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Deep Sleep and Parietal Cortex Gene Expression
Changes Are Related to Cognitive Deficits with Age
Heather M. Buechel, Jelena Popovic, James L. Searcy, Nada M. Porter, Olivier Thibault, Eric M. Blalock*

Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America

Abstract

Background: Age-related cognitive deficits negatively affect quality of life and can presage serious neurodegenerative
disorders. Despite sleep disruption’s well-recognized negative influence on cognition, and its prevalence with age,
surprisingly few studies have tested sleep’s relationship to cognitive aging.

Methodology: We measured sleep stages in young adult and aged F344 rats during inactive (enhanced sleep) and active
(enhanced wake) periods. Animals were behaviorally characterized on the Morris water maze and gene expression profiles
of their parietal cortices were taken.

Principal Findings: Water maze performance was impaired, and inactive period deep sleep was decreased with age.
However, increased deep sleep during the active period was most strongly correlated to maze performance. Transcriptional
profiles were strongly associated with behavior and age, and were validated against prior studies. Bioinformatic analysis
revealed increased translation and decreased myelin/neuronal pathways.

Conclusions: The F344 rat appears to serve as a reasonable model for some common sleep architecture and cognitive
changes seen with age in humans, including the cognitively disrupting influence of active period deep sleep. Microarray
analysis suggests that the processes engaged by this sleep are consistent with its function. Thus, active period deep sleep
appears temporally misaligned but mechanistically intact, leading to the following: first, aged brain tissue appears capable
of generating the slow waves necessary for deep sleep, albeit at a weaker intensity than in young. Second, this activity,
presented during the active period, seems disruptive rather than beneficial to cognition. Third, this active period deep sleep
may be a cognitively pathologic attempt to recover age-related loss of inactive period deep sleep. Finally, therapeutic
strategies aimed at reducing active period deep sleep (e.g., by promoting active period wakefulness and/or inactive period
deep sleep) may be highly relevant to cognitive function in the aging community.
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Introduction

Age-related cognitive deficits are a highly prevalent and

important health risk in the human population (reviewed in [1]),

can presage development of age-related neurodegenerative disease

[2,3,4], and are a primary reason for elderly placement in assisted

living facilities [5]. Sleep dysregulation is also a common complaint

among the elderly. During the night, the constellation of age-related

sleep changes include circadian advance, sleep fragmentation,

insomnia [6,7,8,9,10,11], and loss of deep, slow wave sleep

[9,12,13], while daytime symptoms include sleepiness, increased

napping and breakthrough sleep. Further, healthy younger adults

exposed to experimentally induced selective deprivation of night

time (inactive period) deep sleep show some aging-like phenotypes,

including daytime sleepiness [14], blood chemistry changes similar

to those seen in metabolic syndrome (a potential precursor to the

development of type II diabetes) and cognitive deficits [15,16,17].

Although clearly vital to normal function, sleep is only

grudgingly yielding to scientific inquiry regarding its role(s) in

physiology. Recent studies suggest that deep, slow wave sleep

during the inactive period promotes memory [18,19,20,21],

possibly through localized synaptic [22,23,24] and macromolec-

ular synthesis [25] effects. Thus, the dysregulated slow wave sleep

seen with age might contribute to cognitive deficits seen with

aging. Despite the seemingly similar effects of age and sleep

dysregulation on cognition, and the high prevalence of sleep

changes with age, relatively few studies have investigated possible

mechanistic links between sleep architecture changes and age-

related cognitive decline.

Here, we used the F344 rat model of aging to investigate this

relationship. Young and aged rats were surgically implanted with

wireless telemetry devices in order to measure sleep architecture.

Each subject was evaluated for cognitive performance on the

Morris water maze. Further, microarray analysis assessed potential

molecular relationships among aging, behavior, and sleep in brain

tissue. Because sleep stages have been reported to be brain region

specific, we selected parietal cortex for array analysis as it was
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closest to the recording electrodes (and therefore hypothetically

most germane to correlations with sleep measures).

Materials and Methods

Subjects
Young adult (3 mo) and aged (21 mo) male Fischer 344 rats

obtained from the NIA aging colony were individually housed with

crinkled paper bedding and a cardboard tube. Animals were

maintained on a 12:12 light/dark cycle in the housing facility and

were given access to food and water ad-libitum. All animals were

evaluated for pathology (e.g., pituitary and mammary tumors,

splenomegaly, and cataracts). Two aged subjects were excluded

(one with a pituitary tumor, one with a mammary tumor) leaving

n = 9 young and n = 9 aged for subsequent analyses.

Ethics statement. This study was carried out in strict

accordance with the recommendations in the Guide for the

Care and Use of Laboratory Animals of the National Institutes of

Health. The protocol was approved by the University of Kentucky

Office of Research Integrity Institutional Animal Care and Use

Committee. Surgical (isoflurane) and euthanatising (CO2)

anesthesia were used and all efforts were made to minimize

suffering.

Surgery
All subjects were implanted with wireless EEG/EMG emitters

according to standard procedures (Data Sciences International-

TL11M2-F40-EET). Briefly, animals were anesthetized with

isoflurane and placed in a stereotaxic frame. A two inch incision

was made to expose the skull and spinotrapezius muscles. The

emitter was placed under the skin between the left scapulae and

the left ileum along the flank. The exposed dorsal region of skull

was cleaned with 3% peroxide and the skull surface dried with

sterile cotton swabs soaked in 70% ethanol. A 0.7 mm hole was

drilled 1 mm from either side of the sagittal suture line and 1–

2 mm anterior to the lambda suture line for the EEG leads. EEG

leads were bent into a ‘u’ shape and the base of the ‘u’ inserted into

the hole so that wire contacted the dura over the parietal cortex.

They were then covered with dental cement and left to dry. EMG

activity was recorded by surgically inserting two wire electrodes

perpendicular to trapezius muscle fiber. The free wire end was

capped with insulation and both sides of the incision were tied off

with surgical thread to prevent fluid infiltration into the insulation.

The incision was then closed with 4–6 mattress stitches.

Immediately after surgery, data was collected from the emitters

implanted in the rats. This allowed us to monitor their surgery

recovery and to evaluate when they had stable sleep/wake

patterns. One young animals’ emitter failed and his sleep

architecture data is not included in the study.

Sleep Data Acquisition and Analysis
Animals were housed individually and cages were at least 18’’

apart to avoid interference during radiotelemetry data acquisition.

For these nocturnal rodents, the first four hours of active (dark)

and inactive (light) periods on the day prior to the water maze

probe trial were analyzed. Two independent researchers scored

each sleep segment using Neuroscore’s analysis console. EEG,

EMG, temperature and locomotor activity data were recorded

continuously with DSI’s Data Art acquisition software and binned

in 10 second epochs. Epochs were scored in 30 second increments

while being viewed in both 2 minute and 5 minute windows. EEG

waves were stratified into ‘low amplitude’ (#50% of maximum)

and ‘high amplitude’ (. 50% of maximum) tiers, and underwent

fast Fourier transforms for each of 5 frequency ranges: D (0.5–

4 Hz), H (4–8 Hz), A (8–12 hz), S (12–16 Hz) and B (16–24 Hz).

EMG waves were stratified into 3 tiers: ‘basal’ #33% (seen during

REM); ‘intermediate’ (between 33% and 66%); ‘high’ (. 66%).

Stages were established as follows: Wake- intermediate or high

EMG 6 locomotor activity, EEG variable; Light sleep- low

amplitude EEG, intermediate EMG, and no locomotion; REM

(paradoxical) sleep- high frequency EEG, ‘basal’ EMG and no

locomotor activity; deep sleep- high amplitude EEG activity

enriched in delta band frequency, basal to light EMG activity, no

locomotor activity. Prior assigned sleep stages informed subse-

quent assignments. Ambiguous epochs, those disagreed upon by

independent scorers, as well as those containing artifacts, were not

scored and accounted for ,5% of scored time.

Water Maze Testing
The water maze (black circular pool, 190 cm in diameter) was

placed equidistant (,60 cm) to a continuous wall of black curtains

hanging from the ceiling, making the environment relatively

neutral. Three high contrast black and white cues (90 cm690 cm,

representing a circle, triangle and vertical lines), were placed on

the curtains. Pool temperature was maintained at 2662uC. One

quadrant contained a 15 cm diameter escape platform covered

with black neoprene for improved traction. Illumination in the

room was set such that the Videomex-V water maze monitoring

system (Columbus Instrument, Columbus, OH) could reliably

monitor animal movements with no artifacts. The Morris water

maze [26] training and probe sessions took place between 10AM

and 2PM as previously published [27,28,29,30]. This ‘standard

operating procedure’ for water maze testing in rats occurs during

their inactive period. Thus, the duration of this procedure was kept

consistent (4 hours) across all subjects on each day of behavioral

acquisition to control for potentially sleep disruptive influences.

Prior to surgery, animals were evaluated on a visual cue task

(3660s per day, 4 days). All animals were able to swim directly to

the visual platform by the 12th trial (data not shown). Animals were

then implanted (see above) and allowed to recover for 2 weeks.

Sleep architecture and behavior were then evaluated during the

third week. For maze performance, a 5 day protocol was used (day

1: visual cue trial; days 2–4: 3 trials per day, hidden platform; day

5- probe trial with platform removed). On the cue and training

days, each animal began in a different quadrant on each of three

trials. They were given one minute to find the platform, one

minute on the platform and a two minute inter-trial interval. On

the probe day, the platform was removed and each rat was given

one 60 s trial. Path length and latency were measured to either the

platform (trial) or a computer-superimposed silhouette of the

platform (probe) (Videomex-V water maze monitoring system,

Columbus Instrument).

Tissue Collection and Microarray Analysis
Immediately after the probe trial, rats were killed by CO2

anesthesia and rapid decapitation. For a subset of animals selected

by order of entry (the first 6 animals per age group) brains were

removed and parietal cortex dissected out in chilled (0uC) artificial

cerebrospinal fluid. Parietal cortex was selected for the present

study to facilitate transcriptional profile correlation with slow wave

activity measured during deep sleep as this was the cortical region

beneath which the EEG recording electrodes were situated. Tissue

was flash frozen and stored at 280uC for subsequent microarray

analysis. RNeasy mini kit (Qiagen) was used to extract RNA and

quality of starting RNA was measured with Agilent Bioanalyzer

technology (RNA Integrity Number = 9.460.1). Each sample (one

per subject) underwent RNA extraction, purification, and cDNA

labeling separately, as described previously [27,28,29,30,31,32]

Sleep and Cognition with Age
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and according to standard Affymetrix procedures. Labeled cDNA

from each subject was individually hybridized to an Affymetrix rat

microarray (RAE230 2.0, 31099 probe sets). All arrays passed

standard Affymetrix quality control (gene expression console v.

1.1): GAPDH 39–59 ratio 1.0560.03, RawQ 2.5160.16, Back-

ground noise 70.564.1. Scaling factor, based on target intensity of

500, Young: 1.3460.25, Aged: 1.2760.20; as well as % Present-

Young: 67.561.0, Aged: 66.661.9 were not significantly different

across treatment groups (t-test, p.0.3). Visual inspection of

residual sign images of .cel files using Affy PLM [33] revealed

no major geographic defects in microarray signal intensity.

The gcRMA probe level algorithm (‘justgcRMA’ command run

in Bioconductor in the R operating environment) calculated signal

intensities [34,35]. Only unique probe sets/genes with ‘A’ grade

annotations and at least 3 chips with signal intensities .4.3 were

retained for further analysis. Values were transferred to Excel

(2007, Microsoft), Bioconductor [34], MultiExperiment Viewer

[MEV, [36]] and the DAVID suite of bioinformatic tools [37] for

subsequent analysis. Specific statistical procedures are outlined in

Results. The signal intensity (gcRMA) and images (.cel files) have

been deposited to the MIAME compliant Gene Expression

Omnibus (GEO) database [[38] - accession #GSE24515].

Results

Water Maze
Animals were trained in the Morris water maze task 3 times per

day for 3 days, and administered a probe trial on the 4th day (see

Methods). Escape latencies across all 9 training trials were

averaged for each animal and then treated as a single observation

for that subject. As shown in Figure 1 (upper left) aged rats took

significantly longer to find the hidden platform during training.

Aged rats also took significantly longer than their younger

counterparts (latency; Fig. 1; upper right) to reach the goal

annulus during the probe trial. Similar age-related deficits were

revealed by escape path length measurements (Fig. 1, lower panels,

significant in training, trend to significant p,0.15 in probe trial).

These data confirm numerous previous studies in which aged

animals do not perform as well as young (e.g.,[27,29,39,40]).

There was no significant difference in swim velocity between

young and aged subjects (probe trial: young 28.662.3 cm/sec;

aged 28.463.8 cm/sec; p = 0.96; ttest), suggesting that an age-

related change in swim speed did not account for increased

latency.

Sleep Architecture
Each animal in the study was surgically implanted with a

wireless EEG/EMG/temperature/locomotion telemetry system

(see Methods) at least 3 weeks prior to the water maze study. To

evaluate potential changes in sleep architecture (duration and

intensity of different stages of sleep) with age, we manually

characterized sleep and wake behavior for the first four hours of a

single active and inactive period (see Methods). As a positive

control to validate our analysis system, we reasoned that animals

would show relatively more sleep during the inactive period. Our

results (Fig. 2a) clearly show a strong effect of period with both

young and aged animals spending significantly more time sleeping

in the inactive period, and no significant difference in total sleep

time with age.

Prior studies have reported a loss of the deep slow wave sleep

component with age in both rodents and humans [12,41,42,43,44]

although see reports [45,46]. To evaluate age-related changes in

deep sleep, we segregated the first four hours of the inactive

period, a time frame reportedly enriched in deep slow wave sleep

[47,48], into component wake, light, REM, or deep (slow wave)

sleep (see Methods). The percentage of total time spent in each

identified stage is plotted (Fig. 2B) and shows a significant age-

related increase in light sleep at the expense of deep sleep.

We next performed a power analysis investigating the intensity

of deep sleep during the inactive period. The first four bouts of

inactive period deep sleep (‘bout’ defined as $2 min. uninter-

rupted deep sleep) from each subject were analyzed. Fast Fourier

EEG transforms were used to calculate power for each of 5

frequency ranges: D (0.5–4 Hz), H (4–8 Hz), A (8–12 hz), S (12–

16 Hz) and B (16–24 Hz). Results were averaged within each

frequency range across all four bouts for each animal and treated

as a single observation. Results are plotted and analyzed as a

function of age (Fig. 3- spectral analysis). Deep sleep’s large D
component was significantly and selectively decreased in aged

subjects. Taken together, these results show that inactive period

deep sleep duration and intensity (power) were reduced with age.

Relationship between deep sleep and water maze

performance. Because a significant inactive period deep sleep

loss paralleled age-related behavioral deficits in the Morris water

maze, we hypothesized that as deep sleep was lost, maze

performance would worsen in individual subjects. Both deep

sleep duration and power were tested against water maze latency

and path length. Contrary to our prediction, all results were non-

significant (e.g., Fig. 4A p.0.9, Pearson’s correlation between

inactive period deep sleep and training trial path length).

Interestingly, there was a significant correlation between

increasing maze training path length (worsening performance)

Figure 1. Aged rats show a deficit in performance on the Morris
water maze. Upper: Time to reach the platform (escape latency)
averaged over training (left), or time to reach platform annulus during
probe trial (right). Lower: Path length to reach platform during training
(left) or platform annulus during probe trial (right). (* p#0.05;
** p#0.01; 2-ANOVA repeated measures, post-hoc pairwise Fisher’s
protected Least Significant Difference).
doi:10.1371/journal.pone.0018387.g001

Sleep and Cognition with Age
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and increased active period deep sleep (Fig. 4B- as active period

deep sleep increased, maze performance worsened), suggesting

that increased deep sleep during a normally wake-enriched period

could be disruptive for maze performance. Further, if subdivided

by age, the young subjects show no significant correlation between

maze performance and active period deep sleep (R = 0.4;

p = 0.29), while the aged subjects show a significant correlation

(R = 0.63; p = 0.03), indicating that the overall correlation is

primarily driven by the relationship between deep sleep and maze

performance within aged subjects.

Figure 2. Selective loss of deep slow wave sleep with age. EEG, EMG, temperature, and locomotion radiotelemetry were recorded from young
and aged subjects. A. % time asleep plotted as a function of age for 4 h blocks of the active vs. inactive periods. A significant increase in time asleep
during the inactive period (** p,0.01, 2-ANOVA main effect of period), but no effect of age or interaction, was seen. B. Sleep staging analysis from
first 4 hours of inactive period- staged as ‘light’ (low frequency, low amplitude EEG activity, basal – intermediate EMG activity), REM (rapid eye
movement/paradoxical - high frequency, low amplitude EEG activity, basal EMG activity), and ‘deep’ sleep (low frequency, high amplitude EEG
activity, basal – intermediate EMG activity- see Methods for complete description of staging analysis). Aged animals showed a significant increase in
light sleep, no significant difference in REM sleep, and a significant decrease in deep slow wave sleep compared to their younger counterparts
(repeated measures 2-ANOVA with a significant main effect of sleep stage [p,0.001] and interaction [p,0.001], with significant [* p,0.05] post-hoc
Tukeys pairwise comparisons across age within deep sleep).
doi:10.1371/journal.pone.0018387.g002

Figure 3. Loss of deep sleep delta power with age. Averaged power of delta, theta, alpha, sigma, and beta frequencies (x axis) are plotted as a
function of age. Delta, the dominant hallmark frequency of deep sleep, is significantly reduced with age (2- ANOVA repeated measures; p,0.001
main effect of frequency; p = 0.08 main effect of age; p = 0.03 interaction term; * p,0.05 post-hoc Tukeys test). Inset: Representative EEG traces from
young and aged subjects during deep sleep (upper detail- 1 s window) depicts reduced large amplitude, slow wave activity with age.
doi:10.1371/journal.pone.0018387.g003

Sleep and Cognition with Age
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Microarray Transcriptional Profile of Parietal Cortex
Because EEG electrode placement was over parietal cortex,

gene transcriptional profiles were taken from the same region to

more accurately align results from these two different measure-

ment systems. Gene transcription of the parietal cortex was

analyzed for aging, behavior, and deep sleep associated transcrip-

tional influences (Fig. 5A). Parietal cortex was removed from a

subset of subjects (n = 6/age group) and extracted RNA was

hybridized to individual microarrays (Affymetrix RAE 230 v. 2).

Probe sets that were not ‘‘A’’ grade annotated, unique, and present

(i.e., had sufficient signal strength- Fig. 5C) were excluded from

analysis. The remaining 8,080 genes were analyzed for effects of

aging (pairwise t-test comparison between young and aged

subjects), behavior (correlation with water maze probe latency-

Fig. 1) and deep sleep (correlation with duration during the

inactive period- Fig. 2B right). Water maze performance, and to a

lesser degree aging, appear to have strong, statistically reliable

transcriptional signatures. Conversely, deep sleep during the

inactive period correlates with fewer genes than would be expected

by chance (false discovery rate .1 for sleep in Fig. 5B). Because we

observed a statistically significant correlation between maze

performance and active period deep sleep, we also examined

gene signatures associated with active period deep sleep (see

‘Genes associated with active period deep sleep gain’).

Aging Transcriptional Profile. 205 genes changed

significantly with age (a= 0.01; Fig. 5A). Of these, 85 were

upregulated and 120 downregulated (see Table S1 for an

alphabetical list of genes significant in at least one of the three

analyses). Pathway level investigations of the aging signature

identified lysosomal and immune upregulation, as well as synaptic

pathway downregulation groups (Table 1).

Upregulated aging-identified processes appeared similar to

those found in other rodent brain aging microarray studies,

particularly antigen presentation/inflammatory and lysosome/

endosome related pathways [27,28,29,49,50,51,52,53,54,55].

Downregulated processes reflected a blunted stress response and

cell signaling (purine nucleotide binding, ion transport, regulation

of endopeptidase activity- possibly related to the stress response).

However, there was a notable lack of downregulated aging

processes related to neurons (with the exception of neuron

projection morphogenesis) as compared to prior hippocampal

aging studies [27,28,29,30,52,53].

To formally test for similarity, we directly compared the aging

transcriptional profiles of parietal cortex (present study) and

hippocampus [28] at the gene, rather than the pathway, level.

Only genes that were present and annotated in both studies (2794

genes) were evaluated. To determine a single Type I error cutoff (a
level) for both studies, we constructed fold-enrichment graph

(Fig. 6, upper) depicting the relative increase over chance

discovery that real data comparisons show [as in [32]]. At a p-

value cutoff of 0.05 (Fig. 6, dashed line), there appears to be a

sharp upturn in fold-enrichment, indicating that genes assigned a

p-value#0.05 in both studies begin to show strong agreement with

one another. Thus, the Type I error was set at a= 0.05 for

comparison across the two studies.

Parietal cortex yielded 281 significant genes and hippocampus

699 (Fig. 6, Venn diagram). 118 genes were common between the

two studies. The probability of finding a certain number of genes

in the overlap by chance can be estimated based on % significant

genes in parietal cortex aging and % significant genes in

hippocampal aging. The product of these two percentages gives

the percentage of genes that should be found in the overlap

(parietal cortex: 10% (281/2794) * hippocampus: 25% (699/2794)

= OVERLAP: 2.5% (or 70 genes). Here, we expect 70 genes and

find 118- the actual number of genes in the overlap exceeds that

expected by chance and was highly significant (p = 3.6-8, binomial

test). Further, the majority of overlapping genes (117/118) agree in

direction (Fig. 6, upper- inset) and, as reviewed above, reflect

increased lysosomal and inflammatory processes with aging (Fig. 6,

lower).

Behavioral transcriptional profile. 404 genes were

significantly correlated to latency on probe trial (Pearson’s test,

p#0.01). 148 significant genes with negative R values showed

reduced expression, and 256 with positive R values showed

increased expression, as maze performance worsened (Fig. 5A).

Functional grouping analysis (Table 1) shows increased

transcriptional activity related to apoptosis (programmed cell

death, cell cycle), macromolecular synthesis (translation initiation

factor, protein transport, translation), and energy (carbohydrate

catabolism). Downregulated categories appeared to strongly

represent the neuronal compartment. Although genes in these

categories were negatively correlated with latency on the water

maze (their mRNA levels decreased as performance on the maze

Figure 4. Maze performance is not correlated with duration of
deep sleep during the inactive period (A. p.0.9), but worsens
with increased active period deep sleep (B. p = 0.023; Pearson’s
test). The proportion of deep sleep duration divided by total time
scored (y axis) is plotted as a function of average training path length (x
axis). Animals that experienced more deep sleep during the active
period tended to have increased path lengths (worsened performance).
doi:10.1371/journal.pone.0018387.g004
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worsened), they were not significantly altered with age. It is

interesting to note that the majority of behavior-identified genes

(395/404; 98%) showed the same direction of change with age

(negatively correlated genes were decreased with age, positively

correlated behavior genes were increased). Although most were

non-significant with age, this ‘directional agreement’ appears

highly unlikely to be a chance occurrence. Assigning a simple

binomial test 50% probability of up or downregulation (that is- by

chance assuming that any gene selected by behavioral correlation

has a 50% chance of being up- or downregulated by age) yields

p,1212 likelihood such directional agreement could have

occurred by chance.

Relationship between aging and behavioral profiles.

Based on the observations above, we performed an overlap

analysis of aging and behavior significant genes. Twenty one genes

were significant (p#0.01) in both tests, and all agreed in direction

(e.g., genes positively correlated with latency on the Morris water

maze were increased with aging). By chance, 10 genes would be

expected in the overlap. This small but significant set of genes

include:

Figure 5. Microarray analysis overview. A. Left: Microarray filtering strategy. Probe sets with low quality annotations were removed. To address
redundancy, if two ‘A’ grade probe sets claimed to represent the same gene symbol, only the probe set with the highest average signal intensity was
retained. Among these, probe sets for which more than 2 arrays reported a signal intensity .4.3 were retained for analysis. Center: 3 tests were
performed on the data- Aging, Behavior (correlation with Probe Trial latency), and Sleep (duration of deep sleep during the inactive period). Type of
test used (a= 0.01 for all tests) and False Discovery Rate (FDR) are shown. Right: Significant results separated into up and downregulated for each test.
Size of pie charts are roughly proportional to number genes found (note: sleep analysis finds fewer genes than expected by chance). B. P-value
histograms for statistical results plots the number of genes found significant as a function of the p-value cutoff bin (0.01 increments) in which they
were discovered. Both behavior (red) and aging (blue) show more genes than expected by chance (dashed gray line) at small p-values, while inactive
period deep sleep (green) does not. C. Signal intensity frequency histogram depicts rationale for choosing 4.3 as a cutoff for presence calls. The
number of probe sets (y axis) are plotted as a function of signal intensity (x axis). A narrow, low intensity ‘noise’ peak centered around 2.4, a broad
high intensity ‘signal’ peak around 8.8, and a saddle region between the two from ,3.5–,5.5 are apparent. We selected the midpoint of that saddle
region to discriminate signal-rich from noisy probe sets.
doi:10.1371/journal.pone.0018387.g005
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Upregulated: Trem2 (Triggering receptor expressed on

myeloid cells 2; may participate in activation of the

immune response), RT1-Aw2 (Class I histocompatibility

antigen, Non-RT1.A alpha-1 chain; presentation of

antigens to immune cells), H2-M3 (MHC class I antigen

H-2M3), Sult1a1 (Sulfotransferase 1A1), and Cngb1

(Cyclic nucleotide-gated cation channel beta-1).

Downregulated: Ccr5 (chemokine (C-C motif) recep-

tor 5; receptor for inflammatory cytokines), Dync2h1

(dynein cytoplasmic 2 heavy chain 1; involved in

intracellular transport), Dmgdh (dimethylglycine dehy-

drogenase), Neto2 (neuropilin [NRP] and tolloid [TLL]-

like 2; receptor accessory subunit that increases kainate

receptor activity), Necab3 (N-terminal EF-hand calcium

binding protein 3; a promoter of beta amyloid

formation), rCG_32844 (ubiquitin specific protease 43),

Emid1(EMI domain containing 1), Acss2 (acyl-CoA

synthetase short-chain family member 2; activates

acetate for lipid synthesis or energy production), Serp1

(stress-associated endoplasmic reticulum protein 1;

protects unfolded proteins in the ER from degradation),

Igf1 (insulin-like growth factor 1; similar to insulin with

Table 1. Selected functional processes identified by the DAVID overrepresentation functional clustering algorithm (see Methods)
are shown for aging, behavior, and sleep related genes.

Ontology GO ID Description # p-value

Upregulated with Age

CC GO:0005764 lysosome 13 1.88-09

BP GO:0019882 antigen processing and presentation 7 3.11-07

CC GO:0022627 cytosolic small ribosomal subunit 4 0.00776

CC GO:0005770 late endosome 4 0.00899

BP GO:0030595 leukocyte chemotaxis 3 0.01653

Downregulated with Age

BP GO:0006950 response to stress 21 0.00206

MF GO:0017076 purine nucleotide binding 25 0.00212

BP GO:0032412 regulation of ion transmembrane transporter activity 3 0.01071

BP GO:0052548 regulation of endopeptidase activity 4 0.02458

BP GO:0048812 neuron projection morphogenesis 6 0.04123

Increased as Animals Take Longer to Complete the Maze

BP GO:0012501 programmed cell death 18 0.00200

CC GO:0005773 vacuole 12 0.00899

BP GO:0015031 protein transport 23 0.01110

BP GO:0007049 cell cycle 18 0.01216

MF GO:0003743 translation initiation factor activity 6 0.01289

BP GO:0016052 carbohydrate catabolic process 6 0.02935

BP GO:0006412 translation 13 0.03957

Decreased as Animals Take Longer to Complete the Maze

BP GO:0006816 calcium ion transport 6 0.00493

BP GO:0050804 regulation of synaptic transmission 7 0.01093

CC GO:0014069 postsynaptic density 5 0.02272

Increased with Active Period Deep Sleep in Aged Animals

BP GO:0006414 translational elongation 11 0.00010

BP GO:0006412 translation 15 0.00373

CC GO:0005840 ribosome 12 0.00344

Decreased with Active Period Deep Sleep in Aged Animals

BP GO:0042552 myelination 9 0.00002

MF GO:0046943 carboxylic acid transporter activity 8 0.00080

BP GO:0006643 membrane lipid metabolic process 6 0.00806

CC GO:0005856 cytoskeleton 30 0.01336

BP GO:0008088 axon cargo transport 4 0.01388

CC GO:0043005 neuron projection 19 0.04293

The filtered gene list (8080 genes) was used as background, and each of the six gene lists (Up or Downregulated with age; Increased or Decreased as a function of
latency in the water maze; Increased or Decreased as a function of active period deep sleep duration) were analyzed separately in the Gene Ontology. A single process
(p#0.05) from each cluster was selected. Abbreviations: GO ID- Gene Ontology Accession ID; CC- cellular component; BP- biological process; MF- molecular function;
#- number of genes significant in category; p-value- DAVID statistical test result.
doi:10.1371/journal.pone.0018387.t001
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greater growth promoting activity), Alcam (activated

leukocyte cell adhesion molecule; cell adhesion molecule

involved in neurite extension), Foxk2 (forkhead box K2;

transcription factor that binds NFAT-like motifs in the

interleukin 2 receptor coding region and can inhibit

NFAT-mediated upregulation of cytokines), Pdpk1 (3-

phosphoinositide dependent protein kinase-1; phosphor-

ylates and activates PKB/AKT, PKA, PKC-zeta,

RPS6KA1 and RPS6KB1), Nupl1 (nucleoporin like 1;

Component of the nuclear pore complex, a complex

required for the trafficking across the nuclear mem-

brane), and Ctsk (cathepsin K; may play a role in

extracellular matrix degradation).

By this analysis, 2.1x as many genes as would be expected by

chance (21/10) were found in the overlap between behavior and

aging. The same analysis in the Kadish data set (isolated young

and aged subjects only) revealed 231 genes common to both aging

and behavior, while only 31 would be expected by chance (6.75x

increase over chance). The relationship between aging and

behavioral transcriptional profiles appears much stronger in

hippocampus than parietal cortex. This is consistent with

hippocampus’ reportedly more direct role in water maze

performance and enhanced vulnerability to aging [56,57].

Genes associated with inactive period deep sleep

loss. Although we clearly saw a loss in both the power and

the duration of inactive period deep sleep (Figs. 2 and 3),

correlation analyses with transcriptional profiles did not identify a

statistically reliable transcriptional signature in parietal cortex

(Fig. 5a and b- nor was there a reliable correlation signature

among aged animals alone- data not shown). Data mining analyses

against a prior ‘extreme groups’ rodent hippocampal aging

microarray study (impaired vs. unimpaired cognitive aging

n = 20 F344 per group; hippocampal microarray- similar to the

overlap analysis in Fig. 6) [27], did not reveal any significant

similarity between sleep- and cognition- related genes in the two

studies. However, significant genes from this analysis are included

in Table 1 as this small subset could represent plausible candidates

if replicated in future studies.

Genes associated with active period deep sleep

gain. Because there was a significant, positive correlation

between increased active period deep sleep and worsening maze

performance (increased training path length), we also looked at

transcriptional signatures correlated with this sleep behavior. The

number of genes correlated with active period deep sleep did not

exceed chance (,404 genes expected at a= 0.05, 431 genes found;

FDR = .94- data not shown). If partitioned by age, young subjects

showed a profile with an FDR .1, while aged animals showed a

statistically more reliable profile (,404 genes expected, 560 genes

found, FDR = 0.72; Table S2). Increasing the a stringency did not

improve this relationship although relaxing it did worsen the FDR.

As has been noted in prior work [58], pathway-level information

can be more reliable than gene-level information, at least in part

because of a ‘winnowing’ effect (false positives are less likely than

true positives to participate in similar pathways). Intriguingly, the

functional overrepresentation analysis of this set of genes did

identify upregulated translational and downregulated neuronal/

myelin pathways (Table 1, lower) that are consistent with current

hypotheses regarding slow wave function in deep sleep.

Standardized tools (such as the DAVID suite of bioinformatic

utilities used to help create Table 1 [59]) greatly facilitate

identification of overrepresented functional pathways. However,

assigning a probability to the likelihood that identified pathways

support a priori hypotheses (like those related to slow wave sleep)

requires a different approach. We re-examined DAVID output

(note that the Functional Annotation Clustering option is used

throughout DAVID analysis to reduce gene-level redundancy, an

important consideration here). For positive correlations, there

were 69 total gene pathways (clusters) identified by DAVID, 3 of

which were significant. We then marked all 69 clusters as either

supporting (6 clusters) or not supporting (63 clusters) macromo-

lecular synthesis based on annotation content. 3/69 were

significant (,4%), 6/69 were hypothesis-related (,9%), and the

probability that a single pathway would be both significant and

hypothesis-related is (9% * 4% = 0.4%). Overall, finding 3

significant and hypothesis-related pathways is highly unlikely

(p = 0.0002; binomial test). Results for a similar analysis of

downregulated pathways were: 89 total pathways (clusters): 6

Figure 6. Similarity in aging transcriptional profiles across
brain regions. The aging transcriptional signature for parietal cortex
was contrasted with a prior study examining the transcriptional profile
of aging in the hippocampus (Kadish et al., 2009). The proportion of
genes found in the overlap divided by the number expected by chance
in the overlap (y-axis) is plotted as a function of p-value cutoff (x-axis).
We selected a p = 0.05 cutoff (arrow- dashed line) for our overlap
analysis. Venn diagram: Out of 2794 total genes present in both
studies, far more were significantly changed with age in hippocampus.
Of the genes changed with age in parietal cortex, nearly half were also
identified in hippocampus. Right: 117/118 overlapping genes agreed
in direction (up or downregulated in both studies). Lower: DAVID
analysis of common age-regulated genes. Functional group name,
number of genes (#) and probability that number of genes in that
category would be identified by chance (p-value) are shown.
doi:10.1371/journal.pone.0018387.g006
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(,7%) significant; 10 hypothesis-related (associated with neuronal

or myelin-related function, ,11%); probability that 5 significant

and hypothesis supporting pathways would be found by chance

was highly unlikely (p = 7-5, binomial test).

Discussion

Sleep and cognition
A deficit in water maze performance reported here confirms

numerous prior studies supporting the rat as a model of human

age-related cognitive decline (reviewed in [60]). The observed loss

of inactive period deep sleep duration and power with age is also

commonly seen in humans [12,41]. However, in rodent aging,

researchers have variably reported no change in sleep [61],

reduced or fragmented sleep [46], or changes in REM sleep

[45,62,63]. Our results lend support to prior rodent studies

[42,43,44,64] showing deep, slow wave sleep loss during the

inactive period with age. Discrepancies regarding sleep measures

in prior studies may be related to different stress levels, a well

understood disruptor of sleep [65]. Further, issues such as

electrode placement and analysis technique could influence results.

For instance, our results show that deep sleep’s loss is light sleep’s

gain during the inactive period. This ‘‘see-saw’’ effect may have

been missed in studies combining light and deep sleep into a single

‘non-REM’ category [42,43]. Finally, the significant decrease in

inactive period deep sleep was correlated with neither behavioral

nor transcriptional profiles to an appreciable degree, contrary to

our initial hypotheses.

Behavioral deficits did correlate significantly with active period

deep sleep increases, particularly within the aged subjects. Prior

work has shown that failed synaptic potentiation, and/or

enhanced depotentiation corresponds to poor memory acquisition

and is worsened with age [66,67,68,69,70]. Because two current

hypotheses regarding the function of slow wave sleep (synaptic

depotentiation [23,24]; macromolecular synthesis [25]) could both

conceivably contribute to this poor memory acquisition, we

speculate that these deep sleep, slow wave driven processes, if

engaged during the active rather than inactive period, may be

disruptive to ordinary learning and memory processes. Regardless,

understanding the mechanistic link between active period slow

wave sleep and cognitive decline in aged rats may have important

implications for understanding the role and consequences of

breakthrough sleep, napping, and excessive daytime sleepiness on

cognitive deficits in aging humans [41]. Although generally not as

well studied, it is interesting to note that there are parallels in the

human population, where complaints of nighttime (inactive

period) sleep disturbances are more common, but excessive

daytime sleepiness more strongly predicts poor mental function

[71] and has been associated with increased risk of age-related

cognitive decline, dementia, and neurodegenerative disease

[72,73].

Microarrays
Transcriptional profiles of parietal cortex were interrogated for

age, behavior, and sleep related gene expression. The aging profile

was similar to that found in prior array studies. At the pathway

level, upregulated inflammatory and endosomal processes appear

consistent in rodent aging across multiple labs, array platforms,

and brain regions [27,28,29,49,50,51,52,53,54,55,74] (although

see [75]). Processes downregulated with aging have been more

variable across brain regions, possibly because of regional

differences in age-related selective neuronal vulnerability [56].

Although we report downregulation of genes associated with stress

response and cell signaling pathways in aging parietal cortex, there

was a notable lack of downregulated processes related to neurons

(with the exception of neuron projection morphogenesis) in

contrast to consistent findings across prior hippocampal aging

studies [27,28,29,30,52,53]. Further studies examining neuron

[76] and other brain cell-type specific array signatures [77] may

help to address these concerns. Nonetheless, our analyses

juxtaposing aging parietal cortex to published hippocampal array

data with the same rat strain, gender, age range, and microarray

chip design yielded strong and significant validation (Fig. 6).

Behavior alone explained more of the variability in gene

expression than either aging or sleep measures. As performance in

the water maze worsened, the expression levels of genes related to

synaptic structure and Ca2+ homeostasis declined. These findings

support prior work attributing age-related cognitive deficits to

reduced synapse number (decreased post-synaptic densities)

[57,70,78,79] and Ca2+ dyshomeostasis, a key and well-supported

hypothesis of neuronal dysfunction with aging [80,81,82,83,

84,85]. We also hypothesized that the relationship between

behavior and age-related gene expression would be weaker in

parietal cortex than hippocampus (a brain region known to be

important for Morris water maze performance). We tested this by

evaluating the number of genes whose expression levels were both

significantly changed with aging as well as correlated with

behavior. There was a 2-fold enrichment in parietal cortex, and

a 6-fold enrichment in prior hippocampal studies. While both

enrichments are significant, these data support the conclusion that

aging gene signatures in the hippocampus appear more strongly

related to water maze performance than those in the parietal

cortex.

We tested the hypothesis that deep sleep and gene expression

measures taken from parietal cortex would correlate. Parallel to

behavioral associations, gene profiles were not related to inactive

period deep sleep, but were tied to active period deep sleep,

particularly among aged subjects. Unlike the behavior/aging

signature, no prior work exists with which to validate this

signature. Therefore, results are provided separately (Table S2)

and should be interpreted with care. Intriguingly, despite these

cautions, it is interesting to note that, among this set of active

period deep sleep correlated genes, increased expression profiles

related to translation and decreased profiles related neuron/

myelin processes lend support to both the macromolecular

synthesis [86] and synaptic depotentiating [23] hypotheses of

deep sleep function. As has been noted in prior work [58],

pathway-level information can be more reliable than gene-level

information, at least in part because of a ‘winnowing’ effect (false

positives are less likely than true positives to participate in similar

pathways).

Caveats
This study likely represents a small piece of a much larger

puzzle on sleep and cognition with aging involving other brain

regions (e.g., hippocampus, hypothalamus), cell-types (e.g.,

astrocytes, neurons), and sleep stages (e.g., REM, light sleep-

including temporal isolation of tissue during sleep stages

[25,87,88,89]). Although there are several positive and new

findings presented here, we also conclude that inactive period

deep sleep, as measured from parietal cortex, does not correlate

with maze performance or gene expression. Further studies

increasing the number of subjects, or employing an alternative

‘extreme groups’ experimental design (for example see [27,90,91]-

separating aged subjects into impaired and unimpaired based on

behavior) may reveal this to be a false negative. However, our

analyses comparing results to prior ‘extreme groups’ data (see

Results- genes associated with inactive period deep sleep loss) did
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not demonstrate any significant trends. Additionally, the present

study was sufficiently powered to detect age-related maze deficits,

deep sleep loss, transcriptional alterations, and even an intriguing

correlation with active period deep sleep. Taken together, these

observations suggest the more likely scenario that age-related maze

performance deficits are more directly tied to active period deep

sleep gain than to inactive period deep sleep loss.

Summary
The F344 rat models some common sleep architecture and

cognitive changes seen with age in humans, including the

cognitively disrupting influence of active period deep sleep.

Microarray analysis suggests that the molecular processes, as far

as they can be appreciated by mRNA measurement, engaged by

active period deep sleep are consistent with the macromolecular

and synaptic functions that have been ascribed to deep sleep.

Thus, we propose that active period deep sleep is temporally

misaligned but mechanistically intact in age. This leads us to the

following observations/conjectures. First, it appears that aged

brain tissue is capable of generating the slow waves necessary for

deep sleep, albeit at a weaker intensity than in young. Second, this

activity, presented during the active period, appears disruptive

rather than beneficial to cognition. Third, it is possible that this

active period deep sleep is a cognitively pathologic attempt to

recover age-related loss of inactive period deep sleep. Finally,

therapeutic strategies aimed at reducing active period deep sleep

(e.g., by promoting active period wakefulness and/or inactive

period deep sleep) may be highly relevant to cognitive function in

the aging community.

Supporting Information

Table S1 622 genes significant by at least one of three statistical

tests (ttest- young vs. aged; Pearson’s correlation - Morris water

maze behavior; Pearson’s correlation- Inactive period deep sleep

duration) are listed in alphabetical order. Probe set ID

(Affymetrix), Gene Title, Young and Aged average and SEM

are also given, along with test p-values and R-values (where

appropriate). Significant p-values (#0.01) are color coded red (for

age upregulated, or behavior positive, or inactive period deep sleep

negative) or blue (for age downregulated, behavior negative, or

inactive period deep sleep positive).

(XLS)

Table S2 560 genes significantly correlated (p#0.05; Pearson’s

test) with active period deep sleep. These are listed in alphabetical

order by gene symbol. Probe set ID (Affymetrix), Gene Title, R

value, and p-value are also included.

(XLS)
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