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ABSTRACT OF DISSERTATION

A NEW GEOMETRIC MODEL AND 
METHODOLOGY FOR UNDERSTANDING PARSIMONIOUS 

SEVENTH-SONORITY PITCH-CLASS SPACE

! Parsimonious voice leading is a term, first used by Richard Cohn, to 
describe non-diatonic motion among triads that will preserve as many common 
tones as possible, while limiting the distance traveled by the voice that does 
move to a tone or, better yet, a semitone. Some scholars have applied these 
principles to seventh chords, laying the groundwork for this study, which 
strives toward a reasonably comprehensive, usable model for musical analysis.

! Rather than emphasizing mathematical proofs, as a number of 
approaches have done, this study relies on two- and three-dimensional 
geometric visualizations and spatial analogies to describe pitch-class and 
harmonic relationships. These geometric realizations are based on the 
organization of the neo-Riemannian Tonnetz, but they expand and apply the 
organizational principles of the Tonnetz to seventh sonorities. It allows for the 
descriptive “mapping” or prescriptive “navigation” of harmonic paths through 
a defined space.

! The viability of the theoretical model is examined in analyses of 
passages from the repertoire of Frédéric Chopin. These passages exhibit a 
harmonic syntax that is often difficult to analyze as anything other than 
“tonally unstable” or “transitional.” This study seeks to analyze these passages 
in terms of what they are, rather than what they are not.
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CHAPTER I: SCHOLARLY CONTEXT

INTRODUCTION

! Parsimonious voice leading is a term, first used by Richard Cohn, to describe 

non-diatonic motion among triads that is very smooth.1 Parsimonious, of course, 

means stingy, or perhaps the more complimentarily nuanced frugal. That is to say, 

this sort of harmonic context will preserve as many common tones as possible, 

while limiting the distance traveled by the voice that does move to a tone or, 

better yet, a semitone. Richard Cohn has concisely described this kind of 

harmonic language as “chromatic music that is triadic but not altogether tonally 

unified.”2  

! Strangely enough, it was in the writings of some nineteenth-century 

theorists, such as Hugo Riemann, that modern music theorists found the germ of 

inspiration they needed for developing a conceptual framework and analytical 

approach to parsimonious passages. This led to an outpouring of research under 

the banner of what is now commonly referred to as neo-Riemannian theory, 

intended to address these “indeterminate,” “coloristic,” and “aimless” passages 

1

! 1 Richard Cohn, “Neo-Riemannian Operations, Parsimonious Trichords, 
and Their Tonnetz Representations,” JMT 41, no. 1 (Spring 1997): 1–2.

! 2 Richard Cohn, “Introduction to Neo-Riemannian Theory: A Survey and a 
Historical Perspective,” JMT 42, No. 2 (Fall 1998), 167.



that are scattered throughout musical literature of the nineteenth and twentieth 

centuries.3

! With neo-Riemannian theory fully entrenched in the study of triadic 

harmonic structures, even having entered some undergraduate textbooks, several 

scholars have extended its applications to the realm of seventh chords. The 

contribution I offer here further advances the application of neo-Riemannian 

concepts to seventh chords via two- and three-dimensional models of pitch-class 

space in a way I hope musicians will find both relatively accessible and inclusive 

enough to apply to musical analysis.4 

HISTORICAL PERSPECTIVE

! The work of several prominent theorists contributed to the work of 

Riemann and, by extension, neo-Riemannian theory. His harmonic dualism and 

function theory are more closely aligned with the works of Gottfried Weber 

(1779–1839), Moritz Hauptmann, and Arthur Joachim von Oettingen. Harmonic 

monism can be thought of as assuming the de facto preeminence of the major 

triad, speciously evidenced in the acoustic structure of the overtone series. 

2

! 3 Cohn, “Introduction,” 169.

! 4 Since the term seventh chord often carries the implication of functional 
harmony, I will in the future refer to these as seventh sonorities.



Harmonic dualism, on the other hand, can be thought of as assuming the 

structural equality of the major triad and its reciprocal manifestation, the minor 

triad.5 Although Weber did not necessarily identify himself as a harmonic 

dualist, his grid of key relationships is one of the first Tonnetze, impacting 

German musical thought in the works of theorists like Oettingen and Arnold 

Schönberg.6 Further, Otakar Hostinsky (1847–1910), remembered not so much for 

his theoretical contributions as for his diagram, was the first to assimilate both 

major and minor thirds in a single Tonnetz, lending equal weight to both.7

! Hauptmann (1792–1868) forms the first member in a trinity of nineteenth-

century harmonic dualists (including Oettingen and Riemann). It was 

Hauptmann who referred to major and minor triads as Klänge, a term later 

reiterated by Riemann, and then revived by David Lewin in his Generalized 

Musical Intervals and Transformations of 1987.8 Hauptmann also articulated the 

3

! 5 Henry Klumpenhouwer, “Dualist Tonal Space and Transformation in 
Nineteenth-Century Musical Thought” in The Cambridge History of Western Music 
Theory, ed. Thomas Christensen (Cambridge: Cambridge University Press, 2002), 
459.

! 6 David W. Bernstein, “Nineteenth-Century Harmonic Theory: The 
Austro-German Legacy” in The Cambridge History of Western Music Theory, ed. 
Thomas Christensen (Cambridge: Cambridge University Press, 2002), 784–6.

! 7 Brian Hyer, “Tonality” in The Cambridge History of Western Music Theory, 
ed. Thomas Christensen (Cambridge: Cambridge University Press, 2002), 736–7.

! 8 Cohn, “Introduction,” 170.



notion of the positive Einheit (Riemann’s Oberklang) and negative Einheit 

(Riemann’s Unterklang), what today we would refer to as inversional symmetry.

! Oettingen (1836–1920) not only adopted Weber’s practice of making tonal 

charts, as seen in Oettingen’s 1866 treatise Harmoniesystem in dualer Entwicklung, 

but he also adapted the logic of Hauptmann’s dualism to reconcile it with 

acoustical and physiological criticisms leveled against it by the harmonic monist 

Hermann von Helmholz.9 In Oettingen, then, we find the synthesis in his paired 

notions of Tonictät (tonicity) and Phonicität (phonicity). Under Oettingen’s rubric, 

tonicity refers to the trait of pitches of an interval or chord to be conceived as 

partials of a common fundamental (the tonic fundamental); in opposition to this 

is phonicity, which refers to the trait of pitches of an interval or chord to be 

conceived as fundamentals united by a lowest common partial (the phonic 

overtone).10

! In Hugo Riemann (1849–1919) we find the culmination of these various 

influences, primarily through the conduit of Oettingen. Whereas many of 

Riemann’s pursuits (the undertone series, for one) never yielded positive results, 

the elegance and logic of his theory continue to appeal to neo-Riemannian 

4

! 9 Klumpenhouwer, 462–3.

! 10 Ibid., 464–5.



theorists.11 In particular, his notion of the minor triad as the mutual and opposite 

manifestation of the Klang explained the dominant and subdominant harmonies 

as extensions of the “over” fifth and “under” fifth of the tonic Klang. All other 

harmonic structures were variants of these three (S for subdominant, T for tonic, 

and D for dominant), with some element of them slightly displaced. To Riemann, 

the submediant chord could be achieved by means of the tonic parallel function 

or the subdominant leading-tone function. For example, in the key of C major, 

the tonic parallel function would displace the G of the C major triad (tonic) with 

the A of the A minor triad (submediant), corresponding to the neo-Riemannian 

relative function. Likewise, the subdominant leading-tone exchange function 

would displace the F of the F major triad (subdominant) with the E of the A 

minor triad (submediant), corresponding to the neo-Riemannian leittonwechsel 

function.12 It is these function labels and Riemann’s Tonnetz that inspired so 

much scholarly activity since the 1990s under the  banner of neo-Riemannian 

theory.

5

! 11 Klumpenhouwer, 469.

! 12 Bernstein, 796–8.



NEO-RIEMANNIAN THEORY

! A great deal of the current study owes to years of neo-Riemannian 

scholarship that laid a conceptual foundation. But whereas neo-Riemannian 

theory deals primarily with triads, outgrowths of this theory have attempted to 

tackle the more complex relationships inherent in seventh-sonority parsimony. I 

will briefly recapitulate the main motivators behind its initial materialization 

here, followed by a review of sources more specifically apt for my study.

! David Lewin is one of the key figures responsible for the resurgent interest 

in Riemann. His essay “A Formal Theory of Generalized Tonal Functions” in 

1982 and his Generalized Musical Intervals and Transformations in 1987 lay the 

foundation for neo-Riemannian thought, even retaining Riemann’s term for 

triads, Klänge.13 Lewin continued to contribute to the field of transformational 

and neo-Riemannian theory well into the 1990s.14

! Brian Hyer is largely responsible for popularizing neo-Riemannian theory 

among the music theory community with his article “Reimag(in)ing Riemann.”15 

6

! 13 David Lewin, Generalized Musical Intervals and Transformations (New 
Haven: Yale University Press, 1987), 175–80, cited in Richard Cohn, “Introduction 
to Neo-Riemannian Theory,” 170.

! 14 David Lewin, “Cohn Functions,” JMT, 40, No. 2 (Fall 1996): 181–216; 
“Some Ideas about Voice-Leading,” JMT, 42, No. 1 (Spring 1998): 15–72.

! 15 Brian Hyer, “Reimag(in)ing Riemann,” JMT 39, no. 1 (Spring 1995): 101–
38.



His modernization of Hugo Riemann’s Tonnetz is an elegant visualization of 

pitch/pitch-class space. Although his work lies in the realm of triadic structures 

in a post-Common-Practice context, his Tonnetz and his reimagining of Riemann’s 

harmonic functions as parallel, leittonwechsel, and relative transformations lay 

the foundation for the scholarship that followed him.16 This is particularly 

relevant to my study since his revitalization of the Tonnetz departs from Lewin’s 

more mathematical approach in favor of a more accessible visual medium.

! Richard Cohn has also been an instrumental and prolific contributor to the 

field’s understanding of triadic parsimony in terms of both mathematical and 

geometric representation. He is, in fact, credited with coining the term 

“parsimonious voice leading.”17 Because of his productive work, neo-

Riemannian theory has become more mainstream in music theory parlance and 

pedagogy.18

! A number of studies have addressed the question of seventh-sonority 

parsimony, but with constraints that might be seen as problematic. 

7

! 16 After Hyer, I leave the term leittonwechsel without italics or 
capitalization.

! 17 Robert C. Cook, “Parsimony and Extravagance,” JMT 49, no. 1 (Spring 
2008): 109.

! 18 Cohn, “Introduction”; “Maximally Smooth Cycles, Hexatonic Systems, 
and the Analysis of Late-Romantic Progressions” Music Analysis 15, No. 1 (March 
1996): 9–40; “Neo-Riemannian Operations”; “Square Dances with Cubes,” JMT 
42, no. 2 (Fall 1998): 283-96.



1. Abstraction. Some studies focus on mathematical relationships and 

equations. Although abstract ideas present a valuable line of inquiry, 

many readers may find such ideas difficult to conceptualize.

2. Exclusion. Some studies address only a few seventh-sonority types and omit 

others. This avoids overcomplication, aiding the reader, but it also 

potentially limits applicability in musical contexts.

3. Speculation. To some extent, all music theory is speculative, but those that 

are particularly so often do not exercise the idea in musical conditions.

In some instances a study may posses more than one of these features, blurring 

the differences among what I have made into distinct categories. These 

constraints can potentially inhibit both understanding among a widening 

readership, especially students, and the practical application of concepts to actual 

music. I will address each of these constraints in turn.

ABSTRACTION

! Clifton Callender writes on the parsimonious fission and fusion of pitches 

between pitch collections in his article “Voice-Leading Parsimony in the Music of 

Alexander Scriabin.” Although his discussion is not directly related to mine, his 

8



idea of “split” and “fuse” functions has influenced my perceptions and 

understanding of cross-type transformations.19 Callender’s approach is also very 

algebraic, but I find the underlying concept he presents to be persuasive and 

applicable in some of the repertoire I am studying. Addressing the issue of cross-

type transformations informed how I went about analyzing triads interrupting a 

string of seventh sonorities.

! In “Half-Diminished Functions and Transformations in Late Romantic 

Music,” Richard Bass examines parsimonious relations among half-diminished 

sevenths, but he does little in the way of graphic representation of these 

relationships.20 Moreover, Bass treats only one seventh-sonority type, even if he 

does draw the discussion back to musical application.

! Steven Scott Baker’s dissertation, “Neo-Riemannian Transformations and 

Prolongational Structures in Wagner’s Parsifal,” includes a treatment of a wide 

variety of sonority types and favors an algebraic approach.21 However, this study  

was less applicable to the current discussion.

9

! 19 Clifton Callender, “Voice-Leading Parsimony in the Music of Alexander 
Scriabin,” JMT 42, no. 2 (Fall 1998): 219–33.

! 20 Richard Bass, “Half-Diminished Functions and Transformations in Late 
Romantic Music,” Music Theory Spectrum 23, no. 1 (Spring 2001): 41–60.

! 21 Steven Scott Baker, “Neo-Riemannian Transformations and 
Prolongational Structures in Wagner’s Parsifal,” Ph.D. diss., Florida State 
University, 2003.



EXCLUSION

! Edward Gollin and Adrian Childs each take cues directly from Riemann 

by discussing members of set class (0258), major-minor and half-diminished 

sevenths, sonorities that are asymmetrical and whose qualities are inversionally 

related. Gollin, in his article “Some Aspects of Three-Dimensional Tonnetze,” 

devises a three-dimensional geometric model that grows naturally from a neo-

Riemannian Tonnetz. In his model, each seventh sonority resembles a 

tetrahedron; upright tetrahedrons, like upright triangles in a Tonnetz, denote the 

major-minor quality, whereas inverted tetrahedrons denote the half-diminished 

quality. Gollin’s model retains the structural principle of the Tonnetz in which 

individual pitch classes form the vertices of the model; when these vertices are 

related to each other in the shape of a tetrahedron, they form a member of set 

class (0258).22 Although Gollin creates an elegant adaptation of a neo-Riemannian 

Tonnetz, the model does not incorporate other varieties of seventh sonorities. 

Childs also deals with major-minor and half-diminished sevenths by 

representing their interrelationships on a cube, in his study “Moving Beyond 

Neo-Riemannian Triads: Exploring a Transformational Model for Seventh 

Chords.” Childs’s model places complete sonorities at each vertex. Each vertex, 

10

! 22 Edward Gollin, “Some Aspects of Three-Dimensional ‘Tonnetze,’” JMT 
42, no. 2 (Fall 1998): 195–206.



then, represents four pitch classes, as opposed to Gollin’s approach of one pitch 

per vertex.23 Both Gollin and Childs fulfill their respective purposes, but they 

exclude the other three normative seventh sonorities. Furthermore, Childs’ 

model obscures the individual pitch-class members involved during an harmonic 

transformation. 

! Like Callender’s article, Julian Hook’s “Cross-Type Transformations and 

the Path Consistency Condition” wrestles with the difficulties of connecting 

triads and sevenths.24 Hook focuses especially on the omnibus progression and 

its rocking back and forth between triads and sevenths. Hook primarily 

addresses what he finds lacking in Lewin’s same-type transformations and the 

strict criteria that govern them. The benefits I have gained from Hook’s work lie 

in his graphic realizations of cross-type transformations, and I can foresee helpful 

application of his technique in an extended neo-Riemannian context.

SPECULATION

! Jack Douthett and Peter Steinbach, in “Parsimonious Graphs: A Study in 

Parsimony, Contextual Transformations, and Modes of Limited Transposition,” 

11

! 23 Adrian Childs, “Moving Beyond Neo-Riemannian Triads: Exploring a 
Transformational Model for Seventh Chords,” JMT 42, no. 2 (Fall 1998): 181–93.

! 24 Julian Hook, “Cross-Type Transformations and the Patch Consistency 
Condition,” Music Theory Spectrum 29, no. 1 (Spring 2007): 1–39.



illustrate numerous models and relationships among major-minor, minor-minor, 

half-diminished, and fully-diminished sevenths in various combinations.25 These 

authors’ approach is, like many in this area of study, rather algebraic, but it also 

includes a number of graphs describing parsimonious connections among triads 

and among seventh sonorities. The article includes an extended application of 

the “power towers” model that shows a number of relationships presented in my 

models, namely the wormhole (pp. 20, 27).26 Like Childs, Douthett and Steinbach 

place entire sonorities at each vertex of their models, rather than pitch classes. 

Yet, with all the models and equations these authors put forth, none incorporate 

the major-major seventh, nor do they ever use the models in any sort of analysis.

! Richard Cohn deals with tetrachords in a generic sense in “A Tetrahedral 

Graph of Tetrachordal Voice-Leading Space.”27 Cohn’s title initially suggests his 

article may bear some similarities with the tetrahedral graphs of Edward Gollin. 

However, there is little to compare between his graphs and Gollin’s. Cohn places 

12

! 25 Jack Douthett and Peter Steinbach, “Parsimonious Graphs: A Study in 
Parsimony, Contextual Transformations, and Modes of Limited Transposition,” 
JMT 42, no. 2 (Fall 1998): 241–63.

! 26 Ibid., 256.

! 27 Richard Cohn, “A Tetrahedral Graph of Tetrachordal Voice-Leading 
Space,” Music Theory Online 9, no. 4 (October 2003), http://www.mtosmt.org/
index.php (accessed June 1, 2012).

http://www.mtosmt.org/index.php
http://www.mtosmt.org/index.php
http://www.mtosmt.org/index.php
http://www.mtosmt.org/index.php


whole tetrachords at each vertex of the model and includes a wide variety of 

four-note sonorities that are not constrained even to those of tertian structure.

! Callender, Quinn, and Tymoczko’s article “Generalized Voice-Leading 

Spaces” is especially abstract, despite its geometric representations of pitch-class 

space.28 While this testifies to the applicability of the authors’ work to 

mathematics, it contained no direct musical application, likely because it was 

published for the science and mathematics community. The authors map 

parsimonious space among tetrachords but give equal inclusion of non-

normative, non-tertian, and even non-chord “sonorities” (such as [0000] or 

[0066]). This approach is more inclusive than the present study will be.

OTHER

! With so much neo-Riemannian scholarship relying on  a sort of calculus,  

Peter Westergaard’s clever “Geometries of Sound in Time” provides what I 

consider to be needed justification for geometric understanding of 

transformational theory.29 Westergaard makes a case for the validity, logic, 

historical underpinnings, and even the shortcomings of geometric embodiments 

13

! 28 Clifton Callener, Ian Quinn and Dmitri Tymoczko, “Generalized Voice-
Leading Spaces,” Science 320 (2008): 346–8.

! 29 Peter Westergaard, “Geometries of Sound in Time,” Music Theory 
Spectrum 18, no. 1 (Spring 1996): 1–21.



of pitch/pitch-class space.30 Candace Brower’s “A Cognitive Theory of Musical 

Meaning” is listed here for many of the same reasons as Westergaard’s article.31 

Her spatial realizations of pitch relations have enlightened and deepened my 

own understanding. Her article has influenced this study, particularly in the way 

that I graphically represent pitch and sonority relationships. Brower’s diagrams 

of cyclical triadic space (see her Figures 21–25)32 are particularly relevant to my 

discussion.

CONCLUSION

! In answer to the issue of abstraction, I prefer to translate mathematical 

relationships into visual ones. Spatial representation of obscure information is 

ubiquitous in our society as a means to better encode information through some 

kind of metaphor or analogy we can better grasp. Precedent for spatial 

representation of music (besides the musical notation itself) is nowhere more 

evident than in the work of Weber, Oettingen, and Riemann, who all used 

14

! 30 This justification is echoed in Richard Cohn, Audacious Euphony: 
Chromaticism and the Triad’s Second Nature (New York: Oxford University Press 
2012), 14–5.

! 31 Candace Brower, “A Cognitive Theory of Musical Meaning,” JMT 44, no. 
2 (Fall 2000): 323–79.

! 32 Ibid., 345–7.



geometry to metaphorically describe musical concepts. Brian Hyer revived the 

Tonnetz, and others have adopted and adapted it or developed their own.

! To address the second problem of exclusivity, I include all normative 

seventh sonority types (major-major, major-minor, minor-minor, half-diminished, 

and fully diminished). This is still a limitation, but no study I have read includes 

all five normative types. In trying to balance the extremes of exclusivity and 

inclusivity, I aim to ease the transition from theory to practice.

! The third issue of speculative theory is not an issue in itself, but in my 

survey of the literature I found that few studies moved from the conceptual 

model to practical application. After I make a case for my theoretical model, I 

will 1) demonstrate its descriptive use in the analysis of preexisting music and 2) 

posit its prescriptive germaneness to composition. As an analytical tool, it can 

address passages that are typically glossed over as “transitional” or “unstable.” 

These very words ought to spark curiosity as to how such passages work and 

what they are, rather than be dismissed because of what they are not. As a 

compositional tool, it can open up new ways for composers to execute those 

“transitional” passages smoothly, and perhaps even serve as an improvisational 

template.

Copyright © Enoch S. A. Jacobus 2012
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CHAPTER II: CONCEPTUAL DICHOTOMIES

! In this chapter, I will discuss three dichotomies that influence the ways 

musicians in general, and music theorists in particular, conceive of harmony and 

how these dichotomies factor into a discussion of seventh sonorities. While these 

matters are not the heart of this dissertation, my answers to the questions they 

raise underpin my theory. I will discuss each dichotomy in turn, with the 

purpose of clarifying and specifying the conceptual assumptions I will make.

PARSIMONY VS. EXTRAVAGANCE 

! The first is the relatively recent delineation drawn between what Robert C. 

Cook calls parsimony and extravagance.33 Is it necessary to differentiate between 

maximal smoothness and minimal perturbation? The differentiation Cook makes 

between these is perhaps silently acknowledged among neo-Riemannian 

theorists, but is rarely discussed. I include it here to clarify the conditions under 

which my theory and analyses will and will not apply. 

! The term parsimonious was first used by Richard Cohn to describe musical 

passages that exhibit (1) maximally smooth, (2) minimally perturbed, motion 

16
! 33 Cook, 109–140.



between triads.34 The former quality refers to the preservation of common tones 

from one chord to the next; the latter refers to the allowance of a pitch to move 

only by tone or semitone. The term parsimonious has been widely adopted by 

other theorists and remains the implicit basis of neo-Riemannian theory. Cohn, 

and others, have intuitively grouped these two properties (maximal smoothness 

and minimal perturbation) into essentially the same idea, and in many cases 

these two properties are inextricable.

! Robert C. Cook, however, sets out to uncouple them into parsimonious 

motion (retention of common tones) and extravagant motion (stepwise motion). 

He reflects upon the scholarly use of the term parsimonious, as it is typically used, 

to imply both the retention of common tones and the stepwise motion of the 

remaining voice(s). To demonstrate the distinction between these, Cook cites two 

passages from César Franck’s Piano Quintet in F minor, calling one passage 

extravagant and the other parsimonious. The extravagant passage is composed 

almost entirely of very smooth voice leading (i.e., by semitone), but all voices 

move, thus destroying the continuity from chord to chord that common tones 

afford. Cook’s distinction between parsimony and extravagance is crucial. Even 

though he deals exclusively with triadic structures, I have found that some 

passages of chromatic seventh-sonority usage can also be extravagant.

17
! 34 Cohn, “Neo-Riemannian Operations,” 1–2.



! While I do not place so rigid a set of guidelines as does Cook on what 

does and does not constitute parsimony or extravagance, his ideas have guided 

my understanding of what musical passages will and will not apply to my own 

theory. Musical passages I will explore must be minimally perturbed, and what 

perturbation there is must be maximally smooth (although I allow whole tone 

motion as well as semitone motion). This concept is illustrated in Example 2.1 by 

way of a negative example. I have provided a harmonic reduction below the 

piano staves to illustrate just how extravagant this passage is.35 A key is provided 

below the example. This highly chromatic passage from Brahms features 

maximal smoothness at the expense of minimal perturbation; very few pitches 

are held in common with the preceding chord. There are brief instances of 

relative parsimony, such as those in mm. 4.1–4.2 and 4.3.1–4.3.2, but these cannot 

be said to characterize the passage. In contrast to Example 2.1, I will examine 

passages that favor pitch retention and therefore can be characterized as 

parsimonious.

18

! 35 The harmonic reduction may in some ways resemble a Schenkerian-
inspired rhythmic reduction, but it is not intended as such.
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 HORIZONTALITY VS. VERTICALITY

! The second dichotomy deals with the longstanding struggle, which has 

existed in some form since the emergence of polyphony, between the conceptual 

frameworks dealing with simultaneous versus chronological unfolding of sound. 

Are seventh sonorities to be considered sonorities in their own right or the mere 

coincidence of independent musical lines? The answer to this question is one of 

the foundations of my theory to follow.

! The differentiation theorists make between the horizontal (occurring over 

time) and vertical (simultaneous) parameters of music is in many ways artificial. 

These parameters are, rather, extremes which in themselves have little or no 

practical application. The degrees of horizontality or verticality that exist 

between those extremes are what is more relevant to my interests. Theorists 

encode some understanding of this tug-of-war in words common to any 

undergraduate musician–polyphony, homophony, prolongation, counterpoint, linear 

harmony, etc. All these words communicate some assumed understanding of 

music’s motivating force as either harmonically driven or linearly driven.

! One could certainly make the argument that even music with a strong 

sense of verticality, something homophonic such as a hymn, is ultimately driven 

by the tendency of tones within each sonority to resolve linearly to some other 

tone. However, one has only to sing the alto part from a hymnal to learn that 

20



linearity is not a motivational force at all times. The fugues of J. S. Bach clearly 

receive their propulsive force from the subject by means of inertia, rhythmic 

motion, and the gravity of tendency tones that make up the melodic integrity of 

the individual line.  Even so, harmonic considerations are very important in the 

fugal process, particularly during the exposition. Even the more harmonically 

free and more horizontally oriented polyphony of the Renaissance still had rules 

governing simultaneous intervals. In short, these two opposing notions of 

verticality and horizontality can never be considered apart from one another.

! The Is is an ideal example of this dualistic horizontal/vertical nature of 

certain harmonies. Some would label it as a suspension figure, Vs—–f, to reflect its 

embellished-dominant function. Yet there are instances in which the resolution is 

not to the dominant, or in which the chord is not approached in such a way that a 

suspension figure is appropriate. The chord, if I may call it a chord, results most 

of the time, and has been historically understood to arise, from embellishment of 

the more structurally important dominant. Yet, due to the ubiquity and 

consistency of its doubling, voice-leading, and tonicizing force, it is still given a 

label that implies some kind of vertical identity even by theorists who favor a 

linear perspective.

! How one answers the issues posed by this dichotomy will directly 

influence how one perceives and analyzes four-pitch, tertian-structure 
21



simultaneities–as a seventh sonority or as a triad with added decoration. In some 

musical contexts, it is very clear how the would-be seventh ought to be regarded. 

But in other contexts that delineation is blurred.

! The fully diminished seventh sonority is one such example. The typical 

assessment seems to be that if the sonority performs functionally (i.e., tonicizes 

something else), then thinking of it as a chord is perfectly legitimate. However, if 

it behaves as a common-tone diminished sonority, then regarding it as a chord is 

objectionable. Richard Bass notes the hierarchy placed on fully-diminished 

seventh sonorities based on their tonicizing power (whether that be diatonic, 

secondary, or modally inflected).36 In terms of non-functional manifestations of 

the fully-diminished sonority, such as the common-tone diminished seventh, it is 

typically regarded as specious. Laitz calls the common-tone diminished seventh 

a “contrapuntal chord” (821); Kostka and Payne describe it as having “weak 

harmonic function” and its “non-essential flavor” (453); Aldwell and Schachter 

say the sonority is an “apparent…, rather than true, seventh chord” (621) while 

simultaneously acknowledging its pervasiveness; Clendinning and Marvin 

22

! 36 Richard Bass, “Enharmonic Position Finding and the Resolution of 
Seventh Chords in Chromatic Music,” Music Theory Spectrum 29, no. 1 (Spring 
2007): 73.



describe it as the interaction of chromatic and diatonic non-chord tones that 

“happen to make a fully-diminished seventh sonority” (583).37 

! Consider the beginning of the development section from the first 

movement of Mozart’s Symphony No. 40, shown in Example 2.2. The G≈⋲o; in m. 

101 is quite obviously linear, judging by the way it is approached, and it even 

shares two pitches in common with the following measure. It is certainly 

transitioning the listener from the old key to the new key, but functions in neither 

(although it could be understood enharmonically as uo&  in F≈⋲). Yet, as if in 

opposition to a purely horizontal reading, rests on either side of the simultaneity 

seem to bracket it off, forcing our ear to hear it as a sonority in its own right. The 

rests may merely interrupt the linear design, but one cannot help but hear it as a 

sonority given the silence on either side of it.

! I have no desire to dissent with the notion that such sonorities are 

contrapuntal and are the outgrowth of confluent musical lines, but that idea can 

apply to the genesis of any harmony not just one particular type. Regarding the 

common-tone fully-diminished seventh, or any seventh sonority, as a quasi-

23

! 37 Steven Laitz, The Complete Musician: An Integrated Approach to Tonal 
Theory, Analysis, and Listening 2nd ed. (New York and Oxford : Oxford University 
Press, 2008); Stefan Kostka and Dorothy Payne, Tonal Harmony, 6th ed. (Boston: 
McGraw Hill, 2004); Edward Aldwell, Carl Schachter and Allen Cadwallader 
Harmony and Voice Leading, 4th ed. (Boston: Schirmer, 2011); Jane Piper 
Clendinning and Elizabeth West Marvin, The Musician’s Guide to Theory and 
Analysis (New York: W. W. Norton, 2005).



Example 2.2: Mozart, Symphony No. 40 in G minor, K. 550, I, mm. 99–102
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verticality is an over-simplification. Richard Bass would seem to agree. There are 

circumstances, he asserts, in which imposing a key can lessen one’s 

understanding of these chromaticisms as inherently and stylistically important in  

and of themselves. He goes on to observe that the musical evidence suggests that 

composers did not always conceive of non-functional resolutions of seventh 

sonorities as inevitably weaker than functional resolutions.38 For these reasons, I 

have adopted a perspective for this study that allows for a more vertical 

awareness than might otherwise be called for. The repertoire I will examine 

requires a certain degree of acknowledgement that the simultaneities heard have 

a valid vertical identity as well as a horizontal one.

EXTRAPOLATION VS. INTERACTION

! The third dichotomy is a contribution of my own that distinguishes two 

contrasting theoretical conceptions of seventh sonorities, which I have termed 

extrapolation and interaction. Is it always valuable to understand seventh 

sonorities as adaptations of a functionally similar triad? Extrapolation is a well-

established perspective that understands the seventh purely as an extension of its 

base triad. Its antithesis, interaction, is a less-traditional perspective that 

understands seventh sonorities as comprising two triads, an upper and a lower, 

25
! 38 Bass, “Enharmonic Position Finding,” 74.



both of which can be of equal importance. I address the issue because it provides 

a conceptual foundation uniquely helpful in my approach to a parsimonious 

seventh-sonority Tonnetz.

! In this section I will deal with two contrasting approaches to conceiving of 

seventh sonorities. To my knowledge, a dichotomy between bottom-up and top-

down conceptions of seventh sonorities has never been raised. It is common to 

think of a seventh as the upper extension of a base triad, most likely due to the 

lingering affect of older understandings, such as Stufentheorie and its underlying 

presupposition of a key. While this notion is absolutely necessary and beneficial 

under certain musical conditions, namely functional harmony, it favors a bottom-

to-top conceptual framework, which may, in other conditions, be undesirable.

! In current music theory pedagogy, the typical use of the term seventh chord 

usually indicates one of five qualities of four-pitch sonorities that commonly 

occur in Western music as a result of diatonicism. Yet seventh chord is sometimes 

applied more loosely to any four-pitch sonority forming a tertian structure. I will 

distinguish between these two nuances by referring to the more typical use as 

normative and the looser use as non-normative. 
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EXTRAPOLATION

! Extrapolation is the term I will use to denote the typical bottom-to-top 

conception of harmonic structures.  The term is so called because it 

acknowledges the seventh chord as an upward extension of triadic norms.  

Extrapolation tends to work in a prescriptive way. It is more speculative and 

reasons by means of “if-then” relationships. That is, if stacking a normative third 

(M3 or m3) upon another normative third results in a normative triad (Table 2.1), 

then stacking another normative third atop the triad should result in a normative 

seventh chord. That seventh is measured against the root (and named in reference 

to the quality of the seventh formed), but it is still extrapolated from that root 

based on the template originating in the distance of the third above the root and 

the fifth above the third. Ninth chords and larger extended tertian sonorities are 

further extrapolations along this same line of reasoning, i.e., the continued 

stacking of thirds (amounting to the same thing as the continued addition of 

odd-numbered interval quantities above the root). While this process does 

generate some normative seventh sonorities, it does not produce all of them, and 

it generates non-normative sonorities. Table 2.2 illustrates this point, even 

including non-normative thirds (+3 and º3).39

27

! 39 The augmented triad’s semi-normative status leads me to exclude it 
from Table 2.2.



Table 2.1: Triads formed from stacked thirds

Name Composed of

augmented

major

minor

diminished

Table 2.2: Seventh-sonority formation from extrapolated stacking of thirds

Triad Added 
Interval

Seventh Sonority Extrapolation Example

major +3 non-normative (≈ major triad)

major M3 major-major

major m3 major-minor

& œœ œœ#
M3 + M3

˙̇̇#

& œœ œœ
M3 + m3

˙̇̇

& œœb œœb
m3 + M3

˙̇̇b

& œœb œœbb
m3 + m3

˙̇̇bb

& œœœ œœ‹ ˙̇̇̇‹ ˙̇̇̇( )
& œœœ œœ# ˙̇̇̇#

& œœœ œœ ˙̇̇̇

& œœœ œœb ˙̇̇̇b ˙˙˙̇( )

& œœœb œœ‹ ˙̇̇̇‹b ˙̇̇̇b(  )

Figures

major º3 non-normative (≈ minor-minor)
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Table 2.2 continued

Triad Added 
Interval

Seventh Sonority Extrapolation Example

minor +3 non-normative (≈ minor triad)

& œœ œœ#
M3 + M3

˙̇̇#

& œœ œœ
M3 + m3

˙̇̇

& œœb œœb
m3 + M3

˙̇̇b

& œœb œœbb
m3 + m3

˙̇̇bb

& œœœ œœ‹ ˙̇̇̇‹ ˙̇̇̇( )
& œœœ œœ# ˙̇̇̇#

& œœœ œœ ˙̇̇̇

& œœœ œœb ˙̇̇̇b ˙˙˙̇( )

& œœœb œœ‹ ˙̇̇̇‹b ˙̇̇̇b(  )

Figures

minor M3 non-normative

minor m3 minor-minor

& œœœb œœ# ˙̇̇̇#b

& œœœb œœ ˙̇̇̇b

& œœœb œœb ˙̇̇̇bb ˙˙˙̇b(  )
& œœœbb œœ#b ˙̇̇̇#bb

& œœœbb œœb ˙̇̇̇bb

& œœœbb œœbb ˙̇̇̇bbb ˙˙˙̇bb ˙̇˙˙# ˙̇̇˙##(            )

& œœœbb œœ!b ˙̇̇̇!bb ˙˙˙̇bbb(    )

& œœœ œœœ# ˙̇̇̇#

& œœœ œœœn ˙̇̇̇n

& œœœb œœœb ˙̇̇̇b

minor º3 non-normative (≈ half-dim.)

diminished +3 non-normative

diminished M3 half-diminished

& œœœb œœ# ˙̇̇̇#b

& œœœb œœ ˙̇̇̇b

& œœœb œœb ˙̇̇̇bb ˙˙˙̇b(  )
& œœœbb œœ#b ˙̇̇̇#bb

& œœœbb œœb ˙̇̇̇bb

& œœœbb œœbb ˙̇̇̇bbb ˙˙˙̇bb ˙̇˙˙# ˙̇̇˙##(            )

& œœœbb œœ!b ˙̇̇̇!bb ˙˙˙̇bbb(    )

& œœœ œœœ# ˙̇̇̇#

& œœœ œœœn ˙̇̇̇n

& œœœb œœœb ˙̇̇̇b

diminished m3 fully-diminished

diminished º3 non-normative (≈ major-minor)

& œœœb œœ# ˙̇̇̇#b

& œœœb œœ ˙̇̇̇b

& œœœb œœb ˙̇̇̇bb ˙˙˙̇b(  )
& œœœbb œœ#b ˙̇̇̇#bb

& œœœbb œœb ˙̇̇̇bb

& œœœbb œœbb ˙̇̇̇bbb ˙˙˙̇bb ˙̇˙˙# ˙̇̇˙##(            )

& œœœbb œœ!b ˙̇̇̇!bb ˙˙˙̇bbb(    )

& œœœ œœœ# ˙̇̇̇#

& œœœ œœœn ˙̇̇̇n

& œœœb œœœb ˙̇̇̇b

! Seventh sonorities in musical contexts often seem to have originated as 

extensions of triadic counterparts. In other words, when a brief melodic passage 

might be harmonized by a given triad, a composer can add a diatonic seventh 

above the root of that triad to achieve a more colorful chord of the same 

harmonic function. The chord’s function within the key does not change but is 
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enhanced by dissonance, or given a new luster. I will presently discuss examples 

of these sorts of transformations, such as 8–7 motion in an upper voice over two 

root-position chords, in the context of Brahms Op. 117, No. 2.

! Extrapolating all types of triads with all types of added thirds results in a 

broad array of tertian combinations that have very narrow, if any, application in 

musical works. One might argue that good music theory does the opposite: 

narrow the possible combinations in order to have broader applicability when 

analyzing music. Normative seventh sonorities emerged from this pool of 

possibilities as more common because of the limitations of diatonicism. As 

chromaticism increasingly broke down the barriers of diatonicism, the limitations 

imposed upon extrapolated seventh sonorities would, one would think, break 

down as well. But in most of the late-nineteenth-century literature, composers 

continued to favor normative seventh sonorities, even when diatonicism only 

loosely applied, if at all. This peculiarity necessitates the need to think differently 

about seventh sonorities in highly chromatic, parsimonious contexts.

INTERACTION

! Interaction is the term I will use to denote the flexible conception of 

harmonic structures from either bottom-up or top-down.  The term is so called 

because it acknowledges that seventh sonorities contain two overlapping 
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normative triads. Interaction is descriptive and is based more on what is, than 

what might be. Reasoning from this perspective reverses the “if-then” logic 

statement to become a “so-because” statement. That is, normative seventh 

sonorities are so, because they consist of two overlapping normative triads whose 

roots are a third apart and which share two common tones (illustrated in Table 

2.3). These conditions are considerably more stringent than those used in the 

extrapolative theory, thus allowing for wider applicability.

Table 2.3: Seventh-sonority formation from interacting triads

Lower 
Triad

Upper 
Triad

Seventh-Sonority 
Result

Example

major + minor major-major

major + diminished major-minor

& œœœb œœ# ˙̇̇̇#b

& œœœb œœ ˙̇̇̇b

& œœœb œœb ˙̇̇̇bb ˙˙˙̇b(  )
& œœœbb œœ#b ˙̇̇̇#bb

& œœœbb œœb ˙̇̇̇bb

& œœœbb œœbb ˙̇̇̇bbb ˙˙˙̇bb ˙̇˙˙# ˙̇̇˙##(            )

& œœœbb œœ!b ˙̇̇̇!bb ˙˙˙̇bbb(    )

& œœœ œœœ# ˙̇̇̇#

& œœœ œœœ ˙̇̇̇

& œœœb œœœb ˙̇̇̇bminor + major minor-minor

diminished + minor diminished-minor

diminished + diminished diminished-
diminished
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! Interaction can be thought of as more in line with the theoretical legacy of 

Hugo Riemann (or the “reimag(in)ing” of his theories),40 which suggests a more 

fluid perception of the root and an emphasis on common tones. Riemann himself 

was interested in sonority symmetry, noting the inversional equivalence of major 

and minor triads. Figure 2.1 illustrates similar inversional symmetries among 

seventh sonorities in a nod to Riemann’s notion of the Oberklang and Unterklang. 

Like Riemann’s treatment of major and minor triads, other authors (Gollin,41 

Childs,42 et al.) have commented on the invertible relationship of the major-

minor and half-diminished sonorities, and the inversional symmetry of the fully-

diminished sonority is well-known. The inversional symmetries of the major-

major and minor-minor sevenths, however, have been overlooked, likely due to 

the relatively less important nature of these sonorities in functional contexts.43 

! Let us examine, as a point of departure, the most pervasive and arguably 

most essential seventh sonority, the major-minor seventh. This sonority occurs

32

! 40 Hyer, “Reimag(in)ing Riemann,” 101–138.

! 41 Gollin, 195–206.

! 42 Childs, 181–93.

! 43 In other words, the basic interval pattern (BIP) of the major-major 
sonority, whether read from bottom to top or top to bottom, is M3-m3-M3. The 
situation is similar in the cases of the minor-minor seventh, whose BIP is m3-M3-
m3, and the fully-diminished seventh, whose BIP is m3-m3-m3. This is 
contrasted with the major-minor seventh’s BIP, M3-m3-m3, which when read in 
reverse is the half-diminished seventh’s BIP, m3-m3-M3.



Asymmetrical SymmetricalSymmetricalSymmetrical

a b c d

Figure 2.1a–d: Seventh-sonority inversional symmetry

 diatonically in only one form, on the dominant (and so is frequently labeled “V7” 

or dominant seventh), and as such performs the vital function in tonal harmony of 

drawing the ear toward tonic. The V chord performs the same tonicizing 

function, as does the viiº, and the roots of these two chords are a major third 

apart. When these two chords are joined into one sonority, the combined 

harmonic and functional stability V and the tension of viiº create a stronger 

gravitational pull toward tonic than either the V or viiº achieves individually.44

! Extrapolative reasoning explains this relationship in terms of a diatonic 

seventh atop an already functional V chord; in this regard, it behaves in much the 

same way a diatonic seventh added to any already functional triad, such as a I7 

or IV7. But this perception hardly accounts for the aural power and ubiquity of 

33

! 44 In the context of a key, the V chord is consonant, acts as a harmonic 
pillar, places emphasis on the relatively stable ◊5, particularly when it is in the 
bass. The viiº chord provides a dissonant alternative to the V chord, made up 
entirely of tendency tones (◊4 in addition to ◊2 and ◊7 shared with V).



the V7 in contrast to that of the I7 or IV7. On the other hand, interactive reasoning 

provides an explanation as to why the V7 plays such an important role in 

Western music. Whereas the extrapolative view subsumes the viiº under the 

umbrella of “V-ness,” the interactive view acknowledges that there is a 

significant difference between the tonicizing powers of V and V7, and this is due 

to the powerful tendency tones belonging to the viiº portion of V7. 

! Brahms’s Op. 117, No. 2 provides in microcosm an illustration of the 

merits of an interactive perspective, and even how it may merge with an 

extrapolative one. Example 2.3, m. 8 demonstrates the extrapolative labeling of 

seventh chords (FMaj7 in m. 8.2 and F7 in m. 8.3) as mere variants of their base 

triad (F in m. 8.1). Typically, the seventh (Eç) of the FMaj7 would be dismissed as a 

passing tone, even though it is given just as much durational, articulative, and 

dynamic weight as the 7th of the F7. For this reason, I have added a question 

mark to the passing-tone label. This harks back to Richard Bass’s argument that 

simultaneities can certainly have a valid vertical identity as well as a horizontal 

one. More to the point, the content of m. 8 is easily understood, and accurately 

so, as extrapolative; i.e., it is simply the metamorphosis of an upper extension to 

the same fundamental triad, F major.

! In contrast, mm. 9–10 are better explained from an interactive perspective. 

Measure 9 features a “misspelled” GΩΩm which is reinterpreted after passing the
34
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 bar line as an enharmonic EΩΩø7.45 Conventional labels, which are inherently 

extrapolative, mask the reality that GΩΩm and EΩΩø7 have just as close a relation as do 

F and F7 (in terms of parsimonious voice leading); in each case, the triad is 

embedded within the seventh sonority. An interactive explication can 

accommodate such behavior by recognizing the triadic identity of a seventh 

chord’s upper three pitches. In contrast, an extrapolative perspective only 

recognizes the triadic identity of the lower three pitches of a seventh chord, 

which implies a difference between F to F7 and GΩΩm to EΩΩø7. In some contexts that 

difference matters; in others, the difference is less important than the similarity.

! Example 2.4 provides a passage by Brahms from later in the same piece 

which is considerably more “normal.” This is a complementary passage to that in 

Example 2.3 and is similar in its initial rhythm and a sweeping downward 

arpeggio that transforms a triad into a seventh sonority. However, it differs 

significantly–it is functional, tertian chords are spelled correctly, and it even 

features a brief circle-of-fifths sequence. One could quite comfortably understand 

these three measures in terms of extrapolation (or interaction).

36

! 45 The transition from m. 8.3 to 9.1, from F7 to an enharmonic GΩm, is 
similar to a purely triadic slide transformation in which A, the third of F7, 
continues as the third of GΩm, substituting for BΩΩ. Additionally, the 
incorporation of GΩm into EΩø7 is an example of Julian Hook’s inclusion 
transformation (2002), a concept that is closely related to my idea of interaction.



! If Example 2.3 can be thought of as a thesis, then Example 2.4 is its 

antithesis, and Example 2.5 will provide the synthesis. This last complementary 

passage from Op. 117, No. 2 follows right on the heels of that in Example 2.4. A 

lingering aural sense of DΩΩ from m. 21.2 projects itself onto the viiº of m. 21.3, 

implying an interaction. Measure 22 features a triad transformed into a seventh 

sonority via a sweeping arpeggio, as have the foregoing examples. But in this 

iteration, the addition of DΩΩ in beat three creates a major-major seventh sonority, 

consistent with an extrapolative perspective, whose function is possible (though 

unusual and/or awkward) in both the old and new keys. That DΩΩ works both 

linearly (as a means of transition first to the EΩΩΩΩ of m. 22.1 and then to the C of m. 

23.2) and harmonically (as a chord tone implied by the sheer length of its 

presence in mm. 22.3–23.2). Again, interaction can explain the whole passage, 

while extrapolation can only account for m. 22.

! For the purposes of the theory put forward in the present study, and given 

the nature of the music to which it applies, I favor the interactive argument over 

the extrapolative one. In the highly chromatic music of the late-nineteenth 

century, the principles of functional harmony often gave way to chord 

connections that were simultaneously more free and more conservative. In that 

kind of musical climate seventh sonorities could emerge from directions other
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than the root. Extrapolation and interaction are not universally applicable 

thought processes. Different harmonic contexts require different approaches. Just 

as physics has shown that light can behave as both particles and waves, so music 

can be considered to feature extrapolative and interactive qualities, or horizontal 

and vertical qualities.

! In physics, classical mechanics refers to the understanding of the physical 

universe as articulated by Sir Isaac Newton and his followers. Classical 

mechanics assumed certain constants, such as Euclidian geometry and Galileo’s 

principle of relativity, perfectly addressing the vast majority of contexts anyone 

encountered. What Newton did not know is that these physical principles were 

only valid for an object above a certain size and below a certain speed. If one 

considers the atomic level, or a traveling object exceeding the speed of light, 

these laws become moot. In some ways, classical mechanics versus quantum 

field theory is an apt analogy for the extrapolative theory versus the interactive 

theory. In a majority of the contexts musicians will analyze, an extrapolative 

perspective, like Newtonian physics, is perfectly apt. But in less ordinary 

circumstances, interaction better explains observed phenomena.

! My discussion of these dichotomies should in no way indicate that I hold 

some to be irrelevant or outmoded. On the contrary, those I do not adhere to are 

simply not appropriate to the musical contexts I wish to examine. The musical 
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examples I will analyze later tend to adhere to a relatively parsimonious 

harmonic syntax that, while perhaps behaving linearly, certainly has a harmonic 

identity I wish to recognize. An extrapolative approach only accounts for 

seventh-sonority construction as an upward extension; this is inadequate to my 

task. The methodology of interaction solves this problem by neutrally allowing 

for upward or downward extensions of the triad. The theoretical models I will 

present in the following chapter, and the musical analyses in the chapter after 

that, rely to a certain extent on understanding these assumptions.

Copyright © Enoch S. A. Jacobus 2012
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CHAPTER III: THEORETICAL METHODOLOGY

INTRODUCTION

! The theory of parsimonious seventh-chord relationships I propose in this 

chapter will be both reasonably comprehensive and analytically applicable. 

Readers may note some similarities between my proposed theory and that 

published by others, most recently a 2008 article by Callender, Quinn, and 

Tymoczko.46 However, even though their article does address parsimony among 

tetrachords, it is fair to say that their approach is distinctly different, primarily in 

its more purely mathematical approach and in its equal inclusion of non-tertian 

“sonorities” (e.g. [0000] or [0066]). They do illustrate parsimony among 

tetrachords (I use the term broadly here) in three-dimensional space, which I will 

also do, but their approach takes a step away from actual music and focuses 

more closely on theoretical possibilities. 

! What I propose in this chapter is an alternative model of harmonic space 

that can be used to map actual musical passages.  In some ways, my work owes 

more to Edward Gollin’s theory47 than to those of Cohn,48 or Callender, Quinn, 
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! 47 Gollin, 195–206.

! 48 Cohn, “A Tetrahedral Graph”



and Tymoczko. Gollin generates his three-dimensional, seventh-chord Tonnetz 

quite logically from the preexisting two-dimensional triadic Tonnetz of the neo-

Riemannian school. In so doing, he creates a very elegant system of major-minor 

and half-diminished seventh chords, both of which are manifestations of set class 

(0258). Just as a Tonnetz can represent the inversional attribute of major and 

minor triads with upward and downward pointing triangles, respectively, so 

Gollin illustrates the analogous inversional quality of set class (0258) with 

upward and downward tetrahedrons. Figure 3.1 reproduces a neo-Riemannian 

Tonnetz (left) and his molecule-like model (right), a complicated image that 

requires some decipherment. I have annotated Gollin’s figures with colored 

arrows to help orient the reader when viewing his 3D model.  The red arrows I 

have added run the length of an axis of perfect fifths, the blue arrows run along 

an axis of major thirds, and the green arrows run along an axis of minor thirds. 

The 2D Tonnetz on the left is then turned about and foreshortened, making the 

red P5 axis seem to recede into the background. Thus the plane on the left is 

incorporated into the figure on the right to form the bases of upward- and 

downward-pointing tetrahedrons. For clarity, I have rendered my own simplified 

cutaway region of Gollin’s model in Figure 3.2 to isolate an upper tetrahedron (a 

major-minor seventh sonority).
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Gollin’s “Figure 1” (p. 197) Gollin’s “Figure 2” (p. 198)

Figure 3.1: Annotated versions of Gollin’s seventh-chord Tonnetz

a b

Figure 3.2a–b: Seventh-chord tetrahedron extrapolated from 

a horizontal 2D Tonnetz, after Gollin
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Figure 3.2 continued

c d

Figure 3.2c–d: Seventh-chord tetrahedron extrapolated from 

a horizontal 2D Tonnetz, after Gollin

! As elegant as it is, Gollin’s 3D model only accommodates two seventh-

chord types, the major-minor and half-diminished. These two types are 

admittedly prolific in common practice tonal music and serve an important 

tonicizing role within functional harmony, but what about other types of seventh 

chords, or contexts that involve non-functional sonorities (such as “linearly 

generated” sonorities)? The reason that Gollin’s model does not incorporate more 

chord types is because his approach assumes that the seventh is extrapolated 

above the base triad. At first, Gollin’s model may appear interactive, given that 

the plane highlighted in Figure 3.2b is made up of diminished triads (036).  That 

plane, plus the horizontal plane of consonant triads (037), implies interaction.  
44



However, Gollin’s model positions the seventh of the chord equidistant from all 

other chord members.  This placement implies two assumptions: (1) the sonority 

is really conceived as extrapolation, i.e., F major + EΩΩ; and (2) the geometry gives 

equal importance to two additional planes of irrelevant trichords, shown in 

Figures 3.2c (025) and 3.2d (026).

! The implications of such a disparity lead me to a geometric model with an 

internal logic that distinctly favors an interactive perspective. From an interactive 

approach, if all normative seventh chords can be thought of as the combination 

of two normative triads, then they can begin to be understood in terms of a 

typical 2D Tonnetz. 

SONORITY GEOMETRIES

Figure 3.3 shows that the major-major and minor-minor sonorities already exist 

within the plane of a 2D Tonnetz.49 (These sonorities are latent within Gollin’s 

model.) The major-major and minor-minor sonorities are simple to accommodate 

because they result from the interaction of consonant (major or minor) triads. The 

major-minor, half-diminished, and fully-diminished sonorities all incorporate 

one or more diminished triads not immanent in the structure of a conventional 
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! 49 Figures 3.3 and following assume enharmonic equivalence, using pitch-
class integers rather than letter names.



2D Tonnetz. As we have observed, Gollin’s model contains a plane of diminished 

triads (Figure 3.2b), a dissonant Tonnetz, by virtue of layering conventional 

consonant Tonnetze.  

2D 3D

5

9

38

2

10

11 6

6

1

5

81 3

0

4

7

11

Figure 3.3: Interacting triads within a Tonnetz generate major-major and 

minor-minor chords 
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! In Figure 3.4, I have layered consonant Tonnetze in such a way that three 

different vertical, dissonant Tonnetze can connect them. This model preserves the

 plane containing diminished triads while eliminating the irrelevant ones. Such 

stratification of Tonnetze could hypothetically continue in either direction ad 

infinitum.

Figure 3.4: Three vertical “dissonant Tonnetze” of diminished triads resulting 

from horizontally layered consonant Tonnetze

! Each vertically oriented diminished triad shares a common boundary with 

two horizontal consonant triads (one major and one minor). Combining triads 

that share such a boundary results in major-minor and half-diminished 

sonorities. Figure 3.5 illustrates these two chords as they would appear in what I 
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will refer to as a tiered-Tonnetz. The opposing orientation of the major-minor and 

half-diminished chord geometries is analogous to their inversional relation and 

to Gollin’s depiction of them as upward and downward tetrahedrons.

Major-Minor Half-Diminished

Figure 3.5: Interacting triads within a tiered-Tonnetz generate major-minor and

half-diminished chords

! Only the fully-diminished sonority remains to be explained in terms of a 

Tonnetz (or tiered-Tonnetz). Each diminished triad in the vertical plane not only 

borders two consonant triads, but also borders other diminished triads. 

Combining these diminished triads results in fully-diminished seventh chords, as 

shown in Figure 3.6.

! It is noteworthy that the geometries of the major-major, minor-minor, and 

fully diminished sonorities also reflect their respective inversional symmetries by 

existing in only one plane—the major-major and minor-minor in the horizontal
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Figure 3.6: Interacting diminished triads within the vertical “dissonant Tonnetz” 

generate fully-diminished sonorities

 plane (Figure 3.2), and the fully-diminished in the vertical plane (Figure 3.6). 

Indeed, we can see from Figure 3.6 that the same fully diminished sonority could 

easily be reoriented in several directions but always staying within its plane. This 

property is perhaps a geometric analogue to the multiple enharmonic 

manifestations of fully-diminished sonorities. 

SONORITY NETWORKS IN TWO DIMENSIONS

! It is difficult to understand how these chord types, as depicted thus far, 

can form far-reaching parsimonious networks. If we were interacting with the 

forgoing model in physical space, we could lay out the major-major, minor- 

minor, and fully-diminished geometries on the floor and they would all have 
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certain features in common. Each sonority, would be depicted as a square set on 

point, with each corner representing one pitch member of the chord. By orienting 

the root at the top, the third is always immediately clockwise from the root, and 

the seventh is always opposite the root (just as on the Tonnetz). Figure 3.7 

summarizes this structure in what I will refer to as a seventh chord hub. Note that 

the root is partitioned off to help orient the viewer.

Figure 3.7: Anatomy of a seventh-chord hub

! In the figures that follow, I adopt a shorthand labeling system for 

normative seventh chords, one that utilizes pitch-class integers rather than letter 

names. Taking a cue from Brian Hyer’s use of plus and minus signs to indicate 

major and minor, I will do the same with the addition of a small circle to denote 

the diminished quality.50 Thus the major-major quality is denoted with ++, etc., 

as summarized in Table 3.1.

50
! 50 Hyer, “Reimag(in)ing Riemann,” 107ff.



Table 3.1: Summary and guide to normative seventh chords

Name
Symbol Used 
in This Study

Set 
Class

major-major ++ (0158)

major-minor +– (0258)

minor-minor – – (0358)

diminished-minor (half-diminished) º– (0258)

diminished-diminished (fully-diminished) ºº (0369)

! By “flattening” all the seventh-chord geometries formed from the 

consonant and dissonant Tonnetze (Figures 3.2 and 3.5), all five types become 

easily comparable and, when combined, can form an array of relationships. In 

Figure 3.8, 0+– forms the center of an array. Included for each chord is its musical 

notation equivalent. A hollow note head indicates a pitch in common with its 0+– 

complement; a filled note head indicates a pitch one-semitone removed from its 

0+– complement. A line connecting points (pitches) of two hubs (chords) 

indicates which chord member moves by semitone and which chord member it 

becomes. Ascending along a line represents upward motion, and descending 

along a line represents downward motion. The array in Figure 3.8 illustrates the 

property that raising the seventh of 0+– results in 0++, but lowering the seventh 

of 0+– results in 9– –. Similarly, various members of a family of enharmonically 

equivalent fully-diminished chords (10ºº, 1ºº, 4ºº, and 7ºº) are all related to 0+– by 

51



single semi-tone displacement. Their various spellings each claim a different 

pitch as the root, but the same pitch class, whatever chord member it may be or 

enharmonic spelling it may have, can descend by semitone to form 0+–.

9º-

0+-

0++

0--
9--

4ºº 7ºº1ºº10ºº

Figure 3.8: Array of parsimonious relationships to 0+–

! Such an array is helpful when examining all relationships to a particular 

sonority, but it cannot accommodate any relationships more than one semitone 

displacement away from the “nucleus” sonority. Figure 3.9 depicts a strand of 

seventh chords derived from the array, but continuing the pattern beyond one 

transformation. This strand is but a fragment of a longer chain of possible 

semitone transformations. In this chain, the transformational pattern (++, +–, – –, 

º–) repeats every four chords. We could then parse the entire chain into twelve 
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families, each family built on a different chromatic pitch of the octave, and each 

family would contain four members (++, +–, – –, o-). The entire chain would 

contain forty-eight chords, eventually linking back to its beginning.

Figure 3.9: Segment of the continuous chain of ++, +–, – –, º– transformations

! Even though Figure 3.9 only visualizes a segment of an infinitely looping 

chain, one can conceive of such a loop as an extension of the mod-12 pitch-class 

integer loop. I refer to the chain that this segment represents as the Primary Axis 

(or P axis). A transformation along this axis made by lowering a member by 
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semitone (e.g. 5– – to 5º–) is labeled -P.51 Likewise, a transformation along this 

axis made by raising a member by semitone is labeled +P. Figure 3.10 shows 

such an arrangement, based on the segment used in Figure 3.9. The connections 

that link these three P-axis segments form an intermittent axis that runs roughly 

perpendicular to the P axis. I refer to these intermittent connections as lying 

along the auxiliary axis (or A axis), which, when combined with the P axis, form 

a portion of a lattice of seventh-chord parsimony.

! Four strands of the P axis can be aligned along the A axis before sonorities 

are replicated. In Figure 3.11, the rightmost P-strand seems to end with 6º–. 

Lowering the root of 6º– by semitone results in the 5++ chord that appears in the 

leftmost P- strand. From Figure 3.11, then, we can infer that not only can the P 

axis eventually be wrapped upon itself, but so too can the A axis. Such a cyclical 

structure would result in a three-dimensional geometric figure resembling a 

torus. Along this torus the P axes would bend and wrap around the surface like 

candy cane stripes.

! The organization of pitch-class space into the seventh-chord lattice I have 

shown remains incomplete insofar as it neglects the fully-diminished seventh 

chord. Although the fully-diminished sonority is best assimilated into the lattice 
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! 51 This should not be confused with the neo-Riemannian P (parallel) 
transformation, which represents crossing between major and minor triads with 
the same root.
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in three dimensions, it can be squeezed into the margins of the two- dimensional 

lattice, with the understanding that these chords exist in another plane or 

dimension.52 Figure 3.12 represents the fully-diminished sonorities in grey as a 

reminder that they do not inhabit the same dimension as the rest of the lattice. 

Enharmonically equivalent fully-diminished chords are grouped by proximity, 

with four chords per group, a phenomenon that meshes well with the logic of the 

lattice (which replicates sonorities after four strands are aligned). Whereas four P-

strands produce nominally different fully-diminished chords, these strands 

actually generate exactly the same sonority, each claiming a different chord 

member as the root. Each of these chord spellings can act as the mouth to a 

harmonic “wormhole” network that can whisk the listener to a distantly related 

point on the lattice.

SONORITY NETWORKS IN THREE DIMENSIONS 

! If we were to curve the two-dimensional surface of the lattice of Figure 

3.12 such that it wrapped back upon itself along both the P and A axes, the 

resulting geometry would resemble a skeletal torus. This can be represented two 

ways. The first, in Figure 3.13, orients the P axis as stretching around the torus  
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! 52 In keeping with my physics metaphor, these “other” dimensions 
inhabited by fully-diminished seventh chords are perhaps analogous to the 
theoretical Multiverse, which posits the possibility of alternate universes.
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primarily in the toroidal direction while the A axis is oriented in a quasi-poloidal 

direction. The second in Figure 3.14 orients the P axis to spiral through the 

poloidal direction while the A axis stretches around the toroidal direction.53 

Granted, neither axis 

Figure 3.13: Torus with A axis oriented quasi-poloidally
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! 53 In my prior 3D images, each spherical node represented a single pitch 
class. However, from this “zoomed-out” perspective, where we are no longer 
examining networks of individual pitch classes but whole sonorities, the 
spherical nodes represent chords. Just as Schenkerian sketches can feature the 
minutiae of the foreground or the substructure of the background, so I have done 
in an analogous way in these models. The colors added to Figures 3.13, 3.14, and 
3.20 bear no significance other than as a means of clarification to organize images 
containing so many sonorities.



truly adheres to these directions because they spiral around the torus. This trait is 

analogous to the earth’s magnetic and geographic poles’ misalignment, resulting 

in magnetic field lines that are offset from the geographic longitudinal lines.

Figure 3.14: Torus with P axis oriented quasi-poloidally

! The foregoing models offer a means of representing seventh-sonority 

movement by semitone, but a discussion of seventh-chord parsimony would be 

incomplete without also addressing whole-tone motion. Seventh-chord 

60



connection by whole tone is arguably less parsimonious than by semitone,54 but I 

include it as a practical consideration. The cycle of chords pictured in Figure 3.15 

bears some resemblance to the circle of fifths in that all twelve pitch classes are 

present as roots (although each occurs twice as two different chord qualities), 

with tritones polarized. Around the circle, chords alternate between ++ and – – 

qualities, with roots related by alternating major and minor thirds.

! A similar cycle can be constructed of +– and º– chords, a relationship 

treated at length by Childs55 and Gollin.56 Figure 3.16 illustrates this cycle. The 

ordering of chord roots is identical to that of Figure 3.15. The transformational 

pattern of the cycle in Figure 3.16 is slightly different, however. For example, 4º– 

must move its seventh by whole tone to transform into 0+–, an operation like 

those found in the first whole-tone cycle of Figure 3.15. Conversely, 0+– must 

have its seventh and its third lowered by semitone (a divided whole tone) in order 

to transform into 9º–. Any transformation in Figure 3.16 is the product of two 

discrete semitone motions achieved alternately by one member or divided 

between two members. Each cycle bears a closely related internal symmetry and
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! 54 The neo-Riemannian R transformation, which involves whole-tone 
motion, is also less parsimonious than the L or P transformations, which each 
involve semitone motion.

! 55 Childs, 181–93.

! 56 Gollin, 195–206. 



Figure 3.15: Whole-tone cycle of ++ and – – seventh chords
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Figure 3.16: Whole-tone cycle of +– and º– seventh chords
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regularity of sonority quality, inversion, and root relation, reminiscent of the 

circle of fifths.

! Lines in the midst of Figure 3.16 show the short-cut provided by fully-

diminished chords of the same enharmonic family. This is exactly how physicists 

describe (at least in layman’s terms) what a wormhole is. Physicist Richard F. 

Holman describes them this way:57

Wormholes are solutions to the Einstein field equations for gravity 

that act as “tunnels,” connecting points in space-time in such a way 

that the trip between the points through the wormhole could take 

much less time than the trip through normal space.

Figure 3.17 provides visualization of what Holman describes. The curving plane 

represents normal space, but the wormhole provides a shortcut. In the theoretical 

models I am building, fully-diminished sonorities often behave as shortcuts to 

more distant points of the seventh-chord lattice or whole-tone cycles. Looking 

back at Figures 3.13 and 3.14, we can see that the black connections to the fully-
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! 57 Richard F. Holman, “Follow-Up: What exactly is a 'wormhole'? Have 
wormholes been proven to exist or are they still theoretical?,” Scientific 
American (September 15, 1997), http:// www.scientificamerican.com/
article.cfm?id=follow-up-what-exactly-is (accessed October 10, 2011). 



diminished spheres shortcut the longer, “surface” lattice distances.  We will see 

this sort of occurrence in the music analyses of the next chapter.58

Figure 3.17: A wormhole as a space-time “shortcut”

! The chords seen at the top of the first whole-tone cycle (4– –, 0++, 9– –, 

and 5++) appeared vertically aligned in the same order in the lattice, and these 

are compared in Figure 3.18. The same principle holds true for the +–/º– whole-

tone cycle. The correspondence between the lattice and whole-tone cycles seems 

to imply a third axis that runs through the lattice. So long as the lattice is held 

flat, this axis appears to run vertically, as shown in Figure 3.19, with red lines 

correlating to segments of the rim of the ++/– – whole-tone cycle, and blue lines 

to segments of the rim of the +–/º– whole-tone cycle. Viewing the lattice in this 
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! 58 This “wormhole property” of the fully-diminished seventh sonority 
allows for swift enharmonic modulation between distantly related keys as well. 
See Beethoven’s Sonata Op. 13 (“Pathétique”), Mvt. 2, mm. 47–50 for an example.
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way may be convenient, but it not completely accurate. Like the problems 

cartographers have long faced when representing a spherical earth on a flat sheet 

of paper, the lattice is merely a two-dimensional simplification of three-

dimensional geometry. Using the whole-tone cycles as cross-sections of a torus 

(viz. slicing a doughnut), a single lattice can be wrapped around the surface of 

the torus, uniting the semi-tone and whole-tone transformational models into 

one “harmonious” model.

! Visualizing this in three dimensions in Figure 3.20 is much more helpful 

than simply describing it. As with the previous toroid models, our view must be 

“zoomed out” in order to see the big picture, so each seventh chord is 

represented by a single sphere. In Figure 3.20, only the chords that lie at the 

intersections between the whole-tone cycles and this one lattice are represented 

with spheres. This is only to keep the model from becoming cluttered, but chords 

lie all around each whole tone cycle, even if they are not shown in particular. 

Only one complete lattice of P and A axes is shown, covering 16.7% of the 

surface. Five more lattices could fit on the same torus, resulting in six lattice-

regions of identical content that differ from each other only in their orientation 

on the torus. The six lattice-regions of the whole-tone-torus are illustrated in 

Figure 3.21.
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Figure 3.20: Torus accommodating whole-tone cycles

Figure 3.21: Six lattice-regions fitted to one torus
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! These geometric models provide a number of graphic tools and spatial 

metaphors for better understanding certain pitch-class space conditions. Each 

geometric model relates to the others in some way, creating a lattice-family of 

visual options for understanding admittedly abstract relations. As such, the 

theory is reasonably comprehensive, in that it accommodates all five normative 

seventh chords, and in time it may be possible to integrate non-normative 

seventh chords.

! What remains is to see if and how this theory can be applied to music “in 

the wild,” a step sadly lacking in many of the more comprehensive studies. As it 

happens, this chapter has described the pitch-class landscape sometimes used by 

certain late-nineteenth-century composers. The theory has mapped that 

landscape, but the next chapter will retrace the paths that certain composers have 

chosen to explore it.

Copyright © Enoch S. A. Jacobus 2012
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CHAPTER IV: ANALYTICAL APPLICATIONS

INTRODUCTION

! In this chapter I employ the foregoing theoretical model in the analysis of 

art music, charting composers’ paths through pitch class space in the process. In 

so doing, passages that have typically been difficult to analyze as anything other 

than “tonally unstable” or “transitional” can now be analyzed for what they are, 

rather than what they are not. Understanding the internal structure of these 

passages via visual maps may answer questions such as: might this help us 

understand specific composers’ harmonic preferences; might this provide a 

means of comparison among a variety of composers who used a similar 

harmonic syntax; might this illustrate narrative elements; and might this provide 

a means of comparison among multiple treatments within a single piece of the 

same region of harmonic space?

! The lattice model, while extensive, is composed of discrete semitone 

motions (and whole tones if we include the whole-tone cycles). Each of these 

discrete motions is given a label analogous to the familiar P, L, and R 

transformations represented by a neo-Riemannian Tonnetz. I use +/–P and +/–A 

to identify motion along the Primary and Auxiliary axes. Transformational letters 

are coupled with plus and minus signs (“+”/”–”) to indicate rising or falling 
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pitches along these axes.59 I use E to signify Enharmonic respelling between two 

fully-diminished sonorities of the same set class. +/–V denotes semitone motion 

along the Vertical axis (i.e., into or out of a fully-diminished seventh chord), and 

+/–W, or “double-V,” denotes motion by Whole tone along that same vertical 

axis (i.e., a segment of the whole tone cycle). The transformational orthography is 

summarized in Table 4.1.60 Examples are illustrated on the lattice in Figure 4.1.

Table 4.1: Transformation symbols

+ = Ascension along an axis

– = Descension along an axis

P = Primary Axis

A = Auxiliary Axis

V = Vertical axis by semitone (into/out of fully diminished 7th [ºº])

W = Vertical axis by whole tone (some segment of a whole-tone cycle)

E = Transit through enharmonic “wormhole”
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! 59 Thus, P refers to the parallel function in neo-Riemannian theory, 
whereas +P refers to upward semitone motion along the P axis and –P refers to 
downward semitone motion along the P axis.

! 60 The plus (+) and minus (–) in this context represent movement of one or 
more pitches. It should not be confused with the plus and minus signs used in 
conjunction with pitch-class integers, in which plus represents a major triad and 
minus represents a minor triad. Both uses will appear in the following analyses, 
but should be easy to differentiate. When plus or minus signs are used with 
integers they refer to the “majorness” or “minorness” of a given sonority; when 
they appear with the letters P, A, V, or W they refer to upward or downward 
motion between two sonorities.



Figure 4.1: Transformational signatures on the lattice model

 ! The P, L, and R transformations in neo-Riemannian theory can be applied 

to any major or minor triad, and are therefore universally applicable operations 

within that system. However, they do not accommodate diminished triads or any 

kind of seventh sonority. With a wider range of sonorities, the complexity of their 

relationships precludes a universally applicable transformation. Thus, the +/–W 

and +/–P operations can apply to all but fully-diminished chords. The +/–A 

operation only applies to major-minor (only –A), minor-minor (both), and half-

diminished (only +A) sonorities. Similar to the +/–A, the +/–V operation applies 
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exclusively to major-minor (only +V), fully-diminished (both), and half-

diminished (only –V) sonorities.

! It would be slow going indeed if composers contented themselves only 

with moving one chord member by semitone each time, so most chord 

connections I will examine are conglomerations of the discrete motions shown on 

the lattice model. One transformation, then, is summed up in a term, not unlike 

the term of an algebraic equation. Operation E does not in itself consist of a pitch 

change, only an enharmonic respelling. Therefore E is typically found paired 

with V, which does involve a pitch change; these together are considered one 

term. Table 4.2 gives examples of transformational terms. 

! In addition to transformational labels, I provide a voice leading reduction 

below the staves of original notation for each musical example that follows. This 

is intended to aid the reader in recognizing the chord (or what I consider to be 

the chord) more immediately. It is by no means intended to emulate a 

Schenkerian reduction. Additionally, I draw slurs between pitches that would be 

constant, were it not for some intervening motion that is immediately reversed. 

In some sense then, slurs indicate the protracted influence of the pitches to which 

they are attached (not the prolongation of a sonority or harmonic function). On 

occasion, I will use dotted lines to connect a pitch with a chord from which I 

consider it to be temporally displaced.
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Table 4.2: Sample correlation of notation to lattice geometry and term signatures61

One Term Two Terms Three Terms

Notation

Lattice 
Path

Transform. 
Signature

+A –A+P –P–VE–V

! There are a few stylistic tendencies worth mentioning before examining 

specific musical excerpts. The first is the tendency of composers to construct a 

parsimonious passage, and then repeat it, perhaps with some adjustments, in 

order to extend the length of the passage. The second is the nearly ubiquitous 

preference to descend, rather than ascend, along any of the axes already 

described. Therefore, in the transformational terms that accompany each excerpt, 

minus signs (–) are far more common than plus signs (+). This makes a great deal 
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! 61 In this figure, and in the voice leading reductions in the examples to 
follow:
1) hollow note heads = pitch class held in common with prior chord.
2) black note heads = pitch has moved by semitone from prior chord.
3) diamond note heads = pitch has moved by whole tone from prior chord.



of sense in terms of the traditional resolution of chord sevenths, which are 

properly resolved down by step, but downward motion seems to prevail 

regardless of the changing chord member. Candace Brower has address this idea 

as an embodied understanding of music in the listener (or perhaps the composer, 

who listens internally before composing). The listener, through experience of the 

physical world, interprets the downward pull toward tonic as something akin to 

gravity.62 Aside from the leading tone, all tendency tones have a propensity to 

resolve downward. Schenkerian theory would even say that ◊7 – ◊8 motion is 

incidental in the larger scheme of the Urlinie, in which upward motion is 

exceedingly rare. As a result, ascending motion of a chord member becomes a 

more significant event by virtue of its relative scarcity.

CHOPIN, MAZURKA, OP. 7, NO. 2

! The excerpt shown in Example 4.1 is a good introduction to the system I 

intend to use throughout my analyses. Note the reduction’s enharmonic 

respelling of the Gr+6 in mm. 17 and 19 as a major-minor seventh chord. This 

adjustment is made purely for the sake of conveniently comparing sonorities.

! Chopin’s use of the Gr+6 is curious in that it is at first resolved as one 

would expect in m. 18, only to revert back to the Gr+6 in m. 19. With the listener’s

76
! 62 Brower, 323-379.
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ears still ringing with a relatively conventional use of the chord, Chopin launches 

into an unconventional chain of sonorities that, by any traditional reading, must 

be considered non-functional but can be described in some detail by the 

parsimonious models previously discussed. Reading the passage this way 

implies that the “proper resolution” of m. 18 is, in fact, not a resolution, but a 

feint that is immediately undone. This property is summed up by the slurs 

connecting the pitches of mm. 17 and 19, such that one might ignore the G major 

chord of m. 18 altogether, for all the impact it makes on the reaching of a 

harmonic goal.

! Measures 18–19 are marked by a bracket labeled “Extravagant.” This 

refers to Robert Cook’s differentiation between parsimony and extravagance.63 

Cook’s study was concerned with triadic transformation, but in the passage from 

Chopin’s Op. 7, No. 2 (Example 4.1), we see another example like those given by 

Cook, with the exception that this involves a triad moving to a seventh chord. 

The proper, traditional resolution of the Gr+6 must, by definition, be extravagant. 

The passage, then, provides examples of an extravagant and a parsimonious path 

out of 8+– (AΩΩ7 or Gr+6 in C).

! The diagonal dotted lines in mm. 20–24 illustrate the temporal 

displacement between the high register and the supporting harmony. In this 

78
! 63 Cook, 109–140.



example, the higher pitch is missing from the chord that is about to arrive. 

Listeners will likely hear the higher pitch incorporated into the following 

sonority, even if the pitch has disappeared from the texture.

! For clarity, Figure 4.2 reproduces the score of the Mazurka with the aid of 

a concise “map” of its path through pitch-class space-time. In this map, seventh-

chord hubs outlined in red are sonorities that sound within the passage, whereas 

those outlined in black merely lie along the path. Measure numbers are given 

along the right margin of the figure. The passage begins at the top of the the map 

and proceeds downward in agreement with the minus signs of each term of the 

transformational signatures annotated in the score. This, of course, denotes 

descending motion of chord members. The map also marks the frequency of 

fully-diminished “wormholes” that Chopin employs to move among distant 

positions on the lattice (five wormholes in nine measures). 

! A less concise map of the same passage in Figure 4.3 shows how distant 

the connecting points of the wormholes can actually be. This map appears much 

more scattered and less parsimonious, and the linear path through the space is 

difficult to discern. Further, from Figure 4.3 we find that beginning around m. 23, 

previously visited regions of the map are traversed a second time, in many ways 

complementing the path previously chosen. The passage would then begin at the 

red hub in the upper right region of the map. Blue hubs are those that are visited

79



&
?

?

43

43

43Reduction

œ

Chopin: "Mazurka" Op. 7, No. 2

Œ

17œ œ œb .œ œn

Œ œœœ#b œœœ
8+–

(enh)

˙̇̇̇bbb

18˙b œ
Extravagant

Œ œœœ# œœœ
7+

(7—8)
(4—3)œœœœn

19œ œ œb .œ œn

Œ œœœ#b œœœ
8+–

(enh)

œœœœbbb

-W
(or -A-P)

&
?

?
Reduc.

20 ˙b œ

Œ œœœnbb œœœb
5º– 10+–

20 œ˙œ̇bbb œ̇œ˙b
-VE-V

21 ˙b œ#

Œ œœœb œœœn
7– – 1ºº˙̇̇œb œœ˙˙n#

-P-VE-A

22 ˙ œn

Œ œœœ œœœ#b
9+– 6ºº

˙̇œ˙# œœ̇œ#bn
-V -W-V

&
?

?
Reduc.

23 ˙b œn

Œ œœœnbb œœœ
5– – 11ºº

23 ˙̇œœnbb œœ˙˙n
E-V-P -P-VE

24 .œ
Jœb œn œ

Œ œœœn œœœ#
4– –       4º– 9+–˙̇œœn œ̇̇̇b œœ˙˙#

-V-A -P -VE-V

25 œ œ œ œ

œœœ œœœ œœœ
2–œ̇‚‚
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Figure 4.2: Map of Mazurka, Op. 7, No. 2, mm. 17–25
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Figure 4.3: Expanded map of Mazurka, Op. 7, No. 2, mm. 17–25
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during the second pass through familiar territory; purple hubs are those that are 

heard in both the first and second passes. Compare, for instance, the region in the 

box. The paths taken are congruent, and even though the actual sounding chords 

along these congruent paths differ, they are complementary and end with the 

same two sonorities (purple hubs).

CHOPIN, MAZURKA, OP. 68, NO. 4

! Another of Chopin’s Mazurkas, Op. 68, No. 4, can also be analyzed with 

this system. A score of the first fifteen measures is shown in Example 4.2. We find 

right away that transformational patterns seem to emerge, in particular the 

double transformations along the P axis from a +– sonority to a – – sonority. Most 

transformations in this passage, we will find, retain at least two common tones, 

due in no small part to the pervasiveness of the –P–P transformation. Once again 

we see a distinct favoring of downward semitone motion.

! The transformation of 7+– into 7º– in m. 2 is the first occurrence of –P–P 

that will characterize the passage, and its complement is heard in m. 4 (5+– to 

5º–). In between, m. 3 features an –A–A transformation that behaves similarly to 

the –P–P transformation. The melodic motive of mm. 1–2 is sequenced in mm. 3–

4, but the harmony seems to fall short of the symmetry of the melody. If Chopin 

had desired a harmonic sequence, he might have composed m. 1 as it is
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Example 4.2: Chopin, Mazurka, Op. 68, No. 4, mm. 1–15

&
?

?

bbbb

bbbb

bbbb

43

43

43Reduc.

1 œ œ œ œ œ
Chopin: "Mazurka" Op. 68, No. 4

Œ œœœ œœœ
5– 1++˙̇̇ œ̇˙˙

+P-VE-V
(-P+VE-V)

2 œn œ# œn œ

Œ œœœn œœœb
7+– 7º–œ̇œœnn œ̇œ̇bb

-P-P

3 œb œ œ œ œ

Œ œœœbb œœœ
6+– 0º–œ̇̇œbb œœ˙˙

-P-P -A-A

4

œn œ# œ œ

Œ œœœ œœœb
5+– 5º–˙̇œœn œ̇œ̇bb

-VE-V -P-P

&
?

?

bbbb

bbbb

bbbbReduc.

5

œb œ œb œ œ

Œ œœœnn œœœn
11ºº 4+–

5 œ̇˙˙nn ˙̇˙œn
-VE E-V

6

œ œ# œ œ

Œ œœœnbb œœœnn
4ºº 10+œœœ̇nbb ˙̇œ‚

-P-P-V

7 œ œ œ œ œŒ œn œ
Œ œœœ œœ

4ºº 0+–˙̇‚œn œ˙˙̇
-V

8 œ œ œ œ œ œn

Œ œ
œœœ

1+œœœ‚

&
?

?

bbbb

bbbb

bbbbReduc.

9 œ œ œ œn œ

Œ œœœ œœœ
5– 1++

9 œ̇̇ œ̇˙˙

10œ œ# œn œb œ œ

Œ œœœn œœœb
7+– 7º–œ̇œœnn œ̇œ̇bb

+P-VE-V -P-P -V

11 œb œ œ œ œ

Œ œœœb œœœb
7ºº 6+–œ̇̇̇b ˙̇̇œb

E-V -P-P-P-P
(-A-A-VE-V)

12œ œ# œn œb œ œ
Extravagant

Œ œœœ œœœb
5+– 5º–œœœœn œ̇œ̇bb

-P-P

&
?

?

bbbb

bbbb

bbbbReduc.

13

œb œ œb œ œ

Œ œœœb œœœb!
5º– 4+–

13 ˙̇̇̇b œ̇̇œb!
-P-P

(-VE-V)

enharmonic

respelling

14

œ œ# œn œ# œn

Œ œœœnb œœœ#n
4º– 4+–œ̇œ˙nb œ̇œ̇nn#

-P-P +P+P

15 œ# œn œ# œn œn œ#

œn œœ#n Œ
9+œœ̇#nn ‚
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presented in Example 4.3, which alters the first two chords. My recomposition 

erases any sense of F minor, the Mazurka’s home key, at the outset. Chopin is by 

no means obligated to establish the key at the start,64 but even as he does, he 

wastes no time in sliding out of functional tonality. The –P–P in m. 4 is followed 

by –VE going into m. 5. The transformation –VE is aurally identical to –V, so it is 

recognizable when –P–P–V occurs again in mm. 5.3–6.2 as a combined 

transformation. Measures 7–8 once again bring the ear back to a sense of F minor, 

only to end deceptively in m. 8.

Example 4.3: Mazurka, Op. 68, No. 4, mm. 1–4 hypothetical recomposition

! Measure 9 restarts the process as it began, but with some notable 

alterations in m. 11 (analogous to m. 3). Initially, these alterations make for more 

parsimonious transformations (7º– to 7ºº to 6+–). However, the smoothness is 

exchanged for an extravagant transformation back to the original material (6+– to 
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! 64 One such example in which Chopin begins a piece deceptively is his 
Ballade No. 1 in G minor. Rather than choosing to begin with the tonic or even 
dominant seventh chord, Chopin arpeggiates an AΩ major triad (in retrospect, 
the Neapolitan of G minor)!



5+–). In m. 14, we hear the first true upward motion.65 On one hand this +P+P 

simply reverses the –P–P immediately prior, but on the other it is significant in 

that it ends a long pattern of downward motion and signals the end of the 

section.

! Visualizing a map of the harmonic space will again aid us in comparing 

Chopin’s first and second passes through that space; Figure 4.4 does just that. To 

the left of the dotted line is Chopin’s initial pass through PC space; to the right is 

his variation of the original route. The zones in grey boxes are common to both 

routes. We can see that in spite of departures from the original path, Chopin does 

revisit previous sonorities. Further, we note that these deviations from the 

original path only require different wormholes, not more wormholes, in order to 

retrace sonorities from the original path.

CHOPIN, PRELUDE, OP. 28, NO. 4

! Perhaps the best and most famous instance of parsimonious seventh-

chord mutation is in Chopin’s E minor Prelude, Op. 28, No. 4. In this rare 

instance, parsimony pervades the majority of the piece, not merely a passage of 

it. Example 4.4 shows the whole Prelude, bars. 
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! 65 Measures 1.3–2.2 and 9.3–10.2 also contain a +P transformation. Since 
each instance groups the +P with –VE–V, I hear the overall transformation as 
primarily downward.
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Example 4.4: Chopin, Prelude in E minor, Op. 28, No. 4

&
?

?

#

#

#

C

C

CReduc.

.œ œ
Chopin: "Prelude in E minor," Op. 28, No. 4

!

!

1 .˙ œ
œœœ œœœ œœœ œœœ œœœ œœœ œœœ œœœ
4– 0++˙̇̇ œ̇˙˙

-W-A

2 .˙ œ
œœœ œœœ œœœ œœœ œœœb œœœ œœœ œœœ

6º– ≈11+– 6ºº
(≈7——6)˙̇‚œ œœ˙˙# œ̇̇̇b

-VE-V E-V+VE

3 .˙ œ
œœœnb œœœ œœœ œœœ œœœ œœœ œœœ# œœœ

5+– 11º– ≈2º–
(7——6)˙̇̇œnb œœ˙˙ ˙œœ̇b

-A-A +A-P -VE-V

4 .˙ œb
œœœ# œœœ œœœ œœœ œœœn œœœ œœœ# œœœ

4+– 4– – 1ºº

œ̇̇œ# ˙̇œ̇n œœ˙̇#b
-P -P-VE

&
?

?

#
#

#
Reduc.

5 .˙ œn
œœœn œœœ œœœ œœœ œœœ œœœ œœœ œœœ

9– – 6º–
5 œœ˙˙n ˙̇œ˙

-V-P

-A

6 .˙ œ
œœœ œœœ œœœ œœœ œœœ# œœœ œœœ œœœ

3ºº˙̇̇œ#
-VE E-V

7 .˙ .œ œ
œœœn œœœ œœœ œœœ œœœ œœœ œœœ œœœ

2+–˙̇̇œn
-P

8 .˙ œ#
œœœn œœœ œœœ œœœ œœœ œœœ œœœ œœœ

2– – 11º– 8ºº˙̇œ̇n œ˙˙̇ œ̇˙˙#
-A -VE

&
?

?

#

#

#
Reduc.

9 œ œ œ œ œ œ œ
œœœ œœœ œœœ œœœ œœœ œœœ œœœ œœœ
9–
(7——6)9 œœ‚‚

10

.˙ œ
œœœ œœœ œœœ# œœœ œœœ œœœ œœœ œœœ

11+– 6º–
(4——3)‚̇œœ## ˙̇œœ

+VE+V -VE-V

11

.˙ jœ œ
œœœ# œœœ œœœ œœœ œœœ œœœ œœœ œœœ

11+– 6º–

˙̇œœ# ˙̇œœ
+VE+V -VE-V

12 œn œ œ œ œ# œ œn œ œ
3

œœœ# Œ Ó
11+–

˙̇œœ#

13 .˙ œ
œœœ œœœ œœœ œœœ œœœ œœœ œœœ œœœ
4– 0++

œœ̇ ˙̇̇ ˙œ˙̇‚
-W-A

&
?

?

#

#

#
Reduc.

14 .˙ œ
œœœ œœœ œœœ œœœ œœœnb œœœ œœœ œœœ

6º– ≈11+– 11º– 5+–
(unres.) (unres.)

14 ˙̇‚œ }œ˙˙# }̇˙œnn œœ̇̇b
-VE-V -P-P-P-P +A+A

15 .˙ œ
œœœnbb œœœ œœœ œœœ œœœ#n œœœ œœœ œœœ
≈5º– 11ºº 4+–

œ̇œ̇nbbb œ̇˙˙ ˙̇̇œ#
-VE E-V -P

16 .œ œ# œ
T œ .œ œ

œœœn œœœ œœœ# œœœ œœœ## œœœ œœœnn œœœ
4– – 10ºº 6º–

˙̇œ̇n œœ˙˙## ˙˙˙̇# œœ˙œnn
-P-VE -V-P-P

17 œ œ# œ œ œ œ œ œ
jœœ

œœœœ œœœœ œœœœ œœœœ# œœœ œœœ œœœ
3ºº 4–

˙̇œ˙# ˙˙˙̇# œœ‚‚
-VE

18 œn œ œ œ œ .œ jœ
3

œœœ œœœ œ œœœ œœœ œœœ œœœ œœœ
9– 6º– (11+) (6º–)

œ̇‚ ‚˙˙̇ ˙̇˙˙
(4——3)
(dec. res.)

&
?

?

#
#

#
Reduc.

19

.˙ œ
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! As in earlier examples, downward motion predominates throughout. 

Measures 10–12 feature some upward motion, but, much like Example 4.2, this 

upward motion participates in a series of immediate reversals. The E minor 

Prelude has more single-term transformations (any transformation that has only 

one + or – sign) than we have encountered thus far, implying a slower unfolding 

of the transformational process in this piece than in the others. Chopin restarts 

the material beginning in m. 13, but accelerates the descent and derails at the 

height of the piece’s tension (mm. 16–17). After the climax has been reached, 

Chopin primarily uses triads until the conclusion.

! Even though I am primarily concerned with Chopin’s use of seventh 

sonorities, his use of triads is significant in this example. Other than the initial 4– 

to establish the key in m. 1, the first triad he inserts is in m. 9. Up to m. 9, the 

gradual harmonic transformations in the left hand have been the motivating 

force of the music. In m. 9 the melody finally has a moment of activity, ascending 

although the lattice model is not particularly helpful in analyzing the last eight 

after eight bars of static or descending motion. Again ascension of surface pitches 

and on the lattice model marks a significant event, even in the melody. The 

second melodic ascension occurs in m. 12 over silence in the left hand and 

transitions the listener back to the opening material and register. In both 

instances, the harmonic activity is reduced in some way as a counterpoint to the 
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added melodic activity. This is not so much the case during the tension of mm. 

16–18, in which the increased activity in both melody and harmony is the very 

thing that creates the climax. From m. 19 to the end, the effect is something of a 

denouement; stability is largely restored, and activity decreases, particularly in 

the right hand.

! Figure 4.5 maps the path of the E minor Prelude. To the left of the dotted 

line is the first pass through harmonic territory covering mm. 1–9. On the right is 

the second pass, covering mm. 13–17. As in Figure 4.4, the zones in grey boxes 

are common to both passages through the harmonic territory, even though they 

are reached by different means or by expanding or contracting the path in 

between. I have not included the last eight bars of the prelude in the map; with 

the reassertion of the triad as the primary harmonic structure in these measures, 

including them in a map of seventh sonorities is not particularly helpful.

CHOPIN, PRELUDE, OP. 28, NO. 6

! Chopin’s B-minor Prelude holds some unique characteristics in light of the 

excerpts we have been examining. The passage from this prelude in Example 4.5 

shows noticeably more “+” terms in transformations than there were in prior 

examples (although “–” terms still predominate). The first transformation that 

moves upward occurs at a strategic point. Measures 1–4 are harmonically static
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Mm. 1–9 Mm. 13–17

Figure 4.5: Map of Prelude in E minor, Op. 28, No. 4
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Example 4.5: Chopin, Prelude in B minor, Op. 28, No. 6
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(sounding the tonic chord) but the motive in m. 5 is generated by a similar 

motive found in mm. 1 and 3. Thus the listener hears this opening idea once 

(mm. 1–2), then twice (mm. 3–4), but the third time (m. 5), the motive sets up a 

dramatic harmonic shift into non-diatonicism, beginning in m. 6.

! I have included in my analysis the intermittent occurrence of functional 

harmonies, such as in mm. 7.3, 8.2–9.1, 9–13, and 17–18. While some would 

perceive the non-functional passages as transitory connections between 

harmonically stable moments, for the purposes of this discussion, I think of these 

diatonic moments as a way to break up the harmonic activity of seventh 

sonorities. These functional moments always involve a triad; since triads are not 

integrated into the lattice paradigm, they prove to be a convenient way to parse 

this passage into smaller pieces.

! The addition of more upward motion in terms of the lattice and the 

intermittent incidence of triads within a plausibly functional-harmonic context 

complicates the mapping of this passage. Rather than traveling linearly on the 

lattice in primarily one direction, sections curl back on themselves or change 

direction because of the increased number of “+” terms. I will build this map in 

steps to avoid confusion and information overload, as well as add arrows to the 

model to ensure that the directional path is clear.
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! Figure 4.6a maps Op. 28, No. 6 beginning with mm. 5–7. In it the initial 

triad of 7+ gives way to 7++. This section curls around (actually reaching near its 

beginning) before ending with a “V–i” in B minor. Measure 8, as we saw in 

Example 4.5, was mostly extravagant. I have seen fit to largely ignore m. 8, 

because the seventh sonorities (7ºº and 5ºº) are immediately preceded by “V–i” 

and immediately followed by “V–i,” making them irrelevant.

Figure 4.6a: Map of Prelude in B minor, Op. 28, No. 6, mm. 5–7
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! Measures 9–10 make as if to repeat mm. 1–4. Instead we find the VI chord, 

which is itself a neo-Riemannian L transformation (11– to 7+).66 This might 

deceive the listener into assuming that what he is hearing is the analogue to m. 5. 

Instead, Chopin, rather than touching on 7++ as he did in m. 5, now uses 7+–. By 

the down-beat of m. 12, the 7+– is proven to behave as V7 in C major. I map it in 

Figure 4.6b so as to highlight its similarities to m. 5. Indeed, that 7+– sonority is 

the “missing link” between the 7++ and 4– – of Figure 4.6a.! The newly 

established key of C major is short-lived. Measure 14 marks a transformation 

from a major triad to major-major seventh, remarkably similar to that in m. 5. 

Figure 4.6c maps mm. 11–15. The seemingly excessive geometry surrounding 0++ 

merely reflects the analysis in Example 4.5, where -P+VE and +P-VE are aurally 

equidistant paths to 10ºº. The section ends with 6+– proceeding to 11– (B minor, 

the home tonic), which is another instance of Chopin weaving in and out of 

functional harmony.

! The remainder of the passage under consideration (mm. 16–20) can be 

analyzed as functional harmony, but the seventh chords in m. 16 still map 

conveniently onto the lattice, as shown in Figure 4.6d. What I find most curious 

about this passage is that not only do these sections seem to take circuitous
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Figure 4.6b–c: Map of Prelude in B minor, Op. 28, No. 6, mm. 9–15
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Figure 4.6d: Map of Prelude in B minor, Op. 28, No. 6, mm. 15.3–16
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routes through the lattice, but the VI chord (7+) that breaks four measures of 

static tonic harmony in m. 5 is instrumental in the brief modulation to C major in 

the middle of the Prelude (m. 11); in fact, the VI chord is preceded by two 

measures of B minor tonic (mm. 9–10) and followed by two measures of C major 

tonic (mm. 12–13) for another total of four measures. And the VI chord ends the 

last seventh-sonority passage in m. 20, just before another relatively static stretch 

of B minor tonic (beginning in m. 22).67

! The totality of the passage in question (mm. 5–20) is combined into a large 

circle made up of over overlapping smaller circles, something like a Venn 

Diagram, in Figure 4.6e. The triadic/functional “links” fall in the overlapping 

regions of the circles. I have rotated some of the circles to better accommodate the 

larger cycle. In some sense, then, this Prelude is harmonically cyclical on two 

levels, one large-scale and one small.
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! 67 For more in-depth studies of this prelude, see: Charles Burkhart, “The 
Polyphonic Melodic Line of Chopin’s B-Minor Prelude,” in Chopin Preludes, Op. 
28: An Authoritative Score, Historical Background, Analysis, Views and Comments, ed. 
Thomas Higgins, (New York: W. W. Norton, 1973): 80–89; and Howard 
Cinnamon, “New Observations on Voice Leading, Hemiola, and Their Roles in 
Tonal and Rhythmic Structures in Chopin’s Prelude in B Minor, Op. 28, No. 6,” 
Intégral 6 (1992): 66–106.



Figure 4.6e: Map of Prelude in B minor, Op. 28, No. 6, mm. 5–16

CHOPIN, NOCTURNE, OP. 27, NO. 2

! The Nocturne in DΩΩ major, Op. 27, No. 2, reveals yet another way Chopin 

revisits of old harmonic territory, this time via fragmentary variations made to 

each previous iteration. Example 4.6 shows the passages in question. The first 

section, mm. 20–26 follows the Nocturne’s initial A and B sections. The lattice 

seems unnecessary for analysis here because a functional Roman numeral 
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analysis is possible. But by m. 22.2, the chain of seventh chords, at first diatonic 

in DΩΩ, moves outside the key. The key of A major attempts a coup d'état in mm. 

23–24.1, but DΩΩ is immediately reestablished in m. 24.2. The 9+ triad ends the first 

seventh-sonority chain in m. 24.1; mm. 24.4–25 encapsulate the first fragmentary 

variation. The fragment ends on DΩΩ in m. 26, which is the return of the A section 

(and eventually the return of the B section), covered in the multi-measure rest. 

Measure 40 interrupts the B´ section with three more variations of fragments of 

familiar harmonic territory. In each instance, the 0/3/6/9ºº wormhole network is 

used to shortcut longer paths. 

! I use some unfamiliar notation in my analysis of this passage, for example, 

at mm. 20–21 and 44–45. These brackets indicate various levels (micro or macro) 

of harmonic transformation. For instance, m. 20 contains two surface-level 

transformations, (–V) and (+VE+V). Since (–V) is reversed by one of the +V 

terms, their cumulative effect is given as [E+V]. The [–VE–V] transformation at 

mm. 20.2–21.1 (3º– to 8+–) ends up canceling out [E+V], resulting in –V from the 

downbeat of m. 20 to the downbeat of m. 21.

! Figure 4.7 maps the initial harmonic passage and each of its fragmentary 

variations. The vertical dotted line denotes the thirteen-bar break. The differences 
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Example 4.6: Chopin, Nocturne in DΩΩ major, Op. 27, No. 2, mm. 20–26, 40–46
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between each iteration are easy to compare visually. The first fragment even 

appears in shape to be a miniature of the first full-bodied passage (mm. 20–23).

mm. 20–23              mm. 24–26 mm. 40–41 mm. 43–44 mm. 44–45

Figure 4.7: Map of Nocturne in DΩΩ major, Op. 27, No. 2, mm. 20–26 and 40–46

WAGNER, PRELUDE TO ACT I, TRISTAN UND ISOLDE

! Whereas Chopin’s piano music is particularly rich with this kind of 

harmonic language, he is not alone among late-nineteenth-century composers in 

its use. His repertoire seems to contain larger and more developed usage, but he 

is certainly not alone. Another example comes from Wagner’s famous Prelude to 

Act I of Tristan und Isolde. Wagner’s and Chopin’s uses of harmonic language 
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within the excerpts I have selected to discuss are very different. Whereas Chopin 

tends to create chains of linear passages that recap the same or overlapping 

regions of the lattice, Wagner’s usage tends toward the brief, in snippets that are 

adjacent on the lattice but not overlapping. Example 4.7 gives the first eleven 

bars of the prelude.

! For all of Wagner’s innovation in harmonic language, this passage follows 

a very time-honored form-building technique. Wagner states something (mm. 1–

3), he states it again (mm. 5–7), but the third time, he varies the statement (mm. 

8–11). This owes something to what Arnold Schönberg described as Developing 

Variation, a compositional principle he believed has been highly influential since 

the decline of the Baroque fugue. I have analyzed certain motions in parentheses; 

I am not convinced that the listener will hear these motions, but I include them to 

show how the next stage of the harmonic sequence is set up.

! A cursory hearing of the chromatic climb of the melody in each iteration 

gives the distinct impression that the primary thrust is ascending. In fact, the 

ascending line of mm. 6–7 continues upward from where the last ascending line 

left off in m. 3 (see the grey arrow connecting the oboe to the clarinet). However, 

analysis of the harmonic transformations in mm. 2–3 and 6–7 reveal descension 

along the P axis. It is not until the third iteration that the harmonic 

transformations reflect a generally upward movement.
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Example 4.7: Richard Wagner, Prelude to Act I, Tristan und Isolde, mm. 1–11.
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! Given the “Suffering” leitmotif that initiates each statement (mm. 1, 5 and 

varied in 8–9) by moving chromatically downward, it stands to reason that the 

harmonic –P–P transformations are a continuation of that idea. The harmonic 

motion itself underscores the rising “Desire” leitmotif. In the third statement, 

although a –P remains a part of one of the transformations, the rising “Desire”-

esque motion ultimately triumphs. This reading could imply interesting 

narrative meaning given the subject matter of the opera.

! Figure 4.8 provides a map of the passage just discussed. The 

transformations that were analyzed in parentheses are shown in grey. It becomes 

immediately evident that unlike Chopin, Wagner plays with adjacent regions of 

the lattice, without reproducing anything or exploring alternate paths to the 

same goal. Granted, this passage is shorter and less dense with sonorities than 

most of the Chopin examples, but Chopin often did not need to take long 

passages to retrace his steps, as in the Nocturne in DΩΩ major, Op. 27, No. 2 

(Example 4.6). Also evident is the similarity of the two first statements, with their 

downward movement, versus the third with its expansion and upward 

trajectory.

! These are only some of the possible applications of my geometric/

theoretical models. This chapter is not intended to be exhaustive but to introduce 

the analytical viability of these models. Certainly, we have seen harmonic trends
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Figure 4.8: Map of Prelude to Act I, Tristan und Isolde, mm. 1–11

in Chopin’s treatment of seventh sonority parsimony and can infer expectations 

for further study of his music. Downward motion predominates; upward 

motion, when it does occur, is often immediately canceled out (Examples 4.2, 4.4, 

and 4.6). When that ascending motion is not canceled, it signals something 

(Examples 4.2, 4.5, and 4.7) or provides heightened emotion (Example 4.4). These 

expectations may prove similar or contrasting among examples from other 

composers.

! Narrative elements seem to emerge, as in the case of Chopin’s Prelude in B 

minor, Op. 28, No. 6 (Example 4.5) and in the passage from Wagner (Example 
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4.7). This may also apply to the heightened emotional return in Chopin’s Prelude 

in E minor, Op. 28, No. 4 (Example 4.4.).

! Wagner’s passage exhibited an exquisite instance of parallelism (Figure 

4.8), as did a number of Chopin’s, but they treated them very differently. In 

Figure 4.3, we saw how a portion of Chopin’s first pass through harmonic space 

was geometrically congruent with a complementary portion in his second pass. 

In Figures 4.5 and 4.6, Chopin makes two passes each through the same 

harmonic territory. Both passes for each figure begin identically, deviate, but still 

reach a number of the same waypoints along their diverging paths. In Figure 4.7, 

Chopin creates a series of fragmentary variations, with each variation sharing at 

least two sonorities in common with its predecessor. Although Chopin’s 

technique is not starkly consistent, his compositional preference treats the same 

region of the lattice multiple times. Contrast this with Wagner’s practice, which 

would seem to prefer tangential, non-overlapping units.

! This discussion by no means depletes the usefulness of this model, 

considering so much repertoire remains unexamined. In the concluding chapter I 

will discuss directions for further study and application, and additional research 

that, in tandem with this model, would open up new analytical possibilities.

Copyright © Enoch S. A. Jacobus 2012
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CHAPTER V: CONCLUSIONS AND FURTHER RESEARCH

INTRODUCTION

! Having demonstrated the viability of a conception of harmonic space in 

musical analyses, as well as grounding it in precedents set by Riemann and his 

successors, the neo-Riemannians, I turn my attention now to further possible 

applications of the family of lattice models. These include:

1. the continued examination of passages from Chopin’s repertoire, which this 

study has by no means exhausted, particularly with regard to deeper 

harmonic structures and non-proximate transformations;

2. the exploration of other composers’ paths through parsimonious harmonic 

spaces to discern their individual norms, and, I hope, any common stylistic 

traits among composers;

3. the integration of triadic structures into the lattice in order to better 

accommodate passages that frequently feature cross-type transformations;

4. the utilization of the lattice as a prescriptive template in composition and 

improvisation.

I will briefly discuss each of these possibilities in turn.
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1. EXAMINATION OF NON-CONTIGUOUS AND DEEPER-LEVEL STRUCTURES

! So far, I have only treated passages containing contiguous harmonic 

transformations of normative seventh sonorities. Other analytical applications 

could include comparing the congruency of very brief passages interspersed over 

the course of a piece. This approach is inspired by the Wagner excerpt previously 

examined, but it can be applied to a greater extent in yet another of Chopin’s 

preludes from Op. 28, the H≈⋲ minor. In Example 5.1 the –VE–V transformation, 

boxed in blue, can be found repeatedly, but not in a continuous, lengthy passage 

that could all be analyzed with the lattice model; indeed, there is a fair amount of 

extravagant motion in this example.68 Sometimes the –VE–V transformation is 

lumped into a single transformation (mm. 3.1–3.2, 3.3–3.4, and 7.1–7.2), but more 

often it is divided into two transformations (mm. 1.3–1.4, 2.3–2.4, 4.3–4.4, 5.3–5.4, 

6.3–6.4, 8.3–8.4, and 9.2–9.3). Below the surface, the –VE–V transformation 

sometimes connects longer, sometimes disconnected, passages; these are spanned 

by brackets and boxed in orange (mm. 3–4.1 and 7–8.1). 

! The –VE–V transformation can potentially be subdivided into three 

varieties based on the nature of the enharmonic reinterpretation of the fully-

diminished seventh involved (the E of –VE–V): 

1) those whose roots are related by T3;
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Example 5.1: Chopin, Prelude in H≈⋲ minor, Op. 28, No. 8, mm. 1–9
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2) those whose roots are related by T6;

3) those whose roots are related by T9;

All three types are present in this passage at some point. Nearly all the 

transformations highlighted in blue belong to the T9 category. The only one that 

does not is found in m. 9.2–9.3 (the transformation from 11º– to 10+–); it is from 

the T3 category and is the mirror of T9. The T3 version may play a significant 

structural role since it does not occur until after a change of key, precipitating a B 

section in which the frequent –VE–V transformation all but disappears; and it is 

at the first point in the music that could actually be considered parsimonious.

! Even though the entire passage is not ideally suited to the lattice, it is still 

possible to examine the individual instances and compare them in Figure 5.1. As 

in prior mappings, occurring sonorities are highlighted in red. The addition of 

enclosures in blue and orange serve to encapsulate each instance of the –VE–V 

transformation, color coded to match those in Example 5.1. The thickness of the 

borders of the enclosures bears no significance other than to aid the viewer in 

grouping each set of the –VE–V transformation. Note the mirrored geometry of 

the 11º– to 10+– transformation (the lone T3 variety of enharmonic 

reinterpretation). Orange arrows match up the elements of the deeper-level 

transformations, which fit the T6 category. Thus, even though I cannot describe 
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the music by “charting a course” across the lattice as in my other analyses, I can 

compare the relationships of the “islands” of transformations.

Figure 5.1: Lattice maps from Prelude in H≈⋲ minor, Op. 28, No. 8, mm. 1–9
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! The amount of overlap among both the blue, surface-level iterations and 

the orange, deeper-level iterations makes for a cluttered diagram. The nature of 

the 2D lattice allows Figure 5.1 to illustrate details at the expense of a clear 

overall picture. Figure 5.2 expresses the lattice as the skeleton of a torus. The 

torus of Figure 5.2a depicts the surface transformations as constellations ordered 

around their respective fully-diminished nuclei. I have colored each instance of 

the –VE–V transformation in differing shades of blue to help the eye track them. 

Since two transformations begin with 11º– (mm. 6.3–6.4, and 9.2–9.3), the first 

instance, ending with 4+–, I have colored it in a lighter blue. The second instance, 

ending with 10+– (the T3 occurrence) I have colored in purple to draw attention 

to its difference from the other iterations. Figure 5.2b expresses the same torus, 

this time mapping constellations of deeper structure in two shades of orange.

2. EXPLORATION OF OTHER COMPOSERS’ APPROACHES

! Other composers have used similar harmonic syntax even though their 

usage differs from those I have already analyzed. Passages from Wagner, Grieg, 

and others have given me reason to believe there may be other approaches to 

similar parsimonious seventh-sonority space. For instance, Saint-Saëns’s beloved 

“Le Cygne” (“The Swan”) movement from Carnaval des animaux features a 

passage that can be understood in terms of functional harmony, but it can also be
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Figure 5.2a: Constellation maps of surface transformations, mm. 1–9

Figure 5.2b: Constellation maps of deeper transformations, mm. 3–4.1 and 7–8.1
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analyzed with the lattice. This passage is given in Example 5.2. Whereas the 

lattice may not be the only applicable model, it might serve to unite diatonic and 

non-diatonic sonorities within a single super-structure. Figure 5.3 graphs the 

passage. Its more extensive use of the W transformation in a short period of time 

suggests a significantly different harmonic syntax from what I typically found in 

Chopin’s works. Figure 5.3 reflects this in its primarily vertical orientation, rather 

than the diagonal or zig-zag orientations graphs of Chopin’s music. Still, there 

are similarities, such as the predominance of downward motion. All of these 

observations require further study to substantiate; and they raise questions 

regarding the applicability of the model to other passages of Saint-Saëns’s 

repertory, how the composer navigated such passages, and how his syntax 

compares and contrasts with that of his contemporaries. A broader survey is 

required to answer these uncertainties.

3. INTEGRATION OF TRIADIC STRUCTURES INTO THE LATTICE

! Another example from Chopin illustrates a different sort of problem I 

hope to overcome— that of interspersed triads amid seventh sonorities. Clifton 

Callender’s “Voice-Leading Parsimony in the Music of Alexander Scriabin”69 and 

Julian Hook’s “Cross-Type Transformations and the Path Consistency

113
! 69 Callender, 219–33.



Example 5.2: Camille Saint-Saëns, “Le Cygne,” Carnaval des animaux, mm. 19–22
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Figure 5.3: Map of “Le Cygne,” mm. 19–22

Condition”70 both treat the issue of transformations between triads and seventh 

chords. Although the geometric models I have developed are designed for 

seventh sonorities, I believe triads could be integrated easily, if given a 

systematic approach based on the groundwork Callender and Hook have already 

laid. Indeed, as I previously observed in Figure 3.3, the links between major-

major sevenths, minor-minor sevenths, and consonant triads are already 

embedded within the neo-Riemannian Tonnetz. Callender’s split and fuse 
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functions and Hook’s cross-type transformations give me further launch point 

for investigation.

! The following excerpt from Chopin, the Mazurka, Op. 17, No. 4 in 

Example 5.3, serves as an example of the sort of passage for which the current 

model is still ill-fitted. A thorough integration of triadic and seventh-sonority 

models would make better sense of this passage than the current model does on 

its own. I hope that with future, more comprehensive permutations of the lattice 

model I can better accommodate such passages.

 

4. PRESCRIPTION FOR COMPOSITION AND IMPROVISATION

! Finally, my model seventh-sonority parsimony could have prescriptive 

applications for composers and improvisers. My own unfamiliarity with jazz 

repertory and the incredible number of differences between various versions of 

the same song have inhibited my attempts to delve into that body of music, but 

that avenue is certainly open to those who possess the necessary background. I 

am certain the lattice model could find traction among jazz musicians as both an 

analytical tool and, perhaps, an improvisational one. Indeed, it could serve as a 

compositional tool to less improvisatory modes of composition as well. To 

illustrate this idea, I have included a short composition in the appendix with an 

analysis beneath.
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Example 5.3: Chopin, Mazurka, Op. 17, No. 4, mm. 5–20
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SUMMARY

! My purpose in this study has been to lay the foundation for these lines of 

inquiry, in both a theoretical way and a practical way. The theoretical foundation 

relies heavily on metaphors of space and distance to represent pitch-class 

relationships and harmonic relationships. As such, I arranged normative seventh 

sonorities to form a parsimonious geometric network in which greater 

parsimony was represented by greater proximity. The network wraps back upon 

itself along two axes, necessitating its visualization in three dimensions. 

! As a practical foundation, this study used the theory to demonstrate its 

validity and prove its worth as more than a thought experiment. I applied the 

network to musical passages, primarily from Chopin, using an analytical 

shorthand to summarize each pitch movement of a given transformation. These 

transformation labels were then translated into geometric maps of the harmonic 

network. The maps charted the paths taken through the theoretical parsimonious 

space, and they exhibited variety while simultaneously implying potential norms 

in the handling of such harmonic conditions. Through these analyses, new 

explorations into the construction of previously indefinable musical passages 

open up to the musician, particularly to the interested non-theorist.

Copyright © Enoch S. A. Jacobus 2012
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APPENDIX

EXAMPLE COMPOSITION: PRESCRIPTIVE APPLICATION OF THE LATTICE MODEL

E. S. A. JACOBUS
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