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ABSTRACT OF THE DISSERATION 
 
 
 
 

SEX DIFFERENCES IN CELL DEATH AND NUCLEAR HORMONE 
RECEPTORS IN CORTICAL EXPLANTS 

 
Estrogens, such as the biologically active 17-! estradiol (E2) have many 

actions in the male and female brain.  Not only does E2 regulate reproductive 
behavior in adults, it organizes and activates the brains of younger animals in a 
sex-specific manner.  In addition, many human studies have shown E2 to provide 
protection against a variety of neurological disorders, including stoke.  These 
studies have been controversial and depend largely on the type and timing of 
hormone replacement.  Animal studies are much less controversial and clearly 
demonstrate a neuroprotective role for E2 following ischemic brain injury.  
Because much of E2 neuroprotection requires sex steroid hormone receptors, it 
is essential to understand expression patterns of these receptors.  For the 
current studies, I evaluated estrogen receptor alpha (ER !), estrogen receptor 
beta (ER ") and androgen receptor (AR) expression in the cortex.  It is known 
that these receptors change in expression at several times in an animal’s life 
span including during early postnatal development and following ischemic brain 
injury.  Here I used an in vitro cortical explant model to further examine how 
these receptors change both during development and following injury.  This in 

vitro model is important because it provides a way to investigate changes in 
receptor expression pattern in the cortex without input from other brain regions.  
In addition to characterizing this model, I also evaluated the contribution of E2 to 
changes in receptor expression and on cell death following injury in the explants.  
To begin to decipher mechanisms for E2 mediated neuroprotection, I added 
antagonist for each of the receptors before and after injury.  In each these 
experiments, I also examined potential sex differences by separating the female 
and male brains before I cultured the explants.  Overall, these experiments 
showed that cortical explants are a good in vitro model.  Here we found that E2 
was protective in female, but not male cortical explants following injury.  
However, the exact mechanisms of E2-mediated neuroprotection are still to be 
deciphered.   
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CHAPTER 1: GENERAL INTRODUCTION 

 
 

Overview 
 

 Estrogens influence sexual differentiation and exert a multitude of effects 

throughout life in both females and males (McCarthy 2009; Wright, Schwarz et al. 

2010; Eliot 2011).  During perinatal development, estrogens organize neuronal 

circuits in the brain that regulate gonadal secretions and sexual receptivity.  

Estrogens also have non-reproductive roles in the brain during development, 

such as influencing spine density and synaptogenesis, which plays a role in 

learning and memory (McEwen, Coirini et al. 1991; McEwen and Woolley 1994; 

McEwen, Gould et al. 1995; Woolley 1998).  Following development, estrogens 

can be neuroprotective and neurotrophic in animal models of disease (Dubal, 

Wilson et al. 1999; Dubal and Wise 2001; Garcia-Segura, Azcoitia et al. 2001; 

Wise 2003).  The level of circulating estrogens in the brain influences the amount 

of brain damage following an experimental stroke, middle cerebral artery 

occlusion (MCAO).  For example, in animals with lower levels of circulating 

estrogens such as gonadectomized females (Simpkins, Rajakumar et al. 1997; 

Dubal, Kashon et al. 1998; Toung, Traystman et al. 1998; Rusa, Alkayed et al. 

1999) and males (Toung, Traystman et al. 1998), there is a larger amount of cell 

death following MCAO. Pretreatment with even low doses of the biologically 

active, 17!-estradiol (E2) is sufficient to exert dramatic protection from brain 

injury in both female (Dubal, Kashon et al. 1998; Dubal and Wise 2001) and male 

rats (Toung, Traystman et al. 1998). 
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 In humans, the role of hormone replacement is not as clear.  In fact, some 

clinical studies found that estrogens were not beneficial at all (Wilson, Garrison et 

al. 1985; Grodstein, Stampfer et al. 1996; Petitti, Sidney et al. 1998; Anderson, 

Limacher et al. 2004), while other studies did report benefits following stroke 

(reviewed in (Behl 2002; McCullough and Hurn 2003)).  The discrepancies 

between different studies may be explained by differences in the timing of 

estrogen replacement and the age of women included in the studies.  Animal 

studies are much less controversial and provide a simpler model to study the 

mechanisms of neuroprotection by E2 following ischemic brain injury. 

A common model of focal ischemic stoke is MCAO which causes initial 

necrotic cell death in the striatum followed by apoptotic cell death in the cerebral 

cortex.  In female rodents, treatment with E2 attenuates this cell death in the 

cortex via an estrogen receptor alpha (ER!)-dependent mechanism.  In males, 

treatment with E2 can be protective, but the mechanism for E2 action is less 

clear.  Another model of ischemic injury is treatment with a combination of 2-

deoxyglucose and potassium cyanide (2DG/KCN) in cortical explants.  2DG/KCN 

blocks oxidative phosphorylation and glycolysis, which causes cell death that in 

some circumstances, can be attenuated by E2 treatment (Wilson, Dubal et al. 

2000; Wise, Dubal et al. 2000; Wilson, Liu et al. 2002).  There are several 

advantages of using this cortical explant model over using the whole animal 

(MCAO) or isolated neuron cultures.  Explant cultures are a simplified 

environment in which pharmacological manipulations that are difficult or 

impossible in whole animal are possible.  In explants, the cortex is isolated from  
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other regions of the brain, which allows us to examine innate cell responses that 

may indicate a sex difference in the way the cortex is originally organized during 

development.  Additionally, this model is superior to isolated neurons because 

explant cultures maintain cytoarchitectural organization and neuronal/glial 

relationships. The following studies will employ this cortical explant model to 

investigate innate sex differences in the way steroid hormone receptors respond 

during development and following injury.   

The studies described in this dissertation were designed to test the overall 

hypothesis that steroid hormone receptor expression, in response to injury, is 

different in the female and male brain.  Specifically first I predicted that changes 

in sex steroid hormone receptor expression that occur during early postnatal 

development in the rodent cortex would also be maintained in the cortical explant 

model.  If sex steroid hormone receptors do increase and/or decrease across 

development in culture in a similar pattern as we see in the cortex, it would 

suggest that regulation of these receptors is preprogrammed in the cortex and 

does not require input from other brain regions.  Secondly, I predicted that 

2DG/KCN treatment would increase cell death in cortical explants and that E2 

treatment would attenuate this cell death in sex-specific manner.  If E2-mediated 

neuroprotection following injury is sex-specific in explants, it would suggest that 

the mechanisms for E2-mediated neuroprotection are sex-specific and most 

likely innate to the cortex. Thirdly, I predicted that 2DG/KCN-induced injury would 

change expression of some or all of these steroid hormone receptors in a sex-

specific manner.  If there is a sex difference in the response of some or all of 
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these receptors, it may account for the sex-specific protection by E2 in females. 

Lastly, I predicted that blocking some or all of these receptors would increase 

ischemia-induced cell death and remove the E2 neuroprotection seen in female 

explants.  If disruption of one of the receptors does change the amount of cell 

death or disrupts the E2-mediated neuroprotection, it would suggest that E2 is 

working via that receptor in our model.   

Below I have included a general literature review to describe some of the 

studies that provide that basic groundwork for the experiments included in these 

studies.   

General Literature Review 

Estrogens 

 Estrogens are the rudimentary female sex hormone named for their 

significance in the estrous cycle.  Estrogen was first discovered by Allen Edgar in 

1923.  The structure was independently isolated in 1929 by both Adolf Butenandt 

and Edward Adelbert.  Estrogen has three isoforms: estrone (E1), estradiol (E2) 

and estriol (E3) (Figure 1.1) (Watson, Jeng et al. 2008).  E1 is primarily made 

from adipose tissue, E2 from gonadal tissue and E3 in pregnancy (Berne RM 

2004).  E2, 17-! estradiol, is the most abundant and biologically active form of 

estrogen.  Estrogen is a steroid hormone and a cholesterol derivative.  

Cholesterol or acetyl-coenzyme A (acetyl-CoA) is taken into the cell by 

endocytosis and transported to the inner mitochondrial membrane by 

steroidogenic acute regulatory protein (StAR), where cholesterol is converted to 

pregnenolone  
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Figure 1.1.  Chemical structure of estrogens.  Modified from (Watson, Jeng et 
al. 2008) (A). Estrone also known as E1 has one hydroxyl group (OH).  (B). 
Estradiol (E2), the most biologically active form of estrogen, has two hydroxyl 
groups and (C) Estriol has three hydroxyl groups and is also known as E3.   

Estradiol (E2) 

Estriol (E3) 

Estrone (E1) 

A. 

B. 

C. 
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 (Berne RM 2004; Kim, Kang et al. 2004).  In the ovaries in females and the testis 

in males, cholesterol is converted into estrogens through a conglomerate of 6 or 

7 enzymatic reactions (Berne RM 2004; McCarthy 2009).  Estrogens can also be 

made extra-gonadally in adipose tissue (Simpson, Zhao et al. 1997), bone 

(Bruch, Wolf et al. 1992; Simpson, Rubin et al. 1999), heart (Taves, Gomez-

Sanchez et al. 2011) and the brain (Simpson, Rubin et al. 1999; Zwain and Yen 

1999; Ibanez, Guennoun et al. 2003; Hojo, Hattori et al. 2004; Tsutsui 2008; 

Mirzatoni, Spence et al. 2010; Fester, Prange-Kiel et al. 2011).  In rodents, 

estrogen is synthesized in the brain during development (Ibanez, Guennoun et 

al. 2003; Tsutsui 2008; Nagarajan, Tsai et al. 2011) and also after injury 

(Mirzatoni, Spence et al. 2010).  Astrocytes (Garcia-Segura, Wozniak et al. 1999) 

and neurons (Beyer 1999; King, Manna et al. 2002; Schaeffer, Meyer et al. 2010) 

contain the genes necessary to synthesize E2.  While it is in debate if all areas of 

the brain are capable of local E2 synthesis from cholesterol (de novo 

neurosteroidogenesis), the cortex and hippocampus do have important enzymes 

such as StAR and aromatase, which suggests neurosteroidogenesis does occur 

(Zwain and Yen 1999; King, Manna et al. 2002; Fester, Ribeiro-Gouveia et al. 

2006; Fester, Prange-Kiel et al. 2011).  The fact that steroidogenesis occurs 

locally in certain brain regions highlights the evolutionary role of steroids in the 

brain even though not all areas are considered to be involved reproduction. 

Estrogen is important for the organization and activation of sex specific 

characteristics during early development in humans and animals.  Estrogens 

influence the growth, differentiation and functioning in many target tissues, 
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including the mammary gland, uterus, ovary, testis, and prostate (Kuiper, 

Carlsson et al. 1997).  Estrogens also play an important role in bone 

maintenance and in the cardiovascular system (Kuiper, Carlsson et al. 1997; 

Simpson, Rubin et al. 1999; Baker, Meldrum et al. 2003), along with being 

neuroprotective and neurotrophic in the brain (Dubal, Wilson et al. 1999; Wise, 

Dubal et al. 2000; Dubal and Wise 2001; Garcia-Segura, Azcoitia et al. 2001; 

Wise, Dubal et al. 2001; Wise, Dubal et al. 2001; Wise 2003; Marin, Guerra et al. 

2005).  In the rodent hippocampus, estrogen treatment increases neurite length, 

spine density, and synaptogenesis (Gould, Woolley et al. 1990; Woolley 1998; 

McEwen and Alves 1999; McEwen, Tanapat et al. 1999; Gould, Tanapat et al. 

2000). 

 Initially, the actions of gonadal hormones were thought to be neuronal 

because of the high level of receptor expression in neurons (Simerly, Chang et 

al. 1990; Brown, Sharma et al. 1995; Shughrue, Lane et al. 1997).   However, 

astrocytes and microglia also respond to gonadal hormones (Garcia-Estrada, Del 

Rio et al. 1993; Jones, Kinderman et al. 1997; Garcia-Estrada, Luquin et al. 

1999; Bruce-Keller, Keeling et al. 2000).  Specifically, following injury astrocytes 

were shown to express estrogen receptor alpha (ER!) and microglia to express 

androgen receptor (AR) (Garcia-Ovejero, Veiga et al. 2002).  This indicates that 

part of the response to injury in cells of the brain is to up-regulate expression of 

sex steroid hormone receptors.  
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Sex Steroid Hormone Receptors 

 Estrogens can have both genomic and non-genomic actions on target 

tissues by binding to the well-characterized steroid hormone receptors, estrogen 

receptor alpha (ER!) and estrogen receptor beta (ER") (Green, Kumar et al. 

1986; Koike, Sakai et al. 1987; Kuiper, Enmark et al. 1996; Berne RM 2004).  

Androgens have important actions by binding to Androgen receptor (AR).  ER! 

and ER" are not splice variants, but are completely separate genes.  ER!, also 

known as ERS1, is located on chromosome 6 in humans, 10 in mice and 1 in 

rats.  ER", also known as ERS2, is located on chromosome 14 in humans, 12 in 

mice and 6 in rats (Figure 1.2) (Saunders 1998; Bain, Heneghan et al. 2007).  

Although both receptors share a similar DNA binding domain, their overall 

sequence homology is low and they are generally expressed in different tissues 

(Katzenellenbogen, O'Malley et al. 1996; Shughrue, Lane et al. 1997; Saunders 

1998; Denger, Reid et al. 2001; Berne RM 2004; Bain, Heneghan et al. 2007).   

 Another important sex steroid hormone receptor associated with sex 

differences is the androgen receptor (AR).  Androgen receptor is also known as 

NR3C4 because it is a member of the 3rd nuclear receptor subfamily group C 

member 4 (Lu, Wardell et al. 2006).  AR primarily mediates is actions with 

androgens (Roy, Lavrovsky et al. 1999) and is located on the X chromosome 

(Chang, Kokontis et al. 1988; Trapman, Klaassen et al. 1988; Chang, Kokontis et 

al. 1990).  ER!, ER" and AR are steroid hormone receptors located not only in 

the nucleus, but also in the plasma membrane, cytosol and mitochondria (Speroff 

2000; Gonzalez, Cabrera-Socorro et al. 2007).  AR expression is localized with  
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Figure 1.2. Structure of estrogen receptors. (A). Estrogen receptor alpha 
(ER!), top schematic, and estrogen receptor beta (ER"), bottom schematic. 
Steroid hormone receptors are all composed of domains A-F, diagramed above.  
A/B is the N-terminal domain (NTD), C is the highly conserved DNA Binding 
Domain (DBD), D a flexible hinge region, E is the C-terminal Ligand Binding 
Domain (LBD) and F is an additional C terminal domain of unknown function.  
Percent homology between human ER! and human ER" located between the 
two protein domain schematics.  (B).  Location of the ER! and ER" genes in 
human, mouse and rat.    
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ER! and ER" expression in many areas of the brain, specifically the cortex and  

hypothalamus (Patchev, Schroeder et al. 2004).   

  Sex steroid hormones exert genomic actions on target tissues by first 

binding to their receptors and homo or heterodimerizing (Murdoch and Gorski 

1991; Berne RM 2004).  Specifically, estrogen binds to ER!, ER" or both (homo 

or heterdimerizing) and initiates transcription by attaching to an estrogen 

response element (ERE) (5’GGTCAXXXTGACC3’) as a transcription factor 

(Murdoch and Gorski 1991; Berne RM 2004) (Green, Kumar et al. 1986; Koike, 

Sakai et al. 1987; Kuiper, Enmark et al. 1996; Berne RM 2004), Figure 1.3.  

Many genes utilize ER as a transcription factor to regulate their expression 

(Murdoch and Gorski 1991; McEwen and Alves 1999).   The dimerized ERs can 

also bind to transcription factors such as activator protein (AP)-1 and NF-kB and 

initiate transcription factor cross talk through enhancer sequences, non-ERE 

signaling (Porter, Saville et al. 1997; Teyssier, Belguise et al. 2001), Figure 1.3.  

 E2 can also act through non-genomic pathways.  The non-genomic actions 

include membrane initiated signaling pathways that are activated not only by ER 

! and ER ", but by G-protein-coupled receptors and ligand-gated ion channels 

(Watson, Jeng et al. 2008; Roman-Blas, Castaneda et al. 2009; Liu, Zhang et al. 

2012).  Estradiol has been shown to induce phosphorylation of extracellular 

signal-regulated kinase (ERK1/2) (Singh, Setalo et al. 1999; Setalo, Singh et al. 

2002; Liu, Zhang et al. 2012).  ERK is a part of the mitrogen-activated protein 

(MAP) kinase pathway (Singer, Figueroa-Masot et al. 1999; Watson, Jeng et al. 

2008).  These kinases regulate a number of cellular responses one of which is 
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Figure 1.3. Intracellular estradiol signaling.  Modified from (Roman-Blas, 
Castaneda et al. 2009) 17-! estradiol, E2, (pink rectangles) can cross the cell 
membrane and bind to estrogen receptors, ER (yellow receptors).  These ERs 
diamerize and initiate transcription by binding to estrogen response elements 
(ERE’s) or binding to transcription factors such as activator protein (AP)-1 and 
NF-kB and initiate transcription factor cross talk, ERE signaling.  
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cell death (Lee and McEwen 2001; Murphy and Blenis 2006).   

 Another second messenger signaling pathway that can be activated by E2 

is the serine/threonine protein kinase, AKT, through the phosphatidylinositide 

3’OH kinase (PI3 K) (Datta, Brunet et al. 1999; Wilson, Liu et al. 2002).  ERs can 

be activated through phosphorylation in the absence of E2 by growth factors 

such as insulin-like grown factor (IGF)-1 or epidermal growth factor (EGF) or 

through PI3K/Akt or PKC/MAPK.  Activation of one or more of these signaling 

cascades by E2 can promote cell survival.   

   

Regulation of steroid hormone receptors 

 Steroid hormone receptor expression is dynamic throughout an animal’s 

lifespan.  In rodents, ER! mRNA expression changes across development in the 

cortex (Prewitt and Wilson 2007).  ER! mRNA is high during early postnatal 

development when organization and sexual differentiation occurs in the brain 

(Zhang, Chang et al. 2000).  Its expression is significantly decreased after 

PND10 and virtually absent in the uninjured adult cortex (Prewitt and Wilson 

2007).  ER! mRNA is concentrated in the cerebral cortex and hippocampus and 

other brain regions that indicate non-reproductive actions of E2 (Shughrue, Lane 

et al. 1997; Mitra, Hoskin et al. 2003).  It is important to note that while both ER" 

and ER! are expressed in the hippocampus, a region of the brain involved in 

cognitive function (Bliss and Collingridge 1993), only ER! is expressed in the 

adult rodent cortex (Shughrue, Lane et al. 1997).  ER" and ER! mRNAs are 

expressed throughout the human brain as well, but with distinctive patterns 
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(Osterlund, Grandien et al. 2000; Osterlund, Keller et al. 2000; Gonzalez, 

Cabrera-Socorro et al. 2007).  It is not fully known which ER is responsible for 

mediating the effects of estrogen on cognition.  However, accumulating evidence 

from knock out (KO) mice supports an important role for ER!.  ER! KO mice-

treated with E2 show impairments in acquisition of a spatial reference memory, 

implicating a role for ER! in hippocampus dependent cognition (Rissman, Heck 

et al. 2002).  Interestingly, AR expression also changes by increasing across 

early postnatal development in the cortex (Nunez, Huppenbauer et al. 2003) and 

in the adult cortex depending on the different phases of the estrus cycle (Feng, 

Weijdegard et al. 2010).     

 

Women’s Health Initiative 

E2 has been shown to be beneficial for memory and cognition, and also 

reduces the incidence and severity of neurodegenerative diseases including 

Alzheimer’s Disease and stroke (Paganini-Hill and Henderson 1994; Sherwin 

1994; Paganini-Hill 1995; Henderson, Watt et al. 1996; Paganini-Hill and 

Henderson 1996; Sherwin 1996; Henderson 1997; Kawas, Resnick et al. 1997; 

Paganini-Hill 1997; Sherwin 1997; Green, Perez et al. 2000; Wise, Dubal et al. 

2001; Wise, Dubal et al. 2001; Wise, Dubal et al. 2001; Suzuki, Brown et al. 

2006; Chen, Cammarata et al. 2009).   For example, pre-menopausal women 

have a lower incidence of stroke than men, but this discrepancy between men 

and women dissipates following menopause, presumably because of a decrease 

in protective E2. This population of postmenopausal women is increasing 
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because the average age of menopause has remained fixed at 51, while the 

average life expectancy in the US has increased to over 80 years (Suzuki, Brown 

et al. 2006).  Thus, many women will spend a large portion of their lives in a 

hypo-estrogenic state.  Many studies have been conducted to explore different 

hormone replacement regimes to counteract the negative effects of the loss of 

estrogen following menopause.  Hormones and estrogen replacement therapies 

have received a great deal of attention in the popular media due to the early 

termination of the Women’s Health Initiative (WHI). The WHI found an increased 

risk of cardiovascular complications, stroke and breast cancer in women using 

hormone replacement therapy (Rossouw 2002); however, part of this 

discrepancy can be explained by the timing of estrogen replacement and the age 

of women included in the studies (Sherwin 2009; Wise, Suzuki et al. 2009). 

Animal studies are much less controversial and clearly demonstrate a 

neuroprotective role for E2 following ischemic brain injury.  Taken together these 

data indicate complex actions of estrogen and hormone replacement therapies 

that warrant further investigations.  An important aspect of this investigation will 

be to determine how E2 acts through its estrogen receptors and how these 

receptors are regulated after injury.     

 

Sex Differences in Neurodegenerative Diseases 

Neurodegenerative diseases appear to be more robustly present in 

individuals later in life, when sex steroids have started to decline.  Estrogen 

declines dramatically in women during menopause, while testosterone does also 
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decline with age but not as significantly.   Many diseases that affect the brain are 

more prominent in one sex verses the other. The prefrontal cortex (PFC) is 

believed to play a role in these diseases.  The PFC is rich in steroid hormones 

receptors (Bixo, Backstrom et al. 1995) and associated with sex specific 

responses to stress (Shansky, Glavis-Bloom et al. 2004; Bland, Schmid et al. 

2005).  Neuropsychatiric disorders including depression and anxiety are more 

prominent in females while alcohol induced dependencies, schizophrenia, autism 

and attention deficit disorders have a higher incidence in males (Davies and 

Wilkinson 2006).   While Parkinson’s Disease (Shulman and Bhat 2006) appears 

to be more prominent in the male population, Alzheimer’s Disease (Pinkerton and 

Henderson 2005) and stroke have a higher incidence in females.  The 

mechanisms that cause the sex differences in these diseases may be 

confounding.  Women have fewer cortical neurons (de Courten-Myers 1999; 

Rabinowicz, Petetot et al. 2002) and experience a severe decrease in hormones 

with menopause.  Since cell death occurs in a large number of 

neurodegenerative diseases, women may be more at risk of neuronal damage 

because of their lower number of cortical neurons to start with.  Women also 

have a longer life expectancy than men (U.S Census 2012), which may increase 

their risk of developing diseases.  The hormonal milieu in women and men is 

different along with their time frame of hormonal production.  For example, 

estrogen may elicit protective effects in women and not men due to differences in 

hormone concentration and action (Vina, Gambini et al. 2011).   
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Neurodegenerative diseases have many parallel cellular responses in 

their histology and mechanisms of action.  By definition a neurodegenerative 

disease is a result of loss of neuronal function resulting in ataxia or memory loss 

(dementia) (Ross and Poirier 2004).  Themes that are common among these 

diseases include protein aggregation, calcium deregulation, oxidative stress, 

neural inflammation, excitotoxicity, neurotransmitter loss, and altered steroid 

genesis, and interestingly enough they seem to be interwoven.  One theme leads 

to the initiation of another until a complete cascade that amplifies the original 

theme has begun.  For example, protein aggregation causes oxidative stress and 

inflammation, which leads to excitotoxicity and calcium deregulation.  The 

accumulation of these cascades leads to cell dysfunction by altering the signaling 

pathways, which then leads to additional protein aggregation.  The integration of 

these common themes leads to apoptosis or necrosis of the neurons in various 

brain regions in disease states. 

Estrogens can affect the many themes involved in neurodegenerative 

diseases.  Estrogen not only has genomic and non-genomic effects by 

decreasing pro-apoptotic and increasing anti-apoptotic genes and pathways, 

respectively, but it can decrease neuroinflammation and free radicals (Scott, 

Zhang et al. 2012).  It is also known that estrogen increases cognitive abilities 

which is demonstrated by estrogen’s ability to affect many systems in the brain 

such as: dopaminergic, cholinergic, serotonergic, and noradrenergic (Pinkerton 

and Henderson 2005).  This is important in neurodegeneration as 

neurotransmitters are a way of communication in the brain.  The hippocampus 
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uses neurotransmitters to signal long-term potentiation, LTP, needed for 

memory.  If there is a decrease in estrogen, causing a decrease in 

neurotransmitter the hippocampus will have fewer LTP, which affects memory.  

Interestingly, the Cache County study demonstrates that post menopausal 

women have a decreased memory, which strongly correlates with the decrease 

in estrogen leading to fewer LTP (Zandi, Carlson et al. 2002).  Specifically in AD, 

there is also a sex specific irregular phosphorylation of Tau in the hypothalamus 

in 90% of men that occurs in less than 10% of women (Barnes, Wilson et al. 

2005).  Tau is a microtubule-associated protein that binds microtubules and 

initiates anteretrograde transport in the axon by promoting microtubule assembly 

that aids in transport of neurotransmitters and receptors from the cell body to the 

synapse in neurons (Lashuel, Hartley et al. 2002; Bossy-Wetzel, 

Schwarzenbacher et al. 2004).  The hyperphosphorylation of Tau leads to the 

destabilization of microtubules and the disruption of axonal transport.  The 

synapse will not receive adequate nutrients and the neuron will die. The damage 

in AD occurs mostly in the hippocampus and cortex, which are involved in 

memory and higher cognitive processes (Bossy-Wetzel, Schwarzenbacher et al. 

2004; Ross and Poirier 2004).  

In rodent models of disease, the concentration of estrogen administered 

plays a role in the mechanism of how estrogen is protective.  Physiological 

concentrations of E2 are believed to work through typical steroid hormone 

receptor signaling, while pharmacological concentrations have more of an 

oxidative effect.  Physiological concentrations of E2 mimic blood concentrations 
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seen during the reproductive cycle or during pregnancy in women and early life in 

men.   Pharmacological concentrations are generally 10-10,000 fold higher than 

blood concentration levels (Wise, Dubal et al. 2001).  In females, physiological 

concentrations of E2 vary depending on the phase of the reproductive cycle.  In 

adult premenopausal humans, circulating levels of estrogen range from 15 - 350 

pg/mL, while post-menopausal women have a decrease in E2 to less than 10 

pg/ml.  Interestingly adult men only have an average circulating level of 10 - 40 

pg/ml.   In rats, females range from 100 pg/ml in estrous to 400 pg/ml in 

proestrous (Shors 2005).  Silastic capsules can be used in ovariectomized 

female rats to maintain a constant level of E2 and avoid changes in circulating 

levels.  It is difficult to compare circulating levels of E2 to concentrations applied 

in vitro because of the lack of a linear relationship with specific brain region E2 

concentrations and the concentration of circulating E2 (Konkle and McCarthy 

2011).  In vitro studies typically use 0.1 to 100 nM concentrations of E2 in media 

(Wise, Dubal et al. 2001).   If you start out at 100 pg/ml (~estrous phase 

concentrations in rats), you end up 0.3671 nM.     

 

Estrogen and Stroke 

Stroke is the third leading cause of death in the U.S. (Lloyd-Jones, Adams 

et al. 2009).  Ischemic stroke occurs when the tissue is deprived blood flow 

resulting in an inadequate supply of oxygen and glucose.  This type of stroke 

occurs 87% of the time, while the other 13% of strokes are hemorrhagic caused 

by a weak blood vessel that ruptures and causes excess bleeding (Roger, Go et 
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al. 2012). Stroke can be classified as focal, which is confined to a specific region 

of the brain, or global, which involves wide areas of brain tissue.   

Rodent models have been developed to mimic the most common type of 

ischemic type of stroke in humans.  Permanent MCAO is a well-established 

model of focal ischemic stroke in rodents.  In this model, there is a significant 

reduction in cerebral blood flow to the striatum and overlaying cortex (Dubal, 

Kashon et al. 1998).  This decrease in blood supply leads to necrotic cell death in 

the striatum followed by apoptotic cell death in the overlaying cortex (Liu, Smith 

et al. 1999).  Following MCAO, gonadectomized females (Simpkins, Rajakumar 

et al. 1997; Dubal, Kashon et al. 1998; Toung, Traystman et al. 1998; Rusa, 

Alkayed et al. 1999; Dubal and Wise 2001) and males (Toung, Traystman et al. 

1998; Uchida, Palmateer et al. 2009) have a much larger MCAO-induced injury 

than animals with higher circulating estrogen concentrations.  Pre-treatment with 

even low doses of E2 is sufficient to exert dramatic protection in the brains of 

both female (Dubal, Kashon et al. 1998; Dubal and Wise 2001) and male rats 

(Toung, Traystman et al. 1998).  Estrogen receptors (ER) have been shown to be 

important for neuroprotection by estrogen.  Generalized pharmacologic blockade 

of ER exacerbates ischemic injury in mice (Sawada, Alkayed et al. 2000) and 

blocks estrogen-induced neuroprotection in cultured neurons (Singer, Figueroa-

Masot et al. 1999; Wilson, Dubal et al. 2000) and in cortical explant cultures 

(Wilson, Dubal et al. 2000).  Studies using ER! knockout females demonstrate 

that neuroprotection by E2 following ischemia is dependent on the presence of 

ER! in the cortex (Dubal, Zhu et al. 2001), and that ER" alone is not sufficient for 
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neuroprotection in females.  In male ER! knockout mice, the absence of ER! did 

not increase the ischemia-induced damage, but these males were not given 

estradiol (Sampei, Goto et al. 2000).  In both male and female rodents, ER! is 

only transiently expressed in the cortex during neonatal development and then is 

virtually absent in the adult (Miranda and Toran-Allerand 1992; Prewitt and 

Wilson 2007).  24 hours after MCAO, however, ER! mRNA and protein are 

increased in the cortex of female rats and mice (Dubal, Shughrue et al. 1999; 

Dubal, Rau et al. 2006).  In OVX females, the increase in ER! mRNA occurs in 

both oil and E2-treated groups, but is seen earlier after injury with E2 (Dubal, 

Rau et al. 2006).  These data suggest that in females, the ischemia-induced 

increase in ER! in the cortex is necessary for the neuroprotective effects of E2.  

In males, the injury-induced regulation of ER! and the mechanisms of E2 action 

are still largely unknown.  

 

Injury Models and Cortical Explants 

E2 has been shown to be protective in other models of injury.  For 

example, E2 reduces cell death in cortical and hippocampal neurons along with 

cell line exposed to multiple types of injuries reviewed in (McCullough, Koerner et 

al. 2009; Herson and Hurn 2010). (Herson, Koerner et al. 2009; McCullough, 

Koerner et al. 2009; Liu, Kelley et al. 2010).  These studies are predominately 

done in cell lines or primary cultures where only one cell type is present.  We are 

specifically interested in the cortex, because it is a region of the brain that can be 

protected with estrogen treatment following stroke.  Slices of the cortex can be 
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grown in culture where a heterogeneous population of neurons and glia cells can 

continue to cross talk as they did in the intact brain.  In this model, E2 has also 

shown to be protective by reducing cell death in a chemical induced ischemic 

injury (Wilson, Dubal et al. 2000; Wilson, Liu et al. 2002).  2DG/KCN blocks 

glycolysis and oxidative phosphorylation, which are the two main areas of 

disruption when the brain experiences ischemia.  By maintaining the synaptic 

connections of the whole brain slice, the heterogeneous population of neurons 

and glia can add insight to how E2 mediates protection in the cortex.   

Cortical explants are taken from PND 3 or 4 rat pups because it is 

essential to isolate the explant while this part of the brain is still developing.  

Donor pups must be younger than PND7 do ensure viability (Staal, Alexander et 

al. 2011).  If the explants were taken from a donor animal older than PND 7 they 

are not as likely to thrive outside input from other regions of the brain possible 

due to the tissue requiring more aerobic-base synthesis, such as oxygen and 

ATP from outside sources, for metabolism (Fuller and Dailey 2007).    Healthy 

explants are transparent with smooth edges while overfed explants become 

opaque and underfed explants thin to the point that they are undetectable (Fuller 

and Dailey 2007).   

  

Summary 

To investigate the multi-faceted cellular pathways that are involved in cell 

death and neuroprotection, a simplified model is needed to isolate specific 

mechanisms on how sex differences occur in ischemia.  My dissertation will 
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investigate sex differences at two time-periods.  First, I will examine changes in 

sex steroid hormone receptor mRNA expression across time in culture of female 

and male cortical explants separately.  Then, I will not only examine changes in 

sex steroid hormone receptor mRNA expression following injury but also sex 

differences in cell death and E2 mediated protection.    
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CHAPTER 2 

STEROID HORMONE RECEPTOR EXPRESSION DURING EARLY 

POSTNATAL DEVELOPMENT IN THE RAT CORTEX IN VIVO AND IN VITRO 

 

Introduction 

 

Sex steroid hormones elicit numerous actions in the brain during 

development.  These hormones can act through specific steroid hormone 

receptors, such as estrogen receptor alpha (ER!), estrogen receptor beta (ER") 

and androgen receptor (AR).  To understand the many actions of steroid 

hormones it is important to examine the expression and distribution of their 

receptors.  Expression of these receptors in the brain changes across an 

animal’s lifetime.  Specifically, during early postnatal development in the mouse, 

ER! mRNA expression is high in the cortex then decreases where it remains low 

in the uninjured adult cortex (Prewitt and Wilson 2007).  Interestingly, ER! 

expression increases following injury in the adult cortex (Wilson, Westberry et al. 

2008).   Another example of the dynamic nature of steroid hormone receptor 

expression is ER", which increases across early postnatal development and 

decreases with aging (Wilson, Rosewell et al. 2002; Westberry, Trout et al. 

2011).  AR expression also changes by increasing across early postnatal 

development in the cortex (Nunez, Huppenbauer et al. 2003) and in the adult 

cortex depending on the different phases of the estrus cycle (Feng, Weijdegard 

et al. 2010).  Little is known about changes in AR with age or following injury.  By 
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understanding the regulation and expression patterns of these steroid hormone 

receptors during early postnatal development we can potentially understand how 

they are regulated at other times during an animal’s lifetime, i.e. following a brain 

injury.  In fact, one theory is that the brain reverts back to its developmental state 

following injury to aid in repair (Emery, Royo et al. 2003).   

The experiments described in this chapter were designed to accomplish 

two goals:  First, to test the hypothesis that sex steroid hormone receptor 

expression was regulated similarly during postnatal development in the rat cortex 

that was seen in previously published mouse studies.  Specifically, we predicted 

that ER! mRNA expression would decrease and ER" and AR mRNA expression 

would increase across early postnatal development.  The second goal was to test 

the hypothesis that sex steroid hormone receptor mRNA expression also 

changed across time in rat cortical explants.  I also wanted to test the hypothesis 

that E2 pretreatment would alter steroid hormone receptor expression in rat 

cortical explants.  Specifically, since E2 alters steroid hormone receptor 

expression in vivo by positive and negative feedback, E2 would alter expression 

of steroid hormone receptors across time in culture, in vitro.  

The cortex is a complex brain region with many changes occurring 

throughout development and following injury.  One way to simplify how the cortex 

is studied and focus on its changes is to isolate it away from other regions of the 

brain and maintain it in culture.  In fact, previous studies from our lab have used 

this model to study injury.  These initial studies were done in rat cortical explants 

and showed that 17"-estradiol (E2) was protective following a chemically induced 
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ischemic injury (Wilson, Dubal et al. 2000; Wilson, Liu et al. 2002).  One limitation 

from those studies was that the cortical explants had combined sections from 

both male and female rat pups.  With our current knowledge of sex differences in 

cell death and in response to injury, we felt it was essential to repeat those 

studies separating cortical explants from female and male pups.  Another 

limitation of those studies was that although they did explore E2 and 

neuroprotection using a variety of concentrations of E2 (0.1-100nM), they did not 

evaluate how E2 altered expression of steroid hormone receptors from the time 

that the cortical explants were plated.  Here, we addressed these limitations by 

separating the pups based on sex before cortical explants were taken and by 

measuring sex steroid hormone receptor mRNA expression in rat cortical 

explants at several time-points after plating (1, 7, 15 and 22 days in culture, DIC) 

with and without the presence of E2.  

More recently our lab was interested in the expression of steroid hormone 

receptors in the mouse cortex and in explants cultures taken from mice (Prewitt 

and Wilson 2007; Westberry, Prewitt et al. 2008).   Our interest in mice was due 

to the possibility of utilizing knockout strains to learn E2 mediated 

neuroprotection mechanisms.  A recent study from our lab compared expression 

patterns of ER! and ER" across development in vivo and in vitro in mice (Prewitt 

and Wilson 2007).  ER! mRNA and protein expression decreased and ER" 

mRNA and protein expression increased across early postnatal development in 

the cortex and across time in mice cortical explants (Prewitt and Wilson 2007).  

Interestingly, no sex differences in mRNA or protein expression were reported in 
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the cortex or in cortical explants taken from mice (Prewitt and Wilson 2007).  

Although this study separated the mice pups based on sex before explant 

dissections, the influence of E2 on the expression of steroid hormone receptors 

across time in culture was not evaluated.  It is important to know if E2 

pretreatment caused any changes in steroid hormone expression even before 

the injury was induced.  These studies provided a solid rationale to look at both 

mice and rat cortical explants.  Unfortunately due to some initial technical 

difficulties with mice, including: small litter size and female to male ratios in litters, 

I decided to exclusively use rat cortical explants.   

In the following studies, I tested the hypothesis that sex steroid hormone 

receptor (ER!, ER" and AR) expression was regulated similarly during postnatal 

development in the rat cortex as the mouse cortex.  I also wanted to test the 

hypothesis that ER!, ER" and AR mRNA expression also changed across time 

in culture in rat cortical explants.  To accomplish my goals for this chapter, I 

isolated mRNA from the cortex and from cortical explants of female and male 

rats and measured ER!, ER" and AR mRNA expression.  By understanding the 

regulation and expression patterns of these steroid hormone receptors during 

early postnatal development, we can potentially understand how they are 

regulated at other times during an animal’s life, i.e. following brain injury.   
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Methods 

 

Animal Care and Housing 

All animals used in these experiments were Sprague Dawley rats.  

Pregnant dams were purchased from Harlan Laboratories (Indianapolis, IN) and 

maintained in constant temperature conditions on a 12-hour light/dark cycle.  

Dams were provided food and water ad libitum.  Pups were sexed and taken 

from their mother at postnatal day (PND) 3, 4, 10, and 18, with PND 0 as the day 

of birth.  For the PND 25 time-point, pups were weaned from their mother at PND 

22, sexed and placed in separate cages until PND 25.  The Animal Care and Use 

Committee of the University of Kentucky approved all experimental procedures.   

 

Collection of brain tissue 

Animals were killed by rapid decapitation and the brains removed. On ice, 

the cortex was dissected from the corpus callosum with care not to include the 

piriform cortex, striatum and the hippocampus.  The cortex was collected from 

Bregma  -.36 to -2.64 mm (C 2007).  See Figure 2.1.  Tissue was collected on ice 

and frozen at -80 oC until processing.   
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Figure 2.1.  Diagram of the cortical region used in experiments.  The cortex 
was collected from Bregma -0.36 to -2.64 mm. Regions of cortex that we 
collected included primary and secondary motor cortex along with some 
somatosensory cortex.  The motor cortex controls voluntary movements by 
planning, control and execution of the movements.  Neuronal axons from the 
motor cortex synapse onto motorneurons in the spinal cord, which have axons 
that synapse to a muscle.   
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Collection of cortical explants 

Pups were taken at postnatal day 3 (PND3) with PND 0 considered day of 

birth.  Pups were sexed and rapidly decapitated.  As previously described 

(Wilson, Rosewell et al. 2002), brains were isolated and sectioned at 300 !m on 

a vibratome.  Cortical pieces were dissected form Bregma -.36 to -2.64 mm (C 

2007).   Regions of cortex included primary and secondary motor cortex along 

with somatosensory cortex (see Figure 2.1 for representative brain sections and 

Figure 2.2 for diagram of explant procedure).  The cortex was dissected away 

from the corpus callosum with care not to include the piriform cortex, striatum 

and the hippocampus.  Approximately 8-10 slices were harvested per brain.  The 

explants were sectioned in dissection media containing Gey’s balanced salt 

solution (G9779, Sigma-aldrich, Saint Louis, MO), 0.2 M MgCl2 and 37.5% 

glucose in Geys BSS and kept in dissection media plus ketamine HCl (Ketaset, 

NLS Animal Heath, Pittsburg PA) on ice until the cortex was isolated and 

separated into individual hemispheres.  Four individual cortices were plated on 

Millicell-CM membranes (PICMO3050, Fisher, Hampton, NH) in wells containing 

media of 1X Basal Medium Eagle (BME) (B9638, Sigma-aldrich, Saint Louis, 

MO), Hanks’ Balanced Salt Solution (HBSS) (14025, Invitrogen), heat-inactivated 

horse serum (3H30074.03, Fisher, Hampton, NH), 37.5% glucose in Geys BSS, 

glutamax (35050, Invitrogen, Carlsbad, CA), and penicillin/streptomycin (15140, 

Invitrogen, Carlsbad, CA).  The media also contained either 17 !-estradiol (E2) (1 

nM in 0.01% EtOH) (1,3,5(10)-Estratrien-3,17-!-Diol, 122323, Steraloids, Inc, 

Newport, RI) or EtOH (0.01%) vehicle.  Media containing E2 or vehicle was  
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Figure 2.2. Summary of rat cortical explants protocol.  Female and male 
PND3 rat pups were decapitated, the brain isolated and sectioned on a 
vibratome to 300 um.  The cortex was isolated and plated on a milli-cell 
membrane inserted into a 6 well plate.  

300 µm sections cut on  
Vibratome 

Brain isolated 

Brain dissected from 
Bregma 0.36 to -2.64  

!

Cortex dissected away 
from the corpus callosum 

Explants plated 5-6 per well 
on a milli-cell membranes in 

a 6 well plate 
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Figure 2.3.  Time-line for the collection of cortical tissue and cortical 
explants. The above diagram shows a timeline of cortical tissue collection from 
day of birth (PND 0) to PND 25.  Also diagramed is the timeline of cortical 
explants collection from 1 DIC to 22 DIC.  
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changed every three days.  Explants remained in culture at 34oC with 5% CO2 for 

1 to 22 days.   

 

RNA Isolation 

Cortical tissue and explants were collected at PND 4 (1 DIC), PND 10 (7 

DIC), PND 18 (15 DIC) and PND 25 (22 DIC) (see Figure 2.3 for time-line) to 

determine mRNA expression changes across time in culture. To collect RNA, 

cortical tissue or at least 3 explants were combined and homogenized in TriZol 

(Invitrogen, Carlsbad, CA).  RNA was isolated, the resulting pellet was air-dried 

and resuspended in RNase-free water (DEPC) (BP561, Fisher).  The RNA was 

then be incubated at 56°C for 10 minutes and stored at -80 oC until reverse 

transcription.   

 

Reverse Transcription 

One µg of total RNA was reverse transcribed to produce cDNA.  DEPC 

H20 was added to bring 1 µg of total RNA for each sample to a final volume of 

20µl.  1 µl of Random Primers (58875, Invitrogen, Carlsbad, CA) and 1 µl of 10 

mM dNTP’s (U1515, Promega, Madison, WI) were added to each reaction.  The 

samples were incubated at 65 oC for 5 minutes.  8 µl of Master Mix containing 4 

µl of 5x first strand buffer (Y02321, Invitrogen, Carlsbad, CA), 2 µl of 0.1 M DTT 

(Y00147, Invitrogen, Carlsbad, CA), 1 µl of RNasin (N211B, Promega, Madison, 

WI) and 1 µl of Superscript II RT (100004925, Invitrogen, Carlsbad, CA) were 

added to each reaction.  The samples were incubated at room temperature for 10 
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minutes, 42oC for 50 minutes, then 70 oC for 15 minutes.  The cDNA was stored 

at -80 oC until quantitative real time PCR.   

 

Quantitative Real Time PCR 

For real time PCR, each reaction contained 10.125 µl DEPC H20, 12.5 µl 

of Brilliant II SYBR@Green QPCR Master Mix (Agilent Technologies, catalog 

#600828, Santa Clara, CA), 0.375 µl of Reference Dye (diluted 1:500) (Agilent 

Technologies, Santa Clara, CA), 0.5 µl of forward primer, 0.5 µl of reverse primer 

and 1µg of appropriate cDNA.  Primer specific concentrations were previously 

optimized for each gene and result in a single PCR product with no primer-dimer 

formation.  Each 96 well plate contained a non-template control and each sample 

was run in triplicate.  The cycling parameters were as follows: 1 cycle at 95°C for 

10 minutes, 40 cycles of 95°C for 30 seconds, annealing temperature for 1 

minute, 72°C for 30 seconds, and 1 cycle of 95°C for 1 minute and 55°C for 30 

seconds. The change in threshold cycle (!Ct) for each sample was normalized to 

the constitutively expressed housekeeping control gene Histone 3.1 (Wilson and 

Handa 1997).  The primers used for each gene are shown in Table 1. RNA was 

collected from at least 3 wells per condition at each time-point.  At least 3 

explants per time-point from each condition were visualized and each experiment 

was independently repeated 3 times.  

For each gene of interest the change in threshold cycle (!Ct) for each 

sample was normalized to the constitutively expressed housekeeping control 

gene Histone 3.1 (Wilson and Handa 1997).  !!Ct were then calculated by 
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comparing the data to a earlier reference point, PND 4 or 1 DIC (Livak and 

Schmittgen 2001).  For example, housekeeping Ct values are subtracted from 

ER! Ct values at PND 25 in females.  This change in Ct values, !Ct, at PND 25 

was compared back to an early time-points PND4 !Ct value creating a !!Ct.  

Real time PCR data was analyzed by logarithmically raising the changes in Ct at 

the two time-points, 2-!!Ct (Livak and Schmittgen 2001) and graphed as a ratio of 

gene of interest to housekeeping gene.  Error bars on each graph are standard 

error of the mean.   

To look at relative levels of mRNA expression and not a fold change 

compared back to an earlier time-point, the average housekeeping Ct values for 

all corresponding samples of the same sex and time-point were divided by and 

individual sample housekeeping Ct value. The ratio of housekeeping Ct values 

(average housekeeping Ct value/ sample housekeeping Ct value) was multiplied 

by the Ct value for the gene of interest for the same sample.   
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Table 2.1.  Primer Information.  List of primers used for real time PCR.   

 

Gene GI # 
Primer 

Location 

Forward Primer (F) 

Reverse Primer (R) 
Ref 

His 
3.1 

318068040 208-425 
F 5’-GCAAGAGTGCGCCCTCTACTG-3’ 
R 5’GGCCTCACTTGCCTCCTGCAA-3’ 

(Wilson and 
Handa 1997) 

ER 
alpha 

6978814 
1991-
2055 

F 5’-GGGCTTCCCCAACACCAT-3’ 
R 5’-CGTTTCAGGGATTCGCAGAA-3’ 

(Takagi, 
Shibutani et al. 

2005) 

ER 

beta 
6978816 454-715 

F 5’-TTCCCGGCACGACCAGTAACCT-3’ 

R 5’TCCCTCTTTGCGTTGGACTA-3’ 

(Kuiper, Carlsson 

et al. 1997) 

AR 6978534 
2739-
2833 

F 5’TGATTGCACCATTGATTGATAAATTTCG-3’ 
R 5’GCTTACGAGCTCCCAGAGTCA-3’ 

(Bowman 2005) 
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Table 2.2 List of companies and locations of materials used in methods. 
 

Company Home Office 

Agilent Technologies Santa Clara, CA 

Fisher Hampton, NH 

Invitrogen Carlsbad, CA 

NLS Animal Heath Pittsburg PA 

Promega Madison, WI 

Sigma-Aldrich Saint Louis, MO 

Steraloids, Inc Newport, RI 

Tocris Bristol, United Kingdom 
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Statistics 

In vivo  

For mRNA studies, female and male cortical tissue was collected from at 

least 3 different litters at each of the time-points (PND 4, 10, 18 and 25).  At least 

one female and one male were sampled from each of the 3 litters and at least 6 

animals were taken at each time-point.  For each gene of interest the change in 

threshold cycle (!Ct) for each sample was normalized to the constitutively 

expressed housekeeping control gene Histone 3.1 (Wilson and Handa 1997).  

!!Ct was then calculated by comparing the !Ct for the time-point (PND) to the 

!Ct of PND 4 females.  For example, housekeeping Ct values are subtracted 

from ER! Ct values at PND 25 in females.  This change in Ct values, !Ct, at 

PND 25 was compared back to an early time-point PND4 !Ct value creating a 

!!Ct.  Real time PCR data was analyzed by logarithmically raising the changes 

in Ct at the two time-points, 2-!!Ct (Livak and Schmittgen 2001).  All data for the in 

vivo experiments were analyzed using a two-way Analysis of Variance (ANOVA) 

comparing the factors “sex” and “postnatal day (PND).”   To determine what 

contributes to the main effect of PND or interactions between sex and PND a 

Student Neuman-Keuls post-hoc test was performed.  Differences were 

considered significant at p<0.05.   

 

In vitro 

Statistical analyses of the cortical explant data were more elaborate.  For 

these mRNA studies, 3 litters were used to dissect female and male cortical 
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explants.  These explants were grown in media containing EtOH or E2 for 

various days in culture (1, 7, 15 and 22 DIC).  Each time-point included the 

collection of at least 3 explants (N=1) per well that was repeated independently at 

least 3 times.  For example, the 3 females explants grown in EtOH treated media 

for 1 DIC was collected for an N of 1.  This was repeated at least 3 times with a 

new set of litters each time.  

For each gene of interest the change in threshold cycle (!Ct) for each 

sample was normalized to the constitutively expressed housekeeping control 

gene Histone 3.1 (Wilson and Handa 1997).  !!Ct were then calculated by 

comparing the !Ct for the time-point (PND) to the !Ct of 1 DIC vehicle treated 

explants for the corresponding sex.  For example, housekeeping Ct values are 

subtracted from ER! Ct values from the 22 DIC E2-treated females.  This change 

in Ct values, !Ct, at 22 DIC was compared back to an early time-point, 1 DIC 

vehicle-treated females cortical explants, !Ct value creating a !!Ct.  Real time 

PCR data was analyzed by logarithmically raising the changes in Ct values at the 

two time-points, 2-!!Ct (Livak and Schmittgen 2001). 

The effect of treatment across DIC was determined by a two-way ANOVA 

comparing the factors “treatment” (EtOH or E2 treated) and “DIC” for female 

explants and then for male explants.  This allowed us to determine if treatment 

had and effect on the mRNA expression or if DIC had and affect on the mRNA 

expression in either female or male cortical explants.  To determine what 

contributes to the DIC effect or interaction between treatment and DIC a Student 
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Neuman-Keuls post-hoc test was performed.  Differences were considered 

significant at p<0.05.   

 

Results 

Part 1: Sex steroid hormone receptor expression in the female and male 

cortex across postnatal day (in vivo). 

Female and male rats were killed at postnatal day (PND) 4, 10, 18, and 

25.  Brains were removed and RNA was collected from the cortex.  RNA was 

converted to cDNA and used for real time PCR to examine ER alpha (ER!), ER 

beta (ER") or androgen receptor (AR) mRNA expression.  For each time point, at 

least 6 animals from different litters were included.  Samples were run in triplicate 

and compared to the housekeeping gene Histone 3.1.  All data were compared 

back to female PND 4.  

 

Are there sex differences in sex steroid hormone receptor mRNA 

expression across development? 

ER! 

ER! mRNA significantly decreased across early postnatal development.  

Interestingly, there was not a sex difference in ER! mRNA expression (Figure 

2.4).  Sex differences across postnatal day were evaluated by a two-way analysis 

of variance (ANOVA) comparing the factors “sex” (female and male) and 

“postnatal day” (PND 4, 10, 18 and 25).  Overall there was a significant main 

effect of postnatal day (p= 0.0015, F= 5.693, df= 3, 72), but no main effect of sex 
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and no interaction (Figure 2.4).  To determine which days were different a 

Student Neuman-Keuls post-hoc test was performed and revealed that ER! 

mRNA expression was significantly decreased at both PND 18 and 25 compared 

to PND 10 and to PND 4 (p< 0.05).  Overall, ER! mRNA expression decreased 

across postnatal development regardless of sex.  

To look at relative levels of mRNA expression, not a change compared 

back to PND 4, the ratio of housekeeping Ct values (average specific PND 

housekeeping Ct value/ sample housekeeping Ct value) was multiplied by the Ct 

value for the gene of interest for the same sample, Table 2.3.  I have included 

average Ct values for ER! and His 3.1 for female and males at each time-point, 

Table 2.4.  This table highlights ER! Ct values normalized to average histones 

that can be compared across PND.  The graphs, Figure 2.4, have Ct values 

logarithmically expressed relative to PND 4; however, the chart has raw ER! Ct 

values normalized to average histone Ct values that can be compared across 

PND.  The chart Ct values show a substantial change in Ct values that are less 

than 30.  For real time PCR, the lower the Ct values the more mRNA and 

changes that are less than 30 are considered “real.”  Ct values greater than 30 

occur during the plateau phase of the logarithmic PCR cycle where there is an 

increase chance of error (reviewed in (Wong and Medrano 2005)).  The chart Ct 

values correspond to the logarithmic change seen in the graphs.  For the female 

and male cortex, ER! Ct values showed a decrease across PND.   
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Figure 2.4. ER! mRNA expression in the rat cortex across early postnatal 

development. ER! mRNA decreased across early postnatal development in 

both female and male cortex.  There were no sex differences in ER! mRNA 

expression at any of the postnatal days. The graph shows ER! relative to the 

housekeeping gene histone 3.1.  Ct values from each postnatal day were 
compared to female PND 4.  Asterisks on the graph indicate significant 
differences from PND 4, p< 0.05.  The letter “a” on the graph indicates significant 
differences from PND 10, p< 0.05.   
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Table 2.3 Example calculations to look at relative levels of mRNA 
expression. The ratio of housekeeping Ct values (average housekeeping Ct 
value/ sample housekeeping Ct value) was multiplied by the Ct value for the 
gene of interest for the same sample.   
  

PND Gender Histone Ct ER alpha Ct ER alpha * (avg histone/histone)
PND4 F 15.42 25.62 27.64

15.41 25.71 27.75
PND4 F 14.46 25.19 28.98

14.64 25.21 28.65
PND4 F 19.51 25.61 21.84

17.69 25.59 24.06

17.02 25.72 25.14
PND4 F 14.75 22.96 25.89

14.24 22.93 26.79

14.06 23.11 27.34

PND4 F 19.17 23.87 20.71

19.16 23.95 20.79

19.04 23.79 20.79

PND4 F 18.71 23.33 20.74

18.56 23.46 21.03

18.67 23.55 20.98

PND4 F 17.41 23.37 22.33

16.07 23.1 23.91

15.49 23.29 25.01

PND4 F 16.61 24.41 24.45

16.84 24.11 23.82

16.83 23.8 23.52

PND4 F 14.92 22.55 25.14

15.07 23.04 25.43

15.1 23.45 25.83

PND4 F 16.43 23.13 23.42

16.34 25.19 25.64

16.52 24.16 24.33

PND4 F 16.15 21.59 22.24

16.27 21.45 21.93

15.88 21.4 22.42

PND4 F 16.42 20.97 21.24

16.27 21.06 21.53

16.62 21.06 21.08

PND4 F 17.67 23.03 21.68

18.02 23.01 21.24

18.16 23.11 21.17

PND4 F 16.44 21.06 21.31

16.64 21.25 21.24

16.72 21.46 21.35

Average 16.64 23.34 23.51
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Table 2.4 Average real time PCR Ct values from housekeeping gene histone 
3.1 and ER! on postnatal day 4, 10, 18 and 25.  Bolded box on Table A 
(females) and Table B (males) indicates ER! Ct values normalized to average 

histones for each postnatal day.  These ER! and histone Ct values show a 

normalized value for ER! throughout postnatal day.  These values allow us to 

look at the change in ER! across postnatal day.  The normalized Ct value 

indicates the relative amount of mRNA in the sample taking into consideration 
amount of total mRNA.  Table A (female) and Table B (male) correspond to the 
overall decrease in ER! mRNA throughout early postnatal development.  Note:  

higher Ct values indicate a lower expression level of mRNA by representing a 
greater number of PCR cycles to reach a maximum.   
 
 
A. 

Average Ct value 

Sex PND Histone ER alpha 

Ct value 
normalized to 

average histone 

4 16.64 23.34 23.51 

10 17.75 23.72 23.31 

18 17.71 26.37 26.65 
Female 

25 20.8 28.03 28.33 

 
 
B. 

Average Ct value 

Sex PND Histone ER alpha 

Ct value 
normalized to 

average histone 

4 16.77 23.46 23.64 

10 17.28 23.8 23.95 

18 17.92 27.56 27.67 
Male 

25 20.2 27.96 28.1 
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ER! 

ER! mRNA significantly increased across early postnatal development.  

Interestingly, there was not a sex difference in ER! mRNA expression (Figure 

2.5).  Sex differences across postnatal day were evaluated by a two-way analysis 

of variance (ANOVA) comparing the factors “sex” (female and male) and 

“postnatal day” (PND 4, 10, 18 and 25).  Overall there was a significant main 

effect of postnatal day (p< 0.0001, F= 47.289, df= 3, 67), but no main effect of 

sex and no interaction.  To determine which days are different a Student 

Neuman-Keuls post-hoc test was performed and revealed that ER! mRNA 

expression was significantly increased at PND 25 compared to PND 4, 10 and 18 

(p< 0.05), Figure 2.5.  Overall, ER! mRNA expression increased across 

postnatal development regardless of sex.  

To look at relative levels of mRNA expression, not a change compared 

back to PND 4, the ratio of housekeeping Ct values (average specific PND 

housekeeping Ct value/ sample housekeeping Ct value) was multiplied by the Ct 

value for the gene of interest for the same sample, Table 2.5.  I have included 

average Ct values for ER! and His 3.1 for female and males at each time-point, 

Table 2.5.  This chart highlights ER! Ct values normalized to average histones 

that can be compared across PND.  For the female and male cortex, ER! Ct 

values showed that there was an increase in mRNA expression across PND.  

The graphs, Figure 2.5, have Ct values logarithmically expressed relative to PND 

4; however, the table has raw ER! Ct values normalized to average histone Ct 

values that can be compared across PND.  The chart Ct values show a 
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substantial change in Ct values that are less than 30.  For real time PCR, the 

lower the Ct values the more mRNA and changes that are less than 30 are 

considered “real.”  Ct values greater than 30 occur during the plateau phase of 

the logarithmic PCR cycle where there is an increase chance of error (reviewed 

in (Wong and Medrano 2005)).  The chart Ct values correspond to the 

logarithmic change seen in the graphs.  For the female and male cortex, ER! Ct 

values showed an increase across PND.   
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Figure 2.5. ER! mRNA expression in the cortex across postnatal 

development.  ER! mRNA increased across early postnatal development in 

both female and male cortex.  There was no sex difference in ER! mRNA 

expression at any of the postnatal days.  The graph shows ER! relative to the 

housekeeping gene histone 3.1.  CT values from each postnatal day were 
compared to female PND 4. Asterisks on the graph indicate significant increase 
in ER! mRNA at PND 25 from PND 4,10 and 18, p< 0.05. 
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Table 2.5. Average real time PCR Ct values from housekeeping gene 
histone 3.1 and ER! on postnatal day 4, 10, 18 and 25.  Bolded box on Table 

A (females) and Table B (males) indicates ER! Ct values normalized to average 

histones for each postnatal day.  These raw numbers show a normalized value 
for ER! throughout postnatal day.  The normalized Ct value indicates the relative 

amount of mRNA in the sample taking into consideration amount of total mRNA.  
Table A (female) and Table B (male) correspond to the overall increase in ER! 

mRNA throughout early postnatal development (Figure 2.5).  Note:  higher Ct 
values indicate a lower expression level of mRNA by representing a greater 
number of PCR cycles to reach a maximum.   
 
 
 
A. 
 

 
 
B. 
 

 
 
 
 
 

Average Ct value 

Sex PND Histone ER beta 

Ct value 
normalized to 

average histone 

4 16.64 29.55 27.33 

10 17.58 28.76 28.44 

18 17.71 27.56 27.75 
Female 

25 19.89 26.27 26.27 

Average Ct value 

Sex PND Histone ER beta 

Ct value 
normalized to 

average histone 

4 16.77 30.05 27.56 

10 17.28 27.95 28.1 

18 17.76 28.77 28.96 
Male 

25 19.46 25.8 25.8 
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AR 

AR mRNA significantly increased across early postnatal development.  

Interestingly, there was no sex difference in AR mRNA expression (Figure 2.6).  

Sex differences across postnatal day were evaluated by a two-way analysis of 

variance (ANOVA) comparing the factors “sex” (female and male) and “postnatal 

day” (PND 4, 10, 18 and 25).  Overall there was a significant main effect of 

postnatal day (p< 0.0001, F= 16.764, df= 3, 66), but no main effect of sex and no 

interaction.  To determine which days were different a Student Neuman-Keuls 

post-hoc test was performed and revealed that AR mRNA expression was 

significantly increased at PND 18 and 25 compared to PND 4 and 10 and 

significantly increased at PND 25 compared to PND 18 (p< 0.05), Figure 2.6.  

Overall, AR mRNA expression increased across postnatal development 

regardless of sex.  

To look at relative levels of mRNA expression, not a change compared 

back to PND 4, the ratio of housekeeping Ct values (average specific PND 

housekeeping Ct value/ sample housekeeping Ct value) was multiplied by the Ct 

value for the gene of interest for the same sample, Table 2.6.  I have included 

average Ct values for AR and His 3.1 for female and males at each time-point, 

Table 2.6.  This chart highlights AR Ct values normalized to average histones 

that can be compared across PND.  For the female and male cortex, AR Ct 

values showed that there was an increase in mRNA expression across PND.  

The graphs, Figure 2.6, have Ct values logarithmically expressed relative to PND 

4; however, the table has raw AR Ct values normalized to average histone Ct 
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values that can be compared across PND.  The chart Ct values show a 

substantial change in Ct values that are less than 30.  For real time PCR, the 

lower the Ct values the more mRNA and changes that are less than 30 are 

considered “real.”  Ct values greater than 30 occur during the plateau phase of 

the logarithmic PCR cycle where there is an increase chance of error (reviewed 

in (Wong and Medrano 2005)).  The chart Ct values correspond to the 

logarithmic change seen in the graphs.  For the female and male cortex, AR Ct 

values showed an increase across PND.   
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Figure 2.6. AR mRNA expressions in the cortex across postnatal 
development.  AR mRNA increased across early postnatal development in 
female and male in the cortex.  There was no sex difference in AR mRNA 
expression at any of the postnatal days. The graph shows AR expression relative 
to the housekeeping gene histone 3.1.  Ct values from each postnatal day were 
compared to female PND 4. Asterisk on the graph indicate significant increases 
from PND 4, p<0.05. The letter “a” on the graph indicates significant increases 
from PND 10, p< 0.05. The letter “b” on the graph indicates significant increases 
from PND 18, p< 0.05. 
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Table 2.6 Average real time PCR Ct values from housekeeping gene histone 
3.1 and AR on postnatal day 4, 10, 18 and 25.  Bolded box on table A 
(females) and table B (males) indicates AR Ct values normalized to average 
histones for each postnatal day.  These raw numbers allow you to evaluate a 
normalized value for AR throughout postnatal day.  The normalized Ct value 
indicates the relative amount of mRNA in the sample taking into consideration 
amount of total mRNA.  Table A (female) and Table B (male) correspond to the 
overall increase in AR mRNA throughout early postnatal development (Figure 
2.6).  Note:  higher Ct values indicate a lower expression level of mRNA by 
representing a greater number of PCR cycles to reach a maximum.   
 
 
 
A. 

Average Ct value 

Sex PND Histone AR 

Ct value 
normalize to 

average histone 

4 16.66 30.3 28.59 

10 17.58 25.55 25.58 

18 17.71 24.08 24.28 
Female 

25 19.89 26.27 26.27 

 
 
 
B. 

Average Ct value 

Sex PND Histone AR 

Ct value 
normalize to 

average histone 

4 16.77 30.08 27.65 

10 17.15 26.92 25.85 

18 17.92 25.67 25.65 
Male 

25 19.46 25.36 25.37 
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We found that the expression patterns of sex steroid hormone receptors 

were the same in the rat cortex as in the mouse cortex across development.  My 

hypothesis that ER! decreased and ER" and AR increased in mRNA expression 

across early postnatal development in the rat cortex was confirmed.  Additionally, 

there was not a sex difference in relative level or pattern of expression in ER!, 

ER" or AR mRNA across development.   

 
Part 2: Steroid hormone receptor mRNA expression in female and male rat 

cortical explants across time in culture (in vitro). 

Cortical explants were isolated from postnatal day 3 (PND 3) rat pups and 

grown for 1 to 22 days in culture with media containing either 17"-estradiol (E2) 

(1 nM in 0.01% EtOH) or EtOH (0.01%) vehicle.  Explants were collected for 

RNA at 1, 7, 15 and 22 days in culture (DIC).  Each time-point included the 

collection of at least 3 explants (N=1) per well that was repeated independently at 

least 3 times.  For example, 3 females explants were grown in EtOH treated 

media for 1 DIC were collected and combined as an N of 1.  This was repeated 

at least 3 times with a new set of litters each time.  RNA was isolated from the 

explants and converted to cDNA where it was used for real time PCR to examine 

ER alpha (ER!), ER beta (ER") or androgen receptor (AR) mRNA expression. 

Samples were run in triplicate and compared to the housekeeping gene Histone 

3.1.  All data were compared back to 1 DIC for each vehicle-treated sex. 
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ER! 

Does E2 influence ER! mRNA expression in rat cortical explants across 

time in culture? 

To answer this question, we analyzed mRNA expression by statistically 

comparing treatment (EtOH and E2) and days in culture (DIC) separately for 

female cortical explants and male cortical explants.  ER! mRNA expression 

significantly decreased in female and male cortical explants that were EtOH and 

E2 treated.  

In female cortical explants, ER! mRNA expression decreased in cortical 

explants across time in culture (1 to 22 DIC), but treatment in the feed media was 

not a factor (Figure 2.7).  For the female explants grown in media containing 

vehicle and E2, a two-way ANOVA comparing the factors “treatment” and “DIC” 

revealed a significant main effect of DIC (p= 0.002, F= 7.839, df= 3, 65), but no 

main effect of treatment and no interaction.  To determine which DIC were 

different a Student Neuman-Keuls post-hoc test was performed and revealed that 

ER! mRNA expression was significantly decreased at 7, 15 and 22 DIC 

compared to 1 DIC (p< 0.05).  Overall, these data demonstrate that ER! mRNA 

expression decreased in female rat cortical explants regardless if E2 was present 

in the feed media.  
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Figure 2.7. ER! mRNA expression in female cortical explants grown in 

culture. ER! mRNA decreased across time in culture in vehicle and E2-treated 

female cortical explants.  There was no treatment difference in ER! mRNA 

expression at any of the postnatal days. The graph above shows ER! relative to 

the housekeeping gene histone 3.1.  Ct values from each postnatal day are 
compared to 1DIC vehicle-treated females explants. Asterisks on the graph 
indicate significant decreases at 7, 15, and 22 DIC, p< 0.05. 
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In male cortical explants, ER! mRNA expression decreased across time 

in culture (1 to 22 DIC) and E2 influenced the expression.  This is different from 

what we see in female cortical explants (Figure 2.7), because female cortical 

explants did not have an effect of treatment.  For the male explants grown in 

media containing vehicle and E2, a two-way ANOVA comparing the factors 

“treatment” and “DIC” revealed a significant main effect of DIC (p=0.0345, 

F=3.091, df= 3, 54) and of treatment (p=0.0190, F= 5.852, df= 1, 54), but no 

interaction.  Vehicle (EtOH)-treated male cortical explants had an increased ER! 

mRNA expression compared to E2-treated male cortical explants.  To determine 

which DIC were different a Student Newman-Keuls post-hoc test was performed 

and revealed that 1 DIC was significantly greater than 22 DIC when both E2 and 

vehicle were collectively compared against 1 DIC (p< 0.05), indicated by an 

asterisk in Figure 2.8.  Overall, male cortical explants had a decrease in ER! 

mRNA expression and E2-treatment significantly lowered this expression. 

To look at relative levels of mRNA expression, not a change compared 

back to vehicle-treated explants grown for 1 DIC, the ratio of housekeeping Ct 

values (average specific PND housekeeping Ct value/ sample housekeeping Ct 

value) was multiplied by the Ct value for the gene of interest for the same 

sample.  The average Ct values for ER! and His 3.1 are located in Table 2.7 for 

vehicle and E2 treated female and male cortical explants at each time-point.  

This table highlights ER! Ct values normalized to average histones that can be 

compared across PND.  For the female and male cortical explants, ER! Ct 

values decreased across PND.  ER! Ct value normalized to average histone in 
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both female and male were not significantly different from each other, but they 

did change significantly over time, represented in Figures 2.7-2.8.  

To look at relative levels of mRNA expression, not a change compared 

back to 1 DIC, the ratio of housekeeping Ct values (average specific 1 DIC 

housekeeping Ct value/ sample housekeeping Ct value) was multiplied by the Ct 

value for the gene of interest for the same sample, Table 2.7.  I have included 

average Ct values for ER! and His 3.1 for female and males at each time-point, 

Table 2.7.  This chart highlights ER! Ct values normalized to average histones 

that can be compared across PND.  For the female and male cortex, ER! Ct 

values showed that there was a decrease in mRNA expression across time in 

culture.  The graphs, Figure 2.7-2.8, have Ct values logarithmically expressed 

relative to PND 4; however, the table has raw ER! Ct values normalized to 

average histone Ct values that can be compared across 1 DIC.  The chart Ct 

values show a substantial change in Ct values that are less than 30.  For real 

time PCR, the lower the Ct values the more mRNA and changes that are less 

than 30 are considered “real.”  Ct values greater than 30 occur during the plateau 

phase of the logarithmic PCR cycle where there is an increase chance of error 

(reviewed in (Wong and Medrano 2005)).  The chart Ct values correspond to the 

logarithmic change seen in the graphs.  For the female and male cortex, ER! Ct 

values showed a decrease across DIC.  

As demonstrated in mice cortical explants, ER! mRNA expression 

decreased in the cortical explants across time in culture in both female and male 

rat cortical explants.   These data suggest that the expression patterns of steroid 
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hormone receptors also change in rat cortical explants, which confirms our 

hypothesis that ER! mRNA expression will decrease across time in culture.  
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Figure 2.8. ER! mRNA expression in male cortical explants.  ER! mRNA 

decreased across time in culture in vehicle and E2-treated male cortical explants.  
ER! mRNA expression at 1 DIC was significantly greater than at 22 DIC for both 

E2 and vehicle-treated explants, indicated by an asterisk, p< 0.05.  E2 treatment 
significantly lowered ER! mRNA expression compared to vehicle, not indicated 

on the graph.  
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Table 2.7 Average real time PCR Ct values from housekeeping gene histone 
3.1 and ER! in cortical explants grown for 1, 7, 15 and 22 days in culture 

(DIC).  Bolded box on table A and B (females) and table C and D (males) 
indicates ER! Ct values normalized to average histones for each postnatal day. 

Note:  higher Ct values indicate a lower expression level of mRNA by 
representing a greater number of PCR cycles to reach a maximum.   
 
A 

EtOH Treated Average Ct Value 

Sex DIC Histone ER alpha 

Ct value normalize to 
average histone 

1 18.94 26.34 25.77 

7 18.54 27.33 26.37 

15 20.19 27.61 27.63 
Female 

22 19.69 28.84 28.58 

 
B 

E2 Treated Average Ct Value 
Sex DIC Histone ER alpha 

Ct value normalize to 
average histone 

1 19.46 26.23 26.34 

7 18.45 28.16 26.83 

15 19.68 27.37 27.42 
Female 

22 19.45 29.85 29.87 

 
C 

EtOH Treated Average Ct Value 
Sex DIC Histone ER alpha 

Ct value normalize to 
average histone 

1 19.85 26.21 26.43 

7 18.78 26.72 25.91 

15 19.77 26.58 26.19 
Male 

22 19.84 27.33 27.27 

 
D 

E2 Treated Average Ct Value 

Sex DIC Histone ER alpha 

Ct value normalize to  
average histone 

1 19.04 26.44 26.59 

7 19.72 26.72 25.59 

15 19.53 26.72 26.88 
Male 

22 19.51 28.33 28.19 
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ER!  

Does E2 influence ER! mRNA expression in rat cortical explants across 

time in culture? 

To answer this question, we analyzed mRNA expression by statistically 

comparing treatment (EtOH and E2) and days in culture (DIC) separately for 

female cortical explants and male cortical explants.  ER! mRNA expression 

significantly increased in both vehicle and E2-treated female and vehicle and E2-

treated male cortical explants across time in culture.  

In female cortical explants, ER! mRNA expression increased in cortical 

explants across time in culture (1 to 22 DIC), but treatment in the feed media is 

not a factor. For the female explants grown in media containing vehicle and E2, a 

two-way ANOVA comparing the factors “treatment” and “DIC” revealed a 

significant main effect of DIC (p= 0.0043, F= 4.815, df= 3, 66), but no main effect 

of treatment and no interaction.  To determine which DIC were different a 

Student Neuman-Keuls post-hoc test was conducted and revealed that ER! 

mRNA expression was significantly increased at 15 DIC compared to 1 DIC (p< 

0.05) and significantly increased at 15 and 22 DIC compared to 7 DIC (p< 0.05) 

(Figure 2.9).  These significant differences include data from both vehicle and E2 

treated female cortical explants because there was not an effect of treatment.   

Overall, these data demonstrate that ER! mRNA expression increased across 

time in culture in female rat cortical explants regardless if E2 was present in the 

feed media.  
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Figure 2.9. ER! mRNA expression in female cortical explants. ER! mRNA 

increased across time in culture in vehicle and estrogen-treated cortical explants. 
The graph above shows ER! relative to the housekeeping gene histone 3.1.  Ct 

values from each postnatal day are compared to 1 DIC for each media treatment. 
Significant increases at 15 DIC compared to 1 DIC are indicated by asterisks on 
the graph and significant increases at 15 and 22 DIC compared to 7 DIC are 
indicated by an “a”, p< 0.05.    
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In male cortical explants, ER! mRNA expression increased in cortical 

explants across time in culture (1 to 22 DIC), but treatment in the feed media is 

not a factor.  For the male explants grown in media containing vehicle and E2, a 

two-way ANOVA comparing the factors “treatment” and “DIC” revealed a 

significant main effect of DIC (p< 0.0001, F= 8.718, df= 3, 63), but no main effect 

of treatment and no interaction.  To determine which DIC were different a 

Student Newman-Keuls post-hoc test was conducted and revealed that ER! 

mRNA expression significantly increased at 15 and 22 DIC compared to 1 and 7 

DIC (p< 0.05) (Figure 2.10).  These significant differences include data from both 

vehicle and E2 treated male cortical explants because there was not an effect of 

treatment. Overall, male cortical explants had an increase in ER! mRNA 

expression across time in culture. 

To look at relative levels of mRNA expression, not a change compared 

back to 1 DIC, the ratio of housekeeping Ct values (average specific 1 DIC 

housekeeping Ct value/ sample housekeeping Ct value) was multiplied by the Ct 

value for the gene of interest for the same sample, Table 2.8.  I have included 

average Ct values for ER! and His 3.1 for female and males at each time-point, 

Table 2.8.  This chart highlights ER! Ct values normalized to average histones 

that can be compared across PND.  For the female and male cortex, ER! Ct 

values showed that there was a decrease in mRNA expression across time in 

culture.  The graphs, Figure 2.9-2.10, have Ct values logarithmically expressed 

relative to PND 4; however, the table has raw ER! Ct values normalized to 

average histone Ct values that can be compared across 1 DIC.  The chart Ct 
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values show a substantial change in Ct values that are less than 30.  For real 

time PCR, the lower the Ct values the more mRNA and changes that are less 

than 30 are considered “real.”  Ct values greater than 30 occur during the plateau 

phase of the logarithmic PCR cycle where there is an increase chance of error 

(reviewed in (Wong and Medrano 2005)).  The chart Ct values correspond to the 

logarithmic change seen in the graphs.  For the female and male cortex, ER! Ct 

values showed an increase across DIC.   
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Figure 2.10. ER! mRNA expression in male cortical explants. ER! mRNA 

increased across time in culture in vehicle and E2-treated male cortical explants. 
The graph above shows ER! relative to the housekeeping gene histone 3.1.  Ct 

values from each postnatal day are compared to 1 DIC for each media treatment. 
Asterisk on the graph indicate significant increases from PND 4, p<0.05. The 
letter “a” on the graph indicates significant increases from PND 10, p< 0.05. 
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Table 2.8. Average real time PCR Ct values from housekeeping gene 
histone 3.1 and ER! in cortical explants grown for 1, 7, 15 and 22 days in 
culture (DIC).  Bolded box on table A and B (females) and table C and D (males) 
indicates ER! Ct values normalized to average histones for each postnatal day.  

Note:  higher Ct values indicate a lower expression level of mRNA by 
representing a greater number of PCR cycles to reach a maximum.   
A. 

EtOH Treated Average Ct Value 
Sex PND Histone ER beta 

Ct value normalized to 
average histone 

4 18.94 30.16 30.83 

10 19.98 31.41 30.61 

18 20.27 29.57 29.59 
Female 

25 19.74 29.46 29.53 

 
B. 

E2 Treated Average Ct Value 
Sex PND Histone ER beta 

Ct value normalized to 
average histone 

4 19.28 30.20 29.62 

10 18.44 32.99 30.60 

18 19.82 28.62 28.68 
Female 

25 19.45 29.03 29.10 

 
C. 

EtOH Treated Average Ct Value 
Sex PND Histone ER beta 

Ct value normalized to 
average histone 

4 19.67 30.47 30.49 

10 19.97 30.64 30.16 

18 20.29 29.22 29.17 
Male 

25 20.14 29.19 29.36 

 
D. 

E2 Treated Average Ct Value 
Sex PND Histone ER beta 

Ct value normalized to 
average histone 

4 19.04 31.9 31.93 

10 20.45 30.21 30.46 

18 19.51 29.81 30.01 
Male 

25 19.51 39.91 29.58 

 



! 66 

 
AR  

Does E2 influence AR mRNA expression in rat cortical explants 

across time in culture? 

We analyzed mRNA expression by statistically comparing treatment 

(EtOH and E2) and days in culture (DIC) separately for female cortical explants 

and male cortical explants.  AR mRNA expression significantly increased in 

female and male cortical explants that were EtOH and E2 treated.  

In female cortical explants, AR mRNA expression increased across time in 

culture (1 to 22 DIC), but treatment in the feed media is not a factor.  For the 

female explants grown in media containing vehicle and E2, a two-way ANOVA 

comparing the factors “treatment” and “DIC” revealed a significant main effect of 

DIC (p< 0.0001, F= 11.610, df= 3, 65), but no main effect of treatment and no 

interaction.  To determine which DIC were different a Student Neuman-Keuls 

post-hoc test was conducted and revealed that AR mRNA expression was 

significantly increased at 15 and 22 DIC compared to 1 and 7 DIC (p< 0.05), 

Figure 2.11. 
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Figure 2.11.  Androgen receptor mRNA expression in female cortical 
explants. AR mRNA increased across time in culture in vehicle and E2-treated 
cortical explants. The graph above shows AR relative to the housekeeping gene 
histone 3.1.  Ct values from each postnatal day are compared to 1 DIC for each 
media treatment. Asterisk on the graph indicate significant increases from PND 
4, p<0.05. The letter “a” on the graph indicates significant increases from PND 
10, p< 0.05. 
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In male cortical explants, AR mRNA expression increased across time in 

culture (1 to 22 DIC) and E2 did influence the expression.  For the male explants 

grown in media containing vehicle and E2, a two-way ANOVA comparing the 

factors “treatment” and “DIC” revealed a significant main effect of DIC  (p< 

0.0001, F= 11.093, df= 3, 58), but no main effect of treatment and no interaction. 

To determine which DIC were different a Student Newman-Keuls post-hoc test 

was conducted and revealed that AR mRNA expression significantly increased at 

15 and 22 DIC compared to 1 and 7 DIC and 15 DIC to 22 DIC (p< 0.05), Figure 

2.12.  These significant differences include data from both vehicle and E2 treated 

male cortical explants because there was not an effect of treatment. Overall, 

male cortical explants had an increase in AR mRNA expression. 

To look at relative levels of mRNA expression, not a change compared 

back to 1 DIC, the ratio of housekeeping Ct values (average specific 1 DIC 

housekeeping Ct value/ sample housekeeping Ct value) was multiplied by the Ct 

value for the gene of interest for the same sample, Table 2.9.  I have included 

average Ct values for AR and His 3.1 for female and males at each time-point, 

Table 2.9.  This chart highlights AR Ct values normalized to average histones 

that can be compared across PND.  For the female and male cortex, AR Ct 

values showed that there was a decrease in mRNA expression across time in 

culture.  The graphs, Figure 2.11-2.12, have Ct values logarithmically expressed 

relative to 1 DIC; however, the table has raw AR Ct values normalized to average 

histone Ct values that can be compared across 1 DIC.  The chart Ct values show 

a substantial change in Ct values that are less than 30.  For real time PCR, the 
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lower the Ct values the more mRNA and changes that are less than 30 are 

considered “real.”  Ct values greater than 30 occur during the plateau phase of 

the logarithmic PCR cycle where there is an increase chance of error (reviewed 

in (Wong and Medrano 2005)).  The chart Ct values correspond to the 

logarithmic change seen in the graphs.  For the female and male cortex, AR Ct 

values showed an increase across DIC.   
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Figure 2.12. Androgen receptor mRNA expression in male cortical explants. 
AR mRNA increased across time in culture in vehicle and E2-treated male 
explants.The graph above shows AR relative to the housekeeping gene histone 
3.1.  Ct values from each postnatal day are compared to 1 DIC for each media 
treatment.  Asterisk on the graph indicate significant increases from PND 4, 
p<0.05. The letter “a” on the graph indicates significant increases from PND 10, 
p< 0.05. The letter “b” on the graph indicates significant increases from PND 18, 
p< 0.05. 
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Table 2.9 Average real time PCR Ct values from housekeeping gene histone 
3.1 and AR in cortical explants grown for 1, 7, 15 and 22 days in culture 
(DIC).  Bolded box on table A and B (females) and table C and D (males) 
indicates AR Ct values normalized to average histones for each postnatal day.   
Note:  higher Ct values indicate a lower expression level of mRNA by 
representing a greater number of PCR cycles to reach a maximum.   
A. 

EtOH Treated Average Ct Value 
Sex DIC Histone AR 

Ct value normalized 
to average histone 

1 18.94 32.33 32.54 

7 18.71 30.83 30.37 

15 20.27 28.38 28.42 
Female 

22 19.9 29.33 29.58 

 
B. 

Estrogen Treated Average Ct Value 
Sex DIC Histone AR 

Ct value normalized 
to average histone 

1 19.25 31.20 31.57 

7 18.45 31.82 30.47 

15 19.68 27.58 27.61 
Female 

22 19.45 28.98 29.10 

 
C. 

EtOH Treated Average Ct Value 
Sex DIC Histone AR 

Ct value normalized 
to average histone 

1 19.77 32.18 33.15 

7 19.38 29.22 29.47 

15 19.77 28.29 27.03 
Male 

22 20.13 28.04 28.24 

 
D. 

Estrogen Treated Average Ct Value 
Sex DIC Histone AR 

Ct value normalized 
to average histone 

1 19.04 33.34 33.60 

7 20.1 29.99 30.72 

15 19.57 28.69 28.89 
Male 

22 19.51 29.03 27.66 
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Discussion 

 
In these studies, I compared expression of three sex steroid hormone 

receptors, ER alpha (ER!), ER beta (ER") and androgen receptor (AR) in the rat 

cortex and in cortical explants taken from male and female rats.  My first goal 

was to test the hypothesis that these sex steroid hormone receptors were 

regulated similarly during postnatal development that was previously published in 

the mouse.    My second goal was to test the hypothesis that these sex steroid 

hormone receptors change across time in culture in rat cortical explants when the 

cortex is isolated away from other regions of the brain.  By understanding the 

expression patterns of steroid hormone receptors during postnatal development, 

we can potentially understand how they are regulated at other times during an 

animal’s lifetime due to the theory that the brain reverts back to its developmental 

state to aid in repair following brain injury (Emery, Royo et al. 2003).   

As expected in the female and male rat cortex, ER! mRNA expression 

significantly decreased, ER" mRNA expression significantly increased and AR 

mRNA expression also significantly increased all compared to a housekeeping 

gene across early postnatal development, Table 2.10.  This confirms our 

hypothesis that the mRNA for these sex steroid hormone receptors changes 

similarly during rat postnatal development that was previously published in the 

mouse.  Specifically, ER! mRNA significantly decreased at PND 18, ER" mRNA 

expression significantly increased at PND 25 and AR mRNA expression 

significantly increased at PND 18, Table 2.10.   For these sex steroid hormone 

receptors there was no sex difference across postnatal development.  This  
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Table 2.10.  Summary Table of Sex Steroid Hormone Receptors.  The 
expression pattern for ER!, ER" and AR mRNA across early postnatal 

development in the female and male cortex and changes in expression patterns 
across time in culture in cortical explants take female and male rat pups were 
summarized.   
 

 Female Male 

 Cortex 
Cortical 
Explants 

Cortex 
Cortical 
Explants 

ER! mRNA 

expression 
# # # # 

ER" mRNA 

expression 
$ $ $ $ 

AR mRNA 
expression 

$ $ $ $ 

 



! 75 

 
follows a similar pattern of what was previously published (Prewitt and Wilson 

2007).   

As expected in cortical explants taken from either female or male rats, 

ER! mRNA expression significantly decreased, ER" mRNA expression 

significantly increased and AR mRNA expression also significantly increased 

across time in culture, Table 2.10.  This confirms our second hypothesis that 

these sex steroid hormone receptors would change across time in culture.  This 

validates the explant model by showing the cortex, when isolated away from 

other regions of the brain, can maintain its dynamic regulation of the sex steroid 

hormone receptors mRNA expression.  Specifically, ER! mRNA significantly 

decreased in female cortical explants at 7 DIC, regardless of treatment, Figures 

2.7.  However, when vehicle and E2-treated males explants were compared 

there was a significant effect of treatment, where E2 treatment decreased ER! 

mRNA expression compared to vehicle treatment.   There was also a significant 

decrease in ER! mRNA expression at 22 DIC in male cortical explants, Figure 

2.8.  Sex differences cannot be compared directly because female and male 

cortical explants were not analyzed directly.  They were compared within sex 

looking at the effect of treatment.  In female cortical explants, ER! mRNA 

expression significantly decreased at 7 DIC, where male cortical explants did not 

have a significant decrease until 22 DIC.  E2 also decreased ER! mRNA 

expression in males, but did have an effect in female cortical explants.   

ER" mRNA significantly increased at 15 DIC when vehicle and E2 treated 

female or male explants are compared independently, Figures 2.9-2.10.  AR 
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mRNA expression significantly increased at 15 DIC, regardless of sex or 

treatment.   

The additional presence of E2 in the feed media only alters ER! mRNA 

expression in only male cortical explants.  This could be due to a change in the 

hormonal environment that the male cortical explants experience from the time of 

plating that is different from in the intact brain, in vivo.  Males do not have alpha-

fetal protein to bind to E2 and prevent it from crossing the blood brain barrier.  

Therefore E2 masculinizes the brain in male rodents.  The E2 concentration in 

the intact cortex may vary from the E2 concentration in the feed media, which 

causes ER! mRNA expression to be lower compared its vehicle control.  Since 

ER! is high while ER" and AR mRNA expression are low at the time of plating, 

ER! mRNA expression could be more susceptible to an alteration in hormonal 

environment and decrease in mRNA expression with the presence or change in 

concentration of E2.   

Sex steroid hormone protein expression was not correlated to the mRNA 

expression.  Protein, not mRNA, expression can directly correlate to function.  

Changes in ER!, ER" and AR mRNA expression have been correlated to 

changes in protein expression.  Ideally protein and mRNA expression would have 

been measured across early postnatal development in the intact cortex and 

across time in culture in cortical explants instead of just mRNA expression.  

However due to lack of specificity in antibodies for ER" and AR western blots 

(Skliris, Parkes et al. 2002) (Snyder, Smejkalova et al. 2010), protein expression 

could not be accurately measured.  Specifically, ER" protein was detected in an 
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ER! knockout where there was no ER! expressed (Snyder, Smejkalova et al. 

2010).   

The cytoarchitecture of the cortex is known to change and mature during 

postnatal development.  Steroid hormones and their receptors influence this 

cytoarchitecture by influencing synaptogenesis (Mong, Roberts et al. 2001), cell 

differentiation (De Vries, Rissman et al. 2002; Simerly 2002), apoptosis (Chung, 

Swaab et al. 2000; Forger 2006), neurite outgrowth (Toran-Allerand 1976; Toran-

Allerand 1976), connectivity and migration (Parent, Naveau et al. 2011; Peper, 

Hulshoff Pol et al. 2011; Peper, van den Heuvel et al. 2011).  Specifically the 

higher expression of ER! and AR that occurs from postnatal day 18 to 25 

correlates with steroidogenesis that is beginning in the sex organs during the 

second postnatal week (Carson and Smith 1986; Dufau, Khanum et al. 1987).  

The brain is sexual differentiated around PND 18 when an enzyme (aromatase) 

that converts testosterone, from steroidogenesis in males, to estrogen is present 

(Green and Simpkins 2000).  Estrogen produced from steroidogenesis in females 

is bound to alpha-fetoprotein, which inhibits its access across the blood brain 

barrier (Keller, Pawluski et al. 2010).  However, the male brain is masculinized by 

the presence of estrogen and the lack of alpha-fetoprotein (Keller, Pawluski et al. 

2010).  Although the male brain is believe to be masculinized by estrogen and 

the female brain by the lack there of, the amount of de novo estrogen production 

is variable.  The enzymes for de novo estrogen production are present 

throughout development (Ibanez, Guennoun et al. 2003; Tsutsui 2008; 

Nagarajan, Tsai et al. 2011) and can be compensating for the presence of alpha- 
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fetoprotein by locally producing estrogen in the female brain.  The first two weeks 

of postnatal development in the cortex are when cells are migrating and forming 

neuronal circuits within the cortex and with other regions of the brain.  The 

increase in steroid hormones and their receptors correlated with the cellular 

organization of the cortex.  Disruption of these hormones and receptors cause 

delays in cell death and disruption in cytoarchitecture (Nunez, Jurgens et al. 

2000; Nunez, Lauschke et al. 2001; Nunez, Huppenbauer et al. 2003).  The 

concentrations of hormones present across postnatal development vary 

depending on brain region.  For example, the hypothalamus had higher E2 

concentrations than the cortex, which had higher concentrations than the 

hippocampus.  These changes in E2 concentration that occurred in the brain 

across the first 10 days of life were not sex specific in the hypothalamus or the 

hippocampus.  However, there were sex differences in E2 concentration in the 

cortex.   Specifically, males had a peak concentration of E2 in the cortex on PND 

4, while females did not peak until PND 6.  Following the initial sex difference in 

days when E2 concentrations peaked, both sexes had a similar pattern of 

decrease in E2 across postnatal development.  Interestingly, females and males 

that were adrenalectomized and gonadectomized before they were 12 hours old, 

also maintained a similar hormonal pattern in the brain to animals with intact 

adrenal glands and gonads when they were 3 days old.  These data 

demonstrated that the brain regulates hormone concentrations independently of 

the rest of the body.  This may be a protective mechanism to ensure the brain 

receives a certain amount of hormones independently of the body to ensure 
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proper brain development.  Cortical explants also appear to be maintaining 

homeostasis by regulating sex steroid hormone receptor expression when 

changes occur in the hormone environment, such as a difference in ER! mRNA 

expression seen in male cortical explants in the presence of E2.   

ER! mRNA expression, in female cortical explants, significantly 

decreases earlier (7 DIC) than intact cortex.  In male cortical explants, ER! 

mRNA decreased later (22 DIC) compared to the intact cortex (PND 18).  

Changes in ER" mRNA expression were also seen earlier in cortical explants, 15 

DIC, than across cortical development.  AR has a similar increase in mRNA 

expression in cortical explants, 15 DIC, and in vivo, PND 18.   In general, cortical 

explants had a similar change in expression in ER!, ER" and AR that is seen in 

cortical development, in vivo.  However, generally we see a significant change in 

mRNA expression earlier when cortical explants are grown in culture.  This could 

be due to numerous possibilities.  One possibility is a lack of inhibitory cues from 

other parts of the brain such as the striatum, a region of the brain that located 

directly next to the cortex (Figure 2.1).  The axons from the cortex not only 

project into the striatum and back into the cortex, but also to the thalamus and 

brainstem (Rosell and Gimenez-Amaya 1999; Hooks, Hires et al. 2011; Mao, 

Kusefoglu et al. 2011).  

Another possibility is the change of nutrients that the cortical explants 

receive compared to the cortex during development.  In cortical development 

there is a vast blood supply with numerous growth factors.  Cortical explants are 

isolated from this blood supply and grown on millicell membranes with access to 



! 80 

feed media.  So it is important to note that while there are differences we can 

correlate the overall expression patterns.  The changes that occur across time in 

culture will allow us to evaluate steroid hormones and how they affect steroid 

hormone receptors across development and following injury.   

One limitation of the cortical explant model is determining the relative age 

of the cortical explant.  The explants are taking out of a PND 3 rat pup and 

allowed to “age” in culture.  When the organization of the neurons and glia cells 

in the cortex of mature animals are compared to explants taken from PND3 rat 

pups and “aged,” the glia and neuronal cells due not exhibit the same pattern of 

organization (Staal, Alexander et al. 2011).  Explants isolated from neonatal 

animals and grown in culture have increased glia expression and loss of 

cytoarchitectural neuronal organization of the different layers of the cortex 

compared to the cortex taken from a mature animal (Staal, Alexander et al. 

2011).  Aged cortical explants have a loss of glia limitans and display additional 

growth on the periphery of slice from possible progenitor like cells (Staal, 

Alexander et al. 2011).  The have, however, been shown to be a reliable model 

for studying injury (Wise, Dubal et al. 2000; Wilson, Liu et al. 2002) 

 The cortical explant model allows us to look at a specific region of the 

brain, the cortex, with out input from other regions of the brain.  This is important 

because the cortex is a region of the brain that is protected by estrogen following 

injury.  This model allows us to isolate the cortex and look at changes across 

development and to simplify an injury and determine if the neuroprotection is 

endogenous to the cortex or if the cortex requires input from other regions of the 
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brain. The explant model is unique because it is a heterogeneous population of 

neurons and glial cells that other in vitro models do not incorporate.  The 

neuronal glial cross talk is essential to take into consideration in any model of the 

brain because these cells work together in development and in injury.  

The expression of 3 sex steroid hormone receptors ER!, ER" and AR 

were described across postnatal development in the cortex and across time in 

culture in cortical explants.  My first hypothesis was confirmed that these sex 

steroid hormone receptors were regulated similarly during postnatal development 

that was previously published in the mouse.    My second hypothesis was also 

confirmed that these sex steroid hormone receptors also change across time in 

culture in rat cortical explants.  By understanding the expression patterns of 

steroid hormone receptors during postnatal development, we can potentially 

understand how they are regulated at other times during an animal’s lifetime, ie 

following brain injury.  Specifically the cortical explant model will allow us to 

evaluate mechanism of neuroprotection inside the cortex and allow us to 

pharmacologically manipulate only the cortex to further outline the mechanisms 

involved in neuroprotection.    
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CHAPTER 3 

SEX DIFFERENCES AND ESTROGEN-MEDIATED NEUROPROTECTION IN 

MODEL OF ISCHEMIA  

 

Introduction 

 
Brain ischemia occurs when the brain is deprived of blood flow, which 

results in an inadequate supply of oxygen and glucose.  Tissues need oxygen 

and glucose to meet their metabolic cellular demands.  Insufficient blood supply 

for seconds in the brain can result in cell death and tissue damage.  This 

ischemia-induced cell death is only one type of stroke, but occurs the majority 

(87%) of the time, while the other 13% of strokes are hemorrhagic (Roger, Go et 

al. 2012).  Ischemia can be classified as focal, which is confined to a specific 

region of the brain, or global, which involves wide areas of brain tissue.  Our lab 

has used an animal model to study focal ischemia caused by middle cerebral 

artery occlusion (MCAO).   As described in the General Introduction, MCAO 

causes a significant reduction in cerebral blood flow to the striatum and over 

laying cortex (Dubal, Kashon et al. 1998).  This decrease in blood supply leads to 

necrotic cell death in the striatum followed by apoptotic cell death in the over 

laying cortex (Liu, Smith et al. 1999).   

The effects of ischemic cell death are heavily influenced by an animal’s 

steroid hormone background.  Following MCAO, gonadectomized females 

(Simpkins, Rajakumar et al. 1997; Dubal, Kashon et al. 1998; Toung, Traystman 
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et al. 1998; Rusa, Alkayed et al. 1999; Dubal and Wise 2001) and males (Toung, 

Traystman et al. 1998; Uchida, Palmateer et al. 2009) have a much larger 

MCAO-induced injury than animals with higher circulating estrogen 

concentrations.  Pretreatment with even low doses of E2 is sufficient to exert 

dramatic protection in the brains of both female (Dubal, Kashon et al. 1998; 

Dubal and Wise 2001) and male rats (Toung, Traystman et al. 1998).  In 

humans, the role of hormone replacement is not as clear.  In fact, some clinical 

studies found that estrogens were not beneficial at all (Wilson, Garrison et al. 

1985; Grodstein, Stampfer et al. 1996; Petitti, Sidney et al. 1998; Anderson, 

Limacher et al. 2004), while other studies did report benefits following stroke 

(reviewed in (Behl 2002; McCullough and Hurn 2003)).  The discrepancies 

between different studies may in part be explained by differences in the timing of 

estrogen replacement and the age of women included in the studies.  As 

described above, animal studies are much less controversial and provide a 

simpler model to study the mechanisms of neuroprotection by E2 following 

ischemic brain injury. 

An important factor in the extent of brain damage following ischemic injury 

in animal models is the level and expression pattern of estrogen receptors (ER).  

For example, generalized pharmacologic blockade of ER exacerbates ischemic 

injury in mice (Sawada, Alkayed et al. 2000) and blocks estrogen-induced 

neuroprotection in cultured neurons (Singer, Figueroa-Masot et al. 1999; Wilson, 

Dubal et al. 2000) and in cortical explant cultures (Wilson, Dubal et al. 2000).  

Specifically, ER! and not ER" seem to be very important, while AR has not been 
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evaluated.  Studies using ER! knockout females demonstrate that 

neuroprotection by E2 following ischemia is dependent on the presence of ER! 

in the cortex (Dubal, Zhu et al. 2001), and that ER" alone is not sufficient for 

neuroprotection in females.  As described in chapter 2, ER! is only transiently 

expressed in the cortex during early postnatal development and then is virtually 

absent in the uninjured adult cortex (Miranda and Toran-Allerand 1992; Prewitt 

and Wilson 2007).  24 hours after MCAO, however, ER! mRNA and protein are 

increased in the cortex of female rats and mice (Dubal, Shughrue et al. 1999; 

Dubal, Rau et al. 2006).  In OVX females, the increase in ER! mRNA occurs in 

both oil and E2-treated groups, but is seen earlier after injury with E2 (Dubal, 

Rau et al. 2006).  These data suggest that in females, the ischemia-induced 

increase in ER! in the cortex is necessary for the neuroprotective effects of E2. 

Interestingly, although male rodents can be protected by E2 (depending on the 

concentration and time frame of treatment), ER! expression did not change 

following injury in gonadally intact males (Westberry, Prewitt et al. 2008).  The 

previous animal studies show a clear role for E2 and estrogen receptors in 

neuroprotection following MCAO.  This model is quite complicated and does not 

allow us to focus on understanding mechanisms specific to the cortex.   

For the studies included in this chapter, I will use the in vitro cortical 

explant model described in chapter 2 as a simplified way to discern sex-specific 

mechanisms of neuroprotection that are innate to the cortex. This model is better 

than using isolated neuronal cultures because it maintains the important 

neuronal/glial relationship.  Here, cortical cultures were separated based on sex 
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and treated with 2-deoxyglucose and potassium cyanide (2DG-KCN) to block 

glycolysis and oxidative phosphorylation, which simulates ischemia.  Previous 

studies from our lab have used this model to study injury by treating cortical 

explants grown for one week in culture with 2DG-KCN and showed that 

pretreatment of E2 attenuated this cell death (Wilson, Dubal et al. 2000; Wilson, 

Liu et al. 2002).  Those studies did not look at sex-specific changes in cell death 

or response of receptors.  With our current knowledge of sex differences in cell 

death and changes in receptors with response to injury, we felt it essential to 

repeat those studies separating cortical explants from female and male pups.   

In the first part of this chapter, I wanted to test the hypothesis that 

2DG/KCN treatment increased cell death and determine if increased cell death 

occurred in a sex-specific manner.  I also wanted to measure the influence of E2 

pre-treatment on 2DG/KCN induced cell death.  In the second part of the chapter, 

the experiments were designed to determine how injury affects steroid hormone 

receptor expression and how E2 influenced changes in expression.   To 

accomplish these goals, I evaluated cell death by measuring propidium iodide 

uptake and measured changes in sex steroid hormone receptors following 

treatment with 2DG/KCN in both female and male cortical explants separately.  

By understanding the mechanisms of E2 neuroprotection in cortical explants and 

the regulation and expression patterns of steroid hormone receptors following 

injury, I plan to pharmacologically manipulate this protection in the explants to 

outline pathways that are involved.  
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Methods 

 

Injury 

To induce an ischemic like injury, explants were treated with 1 mM 2-DG 

(D8375, Sigma-aldrich, Saint Louis, MO) and 0.5 mM KCN (207810, Sigma-

aldrich, Saint Louis, MO) for 2 hours, 2 mM 2-DG and 1 mM KCN for 2 hours or 2 

mM 2-DG and 1 mM KCN for 1 hour in 1X Basal Medium Eagle, BME, (injury) or 

BME (control).  2DG/KCN chemically mimics “ischemic” conditions by inhibiting 

glycolysis and oxidative phosphorylation (Wilson, Liu et al. 2002).  Following 

injury, media was replaced. At several time-points after injury (4, 8, 12 and 24 

hours), explants were processed for RNA isolation or treated with propidium 

iodide to determine the extent of cell death.   

 

Cell Death 

To measure cell death, explants were washed with 0.1 M PBS and 

incubated with 5 !g/ml of propidium iodide (PI) (P4170, Sigma-Aldrich, Saint 

Louis, MO) (stock concentration of 1mg/mL in H2O) in BME for 30 minutes at 4, 

8, 12 and 24 hours following injury.  The PI was washed off with 0.1M PBS.  

Explants were visualized using a fluorescent microscope.  PI entered cells that 

had a porous cell membranes, indicating damage, and bound to DNA.  PI uptake 

indicated cell death and fluoresced red (emission at 630 nm) under green light 

(excited at 495 nm).  Pictures, 20X magnification of explants, were captured 

using an image capture program, SPOT Advanced.  Red (dead) cells per frame 
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were then counted using a NIH program, Image J.   Pictures were coded and 

analyzed blindly.  Injured explants were compared back to the corresponding 

vehicle treated non-injury for each hour and sex.  

 

Statistics 

For the cell death (described above) and mRNA (described in chapter 2 

methods) studies, 3 litters were used to dissect female and male cortical 

explants.  These explants were grown in media containing 0.01% EtOH or 1 nM 

E2 in 0.01% EtOH for 1 week (7 days).  At least 3 explants per condition at each 

time-point following injury were collected and repeated at least 3 times.  For 

example, 3 female explants were analyzed that were EtOH treated and injured 4 

hours from the time of collection, N=1.  This was repeated at least 3 times with a 

new set of litters each time.   

The effect of treatment and injury was determined by a two-way ANOVA 

comparing the factors “treatment” (EtOH or E2) and “injury” (non injured or 

2DG/KCN treated) evaluated at various time-points following injury (4, 8, 12 and 

24 hours).  This allowed us to determine if treatment had an effect on the PI or 

mRNA expression or if injury had an effect on the PI or mRNA expression in 

either female or male cortical explants. If a significant interaction between 

treatment and injury was detected, Student Neuman-Keuls post-hoc tests were 

performed.    Differences were considered significant at p<0.05. 
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Results 

Initially, three different injury paradigms were tested to determine which 

concentration of 2DG/KCN to apply and how long to apply the injury.  My 

preliminary data on the previously published injury (2 mM 2-DG and 1 mM KCN 

for 2 hours) (Wise, Dubal et al. 2000; Wilson, Liu et al. 2002) did not consistently 

produce a visible injury in the explants when female and males were separated.  

Since this concentration had previously injured the explants, we hypothesized 

that when explants were separated based on sex they were more susceptible to 

injury causing a faster and harsher cell death with 2DG/KCN.  The explants did 

not appear healthy and most of the cell death appeared to have washed away 

when we changed media indicating an overpowering injury.  To weaken the injury 

we cut the concentration in half and the time the injury was applied in half.  Both 

injuries that were halved either in concentration or time resulted in consistent 

injury.  We decided to continue with the injury, 1 mM 2-DG and 0.5 mM KCN for 

2 hours, which halved the original concentration of 2 mM 2-DG and 1 mM KCN 

for 2 hours, because this was the lowest concentration that still consistently 

injured both the female and male cortical explants.  The concentration of injury in 

the remaining studies is 1 mM 2-DG and 0.5 mM KCN for 2 hours.   

 

Part 1: Cell Death in female or male cortical explants following injury.   

Cortical explants were isolated from postnatal day 3 (PND 3) female or 

male rat pups and grown for 7 days in culture with media containing either 17 !-

estradiol (E2) (1 nM in 0.01% EtOH) or EtOH (0.01%) vehicle.  Explants were 
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treated with 1 mM 2-DG and 0.5 mM KCN for 2 hours in BME (injury) or BME 

(control).  Following the 2 hour injury, media was replaced. At several time-points 

after injury (4, 8, 12 and 24 hours), explants were stained with propidium iodide 

to determine the extent of cell death.  

 

Does E2 influence cell death at 4, 8, 12 or 24 hours following 2DG/KCN 

treatment in female or male cortical explants? 

In females there was no effect of 2DG/KCN induced injury or E2 treatment 

on cell death 4, 8 or 12 hours following injury (determined by two-way ANOVA’s 

at each time-point (4 hours, Figure 3.1A) (8 hours, Figure 3.2A) (12 hours, Figure 

3.3A).  However, 2DG/KCN produced a significant increase in cell death at 24 

hours (main effect of injury; p< 0.0001, F= 24.369, df= 1, 76).  A two-way ANOVA 

showed an interaction between injury and treatment (p<0.05, F= 4.350, df= 1, 

76).  Post-hoc t-tests revealed that cell death was significantly increased 

following 2DG/KCN injury in the EtOH group (p<0.05 compared to EtOH non-

injured), and significantly increased following 2DG/KCN injury in the E2 group 

(p<0.05 compared to EtOH non-injured) (Figure 3.4A). Interestingly, this increase 

in cell death from 2DG/KCN was attenuated by the pretreatment of E2 (p<0.05, 

compared to EtOH 2DG/KCN injured), (Figure 3.4A).    

In males there was no effect of injury or treatment on cell death 4 or 8 

hours following 2DG/KCN injury (4 hours, Figure 3.1B) (8 hours, Figure 3.2B).  

However, 2DG/KCN produced a significant increase in cell death at 12 hours 

(main effect of injury; p= 0.0322, F= 4.979, df= 1, 35; Figure 3.3B) and at 24 
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hours (main effect of injury; p< 0.0001, F= 24.958, df= 1, 98; Figure 3.4B).  

Pretreatment with E2 did not alter the amount of cell death induced by 2DG/KCN 

at either time point.   

Figure 3.5 depicts PI uptake (10X pictures) 24 hours following treatment 

with 2DG/KCN in vehicle (EtOH) and E2-treated female and male cortical 

explants.  Overall, male cortical explants exhibited earlier increases in cell death 

in response to 2DG/KCN injury than females.  E2 attenuated the 2DG/KCN 

induced cell death in female, but not male, cortical explants. 
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Figure 3.1.  Cell death 4 hours following injury with 2DG/KCN in cortical 
explants.  At 4 hours there was not a significant increase in cell death with 
2DG/KCN in female (A) or male explants (B) or an effect of E2.  The graphs 
above show PI uptake in non-injured (light pink (A) or light blue (B) bars) and 
2DG/KCN-injured (pink (A) or blue (B) bars) cultures for vehicle or estrogen 
treatment.  Error bars represent SEM.  
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Figure 3.2. Cell death 8 hours following injury with 2DG/KCN in cortical 
explants.  At 8 hours there was not a significant increase in cell death with 
2DG/KCN in female (A) or male explants (B) or an effect of E2.  The graphs 
above show PI uptake in non-injured (light pink (A) or light blue (B) bars) and 
2DG/KCN-injured (pink (A) or blue (B) bars) cultures for vehicle or estrogen 
treatment.  Error bars represent SEM. 
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B. 

 

 
Figure 3.3.  Cell death 12 hours following injury with 2DG/KCN in cortical 
explants. (A).  At 12 hours, there was not an effect of 2DG/KCN injury or an 
effect of E2 in female cortical explants. (B). In male explants, at 12 hours there 
was a significant increase in cell death with 2DG/KCN injury, but no effect of E2. 
The graphs above show PI uptake in non-injured (light pink (A) or light blue (B) 
bars) and 2DG/KCN injured (pink (A) or blue (B) bars) cultures for vehicle or 
estrogen treatment.  Error bars represent SEM.    
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A. 

 
 
B. 

 
Figure 3.4.  Cell death 24 hours following injury with 2DG/KCN in cortical 
explants. (A). In female explants, there was significant increase in cell death with 
2DG/KCN injury.  E2 significantly decreased this 2DG/KCN induced cell death.  
(B).  In male explants, there was a significant increase in cell death with 
2DG/KCN, but no effect of E2. The graphs above show PI uptake in non-injured 
(light pink (A) or light blue (B) bars) and 2DG/KCN-injured (pink (A) or blue (B) 
bars). Single asterisks indicate a significant increase in cell death from respective 
non-injured groups and double asterisks indicate a significant difference from 
vehicle-treated 2DG/KCN, p< 0.05. Error bars represent SEM.    
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A. 

 

B.  

 

Figure 3.5 Representative photographs of PI uptake at 24 hours. (A). In 
female explants, there was increased cell death (red dots) with 2DG/KCN 
treatment.  E2 significantly decreased this cell death.  (B).  In male explants, 
there was increased cell death with 2DG/KCN, but no effect of E2 on cell death.  
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Part 2: Sex steroid hormone receptor expression in female and male 

cortical explants following treatment with 2DG/KCN.  

Cortical explants were isolated from postnatal day 3 (PND 3) female or 

male rat pups and grown for 7 days in culture with media containing either 17 !-

estradiol (E2) (1 nM in 0.01% EtOH) or EtOH (0.01%) vehicle.  Explants were 

treated with 1 mM 2-DG and 0.5 mM KCN for 2 hours in BME (injury) or BME 

(control).  2DG/KCN chemically mimics “ischemic” conditions by inhibiting 

glycolysis and oxidative phosphorylation (Wilson, Liu et al. 2002).  Following the 

2 hour injury, media was replaced. At several time-points after injury (4, 8, 12 and 

24 hours), explants were collected and RNA extracted for real time PCR.  Each 

time-point included the collection of at least 3 explants (N=1) per well that was 

repeated independently at least 3 times.  

 

ER!  

Does E2 influence ER! mRNA expression at 4, 8, 12 or 24 hours following 

2DG/KCN treatment in female or male cortical explants? 

In females, 2DG/KCN or E2 pretreatment did not affect ER! mRNA 

expression at 4 (Figure 3.6A) or 8 hours (Figure 3.7A).  However, at 12 hours 

(Figure 3.8A) 2DG/KCN resulted in a significant increase in ER! mRNA 

expression (main effect of injury; p=0.0011, F=15.146, df=1,18).  E2 pretreatment 

reduced ER! mRNA expression (main effect of treatment; p= 0.0060, F= 9.682, 

df= 1,18), preferentially in the 2DG/KCN injured cultures (interaction effect; 

p=0.0071, F=9.238, df=1,18).    Post-hoc t-tests revealed that ER! mRNA was 
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significantly increased by 2DG/KCN injury in EtOH treated cultures, (p<0.0001 

compared to EtOH non-injured cultures; p<0.0001 compared to the E2 non-

injured cultures).  E2 pretreatment significantly attenuated the increase in ER! 

mRNA expression due to 2DG/KCN (p<0.001 compared with EtOH 2DG/KCN 

injured) to a level equivalent to that in uninjured E2 treated cultures.  

Interestingly, by 24 hours ER! mRNA expression had returned to baseline 

(Figure 3.9A; no effect of injury, p=0.9570, F=0.003, df=1,29 and no effect of 

treatment; p=0.6942, F=0.158, df= 1,29).  

Neither 2DG/KCN nor E2 pretreatment affected ER! mRNA expression at 

4 (Figure 3.6B), 8 (Figure 3.7B), or 12 (Figure 3.8B) hours in male cortical 

explants.  Interestingly, 2DG/KCN significantly reduced ER! mRNA expression in 

male cortical explants at 24 hours (main effect of injury, p= 0.0290 F=5.830, df=1, 

15) (Figure 3.9B).   
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A.   

 
 
 

B. 

 
 
Figure 3.6.  ER! mRNA expression 4 hours after injury.  There was no 
significant increase in ER! mRNA expression with 2DG/KCN injury or E2 
pretreatment in either the (A). female or (B). male explants.  The graph above 
shows ER! relative to the housekeeping gene histone 3.1 in non-injured (light 
purple (A) and light teal (B) bars) and 2DG/KCN treated (purple (A) and teal (B) 
bars) cultures. Error bars represent SEM.   
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A. 

 
 

B 

 
 
Figure 3.7.  ER! mRNA expression 8 hours after injury. There was no 
significant increase in ER! mRNA with 2DG/KCN injury or E2 pretreatment in 
either the (A). female or (B). male explants.  The graph above shows ER! 
relative to the housekeeping gene histone 3.1 in non-injured (light purple (A) and 
light teal (B) bars) and 2DG/KCN treated (purple (A) and teal (B) bars) cultures. 
Error bars represent SEM.   
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B. 

 
Figure 3.8.  ER! mRNA expression 12 hours following injury. (A).  In female 
explants ER! mRNA expression increased following 2DG/KCN injury in vehicle-
treated cortical explants, indicated by an asterisks.  E2 treatment prevented this 
increase, indicated by an “a” on the graph. (B). In males, there was no significant 
2DG/KCN injury or E2 induced difference in ER! mRNA expression. The graph 
above shows ER! relative to the housekeeping gene in non-injured (light purple 
(A) and light teal (B) bars) and 2DG/KCN injured (purple (A) and teal (B) bars) 
cultures.  Asterisks indicate a significant increase in ER! mRNA expression from 
vehicle non-injured group and the letter “a” indicates a significant decrease from 
vehicle 2DG/KCN injured cultures, p< 0.05. Error bars represent SEM.    
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A. 

 
B. 

 
Figure 3.9.  ER! mRNA expression 24 hours following injury. (A).  In 
females, there was no significant change in ER! mRNA expression.  (B).  In 
males, ER! mRNA expression was significantly decreased 24 hours following 
injury with 2DG/KCN. The graph above shows ER! relative to the housekeeping 
gene in non-injured (light purple (A) and light teal (B) bars) and 2DG/KCN injured 
(purple (A) and teal (B) bars) cultures. Error bars represent SEM.     
 

0 

1 

2 

3 

4 

Vehicle Estrogen 

Male 

R
e
la

ti
v
e
 l
e
v
e
ls

 o
f 

E
R

 A
lp

h
a
 m

R
N

A
 

ER Alpha mRNA Expression 
24 Hours 

Non Injury 

2DG/KCN 



! 102 

 
ER! 

Does E2 influence ER! mRNA expression at 4, 8, 12 or 24 hours following 

2DG/KCN treatment in female or male cortical explants? 

Two-way ANOVAs comparing the factors injury and treatment were 

conducted at each time-point, separately for females and males. There was no 

effect of E2 treatment or 2DG/KCN injury on ER! mRNA expression at 4 (Figure 

3.10), 8 (Figure 3.11), 12 (Figure 3.12) or 24 (Figure 3.13) hours in female or 

male cortical explants.   
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A. 

 
B. 

 
Figure 3.10. ER beta mRNA expression 4 hours after injury.  There was no 
significant difference in ER! mRNA expression at 4 hours after injury in (A). 

female or (B). male explants. The graph above shows ER! relative to the 

housekeeping gene histone 3.1 in non-injured (pink (A) and grey (B) bars) and 
2DG/KCN treated (orange (A) and black (B) bars).  Error bars represent SEM.     

0 

1 

2 

Vehicle  Estrogen 

Male 

R
e
la

ti
v
e
 l
e
v
e
ls

 o
f 

E
R

 B
e
ta

 m
R

N
A

 

ER Beta mRNA Expression 
4 Hours Non Injury 

2DG/KCN 



! 104 

A. 

 
B. 

 
Figure 3.11. ER beta mRNA expression 8 hours after injury.  There was no 
significant difference in ER! mRNA expression at 8 hours after injury in (A). 

female or (B). male explants. The graph above shows ER! relative to the 

housekeeping gene histone 3.1 in non-injured (pink (A) and grey (B) bars) and 
2DG/KCN treated (orange (A) and black (B) bars). Error bars represent SEM.     
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A. 

 
B. 

 
Figure 3.12. ER beta mRNA expression 12 hours after injury.  There was no 
significant difference in ER! mRNA expression at 12hours after injury in (A). 

female or (B). male explants. The graph above shows ER! relative to the 

housekeeping gene histone 3.1 in non-injured (pink (A) and grey (B) bars) and 
2DG/KCN treated (orange (A) and black (B) bars).  Error bars represent SEM.     
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A. 

 
B. 

 
Figure 3.13. ER beta mRNA expression 24 hours after injury.  There was no 
significant difference in ER! mRNA expression at 24 hours after injury in (A). 

female or (B). male explants. The graph above shows ER! relative to the 

housekeeping gene histone 3.1 in non-injured (pink (A) and grey (B) bars) and 
2DG/KCN treated (orange (A) and black (B) bars).  Error bars represent SEM.     
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AR 

Does E2 influence AR mRNA expression at 4, 8, 12 or 24 hours following 

injury? 

In females, 2DG/KCN or E2 pretreatment did not affect AR mRNA 

expression at 4 hours (Figure 3.14A).  However, at 8 hours (Figure 3.15A) 

2DG/KCN transiently increased AR mRNA expression in female cortical explants 

(main effect of injury, p=0.0096, F=8.789, df=1,15), but this effect was not 

dependent on E2 pretreatment.  Interestingly by 12 hours (Figure 3.16A) AR 

mRNA expression was no longer significantly increased following injury with 

2DG/KCN (no effect of injury, p=0.0616, F=4.050, df= 1,16) and E2 pre-treatment 

still did not affect cell death.  AR mRNA expression was back down to baseline 

by 24 hours (Figure 3.17A) following injury with 2DG/KCN (p=0.3880, F=791, 

df=1,15), and was not dependent on E2 treatment.      

In contrast, neither 2DG/KCN nor E2 pre-treatment affected AR mRNA 

expression at 4 (Figure 3.14B), 8 (Figure 3.15B), 12 (Figure 3.16B) or 24 (Figure 

3.17B) hours in male cortical explants.  
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A. 

 
B. 

 
 

Figure 3.14. AR mRNA expression 4 hours after injury. There were no 
significant differences in AR mRNA expression at 4 hours after injury in (A). 
female or (B). male explants. The graph above shows AR relative to the 
housekeeping gene histone 3.1 in non-injured (light pink (A) and blue (B) bars) 
and 2DG/KCN treated (pink (A) and green (B) bars). Error bars represent SEM.     
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A. 

 
B. 

 
 
Figure 3.15. AR mRNA expression 8 hours after injury.  (A).  In females, there 
was a significant increase in AR mRNA expression following 2DG/KCN injury at 8 
hours with no effect of E2 pre-treatment. (B). There was no significant effect of 
2DG/KCN injury or E2 pre-treatment on AR mRNA expression in male explants. 
The graph above shows AR relative to the housekeeping gene histone 3.1 in 
non-injured (light pink (A) and blue (B) bars) and 2DG/KCN treated (pink (A) and 
green (B) bars). Error bars represent SEM.    
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 A.  

 
B. 

 

 
Figure 3.16. AR mRNA expression 12 hours after injury. There were no 
effects of 2DG/KCN injury or E2-pre-treatment on AR mRNA expression at 12 
hours in (A). female or (B). male explants.  The graph above shows AR relative 
to the housekeeping gene histone 3.1 in non-injured (light pink (A) and blue (B) 
bars) and 2DG/KCN treated (pink (A) and green (B) bars).  Error bars represent 
SEM.     
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A.  

 
B. 

 
 
Figure 3.17.  AR mRNA expression 24 hours after injury.  There were no 
effects of 2DG/KCN injury or E2-pre-treatment on AR mRNA expression at 24 
hours in (A). female or (B). male explants The graph above shows AR relative to 
the housekeeping gene histone 3.1 in non-injured (light pink (A) and blue (B) 
bars) and 2DG/KCN treated (pink (A) and green (B) bars).  Error bars represent 
SEM.     
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Discussion 

This chapter describes cell death and sex steroid hormone receptor 

expression in both male and female cortical explants following injury.  In both 

male and female explants, treatment with 2DG/KCN significantly increased cell 

death.  This increase occurred at 12 and 24 hours in males, but only at 24 hours 

in females.  There was also a sex difference in response to E2 pretreatment such 

that in females, but not males, E2 attenuated cell death following 2DG/KCN 

induced injury. 

Changes in steroid hormone receptor expression following 2DG/KCN 

injury were sex-specific and were influenced by E2 in the culture media, 

summarized in Table 3.1 (female cortical explants) and Table 3.2 (male cortical 

explants.  In vehicle (EtOH) treated female cortical explants, 2DG/KCN injury 

increased ER! mRNA expression at 12 hours.  Interestingly, E2 pre-treatment 

prevented this increase in ER! mRNA expression following the 2DG/KCN injury 

in females.  ER! mRNA expression was transiently increased at 12 hours and 

had returned to the baseline expression by 24 hours.  There was no similar 

increase in ER! mRNA expression in male explants at any time-point with 

2DG/KCN or E2 treatment.   ER" mRNA expression did not change in response 

to 2DG/KCN induced injury or with E2 pretreatment in either female or male 

explants.  AR mRNA expression was significantly increased with 2DG/KCN injury 

at 12 hours, but had no effect of E2 pre-treatment in female cortical explants.  

There was no change in AR mRNA expression due to ischemic injury induced by 

2DG/KCN or E2 pre-treatment in male explants at any of the time-points.   
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Table 3.1.  Summary of Changes in Cell Death and Sex Steroid 
Hormone Receptor mRNA Expression Following E2 Pre-treatment and 
injury with 2DG/KCN in Female Cortical Explants.  Female cortical explants 
pre-treated with E2 were examined at 4, 8, 12 and 24 hours following an injury 
with 2DG/KCN to evaluate changes in cell death and along with changes in ER!, 

ER" and AR mRNA expression. 

 
 

 Female Cortical Explants 

 Non-injured 2DG/KCN injured 

 
Vehicle 

(EtOH) 
E2 

Vehicle 

(EtOH) 
E2 

Cell Death 

(PI uptake) 
No effect No effect 

# from EtOH 

non-injured 

# from EtOH 

non-injured 

$ from EtOH 

2DG/KCN 

ER! mRNA 

expression 
No effect No effect 

# from EtOH 

non-injured 

$ from EtOH 

2DG/KCN 

ER" mRNA 

expression 
No effect No effect No effect No effect 

AR mRNA 

expression 
No effect No effect 

# from non-

injured 

# from non-

injured 
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Table 3.2.  Summary of Changes in Cell Death and Sex Steroid Hormone 
Receptor mRNA Expression Following E2 Pre-treatment and injury with 
2DG/KCN in Male Cortical Explants.  Male cortical explants pre-treated with E2 
were examined at 4, 8, 12 and 24 hours following an injury with 2DG/KCN to 
evaluate changes in cell death and along with changes in ER!, ER" and AR 

mRNA expression. 
 

 Male Cortical Explants 

 Non-injured 2DG/KCN injured 

 
Vehicle 

(EtOH) 
E2 

Vehicle 

(EtOH) 
E2 

Cell Death 

(PI uptake) 
No effect No effect 

# from non-

injured 

# from non-

injured 

ER! mRNA 

expression 
No effect No effect 

$ from non-

injured 

$ from non-

injured 

ER" mRNA 

expression 
No effect No effect No effect No effect 

AR mRNA 

expression 
No effect No effect No effect No effect 
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After MCAO in female rat cortex, ER! mRNA expression increases 

between 4 and 16 hours (Dubal, Rau et al. 2006).  In female cortical explants 

treated with 2DG/KCN ER! mRNA expression significantly increased at 8 hours 

and had returned to a baseline expression by 24 hours.  ER! mRNA does return 

to baseline following MCAO (unpublished observations), but it takes a longer 

period of time. These data suggest that in both cases the ER! mRNA response 

to injury is innate to the cortex, although the time course for expression is 

different in each model. ER! mRNA does not increase following MCAO in male 

rats (Westberry, Prewitt et al. 2008; Broughton, Brait et al. 2012) and did not 

increase here in male explants at any time point after injury.  In both models, 

there is a sex-specific increase in ER! mRNA.  It is interesting that in the cortical 

explants where there are no connections to other brain regions, this sex-specific 

response remains indicating that the cortex is preprogrammed as male or female 

in how it responds to injury.  These results may have implications for how we 

treat other neurodegenerative diseases in males and females.  

Following MCAO in female rat cortex, ER" mRNA expression is initially 

elevated and then dramatically declines by 16 and 24 hours (Dubal, Rau et al. 

2006).  Pretreatment with E2 prevents the injury-induced decrease in ER" at 16 

and 24 hours after injury (Dubal, Rau et al. 2006).  ER" mRNA expression also 

does not increase following MCAO in male rats (Westberry, Prewitt et al. 2008; 

Broughton, Brait et al. 2012). Here, ER" mRNA expression did not change in 

female or male cortical explants following treatment with 2DG/KCN.  There is a 

difference in how ER" responds to injury in the cortical explant model (in vitro) 
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verse the MCAO model (in vivo) in females.  Since ER! decreases in the female 

cortex following injury in vivo with input and connections from other brain regions 

and does not change when the cortex is isolated in culture could indicate that 

changes in ER! mRNA expression in the cortex are influenced from other 

regions of the brain outside the cortex.  

AR mRNA was significantly increased at 12 hours following treatment with 

2DG/KCN in female cortical explants and was decreased by 24 hours.  AR 

mRNA expression increases similarly to 2DG/KCN injury in female cortical 

explants regardless of E2 treatment.  In male cortical explants, AR mRNA 

expression did not change following injury.  These data are the first to 

demonstrate sex specific changes in AR following injury in the cortex.   

E2 was protective against an ischemic injury in female, but not male 

cortical explants.  ER" mRNA expression increased in response to injury and E2 

treatment prevented this increase in ER" mRNA expression.  Previously 

published injury models (MCAO) show that an increase in ER" mRNA is needed 

for E2-mediated protection (Suzuki, Brown et al. 2007).  E2 was protective 

following injury.  In response to 2DG/KCN injury, ER" mRNA expression 

increased and E2 treatment prevented this increase.  AR mRNA expression also 

increased in response to injury, but E2 did not effect the increase as it did in ER" 

mRNA expression.  ER! mRNA expression did not change in response to injury 

or E2 treatment.   Although there was not specific changes in sex steroid 

hormone receptor mRNA that were associated with the E2-mediated protection, 

these receptors may still play a role.  E2 can also non-genomic actions.  
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Signaling pathways can be initiated by receptors on the cell membrane, including 

ER!, ER", AR, GPRs and ligand-gated ion channels (Watson, Jeng et al. 2008; 

Roman-Blas, Castaneda et al. 2009; Liu, Zhang et al. 2012).  Specifically, AKT 

(serine/threonine protein kinase) becomes activated in the presence of E2 to 

promote cell survival via PI3 K (phosphatidylinositide 3’OH kinase) (Wilson, Liu et 

al. 2002).  Pharmacological manipulations to block the activity of these receptors 

will decipher the role of these receptors in E2-mediated protection.   

A potential pitfall of this cortical explant model includes cell death that 

occurred as a part of normal time in culture.  We have investigated this cell death 

and have found that we are still able to see changes associated with 2DG/KCN 

damage and E2 protection.  An additional limitation of this model that makes it 

harder to compare to the MCAO model is that the cortex has been completely 

separated from the striatum.  In the MCAO model, most cortical damage is a 

result of secondary cell death caused by reduced blood flow to the striatum.  

Here data from our 2DG/KCN cell death must be interpreted differently, as the 

cell death is primary and not a result of secondary damage.  

Previously published studies using 2DG/KCN to chemical induce an 

ischemic injury in cortical explants allowed the explants to maintain in culture for 

7 days before adding the injury (Wise, Dubal et al. 2000; Wilson, Liu et al. 2002).  

When female explants are grown for 7 days in culture ER! mRNA expression 

has decreased, but males do not significantly decrease until 22 DIC.  ER" and 

AR mRNA expression are still low and have not increased, which occurs at 15 

DIC in both female and male cortical explants.  In females, all three sex steroid 
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hormone receptor mRNA’s are low and in males ER! is still high.  A more optimal 

design would have been to injure the cortical explants with 2DG/KCN at 22 DIC 

when ER! is low and ER" and AR are high, which correlates to mRNA levels 

seen in the adult rodents cortex when MCAO’s are performed.  To maintain 

cortical explants for over three weeks in culture and then injure with 2DG/KCN 

would add additional factors to our model, such as the explants are now much 

thinner than at 7 DIC and the injury may affect the explants differently.  The 

thinner explants may be more susceptible to damage.  However, because E2 is 

still protective in the cortical explants grown for 7 DIC and ER! increases in 

female cortical explants following injury, correlating with the MCAO data, we feel 

that this model is still valuable.   

Data from cortical explants will allow us to conduct more complicated 

manipulations at more time-points that will translate back to the MCAO model 

and allow us to use fewer animals.  The cortical explant model can be furthered 

utilized to describe sex differences in injury by applying pharmacological 

manipulations to the cultures to block specific sex steroid hormones receptors to 

see how they are involved in E2 neuroprotection.  
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CHAPTER 4 

ROLE OF SEX STEROID HORMONE RECEPTORS IN CELL DEATH 

FOLLOWING AN ISCHEMIC INJURY  

 

Introduction 

 
In the previous chapters, I investigated changes in sex steroid hormone 

receptor expression during development in the cortex and across time in culture 

and after injury in cortical explants.  This chapter will focus on the role of 

endogenous sex hormone receptors following ischemic injury.  Specifically, I will 

use pharmacological inhibitor to block estrogen receptor alpha (ER!), estrogen 

receptor beta (ER") or androgen receptor (AR) to determine the contribution of 

each receptor to cell death following injury.   

The cortical explant model has several advantages to evaluate the effects 

of these inhibitors over adding these inhibitors directly in the brain using in vivo 

models.   Inhibitors can be added directly to the feed media to see direct effects 

on cortex.  In whole animal models, inhibitors are either added to the blood 

stream and may or may not cross the blood brain barrier or by direct cannulation 

into the brain.  Direct injection in the brain requires surgery with general 

anesthetic and the drug can affect additional regions of the brain in close 

proximity. Additional of these inhibitors to the cortical explants allows us to see 

how these receptors are important by blocking them in a model that maintains 

the neuron/glial relationship without influence from other brain regions. 
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Previous studies have used sex steroid hormone receptor inhibitors in 

explants to evaluate their importance after injury.   For example, addition of the 

nonspecific ER antagonist (ICI 182,780) blocked the neuroprotective effects of 

E2 following injury (Wise, Dubal et al. 2001). ICI blocks both ER! and ER", 

therefore these studies did not differentiate the roles of one receptor versus the 

other.  In another study, addition of 17!-estradiol, an isomer of 17"-estradiol (E2) 

that does not bind well to the estrogen receptors, did not reduce cell death (Wise, 

Dubal et al. 2001).  E2 was also shown to be protective when ER!, compared to 

vector DNA, was transfected into PC12 cells (Gollapudi and Oblinger 1999; 

Gollapudi and Oblinger 1999).  Interestingly, these studies did not look 

specifically at each sex steroid receptor individually to decipher their role 

separately in E2 mediated protection.  While these studies do indicate a role for 

sex steroid receptors, they did not evaluate each receptor independently to 

determine their role in E2 mediated protection and ischemic induced cell death.   

The initial goal of these studies was to determine which receptor is 

necessary for the attenuation of cell death in female explants at 24 hours.  

Because there was no effect of E2 on cell death in the males or at any other time 

point in the females, the secondary goal was to determine if the presence of each 

receptor may actually inhibit the ability of E2 to be protective.  To accomplish 

these goals, I evaluated cell death by measuring propidium iodide uptake and 

evaluating changes in sex steroid hormone receptors following treatment with 

2DG/KCN in both female and male cortical explants separately.  Sex steroid 
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hormone receptor antagonists were added either before or after treatment with 

2DG/KCN to see how they influence cell death cause by ischemic injury.  

 

Methods 

Inhibitors 

Cortical explants were isolated from postnatal day 3 (PND 3) female or 

male rat pups and grown in culture with media containing either 17 !-estradiol 

(E2) (1 nM in 0.01% EtOH) or EtOH (0.01%) vehicle.  Antagonists were either 

added 24 hours prior to injury or 6 hours post injury. The inhibitors used are listed 

below: 

1. ER alpha antagonist, MPP dihydrochloride (1,3-Bis(4-hydroxyphenyl)-4-

methyl-5 -[4-(2-piperidinylethoxy)phenol]-1H-pyrazole dihydrochloride) 

(1991, Tocris, Minneapolis, MN) was made up in EtOH to a stock 

concentration of 100 mM and added into feed media to a final 

concentration of 1 uM (previously published optimized in vitro 

concentration) (Harrington, Sheng et al. 2003; Ben-Jonathan, Chen et al. 

2009).  MPP Dihydrochloride is a selective silent antagonist at the ER! 

receptor with more than 200 fold selectivity for ER! than ER".  A silent 

antagonist is a competitive receptor antagonist that doesn’t intrinsically 

activate the receptor.  

2. ER beta antagonist, PHTPP (4-[2-Phenyl-5,7-bis (trifluoromethyl ) 

pyrazolo[1,5-a]pyrimidin-3-yl]phenol) (2662 Tocris, Minneapolis, MN), was 

made up in EtOH to a stock concentration of 100 mM and added into feed 

media to a final concentration of 1 uM (previously published optimized in 
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vitro concentration) (Ben-Jonathan, Chen et al. 2009).  PHTPP is a 

selective ER! receptor antagonist with more than 36 fold selectivity for 

ER! than ER". 

3. AR antagonist, Flutamide (2-Methyl-N- (4-nitro-3-[trifluoromet hyl]phenyl) 

propanamide) (4094 Tocris, Minneapolis, MN), was made up in EtOH to a 

stock concentration of 100 mM and added into feed media to a final 

concentration of 100 nM.  Flutamide is a selective anti-androgenic 

antagonist for AR.   

 

Pre-treatment studies 

For pre-treatment, on the 6th day in culture (24 hours before injury), 1 uM 

antagonist was added into the feed media that contained vehicle (EtOH) or E2.  

24 hours later the feed media with or without the antagonist was removed and 

explants were injured using 1 mM 2-DG and 0.5 mM KCN for 2 hours in BME 

(injury) or BME (control).  Feed media with or without the antagonist and with or 

without E2 was replaced after the two hours and cell death was analyzed using 

propidium iodide (PI) 24 hours after the addition of 2DG/KCN.   

 

Post-treatment studies 

For post-treatment of the antagonist, on the 7th day in culture, explants 

maintained in the presence of EtOH or E2 were injured using 1 mM 2-DG and 0.5 

mM KCN for 2 hours in BME (injury) or BME (control).  6 hours after injury, 1 nM 
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or 1 uM of the antagonist was added into the feed media that contained EtOH or 

E2.  24 hours following the injury cell death was analyzed using PI. 

At each treatment (EtOH/E2), inhibitor (vehicle/drug) and injury (non 

injured/ 2DG/KCN treated) condition at least 3 explants were processed per well.  

For example, 1 well of at least 3 females explants that were grown in EtOH 

treated media and pretreated with an antagonist for 24 hours before injury were 

processed 24 hours after injury with propidium iodide to determine the extent of 

cell death.  Each explant in the well was considered an N of 1.  This was 

repeated at least 3 times with a new set of litters each time.  Explants were 

visualized using a fluorescent microscope.  Pictures of explants at 20X were 

captured using an image capture program, SPOT Advanced.  Red (dead) cells 

were then counted using an NIH program, Image J.   Pictures were coded and 

analyzed blindly.  Injured explants were compared back to the corresponding 

vehicle treated non-injury for each hour and sex.  

 

Statistics 

For the cell death studies, 3 litters were used to dissect female and male 

cortical explants.  Cortical explants were taken from female rat pups at postnatal 

day 3 (PND 3) and maintained in culture media containing vehicle or estrogen. 

Explants were either pre-treated or post-treated with inhibitors (described above) 

then each inhibitor scenario was split into non-injured and 2DG/KCN treated 

groups.  At each treatment (EtOH/E2), drug (vehicle/antagonist) and injury (non-

injured/ 2DG/KCN treated) condition at least 3 explants were processed per well.  
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For example, 1 well of at least 3 females explants that were grown in EtOH 

treated media and inhibited for 24 hours before injury were processed 24 hours 

after injury with PI to determine the extent of cell death.  Each explant in the well 

was considered an N of 1.  This was repeated at least 3 times with a new set of 

litters each time. 

Since we were interested if antagonizing a specific sex steroid receptor 

had an effect on cell death, we evaluated the effect of each antagonist on cortical 

explants injured with 2DG/KCN and pre-treated with E2.  A three-way ANOVA 

comparing the factors “drug” (vehicle/ antagonist), “treatment” (EtOH/ E2) and 

“injury” (non injured/ 2DG/KCN) were evaluated for each receptor antagonist 

scenario.  If a significant interaction between drug, treatment or injury was 

detected, Student Newman-Keuls post hoc test were performed.  All three 

inhibitors have a 24 hour pre-treatment at 1uM and a 6 hour post-treatment at 1 

nM and 1 uM. 

 



! 125 

Results 

Overview 

Drugs were either added as a pre-treatment as described in previous 

studies or as a post-treatment.  Because we did not see the level of cell death we 

anticipated, we were concerned that the drug in the culture media before injury 

may be influencing the ability of 2DG/KCN to induce cell death.  To eliminate this 

problem, we included two additional paradigms where inhibitor drugs were added 

following injury.  First, I added inhibitor 6 hours post-injury to determine if this 

would interfere with the cell death in response to 2DG/KCN treatment.  We also 

added a lower concentration of the antagonists at 6 hours post-injury to 

determine if the inhibitor’s effects were dose dependent.  

Drugs were either added as a pre-treatment as described in previous 

studies or as a post-treatment.  Because we did not see the level of cell death we 

anticipated, we were concerned that the drug in the culture media before injury 

may be influencing the ability of 2DG/KCN to induce cell death.  To eliminate this 

problem, we included two additional paradigms where inhibitor drugs were 

actually added following injury.  First, I added inhibitor 6 hours post injury to 

determine if this would interfere with the cell death in response to 2DG/KCN 

treatment.  We also added a lower concentration of the antagonists at 6 hours 

post-injury to determine if the drug concentration alone was affecting cell death.   
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Part 1: Role of each sex steroid hormone receptor in FEMALE explants.  

 

Does inhibiting ER! influence cell death in female cortical explants? 

MPP is a high affinity specific ER! antagonist that inhibits at the receptor.  

We choose this inhibitor over previously published inhibitors because this 

particular antagonist has a selectivity of 200 fold more affinity for ER! over ER". 

ICI 182,780 was used in previous studies (Wise, Dubal et al. 2001), but this 

inhibitor affects both ER! and ER", which would not allow me to decipher which 

receptor is specifically involved.   

 

MPP Pre-treatment 

To determine the effects of the ER! antagonist, MPP, and the presence of 

E2 on cell death following injury with 2DG/KCN in female cortical explants, a 

three-way ANOVA was performed comparing the factors “drug” (vehicle and 

MPP), “injury” (non-injured and 2DG/KCN treated) and “treatment” (EtOH and 

E2).  This test revealed no main effects of drug, injury or E2 treatment, but did 

reveal an interaction between drug and injury (p<0.0001, F=16.642, df=1,104), 

Figure 4.1.  Post-hoc t-tests revealed three significant differences.  First, 

2DG/KCN produced a significant increase in cell death in the vehicle (no drug) 

(p<0.0001; compared to non-injured vehicle (no drug) group).  Next, MPP pre-

treatment increased cell death in the non-injured group (p<0.05; compared to the 

non-injured vehicle group). Lastly, MPP pre-treatment significantly decreased cell 

death in the 2DG/KCN injured explants (p<0.005; compared to the vehicle (no 
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drug) 2DG/KCN injured explants). This decrease in cell death indicates that when 

2DG/KCN is applied in the presence of MPP that this drug significantly protects 

female cortical explants from the 2DG/KCN induced injury.  Interestingly, when 

female cortical explants were pre-treated with MPP, 2DG/KCN did not produce a 

significant injury (p>0.05; compared to MPP non-injured).  To summarize these 

results, 2DG/KCN caused a significant injury in the vehicle (no drug) group, and 

MPP pretreatment increased cell death in uninjured cultures but protected 

against cell death in cultures subjected to 2DG/KCN injury.    
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Figure 4.1.  Cell death in female cortical explants after pre-treatment with 
MPP, an ER! antagonist.  Overall, 2DG/KCN increased cell death in the vehicle 

(no drug) explants.  MPP pre-treatment significantly increased cell death in the 
non-injured explants.  Asterisks indicate a significant increase in cell death from 
the vehicle (no drug) non-injured group.  Interestingly, in the 2DG/KCN injured 
explants, MPP pre-treatment decreased cell death compared to vehicle (no drug) 
explants.  The letter “a” on graph indicates a decrease in cell death from vehicle 
2DG/KCN injured explants.  Asterisks (*) and the letter “a” on the graph indicate 
significant differences, p< 0.05. Error bars represent SEM.     
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MPP Post-treatment 

2DG/KCN did not produce a significant injury when the female cortical 

explants were pre-treated with MPP.  To determine if MPP, the ER! antagonist, 

was affecting 2DG/KCN’s ability to block oxidative phosphorylation and glycolysis 

(ischemic injury), MPP was added after the 2DG/KCN injury at two different 

paradigms (described in methods).   

 

6 hour post-treatment of 1 uM MPP Dihydrochloride 

The same concentration of MPP (1 uM) used for the 24 hour pre-treatment 

was added 6 hours following the 2DG/KCN injury.  A three-way ANOVA 

comparing the factors drug, injury and treatment revealed a significant main 

effect of injury (p=0.0006, F=12.522, df=1,105) and an interaction of drug and 

injury (p=0.0328, F=4.680, df=1,105). Post-hoc t-test revealed three significant 

differences, Figure 4.2.  First, 2DG/KCN increased cell death in the vehicle (no 

drug) group (p <0.001; compared to the non-injured vehicle (no drug) group and 

p<0.05; compared to the non-injured MPP group).  Lastly, MPP treatment 

significantly decreased cell death in the 2DG/KCN injured explants (p<0.05; 

compared to vehicle (no drug) 2DG/KCN injured explants).  This decrease in cell 

death indicates that post-treatment with MPP protects female cortical explants 

from an increase in cell death due to 2DG/KCN.  Interestingly, 2DG/KCN did not 

produce a significant injury within the MPP group (p>0.05; compared to MPP 

non-injured explants).  To summarize these results, 2DG/KCN causes a 

significant injury in the vehicle (no drug) group compared to the vehicle no injury 
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and to the MPP no injury.  A significant 2DG/KCN induced injury could not be 

reached with in the MPP group at 1 um.  A lower concentration of MPP was also 

applied post-treatment to see if the MPP concentration was too high.    
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Figure 4.2.  Cell death in female cortical explants after post-treatment with 1 
uM MPP.  Overall, 2DG/KCN increased cell death in the vehicle (no drug) 
explants.  Asterisks indicate a significant increase in cell death from the vehicle 
(no drug) non-injured group.  Interestingly, MPP post-treatment decreased cell 
death from the vehicle 2DG/KCN injured.   The letter “a” indicates less cell death 
as compared to the 2DG/KCN vehicle.  Asterisks (*) and the letter “a” on the 
graph indicate significant differences, p< 0.05. Error bars represent SEM.     
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6-hour post-treatment with 1 nM MPP  

A 1000 fold weaker concentration (1 nM) of MPP than was previous used 

was added 6 hours after injury with 2DG/KCN to see if 2DG/KCN can induce 

significant injury in the presence of 1 nM MPP.  A three-way ANOVA comparing 

the factors drug, injury and treatment was conducted and revealed a significant 

main effect of injury (p<0.0001, F=16.369, df=1, 105), but no main effect of drug 

or treatment and no interactions, Figure 4.3.  These data indicate that 2DG/KCN 

significantly increased cell death regardless if the explants were vehicle (no drug) 

or 1 nM MPP treated 6 hours after injury.  

Note: p value for an interaction between drug and treatment was 0.054, 

which is not significant, but extremely close.  This indicates a trend that in the 

vehicle (no drug) group, E2 had less cell death than in the absence of E2.  

However, the MPP post-treatment group had a trend for an increase in cell death 

in the presence of E2.  

These results did not confirm our initial hypothesis that blocking ER! 

activity, either with a 24 hour pretreatment or a 6 hour post-treatment relative to 

2DG/KCN induced injury, would remove the E2-mediated protection seen in 

female cortical explants. 
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Figure 4.3.  Cell death in female cortical explants after post-treatment with 
ER! inhibitor 1 nM MPP.  Overall, 2DG/KCN increased cell death in both the 

vehicle and MPP treated groups. Error bars represent SEM.     
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Does inhibiting ER! influence cell death in female cortical explants? 

PHTPP is a selective ER! receptor antagonist.  We choose this inhibitor 

over previously published inhibitors because this particular antagonist has a 36 

fold more affinity for ER! than ER".  ICI was used in previous studies (Wise, 

Dubal et al. 2001), but this inhibitor affects both ER" and ER! which would not 

allow me to decipher which receptor is specifically involved.   

 

PHTPP Pre-treatment 

To determine the effects of the ER! antagonist, PHTPP, and the presence 

of E2 on cell death following injury with 2DG/KCN in female cortical explants, a 

three-way ANOVA comparing the factors “drug” (Vehicle and PHTPP), “injury” 

(non-injured and 2DG/KCN treated) and “treatment” (EtOH and E2) was 

performed.  This test revealed a significant main effect of injury (p=0.0148, 

F=6.127, df=1,110) and an interaction of drug and injury (p=0.0006, F=12.489, 

df=1,110).  Post-hoc t-tests revealed that 2DG/KCN significantly increased cell 

death in the vehicle (no drug) group (p<0.05; compared to vehicle (no drug) non-

injured and p<0.05; compared to PHTPP non-injured).  PHTPP decreased cell 

death in the 2DG/KCN group (p<0.05; compared to vehicle (no drug) 2DG/KCN 

injured).  This indicates that pre-treatment with PHTPP protects female cortical 

explants from cell death induced by 2DG/KCN.  Interestingly, 2DG/KCN did not 

induce a significant injury within the PHTPP group (p<0.05; compared to PHTPP 

non-injured).  To summarize these results, 2DG/KCN caused a significant injury 
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in the vehicle (no drug) group PHTPP pre-treatment protected against cell death 

in the 2DG/KCN injured cultures.  
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Figure 4.4.  Cell death in female cortical explants after pre-treatment with 
PHTPP, an ER! antagonist.  Overall, 2DG/KCN increased cell death in the 

vehicle (no drug) explants.  Asterisks indicate a significant increase in cell death 
from the vehicle (no drug) non-injured group.  Interestingly, PHTPP pre-treatment 
decreased cell death from the vehicle 2DG/KCN injured.   The letter “a” indicates 
less cell death as compared to the 2DG/KCN vehicle.  Asterisks (*) and the letter 
“a” on the graph indicate significant differences, p< 0.05. Error bars represent 
SEM.     
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6 hour post-treatment of 1 uM PHTPP 

The same concentration of PHTPP (1 uM) use for the 24 hour pre-

treatment was added 6 hours following the 2DG/KCN injury.  A three-way 

ANOVA comparing the factors “drug”, “injury” and “E2 treatment” was conducted 

and revealed a significant main effect of injury (p=0.004, F=8.66, df=1,102), an 

interaction of drug and injury (p=0.0112, F=6.66, df=1,102) and an interaction of 

injury and treatment (p=0.050, F=5.17, df=1,102).   

Post-hoc tests between drug and injury revealed 3 interactions, Figure 4.5.  

First, 2DG/KCN significantly increased cell death in the vehicle (no drug) group 

(p<0.001; compared to vehicle (no drug) non-injured and p<0.05; compared to 

the PHTPP non-injured).  PHTPP post-treatment significantly reduced cell death 

in the 2DG/KCN injured explants (p<0.05; compared to the vehicle (no drug) 

2DG/KCN injured).  Interestingly, 2DG/KCN did not induce a significant injury 

within the PHTPP.  To summarize these results 2DG/KCN caused a significant 

injury in the vehicle (no drug) group and PHTPP significantly reduced cell death 

from the 2DG/KCN vehicle (no drug). 
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Figure 4.5.  Cell death in female cortical explants after post-treatment with 1 
uM PHTPP, an ER! antagonist, illustrating injury and drug effects.  Overall, 

2DG/KCN increased cell death in the vehicle (no drug) explants.  Asterisks 
indicate a significant increase in cell death from the vehicle (no drug) non-injured 
group.  Interestingly, PHTPP post-treatment, regardless of injury with 2DG/KCN, 
decreased cell death from the vehicle 2DG/KCN injured.   The letter “a” indicates 
less cell death as compared to the 2DG/KCN vehicle.  Asterisks (*) and the letter 
“a” on the graph indicate significant differences, p< 0.05.  Error bars represent 
SEM.    
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Post-hoc tests between injury and treatment revealed 4 interactions, Figure 4.6.  

First, 2DG/KCN significantly increased cell death in the EtOH group (p<0.05; 

compared to EtOH non-injured and p<0.05; compared to E2 non-injured).  E2 

pre-treatment significantly increased cell death in the non-injured explants 

(p<0.05; compared to the EtOH non-injured).  2DG/KCN significantly increased 

cell death in the E2 pre-treated group (p<0.05; compared to EtOH non-injured). 

Interestingly, there was no additional cell death with 2DG/KCN injury in the E2 

pre-treated explants above E2 non-injured. 
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Figure 4.6.  Cell death in female cortical explants after post-treatment with 1 
uM PHTPP, an ER! antagonist, illustrating injury and E2 treatment effects. 

Overall, 2DG/KCN increased cell death in the EtOH group.   E2 pre-treatment 
increased cell death from the EtOH group.  Asterisks indicated a significant 
increase in cell death from the EtOH (vehicle) non-injured group.  E2 pre-treated 
non-injured explants had significantly lower cell death than the 2DG/KCN EtOH 
explants (indicated by the letter “a” on graph).  Asterisks (*) and the letter “a” on 
the graph indicate significant differences, p< 0.05.  Error bars represent SEM.     
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6 hour post-treatment of 1 nM PHTPP 

A 1000 fold weaker concentration (1 nM) of PHTPP than was previous 

used in the post-treatment experiment was added 6 hours after 2DG/KCN injury 

to see if 2DG/KCN can induce significant injury.  A three-way ANOVA comparing 

the factors “drug”, “injury” and “treatment” revealed a significant main effect of 

injury (p<0.0005, F=12.77, df=1, 103), but no main effect of drug or treatment 

and no interactions, Figure 4.7. These data indicate that 2DG/KCN significantly 

increased cell death regardless if the explants were vehicle (no drug) or 1 nM 

PHTPP treated 6 hours after injury and regardless of whether explants were 

pretreated with E2. 

These results did not confirm our initial hypothesis that blocking ER! 

activity, either with a 24 hour pre-treatment or a 6 hour post-treatment relative to 

2DG/KCN injury, would remove the E2-mediated protection seen in female 

cortical explants. 
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Figure 4.7.  Cell death in female cortical explants after post-treatment with 1 
nM ER! antagonist PHTPP. Overall, 2DG/KCN increased cell death in both the 

vehicle (no injury) and the 1 nM PHTPP groups.  Error bars represent SEM.     
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Does Flutamide influence cell death in female cortical explants? 

Flutamide is a selective non-steroidal antiandrogen antagonist for the androgen 

receptor.   

Flutamide Pre-treatment 

To determine the effects of the AR antagonist, Flutamide, and the 

presence of E2 on 2DG/KCN induced cell death in female cortical explants, a 

three-way ANOVA comparing the factors “drug” (vehicle and Flutamide), “injury” 

(non-injured and 2DG/KCN injured) and “treatment” (EtOH and E2) was 

conducted.  This test revealed a main effect of injury (p=0.0012, F=10.904, 

df=1,134), an interaction with drug and injury (p<0.0001, F=23.107, df=1,134) 

and an interaction with injury and treatment (p=0.0430, F=4.176, df=1,134).   

Post-hoc t-tests looking at the interaction between drug and injury (Figure 

4.8) revealed 2DG/KCN significant increased cell death in the vehicle group 

(p<0.001; compared to the vehicle non-injured and p<0.001; compared to 

PHTPP non-injured).  Flutamide pretreatment caused an increase in cell death 

among the non-injured (p<0.05; compared to EtOH non-injured).  Pre-treatment 

with Flutamide decrease cell death among the 2DG/KCN injured (p<0.001; 

compared to vehicle 2DG/KCN injured).  Interestingly, 2DG/KCN did not cause a 

significant injury when Flutamide was present (p>0.05; compared to Flutamide 

non-injured).  
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Figure 4.8.  Cell death in female cortical explants after pre-treatment with 1 
uM AR antagonist, Flutamide, illustrating injury and drug effects. Overall, 
2DG/KCN increased cell death in the vehicle group.  Pre-treatment with 
Flutamide increased cell death in the non-injured group.  Asterisks indicate a 
significant increase in cell death from the vehicle (no drug) non-injured group.  
Pre-treatment with Flutamide significantly decreased cell death from the vehicle 
(no drug) 2DG/KCN injured.  The letter “a” indicates less cell death as compared 
to the 2DG/KCN vehicle.  Asterisks (*) and the letter “a” on the graph indicate 
significant differences, p< 0.05. Error bars represent SEM.     
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Post hoc t-tests comparing injury and treatment revealed 3 significant 

effects, Figure 4.9. 2DG/KCN significantly increased cell death in the EtOH group 

(p<0.001, compared to EtOH non-injured and p<0.05, compared to E2 non-

injured).  E2 pre-treatment significantly decreased cell death (p<0.05; compared 

to EtOH 2DG/KCN injured).  Interestingly, significantly injury could not be 

reached with 2DG/KCN within the pre-treatment Flutamide group.   



! 146 

 
 

 
Figure 4.9.  Cell death in female cortical explants after pre-treatment with 1 
uM AR antagonist, Flutamide, illustrating injury and treatment effects. 
Overall, 2DG/KCN significant increased cell death in the EtOH group.  Asterisks 
on the graph indicate significant increases from EtOH non-injured.  Pre-treatment 
with E2 regardless of injury with 2DG/KCN significantly reduced cell death from 
the EtOH 2DG/KCN induced injury (indicated by the letter “a” on graph).  
Asterisks (*) and the letter “a” on the graph indicate significant differences, p< 
0.05. Error bars represent SEM.     
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Flutamide Post-treatment 

To determine if the antagonist was affecting 2DG/KCN’s ability to block 

oxidative phosphorylation and glycolysis (ischemic injury), we added the inhibitor 

after the injury in two different paradigms (described in methods sections) 

 

6 hour post-treatment of 1 uM Flutamide 

A three-way ANOVA comparing the factors “drug”, “injury” and “treatment” 

revealed an interaction of drug and injury (p=0.0007, F=12.218, df=1,108).  The 

post-hoc t-test revealed 3 interactions, Figure 4.10.  First, 2DG/KCN significantly 

increased cell death in the vehicle group (p<0.05; compared to vehicle non-

injured).  Post-treatment with Flutamide increased cell death in the non-injured 

explants (p<0.05; compared to vehicle non-injured).  However, post-treatment 

with Flutamide in the presence of 2DG/KCN decreased cell death (p<0.05; 

compared to vehicle 2DG/KCN).  Interestingly, 2DG/KCN did not produce a 

significant injury within the Flutamide post-treated group (p>0.05; compared to 

Flutamide non-injured).  
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Figure 4.10.  Cell death in female cortical explants after post-treatment with 
1 uM AR antagonist, Flutamide. Overall, 2DG/KCN increased cell death in the 
vehicle group.  Post-treatment with Flutamide increased cell death in the non-
injured explants.  Asterisks indicate a significant increase in cell death from the 
vehicle (no drug) non-injured group.  Interestingly, there was a decrease in cell 
death with the post-treatment of Flutamide in the 2DG/KCN-injured explants. The 
letter “a” on the graph indicates decreases in cell death from vehicle 2DG/KCN 
injured.  Asterisks (*) and the letter “a” on the graph indicate significant 
differences, p< 0.05. Error bars represent SEM.  
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6-hour post-treatment with 1 nM Flutamide  

Because I wanted to see not only how adding a lower concentration, 1 nM, 

of Flutamide after injury affected cell death, but also how E2 pre-treatment and 

2DG/KCN induced injury affected cell death a three-way ANOVA comparing the 

factors “drug”, “injury” and “treatment” was conducted. This test revealed a 

significant main effect of injury (p=0.0047, F=8.323, df=1, 115), an interaction 

with drug and injury (p=0.0003, F=14.039, df=1,115) and an interaction with all 

three factors (drug, treatment and injury).   

The post hoc t-tests evaluating the interaction between injury and drug 

(Figure 4.11) revealed 2DG/KCN significant increased cell death in the vehicle 

group (p<0.001; compared to vehicle non-injured and p<0.05; compared to 

Flutamide non-injured).  Flutamide post-treatment decreased cell death in the 

2DG/KCN injured explants (p<0.001; compared to vehicle 2DG/KCN injured).   
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Figure 4.11.  Cell death in female cortical explants after post-treatment with 
1 nM AR antagonist, Flutamide, illustrating injury and drug effects. Overall, 
2DG/KCN increased cell death in the vehicle group.  Asterisks indicate a 
significant increase in cell death from the vehicle (no drug) non-injured group.  
Interestingly, there was a decrease in cell death with the post-treatment of 
Flutamide in both the non-injured and the 2DG/KCN injured explants.  The letter 
“a” indicates less cell death as compared to the 2DG/KCN vehicle.  Asterisks (*) 
and the letter “a” on the graph indicate significant differences, p< 0.05. Error bars 
represent SEM. 
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The post hoc to evaluate the interaction between drug, treatment and 

injury revealed 7 interactions (Figure 4.12).  2DG/KCN increased cell death in the 

EtOH vehicle (no drug) group compared to all non-injured groups (p<0.001; 

compared to non-injured EtOH vehicle (no drug), p<0.001; compared to non-

injured E2 vehicle (no drug), p<0.05; compared to Flutamide EtOH non-injured, 

and p<0.05; compared to Flutamide E2 non-injured).  E2 pre-treatment and 

Flutamide post-treatment decreased cell death from the vehicle 2DG/KCN injured 

explants (p<0.05, compared to the EtOH vehicle (no drug) 2DG/KCN injured).  In 

summary, 2DG/KCN induced significant cell death in vehicle/EtOH (control) 

cultures.  This cell death was reduced by E2 pre-treatment, but protection was 

not affect by Flutamide.  EtOH vehicle (no drug) 2DG/KCN injured explants had 

significantly more cell death than all of the other experimental groups.   In the 

presence of Flutamide, 2DG/KCN does not cause significant injury.   

These results did not confirm our initial hypothesis that blocking AR 

activity, either with a 24 hour pre-treatment or a 6 hour post-treatment relative to 

2DG/KCN injury, would remove the E2-mediated protection seen in female 

cortical explants.  An AR antagonist was included because AR mRNA expression 

increased in the cortex and in cortical explants across development.  AR along 

with ER! mRNA expression was high at 22 DIC suggesting a role for these 

receptors in the adult cortex.   

 

 
 

 



! 152 

 
 
Figure 4.12.  Cell death in female cortical explants after post-treatment with 
AR inhibitor Flutamide, illustrating drug, injury and treatment effects.  
Overall, 2DG/KCN increased cell death in the EtOH vehicle non-injured 
compared to both EtOH and E2 non-injured vehicle explants.   Asterisks 
indicated a significant increase in cell death from all non-injured group.  E2 pre-
treatment or Flutamide post-treatment significantly reduced cell death from EtOH 
vehicle (no drug) 2DG/KCN injured explants. The letter “a” indicates a decrease 
from EtOH vehicle (no drug) 2DG/KCN injured.  Asterisks (*) and the letter “a” on 
the graph indicate significant differences, p< 0.05. Error bars represent SEM. 
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Part 2. How does antagonizing sex steroid hormone receptors affect cell 

death in MALE cortical explants following injury? 

Male cortical explants were also evaluated with each inhibitor scenario.  

Initially we evaluated the sex steroid hormone antagonist in female cortical 

explants in hopes of removing the E2 mediated protection.  However, in the 

female cortical explants, when we inhibited ER!, ER" or AR there was a further 

reduction in cell death in both EtOH and E2-treated explants.  This led us to 

believe that the sex steroid hormone levels were involved in the cell death 

induced by 2DG/KCN and by antagonizing ER!, ER" or AR we could attenuate 

cell death following a 2DG/KCN induce injury in a E2 treatment independent 

pathway.  In chapter one we evaluated mRNA levels of these receptors, ER!, 

ER" or AR, across time in culture and did not see any sex difference in 

expression.  However, in chapter two we evaluated these receptors following 

injury and discovered specific sex response following injury in ER! and AR 

mRNA expression.  Even though only female explants had a significant increase 

in mRNA following injury does not remove the theory that these sex steroid 

hormones are having an effect in male explants also.  The protein levels of these 

receptors directly correlate to the activity level of these receptors.  Therefore, 

male cortical explants were also evaluated in each inhibitor scenario to determine 

what effect ER!, ER" or AR had following injury.   
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Does inhibiting ER! influence cell death in MALE cortical explants? 

MPP Dihydrochloride (MPP) is a high affinity specific ER! antagonist that 

inhibits at the receptor. 

MPP Pre-treatment 

To determine the effects of the ER! antagonist, MPP, on 2DG/KCN 

induced cell death in E2 treated male cortical explants, a three-way ANOVA 

comparing the factors “drug” (vehicle and MPP), “injury” (non-injured and 

2DG/KCN treated) and “treatment” (EtOH and E2).  This test revealed a main 

effect injury (p=0.0023, F=9.676, df=1,125), but no main effect of drug and no 

interactions, Figure 4.13.  This indicated that 2DG/KCN caused significant injury, 

which was not dependent on pretreatment with MPP or E2.  Interestingly, male, 

unlike female, cortical explants did not have an increase in cell death in the non-

injured explants with the pretreatment of MPP.   
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Figure 4.13.  Cell death in male cortical explants after pre-treatment with 
MPP, ER! antagonist.  Overall, 2DG/KCN caused significant injury, which was 

not dependent on pretreatment with MPP or E2. Error bars represent SEM. 
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6 hour post-treatment of 1 uM MPP Dihydrochloride 

The same concentration of MPP (1 uM) that was used for the 24 hour pre-

treatment was added 6 hours following injury with 2DG/KCN.  A three-way 

ANOVA comparing the factors drug, injury and treatment was conducted and 

revealed a significant main effect of injury (p=0.0220, F=5.375, df=1,126) and an 

interaction of drug and injury (p=0.0107, F=6.721, df=1,126). The post hoc t-test 

revealed that 2DG/KCN caused significant injury in the vehicle (no drug) group 

(p<0.05; compared to vehicle non-injured).  2DG/KCN did not cause significant 

injury when the male cortical explants were post-treated with MPP.  
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Figure 4.13.  Cell death in male cortical explants after post-treatment with 1 
uM MPP, ER! antagonist.  Overall, 2DG/KCN increased cell death in the 

vehicle (no drug) group.  Asterisks indicated a significant increase in cell death 
from the vehicle (no drug) non-injured group.  Asterisks (*) on the graph indicate 
significant differences, p< 0.05. Error bars represent SEM. 
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6-hour post-treatment with 1 nM MPP  

1000 fold weaker concentration (1 nM) of MPP than was previous used (1 

uM) in the post-treatment experiment of MPP was added 6 hours after 2DG/KCN 

injury to see if 2DG/KCN can induce significant cell death in the presence of 

MPP.  A three-way ANOVA comparing the factors “drug”, “injury” and “treatment” 

were conducted.  This test also revealed a main effect injury (p=0.0008, 

F=11.675, df=1,128), but no main effects of drug or treatment and no 

interactions.  This indicated that 2DG/KCN induced significant injury regardless 

of E2 pretreatment or application of 1 nM MPP after injury.  This is interesting 

because 2DG/KCN produced significant cell death when explants were 

pretreated with 1 uM MPP, but not when they were post-treated with 1 uM MPP.  

The weaker concentration (1 nM) of MPP that was applied post-treatment no 

longer blocked 2DG/KCN-induced injury.  

In summary, 2DG/KCN induced significant injury, from vehicle (no drug) 

non-injured, when 1 um MPP was applied 24 hours before injury or 1 nM MPP 

was applied 6 hours following injury.  However, in these scenario’s 2DG/KCN did 

not induce a significant injury within the MPP group, compared to MPP non-

injured.  This indicates that MPP increased cell death in the non-injured MPP 

group and removed 2DG/KCN’s ability to cause significant cell death above the 

MPP non-injured group, although the MPP 2DG/KCN injury was significantly 

different from the vehicle non-injured.  Interestingly, when 1 uM MPP was added 

6 hours following injury, 2DG/KCN did not induce a significant injury. These 
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results did confirm our hypothesis for male cortical explants that blocking ER! 

activity would alter the injury induced by 2DG/KCN.   
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Figure 4.14.  Cell death in male cortical explants after post-treatment with 1 
nM MPP, ER! inhibitor.  Overall, 2DG/KCN increased cell death in the vehicle 

(no drug) and in the MPP pre-treatment group. Error bars represent SEM. 
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24 hour pre-treatment of 1 uM PHTPP 
 

To determine the effects of the ER! antagonist, PHTPP, on cell death in 

male cortical explants, a three-way ANOVA comparing the factors “drug” (Vehicle 

and PHTPP), “injury” (non injured and 2DG/KCN treated) and “treatment” (EtOH 

and E2) was conducted.  This test revealed a main effect of injury (p=0.0101, 

F=6.765, df=1,127) and an interaction between drug and injury (p=0.0193, 

F=5.616, df=1,127.  Post-hoc t-tests revealed 2DG/KCN increased cell death in 

the vehicle group (p<0.05; compared to vehicle non-injured).  Pre-treatment with 

PHTPP decreased cell death in the 2DG/KCN group (p<0.05; compared to 

vehicle 2DG/KCN injured).  Pre-treatment with PHTPP also prevented 2DG/KCN 

from inducing significant injury (p>0.05; compared to PHTPP non-injured).   
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Figure 4.15.  Cell death in male cortical explants after pre-treatment with 
PHTPP, an ER! antagonist.  Overall, 2DG/KCN increased cell death in the 

vehicle (no drug).  Asterisks indicated a significant increase in cell death from the 
vehicle (no drug) non-injured group.  Interestingly, there was a decrease in cell 
death with the pre-treatment of PHTPP in the 2DG/KCN injured explants.  The 
letter “a” on graph indicates a significant decrease in cell death from the vehicle 
2DG/KCN.  Asterisks (*) and the letter “a” on the graph indicate significant 
differences, p< 0.05. Error bars represent SEM. 
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6 hour post-treatment of 1 uM PHTPP 

The same concentration of PHTPP (1 uM) used for the 24 hour pre-

treatment was added 6 hours following injury with 2DG/KCN.  A three-way 

ANOVA comparing the factors “drug”, “injury” and “treatment” was conducted.   

This test revealed a significant main effect of injury (p=0.020, F=5.549, df=1, 125) 

and an interaction with drug and injury (p=0.006, F=7.768, df=1,125).  Post-hoc t- 

tests revealed that 2DG/KCN induced significant injury in the vehicle group 

(p<0.001; compared to vehicle non-injured).  PHTPP post-treatment increased 

cell death in the non-injured (p<0.05; compared to vehicle (no drug) non-injured) 

and in the 2DG/KCN injured (p<0.05; compared to vehicle (no drug) non-injured).  
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Figure 4.16.  Cell death in male cortical explants after post-treatment with 1 
uM PHTPP, an ER! antagonist.  Overall, 2DG/KCN increased cell death in the 

vehicle (no drug) and in PHTPP compared to vehicle non-injured.  Post-treatment 
with PHTPP also increased cell death in the non-injured group.  Asterisks 
indicated a significant increase in cell death from the vehicle (no drug) non-
injured group, p< 0.05.  Error bars represent SEM. 
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6 hour post-treatment of 1 nM PHTPP 

A three-way ANOVA comparing the factors “drug”, “injury” and “treatment” 

was conducted and revealed a significant main effect of injury (p=0.0135, 

F=6.277, df=1, 120) and an interaction with drug and injury (p=0.0061, F=7.769, 

df=1,125).  Post-hoc t-tests revealed that 2DG/KCN induced a significant injury in 

the vehicle and PHTPP group (p<0.001; compared to vehicle non-injured).  

PHTPP caused significant cell death in the non-injured (p<0.05; compared to 

vehicle non-injured).  This is interesting because PHTPP post-treatment 

increased cell death in the non-injured, but PHTPP pre-treatment did not 

increase cell death in the non-injured.  These results did confirm our hypothesis 

for male cortical explants that blocking ER! activity 24 hours before 2DG/KN 

would alter the cell death induced by 2DG/KCN.  However, post-treatment with 

PHTPP did not confirm our initial hypothesis because cell death was equivalent 

to the vehicle (no drug) groups, suggesting blocking ER! post-treatment did not 

alter injury with 2DG/KCN.   
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Figure 4.17.  Cell death in male cortical explants after post-treatment with 1 
nM PHTPP, an ER! antagonist.  Overall, 2DG/KCN increased cell death in the 

vehicle (no drug) and PHTPP groups compared to vehicle non-injured explants.  
Post-treatment with PHTPP also increased cell death in the non-injured group.  
Asterisks indicated a significant increase in cell death from the vehicle (no drug) 
non-injured group, p< 0.05.  Error bars represent SEM. 
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Does Flutamide influence cell death in male cortical explants? 

Flutamide is a selective non-steroidal anti-androgen antagonist for the androgen 

receptor.   

 

Flutamide Pre-treatment 

To determine the effects of the AR antagonist, Flutamide, and the 

presence of E2 on cell death following injury with 2DG/KCN in male cortical 

explants, a three-way ANOVA comparing the factors “drug” (Vehicle and 

Flutamide), “injury” (non-injured and 2DG/KCN treated) and “treatment” (EtOH 

and E2) revealed a main effect of injury (p=0.0029, F=9.226, df=1,129), main 

effect of drug (p=0.0031, F=9.085, df=1,129), and an interaction between drug 

and injury (p=0.0100, F=6.834, df=1,129).  Post-hoc t-tests revealed that 

2DG/KCN increased cell death in the vehicle group (p<0.001, compared to 

vehicle non-injured and p<0.001; compared to Flutamide non-injured).  Flutamide 

pre-treatment decreased cell death in the 2DG/KCN group (p<0.001; compared 

to vehicle 2DG/KCN).  In summary, 2DG/KCN induced injury in the vehicle and 

the presence of Flutamide significantly lowered this cell death.  
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Figure 4.18.  Cell death in male cortical explants after pre-treatment with 
Flutamide, an AR inhibitor Flutamide.  Overall, 2DG/KCN increased cell death 
in the vehicle (no drug).  Asterisks indicated a significant increase in cell death 
from the vehicle (no drug) non-injured group.  Pre-treatment with Flutamide 
decreased cell death from the vehicle 2DG/KCN injured.  The letter “a” indicates 
less cell death as compared to 2DG/KCN vehicle.  Asterisks (*) and the letter “a” 
on the graph indicate significant differences, p< 0.05.   Error bars represent SEM. 
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6 hour post-treatment of 1 uM Flutamide 

The same concentration of Flutamide (1 uM) used for the 24 hour pre-

treatment was added 6 hours following injury with 2DG/KCN.  A three-way 

ANOVA comparing the factors drug, injury and treatment revealed an effect of 

injury (p=0.0052, F=8.084, df=1,136), an interaction with drug and injury 

(p=0.0024, F=9.590, df=1,136).  Post-hoc t-tests revealed 2DG/KCN significantly 

increased cell death in the vehicle (p<0.05; compared to vehicle non-injured).  

Post-treatment with Flutamide significantly reduced cell death in the 2DG/KCN 

group (p<0.05; compared to vehicle 2DG/KCN injured).  2DG/KCN did not induce 

significant injury (p>0.05; compared to Flutamide non-injured) when the explants 

were treated 6 hours following injury with Flutamide.   
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Figure 4.19.  Cell death in male cortical explants after post-treatment with 1 
uM Flutamide, an AR inhibitor Flutamide.  Overall, 2DG/KCN increased cell 
death in the vehicle (no drug).  Asterisks indicated a significant increase in cell 
death from the vehicle (no drug) non-injured group.  Post-treatment with 
Flutamide reduced cell death in the 2DG/KCN group. The letter “a” indicates a 
decrease in cell death from the 2DG/KCN vehicle group.  Asterisks (*) and the 
letter “a” on the graph indicate significant differences, p< 0.05.  Error bars 
represent SEM. 
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6-hour post-treatment with 1 nM Flutamide  

1000 fold weaker concentration (1 nM) of Flutamide than was previous 

used (1 uM) in the post-treatment experiment of Flutamide was added 6 hours 

after 2DG/KCN injury to see if 2DG/KCN can induce significant cell death in the 

presence of Flutamide.  A three-way ANOVA comparing the factors “drug”, 

“injury” and “treatment” were conducted.  This test also revealed a main effect of 

injury (p=0.0018, F=10.109, df=1,134), a main effect of drug (p=0.0151, F=6.061, 

df=1, 134) and an interaction with drug and injury (p=0.0095, F=6.918, df=1,134). 

Post-hoc t-tests revealed 2DG/KCN significantly increased cell death in the 

vehicle (p<0.05; compared to vehicle non-injured).   

Post-treatment with Flutamide significantly reduced cell death (p<0.05; 

compared to vehicle 2DG/KCN injured).  2DG/KCN did not induce significant 

injury (p>0.05; compared to Flutamide non-injured) when the explants were 

treated 6 hours following injury with Flutamide.  These results did confirm our 

hypothesis for male cortical explants that blocking AR activity would alter the 

injury induced by 2DG/KCN.  
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Figure 4.20.  Cell death in male cortical explants after post-treatment with 1 
nM Flutamide, an AR inhibitor Flutamide.  Overall, 2DG/KCN increased cell 
death in the vehicle (no drug).  Asterisks indicated a significant increase in cell 
death from the vehicle (no drug) non-injured group.  Post-treatment with 
Flutamide decreased cell death from the vehicle 2DG/KCN injured.  The letter “a” 
indicates less cell death as compared to the 2DG/KCN vehicle. Asterisks (*) and 
the letter “a” on the graph indicate significant differences, p< 0.05.  Error bars 
represent SEM. 
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Discussion 

Here, we describe the role of sex steroid hormone receptors in female and 

male cortical explants treated with 2DG/KCN.  Sex steroid hormone antagonists 

were added either before or after injury.  In female cortical explants, pretreatment 

or post-treatment with any of the sex steroid hormones did not remove the E2 

mediated protection following 2DG/KCN treatment.  Interestingly, treatment with 

the inhibitors alone provided additional protection for the female explants 

following injury with 2DG/KCN.  This did not confirm our initial hypothesis that if 

E2 neuroprotection in female cortical explants is mediated by a particular 

receptor, blocking that receptor will increase cell death and remove the E2 

mediated protection.  In fact, most inhibitors further reduced cell death in the 

2DG/KCN (injury) treated female explants, results summarized in Table 4.1.  The 

hypothesis for the male cortical explants that these receptors are also aiding in 

the cell death caused by 2DG/KCN, was confirmed and summarized in Table 4.2.  

Interestingly, male cortical explants followed a similar pattern of protection when 

the sex steroid hormone receptors were inhibited.   

In female explants treated with MPP, an ER! antagonist, the drug did 

affect cell death.  However, this affect was not what we predicted.  In the 

2DG/KCN injured explants, addition of 1 uM MPP prior or 6 hours after the injury 

decreased cell death.  We predicted that blocking ER! would actually increase 

cell death if E2 were acting via ER!.  Interestingly, pre-treatment with MPP to the 

non-injured explants actually increased cell death, suggesting the drug is having  

Table 4.1.  Summary of the Role of Sex Steroid Hormone Receptor Activity.  
24 hour pre-treatment and 6 hour post-treatment with ER!, ER" and AR 
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antagonist in female cortical explants injured with 2DG/KCN.  Note: ! indicates 
an increase in cell death, " indicates a decrease in cell death and V indicates 
vehicle (no drug). 
 

    Cell Death 

Non Injured ! from V non-injured 
MPP 

2DG/KCN " from V 2DG/KCN 

Non Injured " from V 2DG/KCN 
PHTPP 

2DG/KCN " from V 2DG/KCN 

Non Injured 
! from V non-injured 
" from V 2DG/KCN 

24 Hour 
Pre-

Treatment 

Flutamide 

2DG/KCN " from V 2DG/KCN 

Non Injured " from V 2DG/KCN 
MPP 

2DG/KCN " from V 2DG/KCN 

Non Injured " from V 2DG/KCN 
PHTPP 

2DG/KCN " from V 2DG/KCN 

Non Injured ! from V non-injured 

1 uM 6 
Hour 
Post-

Treatment 

Flutamide 

2DG/KCN " from V 2DG/KCN 

Non Injured No Effect 
MPP 

2DG/KCN ! from V non-injured 

Non Injured " from V 2DG/KCN 
PHTPP 

2DG/KCN " from V 2DG/KCN 

Non Injured " from V 2DG/KCN 

Female 
Cortical 
Explants 

1 nM 6 
Hour 
Post-

Treatment 

Flutamide 

2DG/KCN " from V 2DG/KCN 

Table 4.2.  Summary of the Role of Sex Steroid Hormone Receptor Activity.  
24 hour pre-treatment and 6 hour post-treatment with ER!, ER" and AR 

antagonist in male cortical explants injured with 2DG/KCN.  Note: ! indicates an 
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increase in cell death, ! indicates a decrease in cell death and V indicates 
vehicle (no drug). 
 

    Cell Death 

Non Injured No Effect 
MPP 

2DG/KCN " from V non-injured 

Non Injured No Effect 
PHTPP 

2DG/KCN " from V non-injured 

Non Injured ! from V 2DG/KCN 

24 Hour 
Pre-

Treatment 

Flutamide 

2DG/KCN ! from V 2DG/KCN 

Non Injured No Effect 
MPP 

2DG/KCN No Effect 

Non Injured " from V non-injured 
PHTPP 

2DG/KCN " from V non-injured 

Non Injured No Effect 

1 uM 6 
Hour 
Post-

Treatment 

Flutamide 

2DG/KCN ! from V 2DG/KCN 

Non Injured No Effect 
MPP 

2DG/KCN " from V non-injured 

Non Injured " from V 2DG/KCN 
PHTPP 

2DG/KCN " from V 2DG/KCN 

Non Injured ! from V 2DG/KCN 

Male 
Cortical 
Explants 

1 nM 6 
Hour 
Post-

Treatment 

Flutamide 

2DG/KCN ! from V 2DG/KCN 

an effect even when there is no injury.  When cell death was evaluated in all 3 

scenarios, pre or post treatment with MPP, 2DG/KCN did not induce significant 



! 176 

injury.  This indicated that when MPP is present before or after 2DG/KCN 

treatment, a significantly injury cannot be induced. 

Treatment with 1 uM PHTPP (ER! antagonist) 24 hours before or 6 hours 

following injury also caused a significant decrease in cell death in the 2DG/KCN 

injured explants. Interestingly a lower concentration, 1 nM, of PHTPP increased 

cell death, regardless of a 2DG/KCN injury, when added 6 hours following injury.   

Treatment with Flutamide, the AR antagonist, also significantly decreased 

cell death in the 2DG/KCN treated and an increase in cell death in the non-

injured when the inhibitor was added 24 hours before injury.  Post-treatment with 

the two different concentrations did result in significant differences.  Post-

treatment with Flutamide increased cell death in the non-injured at 1 um, but not 

1 nM.  There was a significant decrease in the 2DG/KCN injured groups when 

post-treated with Flutamide.  

In male cortical explants, MPP either pre or post-treatment did not affect 

cell death in the non-injured.  2DG/KCN increased cell death in the pre-treatment 

and 1 nM post-treatment from the vehicle non-injured.  Pre-treatment with 

PHTPP also did not influence cell death in the non-injured, but did decrease cell 

death in the 2DG/KCN injured.  Post-treatment with PHTPP regardless of 

concentration and injury increased cell death from the vehicle non-injured.  

However, Flutamide pre and post treatment decreased cell death from the 

vehicle 2DG/KCN injured; except for the 1 uM post-treated non-injured, which did 

not have an effect.   
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The increase in cell death in the non-injured female explants could 

indicate that these receptors are needed at a certain concentration to maintain a 

healthy explant and by inhibiting these receptors the explant loses its cellular 

regulation.  The exact roles of these sex steroid hormone receptors are not well 

defined.  Since these receptors are located in the mitochondria, (Solakidi, Psarra 

et al. 2005; Arnold and Beyer 2009; Vasconsuelo, Pronsato et al. 2011) they may 

be necessary for transcription of mitochondrial genes.   There are 37 genes 

contained in the mitochondrial DNA, some of which encode enzymes for the 

oxidative phosphorylation.  Disruption of the mitochondrial sex steroid hormone 

receptors may disrupt the electron transport chain by down regulating the 

transcription of oxidative phosphorylation enzymes needed to maintain normal 

cellular respiration and homeostasis.    

Another possible reason for the additional damage is that the inhibitor 

cocktail itself is damaging to the explant and somehow prevents additional injury 

when the explants are treated with 2DG/KCN.  However, because the effects of 

each inhibitor were dependent on the concentration and timing of treatment, it is 

unlikely the inhibitor cocktail but rather a base-line concentration of receptors are 

needed.   

In summary, female cortical explants had an effect of E2 with post-

treatment of PHTPP at 1uM and pre-treatment with Flutamide.  Post-treatment of 

1 uM PHTPP inhibited cell death induced by 2DG/KCN in the E2 pre-treated 

female explants.  However, EtOH (controls) did have a significant increase in cell 

death with 2DG/KCN.  E2 pre-treatment increased cell death.  Pre-treatment with 
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Flutamide, also had an increase with 2DG/KCN in the EtOH group and E2 

protected this increase.  Interestingly, E2 pre-treatment did not influence cell 

death in male cortical explants treated with antagonist or injured with 2DG/KCN. 

This correlates to the protective effect of E2 in female, but not male cortical 

explants.  We initially hypothesized that if E2 neuroprotection in female cortical 

explants is mediated by a particular receptor, blocking that receptor will increase 

cell death and remove the E2 protection.  We did not find any data to support that 

hypothesis.  In fact, most inhibitors further reduced cell death when injured with 

2DG/KCN. 

Overall, the E2 mediated protection seen in female cortical explants was 

not mediated through ER!, ER" or AR in a classical fashion.  In fact, when these 

receptors were inhibited in female cortical explants there was a decrease in cell 

death in the 2DG/KCN injured.  In female cortical explants, blocking ER!, ER" or 

AR following injury with 2DG/KCN did not add additional cell death to the non-

injured, depending on the antagonist and the concentration.  In male cortical 

explants, 2DG/KCN caused significant cell death in the MPP scenarios from the 

vehicle non-injured.  PHTPP post-treatment generally increased cell death from 

the vehicle non-injured.  However, PHTPP pre-treatment and Flutamide pre and 

post-treatment decreased cell death from the vehicle 2DG/KCN injured.  These 

results are extremely perplexing.  Concentration and timing of the antagonist 

influences cell death, indicating different roles of the specific sex steroid hormone 

receptors throughout protection and injury in both female and male cortical 

explants.   



! 179 

These data indicate that sex steroid hormone receptors may play a role in 

the ability of 2DG/KCN to induce injury. Only treatment with 2DG/KCN induces a 

significant injury with in the vehicle group.  Studies have shown that ER!, ER" 

(Solakidi, Psarra et al. 2005; Pedram, Razandi et al. 2006; Arnold and Beyer 

2009; Vasconsuelo, Pronsato et al. 2011) and AR (Solakidi, Psarra et al. 2005) 

are present in the mitochondria.  KCN in our injury inhibits oxidative 

phosphorylation by inhibiting cytochrome c oxidase in complex IV of the electron 

transport chain (ETC).  E2 mediated protection in another injury models, 

hemorrhagic shock, was mediated through ER" in the mitochondria by 

upregulating the genes of complex IV in the ETC (Hsieh, Yu et al. 2006).  

Disruption of complex IV by cyanide (CN-) treatment inhibited the E2 mediated 

protection (Hsieh, Yu et al. 2006).   E2 also increased expression of ER! and 

ER" in the mitochondria (Chen, Delannoy et al. 2004; Chen, Eshete et al. 2004).   

Since E2 can increase expression of ER in the mitochondria where there is a 

balance of normal cellular respiration from the ETC, in our model the balance of 

hormone receptors could be such that when E2 is present and the explants are 

injured, E2 is able to compensate for the inhibition of cytochrome c oxidase and 

mediate protection.  However, when we potentially disrupt the activity of these 

sex steroid hormone receptors in the mitochondria we can see an increase in cell 

death without the addition of 2DG/KCN that could be interfering with our injury or 

inducing secondary pathways to maintain a homeostatic environment.  Our 

results are timing and concentration specific when we do not see additional cell 

death to the non injured and can further reduce injury in the 2DG/KCN treated.  
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Sex steroid hormones receptors may have additional roles in the mitochondria, 

which allow additional protection from injury or increase cell death in a basal (non 

injured) state regardless of E2 treatment when these receptors are inhibited.   

 Cell survival can be promoted through genomic and non-genomic actions of 

steroid hormone receptors.  E2 can have both genomic and non-genomic actions 

on target tissues by binding to the well-characterized steroid hormone receptors, 

ER! and ER" (Green, Kumar et al. 1986; Koike, Sakai et al. 1987; Kuiper, 

Enmark et al. 1996; Berne RM 2004).  Androgens, testosterone and 

dihydrotestosterone, have important actions by binding to AR (Roy, Lavrovsky et 

al. 1999).  ER!, ER" and AR are steroid hormone receptors located not only in 

the nucleus, but also the plasma membrane, cytosol and mitochondria (Speroff 

2000; Gonzalez, Cabrera-Socorro et al. 2007).  AR expression is localized with 

ER! and ER" expression in many areas of the brain, specifically the cortex and 

hypothalamus (Patchev, Schroeder et al. 2004).   

 Sex steroid hormones can have both genomic and non-genomic actions on 

target tissues (Murdoch and Gorski 1991; Berne RM 2004).  Here we have 

eliminated the role of E2 working through the classical genomic pathways in our 

model of E2-mediated neuroprotection.  The non-genomic actions of steroid 

hormones include membrane initiated signaling pathways that are activated not 

only by ER!, ER" and GPR30 (Watson, Jeng et al. 2008; Roman-Blas, 

Castaneda et al. 2009; Liu, Zhang et al. 2012), but by AR (Foradori, Weiser et al. 

2008) (Peterziel, Mink et al. 1999).  E2 induces phosphorylation of extracellular 

signal-regulated kinase (ERK1/2) (Singh, Setalo et al. 1999; Setalo, Singh et al. 
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2002; Liu, Zhang et al. 2012).  ERK is a part of the mitrogen-activated protein 

(MAP) kinase pathway (Singer, Figueroa-Masot et al. 1999; Watson, Jeng et al. 

2008).  Another second messenger signaling pathway that can be activated is 

the serine/threonine protein kinase, AKT, through the phosphatidylinositide 3’OH 

kinase (PI3 K) by E2 (Datta, Brunet et al. 1999; Wilson, Liu et al. 2002) and 

testosterone (Yu, Akishita et al. ; Yu, Akishita et al.).  These kinases regulate a 

number of cellular responses including cell death (Yu, Akishita et al. ; Yu, 

Akishita et al. ; Lee and McEwen 2001; Murphy and Blenis 2006).  Activation of 

one or more of these signaling cascades by E2 can promote cell survival.  In our 

studies, these non-genomic actions of E2 may be responsible for our results.  

These data are the first to show that E2 mediated protection is not 

mediated through ER!, ER" or AR in the classical receptor mediated fashion.  In 

fact, depending on concentration and timing of the antagonist, ER!, ER" and AR 

antagonist could reduce cell death following treatment with 2DG/KCN with out 

affecting the non-injured explants.  The specific roles of sex steroid hormone 

receptors to increase injury have not been described in the female or male 

cortex.  These data demonstrate that cortical responses to injury may be innate 

and preprogrammed based on sex and hormonal background.   

 



! 182 

CHAPTER 5: GENERAL DISCUSSION 

 

Summary 

The studies included in this dissertation provide valuable insight into how 

sex steroid hormone receptors in the cortex respond during early postnatal 

development and following injury.  The isocortex is a nonconventional area of the 

brain to study sex steroid hormone receptor dynamics.  These receptors have 

been studied more extensively in other regions of the brain, such as the 

hypothalamus, that are responsible for the reproductive action of steroids.  

Estrogen and androgens are two main sex steroid hormones that are associated 

with sex differences. ER!, ER" and AR are the typical sex steroid hormone 

receptors associated with estrogens and androgens.  It is important to 

understand expression of these receptors in the cortex at the time of injury to see 

how these receptors respond to injury.  

During cortical development, the expression of several sex steroid 

hormones was dynamic. ER! mRNA expression was elevated then decreased to 

a very low level across early postnatal development. ER" and AR mRNA 

expression were low and then increased across early postnatal development in 

the cortex.  Interestingly, around the same time the changes in sex steroid 

hormone receptors occur in the cortex, steroidogenesis is beginning in the 

female and male sex organs, ovaries and testes.  Reproductive regions of the 

brain respond to steroidogenesis by up or down regulating receptors and 

signaling cues to establish a positive and negative feedback loop to regulate the 
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reproductive axis.  Although the cortex is normally not thought of as being 

reproductively dynamic, it may also respond to changes in the hormone milieu.  

Interestingly, although females and males have different sex organs and different 

primary sex hormones, estrogen for females and testosterone for males, there 

was no sex difference in how ER!, ER" or AR mRNA expression changed 

across early postnatal development.  The fact that ER! mRNA expression is high 

then decreases and ER" and AR mRNA expression are low then increase in 

both the female and male cortex across early postnatal development suggest a 

role for ER" and AR in the adult cortex.     

Cortical explants were used to evaluate the innate changes that occur as 

the cortex “ages” across time in culture because this in vitro model maintains the 

neuronal/glial cross talk and cellular cytoarchitectural organization of the cortex.  

During early postnatal development ER!, ER" and AR expression are dynamic in 

the intact cortex.  To evaluate whether these changes are innate to the cortex 

during development or require input from other brain regions we measured sex 

steroid hormone receptor mRNA expression in cortical explants across time in 

culture.  Female and male cortical explants were plated in either EtOH (vehicle) 

or E2 to evaluate the innate changes of these sex steroid hormone receptors that 

occur within the cortex and also to determine the affects of E2 on these receptors 

across time in culture.  ER! mRNA expression was high then decreased while 

ER" and AR mRNA expression were low then increased across time in culture in 

both female and male cortical explants.  Interestingly, treatment with E2 only had 

an affect on ER! mRNA expression in male cortical explants across time in 
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culture.  Here the changes in sex steroid hormone receptor mRNA expression 

that occurred in cortical explants were similar to the pattern of changes that we 

see in the intact cortex.  These data are the first to show that regulation of steroid 

hormone receptors in the rat cortex is innate and still occurs when it is isolated 

from other brain regions.  

 

Changes in sex steroid hormone receptors following injury 

Another time-point where sex steroid receptors are known to change is in 

the cortex following an injury.  24 hours after MCAO, ER! mRNA and protein are 

increased in the cortex of female rats and mice (Dubal, Shughrue et al. 1999; 

Dubal, Rau et al. 2006).  In OVX females, the increase in ER! mRNA occurs in 

both oil and E2-treated groups, but is seen earlier after injury with E2 (Dubal, 

Rau et al. 2006).  E2 treatment also attenuates the decrease in ER" seen 

following injury in the oil treated females (Dubal, Rau et al. 2006).  Interestingly in 

gonadally-intact males, ER! does not increase following injury.  Since there are 

sex-specific changes in sex steroid hormone receptors in the intact brain 

following injury, I evaluated these sex steroid hormone receptors in my cortical 

explant model to determine if these changes will occur in a sex specific manner 

and are innate to the cortex.   

The cortical explant model allowed us to investigate sex differences 

following injury in the cortex while maintaining the important neuron/glia 

connections and cross talk that other models lose by isolating and culturing either 

neurons or glia cells.  Ischemia can be induced in cortical explants by applying 
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2DG/KCN to block glycolysis and oxidative phosphorylation, which are the two 

main areas that become disrupted during ischemic stroke.  In my studies, I found 

that the time-course of cell death was different in female versus male cortical 

explants.  Female cortical explants had significant injury with 2DG/KCN treatment 

at 24 hours.  However, male cortical explants had significant injury at 12 hours, 

but the relative levels of injury were similar to females.  Differences in the cell 

death time-course between females and males indicate males may be more 

susceptible to chemical induced ischemia than females.  Interestingly, in a 

mouse model of traumatic brain injury (TBI), cell death occurs faster and at a 

higher magnitude in males than females (Roof, Duvdevani et al. 1993; Roof and 

Hall 2000; Bramlett and Dietrich 2001).  

There was also a sex difference in the way that the explants responded to 

injury after the addition of E2.  E2 attenuated cell death in female, but not male 

cortical explants.  In contrast, following MCAO, male rats do experience 

additional protection with the addition of E2 following MCAO (Toung, Traystman 

et al. 1998; Saleh, Cribb et al. 2001; Saleh, Cribb et al. 2001).  It would appear 

that these males were only protected by E2 when the cortex had inputs from 

other regions of the brain.  It is also possible that the difference in the cell death 

in the two different paradigms may also account for the differences in response 

to cell death.  These studies together indicate that the cortex may be organized 

differently in females and males, and that E2 may work via a sex-specific 

mechanism.  In the female, E2 mediated protection is innate to the cortex, where 

E2 mediated protection in males is not and requires outside inputs.   
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Another possible reason for the sex difference in cell death with E2 

pretreatment is that males require a higher concentration of E2 for protection.  E2 

mediated protection in females is at physiological concentrations and requires 

pretreatment for 7 days indicating that this protection may be through the 

classical genomic pathways for sex steroid hormones.  However, since males are 

not protected at physiological concentrations and may required pharmacological 

concentrations to exert protection indicates that E2 in males may have 

antioxidant effects by reducing reactive oxygen, rather than receptor mediated 

effects. 

 

Changes in ER! mRNA expression in cortical explants following injury 

In female rat explants, E2 was protective following treatment with 

2DG/KCN.  These results are similar to the protective effect of E2 following 

MCAO.  In the MCAO model, an increase in ER! is essential for E2-mediated 

protection in female rats (Suzuki, Brown et al. 2007).  Interestingly, ER! also 

changed in female cortical explants following 2DG/KCN treatment, but E2 

treatment prevented this increase.  Not surprisingly, the increase in ER! mRNA 

expression occurred at a different time following injury in explants versus in the 

intact cortex.  Following MCAO, ER! mRNA expression began to increase at 4 

hours, where it peaked, and continued to remain significantly increased out to 24 

hours.  In female cortical explants, ER! mRNA expression was significantly 

increased at 8 hours, but had returned to baseline by 24 hours after injury.  ER! 

mRNA also returns to baseline following MCAO (unpublished observations), but 
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it takes a longer period of time.  These data suggest that ER! mRNA responses 

to injury may be innate to the cortex, although the time-course for expression is 

different in each model.   

The difference in the time-course for changes in ER! mRNA could be 

attributed to the baseline expression of ER! before injury.  Interestingly, ER! 

mRNA expression is virtually absent in the adult rodent cortex and increases 

following injury.  However, in cortical explants there is a higher baseline 

expression of ER! mRNA expression at the time of injury and only the vehicle 

(EtOH)-treated female cortical explants respond to injury by increasing ER! 

mRNA expression.  Because there was an increase in cell death in the vehicle-

treated female explants (compared to E2) and an increase in ER! mRNA 

expression, it is possible that the E2 protects the female cortical explants by 

inhibiting an increasing in ER! mRNA expression.  The levels of ER! mRNA are 

not different between EtOH and E2-treated female cortical explants across time 

in culture, specifically at the time of injury (PND10), suggests that E2 does not 

affect the baseline expression of ER! mRNA.  However, E2 does inhibit ER! 

mRNA expression from increasing following injury in the cortical explant model, 

which is protective.  

 

Changes in ER" mRNA expression in cortical explants following injury 

Following MCAO in female rat cortex, ER" mRNA expression is initially 

elevated and then dramatically declines by 16 and 24 hours (Dubal, Rau et al. 

2006).  Pretreatment with E2 prevents the injury-induced decrease in ER" at 16 
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and 24 hours after injury (Dubal, Rau et al. 2006).  Here, ER! mRNA expression 

did not change in either EtOH or E2-treated female or male cortical explants 

following treatment with 2DG/KCN.  This difference in how ER! responds to 

injury in the cortical explant model (in vitro) versus the MCAO model (in vivo) 

may reflect differences between the two injury paradigms or could indicate an 

influence of other brain regions that is lost in the explants.  These data are very 

interesting because E2 does not decrease cell death following MCAO in ER" 

knock out mice, but does in ER! knock out mice suggesting ER" is necessary to 

mediate E2 protection.  However, it is possible that the two receptors are working 

together to mediate E2 neuroprotection when in homeostasis.  Since ER! may 

require feedback or connections from other brain regions it is possible that those 

regions are able to still send signaling cues even when ER! is removed.  

However, since ER" appears to be regulated mainly with the cortex it is unable to 

compensate and E2 neuroprotection is lost in ER" knockouts.   

 

Changes in AR mRNA expression in cortical explants following injury 

There was a sex difference in the way AR mRNA expression responded to 

injury.  In both EtOH and E2-treated female explants, AR mRNA was significantly 

increased at 8 hours following treatment with 2DG/KCN was decreased by 24 

hours.  There was no increase in AR mRNA expression in males at any time 

point following treatment with 2DG/KCN.  These data are the first to demonstrate 

sex specific changes in AR in following injury.  AR responds similarly to 

2DG/KCN treatment in EtOH and E2 treated female explants, indicating that 
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changes in AR mRNA are in response to injury rather than E2 mediated 

protection.  While changes in AR mRNA or protein have not been evaluated 

following injury, the role of AR in protection has been evaluated.  Interestingly, 

males, not females (Kitano, Young et al. 2007), showed AR-dependent protection 

with isoflurane preconditioning following MCAO (Zhu, Wang et al. 2010).  

Flutamide, an AR antagonist, removed the protection of isoflurane precondition in 

male rats that have undergone MCAO (Zhu, Wang et al. 2010).  AR has also 

been suggested to mediate the effects of androgens and neuroprotection 

(Uchida, Palmateer et al. 2009).  There is a difference in the role AR plays in 

injury in the cortical explant model (in vitro) verse the MCAO model (in vivo).  

Flutamide decreased cell death in 2DG/KCN-treated female and male cortical 

explants depending on timing and concentration of the drug. However, Flutamide 

increased cell death in male rats following MCAO (Uchida, Palmateer et al. 

2009)(Zhu, Wang et al. 2010).  Since AR increases cell death following injury in 

the cortex when there are synapses and connections to other brain regions and 

decreases cell death when the cortex is isolated in culture could indicate that AR 

in the cortex are influenced from other regions of the brain. 

 

Inhibiting ER!, ER" and AR 

If ER!, ER" or AR is playing a role in E2 mediated protection then 

inhibiting that receptor should remove the protection.  To evaluate the role of 

ER!, ER" and AR selective antagonists were chosen to inhibit each receptor, 

MPP, PHTPP and Flutamide, respectively.  Because we did not see the level of 
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cell death we anticipated when the inhibitors were added before the injury, we 

were concerned that the drug in the culture media before injury may be 

influencing the ability of 2DG/KCN to induce cell death.  To eliminate this 

problem, we included two additional paradigms where inhibitor drugs were added 

following injury.  

In female explants, only the vehicle (non antagonist) treated group had 

significant cell death when treated with 2DG/KCN.  As expected, E2 attenuated 

this cell death in female cortical explants.  2DG/KCN did not induce a significant 

injury in any of the drug groups and depending on concentration and timing cell 

death was further reduced in the 2DG/KCN group.  A tight regulation of sex 

steroid hormone receptors may be occurring because addition of the inhibitors 

alone caused additional cell death without 2DG/KCN treatment.  These data 

suggest that if receptor function is too high or too low additional injury can result, 

indicated by the increase in cell death in the non-injured explants.  These data 

indicate ER! and AR, but not ER", may play a role in the injury induced by 

2DG/KCN in female cortical explants.  

The male cortical explants also only had significant cell death with 

2DG/KCN treatment in the vehicle group.  E2 did not attenuate cell death in male 

cortical explants.  2DG/KCN did not induce a significant injury in any of the drug 

groups and depending on concentration and timing cell death was further 

reduced in the 2DG/KCN group.  These data indicate that ER", ER! and AR may 

play a role in the injury induced by 2DG/KCN in male cortical explants. 
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The initial goal of determining which receptor was responsible for the E2-

mediated protection was not obtained.  In fact, significant cell death was not 

obtained when the explants were treated with 2DG/KCN in the presence of an 

antagonist for sex steroid hormone receptors.  These antagonists may cause off 

target effects that are not directly related to blocking the specific sex steroid 

receptor.  Off target effects have been reported with other antagonist in clinical 

trials (Miyazawa 2011).  Specific off target effects have not been reported with 

these antagonists; however, sex steroid hormone membrane receptors or ion 

channels could have been activated without our knowledge.  These off target 

effects can be beneficial or detrimental and may lead to misinterpretation of 

experimental results.   

MPP, ER! antagonist, is a selective silent antagonist that blocks the 

activity of ER! at the receptor level and does not have any intrinsic activity to 

activate the ER! receptor.  This receptor antagonist may affect other signaling 

pathways or proteins with in the cell.  Since 2DG/KCN treatment did not cause 

significant cell death when MPP, along with PHTPP and Flutamide, were present 

these antagonist may activate cell survival pathways that disrupts 2DG/KCN’s 

ability to cause cell death.  These antagonists may also disrupt the cell death 

pathways by disrupting the cells ability to undergo apoptosis, possibly by 

decreasing cytochrome c or disrupting caspase cell death pathways.   

The pathways of cell death may be different for females and males.  In 

females, the caspase cascade, a family of cysteine proteases that are involved in 

apoptotic cell death, is believed to play a major role in cell death following injury 
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(Renolleau, Fau et al. 2007).  Inhibition of this cascade attenuates cell death in 

female, but not male rodents following MCAO (Renolleau, Fau et al. 2007).  

However, the poly (ADP-ribose) polymerase-1, an enzyme involved in DNA 

repair, inhibition in males is protective, but not in females following MCAO 

(Hagberg, Wilson et al. 2004). The difference in cell death pathways that occur in 

vivo, following MCAO, may add insight to sex difference in cell death in the 

cortical explant model.  It is important to note that these two models are different 

types of ischemic injuries. Cell death in the cortex following MCAO is largely 

secondary to the primary death that occurs in the striatum.  2DG/KCN injury is 

directly applied to the cortex and this injury is considered primary.  

From these data we can correlate that there is an effect of sex steroid 

hormone receptors in injury because we could not reach a significant injury with 

2DG/KCN in drug groups.  Only treatment with 2DG/KCN induced a significant 

injury within the vehicle group.  Studies have shown that ER!, ER" (Solakidi, 

Psarra et al. 2005; Pedram, Razandi et al. 2006; Arnold and Beyer 2009; 

Vasconsuelo, Pronsato et al. 2011) and AR (Solakidi, Psarra et al. 2005) are 

present in the mitochondria.  KCN in our injury inhibits oxidative phosphorylation 

by inhibiting cytochrome c oxidase in complex IV of the electron transport chain 

(ETC).  E2 mediated protection in another injury models, hemorrhagic shock, 

was mediated through ER" in the mitochondria by upregulating the genes of 

complex IV in the ETC (Hsieh, Yu et al. 2006).  Disruption of complex IV by 

cyanide (CN-) treatment inhibited the E2 mediated protection (Hsieh, Yu et al. 

2006).   E2 also increased expression of ER! and ER" in the mitochondria 
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(Chen, Delannoy et al. 2004; Chen, Eshete et al. 2004).   Since E2 increases 

expression of ER in the mitochondria where there is a balance of normal cellular 

respiration from the ETC, in our vehicle model the balance of hormone receptors 

is such that when E2 is present and the explants are injured with CN- that E2 is 

able to compensate for the inhibition of cytochrome c oxidase and mediate 

protection.   

The disruption of the activity level of some of these sex steroid hormone 

receptors in the mitochondria caused an increase in cell death without the 

addition of 2DG/KCN.  The increase in cell death in the non-injured female and 

male explants could indicate that these receptors are needed at a certain activity 

level to maintain a healthy explant.  Another possible reason for the additional 

damage is that the inhibitor cocktail itself is damaging to the explant and some 

how prevents additional injury when the explants are treated with 2DG/KCN.  

However, because there effect was dependent on the concentration and timing of 

treatment of the antagonist, it is unlikely the inhibitor cocktail cause damage but 

rather a base line activity level of receptors are needed.   

ER!, ER" and AR mRNA expression did not change in male cortical 

explants following 2DG/KCN treatment.  ER! and ER" mRNA expression also 

did not change in response in injury in the male brain in vivo (Broughton, Brait et 

al. 2012).  AR mRNA has not been evaluated following injury in the cortex.  

However, another estrogen receptor, GPR30, has been recently evaluated 

following a 30 minutes transient MCAO in OVX females and gonadally intact 

female and male mice (Broughton, Brait et al. 2012).  Interestingly, in male mice 
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there is an increase in GPR30 4 hours following MCAO that returned to baseline 

at 24 hours (Broughton, Brait et al. 2012).  In the same studies, there were no 

significant changes in ER! or ER" at 4 or 24 hours post injury (Broughton, Brait 

et al. 2012).  These data suggest that GPR30 responds to injury in the male, but 

not the female cortex.  Here we did evaluate changes in GPR30 mRNA 

expression 24 hours following 2DG/KCN treatment in both female and male 

cortical explants.  We did not see any change in GPR30 mRNA expression at 24 

hours following injury (unpublished observations), but it is possible that there was 

a GPR30 response that we missed by only looking at 24 hours.  It is possible that 

the increase occurred early was only transient (as was seen with ER! and AR in 

females).   

 

Potential Models 

In our 2DG/KCN cortical explant model, cell damage is caused by 

inhibiting glycolosis and also disrupting oxidative phosphorylation in the 

mitochondria, which may increase cytochrome c release activating an intrinsic 

pathway of cell death. Cell death can occur extrinsically or intrinsically in the 

mitochondria.  The extrinsic cell pathway, also called the “death receptor 

pathway,” is activated when “death receptors” such as tumor necrosis factor 

(TNF) receptor or the TNF-related apoptosis inducing ligand (TRAIL) receptors 

become activated and signal Caspase-8 (Kroemer, Galluzzi et al. 2007).  

Caspase-8 can activate additional caspases that lead to apoptosis, such as 

Caspase-3 to 6 to 7, or can activate a pro-apoptotic Bcl-2 protein (BID) (reviewed 
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in (Kroemer, Galluzzi et al. 2007).  BID can induce the intrinsic pathway by 

interacting with Bax, another Bcl-2 protein, causing mitrochondrial outer 

membrane permeabilization (Wang, Yin et al. 1996).  This permeabilization 

releases cytochrome c and other pro-apoptotic factors that induce additional 

caspases, which leads to cell death (Figure 5.1).  The intrinsic pathway can also 

be activated by DNA or damage to the cell (Kroemer, Galluzzi et al. 2007).   

In our cortical explant model of ischemia, E2 does not appear to act via 

the classic receptor mediated mechanism of protection.  E2 can activate many 

organelles in the cell, such as the cytoplasm, nucleus and the mitochondria.  One 

mechanism of E2-mediated protection is through steroid hormone receptors.  

However, when we added antagonist to inhibit these receptors in our model, 

2DG/KCN was not able to cause significant cell death that we normally see when 

no antagonist is added. In the vehicle group (no antagonist), 2DG/KCN induced 

significant injury in both female and male cortical explants and E2 attenuated this 

cell death in females.  These data suggest that E2 is not working through ER!, 

ER" or AR to mediate protection.  Our proposed model of E2 mediated 

protection in cortical explants is diagramed in Figure 5.2.  E2 can bind to 

receptors on the membrane, such as GPR30, tyrosine kinase receptors, or 

growth factor receptors.   These receptors become activated and signal to 

downstream signaling pathways to promote cell survival.  For example, E2 has 

been shown to activate AKT by phosphorylation, pAKT (Wilson, Liu et al. 2002).  

pAKT can signal down stream to increase cell survival proteins.  pAKT could also 
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activate transcription of genes to produce more membrane receptors, GPR30.  

E2 binds to GPR30, which activates more PI3K that phosphorylates more AKT.  

E2 mediated protection was not removed when ER!, ER" or AR was 

inhibited.  In fact, treatment with these inhibitors decreased cell death in the 

2DG/KCN treated explants.  This decrease in cell death with the inhibitors was 

not affected by the presence of E2.  Since inhibiting the receptors decreased cell 

death, it is possible that KCN may be interacting with sex steroid hormones 

receptors, Figure 5.1.  ER! and ER" can be found in the mitochondria, but very 

little is know about their location or function.  KCN acts by disrupting complex IV 

of the ETC in the mitochondria, I hypothesize that there are sex steroid hormone 

receptors near that complex that can interfere with how KCN disrupts complex 

IV.  Since very little is know about the location of these receptors and there 

function in the mitochondria, they could not only aide in regulating mitochondria 

genes necessary for the electron transport chain but could also affect how 

cytochrome C is released to trigger cell death.   

These data are the first to show that E2 mediated protection following 

2DG/KCN injury is not mediated through ER!, ER" or AR.  In fact, depending on 

concentration and timing of the antagonist, ER" and AR antagonist could reduce 

cell death following treatment with 2DG/KCN without affecting the non-injured 

explants.  These data demonstrate that cortical responses to injury are innate 

and preprogrammed based on sex and hormonal background.  The role of sex 

steroid hormone receptors in injury needs to be further evaluated along with 

mechanism of sex differences in cell death.  
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Figure 5.1 Diagram of 2DG/KCN injury in cortical explants.  2DG/KCN blocks 
glycolyosis and oxidative phosphorylation.  2DG is a glucose molecule that has a 
hydrogen in place of a hydroxyl group.  Hexokinase traps this modified glucose 
molecule in the cell by converting 2DG to 2DG-P.  This molecule cannot continue 
in glycolysis because phosphoglucose isomerase (PGI) cannot use 2DG-P as a 
substrate (Brown 1962; McComb and Yushok 1964; Parniak and Kalant 1985; 
Karczmar, Arbeit et al. 1992).  KCN inhibits cytochrome c oxidase in the 
mitochondrial electron transport chain by binding to the iron in cytochrome c so 
that cytochrome c oxidase is unable to transfer electrons to oxygen.  This 
disruption inhibits the ETC from producing ATP.   
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Figure 5.2.  E2-mediated protection in cortical explants. E2 activates GPR30, 
G protein-coupled receptor 30, or a growth factor, GF, receptor.  These receptors 
activate a kinase cascade that up-regulate cell survival proteins.   
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