence analyses. 

Similarly, total fractions of CD34+ cells were sorted for real-time RT-PCR (RQ-

PCR) analysis of gene expression.  

Murine experiments were conducted using similar techniques. Peripheral 

blood samples were obtained from the retro-orbital route and cells were stained 

against a lineage antibody mixture (FITC), CD90.1 (PerCP), CD45 (PE), CD117 

(APC), and Sca-1 (PECy7). All antibodies were obtained from BD Biosciences. 

Staining was performed at 40 C for 30 min following by one-step lysis-fixation 

using BD Biosciences lysing-fixing buffer. Cells were subsequently washed, re-

suspended and analyzed using an LSR II (BD Biosciences).  

 

Imaging flow cytometric analysis with Image Stream system 

PB-derived TNCs were isolated as detailed above. TNCs were fixed with 

4% paraformaldehyde (Sigma Aldrich, St. Louis, MO) for 20 min, permeabilized 

with 0.1% Triton X-100 solution (Sigma Aldrich, St. Louis, MO) for 10 min and 

washed twice with PBS. TNCs were subsequently stained for intranuclear 

transcription factor Oct-4 using anti-mouse/human Oct-4 antibody (purified, clone 



	   154	  

9E3, Millipore, Billerica, MA) for 2h at 37°C, followed by washing the incubation 

with the secondary anti-mouse IgG antibody conjugated with PE (BioLegend, 

San Diego, CA) for 2h at 37°C. Cells were further washed and stained for CD45 

(FITC conjugated Abs; clone HI30, BD Biosciences), hematopoietic lineages 

markers (Lin, as detailed above) and CD34 (PE-Cy5 conjugated Abs; clone 581, 

BD Biosciences) or CD133 (biotin conjugated Abs, clone CD133/1, Miltenyi 

Biotec). Staining with biotinylated antibodies was followed with staining with 

streptavidin conjugated with PE-Cy5 (BD Pharmingen, San Jose, CA) to visualize 

the CD133 or CD34 expression. 7-aminoactinomycin D (7-AAD) was added for 

10 minutes before analysis (BD Pharmingen; 40µM) to visualize nucleated 

objects. Samples were run directly on the Image Stream System (ISS) 100 

(Amnis Corporation, Seattle, WA).  Signals from FITC, APC, 7-AAD and PE-Cy5 

were detected by channels 3, 4, 5 and 6, respectively, while side scatter and 

brightfield images were collected in channels 1 and 2, respectively.  

 

Real-Time RT-PCR 

To study mRNA levels for PSCs antigens PSCs (Oct-4, Nanog) as well as 

early myocardial (Nkx2.5/Csx, GATA4) and endothelial (vWF) markers, total 

mRNA was isolated using RNeasy Mini Kit (Qiagen Inc., Valencia, CA) and 

reverse-transcribed using TaqMan Reverse Transcription Reagents (Applied 

Biosystems, Foster City, CA). Measurements of mRNA levels of PSC, cardiac, 

and endothelial markers and β2-microglobulin were performed by RQ-PCR using 

an ABI PRISM 7000 Sequence Detection System (ABI, Foster City, CA). The 25 
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ul of reaction mixture contained SYBR Green PCR Master Mix, forward and 

reverse primers for specific gene. Primers were designed with Primer Express 

software. All of the primer sequences are provided in Table 3.  The threshold 

cycle (Ct), i.e., the cycle number at which the amount of amplified gene of 

interest reached a fixed threshold, was subsequently determined. The relative 

quantification of Oct-4, Nonog, Nkx2.5/Csx, GATA4, vWF, VE-Cadherin and 

CXCR4 mRNA expression was performed with the comparative Ct method. 

Briefly, the relative quantification value of target gene, normalized to an 

endogenous control (β2-microglobulin gene) and relative to a calibrator, was 

expressed as 2-ΔΔCt (fold difference), where ΔC = Ct of target genes - Ct of 

endogenous control gene (β2-microglobulin), and ΔΔCt = ΔCt of samples for 

target gene - ΔCt of calibrator for the target gene. To avoid the possibility of 

amplifying contaminating DNA: 1) all of the primers for RQ-PCR were designed 

with an intron sequence inside cDNA to be amplified, 2) reactions were 

performed with appropriate negative controls (template-free controls), 3) uniform 

amplification of the products was rechecked by analyzing the melting curves of 

the amplified products (dissociation graphs), 4) the melting temperature (Tm) was 

57°C to 60°C, the probe Tm was at least 10°C higher than primer Tm. 

 

Immunohistochemistry 

Immunofluorescence identification of pluripotent specific transcription 

factors and intracellular proteins was performed on sorted stem cell populations 

enriched in VSELs.  Briefly, cells were fixed with 4% paraformaldehyde for 10 
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minutes (Sigma Aldrich) then washed with PBS (Sigma Aldrich). Cells were 

permeabilized following fixation with 0.1% Triton-X 100 (Sigma Aldrich) for 10 

minutes, blocked with 2% donkey serum (Jackson Immunoresearch laboratories, 

West Grove, PA) for 30 min and then stained with primary antibodies against 

Oct-4 (clone 9E3, Millipore) for 16 hours at 40 C. Primary antibodies were 

washed three consecutive times with PBS before secondary antibodies were 

added at a concentration of 1:100. Staining with secondary anti- mouse IgG 

antibodies conjugated with TRITC (Jackson Immunoresearch laboratories) was 

performed at 370 C for 2 hours and then cells were washed three times with PBS. 

Cells were additionally stained for SSEA-4 (FITC conjugated Abs, clone MC-813-

70; BioLegend) and CD45 (biotin conjugated Abs, clone HI30, BD Biosciences) 

followed by incubation with streptavidin conjugated with Cy5 (BioLegend) and 

finally nuclei were stained with DAPI (Molecular Probes, Carlsbad, CA). All 

immunofluorescence photomicrographs were acquired using a Zeiss LSM 510 

confocal microscope (Carl Zeiss, Thornwood, NY). 

 

Measurement of Blood Cytokine Levels 

Blood samples were collected in the above mentioned time points both in 

STEMI patients and controls in EDTA tubes. Tubes were centrifuged at 2000 

RPM for 15 minutes. Plasma was divided into aliquots and stored at -80°C. 

Plasma levels of stroma-derived-factor 1 (SDF-1α), granulocyte-colony-

stimulating factor (G-CSF), vascular endothelial growth factor (VEGF), 

hepatocyte growth factor (HGF), and stem-cell factor (SCF) were quantified using 
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the Luminex platform system: Milliplex Human Cytokine Kit (Millipore, Billerica, 

MA, USA) according to the manufacturer’s protocols. 

 

Mass spectrometry measurements of C1P and S1P 

PB samples were obtained in EDTA tubes and plasma was isolated by 

centrifuging whole blood for 10 minutes at 800 x G. Supernatant was then 

removed and centrifuged at 9400 x G for 10 minutes to remove platelets and 

supernatant was then used for lipid measurements. RBCs were isolated using 

the leukocyte depletion kit (Pall Inc., East hills, NY, USA) and purified by 

centrifuging at 600 x g for 10 minutes followed by washing in normal saline at the 

same speed. To assess the effect of activated complement on bioactive lipids 

release, RBCs were incubated for 3 hours at 370C with saline, antibody against 

RBCs alone (BD Biosciences), normal human serum complement alone at 1:5 

dilution (Quidel, Santa Clara, CA), or antibody and complement together. Lipids 

were extracted from plasma, supernatant and RBCs using acidified organic 

solvents, as we have previously described (236). Analysis of S1P and C1P was 

carried out using a Shimadzu UFLC coupled with an AB Sciex 4000-Qtrap hybrid 

linear ion trap triple quadrupole mass spectrometer in multiple reaction 

monitoring (MRM) mode. Detailed LCMSMS conditions for analysis of S1P were 

previously described in Selim et al (170). Various C1P species were separated 

using an Agilent Zorbax Eclipse XDB C8 column, 5 um, 4.6 X 150 mm column. 

The mobile phase consisted of 75/25 of methanol/ water with formic acid (0.5%) 

and 5 mM ammonium formate (0.1%) as solvent A and 99/1 of methanol/ water 
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with formic acid (0.5%) and 5 mM ammonium formate (0.1%) as solvent B. For 

the analysis of various C1P species the separation was achieved by maintaining 

75% of solvent B for 3 min, then increasing to 100% B over the next 3 min and 

maintaining at 100% B for the last 18 minutes. The column was equilibrated back 

to the initial conditions in 3 min. The flow rate was 0.5 mL/min with a column 

temperature of 600C. The sample injection volume was 10 uL. The mass 

spectrometer was operated in the positive electrospray ionization mode with 

optimal ion source settings determined by synthetic standards with a declustering 

potential of 46 V, entrance potential of 10 V, collision energy of 19 V, collision cell 

exit potential of 14 V, curtain gas of 30 psi, ion spray voltage of 5500 V, ion 

source gas1/gas2 of 40 psi and temperature of 5500C. MRM transitions 

monitored were as follows: 562.436/264.1 for C12-C1P, 618.565/264.2 for C16-

C1P, 730.8/264.2 for C24-C1P, 422.3/264.4 for C2-C1P, 590.4/264.4 for C14-

C1P, 620.5/266.4 for DH16-C1P, 644.5/264.4 for C18-1 C1P, 646.5/264.4 for 

C18-C1P, 674.6/264.1 for C20-C1P, 702.7/264.4 for C22-C1P, 728.6/264.4 for 

C24-1 C1P, 784.7/264.4 for C26-1 C1P and 758.7/264.4 for C26-C1P. 

 

Measurement of the complement cascade activation in plasma of AMI 

patients 

Blood samples were collected at the above-mentioned time points both in 

STEMI patients and controls in EDTA tubes and placed immediately on ice. 

Tubes were centrifuged for 2000 RPM for 15 minutes. Plasma was divided into 

aliquots and stored at -80°C. Plasma levels of C5b-C9 were quantified using the 
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Luminex platform system: Complement quantification kit (BD Biosciences) 

according to the manufacturer’s protocols. 

 

Measurement of the hemoglobin level 

RBCs were isolated using the leukocyte depletion kit (Pall Inc., East hills, 

NY, USA) and purified by centrifuging at 600 x g for 10 minutes followed by 

washing in normal saline at the same speed. To assess the effect of activated 

complement on bioactive lipids release, RBCs were incubated for 3 hours at 

370C with saline, antibody against RBCs alone (BD Biosciences), normal human 

serum complement alone at 1:5 dilution (Quidel, Santa Clara, CA), or antibody 

and complement together. Hemolysis levels were analyzed by measuring the 

absorbance of plasma at 540nm as described elsewhere (237) and calculated as 

the percentage of hemolysis expressed as fold increase of hemoglobin in 

mobilized plasma as compared with normal plasma. 

Chemotaxis assays 

Cell migration assays were performed using the chemotactic (Boyden) 

chamber (Neuroprobe, Gaithersburg, MD). BM- and PB-derived cells were lysed 

as described above. Cells were then suspended in S1P free medium (RPMI with 

0.1% FBS) for 3 hours prior to the migration assays. The lower chambers were 

loaded with controls or the testing agents. The cell suspension (1x106 cells/100 

µl) was loaded into the upper chambers on a 5 µm membrane, and the chambers 

were incubated (37 ºC, 95% humidity, and 5% CO2) for 3 hours, and 

subsequently cells in the lower chambers were harvested, stained against the 
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lineage markers, CD34 and CXCR4 as detailed above and counted by flow 

cytometry. The lower chambers contained no chemoattractant medium-vehicle 

(RPMI medium with 0.1% FBS, i.e. control) or plasma isolated from STEMI 

patients during the peak mobilization of stem cells. To examine the role of 

bioactive lipids in inducing BM-derived stem cell migration, simultaneous 

experiments utilizing charcoal-stripped plasma in the lower chamber were 

performed as previously described (238). Similarly to examine the role of S1PR1 

in this mobilization, BM-derived cells were incubated with 10 µM of the selective 

S1PR1 receptor antagonist W146 at 10 µM (Cayman Chemicals, Ann Arbor, MI) 

or VPC23019 at 10 µM (Avanti Polar Lipids, Alabaster, AL) for 1 hour prior to the 

migration assay. To examine the role of LL37 on PBC migration, PB cells 

isolated from patients with AMI (1x106 cells/100 µl) were loaded in the upper 

chambers. The lower chamber was loaded with RPMI medium with 0.1% FBS 

supplemented with SDF-1 at 2 ng/ml (PeproTech, Rocky Hills, NJ) alone or LL37 

at 2.5 ng/ml (AnaSpec, Fremont, CA) alone or the combination of both. 

Chemotaxis in these experiments was conducted as detailed above. All migration 

results are reported as fold change in migration compared to controls. To assess 

the migration of BM-derived stem cells and MSCs isolated from normal BM 

isolated from normal human donors and WT mice, BM cells were cultured in 

DMEM with 10% FBS for 3 passages then cells were detached with Trypsin-

EDTA, washed in DMEM (or EBM), resuspended in DMEM (or EBM) with 0.5% 

BSA, and seeded at a density of 3 × 104 cells/well into the upper chambers of 

Transwell inserts (Costar Transwell; Corning Costar). The lower chambers were 
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filled with SDF-1 (2 or 300 ng/mL, R&D systems, Minneapolis, MN, USA), 

Sphingosine 1-phosphate (0.01. 0.1 or 1 µM, Cayman Chemical, Michigan, USA), 

C16-Ceramide 1-phosphate (1 µM, Avanti Polar Lipids, Alabaster, Alabama, 

USA), or C18-Ceramide 1-phosphate (0.1~10 µM, from bovine brain, 

Sigma, Sonicated in distilled water. 0.5% BSA DMEM or EBM (control). After 3 

hours for BM cells and 6 hours for MSCs, cells from the lower chamber were 

collected, stained and quantified by flow cytometry.  

 

Myocardial ischemia and cardiac fibroblast isolation experiments 

Six C57/B6 mice were utilized in the myocardial hypoxia experiments. 

Hearts were excised and cannulated for the Langendorff apparatus, using 

perfusion buffer containing 4.7mM K+ and 1.8mM Ca++.  The controls were 

allowed to beat for 50 minutes in warmed and oxygenated perfusion buffer then 

removed and left ventricles were flash frozen in liquid nitrogen.  The ischemic 

hearts were hung and allowed to beat for 5 or 6 minutes with flow in the warmed 

and oxygenated perfusion buffer. The flow was stopped for 30 minutes and the 

hearts were bathed in the warmed buffer.   Following ischemia, flow was 

restarted and the hearts started beating in about 0.5 to 1 minute after onset of 

flow and continued beating for 20 minutes to simulate reperfusion injury. The left 

ventricles from ischemic hearts were then flash frozen as detailed above. Frozen 

myocardial samples were utilized for the RQ-PCR experiments. 

Cardiac fibroblasts were isolated from isolated hearts of euthanized 

C57/B6 mice. Left ventricular tissues were minced into small pieces (less than 1 
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mm in diameter) using razor blades. The minced left ventricular tissues were 

incubated with HBSS solution (Invitrogen, Carlsbad, CA) containing glucose, 

NACL, KCL and NaHCO3; and supplemented with dispase and collagenase B 

(Roche, Indiannapolis, IN) for 30 minutes followed by washing twice. The cell 

pellet was incubated overnight in DMEM (Invitrogen, Carlsbad, CA) 

supplemented with 10% FBS (Thermoscientific, Waltham, MA) overnight. 

Floating cells were washed and adherent cells were allowed to grow to 70-80% 

confluence. Hypoxia experiments were conducted in hypoxia incubators where 

cells were maintained at <1% O2, 5% CO2 and 370C for either 2 hours followed 

by 1 hour reperfusion or 72 hours hypoxia followed by reperfusion. Cells were 

then harvested and flash frozen for RQ-PCR.   

 

Animal models 

The Institutional Animal Usage Committee of the University of Kentucky 

(IACUC) has approved the animal protocols utilized in this project. All protocols 

included in this dissertation comply with the PHS policies on humane care and 

use of laboratory animals (PHS). Wild type (WT) mice were fed low fat (LF, 

D12450B) or high fat (HF, 12492) diets for 6 months leading to obese and lean 

mice. Both diets were protein matched. 

For experiments examining THI and its role in altering plasma S1P levels 

and SKL cell mobilization, THI was added to drinking water at 25 mg/l. 5.5 mmol/l 

glucose was added to the drinking water to improve palatability. AMD3100 was 

given subcutaneously at 5 mg/kg 24 hours prior to examining S1P levels and 
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circulating SKL numbers. 

 

Statistical Analysis 

Data are expressed as mean ± SEM. Differences were analyzed using the 

unpaired Student t-test or ANOVA (one way or multiple comparisons) as 

appropriate. Post hoc multiple comparison procedures (MCP) were performed 

using 2-sided Dunnett or Dunn tests as appropriate with control samples as the 

control category. The significance level throughout the analyses was chosen to 

be 0.05.  All statistical analyses were performed using the SPSS (version 16) 

statistical software (SPSS Inc., Chicago, IL).  
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Table 3. Primers used for the qRT-PCR experiments. 

 

 Forward Reverse 

Oct4 5’-GAT GTG GTC CGA GTG TGG TTC T-3’ 5’-TGT GCA TAG TCG CTG CTT GAT-3’ 

Nanog 5’-GCA GAA GGC CTC AGC ACC TA-3’ 5’-AGG TTC CCA GTC GGG TTC A-3’ 

Nkx2.5/Csx 5’-CCC CTG GAT TTT GCA TTC AC-3’ 5’-CGT GCG CAA GAA CAA ACG-3’ 

GATA4 
5’-GTT TTT TCC CCT TTG ATT TTT GAT 

C-3’ 
5’-AAC GAC GGC AAC AAC GAT AAT-3’ 

VE-Cadherin 5’-CCG ACA GTT GTA GGC CCT GTT-3’ 5’-GGC ATC TTC GGG TTG ATC CT-3’ 

β2-
microglobulin 

5’-AAT GCG GCA TCT TCA AAC CT-3’ 5’-TGA CTT TGT CAC AGC CCA AGA TA-3’ 
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