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Piezoelectric materials in the forms of both bulk and thin-film have been widely used 

as actuators and sensors due to their electromechanical coupling. The characterization of 

piezoelectric materials plays an important role in determining device performance and 

reliability. Instrumented indentation is a promising method for probing mechanical as 

well as electrical properties of piezoelectric materials. 

The use of instrumented indentation to characterize the properties of piezoelectric 

materials requires analytical relations. Finite element methods are used to analyze the 

indentation of piezoelectric materials under different mechanical and electrical boundary 

conditions.  

For indentation of a piezoelectric half space, a three-dimensional finite element 

model is used due to the anisotropy and geometric nonlinearity. The analysis is focused 

on the effect of angle between poling direction and indentation-loading direction on 

indentation responses. 

For the indentation by a flat-ended cylindrical indenter, both insulating indenter and 

conducting indenter without a prescribed electric potential are considered. The results 

reveal that both the indentation load and the magnitude of the indentation-induced 

potential at the contact center increase linearly with the indentation depth.  

For the indentation by an insulating Berkovich indenter, both frictionless and 

frictional contact between the indenter and indented surface are considered.  The results 

show the indentation load is proportional to the square of the indentation depth, while the 

indentation-induced potential at the contact center is proportional to the indentation depth. 

Spherical indentation of piezoelectric thin films is analyzed in an axisymmetric finite 

element model, in which the poling direction is anti-parallel to the indentation-loading 

direction.  

ABSTRACT OF DISSERTATION 

FINITE ELEMENT ANALYSIS OF THE CONTACT 

DEFORMATION OF PIEZOELECTRIC MATERIALS 



Six different combinations of electrical boundary conditions are considered for a thin 

film perfectly bonded to a rigid substrate under the condition of the contact radius being 

much larger than the film thickness. The indentation load is found to be proportional to 

the square of the indentation depth.  

To analyze the decohesion problem between a piezoelectric film and an elastic 

substrate, a traction-separation law is used to control the interfacial behavior between a 

thin film and an electrically grounded elastic substrate. The discontinuous responses at 

the initiation of interfacial decohesion are found to depend on interface and substrate 

properties.  
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Chapter - 1 Motivation and summary 

1.1 Introduction 

Piezoelectric materials are functional materials with mechanical and electrical 

coupling, and they are extensively used as actuators and sensors in many branches of 

modern technologies (e.g., aerospace, automotive, medical, and electronic industries). 

Measurement of piezoelectric materials including both mechanical and electrical 

properties is vital for their performance assessment and reliability prediction. Lack of 

easy and inexpensive means of the characterization of mass-produced piezoelectric 

materials adds largely to their production cost [1]. In addition, piezoelectric actuators, 

sensors, and other piezoelectric components are generally in either bulk forms or 

thin-film forms (e.g., thin films, beams, and plates), and become smaller due to the 

increasing miniaturization in the microelectromechanical systems (MEMS) [1, 2 ]. 

Characterization of piezoelectric materials, especially in small volumes, is a challenge, 

while there is an increasing need for probing material properties of piezoelectric materials 

of small volume [3]. 

Indentation techniques including micro- and nano-indentation (of high-resolution ~ 

3-10 nm [4]) are especially suitable for characterizing materials of small volume at 

micro- and nano-length scales, and can be the only method in many cases [1]. 

Measurement of piezoelectric coefficients, especially for thin films, with high accuracy is 

challenging [5,6]. Instrumented indentation, in which indentation load and displacement 

can be measured simultaneously, offers a powerful tool for the characterization of brittle 

materials such as piezoelectric materials. It has been recognized that the indentation 

response of piezoelectric materials can be used to characterize the properties of 

piezoelectric materials [6]. Moreover, the contact loading during indentation provides a 

viable and attractive method for investigating the contact behavior of piezoelectric 

materials, which plays an important role in the functional behaviors of piezoelectric 
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materials, since piezoelectric components are prone to contact in applications such as 

random access memory, and actuators that control structural deformation.  

In spite of simplicity and the ease of use of the indentation test, deciphering 

indentation results is nontrivial due to the non-uniform distributions of stress and strain 

beneath the indenter, and gets even more complicated for piezoelectric materials due to 

the intrinsic coupling between mechanical and electrical fields. Successful application of 

indentation technique relies on the corresponding contact mechanics [7,8,9], such as 

deformable-rigid contact and elastic contact, which can be used to measure piezoelectric 

constants [10,11].  

1.2 Motivation 

The purpose of this dissertation is to study the contact mechanics of piezoelectric 

materials since piezoelectric materials are often used in some “contact-prone” 

applications [12]. The knowledge of electromechanical interaction between piezoelectric 

materials and other components is essential to understanding the performance of 

piezoelectric components, and has stimulated the interest in the indentation experiment of 

piezoelectric materials as an effective technique for characterizing electromechanical 

properties of piezoelectric materials.  

The contact deformation behavior of piezoelectric materials is complex due to the 

coupled mechanical and electrical properties of piezoelectric materials. There are only 

limited cases that can be solved analytically. Thus, finite element method (FEM) is used, 

especially for three-dimensional (3D) problems of anisotropic material.  

The indentation behavior of piezoelectric materials is a function of material 

properties, mechanical and electrical boundary conditions. It is necessary to study the 

roles of material orientation and mechanical as well as electrical boundary conditions in 

the indentation of piezoelectric materials. Accordingly, three propositions are made in 

this dissertation with objective of investigating effects of crystallographic orientation and 
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boundary conditions on the indentation of piezoelectric materials in both half-space and 

film forms.  

1.3 Summary 

Although analytical solutions of the indentation of isotropic, elastic semi-infinite 

materials have been well established [13,14,15,16,17], directional dependence of material 

properties has complicated the contact behavior of anisotropic materials. Effects of 

material anisotropy on the contact deformation requires further study [18] for the 

applications of indentation in anisotropic materials. For example, shear stresses, pop-in 

load and displacement varied with crystallographic orientation of Cr3Si single crystals 

[19]. Deviation of effective elastic modulus from elastic isotropy to anisotropy could be 

about 6%, and the physical meaning of the contact modulus calculated from 

load-displacement curves still remains unsolved for anisotropic materials [20].  

Most of the literature on the indentation response of piezoelectric materials has 

focused on the problem of transversely isotropic materials with axisymmetric axis (the 

poling direction) being parallel to the indentation-loading direction 

[3,12,21,22,23,24,25,26,27]. However, it is possible for the indentation-loading direction 

not to be parallel to the poling direction, and the polarization direction is not necessarily 

perpendicular to the sample due to bias- or stress-induced polarization switching.  

Although some results suggested that the effect of the poling direction (with respect 

to the indentation-loading direction) on the strength of the material could be neglected [2], 

more work is needed to verify their conclusion.  

1.3.1 Effects of material orientation on contact behavior of a piezoelectric half space 

3D finite element analysis was used to study the effect of the angle between the 

loading direction and the axisymmetric direction on the indentation behavior of a 

transversely isotropic piezoelectric half-space by a cylindrical indenter of a flat end. Two 

cases were considered, which included (a) the indentation by an insulating indenter, and 

(b) the indentation by a conducting indenter. Both the indentation load and the 
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indentation-induced potential were found to be proportional to the indentation depth. 

Using the simulation results and the analytical relationship for the indentation by a rigid, 

insulating indenter, semi-analytical relationships were developed between the indentation 

load and the indentation depth and between the indentation-induced potential on the 

indenter and the indentation depth, respectively, for the conducting indenter. The 

proportionality between the indentation-induced potential and the indentation depth is 

only a function of the angle between the loading direction and the poling direction, 

independent of the type of indenters, which may be used to measure the relative direction 

of the loading axis to the axisymmetric axis of transversely isotropic piezoelectric 

materials from the indentation test.  

Also, a 3D finite element simulation was used to study the effect of the indentation 

direction related to the axisymmetric axis of a transversely isotropic piezoelectric half 

space on the indentation behavior of the piezoelectric material by a rigid insulating 

Berkovich indenter. The finite element results showed that the indentation load was 

proportional to the square of the indentation depth with the pre-factor depending on the 

relative direction and the piezoelectric properties of the material. The indentation-induced 

potential at the contact center was found to be proportional to the indentation depth with 

the proportionality only a function of the angle between the indentation direction and the 

poling direction. These relationships may be used in the sharp-instrumented indentation 

to measure the relative direction of the loading axis to the poling direction (axisymmetric 

axis) of transversely isotropic piezoelectric materials. 

1.3.2 Effects of electrical boundary conditions on contact behavior of thin films 

Electrical boundary conditions can either aid or decrease the indentation strength of 

piezoelectric materials [2] because electric field can either enhance or suppress 

indentation deformation and influence loading-unloading curves, depending on the 

direction of the electric field [3,28]. Electrical boundary conditions such as electric 

charge and electric potential on the deformed surface play important roles in controlling 

the contact behavior of piezoelectric materials.  

Finite element simulation was used to analyze the effect of electric boundary 
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conditions on the indentation deformation of a transversely isotropic piezoelectric film 

with the contact radius much larger than the film thickness. Six different combinations of 

electric boundary conditions were used. The simulation results showed that the 

indentation load is proportional to the square of the indentation depth and the 

indentation-induced electric potential at the contact center is a linear function of the ratio 

of the indentation depth to the film thickness for all six cases. The contact stiffness is 

proportional to the contact area and inversely proportional to the film thickness. The 

nominal piezoelectric charge coefficient 33d  is inversely proportional to the derivative 

of the electric potential with respect to the indentation depth for the indentation of 

piezoelectric films by a conducting indenter with a grounded rigid substrate. 

1.3.3 Indentation-induced decohesion of piezoelectric films  

Thin films have been widely used to protect the underlying substrates against wear, 

damage, impact and thermal degradation in the applications of microelectronics, 

optoelectronics and semiconductor devices [29,30,31]. The interface strength between 

film and substrate is of practical importance and plays a critical role in determining the 

reliability and durability of the film/substrate systems [32]. The instrumented indentation 

technique including microindentation and nanoindentation has provided a unique method 

to characterize the interaction between a film and the associated substrate due to its 

simplicity and efficiency.  

FEM was used to study the indentation-induced interfacial decohesion between a 

transversely isotropic piezoelectric thin film weakly bonded to an elastic substrate, under 

the condition that both the indenter and substrate are electrically grounded. It is found 

that the traction-separation law for interfacial failure provides a feasible way to 

investigate interfacial decohesion, and the discontinuities of the indentation response 

curves can be used to characterize interface and material properties. The simulation 

results show that the dominant parameters in the traction-separation law are cohesive 

energy and strength. Films of a larger thickness, substrates of a large elastic modulus as 

well as a larger Poisson’s ratio, are desirable for preventing the interfacial decohesion. 
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1.4 Outline of this dissertation 

This dissertation is organized in seven chapters. 

Chapter - 1 introduces the motivation and summary.  

Chapter - 2 is dedicated to the literature review. 

Chapter - 3 focuses on the finite element analysis of the indentation of a piezoelectric 

half space by a flat-ended cylindrical indenter. The indenter is either insulating or 

conducting without a prescribed electric potential.  

Chapter - 4 analyzes the Berkovich indentation of a piezoelectric half space. An 

insulating indenter is considered. The contact between the indenter and the sample is 

either frictionless or frictional. 

Chapter - 5 studies the effects of different electrical boundary conditions on the 

indentation responses of a piezoelectric film perfectly bonded to a rigid substrate under 

the condition that the contact radius is much larger than the film thickness.  

Chapter - 6 investigates the indentation-induced interfacial decohesion of a 

piezoelectric film weakly bonded to an elastic and electrically grounded substrate. The 

indenter is considered to be rigid and electrically grounded.  

Chapter - 7 contains the conclusion and prospects of future work. 

Copyright © Ming Liu 2012 
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Chapter - 2 Literature review 

2.1 Introduction 

This chapter is divided into four parts. In the first section, the background 

knowledge of piezoelectric materials is presented. The second section discusses the 

application of indentation techniques in characterizing piezoelectric materials. A brief 

review on indentation-induced interfacial failure is given in the third section. The last 

section is the summary. 

2.2 Piezoelectric materials 

Piezoelectric materials represent a broad class of materials whose electromechanical 

coupling has led to important applications. The first application of piezoelectricity 

appeared in sonar, in which piezoelectric quartz was used to produce ultrasonic waves 

during World War I [33]. Since World War I, applications of piezoelectric materials have 

been expanded to many branches of science and technology such as flexible structures, 

electronics, navigation, and biology. A major drawback of piezoelectric ceramics 

(piezoceramics) is the brittleness.  

Many important achievements on piezoelectric materials have been made in last 

several decades. The manufacture technology of piezoceramics has become mature with 

large-scale commercialization of piezoceramics of low cost and improved performance 

(such as high dielectric and coupling constants), while the study of the contact behavior 

between electrodes and piezoelectric materials is still at an early age [23], and needs to be 

investigated.  

Multilayer structures consisting of piezoelectric materials have recently received the 

most attention because of high energy density, relatively high generative forces, and 

quick responses (1-10µs) [ 34 ,35 , 36 ]. In these multilayer structures, piezoelectric 

materials, which are usually hard, are attached to or sandwiched between metals [37] and 

electrodes [38]. In an arranged way, they can respond to mechanical loading intelligently. 
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Because of intrinsic anisotropy, piezoceramics in the multilayer structures experience 

inharmonious contacts (such as elliptical contact between piezoceramics and other 

components including electrodes) [39,40,41]. The stress and electric field concentrations 

near the contact regions between the ceramics and the structure could occur and result in 

crack initiation and propagation, even failure of components during operation with 

mechanical or electrical loading [42,43]. Improvement of performance and reliability of 

piezoelectric materials and piezoelectric-based structures necessitate the analysis of the 

contact deformation of piezoelectric materials [44]. 

2.2.1 Piezoelectric effect and piezoelectricity  

The direct piezoelectric effect, discovered by Pierre Curie and Jacques Curie [33], 

describes induction of electric variables, such as electric potential, electric polarization, 

and current and electric charges of either positive or negative value on certain 

corresponding surfaces by mechanical deformation or strain. This effect has been used in 

sensing applications to measure variables such as displacements, strains, accelerations, or 

other mechanical changes of structure.  

The converse piezoelectric effect, predicted mathematically by Gabriel Lippmann 

and verified by the Curies, describes induction of mechanical deformation with strain, 

stress, or change in volume by externally electric loading such as an electric potential and 

electric field. This effect has been used in actuator applications to control mechanical 

change, since structures made from piezoelectric materials can bend, expand, or contract 

when an electrical loading is applied.  

Piezoelectric effect can be used for energy conversion between electrical and 

mechanical forms, which is essential for the realization of electromechanical devices in 

microelectromechanical systems [3]. 

2.2.2 Polar axis and polarization 

Piezoelectricity is absent in centrosymmetric materials and occurs in crystal classes 



9 

 

with no center of inversion (with the exception of crystal class 432). The lack of a center 

symmetry results in electric dipoles due to a net stress-induced movement of positive and 

negative ions with respect to each other. A polar axis exists in some crystals. All the 

piezoelectric materials used in the form of thin films belong to this material group. 

Quartz has no polar axis and is only used in single-crystalline form. Before polarization, 

general ceramics exhibit elastically isotropic, and the average dipole moment over any 

macroscopic volume is zero due to the random orientation throughout the material; while 

after polarization, ceramics become piezoelectric. By means of poling, electric forces 

could move positive and negative charges apart in the direction of the external field so 

that the centers of positive and negative charges no longer coincide. The application of a 

high static electric polarization field can switch the polarization or orient the domains of 

equally oriented polarization vectors. After the field is removed, a large proportion of the 

polarization still remains, and the material exhibits macroscopically piezoelectric 

responses. The poling direction (i.e., the direction of polarization) is the direction of the 

applied electric field that permanently polarizes the initially unpoled material [1]. 

2.2.3 Finite element analysis of piezoelectric materials 

Although modeling of piezoceramics has been studied for over a century, 

improvement and innovation still persist [ 45 ], owing to complexities of the 

electromechanical interaction between mechanical deformation and electric field in 

piezoelectric materials. An externally applied voltage can change the shape of a 

piezoelectric sample (i.e., an electric field creates mechanical strain in piezoelectric 

materials). The non-uniform strain field will result in stress distribution. The mechanical 

stress/strain will, in turn, induce an electric field in the material. 

Complete constitutive laws for piezoceramics are still lacking [45]. A piezoelectric 

material is often laminated or adhered to a substrate as a unimorph or bimorph, which 

makes the modeling of piezoelectric material or structure more complicated [45]. Finite 

element simulation has been constantly developed in the past 40 years with varying 
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degrees of success [46,47,48,49]. Modeling of piezoelectricity is a vast area [45]. Finite 

element packages such as ANSYS [50] and ABAQUS have limitations such as the 

restriction of linear piezoelectricity without thermal terms. COMSOL has the potential 

capability for multi-physics analysis, but has not yet been well established. A review of 

finite element modeling of piezoelectric structures was presented in Piefort [33]. Two and 

three dimensional finite element models of piezoelectric materials, including shell/planar, 

beam, solid, have been well formulated [51,52,53]. A finite element model for a 

laminated composite plate or multilayer structures containing distributed thin 

piezoelectric sensors and actuators is now available [54,55,56,57]. For the contact 

between adjacent layers in multilayer structures, the assumption of perfect mechanical 

and electric contact has been used so that the continuity of displacement and electric 

potential holds on the interfaces between adjacent layers [58]. An optimization approach, 

which is to obtain an optimal distribution of piezoelectric material, for the actuator design 

of multilayer piezoelectric plate and shell structures, so as to provide the maximum 

displacement in a given direction at a point of the domain, was carried out by the FEM 

[59]. The existing models usually involved utilizing the entire layer of the piezoelectric 

materials. Models for distributed piezoelectric materials should be further investigated, 

and there was more modeling work to do concerning embedded or bonded piezoelectric 

materials [60]. For large complicated structures with integrated piezoelectric materials, 

finite element simulation, which has general applicability, is a powerful tool for the 

design and analysis, and is promising for solving complex geometries and non-uniform 

electric fields [60]. The rapid advance of computational capacity makes the unsolved 

formidable problems tractable with the help of FEM and paves the way for measurement 

of electromechanical properties on the nanoscale. 

2.3 Indentation of piezoelectric materials 

Indentation techniques originating from hardness measurement have been widely 

used for measurement of mechanical properties such as elastic modulus, contact stiffness, 
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fracture, creep parameters, and interface strength of elastic and elastic-plastic materials. 

New applications of indentation techniques to non-traditional materials with 

non-mechanical features such as piezoelectric solids with electromechanical coupling 

have inspired much exploration recently. The use of indentation techniques to 

characterize piezoelectric materials has been a subject of interest to engineers and 

scientists since the end of the 20
th

 century. Instrumented indentation techniques are 

believed to be capable of probing mechanical as well as electrical properties of 

piezoelectric materials. 

Nanoindentation is well known for the measurement of the mechanical properties of 

materials and thin films. The indentation behavior (force/penetration curve, for example) 

is related to the material’s mechanical properties, which has motivated an increasing 

number of studies. The successful application of instrumented indentation techniques for 

characterizing piezoelectric materials depends on the availability of the relationship 

between indentation responses and material parameters from closed-form solutions and 

semi-empirical models. The use of indentation techniques has attracted significant 

attention in the field of characterizing the contact behavior of piezoelectric materials, 

because indentation can provide the basic foundation for understanding contact 

mechanics.  

A number of researchers have contributed to the theoretical studies of the contact 

mechanics of piezoelectric materials within the realm of linear piezoelectricity. Generally, 

quasi-static normal indentation of homogeneous, transversely isotropic, linear elastic, 

piezoelectric materials was considered [1]. The complex anisotropy makes it hard to 

obtain analytical solutions for 3D contact problems of piezoelectric materials. 

Closed-form solutions have been available only for transversely isotropic piezoelectric 

materials due to the simplicity of transverse isotropy (i.e., the feature of axisymmetry 

about the poled direction). Although it is believed that the results for PZT-4 are 

representatives for other piezoelectric materials, the solutions in references [25,26,61,62] 
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are not applicable for the piezoelectric materials with repeated characteristic roots. 

Analytical work could be divided into two categories (i.e., half-space case and thin film 

case), because closed-form solutions for indentation problems can only be obtained for 

two limiting cases, half space and thin films [62]. Numerical calculations are 

indispensable for probing indentation of a piezoelectric film of a finite thickness 

[25,26,62]. 

2.3.1 Indentation of a piezoelectric half space 

Indentation of piezoelectric materials is more complicated than their counterpart of 

elastic materials due to the directional dependence and mechanical-electrical coupling.    

2.3.1.1 Axisymmetric problems 

In general, a cylindrical polar coordinate system (r,θ,z) is introduced for the 

axisymmetric problem, in which the axis of indenter is the axis of revolution (i.e., z-axis), 

and the transversely isotropic piezoelectric material is isotropic in the (r-θ) plane 

[2,12,62]. The contact is axisymmetric, nonconforming, monotonically advancing with 

load, and adhesionless [1]. Rigid indenters with three types of axisymmetric shapes (e.g., 

flat-ended cylinder, cone, and sphere) have been considered and modeled either as perfect 

conductor or perfect insulator [1,12,62]. For a conducting indenter, a prescribed electric 

potential is applied on the indenter [3,12,62]. The contact interaction between indenter 

and indented surface is frictionless [62].  

Matysiak [ 63 ] analyzed the axisymmetric contact deformation of a linear 

piezoelectric half-space by a rigid and perfectly conducting flat-ended indenter using the 

Hankel transform and derived the relation between contact load and contact area. 

Wang and Zheng [64] obtained general solutions for 3D problems in transversely 

isotropic piezoelectric media by introducing a set of potential functions and gave the 

expressions of stresses and electric displacements for the case under an in-plane 

concentrated load.  
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Ding et al. [65] were concerned with dynamic equations with inertia terms and 

obtained three general solutions for the boundary-value problem with normal stress and 

electric displacement on the top surface.  

Ding et al. [39] investigated a series of 3D contact problems including spherical 

indenter, a conical indenter and an upright circular flat punch by extending the 

Boussinesq and Cerruti solutions for point force and point charge acting on the surface of 

a transversely isotropic piezoelectric half-space. They obtained the equations for 

determining the size of the contact region, normal pressure and normal electric 

displacement inside the contact region and numerically compared their results with those 

for the corresponding transversely isotropic materials having the same elastic constants.   

Saigal et al. [ 66 ] investigated the electrical response of a piezoelectric 

ceramic-polymer 1-3 composite during indentation with a constant cross head velocity 

and a conductive spherical indenter of zero potential bias. The surface of the specimen 

opposite to that being indented was coated with silver, and the lower cross head on which 

the specimen was placed and the indenter were both electrically grounded in order to 

enforce the zero electrical potential far away from the indenter. They found that the 

induced current increased with the increase in the indentation load, contact area, 

indentation velocity, and indenter diameter.  

Chen and Ding [61] derived exact solutions for the problem of a rigid sphere, which 

was conductive and electrically grounded, indenting a transversely isotropic piezoelectric 

half space by introducing a new potential to take account of piezoelectric effect. 

Elastoelectric fields were expressed in terms of elementary functions by comparing 

solutions with pure elasticity. They found the normal stress and electric displacement on 

the indented surface exhibited singularity at the contact perimeter solely caused by the 

electric potential imposed over the contact region.  

Giannakopoulos and Suresh [12] presented a general theory of a normal, 
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axisymmetric indentation of transversely isotropic piezoelectric materials under different 

geometries of indenters (i.e., spherical, conical, and flat-ended cylindrical indenters), and 

small strain, small electric displacement, and frictionless contact conditions. The rigid 

indenter was assumed to be either perfectly electric conducting or insulating. The Hankel 

integral transformations were employed to transform the partial differential equations to a 

homogeneous system of ordinary differential equations. They derived explicit 

expressions for contact pressure, electric charge, normal displacement at the contact 

perimeter, indentation load and induced charge, and found solutions for piezoelectric 

materials having the same functional forms as those for uncoupled mechanical ones. 

Their results indicated that a zero net charge under the conducting indenter could be 

achieved under certain combinations of the indentation load and electric potential applied 

on the indenter. They checked their analytical solutions by recourse to an axisymmetric 

finite element model, and found piezoelectric coupling could either stiffen or soften the 

contact response of piezoelectric materials depending on the material constants. Although 

good agreement between theoretical predictions and numerical calculations was declared, 

the zero electric potential applied on the rotational axis is incorrect. 

Ramamurty et al. [6] investigated the indentation responses of lead zirconate titanate 

and barium titanate piezoceramics by a spherical indenter, and obtained force versus (vs.) 

penetration depth curves revealing the dependence of the indentation stiffness on the 

material condition (poled or unpoled) and the type of indenter (electrical conductor or 

insulator). Three types of spherical indentation experiments (i.e., unpoled material, poled 

material with a conducting indenter and poled material with an insulating indenter) were 

performed using the displacement control, with a prescribed displacement rate of 2 

mm/min. Their experimental results under the condition of zero electric potential far 

away from the indenter were in good agreement with analytical predictions. They found 

that the instrumental spherical indentation of piezoelectric materials was a good method 

for extracting piezoelectric properties and the load-displacement relations were 
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functionally the same as that of the uncoupled mechanical case. The error analysis 

showed that the dielectric constants had almost no effect on the indentation stiffness. The 

parametric analysis showed that both piezoelectric anisotropy and elastic anisotropy had 

effects on the indentation stiffness, and the indentation stiffness had to be evaluated on a 

case by case basis. 

Sridhar et al. [67] proposed a method for characterizing piezoelectric materials by 

means of mechanical indentation with a conductive spherical indenter and a constant 

indentation velocity. They found analytical model could predict experimental behavior of 

the axisymmetric indentation of linear piezoelectric solids. In their experiment, the cross 

head on which the specimen was placed and the indenter were both electrically grounded. 

The surface, which was opposite to the surface being indented, was coated with silver to 

achieve zero electrical potential condition far away from the indenter. The quasi-static 

current, which was induced into the punch, was measured by a Keithley-614 electrometer 

connecting the indenter and the ground. The sign of the induced current for the case of 

the indentation loading direction being along the poling direction was found to be 

opposite to that of the indentation loading direction against the poling direction, and the 

indentation on an unpoled sample resulted in no current. Material constants depending on 

elastic, dielectric, and piezoelectric constants in a complicated way, were extracted from 

the measured current vs. time curves. 

Giannakopoulos [1] theoretically and computationally dealt with the axisymmetric 

indentation of a transversely isotropic piezoelectric half space by a rigid spherical 

indenter. It is noted the definition of the characteristic equation is different from that in 

reference [12]. Four piezoelectric materials (i.e., PZT-4, PZT-5A, BaTiO3, and 95% 

BaTiO3-5%CaTiO3) were analyzed. Finite element results indicated the conducting type 

of indenter together with the material state (i.e., poled or unpoled) influenced the stress 

and electric flux distributions. It was found: (1) the maximum tensile stress occurred 

deeper for the conducting indenter than for the insulating indenter; (2) the maximum 
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magnitude of electric flux occurred at the contact perimeter for the insulating indenter 

while at the center of the contact area for the conducting indenter; (3) the maximum 

magnitude of electric flux was higher for the conducting indenter. However, the electrical 

boundary conditions used were incorrect, because of the zero electrical potential applied 

on the axisymmetric axis. 

Sridhar et al. [68] carried out conical indentation experiments of transversely 

isotropic piezoelectric materials PZT-4 and BaTiO3 of the poling axis being along the 

indentation loading direction. In the indenter-velocity controlled experiment, the 

displacement, indentation force, and quasistatic current were monitored, and the lower 

cross head, on which the specimen was placed, and the conducting indenter were both 

electrically grounded. The studies showed that the tip of the indenter behaved as a small 

sphere during the onset of penetration, and inelastic deformation took place after a certain 

load, and linear theory was not applicable. They concluded that piezoelectric materials 

could be characterized by sharp indenters before the occurrence of plastic deformation. 

Kalinin et al. [4] derived electroelastic fields for piezoelectric indentation under a 

conducting spherical indenter of a prescribed electric potential by using the 

elastic-piezoelectric correspondence principle and presenting the problem as a 

superposition of two subproblems (i.e., either one with purely mechanical or electrical 

boundary conditions). Their results were found to be in agreement with those in reference 

[61], but numerically different from the ones in reference [12]. Indentation elastic 

stiffness, indentation dielectric constant, and indentation piezocoefficient were defined 

for piezoelectric materials, because of the linear superposition of solutions for two 

sub-problems with individual mechanical or electrical contribution, and thus force- and 

bias-induced phenomena were distinguished. Effects of material constants on the 

coupling coefficients were investigated and it was found that sensitivity of piezoresponse 

was dominated by two elastic stiffnesses c33 and c44, two piezoelectric constants e33 and 

e15, and two dielectric constants ∈11 and ∈33. 
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Xiong et al. [40] obtained the electro-elastic field around the contact region in a 

transversely isotropic piezoelectric half-space caused by a circular flat bonded punch 

under torsion loading by using the general solution of piezoelectric media and the 

extended-Cerruti solution. Singularity of normal stress and electric displacement was 

found on the contact edge, and shear stress and electric displacement were approaching 

zero at the depth of the punch diameter in PZT-4. 

Li and Wang [69] investigated the problem of a smooth rigid punch with arbitrary 

end shape bonded to an anisotropic piezoelectric half-space by the Fourier transform 

method. The contact pressure, electric displacement, and electric potential were given 

numerically for an example of flat-ended punch. 

Huang et al. [70] analyzed the contact problem of transversely isotropic piezoelectric 

materials by the potential theory. The solution of the elasto-electric field was obtained by 

assuming that the electric potential was known under the punch. The punch was assumed 

to be electrically conductive and connected to a circuit or the bottom surface of the punch 

was covered with an electrode. 

Makagon et al. [71] analyzed the indentation of spherical and conical indenters onto 

a piezoelectric half-space accompanied by frictional sliding. It was found that the contact 

area depended noticeably on the tangential effect which is in the form of Coulomb’s 

friction. The solution showed that the tangential displacement and the shear stress 

reached the maximum magnitude directly under the indenter. The stress distribution in the 

contact zone was asymmetric due to frictional lateral motion, which was different from 

the axial symmetric distribution for the normal, frictionless indentation problem alone. 

Kalinin et al. [72] analyzed the problem of coupled electromechanical indentation of 

a transversely isotropic piezoelectric half-space and derived the relationship between the 

direct and converse piezoelectric effects based on their previous work [4]. The indenter 

was perfectly conductive with negligible electrostatic field outside the contact area. 
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Yang [3] revisited the axisymmetric indentation of a transversely isotropic 

piezoelectric half space by a rigid, conducting indenter of an arbitrary-axisymmetric 

profile, and derived four different general solutions using the Hanker transform and 

Yang’s results [73]. He defined the contact stiffness, effective piezoelectric constant in 

indentation and found that for conducting axisymmetric indenters of zero electric 

potential, the effective piezoelectric coefficient and the ratio of contact stiffness to the 

square root of contact area are independent of indentation deformation (i.e., the surface 

profile of indenter), and only dependent on material properties. Effect of electric field and 

electrical displacement intensity factor were discussed. It was found a contact zone was 

possible even for zero indentation displacement under a certain electric potential. 

Yang [44] summarized the contact mechanics of semi-infinite transversely isotropic 

piezoelectric materials using the indentation technique. There are three kinds of 

techniques involved in indentation testing of piezoelectric materials, including charge 

integration technique, electric current technique, and electrical modulation technique. It 

was concluded that local piezoelectric response of piezoelectric materials could be 

examined by the electrical-controlled indentation technique, and 3D numerical simulation 

was necessary due to the complexity of the directional dependence and 

mechanical-electrical coupling. 

Karapetian et al. [74] derived the stiffness relations for the indentation of a 

transversely isotropic piezoelectric material by indenters of arbitrary geometries. 

Relations between the indentation depth, indentation force, electric potential, and electric 

charge were explicitly solved in terms of the geometry of indenter and material 

properties.   

Kamble et al. [2] performed spherical indentation experiments on a lead zirconate 

titanate polycrystalline piezoceramic (PZT-4) as well as a complementary axisymmetric 

finite element simulation to capture distributions of the stress and the electric field under 

the condition of alignment between the loading axis and the direction of polarization. 
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Both poled and unpoled samples were tested, and both conducting and insulating 

indenters were employed. The indentation size effect was observed. To enforce zero 

electric potential far away from the indenter, the back surface (i.e., the side opposite to 

that being indented) as well as the side surface of the specimen were coated with gold, 

and the lower cross head on which the specimen was placed and the upper cross head to 

which the indenter was attached, were both electrically grounded. Experimental results 

from the displacement-controlled mode demonstrated that the indentation stiffness and 

strength depended on the combination of material conditions and electrical boundary 

conditions as well as the indenter size. Simulation results showed that the difference of 

the maximum tensile stress and the resultant electric potential fields between unpoled and 

poled samples. The fractography revealed different fracture behaviors between unpoled 

and poled samples. In their simulation, zero potential was applied on the symmetric axis, 

which is incorrect. 

Liu and Yang [75] performed an axisymmetric finite element analysis of spherical 

indentation of a transversely isotropic piezoelectric half space with the poling direction 

being against the indentation loading direction. They considered four electrical boundary 

conditions (i.e., insulating indenter, conducting indenter without a prescribed electric 

potential, electrically grounded conducting indenter, and electrically grounded top surface 

of the indented sample) and corrected the mistakes in the finite element models in 

[1,2,12]. 

2.3.1.2 Two-dimensional problems 

Yang [23] obtained closed-form solutions for two-dimensional electroelastic contact 

problem of a semi-infinite transversely isotropic piezoelectric medium attached with a 

complaint electrode subjected to uniform displacement and electrical potential, and found 

four possible different solutions depending on material properties by using Fourier 

transform and dual integral equations. His numerical results, under the requirement of 

total electric charge within the contact zone being zero, illustrated distributions of stress, 
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displacement, electric potential, electric displacement underneath the electrode, and 

indicated the location of the strongest electromechanical interaction was at the depth 

approximately equal to the contact radius. 

Kirilyuk and Levehuk [76] investigated the contact problems of a transversely 

isotropic piezoelectric half-plane with free surface perpendicular to the polarization axis 

for different types of wedge-shaped indenters (flat-ended indenter with rounded one or 

two edges, half-parabolic indenter, etc.). They compared the indentation response 

(contact area and contact pressure) of three different materials: purely elastic material, 

electroded and unelectroded piezoelectric materials. 

Wang et al. [43] studied a two-dimensional contact problem of transversely isotropic 

piezoelectric materials by a single flat-ended punch or two collinear punches. They 

suggested that the total charge accumulated on the punch surface was zero for the 

conducting indenter, which is debatable. Both infinite thickness and finite thickness were 

considered. The results showed the singularity at the punch tip.  

Ke et al. [77,78,79] investigated a two-dimensional frictionless or sliding frictional 

contact problem for a layered half-plane made from functionally graded piezoelectric 

material whose properties were thickness-dependent. The punch was assumed to be a 

perfectly rigid electrical insulator with zero electric charge distribution. Different shapes 

of indenters including flat, triangular, and cylindrical were considered. The friction within 

the contact region was of the Coulomb type for the case of sliding frictional contact. The 

contact pressure, contact traction, contact region, maximum indentation depth, normal 

stress, electric potential, electric displacement and electromechanical fields were 

determined numerically by using the Fourier transform technique. The singularity 

behavior at the contact edge for the flat-ended punch was found. Numerical results 

showed that the contact behavior was noticeably affected by material properties, friction 

coefficient, and punch geometry. For suppressing the surface contact damage, it was 
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suggested that the width of the flat punch should be increased, and the slope of the 

triangular punch should be reduced.  

Guo and Jin [80] investigated the two dimensional contact mechanics between a 

transversely isotropic piezoelectric half space and a rigid conducting cylinder punch with 

adhesive effect, which included tangential and normal tractions caused by micro-scale 

contact. In their analysis, the poling direction was perpendicular to indented surface. The 

assumptions were that the contact region was perfectly bonded without slippage, the 

contact region was much smaller than the radius of the cylinder, and external force 

resulted in no bending moment. The punch was subjected to combined mechanical force 

with inclined angle and electrical loading. They obtained explicit solutions of the stress 

and electric displacement distributions. The numerical results showed that the electric 

charge might strengthen or weaken the adhesion depending on the piezoelectric material. 

2.3.1.3 Three-dimensional problems 

Some progress in the quantitative understanding of the effect of varying poling 

direction with respect to the indentation direction on the indentation response of 

piezoelectric materials has been achieved recently. In addition, for non-axisymmetric 

indenters like Berkovich indenter, the indentation problem is intrinsic 3D even the poling 

direction is of align with indentation loading direction.   

Wong and Zeng [81] investigated the deformation behavior of [001]
T
- and [011]

T
-cut 

single crystal solid solution of Pb(Zn1/3Nb2/3)O3–6% PbTiO3 (PZN–6%PT) in both poled 

and unpoled states by nanoindentation with a standard Berkovich tip of radius 50 nm. 

The dependence of contact stiffness, elastic modulus and hardness on crystal orientation 

was found; poling was found to enhance the mechanical property (hardness and modulus) 

of the crystal compared with the unpoled state; and the strength of the poling field, 

polarity of the poled surfaces and the variation in poling fields were found to have no 

influence on the mechanical behavior of the crystals. The pop-in event in the 



22 

 

load-displacement curve revealed the pile-up and local damage around the indentation 

impressions at ultra-low loads. Plastic deformation was initiated prior to the occurrence 

of the pop-in. The relationships between the indentation load, displacement and harmonic 

contact stiffness were studied, and a surface layer of approximately 300 nm thickness 

with different mechanical properties from the interior, which was possibly due to crystal 

fabrication processes, was found.  

Zhao [82] used an axisymmetric finite element model to study indentation responses 

of Lead Zirconate Titanate-5H (PZT-5H) for three different cases including uncoupled 

mechanical case (i.e., only a transversely isotropic material), poled sample with 

conducting or insulating indenter cases. A 3D model was built to investigate the effect of 

poling direction. However, only one case of the indentation loading along non-poling 

direction was studied with no detailed information. He investigated the effect of elastic 

modulus in the poling direction on the indentation load-displacement curve. His results 

for a flat-ended cylindrical indenter showed: (1) the distributions of von-Mises stress 

were almost the same for the three cases, while the magnitude of stress concentration was 

influenced by the polarization and electrical boundary conditions; (2) electric potential 

distribution was greatly influenced by electrical condition of indenter; (3) poled samples 

were more easily damaged than uncoupled ones due to the higher von-Mises stress 

concentration for the poled sample, and the indentation load was highest for the poled 

sample/insulating indenter case, and lowest for the uncoupled one under the same 

indentation displacement; (4) a linear relationship existed between the elastic modulus (or 

the piezoelectric coefficient d33) in the poling direction and the ratio of load to 

displacement (or charge to force). 

Cheng and Venkatesh [83] established a 3D finite element model to investigate the 

indentation responses of anisotropic piezoelectric materials of four different crystal 

symmetries. They considered three different indenters (i.e., spherical, conical, and 

flat-ended cylindrical indenters), two different electrical boundary conditions (i.e., 
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insulating indenter and conducting indenter of zero electric potential), and different 

material orientations (i.e., poling direction against the indentation loading direction, 

poling direction perpendicular to the indentation loading direction). Significant effects of 

different material properties on stress and electric flux fields were found. Their results 

revealed the difference of the indentation responses under different material orientations 

and mechanical and electrical boundary conditions.  

2.3.2 Indentation of piezoelectric thin films 

Piezoelectric materials of low dimensions, such as nanowires [84,85,86], nanobelts 

[87,88], thin films [89,90,91], and nanotube arrays [92], have been widely used in various 

engineering applications such as sensors [93] and actuators [36] in smart structures and 

systems, and have the potential in the applications of energy scavenging [84,94,95], 

transportation [96], and aerospace [97,98].  

Most theoretical studies on the indentation of piezoelectric materials focused on the 

half-space case, since the indentation responses of film/substrate systems are more 

complicated. Closed-form solutions for indentation of thin films of a finite thickness 

cannot be obtained and can only be studied numerically. There are only a few studies on 

the contact mechanics of piezoelectric thin films in contact with a substrate. A rigid 

substrate was considered by Wang et al. [62], and elastic substrate was considered by 

Wang and Cheng [25], and Wu et al. [26]. A perfectly bonding interface between film and 

substrate is usually assumed. 

2.3.2.1 Indentation of piezoelectric films on a rigid substrate 

Koval et al. [99] investigated the electromechanical response of piezoelectric 

materials under nanoindentation. The materials used were pure lead tetragonal structured 

zirconate titanate (PZT) and Mn-doped PZT, which were films of different thicknesses. 

The indentation force was 500 mN, and was applied parallel to the poling direction. The 

conductive indenter was a spherical WC-Co cement with 500 µm nominal radius. The 
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electrodes and the nanoindentation measuring system were electrically grounded. The 

stress-induced quasi-static electrical current generated due to the direct piezoelectric 

effect was measured with an electrometer during the loading/unloading cycle. The 

piezoelectric coefficient could be obtained from the slope of charge vs. load curves. Their 

results demonstrated the film thickness dependency of the electric current, and the 

significant effect of nanoindentation on the domain rearrangement of the local 

polarization state of the films. It showed that the sign of the electrical current would 

change upon unloading, and the effective piezoelectric coefficient was dependent on the 

force. 

Wang et al. [42] investigated the contact problem of a piezoelectric layer with a rigid 

conducting or insulating circular indenter on its surface. They obtained the displacement, 

stress, electric displacement and electric potential distribution, and the dependence of the 

indentation load and electric charge on the indentation depth of the indenter for both half 

space and finite thickness. Their results showed negligible effect of the permittivity of the 

air, and singularity in the mechanical and electric fields. For the piezoelectric medium of 

a finite thickness, the normal displacement, friction and electric potential were all zero on 

the bottom surface. 

Wang et al. [62] obtained closed-form solutions for the axisymmetric indentation 

problem of a transversely isotropic piezoelectric half space by flat-ended cylindrical, 

conical and spherical indenters using the Hankel integral transformation. Both insulating 

and conducting indenters were considered. They found their results were consistent with 

those by Chen and Ding [61] and Kalinin et al. [4], but numerically different from those 

given by Giannakopoulos and Suresh [12]. They also obtained closed-from solutions for 

indentation of an infinitely thin film made of a transversely isotropic piezoelectric 

material ideally bonded to a rigid and conducting substrate of zero electric potential, 

using the Taylor series expansion method and the extended Johnson’s assumption (i.e., 

the radial displacement is zero). They found solutions for transversely isotropic 
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piezoelectric films reduced to those of elastic transversely isotropic thin films [100] by 

setting piezoelectric coefficients to be zero. Numerical analysis was conducted for a 

piezoelectric film of a finite thickness by utilizing the Abel inverse transformation 

method to investigate the effect of film thickness. It was found the ratio of contact radius 

to film thickness played an important role in gauging the transition between the two 

asymptotes (i.e. half space and infinitely thin film), while the ratio of the indentation 

depth to the film thickness had no effect on the normalized indentation response. Their 

results obtained under a constant ratio (i.e., 0.1) of the indentation depth to the film 

thickness implied that different materials, electrical boundary conditions, semi-apex angle 

of conical indenter, and radius of spherical indenter had little effect on the normalized 

indentation responses. They proposed two two-parameters, semi-empirical models 

accounting for the effect of the film thickness: the first one for the normalized responses 

of indentation force and electric charge; the second one for electric potential and contact 

radius. It was found that the first model was insensitive to different piezoelectric 

materials, while the second model was material-dependent, which implies ambiguity of 

the semi-empirical models.  

2.3.2.2 Indentation of piezoelectric films on elastic substrate 

Recently, a systematic research on the effects of elastic substrate on the indentation 

responses of piezoelectric films has been carried out. 

Wang and Chen [25] investigated the influences of elastic substrate and thickness of 

films on the axisymmetric indentation of piezoelectric films ideally bonded to an 

isotropic elastic half space of zero electric potential using the integral transform method, 

and conducted numerical calculations for various Young’s moduli and Poisson’s ratios of 

the substrate under three axisymmetric indenters (i.e., punch, cone and sphere) and two 

electrical boundary conditions (i.e., insulating and conducting indenters). The prescribed 

electric voltage on the indenter was proportional to the film thickness for the case of a 

conducting indenter. The calculation results under a constant ratio (i.e., 0.1) of the 
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indentation depth to the film thickness implied that whether the indenter was ideally 

insulating or conducting had little effect on the mechanical responses, but had prominent 

effect on the electric responses. For the three types of indenters, normalized results were 

found to be almost the same; the case of a hard film on a soft substrate behaved 

differently from the case of a soft film on a hard substrate; and mechanical responses 

could be expected very well from the half space results under the conditions that Young’s 

modulus and Poisson’s ratio of substrate were close to those in the isotropic plane of the 

transversely isotropic piezoelectric film. Their analytical calculations were validated by 

recourse to an axisymmetric finite element analysis by using ABAQUS FEM package for 

the insulating spherical indenter case. 

Wu et al. [26] studied the indentation problems of a transversely isotropic 

piezoelectric layer on an elastic half space by using the Hankel transform and the Green’s 

functions with the theorem of superposition. Different types of indenters (i.e., flat-ended 

cylindrical, conical and spherical indenters), electrical boundary conditions (i.e., 

insulating and conducting indenters), and film/substrate bonding conditions (i.e., 

frictionless contact and perfectly bonding) were considered. Their results showed that 

increasing substrate modulus increased indentation load, electric charge and contact 

radius under the same indentation displacement; substrate effect could be ignored when 

the ratio of film thickness to contact radius is no less than 10. The contact response for 

the stiffer substrate behaves differently from that for the softer substrate; the effect of 

electric potential applied on the conducting indenter was prominent, and the variations of 

normalized responses, which depended on interface conditions, were similar for all three 

indenter shapes. Although it was found that increasing Poisson’s ratio of substrate 

increased the indentation load and contact radius, the effect of Poisson’s ratio on the 

indentation-induced charge was not illustrated. 

Song et al. [101] performed extensive two-dimensional axisymmetric finite element 

simulations of conical indentation of a transversely isotropic piezoelectric thin films 
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perfectly bonded to an elastic substrate in order to probe effects of elastic and 

piezoelectric coefficients on the indentation responses. They proposed empirical 

equations relating the maximum indentation load and the power exponent of loading 

curve to the elastic and piezoelectric coefficients, based on dimensional analysis and the 

numerical results of the indentation loading at a broad spectrum of possible material 

combinations. Their forward analysis based on numerical simulation was verified by the 

reverse analysis in the nanoindentation tests. Elastic and piezoelectric coefficients of 

piezoelectric thin films were extracted from the indentation experiment with the 

indentation depth of one-fifth of film thickness. 

2.4 Indentation-induced interfacial failure  

Interfacial failure between adjacent layers due to inter-laminar stresses is becoming a 

critical area for predicting the reliability of multilayer thin film structures. Multilayer 

structures (or smart structures) possess a better compromise performance (better 

displacement voltage  sensitivity, for example) for actuators. A singularity of electric 

and stress/strain fields due to the electromechanical interaction between electrode layer 

and piezoelectric layer could introduce mechanical and electric instability and cause 

nucleation and propagation of cracks for relaxing the incompatible strains [23]. 

Interfacial normal stress is believed to control the delamination initiation [102]. To 

improve the reliability of multilayer structures, it is necessary to quantitatively 

understand the fracture process by the contact-induced interfacial decohesion.  

Indentation experiments, analytical analyses and numerical analyses have been used 

to study the interfacial failure between films and substrates in multilayer structures 

[103,104,105,106,107,108,109,110]. However, there are only a few sources like reference 

[ 111 ] addressing the interfacial adhesion analysis of piezoelectric thin films by 

nanoindentation test, which is still at its early stage.  
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2.4.1 Experimental studies on indentation-induced interfacial failure 

Kriese et al. [105] used indentation to cause the delamination of copper and tungsten 

films from silicon wafer by indentation testing and observed: (1) delaminations were 

circular and geometrically similar to craters with an easily identifiable radius; and (2) 

unloading was uniform. Huang et al. [112] conducted Vickers indentation tests on ZnO/Si 

systems, and measured the delamination radius, the radial crack length and the 

delamination profile. They observed: (1) the indentation-induced radial cracks was 

smaller than the delamination size; and (2) film thickness and indentation load had 

prominent effects on the delamination behaviors. Borrero-López et al. [106] studied 

lateral, transverse, radial, and ring cracks in a Ta-C/Si system under different film 

thicknesses and indentation loads by cross-sectional observations and spherical 

nanoindentation. They found: (1) fracture is generic for thin film/substrate brittle 

structures; and (2) lateral cracks, which lead to delamination of thick films and to 

spallation of thin films, occurred during unloading. 

2.4.2 Theoretical studies on indentation-induced interfacial failure 

Using elastic fracture mechanics and the post-buckling behavior of circular plate, 

Evans and Hutchinson [ 113 ] analyzed the indentation-induced delamination of 

pre-compressed coatings, in which they used the energy release rate and the critical stress 

as the buckling condition to describe the incidence of delamination. Following the same 

approach, Marshall and Evans [ 114 ] developed a plate model to analyze the 

indentation-induced delamination of an elastic coating from the substrate by considering 

the effect of indentation stress and lateral residual stress on the equilibrium crack length 

and the onset of the plate buckling.. 

2.4.3 Numerical studies on indentation-induced interfacial failure 

To quantitatively understand the indentation-induced delamination, finite element 

methods have been used to describe the interface delamination. Baqi and Giessen [107] 
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developed a finite element model to simulate the indentation-induced delamination of a 

thin film from a ductile substrate by a spherical indenter, in which a cohesive model was 

used for the interface between the coating and the substrate. Their results showed that the 

interfacial delamination occurred during the unloading stage and initiated at a location 

away from the loading axis. Li and Siegmund [108] studied the indentation-induced 

delamination of a coating system consisting of a ductile film and an elastic substrate. 

They used a cohesive zone model in the simulation and observed the 

delamination-induced buckling of the surface coating. She et al. [109] performed a 

three–dimensional finite element analysis of the interface delamination created by the 

microwedge indentation using a traction-separation law [110] for the cohesion and failure 

behavior of the interface between the film and the substrate. They concluded that a 

sudden drop of the indentation load is always accompanied by the occurrence of the 

interface delamination. Liu and Yang [115] carried out finite element analysis of 

indentation-induced delamination in a film/substrate structure with both film and 

substrate being elasto-perfectly plastic and a simple criterion for interfacial failure (i.e., a 

critical tensile stress).  

2.5 Summary 

Existing literatures about the indentation of piezoelectric materials are mainly 

concerned with transversely isotropic piezoelectric materials with the poling direction 

being either parallel or anti-parallel to the indentation loading direction. It is desirable to 

carry out a systematic research on the indentation of transversely isotropic piezoelectric 

materials with the poling direction being misaligned with the indentation loading 

direction and to explore the effects of material orientations (i.e., the angle between the 

polarization direction and the indentation loading direction) on the indentation responses 

of piezoelectric materials. A pre-determined electric potential is usually prescribed on the 

conducting indenter [62]; few works have dealt with the conducting indenter without a 

pre-determined electric potential, for which case the closed-from solution has been 
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unavailable. The knowledge of the electromechanical interaction between the electrode 

layer and the piezoelectric layer is essential to improving the reliability of multilayer 

smart structures. Research on interfaces concerning the integration of dissimilar materials 

in piezoelectric multilayer structures will impact a variety of structural applications. The 

finite element simulation of the contact deformation of piezoelectric material is 

indispensable for the three dimensional analysis due to anisotropy and nonlinearity from 

both material and geometry.  

 

 

Copyright © Ming Liu 2012 
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Chapter - 3 Boussinesq indentation of a piezoelectric half space 

3.1 Introduction 

With the extensive applications of piezoelectric materials used as sensors, actuators, 

transducers in aerospace, bioengineering, automobile, flexible structures and smart 

systems of small volume, there is a great need to understand the electromechanical 

behavior of piezoelectric materials for quality control and performance prediction in 

recent years. Various techniques have been developed to characterize mechanical 

properties (e.g., elastic modulus, yield stress, and hardness) of materials, which include 

indentation technique [6,44,56,63,70,116,117,118,119], piezoresponse force microscopy 

[4,44,120,121], and atomic force microscopy [98,120,122]. In the heart of the contact 

technique is the relationship between the indentation load and the indentation depth, 

which depends on the properties of materials.  

Matysiak [22] was the first to analyze the axisymmetric contact of a transversely 

isotropic piezoelectric half-space. Giannakopoulos and Suresh [12] used Matysiak’s 

approach [22] to present a general solution for the axisymmetric indentation of a 

piezoelectric half-space. Using the potential theory, Ding et al. [39] obtained analytical 

solutions of the stress and electric fields for the indentation of a transversely isotropic 

piezoelectric half-space by axisymmetric indenters. Yang [23] studied the 

electromechanical coupling between a compliant surface electrode and a transversely 

isotropic piezoelectric half-space. Yang [3] obtained the contact stiffness, effective 

piezoelectric constant and electric displacement intensity factor for the axisymmetric 

indentation of a semi-infinite piezoelectric material by a rigid, conducting indenter of an 

arbitrary-axisymmetric profile. Wang and Chen [25] considered the indentation of a 

piezoelectric film bonded to an elastic substrate by an axisymmetric indenter and reduced 

the indentation problem to the solution of a dual integral equation. Wu et al. [26] reduced 

the solution for the indentation of a piezoelectric film on an elastic film to a Fredholm 

integral equation of the second kind and solved the problems numerically.  
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Due to the complexity of electromechanical interaction, finite element methods have 

been used to analyze the contact deformation of piezoelectric materials. Wang and Han 

[42] analyzed the indentation of a piezoelectric layer by a flat-ended cylindrical indenter 

and numerically simulated the deformation of the piezoelectric layer being indented. 

Giannakopoulos [1] misused zero electric potential on the axisymmetric axis in the finite 

element analysis of the spherical indentation of piezoelectric materials. Kamble et al. [2] 

applied the same condition used by Giannakopoulos [1] in the finite element analysis of 

the spherical indentation of polycrystalline PZT-4. Liu and Yang [75] used the FEM to 

examine the effect of surface electric conditions on the spherical indentation of 

transversely isotropic piezoelectric materials without applying electric condition to the 

axisymmetric axis. Using axisymmetric and 3-D finite element simulations, Zhao [82] 

recently studied the effect of poling direction and indenter size on the indentation of 

PZT-5H by a flat-ended cylindrical indenter in which only one case with the indentation 

direction being un-parallel to the poling direction was shown. No detailed study was 

given to the effect of crystal orientation. 

Piezoelectric interaction depends on crystal orientation, and the effect of material 

anisotropy on indentation response requires detailed study. When the direction of 

indentation loading is not aligned with the poling direction, axisymmetric analysis cannot 

suffice. Asymmetric analysis is needed to understand the effect of material anisotropy 

including stiffness and piezoelectric responses associated with crystal orientation. 

Three-dimensional finite element analysis has been widely used for investigating 

anisotropic structures [83,123,124] in which analytical solutions are deficient. In this 

work, three-dimensional finite element analysis of the Boussinesq indentation of 

transversely isotropic piezoelectric materials is performed. The study is aimed at 

analyzing the effect of material anisotropy on the relationship between indentation load 

and indentation depth and that between indentation-induced potential and indentation 

depth.  
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3.2 Problem formulation 

Consider a rigid, cylindrical indenter of flat end that is normally pressed into a linear 

piezoelectric half-space (z>0). The loading direction is parallel to the surface normal of 

the piezoelectric material; let the angle between the loading direction and the poling 

direction (axisymmetric axis) be θ.  

The mechanical boundary conditions for the indentation are: 

( ,0) 0rz r   (3.1) 

( ,0) 0 for zz r r a    (3.2) 

( ,0)  for zu r r a    (3.3) 

where 
ij  ( ,  ,  ,  )i j r z   are the components of the stress tensor, iu  are the 

components of the displacement vector, δ is the indentation depth, and a is the contact 

radius, which is the same as the radius of the indenter. Equation (3.1) represents 

frictionless contact between the indenter and the piezoelectric material, and Equation (3.2) 

indicates stress-free condition outside the contact zone. The indentation load, F, can be 

calculated from the force balance on the indenter as 

2

0 0
( ,0)

a

zzF r rdrd


             (3.4) 

where θ is the azimuth angle between a reference line and the r-axis.  

The conditions at infinity require 

2 2( , ) ( , ) 0 and ( , ) 0 for r zu r z u r z r z r z               (3.5) 

in which ( , )r z  is electrical potential. 

Two types of indenters are used in the analysis: one is a perfectly electrical insulating 

indenter; the other is a perfectly conducting indenter, as follows. 

Case I. Insulating indenter 

The electric boundary condition on the surface of the piezoelectric material for the 
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indentation by an insulating indenter is 

( ,0) 0 for 0zD r r                         (3.6) 

where zD  is the normal component of the electric displacement vector. 

Case II. Conducting indenter 

According to the direct piezoelectric effect, the indentation deformation will create 

an electric field in the piezoelectric material and a uniform electric potential over the 

contact zone by a conducting indenter [23]. The electric potential is dependent on the 

indentation depth to be determined from solving the indentation deformation. The electric 

boundary conditions on the surface of the piezoelectric material are 

( ,0) 0 for zD r r a                         (3.7) 

( ,0)  for cr r a                           (3.8) 

with c  being the indentation-induced electric potential on the indenter, which is to be 

determined from solving the contact deformation. 

3.3 Finite element modeling 

In the simulation, transversely isotropic piezoelectric materials are used since most 

polycrystalline and poled piezoelectric materials conform to this symmetry group [6]. 

Table 3.1 lists the material properties used in the simulation, which are referenced to the 

intrinsic material coordinate with the poling direction the same as the axisymmetric axis 

of the materials.  

The indenter is modeled as a rigid surface, and the contact between the indenter and 

the piezoelectric material is assumed as frictionless. The bottom surface of the 

piezoelectric material is fixed and electrically grounded. Displacement-controlled 

indentation is used in the simulation. The indenter is gradually pushed onto the surface of 

the piezoelectric material to a preset depth, and then it is withdrawn until the load on the 

indenter becomes zero 
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The analysis of the indentation deformation uses the large elastic-plastic feature of 

the ABAQUS finite element code. The contact radius, a, between the indenter and the 

piezoelectric material is 100 nm. The piezoelectric material is modeled as a cylinder with 

1000 nm in height and 1000 nm in radius, which is 10 times the contact radius. Under 

such a geometrical condition, the piezoelectric material can be approximately treated as 

semi-infinite. To avoid possible convergence problems arising from the sharp edge of the 

indenter, a rigid punch with a flat end but a round edge of 0.2 nm in radius is used, whose 

effect is negligible because of the ratio of the radius of the rounded edge to the diameter 

of the indenter being less than 1% [125,126]. The finite element mesh, shown in Figure 

3.1, consists of 36297 8-node linear piezoelectric bricks with mesh refinement around the 

contact zone.  

3.4 Results and discussion 

3.4.1 Load-displacement relationship 

From the indentation load-displacement curves, one can determine the contact 

stiffness and the contact modulus, which depend on the material properties. Figure 3.2 

shows the variation of the indentation load with the indentation depth for the indentation 

of PZT-4 with various angles between the loading direction and the axisymmetric axis 

(the poling direction).  The indentation load increases linearly with increasing the 

indentation depth, independent of the angle θ, while the ratio of F/δ depends on the angle 

θ and the type of indenters. It is interesting to note that the ratio of the indentation load to 

the indentation depth, F/δ, for θ=0º is independent of the type of indenters, i.e. the 

indentation by a conducting indenter (case II) or by an insulating indenter (case I) 

produces the same indentation load-displacement curves when the loading direction is 

parallel to the axisymmetric axis. 

Wang et al. [24] had summarized the relationship between the indentation load and 

the indentation depth for the axisymmetric indentation of transversely isotropic 

piezoelectric semi-infinite materials by an insulating indenter of flat end, which 

corresponds to the condition of θ=0˚. The dependence of the indentation load on the 
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indentation displacement can be expressed as [12,24] 

6 7 5 8

1 8 2 7

4
M M M M

F a
M M M M


 


                       (3.9) 

where iM  (i=1, 2, …, 8) are dependent on the material properties of the piezoelectric 

material [12,24]. Using the data in Table 3.1, one can obtain the dependence of the 

indentation load on the indentation depth as 
1022.864 10F a    in which the units of a 

and δ are millimeters and the unit of F is Newton. For the same indentation depth, the 

percent difference of the indentation load between the results calculated from the finite 

element analysis and the analytical results is ~7%, suggesting that the finite element mesh 

is good enough for the 3D analysis of the Boussinesq indentation of a transversely 

isotropic piezoelectric material. 

Figure 3.3 shows the variation of the ratio F/δ with the angle   for the indentation 

of PZT-4 by conducting and insulating indenters. Independent of the type of indenters, 

the ratio starts with a maximum value at θ=0º, decreases to the minimum value at   90º, 

and then increases to the maximum value at θ=180º. The indentation response, i.e., the 

ratio of F/δ follows the same behavior for the angle of θ in the range of 180º to 360º. 

Generally, the ratio for the indentation by an insulating indenter is larger than that by a 

conducting indenter.  

The simulation results for the indentation deformation of BaTiO3 is also included in 

Figure 3.3 for the variation of F/δ with θ. Obviously, the dependence of F/δ with θ 

follows a similar trend. Thus, one might suggest that such behavior also applies to other 

transversely isotropic piezoelectric materials, and the relationship between the ratio F/δ 

of and θ (in the unit of degree) can be expressed as  

6 7 5 8

1 8 2 7

4 ( , , , )ij ij ij

M M M MF
a f c e

M M M M


  

 
             (3.10) 

with ( , , , )ij ij ijf c e 
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( , , , ) cos
90

ij ij ijf c e


                      (3.11) 

Here,   is a constant related to the indentation response of the piezoelectric 

material at θ=45˚ and   is a constant dependent on material properties and electric 

boundary conditions.  

From Equation (3.10), the contact stiffness for the indentation of a transversely 

isotropic piezoelectric half-space by a rigid, cylindrical indenter of flat end can be 

calculated as 

6 7 5 8 6 7 5 8

1 8 2 7 1 8 2 7

4 cos 4 cos
90 90

M M M M M M M MdF A
a

d M M M M M M M M

     
      

      
(3.12) 

where A is the contact area. The contact stiffness is proportional to the square root of the 

contact area, and the proportionality is dependent on the piezoelectric properties of 

materials and the electric boundary conditions. Equation (3.12) is the same as that for the 

indentation by a rigid, spherical indenter when θ=0º [12,127].  

3.4.2 Electric potential-displacement relationship 

The variation of the indentation-induced electric potential at the contact center with 

the indentation depth is shown in Figure 3.4 for the indentation of PZT-4 with various 

angles between the loading direction and the axisymmetric axis (the poling direction). 

Note that the electric potential within the contact region for the indentation by the 

conducing indenter is not pre-determined and is the same as the indentation-induced 

potential on the indenter. The indentation-induced potential linearly increases with 

increasing the indentation depth. For the same indentation depth, there is no difference 

between the indentation-induced potential in the contact zone by a rigid, conducting 

indenter and that at the contact center by a rigid, insulating indenter for all the angles 

shown in Figure 3.4.  

Figure 3.5 shows the variation of the ratio  /δ with the angle θ for the indentation 

of PZT-4 by conducting and insulating indenters. Obviously, the indentation-induced 
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potential at the contact center by a rigid, insulating indenter is the same as the 

indentation-induced potential on the conducting indenter. The reason can be explained by 

the closed-form solution of the electric potential that an insulating indenter creates a 

constant electric potential inside the contact area for flat-ended indenter [15,32], which is 

just the same electric potential constraint as that for conducting indenter. For the 

indentation of a transversely isotropic piezoelectric half-space by a rigid, insulating 

indenter, the indentation-induced potential over the contact zone can be expressed as [15, 

32] 

3 8 4 7

1 8 2 7

M M M M

M M M M


  


                       (3.13) 

which is independent of the radial variable and satisfies the condition of Equation (3.8). 

This suggests that the indentation-induced potential by a rigid, cylindrical indenter of flat 

end is insensitive to the type of indenters. Equation (3.13) can be used to describe the 

indentation-induced potential on the conducting indenter of flat end for the axisymmetric 

indentation of a transversely isotropic piezoelectric half-space.  

As shown in Figure 3.5, the ratio  /δ starts with a maximum value at θ=0º, 

decreases to the minimum value at θ=180º, and then increases to the maximum value at 

θ=360º. The simulation results for the indentation deformation of BaTiO3 is also included 

in Figure 3.5 for the variation of  /δ with θ. It can be seen that the variation of  /δ 

with θ follows a similar trend as that for the indentation of PZT-4. Thus, such behavior 

might also apply to other transversely piezoelectric materials. Note that the sign of the 

ratio  /δ changes from a positive value to a negative value when the relative direction 

between the poling direction and the loading direction changes from 0º to 180°; and the 

ratio  /δ is zero at θ=90º and 270º. As expected, the indentation-induced potential with 

the loading direction opposite to the poling direction has the same absolute magnitude as 

that with the loading direction the same as the poling direction. This is because the 

piezoelectric constants reverse their sign while the elastic and dielectric constants remain 



39 

 

unaltered due to polarization switching [2]. Based on the discussion, one can express the 

relationship between the ratio  /δ and θ (in the unit of degree) as  

3 8 4 7

1 8 2 7

cos
180

M M M M

M M M M

 


 
                     (3.14) 

which can be used to quantify the relative direction between the loading axis and the 

poling direction from the indentation test. 

3.5 Conclusion 

Stress and electric field play an important role in controlling the electromechanical 

coupling of piezoelectric materials. A 3D finite element model was built to analyze the 

indentation behavior of a transversely isotropic piezoelectric half-space by a rigid, 

cylindrical indenter of flat end, aiming at examining the effect of the angle between the 

loading direction and the poling direction on the indentation response of piezoelectric 

materials. Two types of indenters were used in the analysis: one was a conducting 

indenter and the other an insulating indenter.  

The finite element results reveal that both the indentation load and the magnitude of 

the indentation-induced potential linearly increase with increasing the indentation depth. 

The proportionality for the linear relationship between the indentation load and the 

indentation depth depends on the angle, type of indenters, and piezoelectric properties of 

materials. In contrast to the load-displacement relationship, the proportionality for the 

linear relationship between the indentation-induced potential and the indentation depth is 

only a function of the angle between the loading direction and the poling direction, 

independent of the type of indenters. Semi-analytical relationships as a function of the 

angle were established between the indentation load and the indentation depth and 

between the indentation-induced potential and the indentation depth. These relationships 

may be used in the indentation technique to measure the relative direction of the loading 

axis to the poling direction (axisymmetric axis) of transversely isotropic piezoelectric 

materials. 
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Table 3.1 Material properties defined in material coordinate 

 PZT-4 [128,129] BaTiO3 [12] 

Elastic coefficients (GPa) 

C11 

C12 

C13 

C33 

C44 

Piezoelectric coefficients (C/m
2
) 

e31 

e33 

e15 

Dielectric constants (10
-9

 F/m) 

ε11 

ε33
 

 

139 

77.8 

74.3 

113 

25.6 

 

-6.98 

13.84 

13.44 

 

6.0 

5.47 

 

166 

76.6 

77.5 

162 

42.9 

 

-4.4 

18.6 

11.6 

 

11.151 

15.567 
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Figure 3.1 Finite element mesh for the indentation of a piezoelectric half-space 
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Figure 3.2 Dependence of the indentation load on the indentation depth for the 

indentation of PZT-4 with various angles between the loading direction and the poling 

direction 
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Figure 3.3 Variation of the ratio of F/δ with the angle   for PZT-4 and BaTiO3 
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Figure 3.4 Dependence of the indentation-induced electric potential at the contact center 

on the indentation depth for the indentation of PZT-4 with various angles between the 

loading direction and the poling direction 
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Figure 3.5 Variation of the ratio of  /δ with the angle   for PZT-4 and BaTiO3 
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Chapter - 4 Berkovich indentation of a piezoelectric half space 

4.1 Introduction 

The sharp-instrumented nanoindentation is an effective technique for characterizing 

the mechanical properties of materials at small scales [6,44,117,118,116,119,130,131], 

including piezoelectric materials. Successful application of the indentation technique 

relies on the understanding of the contact mechanics of solids. Although closed-form 

solutions of the indentation deformation of transversely isotropic piezoelectric materials 

with the indentation direction being parallel to the axisymmetric axis of the materials 

have been well established [3,12,23,25,26,39,63], directional dependence of material 

properties and the coupling between electrical field and mechanical deformation have 

complicated the contact behavior of piezoelectric materials. This makes it very difficult, 

if not impossible, to obtain the closed-form solutions of stress and electric fields for the 

contact deformation of piezoelectric materials when there is an angle between the 

indentation direction and the axisymmetric axis of the materials. The physical meaning of 

the contact modulus calculated from the load-displacement curves also remains elusive 

for anisotropic materials. 

There are only limited analytical solutions available for the contact deformation of 

homogeneous, transversely isotropic piezoelectric materials with the loading direction 

parallel to the axisymmetric axis of materials. Matysiak [63] used integral transformation 

to analyze the axisymmetric contact of a transversely isotropic piezoelectric half-space. 

Giannakopoulos and Suresh [12] followed Matysiak’s approach [63] and summarized the 

load-displacement relationships for the axisymmetric indentation of a transversely 

isotropic piezoelectric half-space by a flat-ended indenter, a spherical indenter, and a 

conical indenter. Using the potential theory, Ding et al. [39] obtained analytical solutions 

of the stress and electric fields for the indentation of a transversely isotropic piezoelectric 

half-space by a spherical indenter, a conical indenter and an upright circular flat indenter. 

Yang [23] analyzed the electromechanical coupling between a compliant surface 
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electrode and a transversely isotropic piezoelectric half-space and discussed the 

field-induced stress singularity. Yang [3] used integral transformation to solve the 

deformation and electric fields in a transversely isotropic piezoelectric half-space by a 

rigid, conducting indenter of arbitrary-axisymmetric profile and obtained the contact 

stiffness, effective piezoelectric constant and electric displacement intensity factor. Wang 

and Chen [25] analyzed the indentation response of a piezoelectric film bonded to an 

elastic substrate by an axisymmetric indenter and reduced the indentation problem to the 

solution of a dual integral equation. Wu et al. [26] reduced the solution for the indentation 

of a piezoelectric film on an elastic film to a Fredholm integral equation of the second 

kind. Wang et al. [24] obtained the asymptotic relationships between the indentation load 

and the indentation depth for the indentation of a transversely isotropic piezoelectric film 

on a rigid substrate with the contact size much larger than the film thickness. Wang and 

Han [42] studied the indentation deformation of a piezoelectric layer by a flat-ended 

cylindrical indenter and numerically simulated the deformation of the piezoelectric layer 

indented. 

FEM is an efficient technique to analyze the deformation behavior of piezoelectric 

materials. Giannakopoulos [1] performed the finite element simulation of the spherical 

indentation of piezoelectric materials while he misused zero electric potential on the 

axisymmetric axis. Kamble et al. [2] applied the same condition used by Giannakopoulos 

[1] in the finite element analysis of the spherical indentation of polycrystalline PZT-4. 

Liu and Yang [75] used the FEM to study the effect of surface electric conditions on the 

spherical indentation of transversely isotropic piezoelectric materials without applying 

electric condition to the axisymmetric axis and discussed the limitation of the indentation 

technique in characterizing the piezoelectric properties of materials. Using axisymmetric 

and 3-D finite element simulations, Zhao [82] recently studied the effect of poling 

direction and indenter size on the indentation of PZT-5H by a flat-ended cylindrical 

indenter in which only one case with the indentation direction being un-parallel to the 
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poling direction was shown. No detailed study was given to the effect of crystal 

orientation. Cheng and Venkatesh [83] numerically examined the effect of the indenter 

surface profile on the indentation response of various piezoelectric materials and the 

effect of the poling direction, which was limited to two directions (the indentation is 

either parallel or perpendicular to the axisymmetric axis.)   

There is little report on the numerical analysis of the Berkovich indentation of 

piezoelectric materials. A better understanding of the pertinent issues on the application 

of the Berkovich indentation in characterizing the piezoelectric properties of materials 

needs to be elaborated before confident adoption. The purpose of this work is to use the 

FEM to analyze the Berkovich indentation of a transversely isotropic piezoelectric 

material in order to provide some insight into the contact deformation of piezoelectric 

materials. The study aimed to analyze the effect of the indentation direction related to the 

axisymmetric axis of the material on the relationship between indentation load and 

indentation depth and that between indentation-induced potential and indentation depth 

for the sharp-instrumented indentation. 

4.2 Problem formulation 

Consider the normal indentation of a linear piezoelectric half-space by a rigid, 

insulating Berkovich indenter. The piezoelectric material considered is transversely 

isotropic and homogeneous, and the angle between the loading axis (indentation direction) 

and the axisymmetric axis of the piezoelectric material is θ. The contact between the 

indenter and the piezoelectric half-space is assumed to follow Coulomb’s friction law.  

For transversely isotropic piezoelectric materials, the constitutive relations are 

E

ij ijkl kl ijk kC e E     (4.1) 

E

i ikl kl ij jD e E    (4.2) 

where 
ij  (i, j = 1, 2, 3) are the components of stress tensor, 

ij  are the components of 
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strain tensor, iD  are the components of electric displacement vector, iE  are the 

components of electric field intensity, 
E

ijklC  are the components of the elastic stiffness 

tensor measured in a constant electric field intensity, 
ijke  are the components of the 

piezoelectric tensor measured in possession of a spontaneous electric field, and 
E

ij  are 

the components of dielectric tensor. The relation between the components of the strain 

tensor 
ij  and the components of displacement vector iu  is 

1

2

ji
ij

j i

uu

x x

 
      

 (4.3) 

and the relation between the components of the electric field intensity iE  and electric 

potential   is 

i

i

E
x


 


 (4.4) 

The equilibrium equations are 

 
3

1

0 1,2,3
ij

j j

i
x


 


  (4.5) 

Without any free electric charge in the piezoelectric material, there is 

31 2

1 2 3

0
DD D

x x x

 
  

  
 (4.6) 

For the indentation problem of the transversely isotropic piezoelectric material (x3 > 

0) by a rigid Berkovich indenter, the mechanical boundary conditions outside the contact 

zone are 

13 1 2 23 1 2( , ,0) ( , ,0) 0x x x x     (4.7) 
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33 1 2( , ,0) 0x x   (4.8) 

Inside the contact zone, there are 

2 2

13 1 2 23 1 2 33 1 2 33 1 2( , ,0) ( , ,0) ( , ,0) for ( , ,0) 0x x x x x x x x     
  

(4.9) 

3 1 2( , ,0)u f x x   (4.10) 

where   is the friction coefficient,   is the indentation depth, and 1 2( , ,0)f x x  is the 

surface profile of the indenter. Equation   (4.9) represents the Coulomb friction between 

the indenter and the piezoelectric material, and Equations (4.7) and (4.8) indicates 

stress-free condition outside the contact zone. The indentation load can be calculated 

from the force balance on the indenter as 

33 1 2( , ,0)
A

F x x dA    (4.11) 

where A is the contact area to be determined. 

During the indentation, the contact area monotonically increases with increasing 

indentation depth. This requires dF/dδ > 0 for δ > 0. 

The conditions at infinity require 

2 2 2

1 1 2 3 2 1 2 3 3 1 2 3 1 2 3( , , ) ( , , ) ( , , ) 0 for u x x x u x x x u x x x x x x     
 
(4.12) 

2 2 2

1 2 3 1 2 3( , , ) 0 for x x x x x x      (4.13) 

For the indentation by an insulating indenter, the electric boundary condition on the 

surface of the piezoelectric materials is 

3 1 2( , ,0) 0D x x   (4.14) 

4.3 Finite element modeling 

3D analysis of the indentation deformation is performed in the ABAQUS finite 

element code of nonlinear deformation feature. A fixed Cartesian coordinate system (x1’, 
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x2’, x3’) is used with the x3’ being parallel to the loading direction, and the other Cartesian 

coordinate system (x1, x2, x3) is used for the piezoelectric material, which can rotate about 

the x1-axis with the x3-axis being the axisymmetric axis of the material. The x1-axis 

coincides with the x1’-axis, and the angle between the x3’-axis and the x3-axis is θ. At θ= 

0º, the coordinate system (x1’, x2’, x3’) coincides with the system (x1, x2, x3). 

The Berkovich pyramid indenter of an ideal shape with a sharp tip and a face angle 

of 65.27º (or inclined angle of 24.73º) is used in the simulation. The reasons for using an 

ideal shape are: (1) the surface images of the impressions are usually triangular in 

appearance rather than circular although there is a blunt tip [132]; (2) the surface profile 

of the blunted tips due to wear is still under debate and effects of tip radii on the 

indentation response of materials remain uncertain due to their complexities and the 

inhomogeneous wear of the tip [133]; (3) the effect of the tip rounding or offset on the 

error of contact area and the measured contact modulus and hardness values becomes 

insignificant with increasing indentation depth [134], and ideal Berkovich indenter 

represents the real indenter very well if the indentation depth reaches 1 µm [135].  

The piezoelectric material is modeled as a cylinder with a radius of 50 µm and a 

thickness of 30 µm. The maximum indentation displacement is 1 µm; under this 

condition the piezoelectric material can be essentially treated as semi-infinite. The bottom 

surface is fixed and electrically grounded to ensure the far field conditions. 

Surface-to-surface “hard” contact is defined between the indenter as the master surface 

and the sample surface as the slave surface. Displacement-controlled indentation is used 

in the simulation. The finite element mesh, shown in Figure 4.1, consists of 179580 

8-node linear piezoelectric bricks with mesh refinement around the contact zone. 

Table 4.1 lists the material properties [136,137] used in the simulation, which are 

referenced to the coordinate system of (x1, x2, x3), in which both elastic constants and 

piezoelectric constants are presented in the matrix form instead of the tensor form. 
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4.4 Results and discussion 

4.4.1 Electric potential-displacement relationship 

To examine the electromechanical interaction during the indentation, the 

indentation-induced potential at the contact center between the indenter and the 

piezoelectric half-space is monitored. Figure 4.2 shows the variation of the 

indentation-induced potential with the indentation depth for various angles between the 

loading direction and the axisymmetric axis (the poling direction) and frictionless contact 

( 0  ). The indentation-induced potential increases with increasing the indentation 

depth for all the angles shown in the figure, while the proportionality between the 

indentation-induced potential and the indentation depth is dependent on the angle 

between the loading direction and the axisymmetric axis (the poling direction).  

Figure 4.3 shows the variation of the ratio  0,0,0 /δ with the angle   for the 

indentation of PZT-4 with frictionless contact. The dependence of the electromechanical 

interaction on the angle   is obvious. The magnitude of the indentation-induced 

potential at the contact center reaches the maximum value at  θ=0º and 180º, while it 

reaches the minimum value of 0 at θ=90º and 270º. The sign of the induced electric 

potential depends on the relative direction between the loading direction and the poling 

direction (axisymmetric axis). This is because the piezoelectric constants reverse their 

sign while the elastic and dielectric constants remain unaltered due to polarization 

switching [2]. 

The simulation results for the indentation deformation of (Ba0.917Ca0.083)TiO3 is also 

included in Figure 4.3 for the variation of  0,0,0 /δ with θ. Obviously, the variation of 

 0,0,0 /δ with θ follows a similar trend as that for the indentation of PZT-4. It is 

expected that such behavior might also apply to other transversely isotropic piezoelectric 

materials. From Figure 4.3, one can express the relationship between the ratio of 
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 0,0,0 /δ and θ (in the unit of degree) as  

0

0

(0,0,0)
cos

180

 


 
 (4.15) 

for the indentation of a transversely isotropic piezoelectric half-space by a rigid, 

insulating Berkovich indenter with the frictionless contact. Here, 0  and 0  are the 

indentation-induced potential at contact center and the indentation depth, respectively, for 

the indentation with θ=0º. Similar relation also has been obtained for the indentation of 

transversely isotropic piezoelectric materials by a rigid, conducting or insulating indenter 

of flat end [138].  

To examine the effect of the contact friction on the indentation-induced potential at 

the contact center, the Coulomb friction law is used. Figure 4.4 shows the variation of the 

indentation-induced potential at contact center with the indentation depth for two friction 

coefficients of 0 and 0.5 with the loading being parallel and anti-parallel to the 

axisymmetric axis (the poling direction). The contact friction does not change the linear 

dependence of the indentation-induced potential on the indentation depth, while the 

proportionality depends on the friction coefficient.  

Figure 4.5 shows the effect of the contact friction on the ratio of  0,0,0 /δ for the 

Berkovich indentation of PZT-4 with the loading direction the same as the poling 

direction (i.e., θ=0º). The ratio increases from 1.32 for frictionless to 1.40 for the friction 

coefficient larger than or equal to 0.35. There is about 6% difference, which suggests that 

the effect of contact friction on the electromechanical interaction for the Berkovich 

indentation of transversely isotropic piezoelectric materials is negligible. One can use the 

results from the frictionless contact to approximately calculate the electromechanical 

behavior during the indentation. 

It has been believed that conical indentation is equivalent to pyramidal indentation 

provided that the volume-to-depth relationship is the same [139]. The indentation 

deformation created by the Berkovich indenter can be approximated as that by a conical 

indenter of half included angle of 70.3º for elastic-plastic materials. It is unclear if the 
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equivalence can also be used to describe the electromechanical behavior occurring in the 

indentation deformation of transversely piezoelectric materials. 

Figure 4.6 shows the variation of the indentation-induced potential at the contact 

center with the indentation depth for the indentation of PZT-4 with θ=0º by a rigid, 

insulating conical indenter of half included angle of 70.3º and a rigid, insulating 

Berkovich indenter. A good coincidence between the Berkovich and its equivalent conical 

indentations can be seen. The proportionality between the indentation-induced potential 

at the contact center and the indentation depth is independent of the type of indenters, 

suggesting that the depth-potential relationship at the contact center for the indentation of 

PZT-4 with θ=0º by a rigid, insulating conical indenter of 70.3º is equivalent to that by 

the Berkovich indenter.  

For the indentation of a transversely isotropic piezoelectric half-space by a rigid, 

insulating conical indenter, the indentation-induced potential at the contact center for  

0º can be expressed as [3,12, 24] 

3 8 4 7

1 8 2 7

(0,0,0)
M M M M

M M M M


  


     (4.16) 

where iM  (i=1, 2, …, 8) are dependent on the material properties of the piezoelectric 

material [3,12, 24]. Substituting Eq.     (4.16) in Eq. (4.15) yields 

3 8 4 7

1 8 2 7

(0,0,0)
cos

180

M M M M

M M M M

 


 
          (4.17) 

which describes the dependence of the ratio of the indentation-induced potential at the 

contact center to the indentation depth on the relative angle between the loading direction 

and the poling direction for the indentation of transversely isotropic piezoelectric 

materials by a rigid, insulating Berkovich indenter. 

4.4.2 Load-displacement relationship 

Figure 4.7 shows the indentation load-displacement curves for three different angles 

of 0º, 45º and 90º between the loading direction and the poling direction. The 

load-displacement curves are similar to each other. The indentation with the angle of 0º 
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between the loading direction and the poling direction requires the largest indentation 

load to produce the same indentation depth.  

It is known that the indentation load is proportional to the square of the indentation 

depth for the indentation of a semi-infinite transversely isotropic piezoelectric material 

with θ=0º by a rigid, conical indenter [3,12,24,39]. One would expect that a similar 

relationship holds for the Berkovich indentation of a semi-infinite transversely isotropic 

piezoelectric material with θ≠0º. Using the best curve-fitting to fit the load-displacement 

curves shown in Figure 4.7, one obtains  

2F K                            (4.18) 

for all three angles. Here, K is a prefactor depending on the material properties and the 

relative direction between the loading direction and the poling direction. The quadratic 

dependence of the indentation load on the indentation depth is a natural consequence of 

the geometric self-similarity of the indenter. Nevertheless, it is worth mentioning that the 

quadratic dependence is only applicable to linear elastic deformation including linear 

elasticity, linear piezoelectricity, and linear magnetoelasticity for the indentations by 

conical and pyramidal indenters. For nonlinear elasticity and elastic-plastic deformation, 

the indentation load is a power function of the indentation depth with the exponent not 

equal to 2. For example, two-dimensional and 3D finite element simulations and 

experiments of the Berkovich indentation of fused silica had showed the exponent of 1.46 

[140].  

Figure 4.8 depicts the variation of the prefactor K with the angle between the loading 

direction and the poling direction for the Berkovich indentation of PZT-4. The simulation 

results for the indentation deformation of (Ba0.917Ca0.083)TiO3 is also included in the 

figure. Larger indentation load for the indentation of (Ba0.917Ca0.083)TiO3 is required than 

that for PZT-4 to produce the same indentation depth, which is consistent with the 

experimental observation and numerical results for spherical indentation [1,68]. Such 

behavior is due to higher elastic moduli of (Ba0.917Ca0.083)TiO3 than those of PZT-4. 

Independent of the piezoelectric materials, the prefactor K starts with a maximum value 

at θ=0º, decreases to a minimum value at θ=90º, and then increases to the maximum 
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value at θ=180º. The indentation response follows the same behavior for the angle of θ in 

the range of 180 to 360º. One expects that the prefactor K for the conical indentation with 

a half included angle of 70.3º is the same as that for the Berkovich indentation, since the 

finite element simulation of the conical indentation of PZT-4 with θ=0º and 90º gives 

(0 ) (90 ) 167.78 152.25 1.10K K   , the same as (0 ) (90 ) 1.10K K   for the 

Berkovich indentation of PZT-4. 

From Figure 4.8, one might suggest the dependence of the prefactor K on the angle θ 

should also apply to other transversely isotropic piezoelectric materials. Using the 

relationship between the indentation load and the indentation depth for the conical 

indentation of semi-infinite transversely isotropic piezoelectric materials with θ=0º 

[12,3,24,39], one has 

6 7 5 8

2

1 8 2 7

4
tan 70.3º ( , , , )ij ij ij

M M M MF
f c e

M M M M


  

  
           (4.19) 

with ( , , , )ij ij ijf c e  as  

( , , , ) cos
90

ij ij ijf c e


     (4.20) 

Here, α is a constant related to the indentation response of the piezoelectric material at 

θ=45º and β is a constant dependent on material properties. 

 From Equation (4.20), one can calculate the contact stiffness for the Berkovich 

indentation of a semi-infinite transversely isotropic piezoelectric material as 

6 7 5 8

1 8 2 7

8 tan 70.3º
cos

90

M M M MdF

d M M M M

  
  

    
          (4.21) 

It is known that the contact area is proportional to the square of the indentation depth 

(see below for discussion). Thus, the contact stiffness is proportional to the square root of 

the contact area (or the indentation depth).  

 Figure 4.9 shows the contact zone between the Berkovich indenter and the 

semi-infinite PZT-4 at the indentation depth of 1 μm for two angles of 0º and 90º. The 
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contact edges of the contact zone form a triangle with the characteristics of an equilateral 

triangle, independent of the relative angle between the loading direction and the poling 

direction. The zigzag edges at the contact edges are due to the discrete finite element 

mesh. From Figure 4.9, it is reasonable to assume that the projected contact area for the 

Berkovich indentation is an equilateral triangle. Thus, the relationship between the 

projected contact area Ap and the true contact area A can be expressed as [141] 

  2 2cos 90 65.27 3 3δ tan 65.27p cA A              (4.22) 

where δc is the contact depth.  

The evaluation of the contact area is of paramount importance in characterizing the 

mechanical properties of materials for the sharp-instrumented indentation. Figure 4.10 

shows the variation of the true contact area with the indentation depth for the Berkovich 

indentation of PZT-4 and (Ba0.917Ca0.083)TiO3 with θ=0º, 45 º and 90º. The contact area 

scales with the square of the indentation depth; and there is no observable effect of the 

relative direction between the loading direction and the poling direction and the 

anisotropy of the piezoelectric material.   

 Using the best curve-fitting and the relation between the projected contact area and 

the true contact area, one obtains 

29.0pA                             (4.23) 

which is consistent with the result given by Giannakopoulos [142] for the Berkovich 

indentation of isotropic, linear elastic materials. The contact topology within the realm of 

elasticity and piezoelectricity is solely dependent on geometrical configuration, including 

the indenter geometry and the unformed surface profile of materials. 

 The effect of the angle θ on the dependence of the contact depth on the indentation 

depth is also examined. The FEM results show that the contact depth is proportional to 

the indentation depth, as expected, and independent of the angle θ. The proportionality is 

0.61, which is slightly smaller than 0.65 for the conical indentation of the same 

piezoelectric materials.  

Substituting Equation (4.23) into Equation (4.21), one has  
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6 7 5 8

1 8 2 7

8 tan 70.3º
cos

3 90

pA M M M MdF

d M M M M

  
  

    
        (4.24) 

4.5 Conclusion 

The sharp-instrumented indentation technique has been gradually used to 

characterize the electromechanical response of piezoelectric materials. A 3D finite 

element model was built to analyze the indentation behavior of a transversely isotropic 

piezoelectric half-space by a rigid, insulating Berkovich indenter, aiming at examining 

the anisotropic effect and establishing the semi-analytical relationship between the 

indentation load and the indentation depth, and between the indentation-induced potential 

and the indentation depth.  

The finite element results revealed that the indentation load was proportional to the 

square of the indentation depth. Using the analytical result for the indentation of a 

transversely isotropic piezoelectric half-space with the loading direction parallel to the 

poling direction, a semi-analytical relationship between the indentation load and the 

indentation depth was obtained. The pre-factor for the relationship between the 

indentation load and the indentation depth depends on the angle and the piezoelectric 

properties of materials. In contrast to the load-displacement relationship, the 

indentation-induced potential at the contact center is proportional to the indentation depth. 

The proportionality is only a function of the angle between the loading direction and the 

poling direction, independent of the type of indenters. These relationships may be used in 

the indentation technique to measure the relative direction of the loading axis to the 

poling direction (axisymmetric axis) of transversely isotropic piezoelectric materials. 
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Table 4.1 Material properties used in the simulation  

 PZT-4 (Ba0.917Ca0.083)TiO3 

Elastic coefficients (GPa) 

C11 

C12 

C13 

C33 

C44 

Piezoelectric coefficients (C/m
2
) 

e31 

e33 

e15 

Dielectric constants (10
-9

 F/m) 

ε11 

ε33
 

 

139 

77.8 

74.3 

115 

25.6 

 

-5.2 

15.1 

12.7 

 

6.461 

5.620 

 

158 

69 

67.5 

150 

45 

 

-3.1 

13.5 

10.9 

 

8.850 

8.054 

 

 

 

 

 

 



58 

 

 

 

(a) 

 

(b) 

Figure 4.1 (a) Finite element mesh used in the simulation (b) mesh refinement around the 

contact zone 
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Figure 4.2 Variation of the indentation-induced potential at the contact center with the 

indentation depth for various angles between the loading direction and the poling 

direction (material: PZT-4, μ=0) 
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Figure 4.3 Variation of the ratio of  0,0,0 /δ with the angle θ for PZT-4 and 

(Ba0.917Ca0.083)TiO3, μ=0 
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Figure 4.4 Variation of the indentation-induced potential with the indentation depth for 

the Berkovich indentation of PZT-4 with friction coefficients of 0 and 0.5 and the angles 

of 0º and 180º 
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Figure 4.5 Effect of the contact friction on the proportionality between the 

indentation-induced potential and the indentation depth for the indentation of PZT-4 by a 

rigid, insulating Berkovich indenter with the loading direction the same as the poling 

direction 
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Figure 4.6 Comparison of the indentation-induced potential at the contact center for the 

indentation of PZT-4 with θ=0˚ by a rigid, insulating Berkovich indenter and a rigid, 

insulating conical indenter, μ=0 
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Figure 4.7 Indentation load-displacement curves for the indentation of PZT-4 with three 

different angles of 0º, 45º and 90º between the loading direction and the poling direction, 

μ=0 
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Figure 4.8 Dependence of the pre-factor K on the angle θ for PZT-4 and 

(Ba0.917Ca0.083)TiO3, μ=0 
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(a) 

 

(b) 

Figure 4.9 Topology of the contact zone between the indenter and PZT-4 for the 

Berkovich indentation with the maximal indentation depth of 1 μm (μ=0): (a) θ=0º, and 

(b) θ=90º 
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Figure 4.10 Dependence of the true contact area on the indentation depth for the 

indentation of PZT-4 and (Ba0.917Ca0.083)TiO3 with three different angles of 0º, 45º, and 

90º between the loading direction and the poling direction 

 

Copyright © Ming Liu 2012 
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Chapter - 5 Indentation of piezoelectric thin films 

5.1 Introduction 

Piezoelectric materials with the characteristics of electromechanical coupling are 

available in a variety of shapes and forms, such as films [143,144,145], multi-layers 

[146], and fibers [147,148,149,150] for various sensor and actuator applications in 

functional structures and smart systems [151,152,153,154,155]. Accurate determination 

of the material behavior of piezoelectric materials at the small scale is vital for the 

applications in microelectromechanical and nanoelectromechanical systems. The 

instrumented indentation technique, which has been used to determine the mechanical 

properties of small structures and thin films, is believed to be capable of characterizing 

the mechanical as well as electrical properties of piezoelectric materials [2,6,10,11,66].  

To date, most analytical and numerical studies have focused on the indentation of a 

piezoelectric half space [3,4,12,21,39,42,61,63,156,157,158,159]. However, compared to 

the indenter size and the specimen thickness, piezoelectric films have finite thickness 

rather than infinite thickness in engineering and biomechanical applications. Simplified 

solutions can be obtained when the contact radius is much larger than the film thickness 

[9,24,100,160 ,161 ,162]. Thus, it is desirable to probe the material properties of 

piezoceramics by indenting piezoelectric thin films, in which the contact radius is far 

greater than the film thickness. 

 

 

 

 

 

 

This chapter is reproduced from “Ming Liu and Fuqian Yang, Finite element 

simulation of the effect of electric boundary conditions on the spherical indentation of 

transversely isotropic piezoelectric films, Smart Materials and Structures 21 (2012) 

105020 (10pp)”. Copyright © 2012 IOP Publishing Ltd. 
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Using the Hankel transform and a conducting indenter, Matysiak [63] was the first to 

study the axisymmetric contact of a piezoelectric half-space. Following Matysiak’s 

approach [63], Giannakopoulos and Suresh [12] presented a general solution for the 

axisymmetric indentation of a piezoelectric half-space. Although their analytical solutions 

have the same structures as those given by Chen et al. [61], Kalinin et al. [4], and Wang 

at al. [24], they are numerically different. Wang et al. [24] studied the indentation of 

piezoelectric films and suggested that the expressions given by Giannakopoulos and 

Suresh [12] are problematic. In addition, the boundary condition with zero normal stress 

at the edge of contact zone [12] is inapplicable for a flat-ended indenter, since there is 

stress singularity [163]. Sridhar et al. [66] performed the normal indentation of a 

transversely isotropic, linear piezoelectric half-space by a conducting sphere with zero 

potential bias and found that the indentation response of piezoelectric materials depended 

on electric boundary conditions. Yang [3] derived the contact stiffness, effective 

piezoelectric constant, and the electric displacement intensity factor for the axisymmetric 

indentation of a semi-infinite piezoelectric material by a rigid, conducting indenter of 

arbitrary-axisymmetric profile and found that analytical solutions cannot be obtained for 

certain combinations of material properties of piezoelectric materials. Ding et al. [39] 

solved the elastic and electric fields for a series of axisymmetric contact problems, 

including pressing a spherical indenter, a conical indenter and an upright circular flat 

indenter onto a transversely isotropic piezoelectric half-space. Yang [23] analyzed the 

electromechanical interaction between a compliant surface electrode and a semi-infinite 

piezoelectric material. Wang and Han [42] used frictionless conditions between a 

piezoelectric layer and a rigid substrate to numerically simulate the deformation of the 

piezoelectric layer indented by a flat-ended cylindrical indenter. Kamble et al. [2] 

simulated the spherical indentation of polycrystalline PZT-4 and misused the zero electric 

potential condition on the axial axis in the finite element analysis. Liu and Yang [75] 
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carried out finite element simulation of spherical indentation of a transversely isotropic 

piezoelectric half space under different electrical boundary conditions and found that the 

electrical boundary condition has significant effects on the induced electric potential and 

charge, stress distribution, and indentation load. 

Motivated by the practical application of piezoelectric films and the need to have a 

better understanding of the indentation behavior of piezoelectric films, a systematic finite 

element analysis of the spherical indentation of a piezoelectric film is carried out. The 

focus is on the effect of electric boundary conditions on the contact deformation of 

piezoelectric films with the contact radius much larger than the film thickness. The 

dependence of the electric response on the indentation deformation is also discussed. 

5.2 Problem formulation 

5.2.1 Equilibrium equations 

Consider the indentation of a transversely isotropic piezoelectric film of thickness t 

by a rigid spherical indenter of radius R. As shown in Figure 5.1, the piezoelectric film is 

supported by a rigid substrate with non-slip condition. A cylindrical polar coordinate 

system  ,  ,  r z
 
is used with z-axis being parallel to the poling direction. The r-axis is 

perpendicular to the z-axis, and θ is the azimuth angle between a reference line and the 

r-axis. In the absence of body and inertia forces, the equilibrium equations for the 

axisymmetric problem are 

0rrrr rz

r z r

  
  

 
 (5.1) 

0rz zz rz

r z r

  
  

 
 (5.2) 

and in the absence of free electric charge in the piezoelectric film, the electrostatic 

equation is 
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0r z zD D D

r z r

 
  

 
 (5.3) 

where rr , zz ,   and rz are the components of stress tensor, and rD
 
and zD  are 

the components of electric displacement vector. 

For linear transversely isotropic piezoelectric materials with poling direction being 

parallel to the z-axis, the constitutive equations in the absence of any thermal or residual 

polarization strains with conventional notations are 

11 12 13 31

12 11 13 31

13 13 33 33

44 15

15 11

31 31 33 33

0 0

0 0

0 0

0 0 0 0

0 0 0 0

0 0

rr rr

zz zz

rz rz

r r

z z

C C C e

C C C e

C C C e

C e

eD E

e e eD E

 

     
    

     
     

     
     

    
            

              (5.4) 

where 11 12 13 33 44,  ,  ,  ,  and C C C C C  are elastic constants measured in a constant electric 

field intensity (short circuited condition); 15 31 33,  ,  and e e e are piezoelectric constants 

measured in possession of a spontaneous electric field; 11 33and   are dielectric 

constants measured with no mechanical constraint. The subscript “3” denotes the 

properties along the poling direction; subscripts “1” and “2” denote those along 

two-mutually orthogonal directions in the plane perpendicular to the poling direction. 

The relationships between the components of strain tensor ( rr ,  , zz , and rz ) 

and the components of the displacement vector (  and r zu u ) are 

,  ,  ,  and 2r r z r z
rr zz rz rz

u u u u u

r r z z r


   
          

               
(5.5) 

and the relationships between the components of electric field intensity ( rE  and zE ) 
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and electric potential ( ) are 

,  and r zE E
r z

 
   

 
 (5.6) 

The indentation load can be determined from the force balance on the indenter as 

0
2 ( ,0)

a

zzF r rdr     (5.7) 

During the indentation, the contact radius monotonically increases with the 

indentation load. This requires / 0dF dh   for 0h  . 

The conditions at infinity require 

2 2( , ) ( , ) 0 and ( , ) 0 for r zu r z u r z r z r z            (5.8) 

5.2.2 Mechanical boundary conditions 

For the contact problem of a transversely isotropic piezoelectric film ( 0t z   , t is 

the film thickness) by a rigid, spherical indenter, the mechanical boundary conditions are 

( ,0) ( ) for 0zu r h f r r a     (5.9) 

( ,0) 0 for zz r r a    (5.10) 

where h is the indentation depth of the indenter, a is the contact radius, and f(r) is the 

surface profile of the indenter. For an indentation by a rigid spherical indenter of radius R 

with a<<R, there is 

2

( )
2

r
f r

R
  (5.11) 

For frictionless contact between the indenter and the film, the shear stress is zero, i.e. 

 ( ,0) 0rz r   (5.12) 

The nonslip contact between the film and the rigid substrate gives 
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( , ) ( , ) 0 z ru r t u r t     (5.13) 

The condition determining the contact radius a is  

( ,0) 0zz a   (5.14) 

5.2.3 Electrical boundary conditions 

Two types of indenters are used in the finite element analysis. They are: 

Case I: Insulating indenter  

The electric boundary condition on the surface of the piezoelectric material for the 

indentation by an insulating indenter is 

( ,0) 0  for 0zD r r   (5.15) 

Case II: Conducting indenter 

For a conducting indenter without prescribed electric potential, the electric potential 

within the contact region is a constant. The electric boundary condition on the surface of 

the piezoelectric material becomes 

( ,0) 0    for zD r r a   (5.16) 

( ,0)
0   for 

r
r a

r


 


 (5.17) 

For a grounded conducting indenter, one has 

( ,0) 0   for r r a    (5.18) 

which has technological significance for the application of the sharp-instrumentation 

indentation in characterizing the properties of piezoelectric materials 

The indentation-induced electric charge, pQ , within the contact area on the top 

surface of the piezoelectric film can be calculated by integrating the vertical component 
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of the electric displacement,  ,0zD r , within the contact area as 

0
2 ( ,0)

a

p zQ rD r dr   (5.19) 

which gives the total charge accumulated in the conducting indenter as 

0
2 ( ,0)

a

i zQ rD r dr    (5.20) 

For an insulating substrate, there is 

( , ) 0 zD r t   (5.21) 

and for a grounded substrate 

( , ) 0 r t    (5.22) 

There are six possible combinations of the electric boundary conditions (II, IG, CI, 

CG, GI, and GG). The II corresponds to the insulating indenter and the insulating 

substrate, IG to the insulating indenter and the grounded substrate, CI to the conducting 

indenter without prescribed electric potential and the insulating substrate, CG to the 

conducting indenter without prescribed electric potential and the grounded substrate, GI 

to the grounded indenter and the insulating substrate, and GG to the grounded indenter 

and the grounded substrate. 

It needs to be emphasized that the simulation focuses on the contact radius being 

much larger than the film thickness, and there is no transfer of free charges between the 

indenter and the piezoelectric film. 

The distribution of electric field depends on the geometrical morphology of a 

material. Puglisi and Zurlo [164] analyzed the effect of surface curvature on electric field 

localization in thin dielectric films and obtained an approximate expression for the 

electric field. Yang and Song [165,166] analyzed the field-induced surface instability of a 

conducting material with a sinusoidal surface topology by analyzing the effect of the 

sinusoidal surface on the field and stress distribution. Generally, one needs to include the 



72 

 

effect of local curvature on the electric field in the analysis. However, the analysis of the 

indentation deformation is based on the linear theory of piezoelectricity, which requires 

that the boundary conditions, including the electric boundary conditions, be referenced to 

the undeformed state. In numerical calculations, such as finite element simulation, the 

electric boundary conditions are actually satisfied at each increment. 

5.3 Finite element modeling 

To simulate the indentation deformation, the nonlinear deformation feature in the 

ABAQUS finite element code is used. Transversely isotropic piezoelectric materials, 

which have axisymmetric features about the poling direction, are used. The material 

properties of PZT-4 [23] given in Table 5.1 are used in the simulation. The rigid indenter 

of 500 µm in radius is modeled by a rigid, analytical surface. The dimensions of the 

piezoelectric material used in the simulation are 200 µm in radius and 0.5 µm in 

thickness. The maximum indentation depth of 50 nm is only 10% of the film thickness 

which avoids any severe deformation that may introduce depolarization or cracking 

during indentation; the indentation depth of 50 nm is believed to be non-destructive to the 

sample. 

Due to the symmetric features, an axisymmetric model is used. Figure 5.2 shows the 

finite element mesh near the contact zone. The finite element mesh consists of 125,708 

four-node axisymmetric piezoelectric elements. Finer meshes are used near the contact 

region. The surface of the sphere is automatically smoothed to reduce the inaccuracy in 

calculating the contact stress. Along the interface, the contact elements are used to 

monitor the change of the contact zone during the indentation. For the conducting 

indenter or substrate, the nodes within the contact region or on the interface are 

constrained by the equal electric potential; for the grounded conducting indenter or 

substrate, the nodes within the contact region or on the interface are constrained with zero 

electric potential. 

A displacement-controlled indentation is used in the simulation. The indenter is 
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gradually pushed onto the surface of the piezoelectric material to a preset indentation 

depth, and then it is withdrawn until the load on the indenter becomes zero. During the 

indentation, the equal-potential condition for indentation by a conducting indenter is 

checked at each increment to ensure that the nodes in contact with the conducting 

indenter have the same electric potential. 

5.4 Results and discussion 

5.4.1 Mechanical response 

The contact radius is a function of the indentation depth, and the closed-form 

solutions of the contact radius for the indentation of thin films with 𝑡 ≪ 𝑎 ≪ 𝑅 have 

been obtained for only two cases. Wang et al. [24] obtained the dependence of the contact 

radius on the indentation depth for the indentation of a transversely isotropic piezoelectric 

film by an insulating indenter with a grounded, rigid substrate as 

2a Rh                              (5.23) 

and for the indentation of a piezoelectric film by a conducting indenter of potential 0  

with a grounded, rigid substrate as 

33
0

33

2 ( )
e

a R h
C

    (5.24) 

Equation (5.24) reduces to Equation (5.23) for a grounded, conducting indenter, i.e., 

0 0  . Figure 5.3 shows the variation of the contact radius with the indentation depth for 

all six different combinations of electrical boundary conditions. The overlap of the curves 

indicates the variation of the contact radius with the indentation depth for the spherical 

indentation of a piezoelectric film is independent of the electric boundary conditions 

given in section 5.2. Under the condition that ℎ 𝑡 ≥ 0.01⁄ , the simulation results show 

that the relationship between the contact radius, a, and the indentation depth, h,  can be 

well  described by Equation (5.23), while for ℎ 𝑡 < 0.01⁄ , Equation (5.23) 
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overestimates the contact radius due to the constraint of 𝑎 ≫ 𝑡 . At ℎ 𝑡 = 0.01⁄ , 

𝑎 = 4.78 × 10−3𝑅 = 4.78𝑡. This result suggests that Equation (5.23) can be used to 

determine the contact radius from the indentation depth when 𝑎 ≥ 4.78𝑡. 

For the spherical indentation of a piezoelectric half-space, the relationship between 

the contact radius and the indentation depth is [3] 

a Rh                              (5.25) 

which is independent of the type (i.e., the electrical boundary condition) of the indenter 

(e.g., insulating, electrically grounded, or conducting). For the purpose of comparison, 

Equation (5.25) is also included in Figure 5.3. It can be seen that Equation                              

(5.25) describes the indentation depth-contact radius relationship very well for a 

semi-infinite medium so that h t  and a t . 

The indentation load-depth relationship has been used to determine the reduced 

contact modulus for the instrumentation indentation technique. According to the results 

given by Wang et al. [24], the relationship between the indentation load and the 

indentation depth is 

2 2

33
33

33

( )
e Rh

F C
t


 


 (5.26) 

for the indentation of a transversely isotropic piezoelectric film by an insulating indenter 

with a grounded substrate (i.e. the IG case), and 

2

33

Rh
F C

t


                            (5.27) 

for the indentation by a grounded, conducting indenter with a grounded substrate (i.e. the 

GG case). Independent of the electric boundary conditions, the indentation load is 

proportional to the indenter radius and the square of the indentation depth and inversely 

proportional to the film thickness, which is similar to the results given by Yang [160,161] 

for the spherical indentation of compressible, elastic films with the contact radius much 
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larger than the film thickness. The effect of the electric boundary conditions is 

represented by the coefficients. 

Figure 5.4 shows the indentation load-depth curves for all six different combinations 

of electrical boundary conditions. For comparison, the results calculated from Equations 

(5.26) and (5.27) are also included. The finite element results are in agreement with the 

analytical results for the corresponding boundary conditions. The electric boundary 

conditions have some effect on the dependence of the indentation load on the indentation 

depth, since the curves slightly differ from one another. The indentation load in general 

increases with the square of the indentation depth for all six cases under the simulation 

conditions. To produce the same indentation depth, the smallest indentation load is 

needed for the indentation by a grounded, conducting indenter with a grounded substrate, 

while the largest indentation load is needed for the indentation by an insulating indenter 

with an insulating substrate. Comparison of the dependence of the indentation load on the 

indentation depth for all six cases reveals that the force responses can be divided into two 

categories; one is associated with the grounded and conducting indenter, and the other is 

related to the indentation by an insulating indenter or a conducting indenter without 

prescribed potential.   

It is worth mentioning that the finite element analysis of the spherical indentation of 

a transversely isotropic piezoelectric half-space by a conducting or an insulating indenter 

has been performed by using the ABAQUS finite element code [75]. The simulation 

results are in accord with the results given by the analytical relationships between the 

indentation load and the indentation depth as summarized by Wang et al. [24] and given 

by Ding et al. [39], which have validated the finite element code used in this work.  

From Equations (5.26) and (5.27) and the simulation results shown in Figure 5.4, one 

can express the relationship between the indentation load and the indentation depth for all 

six cases as 



76 

 

2Rh
F

t


                             (5.28) 

where   is a function of the material properties of piezoelectric materials and the 

electric boundary conditions. Equation (5.28) gives the contact stiffness, S, as 

2
dF Rh A

S
dh t t

 
                         (5.29) 

for the spherical indentation of transversely isotropic piezoelectric films with the contact 

radius much larger than the film thickness. Here, 
2

33 33 33/C e     for the indentation by 

an insulating indenter with a grounded substrate and 33C   for the indentation by a 

grounded, conducting indenter with a grounded substrate. The contact stiffness is 

proportional to the contact area A and inversely proportional to the film thickness in 

contrast to the result for the spherical indentation of semi-infinite piezoelectric materials. 

Equation (5.29) provides an approach to measure the electromechanical properties of 

piezoelectric films by controlling the electric boundary conditions.  

For the indentation of a transversely isotropic piezoelectric film with the contact size 

much larger than the film thickness, the distribution of normal stress over the contact area 

( 0 r a  ) is [24] 

2 22 2 2

33 33
33 33

33 33

2
( ,0) ( ) ( )  

2 2
zz

e ea r Rh r
r c c

Rt Rt

 
      

 
      (5.30) 

for the spherical indentation by an insulating indenter with a grounded substrate (i.e. the 

case of IG), and 

2 2 2

33 33( ) (2 )
( ,0)  

2 2
zz

c a r c Rh r
r

Rt Rt

 
            (5.31) 

for the spherical indentation by a grounded indenter with a grounded substrate (i.e. the 

case of GG). Both the stress distribution in the contact zone is a quadratic function of the 
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radial variable r. Figure 5.5 shows the finite element results of the distribution of the 

normal stress in the contact zone for all six cases with the maximum indentation depth of 

50 nm. For comparison, the analytical results of Equations (5.30) and (5.31) are also 

included in Figure 5.5. For the spherical indentation by an insulating indenter or a 

grounded indenter with a grounded substrate, the magnitudes of the normal stress 

obtained from the FEM simulation are in accord with the corresponding analytical results 

for r/t≥7 and slightly larger than the corresponding analytical results for r/t<7. Such 

behavior is due to the condition used in deriving Equations (5.30) and (5.31) which 

requires a/t>>1, even though it has no significant effect on the load-displacement 

relationship. As shown in Figure 5.5, the piezoelectric material experiences compressive 

stress, as expected, with the maximum compressive stress being at the contact center. For 

the same indentation depth and the spherical indenter of the same size, the indentation by 

an insulating indenter with an insulating, rigid substrate produces the largest compressive 

stress in the contact zone, while the indentation by a grounded indenter with a grounded, 

rigid substrate produced the smallest compressive stress. Due to the singularity of electric 

field, the indentation by the conducting indenter creates a stress singularity at the contact 

edge, which likely will lead to structure damage. 

5.4.2 Electrical response 

The dependence of the indentation-induced electric potential at the contact center on 

the indentation depth is depicted in Figure 5.6. The magnitude of the electric potential at 

the contact center increases with increasing the indentation depth, which is in accordance 

with the mechanism of piezoelectric behavior. For the same indentation depth, the 

indentation by the insulating indenter with a grounded, rigid substrate induces the largest 

electric potential at the contact center, while the indentation of the piezoelectric film by 

the conducting indenter with an insulating, rigid substrate induces the smallest electric 

potential. These results suggest that the electric boundary conditions determine the 

electric response of the piezoelectric film during indentation. For / 0.2h t  , the 
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indentation-induced electric potential at the contact center is a linear function of the ratio 

/h t  for any contact radius larger than the film thickness, i.e. 

c

h

t
                               (5.32) 

where c  is the electric potential at the contact center, and   and   are constants 

depending on the material properties and the electric boundary conditions. Through the 

best curve-fitting, one can calculate the constants of   and   from the FEM results. 

For the indentation by a conducting indenter without a prescribed potential, the 

indentation-induced potential on the indenter then can be calculated from Equation (5.32) 

if the constants   and   have been determined from the numerical calculation or from 

the indentation test of piezoelectric films by characterizing the variation of the contact 

potential with the indentation depth.  

According to the definition of piezoelectric charge coefficients, 
ijd , [167], there is 

j

ij

i

d
E





                           (5.33) 

in which 
j  is the matrix representation of ij  with 1 11   , 2 22   , 3 33   , 

4 232   , 5 132   , and 6 122   . For the indentation of piezoelectric films by the 

conducting indenter with the grounded substrate and the contact radius much larger than 

the film thickness, the compressive strain underneath the indenter can be approximated as 

3

h

t h
  


                           (5.34) 

and the magnitude of the electric field intensity as 

3 3
c h

E
t h t h t t h t h t

    
     

   
            (5.35) 

Substituting Equations (5.34) and (5.35) into Equation (5.33) and using the condition 
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of h t , the piezoelectric charge coefficient, d33, can be determined by 

1

33
cdt

d
dh


 

    
  

                    (5.36) 

The nominal piezoelectric charge coefficients as determined from the indentation of 

a piezoelectric film by a conducting indenter with a grounded, rigid substrate and the 

contact radius much larger than the film thickness is inversely proportional to the 

derivative of the electric potential with respect to the indentation depth. 

Due to the electromechanical coupling in piezoelectric materials, the indentation 

deformation by the conducting indenter will polarize the piezoelectric material and lead 

to an accumulation of electric charges on the conducting indenter. The total charge 

accumulated on the surface of the conducting indenter can be calculated from Equation 

(5.20).  

Figure 5.7 shows the variation of the total charge on the indentation depth for the 

indentation by the conducting indenter. The total electric charge increases with increasing 

the indentation depth due to the piezoelectric coupling. For the same indentation depth, 

the largest total charge accumulated on the conducting indenter is induced when the 

indenter is electrically grounded, while the smallest total charge is induced for the 

indentation with a perfectly insulating substrate. It can be seen that the electric boundary 

conditions play an important role in controlling the accumulation of electric charges on 

the conducting indenter. 

For the indentation of the piezoelectric film with a grounded substrate, the simulation 

results shown in Figure 5.7 suggests that, for 3/ 10h t  , the total charge accumulated on 

the conducting indenter is a power function of the ratio of /h t . Using the best 

curve-fitting, one obtains 

n

i

h
Q

t

 
  

 
                         (5.37) 
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with n=2 for the indentation by a grounded indenter with a grounded substrate and  

n=1.5 for the indentation by a conducting indenter without prescribed potential and with a 

grounded substrate. Here   is a constant depending on the material properties and the 

electric boundary conditions.  

Using the result given by Wang et al. [24] for the grounded indenter and the 

grounded substrate with the poling direction being anti-parallel to the loading direction, 

the total charge is found to be 

233e R
Q h

t


                        (5.38) 

For comparison, the calculated results from Equation (5.38) are also included in 

Figure 5.7. Obviously, the simulation results are in agreement with those calculated from 

Equation (5.38) for 2/ 10h t  . For the spherical indentation of piezoelectric films by a 

grounded, conducting indenter with a grounded substrate and the contact radius much 

larger than the film thickness, Equation (5.38) can be used to determine the piezoelectric 

constant 33e .  

For the indentation by a grounded indenter with a grounded, rigid substrate and a>>t, 

one can use the result given by Wang et al. [24] to obtain the distribution of the normal 

component of the electric displacement in the contact zone as 

 2 2

33
( ,0)  for 0

2
z

a r e
D r r a

Rt


       (5.39) 

in which the sign of ± depends on the relative direction between the loading direction and 

the poling direction (axisymmetric axis). For the current configuration with the loading 

direction anti-parallel to the poling direction, the “–” is used in Equation    (5.39). The 

normal component of the electric displacement is quadratic function of the radial variable 

r. Figure 5.8 depicts the distribution of the normal component of the electric 
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displacement for all the six different boundary conditions with the maximum indentation 

depth of 50 nm. For comparison, the results obtained from Equation (5.39) are also 

included in Figure 5.8, which is slightly less than the FEM results near the contact center, 

while there is good agreement in the region away from the contact center.  

For the indentation by an insulating, rigid indenter, the normal component of the 

electric displacement is zero, as expected. There exists a transition of the normal 

component of the electric displacement from negative value to positive value for the 

other four types of electric boundary conditions of CI, CG, GI, and GG. The field 

singularity is observable for the indentation by a conducting indenter due to non-zero 

potential on the indenter, which leads to the stress singularity at the contact edge as 

shown in Figure 5.5. It is worth mentioning that the field singularity has not been 

reported for the indentation of piezoelectric films, even though the same behavior has 

been observed from the finite element simulation of semi-infinite piezoelectric materials 

by Liu and Yang [75]. 

Figure 5.9 shows the distribution of electric potential on the contact surface between 

the indenter and the piezoelectric film for all the six electric boundary conditions with the 

maximum indentation depth of 50 nm. The electric potential for the grounded indenter is 

zero in the contact zone, as expected. The distribution of electric potential depends on the 

electrical boundary conditions. The indentation by the conducting indenter produces 

uniform, non-zero electric potential on the contact surface. The magnitude of the 

indentation-induced potential is a function of the electric condition of the rigid substrate 

with the grounded substrate generating larger magnitude of electric potential than that by 

the insulating substrate. Non-uniform electric potential is created for the indentation by 

the insulating indenter, which is relatively independent of the electric condition of the 

substrate. 

The above analyses have established the rationale of using the sharp-instrumented 

indentation to characterize the complicated electromechanical interaction of piezoelectric 



82 

 

films. The load-displacement relationship and the load-potential relationship can be used 

to quantify the piezoelectric behavior of piezoelectric films similar to the work by 

Kollosche and Kofod [168] in using the contact technique to examine the dependence of 

the breakdown strength of soft elastomers on Young’s modulus. Careful comparison 

between the FEM results and experimental results will be explored in the future.  

5.5 Conclusion 

Finite element analysis of the indentation deformation of piezoelectric films with the 

properties of PZT-4 by a rigid spherical indenter revealed the effects of different electric 

boundary conditions on the mechanical and electrical responses of piezoelectric thin 

films. When the contact radius is much larger than the film thickness, six different 

combinations of the electric boundary conditions between the indenter and the film, and 

between the film and the substrate, were used to investigate the effect of electric 

boundary conditions on the electrical and mechanical responses of the piezoelectric film.  

The indentation load was found to be proportional to the square of the indentation 

depth for all six cases. The indentation by a grounded conducting indenter and a 

grounded substrate produces the smallest indentation load, while the indentation under an 

insulating indenter and an insulating substrate produces the largest indentation load, 

under the same indentation depth. For / 0.01h t  , the contact radius is proportional to 

the square root of the indentation depth and is independent of the electric boundary 

conditions. A simple formula was established to calculate the contact stiffness, which is 

proportional to the contact area and inversely proportional to the film thickness, unlike 

the spherical indentation of semi-infinite piezoelectric materials. 

For / 0.02h t  , the indentation-induced electric potential at the contact center is a 

linear function of the ratio of /h t , when the contact radius is larger than the film 

thickness, with the slope   dependent on the electric conditions. For the indentation by 

a conducting indenter with a grounded substrate and 3/ 10h t  , the total charge 



83 

 

accumulated on the indenter is a power function of the ratio of /h t . The nominal 

piezoelectric charge coefficient 33d  is inversely proportional to the derivative of the 

electric potential with respect to the indentation depth for the indentation of piezoelectric 

films by a conducting indenter with a grounded rigid substrate.  
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Table 5.1 Material properties of PZT-4 piezoceramics  

Elastic constant (10
10

 Nm
-2

) Piezoelectric constant 

(Cm
-2

) 

Dielectric constant (10
-10

 

CV
-1

 m
-1

) 

11C  12C  13C  33C  44C  31e  33e  15e  11  33  

13.9 7.78 7.43 11.3 2.56 -6.98 13.84 13.44 60.0 54.7 
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Figure 5.1 Schematic of the spherical indentation of a piezoelectric film on a rigid 

substrate 

 

Figure 5.2 Finite element mesh of the spherical indentation 

Piezoelectric film

z

0
r

Spherical indenter

Poling direction

Rigid substrate
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Figure 5.3 (a) Variation of the contact radius with the indentation depth for six different 

electric boundary conditions; (b) enlarged view of the contact radius-indentation depth 

curves for 0.02≤h/t≤0.1 
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Figure 5.4 The dependence of the indentation load on the indentation depth for six 

different electric boundary conditions 
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Figure 5.5 The distribution of the normal stress on the top surface of the piezoelectric 

materials for six different electric boundary conditions with an indentation depth of 50 

nm 
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Figure 5.6 The dependence of the electric potential at the contact center on the 

indentation depth for four different electric conditions 
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Figure 5.7 The variation of the total electric charges accumulated on the conducting 

indenter with the indentation depth for four different electric boundary conditions 
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Figure 5.8 The distribution of the normal component of the electric displacement on the 

top surface of the piezoelectric material for six different electric boundary conditions 

with an indentation depth of 50 nm 

-140

-120

-100

-80

-60

-40

-20

0

20

0 2 4 6 8 10 12 14

GG
GI
CG
CI
IG
II


 (

V
)

r/t
 

Figure 5.9 The distribution of the electric potential on the top surface of the piezoelectric 

material for six different electric boundary conditions with an indentation depth of 50 nm 
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Chapter - 6 Indentation-induced interfacial decohesion between a piezoelectric film 

and an elastic substrate 

6.1 Introduction 

Piezoelectric thin films have proliferated in a variety of applications such as energy 

harvesting devices, adaptive structures, sensors, and actuators due to their strong 

electromechanical coupling [169,170]. The interface strength between a piezoelectric film 

and substrate is of practical importance, and determines the reliability and durability of 

devices and structures. Various techniques such as blister tests [171], peeling tests [172], 

and instrumented indentation techniques [173] have been developed to investigate the 

interface strength between films and substrates.  Instrumented indentation techniques 

offer unique and effective advantages in characterizing the interaction between films and 

substrates, as it provides a quick and reproducible method to determine the initiation of 

interfacial crack from a pop-in event at a critical indentation load [114,174].  

In general, numerical analysis is indispensable to interpret indentation results of thin 

films of a finite thickness adhesively bonded to a substrate [175]. Zhang et al. [176] used 

a plane strain finite element model to investigate the propagation of an interface crack for 

a ductile film adhesively bonded to a ductile substrate by a rigid microwedge indenter 

and found the load drop corresponded to delamination. Li and Siegmund [108] used a 

cohesive zone model to study the indentation-induced interfacial delamination under the 

condition of a rigid conical indenter for a ductile coating on an elastic substrate with a 

weak interface. Li and Siegmund [177] numerically studied the mechanics of the 

indentation-induced delamination of a ductile film on an elastic substrate with a strong 

interface characterized by a traction-separation formulation, and proposed a calibration 

chart for determining cohesive parameters from two critical indentation loads. Liu et al. 

[178] focused on the indentation-induced buckling of a ductile thin film by a microwedge 

indenter using a two-dimensional finite element model with a traction-separation law and 

discussed the effect of interfacial parameters and film thickness on crack length. Xia et al. 
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[179] numerically conducted a detailed parametric study to investigate delamination 

mechanism maps and the influence of material and interface properties on the critical 

indentation depth and load corresponding to the crack nucleation, using an interfacial law 

for a stiff elastic coating on an elastic-plastic substrate. Chen et al. [180] simulated a 

two-dimensional indentation-induced delamination using a traction-separation law for the 

interfacial adhesion behavior and found that the initiation of interfacial delamination was 

dependent on interfacial strength and energy. Using a simplified traction-separation law, 

Liu and Yang [115] studied the delamination behavior of a film-substrate structure with 

elastic-plastic film and substrate. They examined the effects of indentation depth and film 

thickness on the size of delamination zone. Few studies have been done on the 

indentation-induced interfacial failure of piezoelectric film structures. Yan and Shang 

[181] carried out numerical simulation to investigate the interfacial delamination of a 

sandwiched-cantilever-type piezoelectric structure by a point load, which was applied to 

the edge of the cantilever. They found that the bilinear cohesive model was more 

appropriate than the exponential and trapezoidal cohesive models in describing interfacial 

delamination for brittle structures. However, they did not give the electrical boundary 

condition in their finite element model.   

Application of the indentation technique to the characterization of piezoelectric films 

is in an embryonic stage. The mechanics of the contact-induced interfacial decohesion in 

piezoelectric film structures necessitates a systematic study before the indentation tests 

can be applied extensively in measurement of interfacial behavior and material properties 

of piezoelectric structures. In this chapter, a detailed finite element analysis is conducted 

to investigate the effects of interface properties, substrate properties, and film thickness 

on the indentation behavior of a transversely isotropic piezoelectric film—weakly bonded 

to an elastic and conducting substrate. Specifically the critical variables corresponding to 

the discontinuities in the indentation response curves are discussed.
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6.2 Problem formulation 

Consider a piezoelectric film weakly bonded to an elastic isotropic substrate. A 

traction-separation law [178,182,183,184,185,186] is used to model the interface 

interaction between the film and the substrate to analyze the separation of the film from 

the substrate. The interface is the only site where cracks or failure can occur. A pressure 

overclosure relationship governing the compressive behavior of contact surfaces is used 

to ensure that surfaces are impenetrable. The interfacial mechanism takes effect only 

when surfaces do not contact. 

The traction-separation law used is the same as the one referenced in [180], and is 

described briefly as below. For simplicity, the interfacial constraint in normal and 

tangential directions is assumed to be uncoupled (i.e. pure normal separation with zero 

shear slip by itself does not introduce interfacial force in the shear directions, nor does 

pure shear slip with zero normal separation by itself introduce interfacial force in the 

normal direction). The initial traction-separation behavior before damage initiation is 

linearly elastic as 

δT K                              (5.40) 

where T is the traction stress, K is the interfacial stiffness, and δ is its corresponding 

contact separation along the normal or shear direction. Contact separations are the 

relative displacements between the nodes on the slave surface and their corresponding 

projection points on the master surface along the contact normal and shear directions. 

Before initiation of delamination, the traction-separation law remains reversible. 

A quadratic stress criterion is used for damage initiation as  

2 2 2 2

0n s tT T T T    (5.41) 

where Tn, Ts and Tt are the normal and the two shear tractions respectively, and T0 is the 

interface strength representing the peak value of the interaction stress between two 

surfaces when the separation is either purely normal to the interface, or solely in the first 
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or the second shear direction. The symbol     represents the Macaulay bracket with 

its usual interpretation as 

0, 0

, 0

x
x

x x


 


 (5.42) 

which ensures that a purely compressive stress does not cause separation. 

The delamination at the interface is characterized by progressive degradation of the 

interfacial stiffness, which is described by the damage evolution law. After the damage 

initiation, the component of the contact stresses changes according to 

 

 

 

1 δ

1 δ

1 δ

n n

s s

s t

T D K

T D K

T D K

 

 

 

 (5.43) 

where δn, δs, δt are the normal and the two shear separations respectively, and D is the 

overall damage at the separation point. Before the damage initiation, D is 0. With the 

damage initiation, D evolves monotonically from 0 to 1 upon further loading. The 

moment that D reaches 1 is considered a threshold failure, which is the initiation of the 

interfacical decohesion between the film and the substrate. 

Damage evolution is defined based on the fracture energy that is dissipated as a 

result of the damage process. It is assumed that the critical fracture energies purely along 

the normal direction are the same as that purely along the first or the second shear 

direction. A linear mixed-mode fracture energy criterion, which is independent of the 

cracking mode, is used when complete failure occurs [180,187] 

n s t cG G G G    (5.44) 

where Gn, Gs, Gt are the work done by the surface tractions and their conjugate 

separations in the normal, the first and the second shear directions, respectively. Gc is the 

critical fracture energy required to cause the failure during separation purely along the 

normal direction or the first or second shear direction. The use of the fracture energy as a 

criterion for complete failure is reasonable since a fracture criterion based on the 
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maximum mechanical strain energy release rate for piezoelectric media under mechanical 

and electrical loading is proposed and verified by Park and Sun [188].  

After the damage initiation, the degradation of D is calculated by 

 
 

0

0

δ δ δ

δ δ δ

f m

eff eff eff

m f

eff eff eff

D





 (5.45) 

with  

2 2 2δ δ δ δeff n s t    (5.46) 

0δ 2f

eff cG T  (5.47) 

where δeff  is the effective separation, δ𝑒𝑓𝑓
𝑚   is the maximum effective separation 

attained during the loading history,  δ𝑒𝑓𝑓
𝑓

 is the effective separation at complete failure, 

and 𝛿𝑒𝑓𝑓
0  is the effective separation at damage initiation. When total failure occurs, there 

is [187] 

2 2 2δ δ δ δ f

n s t eff    (5.48) 

Unloading after damage initiation is assumed to occur linearly toward the origin of 

the traction-separation plane, as described by 

 
 

0

0

0

δ δ δ
δ    for 0 δ δ  and δ δ δ

δ δ δ

f m

eff eff eff m m f

eff eff eff eff eff eff effm f

eff eff eff

T K


    
   

(5.49) 

where Teff is the effective traction. The unloading path after decohesion initiation makes 

healing of decohesion excluded, since only part of the cohesive energy is recovered. 

Figure 6.1 shows the schematic of the traction-separation law in terms of traction vs. 

separation. A bilinear traction-separation law is used in the analysis. Reloading 

subsequent to unloading also occurs along the same linear path until the softening 

envelope (line AB) is reached.  
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6.3 Finite element modeling 

An axisymmetric finite element model in a cylindrical coordinate system (r, θ, z) is 

established in the ABAQUS software package to describe the indentation of the 

piezoelectric film-elastic substrate structure by a rigid sphere. The traction-separation law 

as discussed in the above section is used to define the interface between the piezoelectric 

film and the elastic substrate. The poling direction of the piezoelectric film, which is 

along axis-oz (i.e., positive z-axis), is anti-parallel to the loading direction. The 

piezoelectric film can be approximated as a single crystal, since there is a perfect 

orientation along c-axis or (001) for PZT thin films [189]. A piezoelectric lead zirconate 

titanate material, PZT-4 [188], is used for the film and its properties are listed in Table 6.1. 

The thickness of the film, t, is 10 nm. The elastic substrate of 2 µm thickness is 

conducting and electrically grounded. A conical indenter of semi-conical angle of 40.28˚ 

(equivalent to the cube-corner indenter) is used, and a tip radius of 5 nm is used to avoid 

stress singularity in the simulation. The maximum indentation depth is no more than half 

of the film thickness, which substantiates the assumption that the substrate is elastic 

[180,190,191]. The radial dimension is 5 µm and large enough to have negligible edge 

effect.  

Figure 6.2 shows the finite element mesh used in the simulation. Mesh refinement is 

accomplished near the contact region where there is a large stress gradient. The size of 

the element increases gradually with the distance away from the contact zone. There are 

15500 and 26660 elements for the film and the substrate, respectively. Finite sliding, 

node-to-surface formulation is used for substrate to film contact, with substrate as slave 

surface and film as master surface. Finite sliding, surface-to-surface formulation is used 

for indenter to film contact, with indenter as master surface and film as slave surface. The 

contact is frictionless. A zero electric potential constraint is applied on the bottom nodes 

of the piezoelectric film when the opening between the film and the substrate is smaller 

than 0.01 nm. No zero electric potential constraint is applied on the bottom nodes of the 
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piezoelectric film when the separation between the film and the substrate is larger than 

0.01 nm. The indenter is electrically grounded with zero electric potential. The indenter is 

rigid and represented by an analytical surface. The nodes on the outer circumferential 

edge of the piezoelectric film are electrically grounded to ensure the zero electric 

potential condition at infinity. An axisymmetric condition of zero radial displacement is 

applied at the axisymmetric axis. The indenter is gradually pushed into the film in a 

displacement-controlled way. The nodes of the piezoelectric film that are in contact with 

the indenter are constrained with zero electric potential.  

The simulation is performed step by step due to the change of the electrical boundary 

condition caused by the contact change. The effect of the electric field on the fracture 

criterion for piezoceramics is neglected, since the mechanical strain energy release rate 

accounts for the effect of the electric field very well [188]. 

The indentation load, F, can be determined from the force balance as [75] 

0
2 σ

a

zzF r dr    (5.50) 

where a is the contact radius, and σ𝑧𝑧 is the contact stress within the contact region. 

For the indentation by a grounded, rigid indenter, the total charge, Q, induced on the 

surface of the indenter can be calculated as [75] 

0
2

a

zQ rD dr    (5.51) 

where 𝐷𝑧 is the normal electric displacement within the contact region. 

6.4 Results and discussion 

Three parameters are needed to define the traction-separation law: (1) K, which 

controls reversible elastic stiffness; (2) T0, which represents the interfacial strength for 

damage initiation; and (3) Gc, which represents the energy consumed by interface 

separation. Two parameters are needed to characterize the linear elastic solid: (1) elastic 

modulus E; and (2) Poisson’s ratio ν. In the default conditions, film thickness is 10 nm, 
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and interfacial parameters listed in Table 6.2 and mechanical properties listed in Table 6.3 

are used for the interface and the linear elastic substrate. The interfacial strength, T0, is 

within the experimentally measured range [192,181,193]. In this study a brittle interface 

is assumed due to the brittle nature of piezoelectric film structures [189], and the work of 

adhesion is small to represent weak bonding between the film and the substrate.  

In the simulation, the variable D, which represents the overall damage, is directly 

monitored. The point when D just reaching 1 is used as a criterion for the decohesion 

initiation. At the instant of the cohesion failure, the indentation variables such as the 

indentation displacement, indentation load, and indentation-induced charge are regarded 

as the critical variables. 

Figure 6.3 shows the indentation responses including the load-displacement (F-h) 

and the induced-charge-displacement (Q-h) curves for a representative case for a weakly 

bonded interface. For comparison purposes, the results of a perfectly bonded contact are 

also included in Figure 6.3. There is no “pop-in” or “kink” event in the loading curve for 

a perfectly bonded contact. Both the indentation load and the indentation-induced charge 

increase with increasing indentation displacement. The loading and unloading responses 

are reversible for the perfectly bonded contact as expected for elastic deformation. Before 

decohesion occurs, the indentation responses are the same for weakly and perfectly 

bonded contact. For the piezoelectric film weakly bonded to the elastic substrate, there is 

a “pop-in” event at the indentation depth of ~0.9 nm in the loading curve, representing 

local decohesion failure. Both the load-displacement curve and the charge-displacement 

deviate from those of the perfectly bonding contact. These results reveal the dependence 

of the indentation behavior on the interfacial behavior of the film-substrate structure. It is 

interesting to note that the unloading behavior is different from the loading behavior once 

local decohesion failure occurs. 

Figure 6.4 shows the depth dependence of the derivatives of dF/dh and dQ/dh (h is 

the indentation depth). A sudden drop of the derivatives around the indentation depth of 
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0.9 nm is observed. Such a drop is associated with local interface decohesion created by 

the indentation, and is a salient feature of a weakly bonded interface. This behavior offers 

a viable technique to characterize the initiation of interfacial decohesion between a 

piezoelectric film and a substrate by using the derivatives of dF/dh and dQ/dh as well as 

the load-displacement and charge-displacement curves for the load-controlled 

indentation.  

Figure 6.5 shows the overall damage parameter of D on the interface between the 

film and the substrate for the loading phase. For small indentation depth, D is zero along 

the interface when the interface is intact. With increasing the indentation depth, D 

becomes nonzero and local damage initiates at the position of ~7.5 nm on the interface. 

The magnitude of D increases while increasing the indentation depth and reaches the 

value of 1 at the indentation depth of 0.9 nm, indicating the initiation of local decohesion 

on the interface. Further indentation causes the expansion of the decohesion zone. The 

decohesion initiates at a distance from the axisymmetric axis and grows both inwardly 

and outwardly along the interface. 

Using the results shown in Figure 6.5, the dependence of decohesion zone size on the 

indentation depth is depicted in Figure 6.6. Decohesion zone size increases with the 

indentation depth after the initiation of local decohesion on the interface. The larger the 

indentation, the larger the local decohesion zone size is. For indentation depth larger than 

2 nm, decohesion zone size is proportional the indentation depth. The unloading process 

has no effect on enlarging interfacial failure for the weak bonding between a piezoelectric 

film and an elastic substrate. The decohesion initiates and expands only during the 

loading process. 

Under the condition that D is smaller than 1, local damage can be “healed”, and the 

interface restores to the undeformed state after final unloading. For the portion of the 

interface, on which D=1, permanent failure occurs, and the decohesion remains 

unchanged after the final unloading. The “healing” on the interface, on which D<1, leads 
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to a slight decrease of the indentation load required for the same indentation depth during 

the unloading process, as shown in Figure 6.3. 

In general, the critical indentation depth/deformation to initiate interface decohesion 

is a function of material and interfacial properties. The following is focused on the 

parametric study to evaluate the influence of the interface and substrate properties on the 

critical indentation depth. Effect of film thickness is also discussed. 

Figure 6.7 shows dependence of the critical indentation depth, hc, for the onset of 

decohesion on the effect of interface energy. The interface stiffness and strength remain 

unchanged.  The critical indentation depth increases with increasing the interface energy, 

as expected. Larger interfacial adhesion energy certainly makes the interfacial failure 

more difficult and requires a larger indentation depth for the initiation of local decohesion. 

An approximately linear relationship between interface energy and the critical indentation 

depth is observed for Gc ≥ 0.7×10
-3

 J/m
3
. Note there is a constraint among K, T0 and Gc, 

that is 2

0 / (2 )cG T K . Gc cannot be arbitrarily small. 

Figure 6.8 shows the dependence of the critical indentation depth on the interface 

strength. The interface stiffness and interface energy remain unchanged. Note that there is 

a constraint among K, T0 and Gc, that is 0 2 cT KG . T0 cannot be arbitrarily large. For 

T0 ≤ 60 MPa, the critical indentation depth decreases with increasing the interfacial 

strength. There is a slight increase in the critical indentation depth for T0 > 60 MPa. Such 

behavior is associated with the constraint of constant interface energy and interface 

stiffness. Under the condition of constant interface energy and interface stiffness, the 

relative displacement between atoms decreases with increasing the interface strength to 

cause local decohesion. This is similar to the simple spring model for the atomic bonding. 

For a given bonding strength, the maximum separation between atoms decreases with the 

increase of the spring stiffness. The normal indentation onto the surface of the 

piezoelectric film causes radial displacement and the difference of the radial displacement 
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between the atoms in the piezoelectric film and the elastic substrate, which monotonically 

increases with increasing the indentation depth until reaching the maximum separation 

for the decohesion. For T0 ≤ 60 MPa, interfacial decohesion is dominantly controlled by 

the relative motion between the film and the substrate along the radial direction on the 

interface. The mechanism for the slight increase of the critical indentation depth for T0 > 

60 MPa is unclear. It is likely due to the transition from the shear-controlled decohesion 

to the mix-mode-controlled decohesion. Such behavior had been reported by Xia et al. 

[179] for the indentation-induced delamination between an elastic substrate and an 

elastic-plastic substrate. 

Figure 6.9 shows the dependence of the critical indentation for the occurrence of 

local decohesion on the interface stiffness. Note that there is a constraint among K, T0 and 

Gc, that is 𝐾 ≥ 𝑇0
2 (2𝐺𝑐)⁄ . Hence, K cannot be arbitrarily small. The effect of K on the 

indentation deformation of near-surface material is negligible for shallow indentation. 

The critical indentation depth decreases with increasing the interface stiffness, following 

similar trends to the effect of the interface strength and the spring model of atomic 

bonding. The relative displacement between the film and the substrate for local 

decohesion decreases with the increase of the interface stiffness under the condition of 

constant interface energy and interface strength.  

It is known that the mechanical properties of substrate play an important role in 

determining the indentation response of the film-substrate structure. The failure behavior 

of a hard-film-soft-substrate is distinct from that for a soft-film-hard-substrate. The 

elastic modulus of the substrate determined whether a film-substrate system is 

hard-film-soft-substrate or soft-film-hard-substrate [180].  

Figure 6.10 shows the effect of the elastic modulus of substrate, E, on the critical 

indentation depth. The critical indentation depth increases with the increase of the elastic 

modulus of the substrate. The higher the elastic modulus of the substrate, the smaller the 

deformation of the substrate is. The relative displacement between the film and the 
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substrate decreases with the increase of the elastic modulus of the substrate due to less 

deformation in the substrate. For the PZT-4 film-elastic substrate system, the system can 

be approximated as a hard-film-soft-substrate system when E<50 GPa and as 

soft-film-hard-substrate when E≥100 GPa. For large elastic modulus of the substrate, the 

critical indentation depth becomes relatively independent of the mechanical properties of 

the elastic substrate due to small deformation and the decrease of the maximum interface 

stress.  

It is worth noting that the contact size between the indenter and the film is dependent 

on the elastic properties of the substrate. For example, the contact area for the indentation 

depth of 0.9 nm is about 13.8 nm
2
 for E=100 GPa and 16.7 nm

2
 for E=200 GPa. The 

“pop-in” or “kink” event is not always recognizable. For small E, the “pop-in” event is 

more prominent. The reason for such behavior is that local decohesion is not always 

perceptible during indentation since the film may separate smoothly from the substrate 

without the snap-back instability as determined by the material and interface properties 

[179]. 

    Figure 6.11 shows the effect of Poisson’s ratio of the substrate, ν, on the critical 

indentation depth. The increase of the Poisson ratio causes a slight increase in the 

indentation depth. This result is because a large Poisson’s ratio causes more radial 

displacement of the substrate near the interface for the same indentation depth, which 

reduces the magnitude of the relative displacement between the film and the substrate. 

The effect of Poisson’s ratio on the critical indentation depth is less prominent than the 

elastic modulus of substrate, and the effect of Poisson’s ratio on contact radius is 

negligible under small indentation depth.  

The thickness effect on the contact deformation of piezoelectric material has become 

a primary interest to researchers recently, since the properties of thin-film PZTs are 

superior to those of bulk solids. The recent trend in the miniaturization of 

piezoelectrically active devices is driving research on the size-effect of these functional 
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materials under reduced length scales. Effect of film thickness, which is crucial for the 

design and fabrication of smart structures, on the contact behavior of piezoelectric 

materials needs to be examined. 

Figure 6.12 shows the effect of the thickness of the piezoelectric film, t, on the 

critical indentation depth. The critical indentation depth increases approximately linearly 

with increasing the film thickness. For a large film thickness, stresses distribute more 

uniformly near the interface in both the film and the substrate, which reduces the 

magnitude of stresses. This leads to small relative displacement between the film and the 

substrate for the same indentation depth and reduces the potential of local decohesion. 

The smaller the film thickness, the easier it is to induce local decohesion by the 

sharp-instrumented indentation for the same indentation depth. The confinement to the 

lateral displacement of thin films causes the indentation-induced interface failure for 

ultra-thin films. 

6.5 Conclusion 

Piezoelectric materials, which are of innate brittleness and susceptible to fracture, are 

usually subjected to a highly localized load by surface contact with electrodes in service, 

since contact stress concentration is a common form of loading for thin film structures. 

Finite element analysis of the linear electro-elastic indentation of monolithic piezoelectric 

thin films is expected to offer some desirable features and thus renders indentation of 

piezoelectric film structures great potential for becoming a new and fast method for the 

characterization of properties of both piezoelectric materials and interfaces.  

In this work, a traction-separation law is used for investigating the 

indentation-induced interfacial decohesion of a transversely piezoelectric film weakly 

bonded to an elastic and electrically grounded substrate. Under the condition of shallow 

indentation, the interface failure is predominantly by the shear decohesion. The 

measureable critical indentation depth for the onset of decohesion during indentation, 
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which corresponds to a threshold failure at the interface between the film and the 

substrate, can be used as a comparative method for determining the interface and material 

properties.  

The finite element results show that the two interfacial quantities of the 

traction-separation law can be determined from the indentation load and 

indentation-induced charge at the onset of failure at the film/substrate interface for the 

piezoelectric film-elastic substrate system. The “pop-in” event during indentation is only 

expected for certain interface behavior, since under some conditions, films can 

delaminate smoothly from substrate without the snap-back instability. The findings 

necessitate further probing into the complexities and detailed mechanics of the 

indentation of thin films constituted of smart materials. Films of larger thickness and 

substrates of large elastic modulus and Poisson’s ratio are desirable to prevent the 

initiation of interface crack for film-substrate structures. The results obtained from the 

finite element analysis of the indentation-induced interface decohesion of the PZT-4 film 

can be applicable to other transversely isotropic piezoelectric films. However, the effects 

of material properties of various piezoelectric films remain to be fully explored. 

 

. 
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Table 6.1 Material properties of PZT-4  

 
Elastic constant  

(10
10

 N/m
2
) 

Piezoelectric  

constant (C/m
2
) 

Dielectric constant  

(10
-10

 C/V m) 

 11C  12C  13C  33C  44C  31e  33e  15e  11  33  

PZT-4  13.9 7.78 7.43 11.3 2.56 -6.98 13.84 13.44 60.0 54.7 

 

Table 6.2 Parameters for an interfacial model 

K (GPa/nm) T0 (MPa) Gc (10
-3

 J/m
2
) 

2 50 1.25 

 

Table 6.3 Material properties for the elastic substrate 

Elastic modulus, E (GPa)  Poisson’s ratio, ν 

100 0.25 
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Figure 6.1 Schematic of the traction-separation law 

 

 

(a) 

 

(b) 

Figure 6.2 Finite element mesh for the film/substrate structure: (a) overview; and (b) 

enlarged view near the indenter 
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(b) 

Figure 6.3 Indentation responses of the piezoelectric film-elastic substrate structure: (a) 

indentation load (F) vs. indentation depth (h); and (b) electric charge (Q) accumulated on 

the conducting indenter vs. indentation depth (h) (interfacial parameters: K=2 GP/nm, 

Gc=1.25×10
-3

 J/m
2
, T0=50 MPa; substrate’s parameters: E= 100 GPa, ν=0.25; film 

thickness, t=10 nm) 
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Figure 6.4 Variation of the derivatives of dF/dh and dQ/dh with the indentation depth for 

the piezoelectric film-elastic substrate structure with a weakly bonded interface 

(interfacial parameters: K=2 GP/nm, Gc=1.25×10
-3

 J/m
2
, T0=50 MPa; substrate’s 

parameters: E= 100 GPa, ν=0.25; film thickness, t=10 nm 
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Figure 6.5 Evolution of the overall damage parameter, D, on the interface during the 

loading phase (interfacial parameters: K=2 GP/nm, Gc=1.25×10
-3

 J/m
2
, T0=50 MPa; 

substrate’s parameters: E= 100 GPa, ν=0.25; film thickness, t=10 nm) 
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Figure 6.6 Variation of the decohesion zone size (Ds) with the indentation depth during 

loading and unloading (interfacial parameters: K=2 GP/nm, Gc=1.25×10
-3

 J/m
2
, T0=50 

MPa; substrate’s parameters: E= 100 GPa, ν=0.25; film thickness, t=10 nm) 
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Figure 6.7 Dependence of the critical indentation depth (hc) on the work of adhesion for 

the initiation of local decohesion (interfacial parameters: K=2 GP/nm, T0=50 MPa; 

substrate’s parameters: E= 100 GPa, ν=0.25; film thickness, t=10 nm) 
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Figure 6.8 Effect of interfacial strength on the critical indentation depth for the initiation 

of local decohesion (interfacial parameters: K=2 GP/nm, Gc=1.25×10
-3

 J/m
2
; substrate’s 

parameters: E= 100 GPa, ν=0.25; film thickness, t=10 nm) 
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Figure 6.9 Influence of cohesion stiffness on the critical indentation depth for the 

initiation of local decohesion (interfacial parameters: T0=50 MPa, Gc=1.25×10
-3

 J/m
2
; 

substrate’s parameters: E= 100 GPa, ν=0.25; film thickness, t=10 nm) 
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Figure 6.10 Effect of elastic modulus of the substrate on the critical indentation depth for 

the initiation of local decohesion (interfacial parameters: K=2 GPa/nm, T0=50 MPa, 

Gc=1.25×10
-3

 J/m
2
; substrate’s parameters: ν=0.25; film thickness, t=10 nm) 
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Figure 6.11 Influence of Poisson’s ratio of the substrate on the critical indentation depth 

for the initiation of local decohesion (interfacial parameters: K=2 GPa/nm, T0=50 MPa, 

Gc=1.25×10
-3

 J/m
2
; substrate’s parameters: E=100 GPa; film thickness, t=10 nm) 
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Figure 6.12 Effect of the film thickness (t) on the critical indentation depth for the 

initiation of local decohesion (interfacial parameters: K=2 GPa/nm, T0=50 MPa, 

Gc=1.25×10
-3

 J/m
2
; substrate’s parameters: E=100 GPa, ν=0.25) 

 

. 

Copyright © Ming Liu 2012 



112 

 

Chapter - 7 Conclusions and prospective of future work 

7.1 Conclusion 

In this dissertation, the indentation deformation of transversely isotropic 

piezoelectric materials is investigated by recourse to finite element analysis. The focus is 

placed on effects of material orientation (i.e., angle between the indentation loading 

direction and the polarization direction). Both semi-infinite and thin-film piezoelectric 

materials are analyzed with different electrical and mechanical boundary conditions. 

In Chapter - 3, a 3D finite element model, which can be regarded as semi-infinite, 

was developed to investigate the frictionless indentation of homogeneous, transversely 

isotropic linear piezoelectric materials by a flat-ended indenter with different angles 

between the polarization direction and the indentation loading direction. Two types of 

indenters were considered: an insulating indenter, and a conducting indenter without 

prescribed electric potential. The finite element results revealed that both the indentation 

load and the magnitude of the indentation-induced potential linearly increased with 

increasing the indentation depth. The proportionality for the linear relationship between 

the indentation load and the indentation depth depends on the angle, type of indenters, 

and piezoelectric properties of materials. In contrast to the load-displacement relationship, 

the proportionality for the linear relationship between the indentation-induced potential 

and the indentation depth is only a function of the angle between the loading direction 

and the poling direction, independent of the type of indenters. Semi-analytical 

relationships as a function of the angle were established between the indentation load and 

the indentation depth and between the indentation-induced potential and the indentation 

depth. These relationships may be used in the indentation technique to measure the 

relative direction of the loading axis to the poling direction (axisymmetric axis) of 

transversely isotropic piezoelectric materials. 

In Chapter - 4, the Berkovich indentation of piezoelectric materials by an insulating 

indenter was studied by recourse to the 3D finite element analysis. The finite element 

results revealed that the indentation load was proportional to the square of the indentation 

depth. Using the analytical results for the indentation of a transversely isotropic 
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piezoelectric half-space with the loading direction parallel to the poling direction, a 

semi-analytical relationship between the indentation load and the indentation depth was 

obtained. The pre-factor for the relationship between the indentation load and the 

indentation depth depends on the angle and the piezoelectric properties of materials. In 

contrast to the load-displacement relationship, the indentation-induced potential at the 

contact center is proportional to the indentation depth. The proportionality is only a 

function of the angle between the loading direction and the poling direction, independent 

of the type of indenters. These relationships may be used in the indentation technique to 

measure the relative direction of the loading axis to the poling direction (axisymmetric 

axis) of transversely isotropic piezoelectric materials. 

In Chapter - 5, finite element analysis was carried out for the spherical indentation of 

transversely isotropic piezoelectric thin films perfectly bonded to a rigid substrate under 

different electrical boundary conditions. Six different combinations of the electric 

boundary conditions between the indenter and the film and between the film and the 

substrate were used to investigate the effect of electric boundary conditions on the 

electrical and mechanical responses of the piezoelectric film when the contact radius is 

much larger than the film thickness. The indentation load was found to be proportional to 

the square of the indentation depth for all six cases, with the smallest indentation load 

being required to produce the same indentation depth for the indentation by a grounded, 

conducting indenter with a grounded substrate and the largest indentation load for the 

indentation by an insulating indenter with an insulating substrate. For / 0.01h t  , the 

contact radius is proportional to the square root of the indentation depth and is 

independent of the electric boundary conditions. A simple formula was established for the 

calculation of the contact stiffness which is proportional to the contact area and inversely 

proportional to the film thickness in contrast to the result for the spherical indentation of 

semi-infinite piezoelectric materials. For / 0.2h t  , the indentation-induced electric 

potential at the contact center is a linear function of the ratio of /h t  for the contact 

radius being much larger than the film thickness with the slope   being dependent on 
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the electric boundary conditions. For the indentation by a conducting indenter with a 

grounded substrate and 3/ 10h t  , the total charge accumulated on the indenter is a 

power function of the ratio of /h t . The nominal piezoelectric charge coefficient 33d  is 

inversely proportional to the derivative of the electric potential with respect to the 

indentation depth for the indentation of piezoelectric films by a conducting indenter with 

a grounded, rigid substrate. 

In Chapter - 6, an interfacial traction-separation law was used for investigating the 

indentation-induced interfacial decohesion of a transversely isotropic piezoelectric film 

weakly bonded to a conducting and elastic substrate. For the displacement-controlled 

indentation, the finite element results showed that the two interfacial quantities of the 

traction-separation law can be determined from the indentation load and 

indentation-induced charge at the onset of failure at the film/substrate interface for the 

piezoelectric film-elastic substrate system. The “pop-in” event during indentation is only 

expected for certain interface behaviors since, under some conditions, the film can 

delaminate smoothly from the substrate without the snap-back instability. The findings 

necessitate further probing into the complexities and detailed mechanics of the 

indentation of thin films constituted of smart materials. Films of a larger thickness, 

substrates of large elastic modulus and Poisson’s ratio are desirable to prevent the 

initiation of interface crack for film-substrate structures. The results obtained from the 

finite element analysis of the indentation-induced interfacial decohesion of the PZT-4 

film can be applicable to other transversely isotropic piezoelectric films. However, the 

effects of the material properties of various piezoelectric films remain to be fully 

explored. 

The results obtained in this dissertation, which provide quantitative information of 

the indentation response of piezoelectric structures under different mechanical and 

electrical boundary conditions as well as different material orientations, are intended to 
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be helpful in gaining a better understanding of the contact mechanics of piezoelectric 

materials, and in facilitating the development of piezoelectricity-related research. For 

example, the results can be used for characterizing piezoelectric films and the poling 

direction of piezoelectric materials by indentation techniques. 

Although finite element results are in agreement with analytical solutions for the 

cases with closed-form solutions, comparison between simulation results and 

experimental data show significant difference. The indentation load in the simulation is 

much larger than that in experiments under the same indentation depth. The difference 

between simulation and experiments can be attributable to many factors such as the 

dynamic responses, non-linear and hysteresis behavior of piezoceramics, effects of defect 

(e.g., porosity and cracks), effects of microstructure features (e.g., grain size), effects of 

processing, depolarization and fracture of piezoelectric materials. It is a challenge to 

quantitatively predict the experimental results of indentation of piezoelectric materials 

based on the existing theoretical models.  

7.2 Prospects of future work 

7.2.1 Effect of materials and material orientation 

Only transversely isotropic piezoelectric materials are considered in this work. For a 

transversely isotropic piezoelectric material, there are 10 independent constants: namely, 

5 elastic, 3 piezoelectric, and 2 dielectric constants. However, there are many types of 

piezoelectric materials, which could be more anisotropic than transversely isotropic 

piezoelectric materials and have different features of the indentation response. Future 

research needs to consider the most general case of piezoelectric materials, which have 

45 independent constants, including 21 elastic, 18 piezoelectric, and 6 dielectric 

constants. 

7.2.2 Other piezoelectric materials 

For indentation by a flat-ended cylindrical indenter, the indenter considered is either 
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insulating or conducting without prescribed electric potential. The conducting indenter 

could be electrically grounded or prescribed a certain electric potential in experiments. 

Prominent effects of non-zero electric potential applied on the conducting indenter on 

indentation load, contact radius, and electric charge were found in reference [26]. It 

follows that a conducting indenter with a certain prescribed electric potential should also 

be considered in the future work. For the Berkovich indentation, only insulating indenter 

is considered. Conducting indenters, which require a rather laborious task, need to be 

investigated. 

7.2.3 Effect of mechanical boundary conditions 

For the indentation of a piezoelectric half space, only two indenters (i.e., flat-ended 

cylindrical and Berkovich indenters) are considered. The analytical solutions of the 

contact deformation of piezoelectric materials have been limited to axisymmetric 

geometries, and approximate solutions might not be easily generalized. Other indenters 

such as Vickers, wedge and cubic-corner indenters will be considered in the following 

work.  

The effect of friction between indenter and indented surface is only considered for 

the Berkovich indentation by an insulating indenter. It is desirable to explore the effect of 

the friction between indenter and indented surface for different indenters and electrical 

boundary conditions.  

Adhesive contact between indenter and indented surface is not considered in the 

present work. However, adhesive contact between indenter and coated material like that 

between film and substrate in Chapter - 6 is desirable to be taken into account especially 

under the condition of shear loading. Theory of adhesive contact has recently been 

extended to the case of a rigid sphere onto an elastic film perfectly bonded to a rigid 

substrate [194]. The work on adhesive contact of piezoelectric materials needs to be 

performed. 
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The indenter considered is rigid. However, elastic deformation of the tip material 

should be accounted to modify the ideally rigid displacement. For tips coated by 

conductive metals such as Au (EAu=78 GPa) or Pt (EPt=168 GPa), the contribution of tip 

material to effective Young’s modulus E* is considerable, resulting in substantial increase 

of contact area [4]. An indentation load larger than a critical value can also cause yielding 

of the indenter. Total compliance should take into account the compliance between 

indenter and back surface as well as the compliance between indenter and specimen [2]. 

In addition, tip flattening due to wear and rough surface contact [195] is inevitable under 

realistic conditions. A sufficiently obtuse apex is highly preferable [68]. Hence, the 

influences of indenter tip geometry as well as surface roughness are worth of studying in 

the future. 

For the indentation of piezoelectric thin films, only spherical indenter and a bi-layer 

structure were considered. The substrate considered was purely isotropic elastic. A 

detailed analysis requires investigation of effects of different indenters (e.g., conical, and 

flat-ended cylindrical indenters), different substrates (elastic-plastic substrates, 

anisotropic substrates, and substrates with electromechanical coupling). In addition, 

multilayer structures should also be considered, since indentation of multilayer structures 

has become a primary interest to researchers recently, and crack might be suppressed in a 

multilayer structure if the layers are sufficiently thin [196].  

Copyright © Ming Liu 2012 
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