
University of Kentucky University of Kentucky

UKnowledge UKnowledge

Theses and Dissertations--Electrical and
Computer Engineering Electrical and Computer Engineering

2013

Target Tracking with Binary Sensor Networks Target Tracking with Binary Sensor Networks

Mengmei Liu
University of Kentucky, mengmei.liu@uky.edu

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Liu, Mengmei, "Target Tracking with Binary Sensor Networks" (2013). Theses and Dissertations--Electrical
and Computer Engineering. 14.
https://uknowledge.uky.edu/ece_etds/14

This Master's Thesis is brought to you for free and open access by the Electrical and Computer Engineering at
UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Electrical and Computer Engineering by
an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/ece_etds
https://uknowledge.uky.edu/ece_etds
https://uknowledge.uky.edu/ece
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

STUDENT AGREEMENT: STUDENT AGREEMENT:

I represent that my thesis or dissertation and abstract are my original work. Proper attribution

has been given to all outside sources. I understand that I am solely responsible for obtaining

any needed copyright permissions. I have obtained and attached hereto needed written

permission statements(s) from the owner(s) of each third-party copyrighted matter to be

included in my work, allowing electronic distribution (if such use is not permitted by the fair use

doctrine).

I hereby grant to The University of Kentucky and its agents the non-exclusive license to archive

and make accessible my work in whole or in part in all forms of media, now or hereafter known.

I agree that the document mentioned above may be made available immediately for worldwide

access unless a preapproved embargo applies.

I retain all other ownership rights to the copyright of my work. I also retain the right to use in

future works (such as articles or books) all or part of my work. I understand that I am free to

register the copyright to my work.

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE

The document mentioned above has been reviewed and accepted by the student’s advisor, on

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of

the program; we verify that this is the final, approved version of the student’s dissertation

including all changes required by the advisory committee. The undersigned agree to abide by

the statements above.

Mengmei Liu, Student

Dr. Laurence G. Hassebrook, Major Professor

Dr. Zhi Chen, Director of Graduate Studies

THESIS

Target Tracking with Binary Sensor Networks

A thesis submitted in partial fulfillment of the

requirements for the degree of Master of Science in Electrical Engineering

in the College of Engineering

at the University of Kentucky

Mengmei Liu

Lexington, Kentucky

Director: Dr. Laurence G. Hassebrook, Department of Electrical Engineering

Lexington, Kentucky

2013

Copyright © Mengmei Liu 2013

By

Binary Sensor Networks are widely used in target tracking and target parameter estima-

tion. It is more computationally and financially efficient than surveillance camera sys-

tems. According to the sensing area, binary sensors are divided into disk shaped sensors

and line segmented sensors. Different mathematical methods of target trajectory estima-

tion and characterization are applied.

In this thesis, we present a mathematical model of target tracking including parameter

estimation (size, intrusion velocity, trajectory, etc.) with line segmented sensor networks.

Software simulation and hardware experiments are built based on the model. And we fur-

ther analyze how the quantization noise affects the results.

KEYWORDS: Binary Sensor Network, Target tracking, Trajectory, Parameter estima-

tion, Quantization

Abstract of Thesis

Target Tracking with Binary Sensor Networks

Mengmei Liu

Feb, 7
th

, 2013

Target Tracking with Binary Sensor Networks

By

Mengmei Liu

Director of Thesis

Director of Graduate Studies

Dr. Laurence G. Hassebrook

Dr. Zhi Chen

Feb 7
th

, 2013

Acknowledgements

First of all, I would like to thank my academic advisor, Dr. Laurence G. Hassebrook,

who directed me through the masters thesis research, this is a very interesting project,

and I am really grateful for all his guidance and help. This thesis would not be possible

without his outstanding knowledge and innovative ideas.

Special thanks to an excellent researcher: Dr. Charles Casey, who developed much of

the target tracking and parameter estimation and made remarkable contribution to the

mathematical modeling of tracking technique.

I would also like to thank Dr. Robert W. Cohn, Prashant, and Sukanta from University

of Lousivelle, who developed the hardware side of the tracking system. They had done

a great job in hardware development and provide useful pictures to illustrate the exper-

imentally system. It was a nice time co-working with them and thanks for all the help

they provided me during my research.

Thanks to National Institute for Hometown Security, for providing the funding for the

optical intrusion project.

Finally, I would like to thank my parents and grandparents for raising me and supporting

whatever decision I made out of their love for me.

iii

Contents

Acknowledgements iii

List of Figures vi

List of Tables viii

1 Introduction 1

1.1 Historical background of BSN . 2

1.2 Thesis Outline . 4

2 Background on BSN and its application 6

2.1 Introduction to Reference Structure Tomography (RST) 7

2.2 Optical Intrusion Alarm . 8

2.2.1 Goal of OIA . 9

2.2.2 Laboratory scale model . 9

3 Calculation Process of Target Characteristics 15

3.1 Calculation of intrusion intersection angle 16

3.2 Calculation of intrusion speed . 19

3.3 Calculation of link-path intersection length 20

3.4 Calculation of final position . 23

3.5 Summarize . 25

4 Simulation 32

4.1 System set-up of modelling . 33

4.2 Simulation analysis with pseudo-continuous case 35

4.3 Simulation analysis with different quantization level 37

4.3.1 Simulation of decreased sample rate in time domain 38

4.3.2 Simulation of decreased sample rate in space domain 39

4.4 Analysis with temporal quantization noise 42

4.5 Simulation with temporal quantization noise 43

5 Systematic Simulation and Experiments 50

5.1 Systematic Simulation . 50

iv

5.2 Experiments . 60

6 Conclusion and Future Work 66

6.1 Conclusion . 66

6.2 Future Work . 67

A MATLAB CODE 68

Bibliography 95

Vita 97

v

List of Figures

2.1 RST configuration for segmenting the source space([1]) 8

2.2 Scale model and fog chamber by University of Louisville 10

2.3 LED emitter and Photo detector . 11

2.4 A simple illustration of 2D detection . 12

2.5 One detection of object . 13

2.6 Display of detection . 14

3.1 Depiction of intrusion signals . 16

3.2 Triangles formed by 3 links and 1 intruder paths 17

3.3 Intruder path length relationship . 18

3.4 Link intersection distance . 22

3.5 Significance of length ratio . 23

3.6 Final intruder position . 24

3.7 Summarize of calculation process . 26

3.8 Positions of the object after each detection 29

4.1 Simulation model of sensor deployment . 34

4.2 Initial position of the intrusion object . 35

4.3 Intrusion detected with 0.01 sec/samplet and 0.05 cm/samples 36

4.4 Intrusion detected timing graph . 38

4.5 Intrusion detected timing graph . 40

4.6 Additive noise model for quantizer . 42

4.7 Stochastic result of Vs . 44

4.8 Stochastic result of Vx . 45

4.9 Stochastic result of Vy . 46

4.10 Stochastic result of R . 47

4.11 Analysis result of Vs . 49

5.1 Coordinate geometry of scale model (values in cm)(University of Louisville) 51

5.2 Simulated coordinate geometry model (values in cm) 51

5.3 Systematic intrusion timing graph . 53

5.4 Intrusion detected timing graph with different pair of links 55

5.5 Intrusion detection interface . 56

5.6 Systematic Estimation Trajectory . 58

vi

5.7 Systematic Trajectory Error . 58

5.8 Systematic Trajectory at decreased sampling rate 59

5.9 Systematic Trajectory Error at decreased sampling rate 60

5.10 Dual transmit/receive prototype sensor module 62

5.11 Embedded micro-controller system to process and transmit data 62

5.12 Illustration of data flow through the system 63

5.13 FFT of a 1.3kHz sine wave signal received in LabVIEW from the dsPIC
micro-controller via Ethernet . 63

5.14 Packaged sensor module . 64

5.15 Aerial view of Fort Knox with possible deployment of sensor modules . . . 65

vii

List of Tables

4.1 Estimation results with best case scenario 36

4.2 Estimation results with different quantization level in time 39

4.3 Estimation result with different quantization level in space 41

4.4 Stochastic results with different quantization level in time 48

5.1 Estimation results with different pair of links 57

viii

Chapter 1

Introduction

Wireless Binary Sensor Networks (BSNs) are widely used in target motion tracking and

shape recognition. There are BSN systems that can sense the intrusion of objects and

characterize their position, trajectory, size and shape. These BSN systems could be

used in broad area surveillance because of the low cost and large sensor range of binary

sensor compared to camera surveillance while at the same time the set-up complexity

and computation cost is reduced significantly.

The basic idea of binary sensor is to output a signal 1 which stands for target present

when detecting the presence of an object and to output 0 otherwise. Binary sensors

are classified into different types by their sensing area and detection probability. Tradi-

tionally, we can divide binary sensor into two categories based on sensing area: (1) disk

shaped sensing area and (2) line-segmented sensing area. The former one would have a

wide sensor area range which contains the local area of the binary sensor. The shape of

the sensor range may be circular or other shape determine on the specific sensor type.

And the detection probability may vary with the distance between target and binary

1

sensor. In some BSNs are configured to have a transmitter and receiver, which are linked

to detect intrusion between them.

These different types of sensors are used and modelled in papers to enable target tracking,

trajectory estimation and target characterization. In this thesis we focus our attention

on the line-segmented sensor which is defined by the line path or link between transmitter

and receiver.

1.1 Historical background of BSN

Detection of intrusion has long been an important issue not only in military, but also in

people’s daily lives. With the emergence of BSN, researchers have developed mathemat-

ical models and corresponding computing methods to detect and track moving objects.

There are two mathematical methods for BSN detection: (1) coded-aperture system,

and (2) heavy-ion reconstruction. In a coded-aperture BSN system, a two dimensional

mask is used to modulate projections from source points to a detector array, and the

aperture is equal to the impulse response [2][3].While heavy-ion methods use strong

scattering center as holographic references for phase retrieval in multi-dimensional mod-

ulated tomography[2]. The first method is mostly used when lens-fabrication is difficult

while the second method approaches in x-ray crystallography. These two methods are

the precursor to Reference Structure Tomography (RST). This RST method was first

proposed by David J. Brady from Duke University and is used for imaging and tracking

objects in the following works.

2

In [2], D. J. Brady, N. P. Pitsianis, and X. Sun introduced the concept of RST. They

introduced a detailed mathematics model of RST and provided the simulation results

of applying RST to 2D image reconstruction using MATLAB a propagating field model

described by Daubechies wavelet basis.

D.J. Brady et al [2][4] extended RST to 3D image reconstruction and tracking moving

objects by changing the structure geometry, spatial segmentation[5] and using different

propagation fields to enable different mathematical analysis.

P. Potuluri et al [6] proposed a method by realizing the reference structure with a

Hadamard matrix to track the motion of an object. The source, also the moving object

is self illuminating which provides the propagating field.

A Sinha and D.J. Brady [1] introduced a statistical model and applied it to random 3D

reference structures[7]. They were able to show a mathematical relationship between

the measurement statistic state and the size of object. Also, based on the geometry of

the projections and using the ideal of convex hull, the RST method using measurement

statistics can recover 3D objects shape information.

By choosing different reference structures and propagation field, the RST can be applied

for different applications. Thus, U. Gopinathan and D. J. Brady uses coded apertures

as reference structure and uses pyroelectric sensor to track the motion of hot object.

Another research group located at the University of Alabama lead by Dr. Q. Hao also

uses RST. They constructed a wireless distributed BSN with reference structure by using

Fresnel lens arrays and coded masks to realize multiple human tracking and recognition

[8]. Their algorithms use hidden Markov models (HMMs) and maximum-likelihood

3

criterion to identify a single humans walking [9][10][11]. They extended their approach

to multiple human tracking by forming a more sophisticated tracking algorithm [12][13].

Furthermore, Haos group used the ideal of context feature extraction to improve the

data analysis within region of interest [14]. They have also performed a simulation of

multi-target tracking in a rectangle area which contains distributed line-segmented active

sensor networks [15]. The particle filter technique is used to estimate the trajectories of

the moving target in [15].

There are also some groups interested in the use of disk-shaped sensor range of binary

sensor networks[16]. In [17], Xuezhi Wang and Bill Moran from University of Melbourne

present a Virtual Measurement (VM) approach for multi target tracking using BSN. The

sensor simulated in this paper has a sensing range of R and detection probability of 1.

In [18], Hiroshi Saito et al developed a unified equation which can use only the binary

information to work out general sensing areas, and then based on target-object shapes

to enable the estimation of the parameters of the target object, including the perimeter

length, the size and the object angle.

Our group presents a geometry based link network where we solve the link geometry to

extract the target trajectory and key parameters.

1.2 Thesis Outline

This thesis consists of 6 chapters. The first chapter introduces wireless BSNs and differ-

ent kinds of reference structure tomography on binary sensor networks to realize target

4

tracking and estimation. The second chapter describes the background on RST method

and wireless binary sensor networks on tracking objects and estimating the object pa-

rameters, including shape, trajectory, size and position. Chapter three describes the

mathematical model for the deployment of sensor network and the calculation geome-

try. Chapter four gives the simulation results using the mathematical model described

in the previous chapter. Chapter five gives the systematic simulation results and in-

formations about hardware experimental set-up. Chapter six includes conclusion and

future work of the research.

5

Chapter 2

Background on BSN and its

application

Binary sensor networks (BSN) are systems which use large numbers of binary sensors

to be deployed over a certain area in order to sense events within that particular area.

With data processing of BSN signals, we are able to predict many features of the events

(intruders), such as size, shape, intrusion velocity, position, etc. An ideal binary sensor

would not miss any detection of events or intrusion data, while in reality, because of the

limited capacities of the binary sensors in range and precision, there may have misses

and false alarms. However, because of the large number of sensors deployed over a BSN,

the detection errors can be reduced to an acceptable level.

There are several methods to realize visual tracking and size,space shape recognition

from BSN signals. A statistically measured approach can result with an accurate es-

timate of the size of the intruder object in 2D without forming a physical image [1].

6

This stochastic method is more robust than deterministic method while it is more time

consuming. An expectation-maximization-Bayesian tracking scheme is used to update

the current information in contrast to the previous information based on maximum

Bayesian criterion [8]. A hidden Markov model (HMM) which uses its emission matrix

to represent the objects shape information and its transition matrix to describes the

dynamics information can be used as a learning process to estimate the objects shape

information [9] thus can be used in human recognition. Particle filtering method which

is a non-parametric implementation of Bayesian filter method is also widely used in tar-

get tracking algorithm. It can be used in both single target tracking and multi-target

tracking in BSN [15]. This method has the advantage of not only avoids the process of

data-to-target association and also provides robust performance.

2.1 Introduction to Reference Structure Tomography (RST)

BSN signal processing can be numerically intensive. Thus, the methodology of collecting

experimental data becomes an important issue. If we collect the least amount of data in

the most efficient way, it may reduce the load of calculation. By using reference structure

tomography (RST)[19][20], which uses a reference structure (can be designed in different

ways for different functions) to set up a modulation between object space and sensor,

the object space is then modulated into regions which can be described by vector or

matrix, thus, it becomes easier to track the intruding object into the modulated regions

instead of the entire object space. Fig.2-1 is an example of a typical RST set-up.

7

Figure 2.1: RST configuration for segmenting the source space([1])

The reference structure in RST can be designed in different ways to enable advanced

analysis. For example, it can be designed to implement a Hadamard transformation to

track a simple 1D pyroelectric motion[6]. By combining the RST method and different

data analysis methodology, it is possible to enable target tracking and feature estimation

in BSN networks.

2.2 Optical Intrusion Alarm

As presented in the previous chapters, BSN systems can have many applications in real

life scenarios. They can be used for human tracking and identification [9][12] for instance.

8

In this optical intrusion alarm (OIA) project, BSN system is used to enable broad area

surveillance. This application is very critical for homeland security usage. For example,

the system could be set up on the perimeter surrounding of critical infrastructures

like nuclear power plants, reservoirs, even the U.S. borders to detect unwanted human

intrusions.

2.2.1 Goal of OIA

The ultimate goal of OIA is to set up a surveillance system to be able to sense the

intrusion by humans and vehicles including their position, trajectory, and size under

conditions of low visibility, like fog, smoke or fire. Because the area to be used is usually

a broad area with fixed infrastructure, it would be too expensive to set up camera

surveillance systems everywhere. The BSN system is an ideal solution which is a low

cost network with highly sensitive optical transmitters and receivers.

2.2.2 Laboratory scale model

Before approaching the final goal, the preliminary laboratory simulation is set up to

demonstrate the concept and verify the feasibility of the project.[cite University of

Louisville, Robert W.Cohn et al] The laboratory scale model is scaled by a factor of

1/13.16 to a real world scenario in the parameters of test range, dimensions and veloc-

ities. The shortest path length between one receiver and transmitter is 15m and the

object length is 0.5m in the real world scenario while the laboratory chamber size is

9

114cm*100cm*20cm approximately. The intrusion object width is scaled from 0.5m to

4cm. The chamber is shown in Fig 2.2:

Figure 2.2: Scale model and fog chamber by University of Louisville

In the right side and left side of the chamber are the receivers and transmitters. The

plexiglass chamber is an exclusive chamber which can contain fog to ensure different

level of signal testing. There is a laser in the back to provide an sequence estimate of

visibility. The next figure is a closer look of transmitters (LED emitters) and receivers

(photo detector).

10

Figure 2.3: LED emitter and Photo detector

For each of the four LED emitters is modulated by voltage at four distinct frequencies

and each detector is able to detect all frequencies using digital filters. Once the object

intrudes through the line of sight, the strong intensity changes among the links would

locate the object in 2D space. A simple illustration of the detection process is shown in

the following Fig 2.4:

11

Figure 2.4: A simple illustration of 2D detection

As is the same for the laboratory model during the detection process, once the object

breaks the line of sight between the emitter and detector pairs, one detection is made

and data is sent back to the microprocessor. As is shown in Fig 2.5:

12

Figure 2.5: One detection of object

A view of detection displays from the labview computer interface can be seen in Fig

2.6, the two white lines are the ones shown change of intensity which locates the object

(marked by red circle) at the intersection. The blue lines show the reference intensity.

Figure 2.6: Display of detection

13

The above is a brief introduction of what OIA is and what it does. A full project requires

system hardware setup, software setup, calculation of geometries and signal processing

under the fog condition. In this thesis we focus our study on processing the temporal

link breaks in order to estimate target size and first order trajectory.

14

Chapter 3

Calculation Process of Target

Characteristics

In the OIA system, the OIA sensor monitoring software will generate an intrusion detect

signal when the links (which is the line paths between the transmitter and the receiver)

are interrupted by an intruder. The signal is depicted as inverted such that a high-level

(or 1) when intruded versus a low-level (or 0) when not intruded with a width of the

time period of intrusion. A depiction of the system can be shown in the cited figures. In

all the following figures, small blue circles represent the sensors while the large purple

circle represents the object. The blue line represents the object’s trajectory with the

arrow indicating direction. The dark lines connecting each sensor pair represents the

links.

15

Figure 3.1: Depiction of intrusion signals

From Fig 3.1, we model the intruder with a circular shape with speed, diameter, position

and direction parameters. The parameter calculation begin when the intrusion time T1

and T2 and the vacancy time T4 are known. It will be shown in the following calculations

that, under sufficient intrusions and with the knowledge of the link pathway geometries,

we will be able to calculate and continually update the intruder diameter and trajectory.

3.1 Calculation of intrusion intersection angle

First, consider the following geometry and intruder path shown in Fig 3.2:

16

Figure 3.2: Triangles formed by 3 links and 1 intruder paths

A subset of Fig 3.2 geometry (i.e. 2 links)is shown in Fig 3.3:

17

Figure 3.3: Intruder path length relationship

From Fig 3.3, we can determine the following relationships:

2R

sin θ1
= V T1 (3.1)

2R

sin θ2
= V T2 (3.2)

where V represents the intruder speed, R represents the intruder radius and θ is the

intersect angle of the trajectory path and the sensor link. We solve for θ1 using these

two equations along with the following equation set:

T1
T2

=
sin θ2
sin θ1

(3.3)

18

θ2 = (π − θ3)− θ1 = θx − θ1 (3.4)

θ1 = tan−1 sin θx
T1
T2

+ cos θx
(3.5)

Because θ3 is a known parameter once the sensor set-up is completed, we can calculate

the intruder path intersection angles each time by the arrangement of the links and

detection period.

3.2 Calculation of intrusion speed

After knowing the intruder path intersection angle, we can further solve for the intrusion

speed V . From Fig 3.3, we can form the following equation if we denote the intrusion

trajectory length between Link1 and Link2 as L3:

L3 −R(
1

sin θ1
+

1

sin θ2
) = V T4 (3.6)

L3

R
= (

1

sin θ1
+

1

sin θ2
) + (

V

R
)T4 (3.7)

From Eq.(3.1):

R = V T1(
sin θ1

2
) (3.8)

V

R
=

2

T1 sin θ1
(3.9)

19

Substituting Eq.(3.8) into Eq.(3.6):

L3 − V (
T1 sin θ1

2
)(

1

sin θ1
+

1

sin θ2
) = V T4 (3.10)

This allows one to solve for the speed V as

V = L3/(T4 + (
T1 sin θ1

2
)(

1

sin θ1
+

1

sin θ2
)) (3.11)

Substituting Eq.(3.9) into Eq.(3.7):

L3

R
= (

1

sin θ1
+

1

sin θ2
) + (

2

T1 sin θ1
)T4 (3.12)

Eq.(3.12) gives a critical relationship we can used for further analysis and Eq.(3.11)

yields the intrusion speed.

3.3 Calculation of link-path intersection length

Using Eq.(3.11), we can solve for intrusion speed V . However, this equation requires the

detection period T1, the vacancy period T4, the angle formed by the BSN geometry θ1,θ2,

and the link-path intersection length L3. The first four parameters are known based on

the BSN geometry and sensor detection. However, L3 is not a known parameter because

we do not know where the object is going to intrude. Thus we need to calculate L3

to solve for V . To calculate L3 we need the timing signals for three continuous link

20

intrusions. The calculation can be processed by using the geometric sine law of triangle

as in the following: Applying Eq.(3.12) to Fig 3.2, we can form the following relationship,

denoted as G.

G =
L3B

L3A

=
(1
sin θ1B

+ 1
sin θ2B

) + (2
T1B sin θ1B

)T4B

(1
sin θ1A

+ 1
sin θ2A

) + (2
T1A sin θ1A

)T4A
(3.13)

Also, from the triangle geometric law of sine, we have:

L3B

L3A

=
(sin θ3B
sin θ2B

)L1B

(sin θ3A
sin θ1A

)L2A

(3.14)

Denote the ratio (sin θ3Bsin θ2B
)/(sin θ3Asin θ1A

) as 1/F , thus the multiplication of G and F becomes:

GF =
L1B

L2A
(3.15)

Because L1B + L1A is equal to the link distance D, which is determined by the sensor

geometry, as in Fig 3.4

21

Figure 3.4: Link intersection distance

D = L2A + L1B (3.16)

G and F are known ratio based on the BSN network, thus we can solve for L1B by

combining equation Eqs.(3.15) and (3.16):

L1B = D(
GF

1 +GF
) (3.17)

L2A = D(
1

1 +GF
) (3.18)

Using the triangle law of sine combined with L1B and L2A:

L3B = (
sin θ3B
sin θ2B

)L1B (3.19)

L3A = (
sin θ3A
sin θ1A

)L2A (3.20)

22

As shown in Fig 3.5, wherever the object intrudes in to the BSN network, after we

calculated the intrusion intersection angle (see section 3.1), we determine the adjacent

path length ratio G. Then knowing the network geometry, we could further get F . D

is known for every link, thus, we could solve for L1B and subsequently L2A. Then we

can get the L3B and L3A (see red and green line in Fig 3.5), thus we can substitute in

to Eq.(3.11) to get V for either the first to second link segment or the second to third

segment.

Figure 3.5: Significance of length ratio

3.4 Calculation of final position

In the previous sections 3.1, 3.2 and 3.3, we demonstrate and develop a method to

calculate size R, intersection angle θ and speed V based on the BSN network. We also

calculate the final object position by using vector equations.

23

Figure 3.6: Final intruder position

From Fig 3.6, if we define −−→u1B and −−→u2B as the unit vector in the direction of
−−→
L1B and

−−→
L2B, we have:

−−→
L2B = L2B

−−→u2B (3.21)

−−→
L1B = L1B

−−→u1B (3.22)

Then the intruder vector is:

−→
I =

−−→
L2B −

−−→
L1B (3.23)

Define −→ui as intruder direction unit vector,

−→ui =

−→
I∣∣∣−→I ∣∣∣ (3.24)

24

Then the final position which is defined by the centre of the intruder is:

−→
Pi =

−−→
L2B + (

R

sin θ2B
)−→ui +

−−→
PB3 (3.25)

−−→
PB3 is the position of B3 with relative to the reference point. The reference point can

be defined as any fixed point. We randomly choose a reference point on Fig 3.6. Thus,

−→
Pi would represent the final position to the reference position.

3.5 Summarize

To summarize this chapter, we build a graph which presents a sequence of four sensors,

three links, and three times of intrusions to calculate the demanding parameters, shown

in Fig 3.7.

25

Figure 3.7: Summarize of calculation process

In this figure, the links are defined as a sequence of Link0, Link1, Link2, the intrusion

time period subsequently are T0, T1, T2. The object times between the links are T01

and T12. The links are segmented by the intrusion path into a two line segments which

are numbered as L0A, L0B, L1A, L1B, L2A, L2B in sequence. And the intrusion path

length segmented by the links are numbered as L01, L02. The internal angle formed by

the links are marked as θ01, θ12 while the internal angle formed by the intersection of

links and intrusion path are marked as θ0, θ1, θ2. We also create a reference line which

is horizontal as to define the absolute angle of the links as the upper-right angle of the

intersection of the links and the reference line which are marked as θ0R, θ1R, θ2R. Using

this we can locate the value of θ01, θ12. And the total length of each links are marked

26

as D0, D1, D2.

Using the equations developed from the previous sections, we can summarize the calcu-

lations:

The link geometry angles and reference angles are known such that:

θ01 = |θ0R − θ1R| (3.26)

θ12 = |θ1R − θ2R| (3.27)

The intersection angles are:

θ0 = tan−1 sin θ01
T0
T1
− cos θ01

(3.28)

θ1 = tan−1 sin θ01
T1
T0
− cos θ01

= tan−1 sin θ12
T1
T2
− cos θ12

(3.29)

θ2 = tan−1 sin θ12
T2
T1
− cos θ12

(3.30)

where T0, T1, and T2 are known. The segmented intrusion path ratio is:

G =
L12

L01

=
(1
sin θ1

+ 1
sin θ2

) + (2
T1 sin θ1

)T12

(1
sin θ0

+ 1
sin θ1

) + (2
T0 sin θ0

)T01
(3.31)

The segmented intrusion path lengths are:

L01 = D1
1

sin θ0
sin θ01

+G sin θ2
sin θ12

(3.32)

27

L12 = D1
G

sin θ0
sin θ01

+G sin θ2
sin θ12

(3.33)

The speed inside each segmented intrusion path are:

V01 =
L01

T01 + (T0
2

+ T0
2

sin θ0
sin θ1

)
(3.34)

V12 =
L12

T12 + (T1
2

+ T1
2

sin θ1
sin θ2

)
(3.35)

The object diameter is calculated as:

R0 =
V T0 sin θ0

2
(3.36)

R1 =
V T1 sin θ1

2
(3.37)

R2 =
V T2 sin θ2

2
(3.38)

The following figure is the corresponding graph to determine the positions:

28

Figure 3.8: Positions of the object after each detection

Define −→ui as intruder direction unit vector, −→u0, −→u1, −→u2 as the position vector after the

first, second, third detection of intrusion with reference to the initial position.

−→u0 =
2R

sin θ0

−→ui (3.39)

−→u1 = (
R

sin θ0
+ L01 +

R

sin θ1
)−→ui (3.40)

−→u2 = (
R

sin θ0
+ L01 + L12 +

R

sin θ2
)−→ui (3.41)

Then we define a rectangular coordinate system as shown in Fig 3.8 and with the knowing

of initial position (a, b), we could locate all the coordinates after each intrusion. The

position of object is defined as the central point of the object in this thesis.

29

After break Link0, the coordinates of the object position is (x0, y0):

x0 =
2R

sin θ0
cos(θ0 + θ0R − π) + a (3.42)

y0 =
2R

sin θ0
sin(θ0 + θ0R − π) + b (3.43)

After break Link1, the coordinates of the object position is (x1, y1):

x1 = (
R

sin θ0
+ L01 +

R

sin θ1
) cos(θ0 + θ0R − π) + a (3.44)

y1 = (
R

sin θ0
+ L01 +

R

sin θ1
) sin(θ0 + θ0R − π) + b (3.45)

After break Link2, the coordinates of the object position is (x2, y2):

x2 = (
R

sin θ0
+ L01 + L12 +

R

sin θ2
) cos(θ0 + θ0R − π) + a (3.46)

y2 = (
R

sin θ0
+ L01 + L12 +

R

sin θ2
) sin(θ0 + θ0R − π) + b (3.47)

We can also estimate the target trajectory with the initial position (a, b) after knowing

object speed V . First, we decompose V into Vx and Vy:

Vx = V cos(θ0 + θ0R − π) (3.48)

Vy = V sin(θ0 + θ0R − π) (3.49)

30

Then the target trajectory is:

x(t) = a+ Vxt (3.50)

y(t) = b+ Vyt (3.51)

The above is the summary of this chapter with intrusion of three links. We can expand it

into n links and update the information of the object in sequence which will be illustrated

in the following chapters.

31

Chapter 4

Simulation

In Chapter 3, we described the calculation process of target characteristics in detail,

in which we are mainly interested in object velocity, diameter and trajectory. In this

chapter, we develop MATLAB program to simulate the object intrusion and calculate the

characteristics using the equations given in the previous chapter and compare the results

of the simulation at different parameter resolutions. There are two approaches that we

can take to simulate the OIA system. One approach is to determine the continuous space

link boundaries, padded by the radius of the object. There by using the continuous time

trajectory of a 0 radius point we can determine precisely the time of each occlusion.

However, this approach does not allow for more complicated network shapes and is

complicated to implement. So a second approach is a pixel based simulation where

the OIA space is a discrete space and time whose resolutions are variable. There are

two binary markers representing the link geometry and the object at a specific time in

its trajectory. The two binary markers are the same dimensionality and when ’Anded’

32

together pixel wise will only be non zero when there is an occlusion. This ’Anding’

is performed at small enough time increments and high enough spatial sampling as

to approximate the continuous space/time model. We will refer to this as pseudo-

space/time. In the ideal case, if the sample we took is sufficiently large, the error should

be neglected. However, that requires a large amount of memory. So we evaluate how

much space and time resolution is needed to simulate the OIA system effectively.

4.1 System set-up of modelling

From Chapter 3, we know that at least four sensors with three links are needed to ensure

one calculation. Thus, in the simulation model, we deploy four sensors in a square with

1 (m) width and 1 (m) length. The two transmitters are deployed in one side of the

square with locations of 0.162 (m) and 0.8 (m) while the two receivers are deployed in

the other side with locations of 0.162 (m) and 0.8 (m). The three links are formed as

seen in Fig 4.1. Note that the arrangements of the links form two rectangular triangle

with height r equals 1 (m) and width d equals 0.638 (m) while the simulation can be

done as long as links form triangle as stated in Chapter 3.

33

Figure 4.1: Simulation model of sensor deployment

The intrusion object is modelled as a dark circle with diameter of 0.02 (m) and it

intrudes with a velocity of 0.04 (m/s) in the direction of sensor deployment and 0.02(m/s)

perpendicular to the direction of sensor deployment. From Fig 4.1, if we define these

two directions as X and Y with the original point in the lower left of the figure and with

X axis points to the right and Y axis points to the upside, then the initial position of

the object is (0,0.4) (m). The initial position and the trajectory of the object is shown

in Fig 4.2:

34

Figure 4.2: Initial position of the intrusion object

4.2 Simulation analysis with pseudo-continuous case

As we have discussed before, if our spatial and temporal sampling periods are small

enough then the simulation parameter estimation converges to the correct values. By

running the simulation, we find that if we sample 2000 times per 1 (m) in space and

sample 100 times per 1 (s) in time, which means 0.05 cm per sample in space domain

and 0.01 sec per sample in time domain, the result is “good enough”: the measurement

of R is scaled to 0.0202 (m); the speed in X is 0.04 (m/s) which is the same as scaled

actual speed, and the speed in Y is 0.0198 (m/s). By saying that the result is “good

35

enough”, we mean the estimation error is very small, which will be show on Table 4.1.

In this case the average error is less than 1% for Vs, Vx, Vy and R.

The intrusion detection signal is as follows, in which we document the sampling period

as the follows: second per sample in time domain as sec/samplet and centimetre per

sample in space domain as cm/samples.

0 500 1000 1500 2000 2500
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 4.3: Intrusion detected with 0.01 sec/samplet and 0.05 cm/samples

The estimation results is given in the following table:

36

Table 4.1: Estimation results with best case scenario

PseudoContinuous Actual Error

V s(m/s) 0.0446 0.0447 0.0022

V x(m/s) 0.0400 0.0400 0.0000

V y(m/s) 0.0198 0.0200 0.0113

R(m) 0.0202 0.0200 0.0100

In this table, Vs represents the speed of the object, Vx and Vy represents the value

of object speed decomposed in X direction and Y direction, from which we are able to

calculate the angle of the object. Pseudo-continuous values refers to the results from the

experiment and actual values refers to the actual parameter setting values. Because this

experiment gives very accurate results (better than 1% accuracy), all the ideal values

mentioned later refer to this set of results. And the error is calculated using the following

equation:

Error =

∣∣∣∣PseudoContinuousV alue−ActualV alueActualV alue

∣∣∣∣ (4.1)

And we define the total average error as:

AverageError =
(ErrorV s+ ErrorV x+ ErrorV y + ErrorR)

4
(4.2)

Thus in this case, total average error is 0.0059, which is smaller than 1%.

37

4.3 Simulation analysis with different quantization level

In the previous section, we showed the result of simulation with sufficient sample density

would lead to better than 1% accuracy, while in this section, we want to discuss what

happens when we decrease sample density. We discuss the case in time domain and

space domain separately in the following experiments.

4.3.1 Simulation of decreased sample rate in time domain

In the first set of experiments, we want to see how the different sample rates of time

would affect the results, thus we keep the space in high resolution, which is to take one

sample every 0.05 (cm) in space domain, and we decrease the number of samples taken

in the time domain. The time samples we take are 1000, 250, 50, 25 per 25 seconds,

which gives sample periods of 0.025 (s), 0.1 (s), 0.5 (s), and 1 (s) in time domain.

The intrusion detected timing graph is as follows:

38

0 200 400 600 800 1000
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(a) Intrusion detected with 0.025 sec/samplet

0 50 100 150 200 250
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(b) Intrusion detected with 0.1 sec/samplet

0 10 20 30 40 50
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(c) Intrusion detected with 0.5 sec/samplet

0 5 10 15 20 25
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(d) Intrusion detected with 1 sec/samplet

Figure 4.4: Intrusion detected timing graph

The result is shown in the following table and with comparison to the most accurate

case scenario (Note that the first row of results are the ideal values of all experiments) :

39

Table 4.2: Estimation results with different quantization level in time

SamplePeriod(s) 0.01 0.025 0.1 0.5 1

V s(m/s) 0.0446 0.0443 0.0439 0.0468 0.0473

V sError 0.0022 0.0085 0.0173 0.0461 0.0575

V x(m/s) 0.0400 0.0400 0.0397 0.0394 0.0399

V xError 0.0000 0.0000 0.0071 0.0139 0.0031

V y(m/s) 0.0198 0.0191 0.0188 0.0252 0.0254

V yError 0.0113 0.0432 0.0593 0.2578 0.2716

R(m) 0.0202 0.0205 0.0199 0.0197 0.0199

RError 0.0100 0.0250 0.0071 0.0139 0.0031

AverageError 0.0059 0.0192 0.0227 0.0829 0.0838

4.3.2 Simulation of decreased sample rate in space domain

In the second set of experiments, we keep the temporal sampling resolution as the best

case scenario, which is when sample period is 0.01 (s), but decrease the resolution in

space domain to compare with the previous results. The specific sample periods in space

domain we took are 0.1 (cm), 0.2 (cm), 0.4 (cm), 4 (cm) per pixel.

The intrusion detected timing graph is as follows:

40

0 500 1000 1500 2000 2500
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(a) Intrusion detected with 0.1 cm/samples

0 500 1000 1500 2000 2500
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(b) Intrusion detected with 0.2 cm/samples

0 500 1000 1500 2000 2500
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(c) Intrusion detected with 0.4 cm/samples

0 500 1000 1500 2000 2500
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(d) Intrusion detected with 4 cm/samples

Figure 4.5: Intrusion detected timing graph

The result is shown in the following table, includes the best case scenario which is the

case we took a sample period of 0.05 (cm) per pixel (Note that the first row of results

are the ideal values of all experiments):

41

Table 4.3: Estimation result with different quantization level in space

SamplePeriod(cm) 0.050 0.100 0.200 0.400 4.000

V s(m/s) 0.0446 0.0448 0.0444 0.0457 0.0438

VError 0.0022 0.0022 0.0068 0.0218 0.0216

V x(m/s) 0.0400 0.0400 0.0400 0.0401 0.0399

V xError 0.0000 0.0000 0.0000 0.0031 0.0031

V y(m/s) 0.0198 0.0201 0.0193 0.0219 0.0180

V yError 0.0113 0.0070 0.0343 0.0931 0.0991

R(m) 0.0202 0.0206 0.0210 0.0221 0.0598

RError 0.0100 0.0300 0.0500 0.1035 1.9906

AverageError 0.0059 0.0098 0.0228 0.0554 0.5286

From comparing the data in Table 4.1, 4.2 and 4.3, we can sum up that the average

simulation error converges to less than 1% when the resolution in space domain and in

time domain are both high, thus the result is the most accurate. With the decreasing of

quantization level in either time domain or space domain, the quantization error would

generally go up; and with the increasing of quantization level in both time and space

domain, the average quantization error should converge to less than 1%. From table 4.3

we can see that 0.1 cm/sample is almost as accurate as the maximum 0.05 cm/sample.

42

4.4 Analysis with temporal quantization noise

Among all the simulation process discussed in the last section, we are most interested

in quantization noise in time domain, due to sample rate and its impact on the target

parameter. This is because the real system is limited by sampling rate. In order do some

further analysis, we look through Table 4.2 and find that the quantization error in the

best case scenario which is when time frame is 0.01 (s), the quantization error is very

small. We took this result as representing pseudo-continuous space and time. While

keeping the pseudo-continuous time at high resolution, we propose studying temporal

sampling error by using a stochastic model of temporal sampling. The quantitative noise

model is add additive model based on where the noise is uniformly distributed white

noise, shown in the following figure:

Figure 4.6: Additive noise model for quantizer

Now the mathematical model is

Q(t) = t+ w̃ (4.3)

43

Where w̃ is the additive noise, then if we run simulation under this prerequisite, the

estimation parameter result should simulate the quantization error as if we decreased the

quantization level. By doing this, we would be able to get a large number of estimation

parameter results with different errors if we run simulation sufficient times, then we can

do some further analysis with these results.

The equation to calculate expected value of quantization noise with quantization level

known is as follows:

δe
2 =

∆2

12
(4.4)

In which δe is the expected value of quantization noise and ∆ is the quantization level

or quantized frame period.[21]

4.5 Simulation with temporal quantization noise

From Section 4.4, we develop a stochastic model of temporal sampling. To obtain

the results of stochastic model, we only need to run the simulation under the pseudo-

continuous case, which is when the space sampling rate is 0.05 cm/sample and the

temporal sampling rate is 0.01 sec/sample, and then to add the corresponding uniformly

distributed noise of lower quantized temporal case to the pseudo-continuous case. In this

method, it is easier to get a large amount of ’simulation results’ without actually run

the simulation. The stochastic results which represents 100 times of different simulation

results of four de-quantized temporal case discussed in Section 4.3.1 are shown in the

following figures and the conclusion table:

44

0 20 40 60 80 100
0.043

0.0435

0.044

0.0445

0.045

0.0455

0.046

0.0465

0.047

(times)

(m
/s

)

(a) Vs reprensts simulation of 0.025 sec/samplet

0 20 40 60 80 100
0.042

0.043

0.044

0.045

0.046

0.047

0.048

0.049

0.05

(times)

(m
/s

)

(b) Vs reprensts simulation of 0.1 sec/samplet

0 20 40 60 80 100
0.04

0.042

0.044

0.046

0.048

0.05

0.052

0.054

0.056

(times)

(m
/s

)

(c) Vs reprensts simulation of 0.5 sec/samplet

0 20 40 60 80 100

0.04

0.045

0.05

0.055

0.06

0.065

0.07

(times)

(m
/s

)

(d) Vs reprensts simulation of 1 sec/samplet

Figure 4.7: Stochastic result of Vs

Fig 4.7 shows the stochastic result of Vs under the four different sampling rate. From

this figure, we can see that with the decrease of quantization level in time domain, the

deviation of Vs increases dramatically.

45

0 20 40 60 80 100
0.0375

0.038

0.0385

0.039

0.0395

0.04

0.0405

0.041

0.0415

0.042

(times)

(m
/s

)

(a) Vx reprensts simulation of 0.025 sec/samplet

0 20 40 60 80 100
0.035

0.036

0.037

0.038

0.039

0.04

0.041

0.042

0.043

(times)

(m
/s

)

(b) Vx reprensts simulation of 0.1 sec/samplet

0 20 40 60 80 100
0.03

0.035

0.04

0.045

0.05

0.055

(times)

(m
/s

)

(c) Vx reprensts simulation of 0.5 sec/samplet

0 20 40 60 80 100
0.025

0.03

0.035

0.04

0.045

0.05

0.055

(times)

(m
/s

)

(d) Vx reprensts simulation of 1 sec/samplet

Figure 4.8: Stochastic result of Vx

Fig 4.8 shows the stochastic result of Vx under the four different sampling rate. From

this figure, we can see that with the decrease of quantization level in time domain, the

deviation of Vx also increases dramatically.

46

0 20 40 60 80 100
0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026

0.028

(times)

(m
/s

)

(a) Vy reprensts simulation of 0.025 sec/samplet

0 20 40 60 80 100
0.005

0.01

0.015

0.02

0.025

0.03

0.035

(times)

(m
/s

)

(b) Vy reprensts simulation of 0.1 sec/samplet

0 20 40 60 80 100
−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

(times)

(m
/s

)

(c) Vy reprensts simulation of 0.5 sec/samplet

0 20 40 60 80 100
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

(times)

(m
/s

)

(d) Vy reprensts simulation of 1 sec/samplet

Figure 4.9: Stochastic result of Vy

Fig 4.9 shows the stochastic result of Vy under the four different sampling rate. From

this figure, we can see that with the decrease of quantization level in time domain, the

deviation of Vy also increases dramatically.

47

0 20 40 60 80 100
0.0185

0.019

0.0195

0.02

0.0205

0.021

0.0215

(times)

(m
)

(a) R reprensts simulation of 0.025 sec/samplet

0 20 40 60 80 100
0.015

0.016

0.017

0.018

0.019

0.02

0.021

0.022

0.023

(times)

(m
)

(b) R reprensts simulation of 0.1 sec/samplet

0 20 40 60 80 100
0.014

0.016

0.018

0.02

0.022

0.024

0.026

0.028

(times)

(m
)

(c) R reprensts simulation of 0.5 sec/samplet

0 20 40 60 80 100
0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026

0.028

(times)

(m
)

(d) R reprensts simulation of 1 sec/samplet

Figure 4.10: Stochastic result of R

Fig 4.10 shows the stochastic result of R under the four different sampling rate. From

this figure, we can see that with the decrease of quantization level in time domain, the

deviation of R also increases dramatically.

Generally, with the decrease of quantization level, the deviation generally goes up. The

more detailed information with specific results will be shown in the following table:

48

Table 4.4: Stochastic results with different quantization level in time

QuantiLevel(s) 0.01 0.025 0.1 0.5 1

QuantiNoise(s) 0 0.0072 0.0289 0.1443 0.2887

SimulatedV s(m/s) 0.0446 0.0443 0.0439 0.0468 0.0473

MeanV s(m/s) − 0.0450 0.0452 0.0470 0.0482

STDV s(m/s) − 7.924e− 4 0.0014 0.0034 0.0053

SimulatedV x(m/s) 0.0400 0.0400 0.0397 0.0394 0.0399

MeanV x(m/s) − 0.0399 0.0399 0.0411 0.0400

STDV x(m/s) − 8.1962e− 4 0.0015 0.0040 0.0047

SimulatedV y(m/s) 0.0198 0.0191 0.0188 0.0252 0.0254

MeanV y(m/s) − 0.0205 0.0206 0.0173 0.0187

STDV y(m/s) − 0.0030 0.0054 0.0148 0.0195

SimulatedR(m) 0.0202 0.0205 0.0199 0.0197 0.0199

MeanR(m) − 0.0201 0.0202 0.0205 0.0200

STDR(m) − 5.6876e− 4 0.0011 0.0028 0.0036

In Table 4.4, because we consider the quantization case of 0.01 as pseudo-continuous,

so the quantization noise is assumed to be zero. The simulated results are from the

simulation done in Chapter 4 and the statistical results are from the stochastic results

shown from Fig 4.7 to Fig 4.10. We can tell from the table that the simulation results

fall in the range of stochastic results and with the decrease of quantization level, or

49

increase of quantization noise, the statistical standard deviation of the stochastic results

would increase. For example, if we take Vs at 0.025 sec/samplet, the simulation result

of 0.0443 falls in range of (0.0450 - 7.924e-4, 0.0450 + 7.924e-4). With the decrease

of quantization level, the statistical mean result of Vs deviates larger from 0.0446 and

the standard deviation increase from 7.924e-4 to 0.0053, which means the result is less

accurate with larger quantization noise. A graphical representation is shown in the

following figure:

0 0.2 0.4 0.6 0.8 1
0.042

0.044

0.046

0.048

0.05

0.052

0.054

0.056

Sample period in time (s/sample)

V
s

(m
/s

)

Simulated result
Mean result
Mean result − Standard deviation
Mean result + Standard deviation
Pseudo−continuous result

Figure 4.11: Analysis result of Vs

50

Chapter 5

Systematic Simulation and

Experiments

In Chapter 4, we run the simulation with a simplified butterfly set-up of four sensors and

analysed the result with quantization noise. In this chapter, we will run the systematic

simulation based on the realistic system and compare to the experimental results.

5.1 Systematic Simulation

The set-up of experiment chamber scale model is shown on Fig 2.2, based on the chamber,

the coordinate geometry of the model can be constructed as in the following figure, the

left side are the transmitters and the right side are the receivers, the object is located

46 cm away from transmitters and moving at a constant speed on the line.

51

Figure 5.1: Coordinate geometry of scale model (values in cm)(University of
Louisville)

Following this coordinate geometry, the simulated construction of the links is as follows:

(0,0) (100,0)(16,0) (38,0) (61,0) (80,0)

(0,114) (100,114)(16,114) (38,114) (61,114) (80,114)

Figure 5.2: Simulated coordinate geometry model (values in cm)

Note that the simulation flipped 90 degree clockwise. And we denote the four sensors

52

on the upside as Transmitter 1 to 4 and downside as Receiver 1 to 4. In this way, we

can denote the 16 links from L11 to L44, in the order of the first subscript stands for

transmitter and second stands for receiver. Based on the calculation model proposed

on Chapter 3, all the effective pairs of links that will be break without redundancy

to enable the calculation are 1© (L11,L21,L22), 2© (L11,L21,L23), 3© (L11,L21,L24), 4©

(L11,L31,L33), 5© (L11,L31,L34), 6© (L11,L41,L44), 7© (L22,L32,L33), 8© (L22,L32,L34), 9©

(L22,L42,L44), 10© (L33,L43,L44). To generalize, we find that with n pairs of transmitters

and receivers, the effective number of estimation is
∑n−1

i=1 i(n− i).

Given the object parameter diameter as 2 (cm), initial position as 46 (cm) away from

transmitters, and moving left to right at a speed of 4 (cm/s), using the highest sampling

rate as 0.01 second per sample in time domain and 0.05 cm per sample in space domain,

the intrusion timing graph can be shown in the following figure. Note that there are 16

links in total, so 16 intrusions are depicted by different colours in the lower value, but

there are times that the object may break multiple links at one time, so the higher blue

line depict whenever intrusion is detected.

53

0 500 1000 1500 2000 2500
−0.2

0

0.2

0.4

0.6

0.8

1

Figure 5.3: Systematic intrusion timing graph

And below is the intrusion timing graph for each pair of links:

54

0 500 1000 1500 2000 2500
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(a) Intrusion detected with link pair 1©

0 500 1000 1500 2000 2500
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(b) Intrusion detected with link pair 2©

0 500 1000 1500 2000 2500
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(c) Intrusion detected with link pair 3©

0 500 1000 1500 2000 2500
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(d) Intrusion detected with link pair 4©

0 500 1000 1500 2000 2500
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(e) Intrusion detected with link pair 5©

0 500 1000 1500 2000 2500
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(f) Intrusion detected with link pair 6©

0 500 1000 1500 2000 2500
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(g) Intrusion detected with link pair 7©

0 500 1000 1500 2000 2500
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(h) Intrusion detected with link pair 8©

55

0 500 1000 1500 2000 2500
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(i) Intrusion detected with link pair 9©

0 500 1000 1500 2000 2500
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(j) Intrusion detected with link pair 10©

Figure 5.4: Intrusion detected timing graph with different pair of links

The detected of intrusion is shown by enlightening the intersection of the links that is

being intruded, in which can be shown in the following figure:

56

(a) Intrusion detection inteface at no detection (b) Intrusion detection inteface at detection

(c) Intrusion detection inteface at detection (d) Intrusion detection inteface at detection

Figure 5.5: Intrusion detection interface

The parameter estimation results of all the link pairs are shown in the following table:

57

Table 5.1: Estimation results with different pair of links

#LinkPair V s(m/s) V x(m/s) V y(m/s) R(m)

1© 0.0400 0.0400 −0.0017 0.0202

2© 0.0401 0.0400 −0.0017 0.0202

3© 0.0400 0.0400 −0.0017 0.0202

4© 0.0400 0.0400 −0.0014 0.0202

5© 0.0401 0.0401 −0.0014 0.0202

6© 0.0400 0.0400 0.0002 0.0202

7© 0.0400 0.0400 −0.0001 0.0202

8© 0.0400 0.0400 −0.0001 0.0202

9© 0.0400 0.0400 −0.0006 0.0202

10© 0.0400 0.0400 0.0014 0.0202

The trajectory is shown in the following figure, it is recalculated when each link pair is

detected with the mean estimation results of the previous detection during the intrusion:

58

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

X Position(meter)

Y
 P

os
iti

on
(m

et
er

)

Experimental
Ideal

Figure 5.6: Systematic Estimation Trajectory

The trajectory error is shown in the following figure, it is calculated as the distance from

the estimated trajectory to the real trajectory during the intrusion detection:

0 500 1000 1500 2000 2500
0

0.005

0.01

0.015

0.02

0.025

0.03

time(Frame)

T
ra

je
ct

or
y

E
rr

or
(m

et
er

)

Figure 5.7: Systematic Trajectory Error

59

The estimation result is very accurate because we take the highest sampling rate. If

we decrease the sample rate, the estimation result would be less accurate, which means

the trajectory would be more deviate from the actual one and the error would generally

increase. The following figures show the trajectory and trajectory error when we reduce

the sample rate with an increased sample period in time to 0.025 (s), 0.1 (s), 0.5 (s), 1(s)

per sample. The space sampling rate is kept at the highest rate of 0.05 cm per sample

because the real system is limited by temporal resolution.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

X Position(meter)

Y
 P

os
iti

on
(m

et
er

)

Experimental
Ideal

(a) Systematic Trajectory at 0.025 sec/samplet

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

X Position(meter)

Y
 P

os
iti

on
(m

et
er

)

Experimental
Ideal

(b) Systematic Trajectory at 0.1 sec/samplet

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

X Position(meter)

Y
 P

os
iti

on
(m

et
er

)

Experimental
Ideal

(c) Systematic Trajectory at 0.5 sec/samplet

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

X Position(meter)

Y
 P

os
iti

on
(m

et
er

)

Experimental
Ideal

(d) Systematic Trajectory at 1 sec/samplet

Figure 5.8: Systematic Trajectory at decreased sampling rate

60

0 200 400 600 800 1000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

time(Frame)

T
ra

je
ct

or
y

E
rr

or
(m

et
er

)

(a) Systematic Trajectory Error at 0.025

sec/samplet

0 50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.25

time(Frame)

T
ra

je
ct

or
y

E
rr

or
(m

et
er

)

(b) Systematic Trajectory Error at 0.1 sec/samplet

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time(Frame)

T
ra

je
ct

or
y

E
rr

or
(m

et
er

)

(c) Systematic Trajectory Error at 0.5 sec/samplet

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time(Frame)

T
ra

je
ct

or
y

E
rr

or
(m

et
er

)

(d) Systematic Trajectory Error at 1 sec/samplet

Figure 5.9: Systematic Trajectory Error at decreased sampling rate

5.2 Experiments

The hardware implementation of binary sensor system had been developed and con-

structed by Dr.Robert Cohn’s research group in University of Louisville. The system

includes a prototype transceiver module (shown in Fig 5.10) and an embedded micro-

controller system (shown in Fig 5.11). The sensor module is able to transmit and receive

LED pulsed signal and is tested in the chamber shown in Fig 2.2 as well as in the field.

61

The transmitter is a 4.3 mW infrared LED that is coupled to the output via a 0.5 inch

lens for beam shaping. The receiver is a silicon photodiode with an infrared filter for

the removal of the solar background and other visible light sources[cite University of

Louisville, Robert W.Cohn et al].

The embedded micro-controller system consists of a dsPIC33F digital signal micro-

controller, a Texas Instruments ADS1251 24-bit analog-to-digital(A/D) converter, a Mi-

crochip ENC28J60 stand-alone Ethernet controller, a National Semiconductor LMP7721

op-amp and Hamamastu S5821 photodiode. The signal from the sensor module is first

converted to voltage and amplified by photodiode amplifier, and then converts to digital

data through A/D converter, and passed to the micro-controller, the micro-controller

collects a cycle of 512 data samples and perform FFT on the stored data, sent to Eth-

ernet interface afterwards, then via TCP/IP protocol, the data would be transmitted to

PC through Ethernet, a LabVIEW program was written to display, record and analysis

the data. The data flow chart and a sample LabVIEW result is shown in Fig 5.12 and

5.13. Figures in this section are cite from University of Louisville, Robert W. Cohn, et

al.

62

Figure 5.10: Dual transmit/receive prototype sensor module

Figure 5.11: Embedded micro-controller system to process and transmit data

63

Figure 5.12: Illustration of data flow through the system

Figure 5.13: FFT of a 1.3kHz sine wave signal received in LabVIEW from the dsPIC
micro-controller via Ethernet

In order to be commercialize, the micro-controller board is integrated with sensor module

and the size is diminished to be packaged. The final version of the module is shown in

64

the following figure:

Figure 5.14: Packaged sensor module

One possible real life example is Fort Knox, shown in the following figure, 80 sensor

modules are deployed outside the building, established an security grid such that each

receiver sees at least 3 transmitter lines-of-sight. Transmitters are stationed around the

perimeter of the building with the deployment of 10 transmitters on each edge, and

receivers are positioned on the security fence correspondingly.

65

Figure 5.15: Aerial view of Fort Knox with possible deployment of sensor modules

66

Chapter 6

Conclusion and Future Work

6.1 Conclusion

We have developed a mathematical model for tracking target characteristics and trajec-

tory in binary sensor system has been achieved. By utilizing the geometric alignment of

links formed by binary sensors, with merely the information of intrusion timing sequence

and idle timing sequence collected by the binary sensors, we are able to calculate the

speed, size, and trajectory of the tracking target. Note that the model is under the

assumption of the speed being constant within three link intrusions and object being

circular shape.

We presented simulation illustrating the validation of the mathematical model. In the

simulation model, with evaluated the minimum sampling rates in space and time, estima-

tion results are close to the realistic values with errors of no greater than one percent.

67

We further analyse how the quantization noise in temporal domain would affect the

estimation results based on the simulation model.

A systematic simulation and hardware implementation of the binary sensor network

tracking system have been attained. The binary sensor network system can be used in

real world surveillance at a relative low cost.

6.2 Future Work

As the requirements for tracking and surveillance increased, the exiting algorithm may

be not enough. One direction of future work is to develop the calculation model of

other kinds of link deployment, such that less amount of binary sensors are needed for

characteristic calculation and the deployment of sensors can be more scatter and random.

Formulate a linear algebraic representation of the mathematics so we can apply to larger

arrays and higher order trajectories with more shape characteristics. Another research

direction is to enable multi-object tracking and identification. This is an essential area

in surveillance system and different paper proposed different algorithms including the

hidden Markov model, etc. The binary sensor surveillance system may have a extended

market with the improvement of tracking algorithm.

68

Appendix A

MATLAB CODE

%simulation

clear all;

R=0.02; % radius meters

Tx=1; % meters

Ty=1.14; % meters

Nx=100*5; % pixels

My=114*5; % pixels

x0=0;

y0=0.46;

vx=.04; % m/s

vy=0; % m/s

dt=0.01; % sample period seconds

OTheta=atan2(abs(vy),vx);% object intrusion angle

OPath=Tx/abs(cos(OTheta));% path length

V=sqrt(vx.^2+vy.^2);

Tw=OPath/V;

Nframes=floor(Tw/dt);

dmdy=My/Ty;dndx=Nx/Tx;

A1=ones(My,Nx);

A2=ones(My,Nx);

dash1=0;

dash0=0;

ix1=81; ix2=190; ix3=(305); ix4=400;% position of sensors in pixels

69

iy1=0; iy2=114*5;

B11 = DrawDashLine(A2,ix1,iy1,ix1,iy2,dash1,dash0);

B12 = DrawDashLine(A2,ix1,iy1,ix2,iy2,dash1,dash0);

B13 = DrawDashLine(A2,ix1,iy1,ix3,iy2,dash1,dash0);

B14 = DrawDashLine(A2,ix1,iy1,ix4,iy2,dash1,dash0);

B21 = DrawDashLine(A2,ix2,iy1,ix1,iy2,dash1,dash0);

B22 = DrawDashLine(A2,ix2,iy1,ix2,iy2,dash1,dash0);

B23 = DrawDashLine(A2,ix2,iy1,ix3,iy2,dash1,dash0);

B24 = DrawDashLine(A2,ix2,iy1,ix4,iy2,dash1,dash0);

B31 = DrawDashLine(A2,ix3,iy1,ix1,iy2,dash1,dash0);

B32 = DrawDashLine(A2,ix3,iy1,ix2,iy2,dash1,dash0);

B33 = DrawDashLine(A2,ix3,iy1,ix3,iy2,dash1,dash0);

B34 = DrawDashLine(A2,ix3,iy1,ix4,iy2,dash1,dash0);

B41 = DrawDashLine(A2,ix4,iy1,ix1,iy2,dash1,dash0);

B42 = DrawDashLine(A2,ix4,iy1,ix2,iy2,dash1,dash0);

B43 = DrawDashLine(A2,ix4,iy1,ix3,iy2,dash1,dash0);

B44 = DrawDashLine(A2,ix4,iy1,ix4,iy2,dash1,dash0);

A2=B11.*B12.*B13.*B14.*B21.*B22.*B23.*...

B24.*B31.*B32.*B33.*B34.*B41.*B42.*B43.*B44;

% A2=B11.*B14.*B44;

A3=ones(My,Nx);

T=zeros(1,Nframes);

D11=zeros(1,Nframes);

D12=zeros(1,Nframes);

D13=zeros(1,Nframes);

D14=zeros(1,Nframes);

D21=zeros(1,Nframes);

D22=zeros(1,Nframes);

D23=zeros(1,Nframes);

D24=zeros(1,Nframes);

D31=zeros(1,Nframes);

D32=zeros(1,Nframes);

D33=zeros(1,Nframes);

D34=zeros(1,Nframes);

D41=zeros(1,Nframes);

D42=zeros(1,Nframes);

D43=zeros(1,Nframes);

D44=zeros(1,Nframes);

P1=zeros(1,Nframes);

P2=zeros(1,Nframes);

70

P3=zeros(1,Nframes);

P4=zeros(1,Nframes);

P5=zeros(1,Nframes);

P6=zeros(1,Nframes);

P7=zeros(1,Nframes);

P8=zeros(1,Nframes);

P9=zeros(1,Nframes);

P10=zeros(1,Nframes);

for it=1:Nframes

t=it*dt; % seconds

x=vx*t+x0;

y=vy*t+y0;

ix=floor(dndx*x+0.5);

iy=floor(dmdy*y+0.5);

A11=A1;

iR=floor(dndx*R+0.5);

A = DrawCircle(A11,ix,iy,iR,0);

figure(1);

imagesc(A);

colormap gray;

figure(2);

colormap gray;

imagesc(A2);

A3=(1-A).*(1-A2);

figure(3);

colormap gray;

imagesc(A3);

if max(max(A3))==1

T(it)=1;

end

figure(4);

plot(T);

axis([0 Nframes -0.2 1.2]);

C11=(1-A).*(1-B11);

if max(max(C11))==1

D11(it)=1;

end

C12=(1-A).*(1-B12);

if max(max(C12))==1

D12(it)=1;

end

C13=(1-A).*(1-B13);

71

if max(max(C13))==1

D13(it)=1;

end

C14=(1-A).*(1-B14);

if max(max(C14))==1

D14(it)=1;

end

C21=(1-A).*(1-B21);

if max(max(C21))==1

D21(it)=1;

end

C22=(1-A).*(1-B22);

if max(max(C22))==1

D22(it)=1;

end

C23=(1-A).*(1-B23);

if max(max(C23))==1

D23(it)=1;

end

C24=(1-A).*(1-B24);

if max(max(C24))==1

D24(it)=1;

end

C31=(1-A).*(1-B31);

if max(max(C31))==1

D31(it)=1;

end

C32=(1-A).*(1-B32);

if max(max(C32))==1

D32(it)=1;

end

C33=(1-A).*(1-B33);

if max(max(C33))==1

D33(it)=1;

end

C34=(1-A).*(1-B34);

if max(max(C34))==1

D34(it)=1;

end

C41=(1-A).*(1-B41);

if max(max(C41))==1

72

D41(it)=1;

end

C42=(1-A).*(1-B42);

if max(max(C42))==1

D42(it)=1;

end

C43=(1-A).*(1-B43);

if max(max(C43))==1

D43(it)=1;

end

C44=(1-A).*(1-B44);

if max(max(C44))==1

D44(it)=1;

end

E1=(1-A).*(1-B11.*B21.*B22);

if max(max(E1))==1

P1(it)=1;

end

E2=(1-A).*(1-B11.*B21.*B23);

if max(max(E2))==1

P2(it)=1;

end

E3=(1-A).*(1-B11.*B21.*B24);

if max(max(E3))==1

P3(it)=1;

end

E4=(1-A).*(1-B11.*B31.*B33);

if max(max(E4))==1

P4(it)=1;

end

E5=(1-A).*(1-B11.*B31.*B34);

if max(max(E5))==1

P5(it)=1;

end

E6=(1-A).*(1-B11.*B41.*B44);

if max(max(E6))==1

P6(it)=1;

end

E7=(1-A).*(1-B22.*B32.*B33);

if max(max(E7))==1

P7(it)=1;

end

73

E8=(1-A).*(1-B22.*B32.*B34);

if max(max(E8))==1

P8(it)=1;

end

E9=(1-A).*(1-B22.*B42.*B44);

if max(max(E9))==1

P9(it)=1;

end

E10=(1-A).*(1-B33.*B43.*B44);

if max(max(E10))==1

P10(it)=1;

end

end; % for t

i=1:Nframes;

figure(5)

plot(i,T);

axis([0 Nframes -0.2 1.2]);

hold on

plot(i,0.9*[D11;D12;D13;D14;D21;D22;D23;...

D24;D31;D32;D33;D34;D41;D42;D43;D44])

figure(6);

plot(P1);

axis([0 Nframes -0.2 1.2]);

figure(7);

plot(P2);

axis([0 Nframes -0.2 1.2]);

figure(8);

plot(P3);

axis([0 Nframes -0.2 1.2]);

figure(9);

plot(P4);

axis([0 Nframes -0.2 1.2]);

figure(10);

plot(P5);

axis([0 Nframes -0.2 1.2]);

figure(11);

plot(P6);

axis([0 Nframes -0.2 1.2]);

figure(12);

plot(P7);

74

axis([0 Nframes -0.2 1.2]);

figure(13);

plot(P8);

axis([0 Nframes -0.2 1.2]);

figure(14);

plot(P9);

axis([0 Nframes -0.2 1.2]);

figure(15);

plot(P10);

axis([0 Nframes -0.2 1.2]);

%calculation

Vs = zeros(1,10);

Rs = zeros(1,10);

VX = zeros(1,10);

VY = zeros(1,10);

%1

d0 = zeros(1,3);

d1 = zeros(1,3);

a = 1;

for i = 1:1:3

for j=a:Nframes

if P1(j)==0

d0(i)=d0(i)+1;

elseif P1(j)==1

a=j;

break

end

end

for j=a:Nframes

if P1(j)==1

d1(i)=d1(i)+1;

elseif P1(j)==0

a=j;

break

end

end

end

t00 = d0(1);

t0 = d1(1);

75

t01 = d0(2);

t1 = d1(2);

t12 = d0(3);

t2 = d1(3);

T00=t00.*dt;

T0=t0.*dt;

T01=t01.*dt;

T1=t1.*dt;

T12=t12.*dt;

T2=t2.*dt;

Ix1=ix1; Ix2=ix1; Ix3=ix2; Ix4=ix2;%

Theta0R=atan2(iy2,Ix1-Ix2);

Theta1R=atan2(iy2,Ix3-Ix2);

Theta2R=atan2(iy2,Ix3-Ix4);

Theta01=abs(Theta0R-Theta1R);

Theta12=abs(Theta1R-Theta2R);

Theta0=atan2(sin(Theta01),(T0./T1-cos(Theta01)));

Theta1=atan2(sin(Theta01),(T1./T0-cos(Theta01)));

Theta1_1=atan2(sin(Theta12),(T1./T2-cos(Theta12)));

Theta2=atan2(sin(Theta12),(T2./T1-cos(Theta12)));

G=(1./sin(Theta1)+1./sin(Theta2)+2*T12./(T1.*sin(Theta1)))...

/(1./sin(Theta0)+1./sin(Theta1)+2.*T01/(T0.*sin(Theta0)));

D1=Ty/sin(Theta1R);

L01=D1./(sin(Theta0)./sin(Theta01)+G.*sin(Theta2)./sin(Theta12));

L12=D1.*G./(sin(Theta0)./sin(Theta01)+G.*sin(Theta2)./sin(Theta12));

Vs(1)=L01./(T01+T0./2+T0.*sin(Theta0)./(2.*sin(Theta1)));

Rs(1)=Vs(1).*T0.*sin(Theta0)./2;

VX(1)=Vs(1).*cos(Theta0+Theta0R-pi);

VY(1)=Vs(1).*sin(Theta0+Theta0R-pi);

%2

d0 = zeros(1,3);

d1 = zeros(1,3);

a = 1;

for i = 1:1:3

76

for j=a:Nframes

if P2(j)==0

d0(i)=d0(i)+1;

elseif P2(j)==1

a=j;

break

end

end

for j=a:Nframes

if P2(j)==1

d1(i)=d1(i)+1;

elseif P2(j)==0

a=j;

break

end

end

end

t00 = d0(1);

t0 = d1(1);

t01 = d0(2);

t1 = d1(2);

t12 = d0(3);

t2 = d1(3);

T00=t00.*dt;

T0=t0.*dt;

T01=t01.*dt;

T1=t1.*dt;

T12=t12.*dt;

T2=t2.*dt;

Ix1=ix1; Ix2=ix1; Ix3=ix2; Ix4=ix3;%

Theta0R=atan2(iy2,Ix1-Ix2);

Theta1R=atan2(iy2,Ix3-Ix2);

Theta2R=atan2(iy2,Ix3-Ix4);

Theta01=abs(Theta0R-Theta1R);

Theta12=abs(Theta1R-Theta2R);

77

Theta0=atan2(sin(Theta01),(T0./T1-cos(Theta01)));

Theta1=atan2(sin(Theta01),(T1./T0-cos(Theta01)));

Theta1_1=atan2(sin(Theta12),(T1./T2-cos(Theta12)));

Theta2=atan2(sin(Theta12),(T2./T1-cos(Theta12)));

G=(1./sin(Theta1)+1./sin(Theta2)+2*T12./(T1.*sin(Theta1)))...

/(1./sin(Theta0)+1./sin(Theta1)+2.*T01/(T0.*sin(Theta0)));

D1=Ty/sin(Theta1R);

L01=D1./(sin(Theta0)./sin(Theta01)+G.*sin(Theta2)./sin(Theta12));

L12=D1.*G./(sin(Theta0)./sin(Theta01)+G.*sin(Theta2)./sin(Theta12));

Vs(2)=L01./(T01+T0./2+T0.*sin(Theta0)./(2.*sin(Theta1)));

Rs(2)=Vs(2).*T0.*sin(Theta0)./2;

VX(2)=Vs(2).*cos(Theta0+Theta0R-pi);

VY(2)=Vs(2).*sin(Theta0+Theta0R-pi);

%3

d0 = zeros(1,3);

d1 = zeros(1,3);

a = 1;

for i = 1:1:3

for j=a:Nframes

if P3(j)==0

d0(i)=d0(i)+1;

elseif P3(j)==1

a=j;

break

end

end

for j=a:Nframes

if P3(j)==1

d1(i)=d1(i)+1;

elseif P3(j)==0

a=j;

break

end

end

end

t00 = d0(1);

t0 = d1(1);

t01 = d0(2);

78

t1 = d1(2);

t12 = d0(3);

t2 = d1(3);

T00=t00.*dt;

T0=t0.*dt;

T01=t01.*dt;

T1=t1.*dt;

T12=t12.*dt;

T2=t2.*dt;

Ix1=ix1; Ix2=ix1; Ix3=ix2; Ix4=ix4;%

Theta0R=atan2(iy2,Ix1-Ix2);

Theta1R=atan2(iy2,Ix3-Ix2);

Theta2R=atan2(iy2,Ix3-Ix4);

Theta01=abs(Theta0R-Theta1R);

Theta12=abs(Theta1R-Theta2R);

Theta0=atan2(sin(Theta01),(T0./T1-cos(Theta01)));

Theta1=atan2(sin(Theta01),(T1./T0-cos(Theta01)));

Theta1_1=atan2(sin(Theta12),(T1./T2-cos(Theta12)));

Theta2=atan2(sin(Theta12),(T2./T1-cos(Theta12)));

G=(1./sin(Theta1)+1./sin(Theta2)+2*T12./(T1.*sin(Theta1)))...

/(1./sin(Theta0)+1./sin(Theta1)+2.*T01/(T0.*sin(Theta0)));

D1=Ty/sin(Theta1R);

L01=D1./(sin(Theta0)./sin(Theta01)+G.*sin(Theta2)./sin(Theta12));

L12=D1.*G./(sin(Theta0)./sin(Theta01)+G.*sin(Theta2)./sin(Theta12));

Vs(3)=L01./(T01+T0./2+T0.*sin(Theta0)./(2.*sin(Theta1)));

Rs(3)=Vs(3).*T0.*sin(Theta0)./2;

VX(3)=Vs(3).*cos(Theta0+Theta0R-pi);

VY(3)=Vs(3).*sin(Theta0+Theta0R-pi);

%4

d0 = zeros(1,3);

d1 = zeros(1,3);

a = 1;

for i = 1:1:3

for j=a:Nframes

if P4(j)==0

79

d0(i)=d0(i)+1;

elseif P4(j)==1

a=j;

break

end

end

for j=a:Nframes

if P4(j)==1

d1(i)=d1(i)+1;

elseif P4(j)==0

a=j;

break

end

end

end

t00 = d0(1);

t0 = d1(1);

t01 = d0(2);

t1 = d1(2);

t12 = d0(3);

t2 = d1(3);

T00=t00.*dt;

T0=t0.*dt;

T01=t01.*dt;

T1=t1.*dt;

T12=t12.*dt;

T2=t2.*dt;

Ix1=ix1; Ix2=ix1; Ix3=ix3; Ix4=ix3;%

Theta0R=atan2(iy2,Ix1-Ix2);

Theta1R=atan2(iy2,Ix3-Ix2);

Theta2R=atan2(iy2,Ix3-Ix4);

Theta01=abs(Theta0R-Theta1R);

Theta12=abs(Theta1R-Theta2R);

Theta0=atan2(sin(Theta01),(T0./T1-cos(Theta01)));

Theta1=atan2(sin(Theta01),(T1./T0-cos(Theta01)));

80

Theta1_1=atan2(sin(Theta12),(T1./T2-cos(Theta12)));

Theta2=atan2(sin(Theta12),(T2./T1-cos(Theta12)));

G=(1./sin(Theta1)+1./sin(Theta2)+2*T12./(T1.*sin(Theta1)))...

/(1./sin(Theta0)+1./sin(Theta1)+2.*T01/(T0.*sin(Theta0)));

D1=Ty/sin(Theta1R);

L01=D1./(sin(Theta0)./sin(Theta01)+G.*sin(Theta2)./sin(Theta12));

L12=D1.*G./(sin(Theta0)./sin(Theta01)+G.*sin(Theta2)./sin(Theta12));

Vs(4)=L01./(T01+T0./2+T0.*sin(Theta0)./(2.*sin(Theta1)));

Rs(4)=Vs(4).*T0.*sin(Theta0)./2;

VX(4)=Vs(4).*cos(Theta0+Theta0R-pi);

VY(4)=Vs(4).*sin(Theta0+Theta0R-pi);

%5

d0 = zeros(1,3);

d1 = zeros(1,3);

a = 1;

for i = 1:1:3

for j=a:Nframes

if P5(j)==0

d0(i)=d0(i)+1;

elseif P5(j)==1

a=j;

break

end

end

for j=a:Nframes

if P5(j)==1

d1(i)=d1(i)+1;

elseif P5(j)==0

a=j;

break

end

end

end

t00 = d0(1);

t0 = d1(1);

t01 = d0(2);

t1 = d1(2);

t12 = d0(3);

81

t2 = d1(3);

T00=t00.*dt;

T0=t0.*dt;

T01=t01.*dt;

T1=t1.*dt;

T12=t12.*dt;

T2=t2.*dt;

Ix1=ix1; Ix2=ix1; Ix3=ix3; Ix4=ix4;%

Theta0R=atan2(iy2,Ix1-Ix2);

Theta1R=atan2(iy2,Ix3-Ix2);

Theta2R=atan2(iy2,Ix3-Ix4);

Theta01=abs(Theta0R-Theta1R);

Theta12=abs(Theta1R-Theta2R);

Theta0=atan2(sin(Theta01),(T0./T1-cos(Theta01)));

Theta1=atan2(sin(Theta01),(T1./T0-cos(Theta01)));

Theta1_1=atan2(sin(Theta12),(T1./T2-cos(Theta12)));

Theta2=atan2(sin(Theta12),(T2./T1-cos(Theta12)));

G=(1./sin(Theta1)+1./sin(Theta2)+2*T12./(T1.*sin(Theta1)))...

/(1./sin(Theta0)+1./sin(Theta1)+2.*T01/(T0.*sin(Theta0)));

D1=Ty/sin(Theta1R);

L01=D1./(sin(Theta0)./sin(Theta01)+G.*sin(Theta2)./sin(Theta12));

L12=D1.*G./(sin(Theta0)./sin(Theta01)+G.*sin(Theta2)./sin(Theta12));

Vs(5)=L01./(T01+T0./2+T0.*sin(Theta0)./(2.*sin(Theta1)));

Rs(5)=Vs(5).*T0.*sin(Theta0)./2;

VX(5)=Vs(5).*cos(Theta0+Theta0R-pi);

VY(5)=Vs(5).*sin(Theta0+Theta0R-pi);

%6

d0 = zeros(1,3);

d1 = zeros(1,3);

a = 1;

for i = 1:1:3

for j=a:Nframes

if P6(j)==0

d0(i)=d0(i)+1;

elseif P6(j)==1

82

a=j;

break

end

end

for j=a:Nframes

if P6(j)==1

d1(i)=d1(i)+1;

elseif P6(j)==0

a=j;

break

end

end

end

t00 = d0(1);

t0 = d1(1);

t01 = d0(2);

t1 = d1(2);

t12 = d0(3);

t2 = d1(3);

T00=t00.*dt;

T0=t0.*dt;

T01=t01.*dt;

T1=t1.*dt;

T12=t12.*dt;

T2=t2.*dt;

Ix1=ix1; Ix2=ix1; Ix3=ix4; Ix4=ix4;%

Theta0R=atan2(iy2,Ix1-Ix2);

Theta1R=atan2(iy2,Ix3-Ix2);

Theta2R=atan2(iy2,Ix3-Ix4);

Theta01=abs(Theta0R-Theta1R);

Theta12=abs(Theta1R-Theta2R);

Theta0=atan2(sin(Theta01),(T0./T1-cos(Theta01)));

Theta1=atan2(sin(Theta01),(T1./T0-cos(Theta01)));

Theta1_1=atan2(sin(Theta12),(T1./T2-cos(Theta12)));

Theta2=atan2(sin(Theta12),(T2./T1-cos(Theta12)));

83

G=(1./sin(Theta1)+1./sin(Theta2)+2*T12./(T1.*sin(Theta1)))...

/(1./sin(Theta0)+1./sin(Theta1)+2.*T01/(T0.*sin(Theta0)));

D1=Ty/sin(Theta1R);

L01=D1./(sin(Theta0)./sin(Theta01)+G.*sin(Theta2)./sin(Theta12));

L12=D1.*G./(sin(Theta0)./sin(Theta01)+G.*sin(Theta2)./sin(Theta12));

Vs(6)=L01./(T01+T0./2+T0.*sin(Theta0)./(2.*sin(Theta1)));

Rs(6)=Vs(6).*T0.*sin(Theta0)./2;

VX(6)=Vs(6).*cos(Theta0+Theta0R-pi);

VY(6)=Vs(6).*sin(Theta0+Theta0R-pi);

%7

d0 = zeros(1,3);

d1 = zeros(1,3);

a = 1;

for i = 1:1:3

for j=a:Nframes

if P7(j)==0

d0(i)=d0(i)+1;

elseif P7(j)==1

a=j;

break

end

end

for j=a:Nframes

if P7(j)==1

d1(i)=d1(i)+1;

elseif P7(j)==0

a=j;

break

end

end

end

t00 = d0(1);

t0 = d1(1);

t01 = d0(2);

t1 = d1(2);

t12 = d0(3);

t2 = d1(3);

84

T00=t00.*dt;

T0=t0.*dt;

T01=t01.*dt;

T1=t1.*dt;

T12=t12.*dt;

T2=t2.*dt;

Ix1=ix2; Ix2=ix2; Ix3=ix3; Ix4=ix3;%

Theta0R=atan2(iy2,Ix1-Ix2);

Theta1R=atan2(iy2,Ix3-Ix2);

Theta2R=atan2(iy2,Ix3-Ix4);

Theta01=abs(Theta0R-Theta1R);

Theta12=abs(Theta1R-Theta2R);

Theta0=atan2(sin(Theta01),(T0./T1-cos(Theta01)));

Theta1=atan2(sin(Theta01),(T1./T0-cos(Theta01)));

Theta1_1=atan2(sin(Theta12),(T1./T2-cos(Theta12)));

Theta2=atan2(sin(Theta12),(T2./T1-cos(Theta12)));

G=(1./sin(Theta1)+1./sin(Theta2)+2*T12./(T1.*sin(Theta1)))...

/(1./sin(Theta0)+1./sin(Theta1)+2.*T01/(T0.*sin(Theta0)));

D1=Ty/sin(Theta1R);

L01=D1./(sin(Theta0)./sin(Theta01)+G.*sin(Theta2)./sin(Theta12));

L12=D1.*G./(sin(Theta0)./sin(Theta01)+G.*sin(Theta2)./sin(Theta12));

Vs(7)=L01./(T01+T0./2+T0.*sin(Theta0)./(2.*sin(Theta1)));

Rs(7)=Vs(7).*T0.*sin(Theta0)./2;

VX(7)=Vs(7).*cos(Theta0+Theta0R-pi);

VY(7)=Vs(7).*sin(Theta0+Theta0R-pi);

%8

d0 = zeros(1,3);

d1 = zeros(1,3);

a = 1;

for i = 1:1:3

for j=a:Nframes

if P8(j)==0

d0(i)=d0(i)+1;

elseif P8(j)==1

a=j;

break

end

85

end

for j=a:Nframes

if P8(j)==1

d1(i)=d1(i)+1;

elseif P8(j)==0

a=j;

break

end

end

end

t00 = d0(1);

t0 = d1(1);

t01 = d0(2);

t1 = d1(2);

t12 = d0(3);

t2 = d1(3);

T00=t00.*dt;

T0=t0.*dt;

T01=t01.*dt;

T1=t1.*dt;

T12=t12.*dt;

T2=t2.*dt;

Ix1=ix2; Ix2=ix2; Ix3=ix3; Ix4=ix4;%

Theta0R=atan2(iy2,Ix1-Ix2);

Theta1R=atan2(iy2,Ix3-Ix2);

Theta2R=atan2(iy2,Ix3-Ix4);

Theta01=abs(Theta0R-Theta1R);

Theta12=abs(Theta1R-Theta2R);

Theta0=atan2(sin(Theta01),(T0./T1-cos(Theta01)));

Theta1=atan2(sin(Theta01),(T1./T0-cos(Theta01)));

Theta1_1=atan2(sin(Theta12),(T1./T2-cos(Theta12)));

Theta2=atan2(sin(Theta12),(T2./T1-cos(Theta12)));

G=(1./sin(Theta1)+1./sin(Theta2)+2*T12./(T1.*sin(Theta1)))...

/(1./sin(Theta0)+1./sin(Theta1)+2.*T01/(T0.*sin(Theta0)));

D1=Ty/sin(Theta1R);

86

L01=D1./(sin(Theta0)./sin(Theta01)+G.*sin(Theta2)./sin(Theta12));

L12=D1.*G./(sin(Theta0)./sin(Theta01)+G.*sin(Theta2)./sin(Theta12));

Vs(8)=L01./(T01+T0./2+T0.*sin(Theta0)./(2.*sin(Theta1)));

Rs(8)=Vs(8).*T0.*sin(Theta0)./2;

VX(8)=Vs(8).*cos(Theta0+Theta0R-pi);

VY(8)=Vs(8).*sin(Theta0+Theta0R-pi);

%9

d0 = zeros(1,3);

d1 = zeros(1,3);

a = 1;

for i = 1:1:3

for j=a:Nframes

if P9(j)==0

d0(i)=d0(i)+1;

elseif P9(j)==1

a=j;

break

end

end

for j=a:Nframes

if P9(j)==1

d1(i)=d1(i)+1;

elseif P9(j)==0

a=j;

break

end

end

end

t00 = d0(1);

t0 = d1(1);

t01 = d0(2);

t1 = d1(2);

t12 = d0(3);

t2 = d1(3);

T00=t00.*dt;

T0=t0.*dt;

T01=t01.*dt;

87

T1=t1.*dt;

T12=t12.*dt;

T2=t2.*dt;

Ix1=ix2; Ix2=ix2; Ix3=ix4; Ix4=ix4;%

Theta0R=atan2(iy2,Ix1-Ix2);

Theta1R=atan2(iy2,Ix3-Ix2);

Theta2R=atan2(iy2,Ix3-Ix4);

Theta01=abs(Theta0R-Theta1R);

Theta12=abs(Theta1R-Theta2R);

Theta0=atan2(sin(Theta01),(T0./T1-cos(Theta01)));

Theta1=atan2(sin(Theta01),(T1./T0-cos(Theta01)));

Theta1_1=atan2(sin(Theta12),(T1./T2-cos(Theta12)));

Theta2=atan2(sin(Theta12),(T2./T1-cos(Theta12)));

G=(1./sin(Theta1)+1./sin(Theta2)+2*T12./(T1.*sin(Theta1)))...

/(1./sin(Theta0)+1./sin(Theta1)+2.*T01/(T0.*sin(Theta0)));

D1=Ty/sin(Theta1R);

L01=D1./(sin(Theta0)./sin(Theta01)+G.*sin(Theta2)./sin(Theta12));

L12=D1.*G./(sin(Theta0)./sin(Theta01)+G.*sin(Theta2)./sin(Theta12));

Vs(9)=L01./(T01+T0./2+T0.*sin(Theta0)./(2.*sin(Theta1)));

Rs(9)=Vs(9).*T0.*sin(Theta0)./2;

VX(9)=Vs(9).*cos(Theta0+Theta0R-pi);

VY(9)=Vs(9).*sin(Theta0+Theta0R-pi);

%10

d0 = zeros(1,3);

d1 = zeros(1,3);

a = 1;

for i = 1:1:3

for j=a:Nframes

if P10(j)==0

d0(i)=d0(i)+1;

elseif P10(j)==1

a=j;

break

end

end

for j=a:Nframes

if P10(j)==1

88

d1(i)=d1(i)+1;

elseif P10(j)==0

a=j;

break

end

end

end

t00 = d0(1);

t0 = d1(1);

t01 = d0(2);

t1 = d1(2);

t12 = d0(3);

t2 = d1(3);

T00=t00.*dt;

T0=t0.*dt;

T01=t01.*dt;

T1=t1.*dt;

T12=t12.*dt;

T2=t2.*dt;

Ix1=ix3; Ix2=ix3; Ix3=ix4; Ix4=ix4;%

Theta0R=atan2(iy2,Ix1-Ix2);

Theta1R=atan2(iy2,Ix3-Ix2);

Theta2R=atan2(iy2,Ix3-Ix4);

Theta01=abs(Theta0R-Theta1R);

Theta12=abs(Theta1R-Theta2R);

Theta0=atan2(sin(Theta01),(T0./T1-cos(Theta01)));

Theta1=atan2(sin(Theta01),(T1./T0-cos(Theta01)));

Theta1_1=atan2(sin(Theta12),(T1./T2-cos(Theta12)));

Theta2=atan2(sin(Theta12),(T2./T1-cos(Theta12)));

G=(1./sin(Theta1)+1./sin(Theta2)+2*T12./(T1.*sin(Theta1)))...

/(1./sin(Theta0)+1./sin(Theta1)+2.*T01/(T0.*sin(Theta0)));

D1=Ty/sin(Theta1R);

L01=D1./(sin(Theta0)./sin(Theta01)+G.*sin(Theta2)./sin(Theta12));

L12=D1.*G./(sin(Theta0)./sin(Theta01)+G.*sin(Theta2)./sin(Theta12));

89

Vs(10)=L01./(T01+T0./2+T0.*sin(Theta0)./(2.*sin(Theta1)));

Rs(10)=Vs(10).*T0.*sin(Theta0)./2;

VX(10)=Vs(10).*cos(Theta0+Theta0R-pi);

VY(10)=Vs(10).*sin(Theta0+Theta0R-pi);

%Trajectory

ET = [find(P1,1,’last’) find(P2,1,’last’) find(P3,1,’last’) find(P4,1,’last’)...

find(P5,1,’last’) find(P6,1,’last’) find(P7,1,’last’) find(P8,1,’last’)...

find(P9,1,’last’) find(P10,1,’last’)];

[s ind] = sort(ET);

%SpeedX

SpeedX=zeros(1,Nframes);

SpeedX(1:s(1))=VX(ind(1));

SpeedX(s(1)+1:s(2))=mean([VX(ind(1)) VX(ind(2))]);

SpeedX(s(2)+1:s(3))=mean([VX(ind(1)) VX(ind(2)) VX(ind(3))]);

SpeedX(s(3)+1:s(4))=mean([VX(ind(1)) VX(ind(2)) VX(ind(3)) VX(ind(4)) VX(ind(5))]);

SpeedX(s(5)+1:s(6))=mean([VX(ind(1)) VX(ind(2)) VX(ind(3)) VX(ind(4)) VX(ind(5))...

VX(ind(6)) VX(ind(7))]);

SpeedX(s(6)+1:s(7))=mean([VX(ind(1)) VX(ind(2)) VX(ind(3)) VX(ind(4)) VX(ind(5))...

VX(ind(6)) VX(ind(7)) VX(ind(8)) VX(ind(9)) VX(ind(10))]);

SpeedX(s(7)+1:Nframes)=SpeedX(s(7));

IdealSpeedX=vx;

%SpeedY

SpeedY=zeros(1,Nframes);

SpeedY(1:s(1))=VY(ind(1));

SpeedY(s(1)+1:s(2))=mean([VY(ind(1)) VY(ind(2))]);

SpeedY(s(2)+1:s(3))=mean([VY(ind(1)) VY(ind(2)) VY(ind(3))]);

SpeedY(s(3)+1:s(4))=mean([VY(ind(1)) VY(ind(2)) VY(ind(3)) VY(ind(4)) VY(ind(5))]);

SpeedY(s(5)+1:s(6))=mean([VY(ind(1)) VY(ind(2)) VY(ind(3)) VY(ind(4)) VY(ind(5))...

VY(ind(6)) VY(ind(7))]);

SpeedY(s(6)+1:s(7))=mean([VY(ind(1)) VY(ind(2)) VY(ind(3)) VY(ind(4)) VY(ind(5))...

VY(ind(6)) VY(ind(7)) VY(ind(8)) VY(ind(9)) VY(ind(10))]);

SpeedY(s(7)+1:Nframes)=SpeedY(s(7));

%PositionX

PositionX=zeros(1,Nframes);

t=1:1:Nframes;

PositionX(1:Nframes)=(x0+SpeedX.*t.*dt);

IdealPositionX(1:Nframes)=(x0+vx*t(1:Nframes)*dt);

90

t=1:1:Nframes;

figure(16);

plot(t,PositionX,’-’,t,IdealPositionX,’:’);

legend(’Experimental’,’Ideal’,4);

axis([0 Nframes 0 1]);

xlabel(’time(Frame)’);

ylabel(’X Position(meter)’);

%PositionY

PositionY=zeros(1,Nframes);

t=1:1:Nframes;

PositionY(1:Nframes)=(1.14-y0+SpeedY.*t.*dt);

IdealPositionY(1:Nframes)=(1.14-y0+abs(vy)*t(1:Nframes)*dt);

t=1:1:Nframes;

figure(17);

plot(t,PositionY,’-’,t,IdealPositionY,’:’);

legend(’Experimental’,’Ideal’,4);

axis([0 Nframes 0 1.14]);

xlabel(’time(Frame)’);

ylabel(’Y Position(meter)’);

%Trajectory

figure(18);

plot(PositionX,PositionY,’-’,IdealPositionX,IdealPositionY,’r’);

legend(’Experimental’,’Ideal’,4);

axis([0 1 0 1.14]);

xlabel(’X Position(meter)’);

ylabel(’Y Position(meter)’);

%Position Error

PosError=zeros(1,Nframes);

PosError(1:Nframes)=sqrt((PositionX(1:Nframes)-IdealPositionX(1:Nframes))...

.^2+(PositionY(1:Nframes)-IdealPositionY(1:Nframes)).^2);

t=1:1:Nframes;

figure(19);

plot(t,PosError);

xlabel(’time(Frame)’);

ylabel(’Trajectory Error(meter)’);

%quantization noise model

N=100;

RV01=zeros(1,N);

91

RVX01=zeros(1,N);

RVY01=zeros(1,N);

RR0=zeros(1,N);

for i=1:1:N

DeltaT=1;

deltaE=DeltaT/sqrt(12);

FrameN=25/DeltaT;

Dt=deltaE.*(2*rand(1,FrameN)-1);

T00=t00.*dt+sum(Dt(1:round(t00*FrameN/2500)));

T0=t0.*dt+sum(Dt((round(t00*FrameN/2500)+1):round((t00+t0)*FrameN/2500)));

T01=t01.*dt+sum(Dt((round((t00+t0)*FrameN/2500)+1)...

:round((t00+t0+t01)*FrameN/2500)));

T1=t1.*dt+sum(Dt((round((t00+t0+t01)*FrameN/2500)+1)...

:round((t00+t0+t01+t1)*FrameN/2500)));

T12=t12.*dt+sum(Dt((round((t00+t0+t01+t1)*FrameN/2500)+1)...

:round((t00+t0+t01+t1+t12)*FrameN/2500)));

T2=t2.*dt+sum(Dt((round((t00+t0+t01+t1+t12)*FrameN/2500)+1)...

:round((t00+t0+t01+t1+t12+t2)*FrameN/2500)));

Theta0R=atan2(iy2,ix1-ix2);

Theta1R=atan2(iy2,ix3-ix2);

Theta2R=atan2(iy2,ix3-ix4);

Theta01=abs(Theta0R-Theta1R);

Theta12=abs(Theta1R-Theta2R);

Theta0=atan2(sin(Theta01),(T0./T1-cos(Theta01)));

Theta1=atan2(sin(Theta01),(T1./T0-cos(Theta01)));

Theta1_1=atan2(sin(Theta12),(T1./T2-cos(Theta12)));

Theta2=atan2(sin(Theta12),(T2./T1-cos(Theta12)));

G=(1./sin(Theta1)+1./sin(Theta2)+2*T12./(T1.*sin(Theta1)))...

/(1./sin(Theta0)+1./sin(Theta1)+2.*T01/(T0.*sin(Theta0)));

D1=Ty/sin(Theta1R);

L01=D1./(sin(Theta0)./sin(Theta01)+G.*sin(Theta2)./sin(Theta12));

L12=D1.*G./(sin(Theta0)./sin(Theta01)+G.*sin(Theta2)./sin(Theta12));

V01=L01./(T01+T0./2+T0.*sin(Theta0)./(2.*sin(Theta1)));

R0=V01.*T0.*sin(Theta0)./2;

VX01=V01.*cos(Theta0+Theta0R-pi);

92

VY01=V01.*sin(Theta0+Theta0R-pi);

RV01(i)=V01;

RVX01(i)=VX01;

RVY01(i)=VY01;

RR0(i)=R0;

end

figure(5)

plot(RV01)

xlabel(’(times)’)

ylabel(’(m/s)’)

figure(6)

plot(RVX01)

xlabel(’(times)’)

ylabel(’(m/s)’)

figure(7)

plot(RVY01)

xlabel(’(times)’)

ylabel(’(m/s)’)

figure(8)

plot(RR0)

xlabel(’(times)’)

ylabel(’(m)’)

%function DrawDashLine cite http://www.engr.uky.edu/~lgh/soft/matlab/DrawDashLine.m

function [B] = DrawDashLine(A,x1,y1,x2,y2,dash1,dash0)

B=A;

[My,Nx]=size(B);

% find out which dimension is the domain

dx=(x2-x1);

dy=(y2-y1);

ihorizvert=1; % dy > dx

if abs(dx)>abs(dy)

ihorizvert=0;

end;

if ihorizvert==0 %horizontal domain

toggle=0;

a=dy/dx;b=y1-a*x1;

for x=x1:x2

y=a*x+b;

y=floor(y+0.5);

93

if x>0

if y>0

if x<=Nx

if y<=My

if toggle==0

B(y,x)=dash0;

toggle=1;

else

B(y,x)=dash1;

toggle=0;

end;

end; % if y<=My

end; % if x<=Nx

end; % if y>0

end; % if x>0

end; % for x

else % vertical domain

toggle=0;

a=dx/dy;b=x1-a*y1;

for y=y1:y2

x=a*y+b;

x=floor(x+0.5);

if x>0

if y>0

if x<=Nx

if y<=My

if toggle==0

B(y,x)=dash0;

toggle=1;

else

B(y,x)=dash1;

toggle=0;

end;

end; % if y<=My

end; % if x<=Nx

end; % if y>0

end; % if x>0

end; % for x

end; % end of vertical domain

end

%function DrawCircle cite http://www.engr.uky.edu/~lgh

function [B] = DrawCircle(A,xc,yc,iR,ivalue)

94

B=A;

[My,Nx]=size(B);

iR0=-floor(iR);

iR1=iR0+2*iR;

for x=iR0:iR1

for y=iR0:iR1

r=(x)*(x)+(y)*(y);

r=sqrt(r);

if(r<=iR)

ix=floor(x+xc);iy=floor(y+yc);

if ix>=1

if ix<=Nx

if iy>=1

if iy<=My

%

B(iy,ix)=ivalue;

end; % y<=My

end; %y>=1

end; %x<=Nx

end; % x>=1

end; % if r<R

end; % for y

end; % for x

end

95

Bibliography

[1] A. Sinha and D. Brady. Size and shape recognition using measurement statistics
and random 3d reference structures. Optics Express, 11(20):2606–2618, 2003.

[2] D.J. Brady, N.P. Pitsianis, and X. Sun. Reference structure tomography. JOSA A,
21(7):1140–1147, 2004.

[3] U. Gopinathan, DJ Brady, and NP Pitsianis. Coded apertures for efficient pyro-
electric motion tracking. Optics Express, 11(18):2142–2152, 2003.

[4] Y. Zheng, D.J. Brady, and P.K. Agarwal. Localization using boundary sensors: An
analysis based on graph theory. ACM Transactions on Sensor Networks (TOSN),
3(4):21, 2007.

[5] Y. Zheng. Efficient object localization and tracking with discrete spatial mapping.
PhD thesis, Duke University, 2005.

[6] P. Potuluri, U. Gopinathan, J. Adleman, and D. Brady. Lensless sensor system
using a reference structure. Optics Express, 11(8):965–974, 2003.

[7] P. Potuluri, M. Xu, and D. Brady. Imaging with random 3d reference structures.
Optics Express, 11(18):2134–2141, 2003.

[8] Q. Hao, F. Hu, and Y. Xiao. Multiple human tracking and identification with
wireless distributed pyroelectric sensor systems. Systems Journal, IEEE, 3(4):428–
439, 2009.

[9] X. Zhou, Q. Hao, and H. Fei. 1-bit walker recognition with distributed binary
pyroelectric sensors. In Multisensor Fusion and Integration for Intelligent Systems
(MFI), 2010 IEEE Conference on, pages 168–173. IEEE, 2010.

[10] Q. Hao, D.J. Brady, B.D. Guenther, J.B. Burchett, M. Shankar, and S. Feller.
Human tracking with wireless distributed pyroelectric sensors. Sensors Journal,
IEEE, 6(6):1683–1696, 2006.

[11] J.S. Fang, Q. Hao, D.J. Brady, B.D. Guenther, and K.Y. Hsu. Real-time human
identification using a pyroelectric infrared detector array and hidden markov mod-
els. Optics express, 14(15):6643–6658, 2006.

[12] N. Li and Q. Hao. Multiple human tracking with wireless distributed pyro-electric
sensors. In SPIE Defense and Security Symposium, pages 694033–694033. Interna-
tional Society for Optics and Photonics, 2008.

[13] N. Li and Q. Hao. Multiple walker recognition with wireless distributed pyroelectric
sensors. Proc. of SPIE Defense and Security, page 694034, 2008.

96

[14] S. Qingquan, H. Fei, and Q. Hao. Context awareness emergence for distributed
binary pyroelectric sensors. In Multisensor Fusion and Integration for Intelligent
Systems (MFI), 2010 IEEE Conference on, pages 162–167. IEEE, 2010.

[15] X. Wang and B. Moran. Multitarget tracking using virtual measurement of binary
sensor networks. In Information Fusion, 2006 9th International Conference on,
pages 1–8. IEEE, 2006.

[16] M. Shankar, J. Burchett, S.D. Feller, B. Jones, R. Swagart, B.D. Guenther, and
D.J. Brady. Biometric tracking with coded pyroelectric sensor clusters. In Proc. of
SPIE Vol, volume 5796, page 175, 2005.

[17] H. Saito, S. Tanaka, and S. Shioda. Estimating parameters of non-convex tar-
get object using networked binary sensors. In Sensor Networks, Ubiquitous, and
Trustworthy Computing (SUTC), 2010 IEEE International Conference on, pages
146–154. IEEE, 2010.

[18] Y. Zheng, N.P. Pitsianis, and D.J. Brady. Nonadaptive group testing based fiber
sensor deployment for multiperson tracking. Sensors Journal, IEEE, 6(2):490–494,
2006.

[19] M. Peng and Y. Xiao. A survey of reference structure for sensor systems. Commu-
nications Surveys & Tutorials, IEEE, 14(3):897–910, 2011.

[20] P.K. Agarwal, D. Brady, and J. Matoušek. Segmenting object space by geometric
reference structures. ACM Transactions on Sensor Networks (TOSN), 2(4):455–
465, 2006.

[21] Ronald W. Schafer Alan V. Oppenheim. Discrete-time Signal Processing. Prentice-
Hall, Inc., 1989.

97

Vita

Mengmei Liu was born in Jinzhou, China. She was awarded the Bachelor of Engineering

in Electrical Engineering from Wuhan University of Technology in 2010. Currently she

is a research assistant at University of Kentucky.

98

	Target Tracking with Binary Sensor Networks
	Recommended Citation

	Target Tracking with Binary Sensor Networks
	Abstract of Thesis
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Historical background of BSN
	1.2 Thesis Outline

	2 Background on BSN and its application
	2.1 Introduction to Reference Structure Tomography (RST)
	2.2 Optical Intrusion Alarm
	2.2.1 Goal of OIA
	2.2.2 Laboratory scale model

	3 Calculation Process of Target Characteristics
	3.1 Calculation of intrusion intersection angle
	3.2 Calculation of intrusion speed
	3.3 Calculation of link-path intersection length
	3.4 Calculation of final position
	3.5 Summarize

	4 Simulation
	4.1 System set-up of modelling
	4.2 Simulation analysis with pseudo-continuous case
	4.3 Simulation analysis with different quantization level
	4.3.1 Simulation of decreased sample rate in time domain
	4.3.2 Simulation of decreased sample rate in space domain

	4.4 Analysis with temporal quantization noise
	4.5 Simulation with temporal quantization noise

	5 Systematic Simulation and Experiments
	5.1 Systematic Simulation
	5.2 Experiments

	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work

	A MATLAB CODE
	Bibliography
	Vita

