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ABSTRACT OF THESIS 
 
 
 
 

PROVIDING A PERSISTENT SPACE PLUG-AND-PLAY AVIONICS NETWORK ON THE 
INTERNATIONAL SPACE STATION 

 
 
 

The CubeLab is a new payload standard that greatly improves access to the 
International Space Station (ISS) for small, rapid turn-around microgravity 
experiments.  CubeLabs are small (less than 16”x8”x4” and under 10kg) modular 
payloads that interface with the NanoRacks Platform aboard the ISS.  CubeLabs 
receive power from the station and transfer data using the standard terrestrial plug-
and-play Universal Serial Bus (USB).  The Space Plug-and-play Avionics (SPA) 
architecture is a modular technology for spacecraft that provides an infrastructure 
for modular satellite components to reduce the time to orbit and development costs 
for satellites.  This paper describes the development of a bus capable of interfacing 
SPA-1 payloads in the CubeLab form-factor aboard the ISS.  This CubeLab also 
provides the “discover and join” functionality that is necessary for a SPA-1 network 
of devices. This will ultimately provide persistent SPA capabilities on the ISS which 
will allow users to send SPA-1 devices to orbit for on-the-fly installation by 
astronauts. 
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1 Introduction 

The Space Age began in 1957 when the Soviet Union launched Earth’s first artificial 

satellite, Sputnik-1.  Besides the political advantages, the technology in Sputnik-1 

also provided valuable data about Earth’s upper atmosphere and the ionosphere [1].  

The launch of Sputnik-1 set the stage for a number of scientific advancements in the 

name of space.  Since then, many different types of satellites have been developed 

including: weather satellites, scientific research satellites, navigation satellites, 

communications satellites, cosmic observation satellites and military satellites. 

The monetary and schedule costs associated with building, launching and 

maintaining a satellite are high [2].  Differences in satellite mission objectives 

typically prohibit assembly-line style production that would help ease the cost and 

schedule constraints.  However, technological advancements made in the way of 

miniaturization of electronics and the development of Commercial Off-The-Shelf 

(COTS) components can also help reduce the cost of satellite missions.  The maturity 

of a new COTS component is evaluated by using a measure called the Technology 

Readiness Level (TRL) [3].  Once the TRL reaches a sufficient level, the COTS part 

can reliably be integrated into a subsystem on a satellite. 

COTS parts and the miniaturization of electronics on satellites are achieved through 

the use of the following standards: CubeSats, CubeLabs and Space Plug-and-Play 

Avionics (SPA).  The introduction section further expands on those standards and 

provides a motivation for the thesis work that utilizes those standards to reduce 

barriers associated with space research and provide an easier method to increase 

the TRL of COTS components. 
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1.1 CubeSats 

In 1999, the CubeSat program was created as an effort to reduce the cost and 

development time, increase accessibility to space, and sustain frequent launches of 

student satellites.  In simple terms, this standard defined a 1 Unit (1U) CubeSat to be 

a 10 cm x 10 cm x 10cm cube-sized satellite that weighs less than 1.33 kg [1].  An 

example CubeSat, Kentucky Space’s KYSat-1, can be seen in Figure 1 [2]. 

Using a standard size and weight for a satellite enables a common launching 

mechanism, the Poly Picosatellite Orbital Deployer (P-POD), to launch CubeSats 

from a wide variety of launch vehicles.  This satellite standard has been growing in 

popularity since its inception and has been utilized by industry and government 

agencies. 

 

Figure 1 - 1U CubeSat, KYSat-1 by Kentucky Space 

CubeSats are typically composed of COTS parts and have the same subsystems as 

much larger satellites.  Examples of systems on a CubeSat include: power generation 

and storage, radio communication, satellite bus, payload, thermal, gyros, imaging 

systems, structure, and attitude determination and control.  Typical CubeSat 

missions range from a 1U size (10cm x 10cm x 10cm) to a 3U size (10cm x 10cm x 
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30cm).  CubeSat mission objectives have included: technology demonstrations, 

Earth remote sensing, biological experimentation, and the study of the cosmos.  

Some of the better-known CubeSat missions are as follows:  GeneSat-1, NanoSailD, 

PHARMASat, RAX, O/OREOS [3] [4]. 

The success of the CubeSat form factor can be attributed to the standardized 

launching platform which allows any CubeSat to be exchanged with one another if 

the need arises.  The familiarity of the CubeSat standard has been leveraged during 

the creation of a similar standard for research on the ISS called CubeLabs which 

utilize the NanoRacks facility on the ISS. 

1.2 NanoRacks and CubeLab Research 

Use of the existing infrastructure on the ISS for microgravity research was 

susceptible to budget overruns and extended schedules due to the barriers that 

were in place.  In 2009, NanoRacks began development of a facility that would make 

an effort to reduce those barriers.  To do this, NanoRacks set out to provide a 

common interface to the ISS for experiments.  The NanoRacks platform leverages 

the familiarity of the CubeSat standard as described in Paragraph 1.1 to bring 

CubeSat style research to the ISS, called CubeLabs [5]. 

 

Figure 2 - NanoRacks and CubeLabs exploded view 
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The NanoRack platform serves as an interface to the ISS and provides a mechanical 

attachment point, power and data transfer for CubeLab modules.  CubeLabs can be 

flown to and from the ISS on a variety of manned and unmanned vehicles to support 

inexpensive, repeatable accesses for small payloads.  Once aboard the ISS, CubeLabs 

are installed onto the NanoRacks facility. As seen in Figure 2, each NanoRack facility 

is capable of hosting 16 CubeLabs.  The CubeLab standard was developed which 

defines the form-factor electrical, mechanical and data interface requirements for a 

CubeLab [6].     

The University of Kentucky Space Systems Laboratory (UK SSL) leveraged this 

research standard with an aim to further extend the capabilities and developed a 

bus for a CubeLab payload called AmesLab bus.  The aim of the AmesLab bus is to 

adapt NASA Ames payloads to the NanoRack platform by creating a CubeLab that 

conforms to the NASA Ames Research Center standard payload interface.  

Additionally, the AmesLab bus provides additional power and data storage capacity 

for experiments.  SPA capabilities are also being added to the NanoRacks platform 

though the use of the SPALab [7]. 

1.3 The SPA standard 

Air Force Research Laboratory (AFRL) has led an effort to bring a PnP-based system 

called SPA to space to facilitate rapid development and building of spacecraft. This 

effort has been shown to significantly reduce the complexity of spacecraft design 

and reduce the time to orbit as well.  The success of this effort is due to the fact that 

the SPA architecture implements a self-organizing network of devices where 

components are self-describing and attached to a standardized data and power bus 

[1] [2]. 

SPA was developed in an effort to reduce the complexity of the connection between 

avionics components on spacecraft. Ultimately, this led to the development of a 



5 
 

Plug-and-Play (PnP)-style architecture that defines hardware and software 

connections and the interactions between the parts in the system. Due to the large 

breadth of complexity of avionics used in spacecraft, data rates and power 

requirements for components vary greatly. This has led to the creation of four 

different SPA interfaces. Starting with the most complex and power-capable, the SPA 

interfaces are: SPA-O, SPA-S, SPA-U and SPA-1.  The interfaces are based on optical, 

spacewire, USB and I2C networks, respectively.  The latter of the four interfaces, 

SPA-1 is typically used on small spacecraft due to power availability and low data 

rates for devices. 

The SPA architecture is such that a SPA middleware component called the SDM 

provides a service that allows SPA devices to be discovered and join the SPA 

network.  The SDM can loosely be referred to as the “traffic cop” that discovers new 

devices on a network and records the capabilities of the new device in a data 

registry so existing SPA devices can have access to the data that is available from the 

new device.  Currently, the SDM is only compiled to run on Linux and VxWorks 

operating systems [1].  On the most complex SPA layers, SPA-O, SPA-S, and SPA-U, 

the power requirements of running a Linux or VxWorks operating system (OS) are 

typically justified as these systems have more power available.  SPA-1 based 

systems are typically used on small satellites, namely CubeSats that do not have the 

luxury of a large power budget.  Through the work performed by this thesis and a 

collaborative effort between the SSL at The University of Kentucky and The 

Configurable Space Microsystems Innovations and Applications Center (COSMIAC) 

at The University of New Mexico, a “lite” version of the SDM is developed.  The new 

version of the SDM, called SDM-Lite, specifically targets limited resource SPA-1 

based networks. 

Additionally, COTS devices exist that facilitate rapid integration of avionics, 

subsystems and payloads onto a SPA network through a standardized interface 

called an Appliqué Sensor Interface Module (ASIM) [3].  The ASIM works as a 
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“bridge” between non-SPA devices and the SPA network.  COTS ASIMs are very 

beneficial to the overarching goals of AFRL as this makes it much easier for device 

makers to make their devices SPA-compliant.  However, different variants of ASIMs 

can be used or even developed by anyone.  Through the work in this thesis, an 8051-

based ASIM is also developed as an additional option in this ecosystem of ASIMs. 

SPA has proven to be beneficial for some, but is difficult for researchers who don’t 

have access to a satellite to operate their device. The obvious budget and 

manifestation requirements just to operate a SPA sensor in microgravity need not 

be listed here.  Given that SPA isn’t widely adopted at this point, it would prove to be 

rather difficult to get a launch just to test a new SPA device. Sensor designers that 

only need to operate their device in microgravity could take advantage of the 

microgravity environment on the ISS. This environment could be made even easier 

if a SPA interface existed on the ISS.  With the launch and operation of ISS 

experiments now being sponsored by a NASA and Center for the Advancement of 

Science in Space (CASIS) partnership, this will be a very attractive option for low 

budget missions allowing developers to easily operate their SPA-1 based 

experiments and payloads aboard the ISS. 

The CubeSat and CubeLab standards provide access to the microgravity 

environment through the utilization of standardized platforms.  The SPA 

architecture provides a method to quickly reduce spacecraft design and reduce the 

time to orbit.  The problem statement of this thesis details a simple, low-power 

Satellite Data Model (SDM) for SPA-1 based networks which facilitates easier access 

to the microgravity environment by providing a persistent on-orbit interface for 

SPA-1 based devices on the ISS. 



7 
 

1.4 Problem Statement 

This thesis focuses on extending the functionality of the AmesLab bus to create a 

persistent SDM-Lite for SPA-1 networks on the ISS and to create an 8051-based 

ASIM.  SDM-Lite functionality is added to the NanoRacks facility by utilizing the 

existing AmesLab bus.  This work enables SPA-1 device designers to quickly and 

inexpensively operate their devices on a SPA-1 network in microgravity.  The SPA 

configuration for the AmesLab bus will herein be referred to as the SPALab.  The 

ASIM that is developed allows SPA device designers to add their non-SPA devices to 

a SPA-1 network by using the ASIM as a “bridge”.  This further extends the ASIMs 

which are available on the market.  The software that is developed through this 

thesis work is verified through the code review processes and extensive testing. 

The remainder of this thesis is organized as follows.  The second chapter, the 

Background, provides an in-depth explanation of the CubeSat standard, the 

NanoRacks platform, the CubeLab standard and the SPA architecture.  The third 

chapter, AmesLab bus, contains a detailed design description of the AmesLab bus 

created by the SSL.  This bus is included as a separate chapter as some of the design 

decisions were made with the SPALab in mind.  The fourth chapter, SPA-1 network 

on a CubeLab, details the efforts of this thesis which increases the capabilities of the 

AmesLab bus by adding an SDM-Lite to accept SPA-1 devices.  The fifth chapter, 

Results, details the results of this thesis.  The final chapter, Conclusion, provides an 

analysis of the results of this work and provides a prospect for future research that 

can be performed. 
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2 Background 

This chapter introduces the CubeSat standard that changes the way space research 

is performed at the university level over the past decade.  The NanoRacks Platform 

and CubeLab standard are also discussed as a platform that is attempting to achieve 

CubeSat-style success for ISS payloads.  Finally, the SPA standard is introduced as a 

tool for rapid and affordable design and integration of spacecraft components.   

2.1 CubeSat Standard 

During the late 1990s, only a few undergraduate university aerospace programs 

around the country were developing small satellites.  Unfortunately, the high launch 

costs and lengthy mission timeline put building a small satellite out of the reach of 

other undergraduate programs.  Stanford University’s Space Systems Development 

Lab worked with California Polytechnic State University (Cal Poly) to define the 

CubeSat standard.  The standard was based on the picosatellites that were 

developed for Stanford’s Orbiting PicoSat Launcher (OPAL) satellite.  The CubeSat 

standard was created as an effort to reduce the cost and development time, increase 

accessibility to space, and sustain frequent launches of student satellites.  The 

CubeSat standard design was detailed in the form of a document called the CubeSat 

Design Spec (CDS) so other universities could build CubeSats [4]. 

In its simplest form, the current CDS defines a 1U CubeSat as a 10cm cube with a 

weight of up to 1.33 kg.  1U CubeSats can be combined or stacked to create a 2U 

(10cm x 10cm x 20 cm) or a 3U (10cm x 10cm x 30 cm).  The CDS goes further to 

describe the following types of requirements: general, safety, material, mechanical, 

electrical and testing [4].  An example of a 1U CubeSat can be seen in Figure 1. 

Building a CubeSat to the CDS facilitates a common launching mechanism, the P-POD, 

to launch a CubeSat from a launch vehicle (LV) into orbit.  The P-POD was developed 
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by Cal Poly to ensure the safety of the CubeSat and to protect the LV, the primary 

payload, and other CubeSats [4].  In this model, CubeSats only need to be compatible 

with the P-POD rather than being compatible with many different launch vehicles.  

Since its inception, the CubeSat Program at Cal Poly has worked extensively with LV 

providers to make LVs “CubeSat capable” by installing a P-POD onboard.  CubeSats 

are swappable with one another between LVs with minimal concern about 

integration issues arising.  The flexibility of this standard has proven to be the key to 

its success [5]. 

The P-POD with four 1U CubeSats can be seen in Figure 3.  The figure shows three 

CubeSats for the Educational Launch of NanoSatellites (ELaNa)-1 mission with one 

CubeSat that is a backup in case a primary CubeSat isn’t ready.  All CubeSats shown 

were designed to the CDS which facilitates ease of configurability. 

 

Figure 3 - P-POD with four 1U CubeSats during integration for the ELaNa-I mission 

Figure 4 represents the organizational structure that Cal Poly has setup to integrate 

CubeSats onto LVs [5].  Cal Poly is the only interface between CubeSat developers 

and launch providers and licensing agencies.  This greatly simplifies the 

manifestation process of getting a CubeSat to orbit.  Section 2.2 shows that 

P-POD 

1U CubeSat 
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NanoRacks LLC attempted to follow a similar organizational structure for CubeLabs 

by taking the place of Cal Poly. 

 

Figure 4 - CubeSat organizational structure by Cal Poly 

2.1.1 Success of the CubeSat Standard 

Since the definition of the CubeSat standard in 2000, the momentum of the CubeSat 

launches has grown significantly.  What started out as a standard to help develop 

university aerospace programs and train their students has evolved into a program 

that is well established with multiple industry organizations developing CubeSat 

launchers and CubeSats and also providing the community with multiple launch 

vehicles for launch opportunities.  Analysts have even stated that they are confident 

that CubeSats are a long-term trend with revolutionary implications for some 

sectors of the space industry [6]. 

The driving force of creating the standard was to define a common interface 

between a CubeSat and a deployment mechanism for deployment of CubeSats from 

a LV. This common interface, the P-POD, opens the door for standardized COTS parts 

to be built, which in turn, reduces the development cost and schedule for a satellite. 

The CubeSat’s success can be attributed to how effective the P-POD has been in 

getting the satellites to orbit. Some of the benefits of the P-POD have been 
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documented to include: decrease launch costs, simplifies interaction between 

multiple developers and launch provider, flexibility in mounting, and flexibility in 

access to space [5]. 

In 2008, NASA Launch Services Provider (LSP) recognized the benefits of providing 

rideshares for educational institutions for CubeSats.  They created the CubeSat 

Launch Initiative (CSLI) as an effort to bring P-PODs onto previously planned 

missions as auxiliary payloads so CubeSats can be launched after the satellite on the 

primary mission has been released in space.  Since the inception of the CSLI, three 

missions, ELaNa-I, ELaNa-III, and ELaNa-VI have been launched with a total of 68 

CubeSats accepted for current and future launches.  LSP is currently developing a 

launch vehicle that will place CubeSats as the primary payload to orbit.  The Nano-

Launcher is scheduled to be completed FY2014 [7]. 

As previously mentioned, a standard deployment interface has facilitated the 

appearance of COTS CubeSat parts.  This further decreases the cost of CubeSat parts 

for individual institutions and increases the reliability of parts as COTS parts can be 

tested on a wide variety of platforms and applications.  One popular COTS provider, 

Pumpkin Inc., aims to provide an all-in-one kit for building a CubeSat [8]. 

Even with all of the advancements that the CubeSat program has made with 

providing many launch opportunities, a lot of barriers still exist [9].  These barriers 

are discussed in the next section. 

2.1.2 Barriers to CubeSat Standard 

The CDS rigidly defines mass, size and material construction requirements for a 

CubeSat to conform to the P-POD.  While this simplifies the manifestation process, it 

limits the types of payloads satellite designers can build.  To date, the largest 

CubeSat that has been launched has been a 3U [6].  If a researcher wants to fly a 



12 
 

science instrument which slightly exceeds the dimensions of the CubeSat standard, 

this currently isn’t possible.  Work is being done to increase the launch capacity of 

CubeSats to 6U by ABC/NPSCuL, CRS and ORS/CubeStack, but these systems are still 

waiting to be launched [6] [10] [7].  The CubeLab standard, which is described later, 

is much more flexible and allows for larger payloads. 

Anomalies due to the harsh launch and space environments are still fairly high.  

Factors that could be an issue include: radiation, structure/launch interface, thermal, 

communications, power, Central Processing Unit (CPU) or even launch failure.  As of 

mid-2011, Universities that have not been designated by their government as a 

national center for spacecraft engineering research and development have 

experienced a 20% launch rate failure [6].   With the launch failure of ELaNa-1, it is 

apparent that even the CSLI isn’t immune to launch problems.  Given time however, 

this trend will get better as the launch and space environments for CubeSats are 

better understood. 

Since CubeSats are often a secondary payload, the P-POD can be placed in a rather 

undesirable location.  This was the case with the CubeSats that were part of NASA’s 

ELaNa-I mission.  The P-POD containing the ELaNa-I CubeSats was placed near the 

upper stage nozzle of the Taurus XL launch vehicle as shown in Figure 5.  

Unfortunately, the vibration levels at that location for the Taurus XL were not 

characterized before launch. 

Vibration levels of P-PODs in LVs vary drastically due to different mounting 

locations and rocket behaviors making it difficult define qualification requirements 

that encompass all available LVs.  This causes CubeSat designers to over-design 

their CubeSats which could increase cost and schedule [9]. 
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Figure 5 - P-POD location on Taurus XL - credit: NASA 

Finally, since the CubeSats are free-flying, the designers are also concerned with 

power generation, a radio link to a terrestrial location, no return of science and 

withstanding the harsh environment of space.  All of these items can increase 

budget and schedule and even put microgravity research out of the reach of some 

organizations.  The NanoRack standard detailed in the next section aims to 

overcome some of the barriers listed here. 

2.2 The NanoRacks Platform and the CubeLab Standard 

This section details the motivations behind the creation of the NanoRacks platform 

and describes the CubeLab standard.  Real-time operations are also discussed which 

details how CubeLabs are operated on-orbit on the ISS.   

2.2.1 NanoRacks Platform 

In 2005, in an effort to utilize the ISS to its full capability, the Congress designated 

the US segment of the ISS as a National Laboratory [11].  The purpose of this was to 

increase the utilization of the ISS by other federal entities and the private sector.  

Upper Stage Nozzle 

P-POD 
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Unfortunately, the standard process to initiate research on the ISS was still a 20 

month long process before an experiment can be launched.  This can be a hindrance 

to researchers with tight schedules and limited budgets. 

To help reduce this barrier, a “lean” payload integration process was introduced 

[12].  Under this new process, payloads undergo significantly shorter engineering 

verification via “Ship and Shoot” testing.  This process determines testing 

requirements on a per-payload basis.  NanoRacks LLC recognized this as a market 

for providing educational and commercial customers with rapid, repeatable access 

to the microgravity environment on the ISS.  To take advantage of this new access, 

NanoRacks LLC signed an SAA with NASA in September 2009.  As part of the SAA, 

NASA provides on orbit support and limited launch opportunities for NanoRack 

payloads [13]. 

To provide this access to customers, NanoRacks LLC needed to enable customers 

with an easy method of interfacing with the existing infrastructure on the ISS.  The 

CubeSat form factor was recognized as a new industry standard that a growing 

number of researchers were becoming familiar with.  Familiarity with the form 

factor was leveraged to develop a new standard for ISS payloads called the CubeLab.  

To make the new CubeLab standard compatible with the existing ISS infrastructure, 

the NanoRack platform was developed. 
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Figure 6 - NanoRacks Platform and CubeLab exploded view 

The NanoRacks Platform serves as the interface between individual CubeLabs and 

the ISS, providing mechanical mounting points and electrical connections for power 

and data connectivity.  A NanoRacks Platform is installed inside an Expediting the 

Process of Experiments to the Space Station (EXPRESS) rack locker that is housed in 

an EXPRESS rack.  Figure 6 shows an exploded view of the installation configuration 

of a CubeLab and the NanoRacks platform onboard the ISS. 

Each NanoRacks platform can accommodate 16U worth of CubeLab payloads in any 

configuration.  CubeLabs of any size (1U, 2U, 3U, 4U, etc.) can be installed onto a 

NanoRacks platform.  An exploded view of example configurations can be seen in 

Figure 2.  The figure shows 15U worth of CubeLabs.  The front panel of the 

NanoRack that is visible to the astronauts contains 16 USB type B connectors, a 

standard ISS power connector, an LED and a circuit breaker.  The 16 USB connectors 

on the front panel provide the astronaut with a direct data connection between the 

CubeLabs that are installed on the NanoRack and an EXPRESS rack laptop computer 

(ELC).  To command CubeLabs or to download experimental results, the ELC is 
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connected to the appropriate USB connector.  The standard ISS power connector on 

the front panel connects to the 28V power available on ISS.  The NanoRacks 

platform provides voltage step-down, distribution, filtering and isolation of the 5V 

connections to each of the 16 USB ports on the side of the NanoRack.  The LED on 

the front panel provides a visual indication that astronauts can view to inform them 

that 28V is being supplied to the NanoRack Platform.  The circuit breaker provides 

over current protection and a means to switch the power on and off [14]. 

In the fall of 2009, NanoRacks LLC partnered with Kentucky Space and the SSL at 

the University of Kentucky to design, build, and launch the first two NanoRacks 

Platforms and the first four CubeLabs.  The first platform was on orbit and 

operational by April 2010.  This short timeline was because NanoRacks took 

advantage of the “Ship-and-Shoot” payload testing process as mentioned previously.  

Further information about the current status of the NanoRacks Platform and 

CubeLabs can be found in Section 2.2.4. 

2.2.2 The CubeLab Standard 

As CubeSats must conform to the CDS to be compatible with a P-POD, CubeLab 

developers must design their payload to conform to the “Interface Control 

Document Between CubeLab Modules and the NanoRacks Platform” (herein 

referred to as the CubeLab ICD)  [15].  This allows their CubeLab to successfully 

interface with the infrastructure that exists on the ISS.   

The CubeLab ICD allows CubeLab payloads to be heavier than a 1U CubeSat at 1.33 

kg and defines a 1U to be larger than the CubeSat size of 10cm x 10cm x 10cm.  It 

allows researchers to operate space hardware on-orbit without having an extensive 

background in power generation and radio communications.  The main 

requirements which affect the work of this thesis include but are not limited to the 

following: 
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• Power supplied to CubeLab via type B USB port allocates 2W per USB port at 

5 VDC . 

• Data connectivity from CubeLab to ELC via type B USB port 

• Communication shall only occur when initiated by an astronaut using the 

data cable to connect the ELC to the corresponding port on the NanoRacks 

Platform. 

• CubeLab must contain a USB mass storage device which is accessible to 

astronauts for file transfer to the ELC. 

• The CubeLab module/ELC interface shall not require any drivers to be 

loaded onto the ELC to operate nominally 

The complete CubeLab ICD can be found on the UK SSL’s website [15].   

As seen above, the CubeLab standard requires that data stored on a CubeLab must 

be accessible through the USB connection on the NanoRacks front panel via the USB 

Mass Storage Device standard.  This requires the implementation of a file system 

and a USB mass storage device stack.  This is typically beyond the capability of some 

researchers.  This issue is one of the main motivations behind the AmesLab bus 

which is further detailed in Section 3. 

2.2.3 Real-time Operations 

The SSL coordinates real-time operations of CubeLabs, including installation, 

activation, data transfer (upload and download) and deactivation, aboard the ISS 

with the Huntsville Operations Support Center (HOSC) at NASA Marshall Space 

Flight Center (MSFC).  This is coordinated through a fully authorized remote console 

station that is physically located at the SSL.  This operations center consists of a 

secure operation console tied into NASA voice loops, real-time astronaut and ground 

systems scheduling systems, procedure development and viewing tools, real-time 

telemetry feeds and live high-definition video feeds from the ISS [14].  Due to 
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astronauts’ schedule being very time critical, the SSL is required to provide console 

support during all real-time operations onboard the ISS.  The SSL works with 

CubeLab developers to provide astronauts with assistance if any issues arise during 

operations. 

Through the coordinated effort of the CubeLab developer, SSL, NanoRacks and NASA, 

the most important CubeLab operation, a data transfer, can occur.  The data path 

to/from CubeLab developers and a CubeLab payload aboard the ISS can be seen in 

Figure 7.  Experimental data is generated on the CubeLab payload and is collected 

and stored by the AmesLab.  Astronaut time is scheduled for data collection and the 

astronaut initiates data collection by plugging a USB cable from the ELC to the 

appropriate USB plug on the front panel of the NanoRacks Platform.  Experimental 

data is transferred from the AmesLab to the ELC.  The Payload Rack Officer (PRO) at 

HOSC downlinks the experimental data from the ELC, through the Tracking and Data 

Relay Satellite System (TDRSS) network, and into Principal Investigator 

Microgravity Services (PIMS).  The SSL uses a secure connection to connect to PIMS 

to transfer the experimental data to their remote console station.  The files are then 

securely transferred to the CubeLab developers.  This procedure can be carried out 

in reverse if CubeLab developers wish to upload information to the AmesLab to 

command their payload [14].  This will be expanded further below in Section 4.3. 
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Figure 7 - Data path from CubeLab payload to CubeLab developer 

2.2.4 Current Status 

As of the date of this publication, there are two NanoRacks platforms installed on 

the ISS, currently operating researchers’ payloads.  NanoRacks Plaform-1 was flown 

to orbit on Space Transportation System (STS)-131 and installed on July 12th, 2010 

and NanoRacks Plaform-2 was flown to orbit on STS-132 and installed on August 

23rd, 2010.  Astronaut Shannon Walker can be seen in Figure 8 post installation of 

NanoRack Platform-2.  Both platforms can be seen in the image over her left 

shoulder.  The ELC, which is used during commanding and downloading 

experimental results, can be seen over her right shoulder.  
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Figure 8 - Shannon Walker after installation of NanoRacks Platform-2 

There have been five CubeLabs that have been designed and sent to orbit.  The UK 

SSL has flown the following CubeLabs: Flash Incident Radiation Susceptibility Test 

Lab (FIRSTLab), CubeLab-2, CubeLab-3, and CubeLab-4.  These were 1U CubeLabs 

which performed hardware radiation susceptibility experiments and tested the 

operation of the NanoRacks platforms.  In addition, on orbit support has been 

provided for payloads from developers at a variety of universities and research 

institutes. 

2.2.5 Microgravity Research on ISS 

Access to microgravity has provided a unique research opportunity to scientists 

over the years. Biological, chemical and physical systems that react in a known way 

terrestrially, can behave completely different in microgravity. The CubeLab form 

factor aims to make the microgravity environment more accessible to scientists to 

perform groundbreaking research.  Popular areas of microgravity research include:  

microgravity biotechnology, microgravity fluid physics, microgravity materials 

science, microgravity combustion science (seen in Figure 9), microgravity 

fundamental physics, acceleration measurement program, advanced technology 

development program, and the microgravity glovebox flight program [16]. 

NanoRack-1 

NanoRack-2 

Astronaut Shannon Walker (USA) 

ELC 
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Figure 9 - Effect of microgravity (right) on combustion process (credit: NASA) 

2.2.6 Comparison of CubeSat and CubeLab Platforms 

The initial motivations of the architecture of the NanoRacks/CubeLab platform is to 

leverage the successes of the CubeSat listed in Section 2.1.1 and attempt to 

overcome the deficiencies listed in Section 2.1.2 by providing a reliable interface to 

the ISS. 

The paradigm of launch and operation of a CubeSat and a CubeLab are a bit different, 

but the successes of the CubeLab standard can be replicated.  Launch costs are being 

kept in the range of CubeSat launches.  The interaction between CubeLab developers 

and the launch provider is being simplified by NanoRacks [13]. NanoRack’s 

customers have access to a wide variety of launch vehicles that take cargo to and 

from the ISS. The CubeLab standard is very flexible in terms of mounting for transfer 

to the ISS. CubeLab modules are shuttled to the ISS using soft stow bags which 

provide a very safe ride compared to typical satellite launches.  NanoRacks can also 

provide flexible access to space as it allows upmass on a wide variety of launch 

vehicles. 
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A very popular CubeSat COTS architecture is the CubeSat Kit (CSK) sold by Pumpkin 

Inc. It was recently reported that shipments of the CSK to the CubeSat community is 

over 200 units [8]. The CSK features a USB type-B interface for additional power and 

data communication during development.  The AmesLab bus is equivalent to the 

CSK for the CubeLab platform.   

Popularly used power and data interfaces of a CubeSat were also brought to the 

CubeLab standard. Since this interface is familiar among so many international 

CubeSat teams, this interface was chosen for the power and data transfer for the 

CubeLab standard. This is an attempt to leverage the familiarity of the connections 

that exists out in the community. The difference between the CubeLab and the 

CubeSat is that the CubeSat only uses those connections during development 

whereas the CubeLab utilizes the USB connection throughout the entire mission 

timeline. As mentioned in Section 2.2.2, the data connection on the USB interface of 

the CubeLab must conform to the USB Mass Storage Device class. 

The strict physical requirements of the CubeSat standard set the stage for COTS 

parts to be developed and adopted by organizations that don’t have the knowledge 

or time to develop their own components.  COTS parts provide a good starting 

architecture for CubeSat designers to easily and reliably build a CubeSat bus and 

interface a payload with it. The aim of the SSL AmesLab bus is to replicate same type 

of success that Pumpkin Inc. is seeing with the CSK. If this type of product can be 

replicated for the CubeLab architecture, CubeLab developers will have a 

significantly easier path to get their payload on the ISS to begin testing. 

2.2.7 Alternative technologies available 

Currently, The CubeLab kit by Pumpkin Inc. is the only COTS product on the market 

that duplicates some of the functionality of the AmesLab bus [22]. The CubeLab kit 

provides a PIC based system to provide USB On-The-Go (OTG) functionality which 

allows the NanoLab to act as a host for slave USB devices to be attached. This in-turn 
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requires the researcher to plug in a USB device or to add an SD breakout board for 

storage capacity. 

2.3 SPA Architecture 

As mentioned in Section 1.3, the SPA architecture was created by AFRL as an effort 

to bring a PnP-based system to the satellite ecosystem.  The SPA architecture 

defines the following: SPA components, SPA interfaces, ASIMs, SPA Networks, SPA 

systems, SPA middleware, Ontology and System Conventions [1]. SPA hardware is 

referred to as a device or a component and SPA software is referred to as an 

application. The properties of devices and applications are described in the 

eXtensible Transducer Electronic DataSheet (xTEDS). SPA interfaces define the 

physical layer between devices and “handshaking” protocols that must be followed 

to facilitate data exchange between devices. The purpose of the ASIM is to provide 

an interface between non-SPA compliant spacecraft components and the SPA 

network.  It generally contains a processor that handles the translations and 

memory storage necessary to store the xTEDS.  ASIMs are described in more detail 

in Section 2.3.2.  More information about xTEDS can be found in Section 2.3.3.  SPA 

components are hardwired together through the use of a hub or router to form a 

SPA network. The physical layer of SPA networks are defined by the SPA interface 

being used, SPA-O, SPA-S, SPA-U or SPA-1. As shown in Figure 10, SPA-O has the 

fewest number of devices but also the fastest data rates, with SPA-1 being on the 

opposite end of the spectrum.  SPA middleware is defined as a software component 

on the SPA network which operates the “discovery and join” mechanism for new 

devices.  This software is typically referred to as the SDM and is described more 

extensively in Section 2.3.1.  When designing a PnP system, all devices must share 

and understand a common “machine language”.  The SPA architecture provides this 

common language by using a common ontology and system conventions.  More 

information about how a common ontology is used in SPA can be found in Section 

2.3.3. 
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Figure 10 - Pyramid comparing devices and data rates in SPA devices [1] 

A SPA system is a network of SPA components.  Networks of differing SPA interfaces 

can be created through the use of a SPA bridge. The SPA network can consist of an 

entire spacecraft platform or just a subset of a larger non-SPA network.  An example 

SPA network topology can be seen in Figure 11.  All boxes, A-F can represent SPA 

endpoint components. 

 

Figure 11 - SPA network showing use of hub/router [1] 

2.3.1 SDM 

As previously mentioned, the SDM is a piece of software that provides a set of 

services that allow SPA devices to discover and join a SPA network.  The SDM exists 
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in a SPA network topology as an endpoint as shown in Figure 11 as any one of the 

blocks labeled A-F.  An overview of the SPA architecture with the pieces that have 

been described in the paragraphs above can be seen in Figure 12.  SPA Devices are 

shown on the bottom of the figure and are labeled “Camera”, “Thermometer”, etc.  

The SDM and interior processes are shown in the yellow box, labeled “Satellite Data 

Model”.  Elements in the top two levels in the figure, “Applications” and “Mission 

code/scripts”, use data from the SPA devices to carry out the mission goals.  The 

main objective of the SDM in this form is to provide a path between “consumers” of 

information with “producers” of information. 

 

Figure 12 - SPA Architecture showing SDM [1] 

Currently, the SDM is only compiled to operate on the Linux and VxWorks operating 

systems.  Linux and VxWorks operating systems require complex processing 

architectures which aren’t suited well for low power electronics.  This version of the 

SDM is incredibly robust and provides many services which are far and above what 

is necessary to operate a SPA-1 network effectively.  The main goal of this thesis is 

to remove unnecessary features from the SDM to create a new version called SDM-
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Lite in order to operate a SPA-1 network of devices using an 8-bit microcontroller 

[1] [2]. 

2.3.2 ASIM 

Non-SPA satellite components cannot be added to a SPA network without having an 

explicit interface which follows the SPA architecture.  To simplify the addition of 

these components to the SPA network, the concept of an ASIM was created as an 

interface device.  Figure 13 shows how a legacy device can be connected to a SPA 

network through the use of an ASIM.  The ASIM contains data storage which 

contains the capabilities of the non-SPA component.  These capabilities are 

programmed into storage using an eXtensible Markup Language (XML) format that 

is easily understood by the SPA network called XTEDS.  The ASIM is also 

programmed to be able to interrogate the device through a customized interface [1].  

There are a few 3rd party ASIMs available on the market for purchase.  Part of the 

work performed in this thesis was to add the 8051 architecture to the ASIM 

ecosystem.  

 

Figure 13 - ASIM provides an interface to the SPA network for legacy devices [1] 

Connection to 

SPA network 
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2.3.3 XTEDS 

All components in the SPA architecture must share a common “machine language” 

to be able to communicate effectively.  This common language must also use 

common terms to describe the same type of device.  For example, all of the different 

names of a temperature sensor cannot possibly be understood by the SDM.  

Therefore, all temperature sensors must always be referred to as 

“temperatureSensor”.  Terms that are used in the common “machine language” are 

stored in the Common Data Dictionary (CDD). 

To describe the capabilities of devices and applications, the terms in the CDD are 

compiled together in an XML format called an xTEDS.  The xTEDS format was based 

on the already existing IEEE 1451.4 standard for Transducer Electronic Data Sheets 

(TEDS) [17].  The TEDS standard defined protocol and interface for analog 

transducers to communicate digital communication with other TED sensors.  An 

example xTEDS for a temperature sensor can be seen in Figure 14 [1].   

 

Figure 14 - Example of a simple xTEDS for a temperature sensor [1] 

The next section presents information on the types of missions and companies that 

are actually using SPA technology. This includes both launched and yet to be 

launched missions. 
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2.3.4 Current adoption of SPA 

To date, only a few spacecraft have taken advantage of SPA technology. The first SPA 

based satellite to be designed was Plug-and-Play Satellite (PnPSat).  It was designed 

to be constructed extremely rapidly using the design concepts of SPA that have been 

previously discussed in this thesis.  As of 2007, the construction of PnPSat was 

assigned to the Responsive Space Testbed at AFRL’s Space Vehicles Directorate [17].   

Unfortunately, PnPSat was never launched. 

RApid prototyped Mems Propulsion And Radiation Test CUBEflow SATellite 

(RAMPART CUBESAT) is a CubeSat that contains an additional secondary circuit 

board with the intent of gathering radiation performance statistics on three types of 

SPA-1 PnP modules. There are three ASIMS onboard, two radiation hardened ASIMs, 

one made in the US and one made in Sweden, and one commercially available PIC. 

The orbit of this CubeSat is such that the apogee is 1200km and should provide an 

adequate radiation dose to test the radiation susceptibility of the ASIMs onboard 

[18]. RAMPART is in the process of being manifested on the Space Test Program 

(STP) to be launched in 2013. 

QuadSat-PnP is a nanosatellite under development by a coordinated effort between 

University of Applied Sciences Bremen, OHB System, ÅAC Microtec in Sweden and 

the AFRL in the United States.  This nanosatellite is the first in its class to be based 

completely on a PnP model, specifically SPA. Many PnP devices were developed 

specifically for this satellite and that helped facilitate a development of ASIM 

equivalent devices called a Remote Transciever Unit (RTU).  The nano-RTU and the 

μRTU are devices developed by ÅAC Microtec that enable non-US based space 

organizations to take advantage of the SPA PnP network. The nano-RTU is a SPA-1 

interface module.  It provides the same base functionality that an ASIM would 

provide for a SPA-1 network, and more importantly it provides a radiation-

hardened architecture. The μRTU provides much more functionality over the nano-
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RTU. It is capable of SPA-1, SPA-U, and SPA-S and carries much more processing 

power. 

Figure 15 provides the physical layout of the PnP components inside the QuadSat-

PnP. The hardware as labeled in the figure is as follows: 1. TDRS software-definable 

radio with SPA-U interface 2. Main power distribution unit 3. Distributed power 

control unit with four SPA-1 ports 4. Inertial measurement unit SPA-U node with 

μRTU interface 5. Distributed power control unit with four SPA-U ports. 6. 

Miniaturized rad-hard point of load SPA-1 node with nano RTU interface. 7. Nano-

RTU [19].  From the captions mention above, it is clear that this satellite is packed 

with PnP technology.  As of the publication of this thesis, there is no firm launch date 

for QuadSat-PnP. 

 

Figure 15 - PnP component layout inside QuadSat-PnP [19] 

COSMIAC is currently building a CubeSat, named Trailblazer-1, which serves as a 

proof-of-concept for SPA technology. This satellite is based on the SPA-1 standard 

and works to adapt existing COTS technologies to the SPA network. This will prove 

the feasibility of adapting commonly used satellite components to operate on the 

SPA network. The overall mission timeline of the satellite is to go from design to 
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delivery in under a year. This will validate the reduced schedule claims that are part 

of the SPA paradigm. A SPA-1 ASIM is being developed and is based on a Peripheral 

Interface Controller (PIC) microcontroller. The C&DH uses Pumpkin Inc’s CubeSat 

kit and runs an SDM-Lite. The SDM-Lite handles component discovery, component 

registration, data centric queries, time distribution, and internal systems health 

monitoring and status reporting [20]. There are two SPA based payloads on the 

satellite, a dosimeter and a rapid prototyped Inertial Measurement Unit (IMU).  

Trailblazer is currently manifested on the ELaNa IV mission and is scheduled to be 

launched in 2012 [21]. 

COSMIAC’s satellite architecture for Trailblazer-1 is very similar to the overall goals 

of what this thesis is trying to provide, an SDM that will run on a low resource 

processor and support a SPA-1 network of devices.  In addition to this, COSMIAC’s 

expertise in SPA due to their role of educating the space community by using the 

CubeFlow kit made the collaboration with them for this thesis work an easy decision. 
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3 AmesLab Bus 

This chapter details the design description of the AmesLab bus and the motivations 

behind the bus.  This work was not directly a part of the work in this thesis, but 

decisions were made in the design process which made it easy to make compatible 

with SPA.  These decisions are reflected in the system requirements section.  

Applications using the AmesLab bus and alternative technologies that provide 

similar features as the AmesLab bus are also discussed. 

3.1 System Requirements 

The concept of the original design description of the AmesLab was to provide an 

interface for generic payloads to use the NanoRacks platform in the CubeLab form 

factor without having to comply with the USB mass storage device requirement. In 

2010, the SSL had the opportunity to work with NASA Ames Research Center (ARC) 

to provide an interface to the NanoRack for their 2U CubeSat payload called MisST.  

The MisST mission was a free flyer 2U CubeSat payload which studied the effects of 

microgravity on C. Elegans. In addition to providing an interface to the NanoRack, 

this mission required the use of a high power imager and had strict thermal 

constraints. This lead to the development of an upgraded power system for the 

AmesLab which is capable of charging a Nickel-metal Hydride (NiMH) battery pack 

that can be used to provide higher instantaneous power than the power limitations 

listed in the CubeLab ICD.  To fulfill the very specific temperature requirements, the 

SSL designed a thermal control system which involved using peltier coolers to 

remove heat from the MisST payload so the experiment could achieve a target 

temperature. 

In addition to the design requirements for AmesLab that support the NASA Ames 

payload in the CubeLab form factor, there are additional requirements which 

facilitate support for SPA-1 based payloads and several derived requirements from 
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the CubeLab Interface Control Document, the USB standard, and the SPA-1 standard. 

The requirements are summarized below and the following sections discuss the 

solutions to the major challenges associated with the requirements. 

3.1.1 CubeLab Specification and NanoRack requirements 

1. The CubeLab and its payload shall consume less than 400mA continuous per 

USB port at 5Volts DC from the connection to the NanoRack. 

2. The AmesLab shall appear as a USB Mass Storage Device (MSD) and adhere 

to the File Allocation Table (FAT) file system when a laptop is connected to 

the NanoRack front panel. 

3.1.2 Interface Requirements 

3. The AmesLab shall provide a mechanical attachment point for payloads. 

4. The AmesLab shall not interrupt USB enumeration during astronaut data 

transfer.  

5. The AmesLab shall not interrupt payload operation (generic or SPA devices) 

during astronaut data collection. 

6. The AmesLab shall provide an interface which could be used as a SPA-1 

network interface for a SPA-1 device. 

3.1.3 Functional Requirements 

7. The AmesLab shall be capable of interrogating generic payloads (possibly 

SPA-1 devices) to obtain data from the payload and log it for later downlink. 

8. The AmesLab shall be capable of accepting uploaded command files from the 

astronaut interface. 
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3.2 Hardware 

The hardware design for the AmesLab can be split into the Command and Data 

Handling (C&DH) and Electrical Power System (EPS) components.  The 

development of the C&DH component of the AmesLab started in the fall of 2010 

with the development of the requirements listed in Section 3.1. In an effort to fulfill 

these requirements, an implementation was designed which is represented by the 

block diagram shown in Figure 16. 

 

Figure 16 - Block diagram of the AmesLab electrical interfaces 

 

The Silicon Labs C8051F120 was chosen as the main processor to control the C&DH 

block of the AmesLab design.  To interface with the SD card used as the MSD in 

requirement 2, the microcontroller has to use a FAT filesystem.  A filesystem was 

chosen (more in section 3.3) that runs on the 8051 using very little overhead and 

requiring little coding effort on the part of the SSL.  Requirements 4 and 5 require an 

element to monitor the astronaut activity and modify the system based on what the 
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astronaut is doing at any given time.  The monitoring and reaction to that activity is 

also provided by the 8051F120.  The 8051 has many different communication 

peripherals (Inter-Integrated Circuit (I2C), Serial Peripheral Interface (SPI), 

Universal Asynchronous Receiver/Transmitter (UART)) to interface to generic 

payloads, including SPA devices.  Additionally, General Purpose Input/Output 

(GPIO) pins are available which could theoretically be used to interface with any 

number of devices. 

The AmesLab must also provide a mechanical attachment to the NanoRack Platform, 

per requirement 3. Given the power requirements and the 2U size of the original 

NASA ARC payload, a 2U size was chosen for the bus.  This facilitates an additional 

400 mA at 5VDC power and two mechanical attachment points through the form of 

two USB type-B plugs which stick out of the side panel of the NanoRack Platform. 

Since the force of gravity can be viewed as negligible on the ISS, the friction of the 

USB connection between the NanoRack Platform and the AmesLab are enough to 

hold the CubeLab in place. This has been tested numerous times on orbit with no 

adverse side effects. A mechanical enclosure has been designed which encloses the 

AmesLab board and provides mechanical attachment points for SPA-1 payloads. An 

exploded view for the design of the enclosure can be seen in Figure 17 below. 
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Figure 17- Exploded view of AmesLab enclosure 

The hardware design for the AmesLab board was created using an iterative design 

approach through a collaborative effort with all of the students in the SSL.  This 

design process led to the creation of 3 different revisions of the AmesLab board.  

While in the design and prototyping phase, the nomenclature for the board was 

“CubeLab development board”.  This went through two different versions, Rev0 and 

Rev1 as shown in Figure 18. 

 

Figure 18 - Rev0 and Rev1 of AmesLab Development board 

Once the components were chosen, I developed the schematics and board layout 

that were used for the Rev0 board.  Numerous headers and jumpers were added 

Rev0 Rev1 

USB attachment point 
AmesLab PCB 

Payload 
attachment point 
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into the circuit for development purposes.  A quick board layout was generated and 

fabricated. 

After the completion of the power board design and the hardware design was 

proven feasible with thorough testing, I started the process for designing the final 

board revision, a flight board, as shown in Figure 19.  Several students in the SSL 

took over and finished the layout effort.  The flight board removes all of the 

components that were required for testing and integrated the power board into the 

design of the AmesLab.  The flight board is very reliable as the design was 

thoroughly tested on the two versions of the development board. 

 

Figure 19 - Populated flight board for AmesLab 

3.3 Software 

The initial software effort was centered on writing software that would allow a free-

flying satellite, Microsatellite in-situ Space Technology (MisST), from NASA Ames to 

be operated within the NanoRacks facility.  This effort included writing software for 
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the onboard 8051F120 that will satisfy the requirements listed in Section 3.1 above.  

This software effort includes: 

• Drivers for using I2C, UART, and SPI (req 6 and 7) 

• A file system implementation (req 2) 

• Libraries which allow the use of SD cards (req 5) 

• Software architecture to read uploaded command files (req 8) 

• Storage of experimental data (req 7) 

The top-level software flowchart that was developed to allow commanding of the 

AmesLab from a terrestrial location (see Figure 7) can be seen in Figure 20 below.  

When an astronaut plugs the ELC into the NanoRack, the AmesLab provides an 

interface to the SD1 card for the astronaut.  To do this, the AmesLab must comply 

with the USB Mass Storage device class and the SD1 card has previously been 

formatted with the FAT16 file system.  This allows the astronaut to read and write 

to the card without the need for special drivers for the ELC.  Since SD1 has been 

formatted with the FAT16 file system, the only way for the 8051F120 to read or 

write data to the card is to do so through a file system.  File system drivers had to be 

developed for the 8051F120 in order to easily write and read to the SD1 card 

without worrying about data corruption. 

The SSL researched various file systems (FATFS, Secure Digital Fat16 Driver, smxFS, 

and an application note from Silicon Labs) to use on the 8051F120 to interact with 

SD1.  Ultimately, due to cost and limited functionality of other file systems, FATFS 

was chosen.  FATFS provided the highest amount of file system calls to the 8051 and 

was still within the budget (free!). 
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Figure 20 - Top level software flowchart for AmesLab software 

Per requirement 8, the AmesLab software also must be capable of accepting upload 

scripts from the astronaut and transferring them to the AmesLab.  This could 

include scripts that will command the payload or firmware updates to the AmesLab 

software.  The AmesLab monitors astronaut interaction to react when an astronaut 

plugs the ELC into the front panel.  Due to the persistent power on the USB interface, 

the AmesLab must detect a data transfer initiation by an astronaut using the 

NanoRack USB data lines to fulfill requirement 4.  In order to not require special 

software or driver installation on the ELC, the AmesLab is expected to halt 

experimental data recording and respond to astronaut interaction and appear as a 

USB Mass Storage Device to the ELC.  This is done by monitoring the state of the USB 

device that is plugged into the CubeLab through the NanoRack.  The device can 

either be in ‘suspend’ or ‘resume’ status.  If there is any change in this state (ie an 

astronaut plugs or unplugs the USB cord), the MAX14502 sends an interrupt to the 

C&DH.  The C&DH responds by switching the MAX14502 to card reader or pass 

through mode to allow the appropriate device to interface SD1. 
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4 SPA-1 network on a CubeLab 

This chapter describes the effort of adding SPA-1 capabilities to the AmesLab by 

providing SDM-lite functionality to the C8051F120 microprocessor on the AmesLab 

is detailed.  Hardware is also added to the AmesLab that will facilitate the safe 

addition of I2C devices using an external interface.  Finally, an operation plan is 

developed which should be followed to get new SPA devices to be installed in the 

NanoRacks AmesLab facility.  The AmesLab with SPA-1 capabilities is herein 

referred to as SPALab. 

4.1 Software 

COSMIAC is developing a CubeSat called Trailblazer-1 that was mentioned 

previously in this thesis [22].  This CubeSat aims to bring SDM functionality for SPA-

1 networks to a low resource, low power ARM microprocessor.  This modified SDM 

for low resource embedded systems is called SDM-lite.  The available resources for 

the 8051 on the AmesLab and the Advanced RISC Machines (ARM) chip in the 

Trailblazer-1 CubeSat are very similar.  In way of this, the design of the SDM-lite that 

runs on both platforms is nearly identical.  The software flow chart for the SPALab, 

in 0, was developed through an effort with COSMIAC.  After the flowchart was 

developed, the software for both platforms was developed independently. 

To provide a SPA-1 network in the CubeLab form factor, the software for the SPALab 

took two major efforts (SDM-lite and AmesLab software) and merged them into a 

common software package.  These two efforts are clearly delineated in the software 

flow charts in 0 and in Figure 21.  The blocks pertaining to the SDM-lite are shown 

in green.  The blocks pertaining to the AmesLab functionality are shown in orange.  

This thesis work specifically provides the software functionality for the SDM-lite 

blocks while providing an integration plan for the AmesLab blocks. 
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The next two major sections, Section 4.1.1 and 4.1.2, discuss SDM-lite functionality 

and the AmesLab software, respectively. 

 

Figure 21 - Software layering diagram for SPALab 

The software for the SDM-lite was written in the C programming language using 

µVision 4 Integrated Development Environment (IDE) for the development 

environment.  Tortoise Subversion (SVN) was used as a repository to keep track of 

software changes and to ripple those changes out to the entire software team. 

4.1.1 SDM-lite functionality 

The main purpose of SDM-lite is to provide the mechanism referred to as “discovery 

and join” for SPA-1 devices.  The purpose of this mechanism is to detect the 

existence of new components on the SPA network and provide the ability to query 

the “services” provided by these components (as described by the XTEDS) [1].   

The SDM-lite functionality can be broken up into three main components (round 

robin, data handling, and processing of information) and two main responsibilities 
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for each component (controlling data on the bus and providing plug and play 

mechanisms for new devices).  The high-level software flow for SDM-lite can be seen 

in Figure 22 and a more in-depth flowchart can be seen in 0. 

 

Figure 22 - Top-level software flowchart for SDM-lite functionality 

The three components mentioned use three different data structures to pass 

information to/from ASIMs and store data about the ASIMs on the C&DH.  These 

three data structures are the processing structure, the data structure, and the 

output structure.  The processing structure is a buffer for information that is read 

from each ASIM.  The data structure is the data storage on the C&DH that 

corresponds to the xTEDS from each ASIM.  This is also intended to store the current 

state of the device upon the last read cycle.  The output structure is a buffer for 

information that will be written to ASIMs on the next round robin.  These three 

structures can be seen in Figure 23.  

 

Figure 23 - Structures used in SDM-Lite for data storage 
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In a normal SDM environment, these structures would be dynamic and would get 

created and destroyed as necessary.  Unfortunately, dynamic memory allocation is 

heavily dependent on an OS as it is responsible for allocating space based on 

memory that is available in the system.  In the case of SPALab, there is no OS 

running.  Therefore, dynamic memory allocation would indeed produce undesirable 

results including unintended overwritten data.  For this reason, the xTEDS for each 

SPA device is stored on the firmware (FW) of the C&DH itself and all structures for 

storing data are statically created at compile time.  When a SPA device is plugged in, 

the xTEDS is retrieved and compared with the xTEDS that already exists on the 

C&DH.  This ensures that the SPA device uses the appropriate entry in the data 

structures. 

4.1.1.1 Network Enumeration 

The network enumeration functionality in the SPALab serves the following 

purposes:  registering SPA devices on the network when they come online and 

maintaining the data structures with the current I2C address associated with the 

device. 

The software flowchart for the network enumeration process can be seen in 0.  The 

“not enumerated” branch goes through the process of registering the SPA device on 

the network with the SDM-lite.  The registration process is a series of sending and 

receiving commands to/from an ASIM to interrogate such things as the Global 

Unique Identifier (GUID), the version of software, the status of the ASIM, and the 

xTEDS.  Once all enumeration data are read from the ASIM, the appropriate values 

are stored into the data structure for that ASIM.  The GUID is a unique identifier 

associated with ASIM and is hardcoded into the ASIM code.  It is used by the SDM-

Lite to reference and contact each device. 

Parsing the xTEDS would allow the SDM-lite to discover the capabilities of the ASIM 

on the fly. Initially, the SPALab will not allow parsing of the xTEDS because is not 
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implemented in this version of the software.  In the meantime, the xTEDS from the 

ASIM is compared with the xTEDS for that device that is stored on the SDM-lite.  

This ensures that the SDM-lite has the capabilities through the appropriate 

applications for nominal operation for the ASIMS that are plugged into the network. 

A re-enumeration process is also called every 100 round robin cycles to ensure the 

network addresses are up-to-date.  This process starts at the lowest I2C address, 

retrieves the GUID from the ASIM, updates the data structure corresponding to that 

GUID with the current I2C address.  Cycling through all registered I2C addresses 

completes the process. 

4.1.1.2 Round Robin 

The SPA-1 protocol states that SPA-1 ASIMs shall be written to and read from in the 

manner shown in Figure 24.  The sequential writing and reading from ASIMs is a 

process called Round Robin and is designed to give the ASIMs enough time to 

prepare data between the write command and the read command.  Due to the 

nature of I2C, each ASIM is read from and then written to in that order.  This process 

ensures the correct devices are read from and allows adjusting to be made before 

the write cycle if necessary. 
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Figure 24 - Round Robin used to communicate with SPA-1 ASIMs 

4.1.1.2.1 Controlling data on the bus 

The round robin is responsible for reading and writing data and commands to and 

from ASIMs that are on the bus.  The software flow for the round robin can be seen 

on the round robin page in 0.  By following that software flow, it is shown that the 

round robin process starts by sending a read command to the first ASIM that is at 

I2C address 0x11.  The data structures are searched to find a device with the I2C 

address of 0x11.  Assuming the device is found, the I2C bus is read at that address 

and the data are stored into a processing structure tagged with the current Device 

ID.  Assuming normal operation, after reading the data from that ASIM, the first 

decision in the flowchart, “data structure contains device at that address” will be 

true.   Abnormal operation of the bus is discussed in section 4.1.1.2.2. 

The slave address is then incremented and the process is repeated until all ASIMs 

are read and their corresponding processing structures are updated.  Following the 

completion of a read from all available ASIMs, the data structures for the ASIMs are 

realigned with the processing structures associated with the ASIMs.  The write cycle 

of the round robin is discussed in Section 4.1.1.3. 
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4.1.1.2.2 PnP mechanisms for devices 

The round robin is also responsible for searching for new devices on the bus.  The 

previous section mentioned the round robin functionality during normal operation 

but this section covers how the round robin behaves when an ASIM goes off line and 

comes back online.  When this occurs, the address resolution process for the ASIM 

(discussed in Section 4.4) may cause the ASIM to obtain a different address than it 

had before it went offline.  The slave address stored in the data structure for that 

ASIM is now incorrect and needs to be updated.  It is critical to the operation of the 

SDM-lite that the data structures for each device always display the current slave 

address of that ASIM. 

The “no” branch of the “Data structure contains devices at that address” decision 

block handles the abnormal operation as mentioned above.  This requests the GUID 

from the unknown ASIM and searches through all of the data structures to find a 

match.  If a match is found, the data structure is updated with the current address of 

the ASIM and all available data from an ASIM are subscribed to.  This subscription 

request triggers the ASIM to start outputting data messages to the bus to be read by 

the SDM-lite.  If a GUID match isn’t found, the enumeration process is executed and 

the ASIM is registered on the SPA-1 network as a new device. 

4.1.1.3 Data Handling 

4.1.1.3.1 Controlling data on the bus 

The data handling slide in 0 is the central point at which all information passed is 

located so that the data to be processed and commands to be passed can be housed 

for future operations.  The data handling procedure starts out by updating the 

highest address that was read from on the previous round robin read cycle.  Since 

the round robin read cycle temporarily stores the received information into a 
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processing structure, updating the highest address is a matter of searching through 

the processing structures and finding the highest address. 

Next, the process starts writing packets that are in the output queue to the SPA-1 

bus.  The first packet in the output queue is read and the device ID from that packet 

is found in the data structures.  The I2C slave address associated with that Device ID 

is stored and the packet is sent to that I2C address.  If the address isn’t found, the 

packet isn’t written to the network.  The process repeats until all packets in the 

output queue are serviced.  The output queue is then cleaned to ensure future 

output packets will be outputted. 

Finally, a round robin counter is incremented.  If this counter exceeds 100, the bus is 

re-enumerated by calling the network enumeration operation.  The reasons for this 

are explained in the next section. 

4.1.1.3.2 PnP mechanisms for devices 

The data handler provides PnP mechanism for devices in two ways, using Device ID 

for the output queue and re-enumerating the bus after 100 round robin calls.  By 

using the Device ID only for the packets in the output queue, this allows SPA devices 

to have different I2C network address in the event of a power cycle of the device.  If 

a SPA device goes offline and online the I2C address for that SPA device will 

automatically be updated in the data structure for that device.  Since the data 

handler retrieves the I2C address from the data structure, this ensures the packets 

in the output queue will always have the most recent I2C address for each SPA 

device.  Additionally, in the case that two ASIMS go offline and trade I2C network 

addresses, the existing software flow has no way to handle that.  The re-

enumeration of the bus every 100 round robin cycles will ensure the data structures 

get realigned if I2C addresses get swapped. 
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4.1.1.4 Processing information 

The information processing component could be thought of as the application layer 

of SDM-lite.  Strictly speaking, it isn’t part of the SDM-lite layer but a layer that 

resides on top of it as shown in Figure 12.  It is assumed that every ASIM has an 

application associated with it, which facilitates processing.  These applications are 

represented on the information processing page of 0 as “Device X Application”.  

These applications will be unique to each SDM-lite configuration and can be changed 

by using the FW updater as mentioned in the next section.  Following the processing 

of information by each of the applications, the information on the bus is either 

written to an ASIM data structure, sent to the output structure to be written to an 

ASIM on the next round robin or both. 

4.1.1.4.1 Controlling data on the bus 

 The information processing component of software is responsible for operating on 

the information that is passed on the bus.  As seen in the information processing 

page in 0, the information process component starts by reading the first entry from 

the processing structure.  The first process is routed to the appropriate application 

by referring to the “Device ID” of that process.  The application performs analysis or 

processing on the data and then has the option to output a message to another 

module or to store the data in the data structure of another ASIM.  After the first 

process is read and completed, the procedure is repeated until all processes in the 

processing structure are read and processed. 

4.1.1.4.2 PnP mechanisms for devices 

Since the applications output to a device ID and not to a slave address directly, this 

preserves the plug-and-play nature of the SPA Network.  This ensures that 

information will be routed to the proper endpoint and covers the case of an ASIM 

going through re-enumeration in the middle of the round robin.  
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4.1.2 AmesLab software 

The SPALab also contains software components that are derived from the AmesLab 

software.  The primary purpose of this software is to fulfill the software 

requirements that are listed in Section 3.1.  This software can be split into four main 

components: data storage, bootloader, interaction with the astronaut through the 

NanoRack, and the satellite simulator.  The AmesLab software isn’t completely 

integrated into the SPALab software project files as the main focus of this thesis is to 

provide the SDM-lite functionality to the AmesLab and to provide a plan for 

AmesLab integration. 

4.1.2.1 Data Storage 

As seen in the Figure 16, the two main data storage places that are available are SD1 

and SD0.   In the SPALab configuration, SD1 is primarily used for direct interaction 

with the astronaut.  This interaction includes: uploading new FW to the C&DH, 

uploading new satellite simulator scripts, retrieving previously recorded SPA-1 

network data and permanent storage of experimental data.  SD0 is used for 

temporary data storage which includes: temporary storage of new FW, temporary 

storage of new satellite simulator scripts, temporary storage of experimental data 

that are generated during astronaut interaction.  The latter case is used if an 

astronaut has an ELC plugged into the front panel and the SPA-1 payload is still 

generating data.  These data will be stored onto the SD0 card until the astronaut 

unplugs the ELC from the NanoRack.   Following the unplugging action, the 

information on SD0 is transferred to SD1 for more permanent storage. 

4.1.2.2 Bootloader 

Since SPA devices can be reconfigurable on-orbit, the application layer (as shown in 

Figure 12) also has to be updated.  Reprogramming the application layer allows the 

SSL to repurpose the SPALab to take advantage of the new configuration.  To update 
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the application layer and the data structures associated with a new SPA device, a 

bootloader is used to reprogram the C&DH on the SPALab.   Code can be sent from 

the users’ computer, through the data path shown in Figure 7 and uploaded to the 

SD1 card on the AmesLab.  Once the astronaut finishes the data transfer to the SD1 

card, the ELC is disconnected from the NanoRack.  When this occurs, the new 

firmware is transferred to the SD0 card.  Upon the next reboot, the firmware version 

on SD0 is checked and if new, is re-flashed to the C&DH.  The bootloader process is 

detailed further in 0 on the FW updater page. 

4.1.2.3 Interaction with astronaut through the NanoRack 

The SPALab requirements are very similar to the requirements for the AmesLab for 

astronaut interaction.  Astronaut interaction with data stored on the AmesLab is 

covered in section 3.3 and will not be repeated here.  However, this software will 

allow astronauts to copy new firmware and software simulator code to the SPALab.  

Additionally, the astronaut can retrieve xTEDS and experimental data.  The USB 

interrupt slide of the software flowchart in 0 details the astronaut interactions.  

4.1.2.4 Satellite simulator 

If a customer wants to operate their SPA-1 device in microgravity, they have the 

following options:  install it in an existing SPA-1 satellite with other SPA-1 devices or 

install it in the SPALab which can simulate data from any number of SPA-1 devices.  

Either way, the SPA-1 device in question will not “know” the difference between 

which platform it has been installed in.   

The satellite simulator mode is a configuration which makes the SPALab appear as a 

complex SPA-1 network to a SPA-1 device under test.  The satellite simulator mode 

will use two separate components.  First, data structures for a dummy SPA device 

can be programmed into the firmware alongside the data structures for the real SPA 

devices.  Second, data associated with a dummy SPA device can be injected into the 
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processing structures during the “Network Simulator” block on the Overview slide 

of 0.  The placement of this block allows the processing structure to be filled with 

dummy data before the “processing information” section and allows data to be 

placed into the output structure before the next write cycle of the round robin.  

4.1.3 Code Compliance 

A very large amount of coordination and effort has to be completed to get this 

product to operate on orbit.  The software on the SPALab has to be thoroughly 

tested as to instill confidence that the project will operate nominally once on orbit.  

To ensure this high level of confidence, the SSL has developed a coding standard and 

a peer code review process.  The SPALab project was susceptible to those standards 

and will be described below.  This software has been through a rigorous code 

review process to ensure efficient, reliable and robust embedded software was 

written.  

4.1.3.1 SSL Coding Standard 

The SSL as a whole has a history of writing in-depth software for a wide variety of 

embedded applications.  The structure of the lab is such that students can come and 

go during the duration of a software project.  In order to ensure consistent coding 

practices throughout the entire project from inception to completion, an SSL coding 

standard was completed.  It is especially important to write code that is easily 

understood by all lab members to facilitate modification if necessary. 

The SSL coding standard resides in an online medium known as a wiki which is 

easily accessible to all lab members.  The coding standard was originally developed 

for the KYSat-1 project and has slowly evolved to fit the changing needs of the lab.  It 

is a merged standard based on Motor Industry Software Reliability Association 

(MISRA) C version 2004, The Firmware Development Standard by Jack Ganssle, and 

a master’s thesis on Fault Tolerant and Flexible CubeSat Software Architecture by 
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Greg D. Manyak at California Polytechnic State University [23] [24] [25].  The 

SPALab software was coded to the SSL coding standards and the code was verified 

during the peer code review process. 

4.1.3.2 Peer Code Reviews 

Code reviews are also an important part of the software coding process.  Code 

reviews are a great way to identify bugs, encourage collaboration and keep code 

more maintainable.  Two resources for performing effective peer code reviews were 

identified by the SSL: “Effective Code Reviews without the Pain” [26] and “11 Best 

Practices for Peer Code Review” [27].  These procedures were analyzed and 

followed closely for the code review of the SPALab project.  Overall, the peer code 

reviews were very successful in identifying potential bugs and getting the entire 

software team more familiar with the SPALab code. 

4.2 Hardware 

There were very minimal hardware changes that were made to the AmesLab board 

to adapt it to become a SPALab.  An I2C isolator and various connection interfaces 

were added to the AmesLab to make it easier and safer to connect SPA-based 

payloads. 

4.2.1 I2C isolators 

Typically I2C isolation can be difficult due to the bidirectional nature of I2C 

operation.  Most I2C isolation circuitry is unidirectional and as such is not suited for 

the SPALab project.  The Silicon Labs Si8400 bi-directional I2C isolation chip was 

chosen to provide isolation in this environment. 



52 
 

I2C isolation provides the following benefits: signal integrity is preserved when the 

signal is carried over a long distance and allows for payloads with different I2C bus 

voltages to be connected to the SPALab. 

4.2.2 Physical connector 

With the addition of I2C isolators, a physical connection was also added to the 

AmesLab to allow a wider variety of payloads to be connected.  The AmesLab relies 

on a Samtec Incorporated 50-pin header connector, model number EHT-125-01-S-

D-RA, to interface to payloads.  While the 50-pin header is an interface option, it 

limits the types of devices that can connect to the AmesLab.  To accommodate the 

usage of the 50-pin connector by SPA devices, the same signal and ground lines 

were also routed to the 50-pin connector.  The 50-pin connector can be seen in 

Figure 25 below. 

 

Figure 25 - 50-pin header connection for SPA Devices 

4.3 Operations for installing new SPA devices 

This section describes the operational processes for installing a new SPA-1 device in 

the SPALab as detailed in Figure 26.  This scenario assumes that the SPALab is 
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already on orbit and installed into the NanoRacks platform.  An example of a SPA-1 

temperature sensor being developed by a payload developer is used so the reader 

can follow the processes a bit easier. 

4.3.1 Pre-Launch  

The payload developer creates a temperature sensor that is fully compliant with the 

SPA-1 network protocol.  This includes the development of an xTEDS.  They contact 

the SSL and inform them they want to use the SPALab to test their SPA-1 

temperature sensor.  The SSL works with the payload developer to create an 

application that will run on the SPALab C&DH in coordination with the SDM-Lite to 

test all of the functionality of the temperature sensor as well as log the results. 

The SSL manually extracts the capabilities of the temperatures sensor by analyzing 

the xTEDS and placing relevant information into data structures on the SPALab 

software image.  The xTEDS data structures, the xTEDS itself, and the application 

needed to use the temperature sensor are used to generate a FW update for the 

SPALab C&DH that is on orbit.  The software is sent to NASA to be loaded onto the 

SD1 card on the SPALab by using the data path shown in Figure 7.  The SSL works 

with NASA to transport the temperature sensor to the ISS to be installed on the 

NanoRacks.  This process is detailed in section 2.2.3. 

4.3.2 Post-Launch 

Following launch of the temperature sensor, the SSL works with an astronaut on the 

ISS to upgrade the SPALab to use the new temperature sensor.  This process is 

started by dragging the FW from the ELC file system onto the SPALab SD card, SD1.  

When the data transfer is complete, the astronaut performs a hard reboot of the 

SPALab by disconnecting power and reapplying power.  Upon boot up, the SPALab 

SW checks the appropriate folder and recognizes a new FW version is available.  All 

processes are halted until the FW update has been completed.  Upon the completion 
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of the FW update, the astronaut removes the SPALab from the NanoRack, installs the 

temperature sensor by connecting it to the “Interface to payload” connector as seen 

in Figure 19. 

When the final configuration has been completed, the SPALab with attached 

temperature sensor is attached to the NanoRack.  Upon boot up and enumeration, 

the xTEDS for the sensor is transferred to the SPALab.  The xTEDS from the sensor is 

compared to the xTEDS that was loaded onto the C&DH during the FW update 

process.  If the xTEDS do not match, it is assumed that the FW is incorrect or the 

wrong SPA sensor was plugged into the SPALab.  The xTEDS from the temperature 

sensor is stored on the SD card for later retrieval by an astronaut and analysis by the 

SSL and the payload developer on the ground.  If a FW update is needed, the update 

process is repeated.  If the xTEDS match, normal operation begins.  A flowchart 

showing the entire process described in this section can be seen in Figure 26.  

Alternatively, the software image can be loaded onto the SPALab and the SPA-1 

device is installed during the pre-launch phase.  This is the preferred method, as it 

requires less coordination with NASA for using astronaut time and allows the 

system to be tested before launch to ensure proper operation. 
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Figure 26 - Operations for installing new SPA-1 device into the SPALab 
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4.4 8051-based ASIM 

During the process of designing and testing the SPALab, the use of an ASIM based on 

existing architectures would have severely limited the testing and analysis 

processes of the SPA-1 network.  The SSL didn’t have the microprocessor 

development kits required to properly run the existing ASIM code.  The AFRL has an 

online resource for the SPA standard which is managed by SDL at Utah State 

University [28].  Software for an Atmel-based ASIM was downloaded and analyzed 

as a starting point for writing custom code for an ASIM. 

After much work, the Atmel-based ASIM code was ported to a Silicon Labs 

C8051F120 microprocessor.  The coding effort to build an ASIM that was based on 

the 8051-architecture was started in early 2012.    This porting effort was mainly 

done by me but others in the lab also helped.  The 8051-ASIM efforts allowed a lot of 

flexibility when testing the SPA-1 network and also verified that the system was 

worked as expected.  The 8051-based ASIM that was developed has the same 

functionality as the ASIM as it is described in section 2.3.2. 

All SPA-1 ASIMs conform to the hardware and protocol requirements contained in 

the “Designing a SPA-1 ASIM” document that is found on SDL website for SPA [28].  

According to the document, a SPA-1 ASIM must respond to three phases: Address 

Resolution Protocol (ARP), enumeration and the round robin.  The address 

resolution is a method that ASIMs use to obtain their I2C slave address.  When an 

ASIM comes online, it starts at the lowest possible address of 0x11 and tries to send 

a message to that address.  If a Negative Acknowledge (NACK) is received, it 

assumes that address.  If an Acknowledge (ACK) is received, the address is 

incremented by one and the contact is retried until an available address is found.  

Enumeration and the round robin have been covered extensively in this thesis and 

will not be repeated here. 
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5 Results 

This chapter details the results and testing procedures for the SDM-lite and the 

8051-based ASIM in a laboratory environment.  There are many different ways to 

test a system of such complexity.  I used a black box style testing methodology to 

demonstrate the functionality of the SDM-lite on the SPALab.  Figure 27 shows the 

test setup that was used in the lab environment for testing.  The general idea behind 

the test setup was to have one ASIM (Temp ASIM) report the processor temperature 

once per second to the SDM-lite.  The SDM-lite used that information and through 

the use of an application, outputted a message to toggle an LED on the second ASIM 

(LED ASIM) if the temperature went over 40C.  The I2C network traffic was 

observed throughout the entire power up and operation sequence including the 

enumeration process and all blocks in the top-level flow chart as see in Figure 22.  

This traffic is annotated for clarity to the reader and include in the appendices. 

 

Figure 27 - Black Box test setup for SPALab 

 

5.1.1 Network enumeration 

The network enumeration phase is the primary process for discovering the 

capabilities of each ASIM and registering it with the SDM-lite.  Appendix B includes 
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the I2C network traffic that was generated during the ARP phase and network 

enumeration for each ASIM. 

The first 3 lines in Appendix B show the ARP for both ASIMS.  The Temp ASIM came 

online and searched for the lowest available I2C address by probing address 0x11.  

Since there was no device at 0x11, the packet received a NACK and the Temp ASIM 

started using 0x11 as its’ slave address.  Next, the LED ASIM came online and went 

through the same process.  When address 0x11 was probed, the Temp Sensor ASIM 

responded and the LED ASIM moved on to the next slave address, 0x12.  When 

probed, 0x12 responded with a NACK so the LED ASIM assumed 0x12 as its’ slave 

address.   

Next, the enumeration process is shown which retrieved the GUID, status, version 

and the xTEDS from each ASIM.  Packets have been omitted for the sake of brevity.  

After the enumeration process was completed for each ASIM, all available data 

messages were subscribed to by sending commands to each ASIM. 

5.1.2 Reporting temperature 

The main functionality of this thesis is proven by the I2C traffic shown in Appendix 

C.  This traffic was recorded after the ARP and network enumeration process were 

completed.  It represents the I2C bus output generated by looping through software 

as represented by the top-level software flowchart shown in Figure 22 a total of 

eleven times.   

During the observation, I used a temperature gun to heat the processor temperature 

on the Temp ASIM.  This was done to trigger the operation of the LED at above 40C.  

The Temp ASIM at slave address 0x11 was read and the processor temperature was 

reported as: 0x48, 0xE1, 0x07, and 0x42.   The bytes read from the Temp ASIM were 

reported in little endian format and represent a floating-point number.  When 



59 
 

converted to decimal, this value represents a temperature of 33.97 C.  This value 

was sent to the application for the Temp ASIM and analyzed.  Since the temperature 

was below 40 C, a message was sent to the LED ASIM at address 0x12 to ensure the 

LED was off by sending byte 0xAA.  This process was repeated until the floating-

point value received from Temp ASIM went above 40 C.  The third temperature 

packet from the Temp ASIM that is shown indicates that the temperature rose to 

43.85 C.  Analysis of this temperature shows the application for the Temp ASIM sent 

a message to the LED ASIM to turn the LED on by sending the byte 0xFF.  Expected 

operation of the LED on the LED ASIM was observed visually. 

5.1.3 ASIM re-enumeration 

To test the plug-and-play aspect of the SPALab, the test setup was powered up and 

allowed to reach a steady state.  The Temp ASIM was unplugged and plugged back in 

and the I2C network traffic was observed to see if the system re-enumerated the 

Temp ASIM and started reporting the correct command to the LED ASIM.  The 

network traffic from the test can be seen in Appendix D.  

The network traffic shows the Temp ASIM (0x11) was initially unresponsive and the 

LED ASIM (0x12) was alive and reporting 0xFF FF FF.  The Temp ASIM was plugged 

back in around 11:21:08 and the ASIM was re-enumerated.  Next, the SDM-lite re-

subscribed to the data messages and the Temp ASIM resumed reporting the 

temperature data. 

5.1.4 Multiple ASIM re-enumeration 

The SPALab needs to handle the case where both ASIMs power cycle.  The test setup 

was placed in the initial configuration and powered up.  The network traffic was 

analyzed and allowed to reach a steady state.  Both ASIMs were power cycled as 

shown in Appendix E.  The ASIMs were powered up in the same order as they were 

powered on during the initial testing cycle (Temp ASIM first).  ARP for the LED ASIM 
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was observed in the network traffic.  Following the ARP of the LED ASIM, network 

enumeration and subscription to data messages for each ASIM was observed. 

5.1.5 ASIMs changing addresses 

In addition to handling multiple ASIMs power cycling and resuming operation with 

the same I2C slave address, the SDM-lite also needs to be able to handle the case 

where ASIMs come back online in a different order and switch I2C addresses.  

Network analysis for this case is shown in Appendix F. 

The I2C traffic showing the re-enumeration of each ASIM was analyzed.  The startup 

packets corresponding to the network enumeration were omitted.  The network 

analysis shows the Temp ASIM responded at address 0x11.  Analyzing the packets 

that were received indicates this.  The values “0xC3, 0xF5, 0xCC and 0x41” represent 

a floating-point temperature value in little endian notation.  Converted to decimal, 

the bytes represent a temperature of 25.62 C.  Additionally, the LED ASIM was 

observed at address 0x12 by observing an LED off command that was sent to that 

address. 

The ASIMs were powered off and allowed to resume power in an order that allowed 

them to assume different slave addresses.  Upon power up, the LED ASIM was 

assigned address 0x11, enumerated during the round robin phase, and any available 

data messages were subscribed to.  A message that was left in the output queue 

from before the power cycle was sent to the LED ASIM at 0x11 indicating that the 

SDM-lite registered the new address.  Next, the Temp ASIM was powered up and the 

ARP phase was initiated.  Upon completion of the ARP, the Temp ASIM was assigned 

address 0x12 and the enumeration process was initiated.  Finally, a temperature 

message was read from the Temp ASIM at address 0x12 indicating the SDM-lite 

registered the new address of the Temp ASIM. 
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5.1.6 ASIM powering off for extended period of time 

There was also a need to test the functionality of the SDM-lite if an ASIM was 

powered off for an extended period of time.  In terms of this system, an extended 

period of time was chosen as 90 seconds.  At an average of 16 messages per second, 

the SDM-lite sends roughly 1,440 messages during this time.  This allowed the 

round robin count to be reset 14 times causing an enumeration of the bus each time.  

By analyzing the network traffic in Appendix G, an ASIM is shown to come back 

online after an extended period of time. 

The I2C traffic shows that the Temp ASIM was slave address 0x11 and output 

temperature data just before it went offline.  90 seconds passed with the ASIM 

offline.  Upon power up, the ASIM was immediately enumerated during the round 

robin phase and message subscriptions were resumed.  Finally, the Temp ASIM 

output a temperature value after a second passed indicating nominal operation 

resumed. 

5.1.7 High Round Robin Count 

There is also a mechanism built into the SDM-lite which causes the system to re-

enumerate all ASIMs after a certain amount of round robins have passed.  This 

allows the system to recalibrate itself if an error goes undetected.  For the purposes 

of the SPALab application, the upper round robin count was set at 100.  The test 

results show the re-enumeration process was initiated after 100 round robins have 

occurred and nominal operation was resumed.  Appendix H shows the I2C network 

traffic for this analysis.  The 100th round robin was observed with the re-

enumeration of each ASIM following.  Data subscriptions were not sent in this case 

as the ASIMs didn’t power cycle since the last enumeration and the last 

subscriptions were still valid.  This was verified by observing normal operation after 

the enumeration process. 
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5.2 ASIM Results 

To test the functionality of the 8051-based ASIM that were created, they were tested 

using two different methods.  First, they were used in all of the tests scenarios listed 

in Section 5.  This shows that the 8051-based ASIMs are working correctly for the 

SDM-lite application so those results will not be repeated here.  Second, the Temp 

ASIM was tested with the SDM to ensure proper operation. 

Testing the 8051-based ASIM with an SDM was achieved by using the SPA training 

kit called CubeFlow by COSMIAC [29].  The CubeFlow kit uses a Linux-based 

Gumstix controller to provide a full SDM for SPA-U and SPA-1 networks.  The test 

setup that was used can be seen in Figure 28.  Through use of the CubeFlow kit and 

the online resources at SDL mentioned in section 4.4, a test application was 

developed that tested the full functionality of the 8051-based ASIM.  An xTEDS was 

created using the online tools and loaded onto the Temp ASIM.   

 

Figure 28 - CubeFlow kit from COSMIAC with AmesLab attached 

CubeFlow Kit 

8051-based 
ASIM 
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During the enumeration process, the xTEDS was sent to the CubeFlow Kit using the 

SPA-1 protocol and data structures were created on the SDM that represented the 

capabilities of the Temp ASIM.  An application to test the capabilities of the 

temperature sensor was created using the online tools and used on the Gumstix.  

The application was used to subscribe to available temperature data on the Temp 

ASIM which reported the processor temperature in Fahrenheit and Celsius.  The 

output of the Temp ASIM that was received by the SDM was passed onto the 

application running on the Gumstix.  A floating-point representation of this data 

output is shown in Figure 29. 

 

Figure 29 - SPA Application showing Temperature data from 8051-based ASIM 
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6 Conclusion 

This chapter provides a summary of the contributions that this thesis has made in 

addition to providing a prospect for future research.  This thesis set out to analyze 

several existing standards in the small satellite community and merge them 

together by developing a common platform.  This work involved research into the 

current state of the following platforms:  CubeSat standard, NanoRacks, CubeLabs, 

SPA, and the AmesLab by the SSL.  It was recognized that these platforms could be 

merged together to provide a testing platform on the ISS that will facilitate 

microgravity operation of SPA devices.  The beginning stages of the development of 

this thesis was detailed in paper published at the 2012 Infotech@Aerospace 

conference entitled “A SPA-1 Enabled Plug-and-Play CubeLab for ISS Payloads”. 

This thesis detailed the development of a software component called SDM-lite that 

facilitates the operation of SPA-1 devices on low-resource applications, specifically 

the SPALab on the ISS.  This functionality was provided through a collaborative 

effort with COSMAIC at the University of New Mexico and with the help of other 

students in the SSL.  Specifically, embedded C code was developed which runs on the 

SPALab and provides the SDM-lite capabilities as defined in Section 4.1.1.  To show 

this functionality, an SDM-lite capable of operating 2 ASIMs which allow passing 

SPA-1 messages from one ASIM to another was demonstrated.  The software blocks 

that were developed can be seen in Figure 21.  The network traffic for the SDM-lite 

setup was analyzed and detailed in Chapter 5 and the appendices.  An overall 

software flow chart for the SPALab showing the integration of SDM-lite into the 

AmesLab software architecture was developed and can be seen in 0.   

Additionally, software for an 8051-based ASIM was developed and tested.  This 

further expands the ecosystem of architectures that can be used as an ASIM for SPA-

1 devices. 
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The SPALab has taken a significant step towards getting to orbit through the many 

advances made by this thesis, but there are still tasks that must be completed before 

the final step can be accomplished.  Currently the data structures on the SDM-lite 

have to be programmed with the capabilities of each ASIM.  Further collaboration 

with COSMIAC will enable parsing of XTEDS and population of the data structures 

during the enumeration process.  Next, the AmesLab and SDM-lite code exist in the 

same project file in µVision but are yet to be fully integrated together.  Currently the 

API for all of the necessary AmesLab software components exists but they lack full 

integration into the SDM-lite code.  The integration will be complete when the entire 

flow chart shown in 0 is fully coded. 

Beginning in the summer of 2012, Kentucky Space (which includes SSL at the 

University of KY and Morehead State University) started building a CubeSat called 

KYSat-2.  This CubeSat utilizes the SiLabs C8051F120 as the main processor for the 

C&DH and several SiLabs C8051F912s for an interface between the C&DH and 

devices on the network.  This architecture allows the C8051F120 to provide some of 

the same functionality as the SDM-lite and the C8051F912s will provide 

functionality similar to the 8051-based ASIM as described in this thesis.  Many of the 

concepts discussed in this thesis were applied to the architecture for KYSat-2. 
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Appendices 

Appendix A Software flowchart for SPALab 
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Appendix B SPA-1 Network traffic for network enumeration 
(2012-12-11 13:33:07) [S] <11:w>* [P]       ARP for first ASIM 
(2012-12-11 13:33:09) [S] <11:w> 57 00 04 8b d0 38 35 [P]  
(2012-12-11 13:33:09) [S] <12:w>* [P]                   ARP for second ASIM 
 
 
(2012-12-11 13:33:11) [S] <11:w> 5a 00 00 [P]       “Enumerate” message 
(2012-12-11 13:33:11) [S] <11:r> 48 04 00* [P]       “Hello” header 
(2012-12-11 13:33:11) [S] <11:r> d2 02 96 49* [P]      “Hello” payload 
(2012-12-11 13:33:11) [S] <11:w> 49 00 00 [P]       “Initialize” message 
(2012-12-11 13:33:12) [S] <11:r> 53 01 00* [P]       “Status” header 
(2012-12-11 13:33:12) [S] <11:r> 10* [P]        “Status” payload 
(2012-12-11 13:33:12) [S] <11:w> 55 00 00 [P]       “Request Version” message 
(2012-12-11 13:33:12) [S] <11:r> 4b 01 00* [P]       “Version” header 
(2012-12-11 13:33:12) [S] <11:r> 00* [P]       “Version” payload 
(2012-12-11 13:33:12) [S] <11:w> 58 00 00 [P]       “Request XTEDS” message 
(2012-12-11 13:33:12) [S] <11:r> 4a 13 04* [P]       “XTEDS” header 
(2012-12-11 13:33:12) [S] <11:r> 3c 3f 78 6d 6c 20 76 65 72 73 69 6f 6e 
3d                                              Begin XTEDS 
(2012-12-11 13:33:12) 22 31 2e 30 22 20 65 6e 63 6f 64 69 6e 67 3d 22  
(2012-12-11 13:33:12) 75 74 66 2d 38 22 20 3f 3e 0a 3c 78 54 45 44 53  
(2012-12-11 13:33:12) 20 78 6d 6c 6e 73 3d 22 68 74 74 70 3a 2f 2f 77  
(2012-12-11 13:33:12) 77 77 2e 69 6e 74 65 72 66 61 63 65 63 6f 6e 74  
 

<Packets omitted> 
 

(2012-12-11 13:33:13) [S] <11:r> 4a 13 04* [P]  
(2012-12-11 13:33:13) [S] <11:r> 69 63 61 74 69 6f 6e 3e 0a 09 3c 2f 49 
6e  
(2012-12-11 13:33:13) 74 65 72 66 61 63 65 3e 0a 3c 2f 78 54 45 44 53  
(2012-12-11 13:33:13) 3e* [P]           End XTEDS 
 
 
(2012-12-11 13:33:13) [S] <12:w> 5a 00 00 [P]       “Enumerate” message 
(2012-12-11 13:33:13) [S] <12:r> 48 04 00* [P]       “Hello” header 
(2012-12-11 13:33:13) [S] <12:r> 35 38 d0 8b* [P]       “Hello” payload 
(2012-12-11 13:33:13) [S] <12:w> 49 00 00 [P]       “Initialize” message 
(2012-12-11 13:33:13) [S] <12:r> 53 01 00* [P]       “Status” header 
(2012-12-11 13:33:13) [S] <12:r> 10* [P]       “Status” message 
(2012-12-11 13:33:13) [S] <12:w> 55 00 00 [P]       “Request Version” message 
(2012-12-11 13:33:13) [S] <12:r> 4b 01 00* [P]        “Version” header 
(2012-12-11 13:33:13) [S] <12:r> 00* [P]       “Version” payload 
(2012-12-11 13:33:13) [S] <12:w> 58 00 00 [P]      “Request XTEDS” message 
(2012-12-11 13:33:13) [S] <12:r> 4a 7f 02* [P]        “XTEDS” header 
(2012-12-11 13:33:13) [S] <12:r> 3c 3f 78 6d 6c 20 76 65 72 73 69 6f 6e 
3d  
(2012-12-11 13:33:13) 22 31 2e 30 22 20 65 6e 63 6f 64 69 6e 67 3d 22  
(2012-12-11 13:33:13) 75 74 66 2d 38 22 20 3f 3e 0a 3c 78 54 45 44 53  
(2012-12-11 13:33:13) 20 78 6d 6c 6e 73 3d 22 68 74 74 70 3a 2f 2f 77  
(2012-12-11 13:33:13) 77 77 2e 69 6e 74 65 72 66 61 63 65 63 6f 6e 74  
(2012-12-11 13:33:13) 72 6f 6c 2e 63 6f 6d 2f 53 50 41 2f 78 54 45 44  
(2012-12-11 13:33:13) 53 22 20 78 6d 6c 6e 73 3a 78 73 69 3d 22 68 74  

<Packets omitted> 

ASIM 2 enumeration 

ASIM 1 Enumeration 
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(2012-12-11 13:33:13) [S] <12:r> 4a 7f 02* [P]  
(2012-12-11 13:33:14) [S] <12:r> 6d 6d 61 6e 64 3e 0a 09 09 3c 43 6f 6d 
6d  
(2012-12-11 13:33:14) 61 6e 64 3e 0a 09 09 09 3c 43 6f 6d 6d 61 6e 64  
(2012-12-11 13:33:14) 4d 73 67 20 6e 61 6d 65 3d 22 4c 45 44 5f 4f 46  
(2012-12-11 13:33:14) 46 22 20 64 65 73 63 72 69 70 74 69 6f 6e 3d 22  
(2012-12-11 13:33:14) 55 73 65 64 20 74 6f 20 74 75 72 6e 20 74 68 65  
(2012-12-11 13:33:14) 20 4c 45 44 20 4f 46 46 22 20 69 64 3d 22 32 22  
(2012-12-11 13:33:14) 20 2f 3e 0a 09 09 3c 2f 43 6f 6d 6d 61 6e 64 3e  
(2012-12-11 13:33:14) 0a 09 3c 2f 49 6e 74 65 72 66 61 63 65 3e 0a 3c  
(2012-12-11 13:33:14) 2f 78 54 45 44 53 3e* [P]     End XTEDS 
(2012-12-11 13:33:14) [S] <13:w>* [P]  
(2012-12-11 13:33:14) [S] <11:w> 4d 02 00 01 01 [P]  
(2012-12-11 13:33:14) [S] <11:w> 4d 02 00 01 02 [P]         Subscribe to 
(2012-12-11 13:33:14) [S] <12:w> 4d 02 00 01 01 [P]         data messages 
(2012-12-11 13:33:14) [S] <12:w> 4d 02 00 01 02 [P]  
 
 
  

End Network Enumeration 
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Appendix C SPA-1 Network traffic for temperature controlled LED 
 
(2012-12-11 15:45:14) [S] <11:r> 44 06 00* [P]             Temp Data 33.97C 
(2012-12-11 15:45:14) [S] <11:r> 01 01 48 e1 07 42* [P]  
(2012-12-11 15:45:14) [S] <12:r> ff ff ff* [P]  
(2012-12-11 15:45:14) [S] <13:w>* [P]  
(2012-12-11 15:45:15) [S] <13:w>* [P]  
(2012-12-11 15:45:15) [S] <11:r> ff ff ff* [P]  
(2012-12-11 15:45:15) [S] <12:r> ff ff ff* [P]  
(2012-12-11 15:45:15) [S] <13:w>* [P]  
(2012-12-11 15:45:15) [S] <13:w>* [P]                 LED OFF 
(2012-12-11 15:45:15) [S] <12:w> 56 03 00 01 01 aa [P]  
(2012-12-11 15:45:15) [S] <11:r> ff ff ff* [P]  
(2012-12-11 15:45:15) [S] <12:r> ff ff ff* [P]  
(2012-12-11 15:45:15) [S] <13:w>* [P]  
(2012-12-11 15:45:15) [S] <13:w>* [P]  
(2012-12-11 15:45:15) [S] <11:r> ff ff ff* [P]  
(2012-12-11 15:45:15) [S] <12:r> ff ff ff* [P]  
(2012-12-11 15:45:15) [S] <13:w>* [P]  
(2012-12-11 15:45:15) [S] <13:w>* [P]  
(2012-12-11 15:45:15) [S] <11:r> 44 06 00* [P]             Temp Data 39.14C 
(2012-12-11 15:45:15) [S] <11:r> 01 01 5c 8f 1c 42* [P]  
(2012-12-11 15:45:15) [S] <12:r> ff ff ff* [P]  
(2012-12-11 15:45:15) [S] <13:w>* [P]  
(2012-12-11 15:45:16) [S] <13:w>* [P]  
(2012-12-11 15:45:16) [S] <11:r> ff ff ff* [P]  
(2012-12-11 15:45:16) [S] <12:r> ff ff ff* [P]  
(2012-12-11 15:45:16) [S] <13:w>* [P]  
(2012-12-11 15:45:16) [S] <13:w>* [P]                 LED OFF  
(2012-12-11 15:45:16) [S] <12:w> 56 03 00 01 01 aa [P]  
(2012-12-11 15:45:16) [S] <11:r> ff ff ff* [P]  
(2012-12-11 15:45:16) [S] <12:r> ff ff ff* [P]  
(2012-12-11 15:45:16) [S] <13:w>* [P]  
(2012-12-11 15:45:16) [S] <13:w>* [P]  
(2012-12-11 15:45:16) [S] <11:r> ff ff ff* [P]  
(2012-12-11 15:45:16) [S] <12:r> ff ff ff* [P]  
(2012-12-11 15:45:16) [S] <13:w>* [P]  
(2012-12-11 15:45:16) [S] <13:w>* [P]  
(2012-12-11 15:45:16) [S] <11:r> 44 06 00* [P]             Temp Data 43.85C 
(2012-12-11 15:45:16) [S] <11:r> 01 01 66 66 2f 42* [P]  
(2012-12-11 15:45:16) [S] <12:r> ff ff ff* [P]  
(2012-12-11 15:45:16) [S] <13:w>* [P]  
(2012-12-11 15:45:17) [S] <13:w>* [P]  
(2012-12-11 15:45:17) [S] <11:r> ff ff ff* [P]  
(2012-12-11 15:45:17) [S] <12:r> ff ff ff* [P]  
(2012-12-11 15:45:17) [S] <13:w>* [P]  
(2012-12-11 15:45:17) [S] <13:w>* [P]                 LED ON 
(2012-12-11 15:45:17) [S] <12:w> 56 03 00 01 01 ff [P]  
(2012-12-11 15:45:17) [S] <11:r> ff ff ff* [P]  
(2012-12-11 15:45:17) [S] <12:r> ff ff ff* [P]  
(2012-12-11 15:45:17) [S] <13:w>* [P]  
(2012-12-11 15:45:17) [S] <13:w>* [P]  
 

Begin Round 
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Appendix D SPA-1 Network traffic for ASIM Re-Enumeration 
 

<startup packets omitted> 
 
(2012-12-12 11:21:07) [S] <11:w>* [P]       Temp ASIM unresponsive 
(2012-12-12 11:21:07) [S] <11:w>* [P]  
(2012-12-12 11:21:07) [S] <12:r> ff ff ff* [P]  
(2012-12-12 11:21:07) [S] <13:w>* [P]  
(2012-12-12 11:21:07) [S] <13:w>* [P]  
(2012-12-12 11:21:07) [S] <11:w>* [P]  
(2012-12-12 11:21:07) [S] <11:w>* [P]  
(2012-12-12 11:21:07) [S] <12:r> ff ff ff* [P]  
(2012-12-12 11:21:07) [S] <13:w>* [P]  
(2012-12-12 11:21:08) [S] <11:w>* [P]  
(2012-12-12 11:21:08) [S] <13:w>* [P]      Temp ASIM back online, re-enumerate 
(2012-12-12 11:21:08) [S] <11:w> 5a 00 00 [P]  
(2012-12-12 11:21:08) [S] <11:r> 48 04 00* [P]  
(2012-12-12 11:21:08) [S] <11:r> d2 02 96 49* [P]  
(2012-12-12 11:21:08) [S] <11:w> 4d 02 00 01 01 [P]    resubscribe to  
(2012-12-12 11:21:08) [S] <11:w> 4d 02 00 01 02 [P]    messages 
(2012-12-12 11:21:08) [S] <12:r> ff ff ff* [P]  
(2012-12-12 11:21:08) [S] <13:w>* [P]  
(2012-12-12 11:21:08) [S] <13:w>* [P]  
(2012-12-12 11:21:08) [S] <11:r> ff ff ff* [P]  
(2012-12-12 11:21:08) [S] <12:r> ff ff ff* [P]  
(2012-12-12 11:21:08) [S] <13:w>* [P]  
(2012-12-12 11:21:08) [S] <13:w>* [P]  
(2012-12-12 11:21:08) [S] <11:r> ff ff ff* [P]  
(2012-12-12 11:21:08) [S] <12:r> ff ff ff* [P]  
(2012-12-12 11:21:08) [S] <13:w>* [P]  
(2012-12-12 11:21:09) [S] <13:w>* [P]  
(2012-12-12 11:21:09) [S] <11:r> 44 06 00* [P]          Temp Data 23.86  
(2012-12-12 11:21:09) [S] <11:r> 01 01 48 e1 be 41* [P]  
(2012-12-12 11:21:09) [S] <12:r> ff ff ff* [P]  
(2012-12-12 11:21:09) [S] <13:w>* [P]  
(2012-12-12 11:21:09) [S] <13:w>* [P]  
(2012-12-12 11:21:09) [S] <11:r> ff ff ff* [P]  
(2012-12-12 11:21:09) [S] <12:r> ff ff ff* [P]  
(2012-12-12 11:21:09) [S] <13:w>* [P]  
(2012-12-12 11:21:09) [S] <13:w>* [P]                LED OFF 
(2012-12-12 11:21:09) [S] <12:w> 56 03 00 01 01 aa [P]  
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Appendix E SPA-1 Network traffic for multiple ASIM Re-Enumeration 
<startup packets omitted> 

 
(2012-12-12 12:38:18) [S] <11:w>* [P]     TEMP ASIM and LED ASIM unresponsive 
(2012-12-12 12:38:18) [S] <11:w>* [P]  
(2012-12-12 12:38:18) [S] <11:w>* [P]  
(2012-12-12 12:38:18) [S] <12:w>* [P]            

 
  <ASIMS RESUME POWER> 

 
(2012-12-12 12:38:19) [S] <12:w>* [P] 
(2012-12-12 12:38:19) [S] <13:w>* [P]        ARP for LED ASIM 
(2012-12-12 12:38:19) [S] <11:w> 57 00 04 8b d0 38 35 [P]  
(2012-12-12 12:38:19) [S] <12:w>* [P]  
(2012-12-12 12:38:19) [S] <13:w>* [P]  
(2012-12-12 12:38:19) [S] <7f:w>* [P]  
(2012-12-12 12:38:19) [S] <11:w> 5a 00 00 [P]        re-enumeration for  
(2012-12-12 12:38:19) [S] <11:r> 48 04 00* [P]       TEMP ASIM 
(2012-12-12 12:38:19) [S] <11:r> d2 02 96 49* [P]  
(2012-12-12 12:38:19) [S] <11:w> 4d 02 00 01 01 [P]     subscribe to 
(2012-12-12 12:38:19) [S] <11:w> 4d 02 00 01 02 [P]     messages 
(2012-12-12 12:38:19) [S] <12:w> 5a 00 00 [P]        re-enumeration for  
(2012-12-12 12:38:19) [S] <12:r> 48 04 00* [P]       LED ASIM 
(2012-12-12 12:38:19) [S] <12:r> 35 38 d0 8b* [P]  
(2012-12-12 12:38:19) [S] <12:w> 4d 02 00 01 01 [P]     subscribe to 
(2012-12-12 12:38:19) [S] <12:w> 4d 02 00 01 02 [P]     messages 
(2012-12-12 12:38:20) [S] <13:w>* [P]  
(2012-12-12 12:38:20) [S] <13:w>* [P]  
(2012-12-12 12:38:20) [S] <12:w> 56 03 00 01 01 aa [P]     resume normal  
(2012-12-12 12:38:20) [S] <11:r> 44 06 00* [P]              operation 
(2012-12-12 12:38:20) [S] <11:r> 01 01 14 ae c1 41* [P]  
(2012-12-12 12:38:20) [S] <12:r> ff ff ff* [P]  
(2012-12-12 12:38:20) [S] <13:w>* [P]  
(2012-12-12 12:38:20) [S] <13:w>* [P]  
(2012-12-12 12:38:20) [S] <11:r> ff ff ff* [P]  
(2012-12-12 12:38:20) [S] <12:r> ff ff ff* [P]  
(2012-12-12 12:38:20) [S] <13:w>* [P]  
(2012-12-12 12:38:20) [S] <13:w>* [P]  
(2012-12-12 12:38:20) [S] <12:w> 56 03 00 01 01 aa [P]  
(2012-12-12 12:38:20) [S] <11:r> 44 06 00* [P]  
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Appendix F SPA-1 Network traffic for ASIMs switching addresses 
<startup packets omitted> 

(2012-12-12 12:55:10) [S] <11:r> 44 06 00* [P]        TEMP ASIM at 0x11 
(2012-12-12 12:55:10) [S] <11:r> 01 01 c3 f5 cc 41* [P]  
(2012-12-12 12:55:10) [S] <12:r> ff ff ff* [P]  
(2012-12-12 12:55:10) [S] <13:w>* [P]  
(2012-12-12 12:55:10) [S] <13:w>* [P]  
(2012-12-12 12:55:10) [S] <11:r> ff ff ff* [P]  
(2012-12-12 12:55:10) [S] <12:r> ff ff ff* [P]  
(2012-12-12 12:55:10) [S] <13:w>* [P]  
(2012-12-12 12:55:10) [S] <13:w>* [P]  
(2012-12-12 12:55:11) [S] <12:w> 56 03 00 01 01 aa [P] LED ASIM at 0x12 

<Power Cycle ASIMS> 
<packets omitted> 

(2012-12-12 12:55:13) [S] <11:w> 5a 00 00 [P]      re-enumeration for  
(2012-12-12 12:55:13) [S] <11:r> 48 04 00* [P]     LED ASIM 
(2012-12-12 12:55:13) [S] <11:r> 35 38 d0 8b* [P]  
(2012-12-12 12:55:13) [S] <11:w> 4d 02 00 01 01 [P]   subscribe to 
(2012-12-12 12:55:13) [S] <11:w> 4d 02 00 01 02 [P]   messages 
(2012-12-12 12:55:13) [S] <12:w>* [P]  
(2012-12-12 12:55:13) [S] <12:w>* [P]  
(2012-12-12 12:55:13) [S] <13:w>* [P]  
(2012-12-12 12:55:13) [S] <13:w>* [P]  
(2012-12-12 12:55:13) [S] <11:w> 57 00 04 49 96 02 d2 [P]  
(2012-12-12 12:55:13) [S] <12:w>* [P]  
(2012-12-12 12:55:14) [S] <11:w> 56 03 00 01 01 aa [P]  LED ASIM at 0x11 
(2012-12-12 12:55:14) [S] <11:r> ff ff ff* [P]  
(2012-12-12 12:55:14) [S] <12:w> 5a 00 00 [P]     re-enumeration for 
(2012-12-12 12:55:14) [S] <12:r> 48 04 00* [P]     TEMP ASIM 
(2012-12-12 12:55:14) [S] <12:r> d2 02 96 49* [P]  
(2012-12-12 12:55:14) [S] <12:w> 4d 02 00 01 01 [P]  subscribe to 
(2012-12-12 12:55:14) [S] <12:w> 4d 02 00 01 02 [P]  messages 
(2012-12-12 12:55:14) [S] <13:w>* [P]  
(2012-12-12 12:55:14) [S] <13:w>* [P]  
(2012-12-12 12:55:14) [S] <11:r> ff ff ff* [P]  
(2012-12-12 12:55:14) [S] <12:r> ff ff ff* [P]  
(2012-12-12 12:55:14) [S] <13:w>* [P]  
(2012-12-12 12:55:14) [S] <13:w>* [P]  
(2012-12-12 12:55:14) [S] <11:r> ff ff ff* [P]  
(2012-12-12 12:55:14) [S] <12:r> ff ff ff* [P]  
(2012-12-12 12:55:14) [S] <13:w>* [P]  
(2012-12-12 12:55:14) [S] <13:w>* [P]  
(2012-12-12 12:55:15) [S] <11:r> ff ff ff* [P]  
(2012-12-12 12:55:15) [S] <12:r> 44 06 00* [P]        TEMP ASIM at 0x12 
(2012-12-12 12:55:15) [S] <12:r> 01 01 ae 47 c3 41* [P]  
(2012-12-12 12:55:15) [S] <13:w>* [P]  
(2012-12-12 12:55:15) [S] <13:w>* [P]  
(2012-12-12 12:55:15) [S] <11:r> ff ff ff* [P]  
(2012-12-12 12:55:15) [S] <12:r> ff ff ff* [P]  
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Appendix G SPA-1 Network traffic for ASIM powering off for extended 
period of time 

<startup packets omitted> 
 
(2012-12-12 13:04:44) [S] <11:r> 44 06 00* [P]         TEMP ASIM at 0x11 
(2012-12-12 13:04:44) [S] <11:r> 01 01 e1 7a cc 41* [P]  
(2012-12-12 13:04:44) [S] <12:r> ff ff ff* [P]  
(2012-12-12 13:04:44) [S] <13:w>* [P]  
(2012-12-12 13:04:44) [S] <13:w>* [P]  
(2012-12-12 13:04:44) [S] <11:r>* ff* [P]    TEMP offline 

<packets omitted...1.5 minutes pass> 
 
(2012-12-12 13:06:13) [S] <11:w>* [P]  
(2012-12-12 13:06:13) [S] <11:w> 5a 00 00 [P]     re-enumeration for 
(2012-12-12 13:06:13) [S] <11:r> 48 04 00* [P]    TEMP ASIM 
(2012-12-12 13:06:13) [S] <11:r> d2 02 96 49* [P]  
(2012-12-12 13:06:13) [S] <11:w> 4d 02 00 01 01 [P]   subscribe to 
(2012-12-12 13:06:14) [S] <11:w> 4d 02 00 01 02 [P]   messages 
(2012-12-12 13:06:14) [S] <12:r> ff ff ff* [P]  
(2012-12-12 13:06:14) [S] <13:w>* [P]  
(2012-12-12 13:06:14) [S] <13:w>* [P]  
(2012-12-12 13:06:14) [S] <11:r> ff ff ff* [P]  
(2012-12-12 13:06:14) [S] <12:r> ff ff ff* [P]  
(2012-12-12 13:06:14) [S] <13:w>* [P]  
(2012-12-12 13:06:14) [S] <13:w>* [P]  
(2012-12-12 13:06:14) [S] <11:r> ff ff ff* [P]  
(2012-12-12 13:06:14) [S] <12:r> ff ff ff* [P]  
(2012-12-12 13:06:14) [S] <13:w>* [P]  
(2012-12-12 13:06:14) [S] <13:w>* [P]  
(2012-12-12 13:06:14) [S] <11:r> ff ff ff* [P]  
(2012-12-12 13:06:14) [S] <12:r> ff ff ff* [P]  
(2012-12-12 13:06:14) [S] <13:w>* [P]  
(2012-12-12 13:06:14) [S] <13:w>* [P]  
(2012-12-12 13:06:14) [S] <11:r> 44 06 00* [P]         TEMP ASIM at 0x11 
(2012-12-12 13:06:15) [S] <11:r> 01 01 7b 14 be 41* [P]  
(2012-12-12 13:06:15) [S] <12:r> ff ff ff* [P]  
(2012-12-12 13:06:15) [S] <13:w>* [P]  
(2012-12-12 13:06:15) [S] <13:w>* [P]  
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Appendix H SPA-1 Network traffic for Round Robin Count greater than 
100 

<startup packets omitted> 
 

(2012-12-12 12:41:16) [S] <11:r> ff ff ff* [P]  
(2012-12-12 12:41:16) [S] <12:r> ff ff ff* [P]  
(2012-12-12 12:41:16) [S] <13:w>* [P]  
(2012-12-12 12:41:16) [S] <13:w>* [P]    100th Round Robin 
(2012-12-12 12:41:16) [S] <11:w> 5a 00 00 [P]     Re-enumerate TEMP ASIM 
(2012-12-12 12:41:16) [S] <11:r> 48 04 00* [P]  
(2012-12-12 12:41:16) [S] <11:r> d2 02 96 49* [P]  
(2012-12-12 12:41:16) [S] <12:w> 5a 00 00 [P]     Re-enumerate LED ASIM 
(2012-12-12 12:41:16) [S] <12:r> 48 04 00* [P]  
(2012-12-12 12:41:16) [S] <12:r> 35 38 d0 8b* [P]  
(2012-12-12 12:41:16) [S] <13:w>* [P]  
(2012-12-12 12:41:17) [S] <13:w>* [P]  
(2012-12-12 12:41:17) [S] <13:w>* [P]  
(2012-12-12 12:41:17) [S] <13:w>* [P]  
(2012-12-12 12:41:17) [S] <11:r> 44 06 00* [P]   resume normal operation 
(2012-12-12 12:41:17) [S] <11:r> 01 01 d7 a3 cc 41* [P]  
(2012-12-12 12:41:17) [S] <12:r> ff ff ff* [P]  
(2012-12-12 12:41:17) [S] <13:w>* [P]  
(2012-12-12 12:41:17) [S] <13:w>* [P]  
(2012-12-12 12:41:17) [S] <11:r> ff ff ff* [P]  
(2012-12-12 12:41:17) [S] <12:r> ff ff ff* [P]  
(2012-12-12 12:41:17) [S] <13:w>* [P]  
(2012-12-12 12:41:17) [S] <13:w>* [P]  
(2012-12-12 12:41:17) [S] <12:w> 56 03 00 01 01 aa [P]  
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List of Acronyms 

1U 1 Unit 

ACK Acknowledge 

AFRL Air Force Research Lab 

API Application Programming Interface 

ARC Ames Research Center 

ARP Address Resolution Protocol 

ARM Advanced RISC Machines 

ASIM Appliqué Sensor Interface Modules 

C&DH Command and Data Handling 

Cal Poly California Polytechnic State University 

CDD Common Data Dictionary 

CDS CubeSat Design Spec 

CSLI CubeSat Launch Initiative 

COSMIAC Configurable Space Microsystems Innovations and 
Applications Center 
 

COTS Commercial Off-The-Shelf 

CPU Central Processing Unit 

CSK CubeSat Kit 

ELaNa Educational Launch of Nanosatellites 

ELC EXPRESS Rack Laptop Computer 

EPS Electrical Power System 

EXPRESS EXpediting the PRocess of Experiments to the Space 
Station 

FAT File Allocation Table 

FIRSTLab Flash Incident Radiation Susceptibility Test Lab 

FW Firmware 

GPIO General Purpose Input-Output 

GUID Global Unique IDentifier 

HOSC Huntsville Operations Support Center 
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I2C Inter-Integrated Circuit 

ICD Interface Control Document 

IDE Integrated Development Environment 

IDIQ Indefinite Delivery Indefinite Quantity 

IMU Inertial Measurement Unit 

ISS International Space Station 

LSP Launch Services Provider 

LV Launch Vehicle 

MISRA Motor Industry Software Reliability Association  

MisST Microsatellite in-situ Space Technology 

MSD Mass Storage Device 

MSFC Marshall Space Flight Center 

NACK Negatively Acknowledge 

NASA National Aeronautics and Space Administration 

NiMH Nickel-metal Hydride  

OPAL Orbiting PicoSat Launcher 

OS Operating System 

OTG On-The-Go 

P-POD Poly Picosatellite Orbital Deployer 

PIC Peripheral Interface Controller 

PIMS Principal Investigator Microgravity Services 

PnP Plug-and-Play 

PnPSat Plug-and-Play Satellite 

PRO Payload Rack Officer 

RAMPART 
CUBESAT 

Rapid prototyped Mems Propulsion And Radiation 
Test CUBEflow SATellite 
 

RTC Real-Time Clock 

RTU Remote Transceiver Unit 

SAA Space Act Agreement 

SD Secure Digital 
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SDM Satellite Data Model 

SPA Space Plug-and-Play Avionics 

SPI Serial Peripheral Interface 

SSL Space Systems Lab 

STP Space Test Program 

STS Space Transportation System 

SVN Subversion 

TDRSS Tracking and Data Relay Satellite System 

UART Universal Asynchronous Receiver/Transmitter 

UK University of Kentucky 

USB Universal Serial Bus 

XML eXtensible Markup Language 

xTEDS Extensible Transducer Electronic DataSheet 
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