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ABSTRACT OF DISSERTATION 

 

 

BIOSENSING SYSTEMS FOR THE DETECTION OF BACTERIAL QUORUM SENSING 
MOLECULES: A TOOL FOR INVESTIGATING BACTERIA-RELATED DISORDERS AND FOOD 

SPOILAGE PREVENTION 

 

Quorum sensing enables bacteria to communicate with bacteria of the same or 

different species, and to modulate their behavior in a cell-density dependent manner. 

Communication occurs by means of small quorum sensing signaling molecules (QSMs) 

whose concentration is proportional to the population size.  When a QSM threshold 

concentration is reached, certain genes are expressed, thus allowing control of several 

processes, such as, virulence factor production, antibiotic production, and biofilm 

formation. Not only many pathogenic bacteria are known to produce QSMs, but also 

QSMs have been identified in some bacteria-related disorders. Therefore, quantitative 

detection of QSMs present in clinical samples may be a useful tool in the investigation 

and monitoring of bacteria-related diseases, thus prompting the use of QSMs as 

biomarkers of disease. Herein, we have developed and utilized whole-cell biosensing 

systems and protein based biosensing systems to detect QSMs in clinical samples, such 

as, saliva, stool, and bowel secretions. Additionally, since bacteria are responsible for 

food spoilage, we employed the developed biosensing systems to detect QSMs in food 

samples and demonstrated their applicability for early identification of food 

contamination. Furthermore, we have utilized these biosensing systems to screen 

antibacterial compounds employed for food preservation, namely, generally regarded as 

safe (GRAS) compounds, for their effect on quorum sensing.  

 

Keywords: Whole-cell based biosensing systems, protein based biosensing systems, LuxP 

binding protein, Inflammatory bowel disease, Generally recognized as safe compounds 
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CHAPTER ONE 

INTRODUCTION 
 

 

Cutting edge scientific and technological research has given rise to a gamut of 

new analytical tools that were previously unimaginable. With advancements in genetic 

research, an understanding of the workings of DNAs, RNAs, and proteins of prokaryotes 

as well as eukaryotes developed. Techniques of molecular biology have been used to 

manipulate and investigate these biological elements. A few of these techniques are 

Polymerase Chain Reaction (PCR) to amplify and mutate DNA, gel electrophoresis to 

purify DNAs and proteins, protein expression and purification techniques to produce 

and isolate proteins, southern and northern blotting to quantitatively detect target 

genes, and enzyme linked immunosorbent assay (ELISA) for analyte detection. 

Subsequently, nucleic acids and proteins as well as entire bacterial cells have been 

modified to be used in the design and development of biosensors1-5.  

A biosensor is defined as a biological element coupled with a transducer so that 

an analyte biospecific recognition event is translated into a measurable output. To date, 

a number of biosensors based on proteins and cells as the recognition elements have 

emerged, and a few of them have been applied as point of care devices6 and for 

environmental monitoring7. Although such biosensing systems offer huge promise in the 

management of a variety of disorders, including bacteria related conditions, such as 

infections, inflammatory bowel disease (IBD), and cystic fibrosis (CF), their use is still 

limited. Furthermore, complexities in the treatment of bacteria related conditions have 
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been on the rise due to the emergence of several antibiotic resistant bacteria and 

demand urgent attention for alternative treatment approaches.  

Bacterial quorum sensing (QS) — a system of communication among bacteria 

that is based on small signaling molecules termed quorum sensing molecules (QSMs) — 

may offer an avenue of alternative therapy. In that regard, bacteria are known to 

employ QS to control processes, such as virulence factor production and biofilm 

formation, in a population size dependent manner; hence, disruption of the bacterial 

chatter necessary for pathogenicity may lead to a new way to treat bacterial infections. 

Additionally, investigations into bacteria related disorders have led to discoveries 

pointing to a role for QS in disease. For instance, QSMs have been identified in clinical 

samples of CF patients8,9. Bacterial communities thrive in the human body; it has been 

suggested that the number of bacteria in the human body is at least one order of 

magnitude higher than the number of human cells. For example, bacteria colonize the 

gastrointestinal (GI) tract from mouth to anus and contribute to about 60 percent dry 

mass of feces. Usually, a symbiotic relationship exists between the host and the 

bacterial flora. However, evidence suggests that there may be changes in the microflora 

and host-microbial interactions during the course of disease. A change in the microflora 

would also result in alteration of the relative balance of QSMs. Therefore, detection of 

QSMs in physiological samples may be a valuable means to evaluate variations in 

bacterial composition and serve as a tool for monitoring the disease status and for 

investigating the disease mechanisms.  
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 The present thesis work is focused on the development and application of 

biosensing systems that can be employed to detect QSMs in clinical samples. Different 

categories of QSMs exist as described in detail later. Specifically, we developed and 

utilized whole cell based biosensing systems to detect the following QSMs: long and 

short chain N-acyl homoserine lactones (AHLs) and Autoinducer-2 (AI-2). For that, 

several clinical matrices were investigated, including stool, saliva, bowel secretion, 

blood serum, and blood plasma. Each type of biological matrix is unique in its 

composition and, therefore, needs to be assessed for potential effects that it may exert 

on the analytical performance of each whole cell biosensing system.  

 With progress in the field of biotechnology, which led to important 

advancements, such as the large-scale production of recombinant protein drugs and 

vaccines, it has also been easier than ever to create biological threats that can be used 

in a bioterrorism attack and spread by means of daily utilized food products, such as 

milk and beef, thus affecting a larger percentage of the population. Additionally, 

bacteria are well known to be responsible for food spoilage. Forty eight million 

foodborne illnesses per year are reported in the United States, which leads to elevated 

health care costs, with more than a quarter million hospitalizations and more than 3000 

deaths per year10. Therefore, there is a need for rapid, easy-to-use, cost-effective 

analytical tools for early detection of food decay and prevention of biological food 

contamination threats.  

To that end, we evaluated the analytical performance of the developed whole 

cell biosensing systems in food matrices and employed them for the detection of QSMs 
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in food samples as a method for early detection of bacterial contamination in food. In 

addition, we explored a number of Generally Recognized As Safe (GRAS) compounds for 

their effect on bacterial QS. The selected compounds are known to inhibit bacterial 

growth and, due to their safety, have potential to be employed for food preservation; 

however, their mechanisms of action are not fully elucidated. Understanding the 

mechanism of action of these compounds would enable targeted preventive measures 

in combating bacterial contaminations as well as biological threats.  

Lastly, a protein based sensor for the detection of AI-2 was designed and 

developed. This sensor relies on the direct interaction of a binding/recognition protein 

with a target analyte. Therefore, in addition to being useful for AI-2 detection in 

physiological and food samples, it is suitable for binding studies aimed at investigating 

and characterizing a variety of compounds able to interfere with QS, including the GRAS 

compounds mentioned above and molecules to be explored as new treatments for 

bacterial infections. We envision that the availability of a panel of biosensing systems 

for detection of QSMs will help augmenting our understanding of bacterial communities 

and, thus, facilitate the design of alternative strategies to combat bacteria related 

disorders. 

 

Quorum sensing signaling molecules 

Bacteria, although single-cell organisms, have complex behavior. One such 

behavior relates to the ability of bacterial cells to communicate with their neighboring 

cells. This phenomenon was first reported in 1965 by Tomasz11 who described 
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“hormone like activators” that were crucial in the propagation of the Gram-positive 

bacterium Streptococcus pneumoniae, which is one of the organisms responsible for 

pneumonia pathogenicity in their hosts. Later, in 1970, Hastings et al. observed that the 

Gram-negative marine bacterium Photobacterium fischeri produces bioluminescence 

only when bacteria reach a certain cellular density in terms of number of cells present, 

and speculated that light emission was under a bacterial “control mechanism”. It is now 

well understood that bacteria of the same species or of different species communicate 

with each other by producing and sensing small chemical molecules in a process termed 

as quorum sensing. This phenomenon has been observed in a number of bacteria12, and 

it is now understood that by means of QS, bacteria are able to control several processes, 

for example bioluminescence, virulence factor production, biofilm formation, antibiotic 

production, competence, nodulation, sporulation, clumping, and motility. The small 

chemical molecules that bacteria utilize for QS are known as QSMs. By detecting the 

QSMs, bacteria can modulate the above mentioned processes in a cell density-

dependent manner. For example, in a bacterial infection, bacteria do not produce 

virulence factors until they reach a critical population density and, by doing so, they 

ensure that they can overwhelm the host’s immune response13. 

Several groups of QSMs have been identified, which include AHLs in Gram-

negative bacteria and a class of autoinducing peptides (AIPs) in Gram-positive bacteria. 

Whereas AHLs and AIPs are species-specific and, therefore, used for intra-species 

communication, a third category of molecules, AI-2, has been found in both Gram-

positive and Gram-negative bacteria, suggesting a potential role in inter-species 
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communication within bacteria14. Table 1 lists some of these signaling molecules and 

the bacteria that use them in cell-to-cell communication. Briefly, AIPs are peptides 

ranging from 5 to 17 amino acids in length, which are post-translationally modified to 

yield a variety of linear and cyclic structures in Gram-positive bacteria. QSMs of Gram 

negative bacteria, AHLs, are composed of fatty acyl chain of 4 to 18 carbons in length 

attached to a homoserine lactone ring through an amide bond; AHLs present in nature 

have acyl chains of even numbers of carbons. Furthermore, the third carbon in the acyl 

chain can be fully reduced or may contain a hydroxyl or a carbonyl group. This 

substitution at the third carbon varies based on the fatty acid from which it is derived. 

Among the three types of QSMs mentioned above, AI-2 has been discovered more 

recently and shown to be comprised of a group of structurally related compounds; at 

least two of these compounds have been demonstrated to be employed as QSMs by 

bacteria, namely, a furanosyl borate diester form of AI-2 used by the marine bacterium 

Vibrio harveyi and a hydrated form, not containing boron, used by the intestinal 

pathogen Salmonella typhimurium15. Furthermore, some bacteria have multiple QS 

circuits based on more than one kind of QSM; for example, V. harveyi utilizes N-(3-

hydroxybutanoyl)-L-homoserine lactone and the furanosyl borate diester form of AI-2 to 

control bioluminescence16. Recently, Sperandio et al. have discovered an additional 

QSM, autoinducer-3, AI-3 (unknown structure), which binds to the membrane protein 

QseC and activates virulence in enterohemorrhagic Escherichia coli (EHEC)17,18. Further, 

it has been shown that the mammalian hormones, epinephrine and norepinephrine, are 

recognized by the same protein QseC and activate virulence in EHEC7, suggesting 
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involvement of the AI-3 QS system in interkingdom bacterial–mammalian cells 

communication. 

 

Quorum sensing regulatory systems 

The QS pathways of the three major types of bacterial QSMs listed above are 

outlined in Figures 1, 2, and 3. Most Gram-negative bacteria utilize AHLs as QSMs; their 

QS systems are similar to that of Vibrio fischeri, which was one of the first QS regulatory 

systems to be thoroughly investigated. This bacterium uses QS to regulate expression of 

the genes responsible for bioluminescence. It utilizes N-3-oxo-hexanoyl homoserine 

lactone (3-oxo-C6-HSL) as the cognate QSM, which is synthesized in the cytoplasm by 

the AHL synthase protein LuxI. Once formed, 3-oxo-C6-HSL diffuses out of the cell and 

freely enters into the neighboring bacteria, where it binds to the transcriptional 

regulatory protein LuxR upon reaching a threshold concentration. As the population 

density increases, the concentration of 3-oxo-C6-HSL also increases proportionally. By 

being able to synthesize and detect 3-oxo-C6-HSL, V. fischeri can thus estimate its 

population size. The LuxR protein, upon binding 3-oxo-C6-HSL, forms the LuxR–3-oxo-

C6-HSL complex, which binds to the operator/promoter region of the luxICDABE operon 

to express the enzymes involved in bioluminescence. Specifically, the genes luxA and 

luxB encode bacterial luciferase, and the luxC, luxD, and luxE genes code for the 

enzymes required for the synthesis and recycling of the long chain aldehyde substrate 

for luciferase. The light output obtained is proportional to the amount of 3-oxo-C6-HSL 

present in the environment, which is relevant for the development of whole-cell sensing 
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systems based on QS regulatory systems, as highlighted in following sections of this 

work. While AHL based QS controls bioluminescence in V. fischeri, it regulates diverse 

functions in other bacteria by means of a variety of LuxI and LuxR homologue proteins.  

Notable examples are the AHL-dependent LasI/LasR and RhlI/RhlR QS systems of 

Pseudomonas aeruginosa, which control production of virulence factors and biofilm 

formation in this microorganism. Figure 1 shows a general schematic of AHL dependent 

QS system.  

AIPs are utilized by Gram-positive bacteria for QS. Various peptide lengths and 

post-translational modifications have led to diverse structures of AIPs, thus conferring 

selectivity and specificity. Several Gram-positive bacteria have been studied in detail 

and shown to follow a general theme, as outlined in Figure 2. Briefly, AIP originates from 

a precursor peptide through post-translational processing and modifications, and is then 

secreted out of the cell by an ATP-binding cassette transporter. The AIP signaling 

pathways are comprised of two component signaling systems. These two components 

include a sensing receptor protein, which binds the AIP, and a response regulatory 

protein, which translates the binding event into expression of target genes, including 

the QS regulated genes and those responsible for synthesis of the AIP precursor and 

release of AIP. Specifically, AIP binding to the receptor protein, which is a histidine 

sensor kinase, triggers autophosphorylation at a conserved histidine residue, followed 

by a cascade of phosphorylation events, which ultimately transfer the phosphate group 

to a conserved aspartate residue of the response regulatory protein. The 

phosphorylated response regulatory protein then binds to specific DNA regions and 
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activates transcription of the regulated genes. Some examples of two component 

systems include the ComD/ComE competence system in S. pneumoniae, ComP/ComA 

competence and sporulation system in Bacillus subtilis, and AgrC/AgrA virulence system 

in Staphylococcus aureus.   

In contrast to QS systems utilizing AHLs and AIPs, which are usually specific to 

Gram-negative and Gram-positive bacteria respectively, those that utilize AI-2 have 

been found in both types of bacteria. Bassler et al. have reported that AI-2 is not only 

produced, but also sensed by a large number of bacterial species19. Generally, AI-2 

refers to a group of isomers derived from the hydrated form of the precursor 2,3-

dihydroxy-4,5-pentanedione (DPD) (Figure 3A). Although only the borate isomer 

derivative of DPD, S-THMF-borate, was previously thought to be the active form 

recognized by the protein LuxP and its homologues, more recently, a different isomer, 

R-THMF has been found to be the cognate molecule of the sensor protein LsrB in S. 

typhimurium. The mechanism of QS in AI-2 based systems is represented in Figure 3B. 

Briefly, AI-2 is synthesized in the cell by Pfs and LuxS enzymes. Pfs converts S-

adenosylhomocysteine (SAH) to S-ribosylhomocysteine, which is converted to DPD by 

action of LuxS. Once formed, DPD undergoes instantaneous cyclization to form an 

isomeric mixture (Figure 3B). In the presence of borate, which is abundant in the 

oceanic environment, S-THMF-borate is formed. AI-2 diffuses out of the cell and can 

enter bacteria of the same or other species. The receptor of AI-2 in V. harveyi is the 

protein LuxP, which belongs to the class of periplasmic binding proteins. Upon AI-2 
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binding to LuxP, the LuxP-AI-2 complex regulates the expression of controlled genes 

through a cascade of phosphorylation/dephosphorylation steps.  

 

Quorum sensing molecules in disease 

 Numerous in vitro and in vivo studies have demonstrated that expression of 

bacterial virulence factors responsible for infections in mammalian hosts is regulated by 

QS. Several such studies concerning GI tract infections have been discussed in a recent 

review by Kaper and Sperandio20. For example, in the case of EHEC, which causes bloody 

diarrhea and hemolytic-uremic syndrome, involvement of AI-3 in regulating the 

expression of virulence factors was demonstrated in a HeLa cell infection model using 

wild-type EHEC and a LuxS mutant-LuxS has been shown to be involved in the 

production of AI-321. In an animal study22, burn wounds of mice models were infected 

with wild-type P. aeruginosa and variants of the same bacterium carrying mutations in 

the genes encoding for AHL synthase. The objective of the study was to determine the 

efficiency of infection by assessing the ability of the bacteria to spread the infection and 

the time required for the onset of infection. It was observed that in mice infected with 

P. aeruginosa mutants unable to synthesize AHLs, the extent of infection was lower than 

in those infected with wild type bacterium. The evidence gathered is indicative of the 

relevance of bacterial communication in diseases of bacterial origin and, thus, the 

importance of detecting QS signaling molecules in physiological samples. 

 Identification of QS regulatory pathways in a number of bacteria12 has enabled 

whole-cell-based biosensing systems to be engineered to detect QSMs by coupling the 
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genes coding for different QSM recognition and/or regulatory proteins to those of a 

variety of reporter genes20. As an example, Winson et al. designed reporter plasmids by 

placing the reporter gene cassette luxCDABE under the control of the PlasI and PRhlI 

promoters from the P. aeruginosa QS regulatory systems LasI/LasR and RhlI/RhlR, 

respectively. The plasmids also contained the sequences of the LasR and RhlR proteins, 

which, upon binding AHLs, bind to the respective promoters, thus activating expression 

of the reporter protein23. In another example16, Bassler et al. engineered a strain of V. 

harveyi in such a way that the bacterium’s bioluminescence, which depends on 

expression of the luxCDABE gene cassette, was only triggered by AI-2, thus enabling 

detection of this QSM (as reported above, in wild-type V. harveyi expression of the 

bioluminescence genes is triggered by both AI-2 and an AHL, N-(3-hydroxybutanoyl)-L-

homoserine lactone).  

 Most of the above cell-based systems have been used as bioassays to evaluate 

the ability of cultured bacteria to produce QSMs. However, only a few have been 

applied to the detection of QSMs in physiological and clinical samples in order to 

correlate the presence of pathogenic bacteria with the onset or status of disease. Two 

independent studies demonstrated the presence of AHLs in sputum samples from 

patients with cystic fibrosis8,9 by using whole-cell sensing systems. It is known that P. 

aeruginosa and Burkholderia cepacia colonize the airway passage and lungs in CF 

patients, leading to chronic lung infection and finally to destructive lung disease24. These 

two species of bacteria use AHL-dependent QS regulation. In the study conducted by 

Middleton8 et al., sputum samples from CF patients colonized by either P. aeruginosa or 
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B. cepacia, were extracted and then analyzed using an E. coli whole-cell-based 

biosensing system containing plasmids pSB401 and pSB1075 to detect short and long-

chain AHLs, respectively. Among P. aeruginosa-colonized sputum samples, 71% showed 

the presence of short-chain AHLs and 61% showed presence of long-chain AHLs. 

Similarly, among B. cepacia-colonized sputum samples, 81% contained short chain AHLs 

and 50% contained long-chain AHLs. This AHL production profile was different from that 

of laboratory cultures of the same microorganisms isolated from sputum samples, in 

which long-chain AHLs were predominant. The difference in AHL profile was thought to 

be explained by dissimilar growth conditions, in vitro and in the lung. In that regard, this 

varied behavior of P. aeruginosa from lung infection had previously been observed by 

Singh25 et al., who hypothesized that P. aeruginosa exists predominantly as a biofilm in 

CF sputum. Further, LC–MS analysis of the same samples revealed the presence of 

short-chain AHLs, but not that of long-chain AHLs, indicating that the whole-cell-based 

biosensing system was more sensitive for detection of AHLs in sputum samples. Another 

study published the same year by Erickson et al. further corroborated the presence of 

AHLs in sputum samples from CF patients9. P. aeruginosa-based whole-cell biosensing 

systems containing plasmids pKDT17 (to detect long-chain AHLs) and pECP61.5 (to 

detect short chain AHLs), both utilizing lacZ as a reporter, were used. 

Although the levels of AHLs detected were low, over 75% of the samples had 

long-chain AHLs whereas only 26% of the samples had short-chain AHLs. This finding is 

in contrast with the results of the study by Middleton8 et al. However, differences in the 

groups of patients, along with different sample extraction and/or processing methods 
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and the use of sensing systems based on different microorganisms might explain 

different results. Along the same lines, Chambers et al. detected a broad range of AHLs 

in mucopurulent respiratory secretion samples obtained from CF patients26. They used 

Agrobacterium tumefaciens-based whole-cell biosensing system A136, containing 

plasmids pCF218 and pMV26 with luxCDABE as a reporter, allowing it to respond to both 

long and short-chain AHLs (4–12 carbon atoms). AHLs were extracted from the 

mucopurulent respiratory secretion samples, separated by reversed-phase fast pressure 

liquid chromatography (FPLC), and each fraction was then assayed with the A. 

tumefaciens A136 sensing system in 96-well microtiter plate format. Further, identities 

of the AHLs present in positive fractions were confirmed by comparing their retention 

times with those of standard AHLs. Using the whole-cell sensing system combined with 

FPLC, the authors were able to detect low concentrations of AHLs in small volumes of 

samples from nine (out of thirteen) CF patients and to identify seven different AHLs.  

Our research group used whole-cell biosensing systems to evaluate QSMs in 

physiological samples from individuals affected by bacterial GI disorders, including IBD. 

Two of the major conditions of IBD, ulcerative colitis (UC) and Crohn’s disease (CD), 

involve chronic and relapsing acute inflammation in the large and small intestine, 

respectively, with CD being able to affect any portion of the GI tract. Current methods of 

diagnosis and monitoring rely on endoscopic techniques and analysis of mucosal tissue 

biopsies taken from the inflamed regions. Alternative tools that can serve as non-

invasive biomarkers for such diseases can prove very beneficial. To that end, we have 

developed and optimized E. coli based bioluminescent whole-cell sensing systems 
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containing plasmids pSB406 and pSB1075, which bear luxCDABE as a reporter, for 

detection of short and long-chain AHLs, respectively23,27. These biosensing systems have 

then been used to evaluate AHLs in human samples, for example saliva and stool 

samples, which bear the advantage of being collected non-invasively. The effect of 

components of the sample matrix was evaluated by generating dose–response curves in 

spiked pooled samples after minimal processing (no sample extraction or extensive 

preparation). Importantly, nanomolar limits of detection were obtained in biological 

matrices, which is relevant in that nanomolar concentrations of QSMs are necessary to 

initiate cell-to-cell communication 27. Saliva samples from IBD and healthy individuals, 

and stool samples from newborns admitted to a neonatal intensive care unit (NICU) 

were then assayed27. AHLs were detected at different levels in the specimens tested, 

showing for the first time the presence of these QSMs in such physiological samples. 

More recently, we also detected QSMs in blood samples of IBD patients (manuscript in 

preparation). If a correlation is established between the QSM levels in samples and the 

health status of a patient, it may be possible to use QSMs as biomarkers of bacteria-

related disorders, which should aid in the management of the disease. Studies are 

currently in progress in our group in which physiological samples from selected sets of 

GI patients and matched controls are analyzed for their QSM content to evaluate 

relationships between QSM levels and disease status. One such clinical study involved 

stool samples that were obtained from infants admitted to the NICU for a variety of 

illnesses, including bowel inflammation and bacterial sepsis28 (submitted manuscript). 
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Interference with quorum sensing 

QS has evolved to assist bacteria to effectively communicate among each other 

and regulate expression of phenotypes that are involved in pathogenicity, such as, 

virulence determinant production and biofilm formation. In the past few decades, 

several examples of interference with bacterial communication as a means to interrupt 

the bacterial chatter and, thus, block pathogenicity, have been reported. Since bacterial 

QS depends on the presence of QSMs and their interaction with cognate receptors, any 

molecule or enzyme that either blocks the synthesis or accumulation of QSMs, or 

prevents them from binding to the receptor proteins, can interfere with QS.  

QS interfering compounds include those from natural sources29-31 as well as those that 

are synthesized32,33 in the lab. Jakobsen34 et al. have analyzed over 60 extracts of 

vegetables, fruits, and spices, and found that extracts from horseradish, Tasmanian blue 

gum, and ginkgo  showed a clear QS inhibitory activity in the screening assays employed. 

Further investigation using LC-MS and NMR spectroscopy led to the identification of 

iberin, an isothiocyanate (Figure 4A), as the compound responsible for the potent 

inhibitory effect of horseradish on QS in P. aeruginosa. Widmer and co-workers35 

studied several fatty acids from poultry meat and proved that four of them, linoleic acid, 

oleic acid, palmitic acid, and stearic acid, exhibited an inhibitory effect on the AI-2 based 

QS system (Figure 4B). Few other natural compounds that have been reported to 

interfere with QS include cinnamaldehyde from cinnamon36 and ursolic acid from 

apples37. Works by Koh et. al and by Zahin et. al  provide further evidence of the anti-QS 

activities of the traditional Chinese medicinal plants38 and  medicinal plants from India39, 
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respectively. These studies prompted us to investigate GRAS compounds for their effect 

on QS. GRAS compounds are food additives that are considered to be safe and are 

approved by food and drug administration10. A database of GRAS compounds is 

maintained by the FDA40, and currently includes 373 compounds, with more compounds 

added each year. 

 

Inhibition of QSM synthesis 

 Since all types of QSMs are synthesized in the bacterium by their respective 

synthases, it is apparent that if the synthase enzyme is inhibited, QS and the genes 

regulated by QS will also be affected. As a result, several compounds that interfere with 

QS by inhibiting the synthesis of QSMs have been identified. For example, in P. 

aeruginosa the AHL synthase RhlI synthesizes N-butanoyl-L-homoserine lactone (C-4 

HSL) by using crotonyl-acyl carrier proteins and S-adenosylmethionine (SAM). The 

compounds S-adenosylhomocysteine and sinefungin are analogues of SAM (Figure 5A) 

that inhibit the RhlI catalyzed synthesis of C-4 HSL41. Similar studies have been 

conducted to find inhibitors that can block AI-2 synthesis42-44. The precursor S-ribosyl-L-

homocysteine (SRH) is required for AI-2 synthesis; Zhou et. al reported that the SRH 

analogues, S-anhydroribosyl-L-homocysteine and S-homoribosyl-L-cysteine, exhibited 

inhibitory activity against the AI-2 synthase, LuxS43 (Figure 5B). In addition, Shen et.al 

synthesized and analyzed several SRH analogs for their activity as LuxS inhibitors. They 

found that two analogs of SRH, (2S)-2-amino-4-[(2R,3S)-2,3-dihydroxy-3-N-

hydroxycarbamoylpropylmercapto]butyric acid and (2S)-2-amino-4-[(2R,3R)-2,3-
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dihydroxy-3-N-hydroxycarbamoylpropylmercapto]butyric acid, acted as potent 

inhibitors of LuxS42. 

 

Degradation of QSMs 

 A well-studied example of interference with AHL-mediated QS is that of QSM 

degradation by AHL lactonases, which break open the lactone ring of AHLs to produce 

the corresponding acyl homoserines, thus reducing the activities regulated by QS45. In 

addition to lactonases, there are acylases that work by breaking the AHL amide bond to 

produce fatty acids and homoserine lactones45. Genome analysis revealed that acylase 

and lactonase homologues are present in a number of bacterial species. The 

fundamental knowledge of lactonases was put to use by Dong et. al, who introduced the 

aiiA gene encoding for an AHL-lactonase into the genome of tobacco and potato 

plants46. After infecting these plants with pathogenic Erwinia carotovora, the transgenic 

plants showed a substantial reduction in the extent of infection as compared to the 

control plants without aiiA. In addition to these naturally existing interfering enzymes 

that exert their action by degrading the QSMs, an alternative approach was proposed by 

Janda47 et. al who produced an anti-autoinducer monoclonal antibody that could inhibit 

QS by sequestration of the AIP-4 produced by group 4 S. aureus. Further, they utilized 

the anti-autoinducer antibody in a mouse model and found that it did not only suppress, 

but also provided complete protection against the S. aureus infection. 

 

Interference with QSM receptor 
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 Irrespective of the type of bacteria, a QSM either binds to a membrane bound 

receptor or passively transported in the cell where it binds to its cognate receptor48. 

Therefore, molecules that bind to the QSM receptor but do not elicit subsequent 

biological response, can serve as inhibitors of QS and the processes regulated by the 

QSM receptor.  

 A number of molecules have been investigated that inhibit QS by binding to the 

QSM receptor. In the Gram positive bacteria S. aureus, a truncated form of an 

autoinducing peptide specific for a certain group of bacterial strains was able to inhibit 

the agr virulence response in all four groups of S. aureus strains49; it was found that the 

inhibited target was the AIP receptor, histidine sensor kinase AgrC. Further studies 

identified several compounds that were able to show an inhibitory effect due to binding 

to the AIP receptors50,51. QS systems utilizing AHLs as QSMs can also be inhibited by 

compounds that bind to the AHL receptors. Efforts have been mostly focused on finding 

AHL antagonists by modifying AHLs, which are comprised of a lactone ring and an acyl 

side chain. Therefore, inhibitors that block the AHL-receptor interaction usually are AHL 

derivatives with structural modifications in the lactone ring or acyl side chain or both52.   

Gram-negative bacteria have evolved to express different receptors for recognizing 

structurally diverse AHL molecules. While a type of AHL molecule might act as agonist in 

some bacterial species, it might act as antagonist in others. As an example, C-6 HSL is an 

agonist of CviR of Chromobacterium violaceum, but an antagonist of LuxR of V. fischeri53. 

By using a QS inhibitor selector system30, Persson et. al designed and synthesized a 

number of derivatives of AHLs that showed an inhibitory effect in the las system of P. 
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aeruginosa54, with N-(heptylsulfanylacetyl)-L-homoserine lactone demonstrating the 

highest inhibitory activity (Figure 6A). In bacteria employing AI-2 based QS systems, two 

periplasmic binding proteins have been identified as AI-2 receptors thus far, that is, LuxP 

in V. harveyi and LsrB in S. typhimurium and E. coli; the former binds to the borate form 

of AI-2, (2S,4S)-2-methyl-2,3,3,4-tetrahydroxytetrahydrofuran-borate (S-THMF-borate), 

while the latter binds to (2R,4S)-2-methyl-2,3,3,4-tetrahydroxytetrahydrofuran (R-

THMF) in S. typhimurium15. There is a limited amount of research to develop 

agonists/antagonists of the receptors LuxP and LsrB. Although Lowery et. al have 

developed several analogs of DPD55, the precursor of AI-2, none of them were effective 

as agonists or antagonists. On the other hand, Ni et. al screened a number of boronic 

acids and aromatic diols that would form a complex with boric acid and found that para 

substituted boronic acids56 and pyrogallols57 were capable of inhibiting AI-2 based 

quorum sensing (Figure 6B). 

 

Interference by other bacterial species and strains 

 S. aureus uses AIP and AgrCA two-component systems to regulate various 

activities, including production of virulence factors and biofilm formation. Among 

different strains of S. aureus, the AIP and its receptor AgrC show considerable 

intraspecies variations, which account for signal specificity and are used to identify four 

major groups of S. aureus strains. Interestingly, while each group AIP activates 

expression of virulence in bacteria of its own group, it represses the virulence in other 

groups of S. aureus. Mayville et. al studied this phenomenon in a mouse model. Addition 

http://biocyc.org/META/NEW-IMAGE?type=REACTION&object=RXN-10019
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of AIP II, the AIP signal produced by group II S. aureus, to a lesion infected with group I S. 

aureus reduced the infection, as apparent from the reduced size of the lesion58. In 

another study, Xavier et. al have shown that, in a mixed species community of bacteria 

that are able to produce and/or detect AI-2, one species of bacteria degrades the AI-2 

produced by another species, thus interfering in the communication system of the 

latter59. 

  

Biosensors 

The need of living organisms to recognize and respond to changes in their 

environment exemplifies biosensing in nature. Biosensing involves selective and 

sensitive molecular recognition between proteins and a target ligand analyte, even 

when present at very low concentrations. Researchers have tried to mimic the exquisite 

properties found in nature by utilizing naturally occurring recognition elements to 

develop biosensing systems for analytical applications. To that end, a biological 

recognition element capable of reversible binding to a target ligand analyte is coupled to 

a transducer element that converts the recognition event into a readable/measurable 

output. Several biological recognition elements, including proteins, nucleic acids, cell 

organelles, and intact cells, have been used as sensing elements in biosensors for 

applications in environmental, biological, pharmaceutical, and clinical analysis60,61. 

Proteins with high specificity for analytes of interest have been extensively used in the 

development of biosensors. These proteins include enzymes, antibodies, and binding 

proteins, among others. For instance, glucose oxidase catalyzes oxidation of β-D-glucose 
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to D-glucono-1,5-lactone, which is further hydrolyzed to gluconic acid26. A range of 

commercially available biosensors for blood glucose monitoring and diabetes 

management use glucose oxidase as the sensing element coupled to appropriate 

mediators and transducers6. Antibodies have exquisite specificity for their cognate 

antigens. In an immunosensor62, antibodies are used as recognition elements coupled 

with a variety of detection methods, including, electrochemical, piezoelectric, 

fluorescence, bioluminescence, absorbance, and surface plasmon resonance; labeled 

secondary antibodies can also be used in a different format for detection of target 

analytes.  

A variety of sensing systems have also been developed by using hinge motion 

binding proteins (HMBPs), for example periplasmic binding proteins and the messenger 

protein calmodulin, with an incorporated signal-generating reporter molecule63. In 

general, these proteins have extraordinary selectivity to their corresponding ligand 

and/or analyte, with affinities, KD, typically in the sub-micromolar range—in some cases 

as low as in the nanomolar range—and undergo conformational changes upon binding 

to their ligands. As representative examples of periplasmic binding proteins64, the KD of 

the sulfate-binding protein is 10 nmol L−1 whereas that of the glucose-binding protein is 

20 nmol L−1. Specifically, upon ligand binding, two protein domains bend around a 

“hinge” region of the protein. Such conformational change can be used to quantify a 

target analyte and/or ligand by measuring the change in signal intensity of the 

transduction molecule, which can either be an environmentally sensitive fluorescent 

probe strategically conjugated to the protein or a reporter protein genetically fused to 
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the HMBP. The advantages of this type of protein-based biosensor are their high 

specificity toward their ligand analyte, thus resulting in high selectivity, low limits of 

detection, rapid response times, and amenability to incorporation into various analytical 

devices. Potential disadvantages of protein-based biosensors can be their storage 

conditions, transport, and shelf life. In most cases, protein biosensors must be stored 

and transported refrigerated, which limits their utility and compromises their shelf life 

when used at room temperature. 

Intact cells, including bacterial, yeast, and mammalian cells, are used as sensing 

elements in biosensing systems. Bacterial cell-based biosensing systems use genetically 

engineered bacteria capable of generating a signal on selective recognition of the 

analyte or class of analytes of interest. The ability to produce dose-dependent 

detectable signals in response to the analyte, as described in the next section, enables 

selective determination of the bioavailable analyte or class of analytes present in a given 

sample. Cell-based sensing systems are relatively easy and inexpensive to prepare and 

store, and are robust: they tend to be stable to environmental changes, for example 

variations in temperature or pH. In addition, these sensing systems can provide 

physiologically relevant data and evaluate the bioavailability of the analyte of interest, 

because the target chemical must enter the cells to trigger a response. Moreover, by 

using different recognition element–reporter protein pairs, multiple analytes can be 

detected simultaneously in a sample. Cell-based biosensing systems have high-

throughput features because they are amenable to miniaturization and incorporation 

into high-density analytical devices, thus enabling assay of large numbers of samples in a 
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single analytical run. This is a distinct advantage over conventional physicochemical 

analytical methods. However, a whole-cell biosensing system is not without limitations. 

In whole-cell biosensing systems, analytes must enter the bacteria by diffusion, which 

may, depending on the rate of diffusion, result in a slow sensor response. Additionally, 

because the cell biochemical machinery must be activated to produce the reporter 

protein, the response of a whole-cell sensing system is slow compared with that of 

protein-based biosensors, which is of the order of seconds or minutes. Additional 

drawbacks include potential interference with the sensor’s response by components of 

the bacterial cell and high background signal when fluorescent proteins are used as 

reporters, because of the presence of fluorescent molecules in the cell. Cell batch-to-

batch variability, which is intrinsic to living organisms, is a further aspect that may have 

to be taken into consideration65. 

  

Bacterial whole-cell-based biosensing systems 

Bacterial biosensing systems can be categorized into two different types, 

depending on the mode of expression of the reporter protein66. Expression of the 

reporter can either be constitutive or inducible. In constitutive expression systems, the 

reporter is expressed at high basal levels. An increase in the amount of compounds that 

are toxic to the cell causes its death, thus reducing the reporter protein expressed and 

its generation of signal. Whole-cell biosensing systems based on constitutive expression 

have been used to measure the general toxicity of a sample or test compound. A well-

known example is Microtox® toxicity testing7, a standardized, commercially available 
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toxicity testing system that uses the spontaneously bioluminescent marine bacteria V. 

fischeri as bacterial sensor for detection of toxic compounds in water samples. When V. 

fischeri in the test kit is exposed to a sample containing toxic compounds, a dose-

dependent reduction in bioluminescence is observed, indicating the toxicity level of the 

sample. The second class of whole-cell bacterial biosensing systems comprises inducible 

expression systems in which the cells are genetically engineered to contain a plasmid in 

which an inducible promoter fused to a reporter gene controls its expression66. In the 

absence of analyte/inducer, the reporter gene is expressed at very low basal levels, 

while in the presence of analyte/inducer it is expressed in a dose-dependent manner. 

Inducible expression systems can be further classified as stress inducible or chemically 

inducible, depending on the mechanism of activation of the response. In stress inducible 

cell-based biosensing systems, the reporter gene is placed under the control of a 

promoter that is activated by stressful conditions, for example heat shock and osmotic 

stress. Several structurally unrelated compounds can activate these response 

mechanisms; therefore, such sensing systems are not specific to target compounds and 

are defined as semi-specific. On the other hand, chemically inducible cell-based systems 

harbor a plasmid that contains a specific promoter and the genes for regulatory and 

reporter proteins. The presence of an analyte or class of analytes activates the 

promoter, triggering the expression of the regulatory and the reporter proteins in a 

specific manner. The mechanism by which this occurs involves binding of the analyte to 

the recognition/regulatory protein, which then undergoes a change in conformation, 

subsequently activating expression of the reporter gene. Reporter gene expression can 
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be negatively or positively regulated. In negative regulation (Figure 7A), the regulatory 

protein is bound to the operator/promoter region of an operon and inhibits expression 

of downstream genes, including the reporter gene. When the analyte is present, it binds 

to the regulatory protein, which is then removed from the operator/promoter region, 

thus enabling expression of the reporter gene. In positive regulation (Figure 7B), the 

analyte first binds to the regulatory protein and the complex then binds to the 

operator/promoter region, triggering expression of the reporter gene. The reporters 

used in whole-cell sensing systems are typically proteins that can be detected by optical, 

i.e., colorimetry, fluorescence, bioluminescence, and chemiluminescence, or 

electrochemical methods. Although the recognition component is important in 

determining the selectivity, the reporter is crucial in determining the sensitivity of the 

bacterial sensor. A wide variety of reporter genes have been used in several 

applications, including gene expression, gene transfer, and cell signaling. The reporter 

proteins encoded by such genes have also been used as signal-transduction elements in  

bacterial sensors. These proteins include β-galactosidase67,68, bacterial luciferase69, 

firefly luciferase70, and the green fluorescent protein and its variants. Table 2 lists 

reporters that are commonly used in whole-cell sensing systems, with their catalyzed 

reactions and methods of detection. 

 

Miniaturization of cell-based biosensing systems 

Cell-based bioluminescent biosensing systems have still to reach their fullest 

potential. Attractive technologies where these systems could find applications include 
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rugged, compact portable sensing platforms and instrumentation for on-site 

measurements of environmentally and clinically relevant analytes. To date, several 

important strides toward miniaturization have been achieved. An example of the 

progress made towards constructing miniaturized systems includes the whole-cell 

bioluminescent-bioreporter integrated circuit device developed by Simpson et al.71 In 

this system, a toluene-selective genetically engineered Pseudomonas putida bioreporter 

strain was incorporated onto a chip provided with an optical application-specific 

integrated circuit (Figure 8). Upon interaction with toluene vapor, a bioluminescence 

signal was generated and measured by the integrated circuit, allowing detection of 

toluene concentrations down to 50-10 ppb, depending on the signal integration time. 

The main advantage of this system lies in the direct coupling of the bioluminescent 

bioreporter cells to an integrated circuit designed for detecting, processing and 

reporting of the light signal. This eliminates the need for large detection 

instrumentation and optical components for light collection and transfer, thus providing 

a self-contained portable device suitable for on-site applications.  

Miniaturized cell-based biosensing systems have also found application in 

genome-wide transcription analysis. In a study performed by Van Dyk72 et al., 

sequenced random segments of E. coli DNA were inserted into plasmids as gene fusions 

with Photorhabdus luminescens luxCDABE gene cassette and transformed into host cells. 

A group of functional gene fusions known as Lux Array 1.0 was selected, which 

contained a total of 689 diverse reporter strains. These strains were printed on a porous 

nylon membrane (8 cm x 10 cm) at 16 spots cm-2 by means of a commercially available 
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automated workstation. During and after this process the membrane was kept in 

contact with LB growth media in a culture dish. These reporter strains were employed 

for simultaneously evaluating gene expression in the presence of nalidixic acid, an 

antibiotic that induces DNA damage stress response by causing a change in gene 

regulation. Specifically, in the described reporter gene assay, upregulation of certain 

genes translated to increased bioluminescence signals. This system showed the 

feasibility of obtaining high-density bioluminescent reporter cell arrays and suggests 

their potential use for analytical purposes. Notably, a further increase in the density of 

the arrays may be limited due to cross-illumination from neighboring spots. 

In another attempt towards miniaturization, fiber optic based systems have been 

designed and developed in which whole-cell biosensing bacteria were immobilized onto 

an exposed core of a fiber-optic73,74. In one case, reporter cells containing a gene fusion 

of the genotoxicant-inducible recA promoter of E. coli to the P. luminescens luxCDABE 

reporter were constructed74. These sensing cells emitted light in a dose-dependent 

manner in the presence of DNA damaging (genotoxic) agents, such as mitomycin C, 

which can react with the DNA structure, destabilize it and potentially cause deadly 

genetic mutations. The optical fiber was treated with acid for proper cleaning. The 

sensing cells were mixed with a polymeric solution, such as sodium alginate, and the 

fiber optic tip was dipped into the mixture containing the cells (Figure 9). Further 

treatment with calcium chloride solution was performed to harden the cell-alginate 

matrix onto the fiber-optic core. When the cell-deposited fiber-optic tip was exposed to 

solutions of mitomycin C at various concentrations, a dose-dependent bioluminescence 
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response was triggered, and then measured by the fiber optic system. Notably, this 

fiber-optic system was able to achieve the same detection limit, in a shorter period of 

time, as its larger scale counterpart. In another work by Gil et al.75, genetically 

engineered constitutively bioluminescent bacteria were deposited on an optical fiber, 

employing a solid matrix of glass beads and agar, to develop a biosensor for the 

detection of toxic gases. Specifically, the presence of toxic chemicals reduced the cells' 

bioluminescence intensity. Addition of glass beads increased both the porosity of the 

cell matrix, which facilitated the diffusion of vapors through the cell matrix layer, and 

the contact surface area of the cells with the gases, thus resulting in improved sensing 

ability of the bacterial sensor. This sensor is not as specific because it measures cell 

death, which can be caused not only by gases but also by other toxic compounds 

present in the sample. Technologies such as biological laser printing (BioLP™) have been 

reported for the rapid deposition of biomolecules and live bacterial sensing cells onto 

various surfaces76. Forward transfer BioLP™ uses laser pulses to transfer material from a 

carrier support onto a receiving substrate (Figure 10). The carrier support is an 

absorption layer (mostly quartz coated with metal oxides) on which properly grown 

bacterial sensing cells are spread prior to printing. In the reported example, the sensing 

strain was E. coli harboring a plasmid-borne fusion of the recA gene promoter to the red 

fluorescent protein gene from Discosoma, capable of responding to genotoxicants like 

nalidixic acid. Then, the sensing cells on the carrier support were printed onto a 

receiving surface composed of a LB agar plate or a sterile glass slide with a thin film of 

LB agar. The laser pulse was focused on a spot in the absorption layer. The laser-
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material interaction produced photo-absorption, propelling a three-dimensional pixel of 

biomaterial towards the receiving substrate through photomechanical and/or 

photothermal effects. This method of printing was reported to be precise, with an 

average spot diameter of 70 ± 6 μm and an approximate volume of 5 pL. An alteration in 

the bioluminescence emission was observed and attributed to the genotoxicity caused 

by nalidixic acid. This BioLP™ technique may be applied to several diverse sensing cells 

to produce miniaturized chip-based sensing systems that can be used in a laboratory 

setting or in the field. 

During the last two decades, there has been considerable interest in and efforts 

made to miniaturize conventional bench-top analytical techniques and incorporate 

them into microfluidic chip-based platforms1 as well as to integrate multiple analytical 

processes into a single chip77. The physical principles that govern mass transfer and fluid 

flow at the microscale level allow for rapid mass transfer and kinetics as well as high 

surface-to-volume ratio, which endow microfluidic systems with unique characteristics 

when compared to conventional volume analytical systems. Microfluidic devices such as 

micro-total analysis systems (µTAS) and lab-on-a-chip platforms have been developed 

for several analytical tasks, including whole-ceIl based biosensing. Generally, computer 

numerical control (CNC) machining and lithography techniques are used to fabricate 

these devices, employing polymeric materials such as poly(methyl methacrylate) 

(PMMA), glass and silicon. Various microfluidic structures can be fabricated that 

incorporate features such as micro reservoirs, microchannels, mixing devices, filtration, 

fractionation and separation devices and microvalves. The choice of structures 
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incorporated into a microfluidic device depends on the specific application desired78. 

Propulsion of fluids on microfluidic platforms is accomplished by employing varied 

instruments such as syringe and peristaltic pumps, or by applying acoustic, magnetic or 

centrifugal forces79. 

Microfluidic platforms employing centrifugal forces can be designed in the form 

and size of a compact disk (CD). This kind of centrifugal microfluidic device has been 

used for cell-based detection systems. Specifically, bacterial biosensing cells containing 

the gene for green fluorescent protein (GFP) under the transcriptional control of the 

promoter and regulatory genes of the ars operon were employed80. The biosensing 

system relies upon the recognition and binding of the target analytes 

arsenite/antimonite by the transcription regulatory protein ArsR, and the resulting 

expression of the reporter protein GFP inside the cytoplasm. The biosensing cells were 

incorporated into a CD microfluidic platform made of PMMA for detection of arsenite 

and antimonite. In this application, miniaturization significantly reduced the assay time 

(30 min versus < 1 min) along with the volumes of reagents used, while retaining similar 

micromolar detection limits and dynamic ranges, when compared to the benchtop 

assay. The decrease in detection time is due to faster diffusion of the analyte into the 

cells, thus increasing the reaction kinetics. The sensing system proved to be highly 

selective for arsenite and antimonite when incorporated into the microfluidic platform. 

Owing to precise manufacturing, all the structures have identical physical 

characteristics, making these platforms a very attractive solution for multiple parallel 

assays with potential for high-throughput screening as well as on-site monitoring. This 



31 

 

type of sensing platform is suitable for the development of simple instrumentation 

based on readily-available, cost effective hardware consisting of a drive motor, a power 

supply, a controller, lens optics and compact CCD cameras for the detection and 

quantification of emitted light. These components along with software for system 

control and data acquisition, processing and analysis can be easily integrated into a 

portable system. Figure 11 shows an example of centrifugal CD microfluidic platform. 

Multiple structures consisting of an arrangement of reagent reservoirs, burst valves and 

microchannels leading to detection reservoirs are shown. Fluid release from the reagent 

reservoirs is controlled by burst valves, located a very short distance from the 

reservoirs. Sufficient centrifugal force is needed to overcome the capillary force holding 

the liquids into the reservoirs and allow their flow to the detection chamber. Such force 

is generated by appropriate frequency of rotation (burst frequency) of the disk. 

Whole-cell based biosensing systems employing firefly luciferase as a reporter 

for the detection of genotoxicants have been integrated into a chip-based three-

dimensional microfluidic device, which was obtained by placing a silicon substrate 

between two poly(dimethylsiloxane) (PDMS) layers. Microchannels (volume 3 µL) in the 

two PDMS layers were connected via perforations in the silicon layer that served as 

microwells (volume 0.25 µL) to hold the sensing strains, thus forming a three-

dimensional microfluidic network. The sensor strains were immobilized onto the 

microwell array of the silicon chip by gelation upon injection of a cell/agarose mixture 

through the microchannels of one of the PDMS chips. Luciferase gene expression was 

then induced by passing sample genotoxicant solutions through the microchannels 
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present on the second PDMS chip (Figure 12). Bioluminescence was triggered when a 

solution of luciferin/ATP was passed through the channels and detected by means of a 

CCD camera. The bioluminescence response obtained with this miniaturized microfluidic 

system (1 h) was significantly faster than the assay using test tubes (4 h). Low-cost 

materials were employed to make these platforms and low volumes of reagents were 

consumed, thus rendering the system very cost-effective. In addition, multi-analyte 

detection in multiple samples can be performed simultaneously by immobilizing 

different sensor bacteria on a single chip. 

 

Paper strip based whole cell sensors 

 While a number of biosensing systems are available that can detect a number of 

analytes by employing various detection principles, most of these biosensing systems 

cannot be used outside of the laboratory due to required bulky instrumentation. This is 

particularly limiting for on-site environmental and biomedical applications. In addition 

to the miniaturized devices described in the previous section, another approach towards 

development of biosensors that could be used on site has been demonstrated by 

Stocker et. al who created paper strip based biosensing systems to detect arsenic in 

polluted water81. β-Galactosidase was employed as a reporter and detected by means of 

a chromogenic substrate generating an insoluble colored product that could be 

visualized on the paper strips. Five water samples obtained from Bangladesh indicated 

arsenic contamination to much higher than permissible levels (10 µg/L) (Figure 13A). 

Our group developed paper strip based whole-cell sensors that could be used for on-site 
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monitoring of AHLs present in biological and environmental samples82. E. coli cells 

harboring plasmid pSD908, which is based on the lasR/lasI regulatory system of P. 

aeruginosa with lac-Z encoding β-galactosidase as the reporter gene, were employed. 

These sensing cells were liquid-dried in vacuum on filter paper strips. A dose-dependent 

development of color was seen when the paper strips were incubated with various 

concentrations of N-dodecanoyl-DL-homoserine lactone followed by addition of the 

chromogenic substrate, 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-gal). The 

applicability of the sensor was validated by employing the paper strips to detect AHLs 

present in saliva of healthy and diseased individual (Figure 13B). The sensor can be 

employed not only to detect AHLs in samples, but also to evaluate molecules that 

interfere with AHL based QS. 

 

Binding proteins as recognition elements in biosensors 

 Proteins constitute the working machinery of every living organism. Proteins 

perform a variety of tasks, including recognizing specific molecules, transferring 

messages across the cell, catalyzing biochemical reactions, and participating in immune 

responses. Hinge-motion binding proteins (HMBPs) are a group of proteins with high 

selectivity and high binding affinity towards their respective ligands, with Kd values 

down to the nanomolar level64. HMBPs are generally composed of two domains 

connected by a hinge region, with the ligand binding site present at the interface of 

these domains. Ligand binding results in a change in conformation of the protein, 

consisting in bending of the two domains around the hinge region. The unbound or 
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analyte free conformation is generally referred to as “open” form and the analyte bound 

conformation is referred to as “closed” form. Hinge-motion binding proteins include 

various types of proteins, such as, periplasmic binding proteins, transcriptional 

regulatory proteins, enzymes, and the messenger protein, calmodulin. These proteins 

bind to the respective analytes with high specificity and selectivity. This property makes 

them appealing for use in sensing applications. As an example of HMBP, in E. coli 

glucose is transferred from the periplasmic space to the cytoplasm through binding to 

the periplasmic protein, glucose binding protein (GBP). Binding of the sugar to the 

protein occurs through various interactions, such as van der Waals, ionic, salt-bridges, 

and hydrogen bond formation with amino acids in the binding pocket, which causes the 

protein conformation to change from the open to the close form (Figure 14). The 

change in the conformation of a protein upon binding to a ligand can be harnessed to 

create protein based sensors for target analytes. In order to make a biosensor from a 

hinge-motion binding protein, the change in conformation due to ligand binding needs 

to be translated into a readable output. This can be achieved by several methods, 

including chemical conjugation of an environment sensitive fluorophore near the ligand 

binding site, genetic fusion of a fluorescent or bioluminescent protein to either the C or 

N terminus of the binding protein, and genetic insertion of the binding protein between 

two fragments of a fluorescent or bioluminescent reporter protein to form a molecular 

switch. Irrespective of the approach used to create a protein based biosensor, binding of 

the ligand to the specific protein generates a dose-dependent change in the reporter 
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molecule signal, thus allowing for the biosensor to be utilized for quantitative detection 

of the target ligand/analyte.  

 A commonly used strategy to make protein based biosensors employs strategic 

placement of environment sensitive fluorophores, such as, 5-({2-

[(iodoacetyl)amino]ethyl}amino)naphthalene-1-sulfonic acid (IEDANS), 7-diethylamino-

3-((((2-maleimidyl)ethyl)amino)carbonyl)coumarin (MDCC), acrylodan, and Alexa-fluor 

near the ligand binding site of the protein. Conjugation of the fluorophore at a site 

within the binding pocket would not be a good choice as it could disrupt analyte 

binding.  Sites on the protein that experience a substantial conformational change upon 

ligand binding are determined from X-ray crystal structure, NMR, and modeling studies. 

These sites are ideal for fluorophore conjugation in that the analyte-induced 

conformational change is likely to perturb the microenvironment surrounding the 

fluorophore. Amino acids in the protein that are amenable to direct conjugation of the 

fluorophore include cysteine (through sulfhydryl group), lysine (through amine group), 

and aspartic and glutamic acid (through carboxyl group). When such amino acids are not 

present at the required fluorophore attachment site, genetic mutations can be 

performed to introduce the amino acid of interest. In our lab, a range of such 

fluorophore labeled binding proteins have been constructed as biosensing systems to 

detect environmental pollutants83 and clinically relevant analytes84.  Salins84 et. al 

utilized the glucose/galactose binding protein from E. coli to develop a glucose 

biosensor based on the principle outlined above. Specifically, cysteines were introduced 

into the structure of GBP via mutagenesis at three different positions.  A set of four 
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fluorophores were conjugated at these cysteines and evaluated, with MDCC providing 

the maximum response and limits of detection in the submicromolar range. More 

recently, Siegrist et. al utilized fluorescently labeled glucose recognition polypeptide 

elements to detect glucose AT physiologically relevant millimolar levels85. Similar 

strategies were used to develop protein biosensors for the detection of environmental 

pollutants, such as inorganic phosphates86, nickel87, and sulfates83.  

 Partial or full protein sequences can be joined together via recombinant DNA 

technology resulting in fusion or hybrid proteins. An important application of fusion 

protein technology is in the field of protein purification. As an example, GE Healthcare 

Life Sciences offers a series of vectors that encode for glutathione-S-transferase (GST). 

The DNA of the protein of interest can be cloned in these vectors, thus allowing 

expression of a fusion of the GST tag and target protein, which can then be purified by 

affinity chromatography88. In fusion protein constructs for sensing, an inherently 

fluorescent or bioluminescent protein is attached to either the N or C terminus of a 

binding protein. When the analyte binds to the binding protein, a change in 

conformation of the binding protein leads to altered light emission from the reporter 

protein. Using this principle, Dikici89 et. al developed a fusion protein using calmodulin 

(CaM) as the recognition element to detect phenothiazine, and enhanced green 

fluorescent protein (eGFP) as the reporter protein. When excited at a wavelength of 488 

nm, eGFP emits at 510 nm. CaM is a calcium binding protein and when it binds to 

calcium, a change in conformation of CaM exposes a hydrophobic pocket that interacts 

with the antidepressant phenothiazine. When CaM binds to antidepressants, a further 
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change in conformation of CaM induces a change in microenviroment of eGFP, thus 

altering the emission intensity in a dose-dependent manner. Dikici et. al demonstrated a 

system that serves as model to develop binding assays that employ binding proteins as 

drug-recognition element. Based on the concept of fusion protein, a few fluorescence 

resonance energy transfer (FRET) based biosensors have been reported90-93, in which 

the binding protein is sandwiched between two fluorescent proteins acting as members 

of a FRET donor-acceptor couple. Analyte binding leads to the fluorescence resonance 

energy transfer between the two proteins.   

Another approach in engineering protein based sensors is the development of 

molecular switches.  A protein molecular switch is comprised of a binding protein with 

two fragments of a reporter protein fused to either end. In the absence of the analyte, 

the two split fragments of the reporter protein stay apart and the switch is in “off” 

mode, while in the presence of the analyte the binding protein undergoes a 

conformation change that brings the two fragments of the reporter protein together, 

thus forming an active protein and turning on the switch readout signal. A novel 

molecular switch for detecting glucose was designed and developed by Teasley 

Hamorsky et. al, employing the photoprotein aequorin as the reporter94. In brief, by 

using genetic engineering tools, aequorin was split in two fragments and each of the 

two fragments was fused to either the N or C terminus of GBP. In the presence of 

glucose, the change in the conformation of the binding protein allowed the two 

fragments of the aequorin to come together and triggered a dose-dependent light 

emission in the presence of coelenterazine and calcium (Figure 15).  
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Miniaturization of protein-based biosensing systems 

 Efforts have been made to further augment the utility of protein based 

biosensing systems by incorporating them in miniaturized devices, thus facilitating on-

site applications.  An approach to incorporate protein-based biosensing systems into 

miniaturized devices was demonstrated by Puckett95 et. al. A fusion protein comprised 

of calmodulin and the enhanced green fluorescent protein was integrated into a 

microfluidic compact disk based µTAS (figure 16). This miniaturized device was 

employed to detect phenothiazine, an antidepressant, which binds to the protein CaM. 

The microfluidic platform contained μL-size reservoirs in which solutions of sensor 

protein and analyte were added. When the disk was spun at a certain velocity, the 

solutions flew through micro channels into a detection reservoir, due to centrifugal 

force. As shown in Figure 16, the phenothiazine solution was contained in reservoir 3, 

while the dried sensing protein was contained in reservoir 2. The flow of solutions was 

controlled by passive valves, which opened only at a specific angular velocity. By 

controlling the angular velocity, water was initially released from reservoir 1 into the 

protein chamber to reconstitute the protein, and later, at a higher angular velocity, the 

phenothiazine solution and reconstituted protein flew to the detection chamber. The 

binding between CaM and phenothiazine resulted in fluorescence emission from the 

reporter protein eGFP, which was measured using a fiber-optic based detection system. 

Such microfluidic platforms are easy and inexpensive to manufacture, and are amenable 

to multiplex and high-throughput analysis in that each disk may contain multiple 
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identical microfluidic structures comprised of the required microchannels and 

reservoirs.  
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Figure 1. General schematic of AHL based quorum sensing system. Upon entering the 

bacteria, AHL binds to LuxR type protein, and the LuxR-AHL complex regulates 

expression of target genes, including AHL synthase. The label LuxR indicates LuxR types 

proteins. 
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Figure 2. General schematic of AIP based quorum sensing system. Initially, a precursor 

peptide is produced, which undergoes modification to form a mature AIP and 

transported out of the bacteria by ABC transporter. AIP is recognized by sensor kinase 

protein, and via a cascade of phosphorylation/dephosphorylation steps, quorum sensing 

regulated genes are expressed. Adapted from Xavier et al.19 
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Figure 3. Autoinducer-2 and quorum sensing circuit in Vibrio spp. (A) Isomers deriving 

from DPD cyclization. Copyright from Tavender et al.96 (B) Schematic of AI-2 based 

quorum sensing system. Copyright from Vendeville et al. 97 
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Figure 4. Natural compounds as quorum sensing inhibitors.  

Iberin inhibits AHL based QS in P. aeruginosa 

 

Fatty acids that inhibit AI-2 based QS in V. harveyi 
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Figure 5: Inhibition of QSM synthesis.  

(A) Compounds that inhibit AHL synthesis.  

 

(B) Compounds that inhibit AI-2 synthesis.  
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Figure 6: Interference with QSM receptors.  

(A) Analogue of AHL demonstrating inhibitory activity 

 

(B) Analogue of AI-2 demonstrating inhibitory activity 
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Figure 7. Chemically inducible whole-cell biosensing systems. 

 (a) Negative regulation of reporter gene expression. (b) Positive regulation of reporter 

gene expression. Adapted from Struss et al.65 
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Figure 8. Bioluminescent-bioreporter integrated circuit featuring (i) enclosure containing 

bacterial biosensing cells and optical application-specific integrated circuit (OASIC); (ii) 

enclosure mounted on the chip; and (iii) the enclosure showing bacterial biosensing cells 

on agar plug. A tight seal between chip and enclosure is maintained by using an O-ring. 

Figure copyright of Simpson et al.71 
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Figure 9. Fiber optic-based miniaturization. An optical fiber is placed in a conical tube 

containing the sample solution. The fiber optic tip is coated with an alginate matrix that 

incorporates the sensing bacterial cells. Bioluminescence is triggered when the analyte 

enters the cells and is recognized by the biosensing element. The bioluminescence 

emitted travels to the detector through the optical fiber. Adapted from Polyak et al.74 
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Figure 10. Schematic showing a BioLP™ device. A laser beam is focused on a spot at the 

interface of the support and absorption layers, causing ejection of the sensing cells 

containing material, which is then deposited on the substrate. Figure adapted from 

Barron et al.76  
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Figure 11. Example of centrifugal CD microfluidic platform. Reagent reservoirs contain 

the necessary reagents, which flow through the mixing channels when the platform is 

spun at high rpm. Finally the two solutions arrive in the detection reservoir where 

measurements are made using a suitable detector. Copyright from Turner et al.98 
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Figure 12. Three dimensional microfluidic network. (i) The solution of sensor cells is 

immobilized in the wells of chip 1. (ii) Analyte solutions are introduced in channels of 

chip 2. (iii) Schematic of the 3 dimensional structure of the platform. Copyright from 

Tani et al.99 
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Figure 13: Immobilization of whole-cell based biosensing system on paper strips. (A) 

Detection of arsenic in water samples from Bangladesh. Total arsenic concentration 

(μg/L) measured by atomic fluorescence spectroscopy is indicated in parentheses. 

Copyright from Stocker et al.81 (B) Detection of AHLs in saliva samples using the filter-

paper-based strip biosensor containing the plasmid pSD908. Samples 1−5 were from five 

healthy volunteers and sample 6 was from one patient with Crohn’s disease. Copyright 

from Struss et al.82 

 
    (A)           (B) 
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Figure 14. Crystal structure of GBP without glucose (A, open form; PDB: 2FWO) and with 

glucose (B, closed form; PDB: 2FVY).  
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Figure 15. Protein biosensor based on molecular switch approach. The reporter protein 

aequorin is split into two fragments; each fragment is fused to the two ends of the 

recognition protein GBP. In the absence of glucose, the two fragments of aequorin are 

separated from each other and no emission of light is observed (off mode). In the 

presence of glucose, the two fragments of aquorin are brought close to each other due 

to conformational changes in GBP, and emission of light is observed (on mode).  
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Figure 16.  Microfluidic architecture utilized in the protein-based assay. Copyright from 

Puckett et al.95  
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Table 1: Quorum sensing molecules utilized by various bacteria.  (a) AHLs employed by 

Gram-negative bacteria.  (b) AI-2: borate diester form employed by V. harveyi and 

hydrated form, not containing boron, employed by S. typhimurium.  (c) Linear and cyclic 

peptides employed by Gram-positive bacteria.  The underlined tryptophan residue (W) 

in the ComX pheromone indicates isoprenylation. 
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Table 2: Reporter proteins commonly used in whole-cell sensing systems. Copyright 

Struss et al.65 
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STATEMENT OF RESEARCH 

Bacteria communicate with members of the same species or other species by 

production, secretion, and detection of small signaling molecules termed quorum 

sensing molecules (QSMs), whose concentration is proportional to the bacterial cell 

density. This system of cell-to-cell communication is named quorum sensing (QS) and 

allows bacteria to modulate their behavior in a population-size dependent manner. 

When a certain QSM threshold concentration is reached, certain specialized genes are 

expressed that are involved in a variety of phenotypes, including, virulence factor 

production, biofilm formation, motility, sporulation, and bioluminescence. In general, 

Gram-negative bacteria utilize N-acyl homoserine lactones (AHLs), while Gram-positive 

bacteria utilize autoinducing peptides (AIPs) as QSMs. Autoinducer-2 (AI-2) is a third 

category of molecules that are employed, both, by Gram-negative and Gram-positive 

bacteria and are believed to be involved in interspecies communication. 

Bacteria have been associated with the pathogenesis of various disorders, such 

as, inflammatory bowel disease (IBD), a chronic inflammatory condition of the intestine 

with recurrent bouts of acute inflammation. Since QS is known to modulate various 

bacterial functions,many of which are critical for bacteria to successfully colonize a host 

and evade the host’s defense system, we aimed at studying the role of QS in relation to 

bacterial conditions, mainly IBD. Specifically, we hypothesized that QSMs may serve as 

biomarkers for the diagnosis and monitoring of bacteria related disorders, as well as for 

the evaluation of treatment efficacy. To that end, we designed and developed 



59 

 

biosensing systems, based on engineered cells and proteins, for the detection of QSMs 

in physiological samples from IBD patients and control subjects. Moreover, bacteria are 

known to be involved in the spoilage of food by forming biofilms and producing food 

degrading enzymes, whose expression is often regulated by QS. Hence, we developed 

methods for the detection of QSMs in food samples in order to investigate the 

relationship between food spoilage and QS. Finally, we employed the developed 

biosensing systems to test target compounds for their ability to disrupt QS and evaluate 

their potential use as food preservatives. 

 In chapter two, we developed an analytical method for the detection of QS AI-2 

molecules in saliva, stool, and intestinal samples. For that, we developed a whole-cell 

biosensing system, which is based on the QS regulatory circuit of the marine bacterium 

Vibrio harveyi and uses the LuxP periplasmic binding protein as the sensing/recognition 

element and luxCDABE gene cassette as the reporter element. This method enabled the 

quantitative and sensitive detection of AI-2 in the types of clinical samples mentioned 

above. To the best of our knowledge this is the first reported cell-based sensing system 

for quantitative detection of AI-2 molecules. This analytical approach has significant 

advantages over physical chemical methods in terms of simplicity, rapidity, and cost-

effectiveness. 

 In chapter three, we developed, optimized, and applied whole-cell biosensing 

systems to the detection of QSMs in blood serum. We utilized a panel of three 

biosensing systems able to detect short-chain AHLs, long chain AHLs, and AI-2 



60 

 

molecules, respectively. In order to validate our method, we confirmed the presence of 

QSMs in serum by employing a conventional physical chemical technique, LC-MS-MS. 

Furthermore, using a mice animal model of colitis, which represents an experimental 

model of human IBD, we demonstrated altered serum levels of QSMs in colitic mice as 

compared to the controls. This indicates that the QSM levels in serum may reflect the 

known altered composition of the intestinal microflora in IBD (less diversity and 

modified relative abundance of species), thus supporting our hypothesis of employing 

QSMs as biomarkers of disease. To the best of our knowledge this is the first time that 

the presence of QSMs in serum has been demonstrated. This is an important finding due 

to the ready availability and minimally invasive collection of serum, as well as its 

extensive use as the biological fluid of choice for a number of clinical laboratory 

investigations. 

 In chapter four, we developed methods based on whole-cell sensing systems for 

the detection of AHLs and AI-2 molecules in food samples. Ground beef and milk were 

chosen as representative food matrices. After the method optimization, the biosensing 

systems were employed to detect QSMs in simulated spoiled foods, obtained by 

artificially contaminating the food samples. A wide variety of microorganisms are 

responsible for food spoilage, thus rendering contamination difficult to identify; on the 

other hand, QSM production is a feature shared by many bacteria, thus supporting the 

use of QSMs as general quantitative markers of bacterial presence. To that end, the 

analytical methods developed herein should allow for the early detection and 
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prevention of food contamination, thus helping to minimize the related foodborne 

illnesses and reduce the costs associated with the waste of degraded food. 

 In chapter five, we employed the developed whole-cell sensing systems for AHL 

and AI-2 detection to test a number of compounds, originating from Generally 

Recognized As Safe (GRAS) substances, for their ability to interfere with QS. The GRAS 

compounds chosen in this study had previously been demonstrated to possess an 

antibacterial effect, although their mechanisms of action had not been elucidated. To 

that end, these compounds were evaluated for their effects on the QS circuits of the 

sensing bacteria, in terms of ability to induce a sensor’s response and to interfere with 

the sensor’s response to cognate QSMs. In addition, effects on the QSM synthesis by 

QSM-producing bacteria were analyzed. Quorum sensing inhibition has been proposed 

as an alternative approach to combat bacterial infections, especially in light of the 

frequent occurrence of antibiotic resistant microorganisms. Along the same lines, the 

identification of GRAS compounds with QS inhibitory properties may lead to their safe 

and successful employment as food preservatives, in the form of food additives and/or 

components of food packaging materials. 

 In chapter six, we designed and developed a protein based biosensing system for 

the detection of AI-2 molecules. A fusion protein, comprised of the LuxP 

recognition/binding protein and enhanced green fluorescent protein (EGFP), was 

designed using molecular cloning techniques. The sensing system worked on the 

principles of Förster Resonance Energy Transfer (FRET) and utilized the fluorophore 7-
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diethylamino-3-[N-(2-maleimidoethyl)carbamoyl]coumarin (MDCC) as donor and EGFP 

as acceptor in the FRET pair, based on the ability of MDCC to bind to LuxP. This 

biosensing system allowed us to quantitatively detect AI-2 molecules with high 

sensitivity, selectivity, and rapidity (3 min incubation time with the analyte). It was then 

applied to detect AI-2 in saliva and serum samples. A protein based sensing system 

could also be employed as a rapid tool for the investigation and characterization of 

agonists and antagonists, with potential to be utilized as QS disruptors. 

 In chapter seven, we discussed the conclusions and future prospects of the work 

presented in this thesis. 
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CHAPTER TWO 

WHOLE-CELL SENSING SYSTEM FOR DETECTION OF THE QUORUM SENSING UNIVERSAL 

SIGNAL AUTOINDUCER-2 IN PHYSIOLOGICAL SAMPLES 

Introduction 

 Bacteria have long been considered as independently living organisms focused 

on survival and propagation of single cells. However, in the past few decades it was 

discovered that they can communicate with and respond to neighboring bacteria of the 

same species or of other species by means of small signaling molecules12,14. This system 

of communication among bacteria is termed quorum sensing (QS). Quorum sensing 

allows bacteria to regulate behaviors as diverse as bioluminescence, horizontal transfer 

of DNA, sporulation, formation of biofilms, as well as production of pathogenic factors, 

antibiotics, and metabolites12,100. Bacteria synthesize quorum sensing signaling 

molecules and release them in the surrounding media, where they are recognized by 

other bacteria. The signaling molecule concentration increases as a function of cell 

density, thus allowing bacteria to sense their population size. When a threshold 

concentration of signaling molecules is reached, bacteria express certain specialized 

genes and, thus, coordinate their behavior in a cell-density dependent manner. 

Interestingly, bacterial communication is often involved in establishing relationships of 

bacteria with their respective hosts, both in beneficial and detrimental bacteria-host 

interactions. Well-characterized examples of such relationships include the symbiosis 

between the bioluminescent marine bacterium Vibrio fischeri and the Hawaiian bobtail 
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squid Euprymna scolopes, as well as the pathogenesis caused by the human 

opportunistic pathogen Pseudomonas aeruginosa, which colonizes the lungs of 

individuals affected by cystic fibrosis101. Furthermore, recent research has shown that 

bacterial signaling molecules enable interkingdom communication and are involved, for 

instance, in the relationship of the intestinal microbial flora, both commensal and 

pathogenic, with human and other mammalian hosts102,103. Bacteria employ various 

chemical compounds as signaling molecules for quorum sensing communication. Some 

of them are species-specific, while others are used by different species of bacteria. 

Quorum sensing signaling molecules can be categorized based on the types of bacteria 

that produce them. In general, Gram negative bacteria use N-acyl homoserine lactones 

(AHLs) and Gram positive bacteria employ autoinducing peptides (AIPs) as quorum 

sensing molecules. AHLs and AIPs are used for communication between bacteria of the 

same species.  Another group of molecules, collectively called autoinducer-2 (AI-2), are 

found in culture supernatants of both Gram positive and Gram negative bacteria and are 

used for inter-species communication12. 

 The term AI-2 refers to a group of interconverting molecules formed from a 

common precursor, 4,5-dihydroxy-2,3-pentanedione (DPD), whose production in 

bacterial cells is catalyzed by the LuxS enzyme. LuxS has a crucial function as it is 

responsible for metabolism of the toxic intermediate S-adenosyl-L-homocysteine (SAH), 

which is formed from S-adenosyl-L-methionine (SAM) upon the release of methyl groups 

to be employed in the methylation of proteins, nucleic acids and metabolites. A two 

step enzymatic conversion of SAH by Pfs and LuxS enzymes produces DPD as a 
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byproduct. DPD undergoes spontaneous cyclization to generate either the R or S form of 

the thermodynamically favorable compound, 2,4-dihydroxy-2-methyldihydro-3-

furanone (DHMF). In the presence of water and borate, S-DHMF forms S-THMF-borate 

(Figure 1), a furanosyl borate diester, which is the form of AI-2 employed for QS 

regulation of bioluminescence in Vibrio harveyi104. AI-2 diffuses out of the cells and, 

upon entering other cells and binding to the periplasmic binding protein LuxP, triggers a 

cascade of phosphorylation/dephosphorylation events ultimately leading to the 

expression of luciferase and production of light48.  

Bacterial quorum sensing molecules, namely AHLs, have been identified in 

physiological samples, such as sputum samples of patients with cystic fibrosis8,25,26. 

Studies have shown that not only quorum sensing molecules activate bacterial virulence 

systems and bacterial proliferation at a particular defined cell density, but also modulate 

the host immune system to the advantage of bacteria105. Bacteria are known to play an 

important role in many diseases, from infections to chronic inflammation. Therefore, 

quorum sensing is involved in a variety of disorders of bacterial origin or where bacteria 

play a crucial pathogenic role. One such condition is inflammatory bowel disease (IBD), a 

chronic inflammation of the gastrointestinal (GI) tract that includes debilitating diseases 

such as ulcerative colitis (UC) and Crohn’s disease (CD). The inflammation in ulcerative 

colitis is concentrated in the colon as has a continuous distribution, whereas Crohn’s 

disease encompasses inflammation in the ileum and other regions of the alimentary 

tract in patches106. Both diseases are characterized by periods of increased 

inflammatory activity that can occur against a background of chronic ongoing 
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inflammation. The causes of IBD are not fully elucidated. However, studies carried out in 

animals and humans have established that gut bacterial flora play an essential role in 

these inflammatory states of the bowel. Specifically, IBD appears to be caused by an 

overly aggressive immune response to commensal enteric bacteria in genetically 

predisposed individuals107. Hence, monitoring of quorum sensing molecules over the 

course of time can give an idea of the bacterial load, extent of inflammation and 

progress of the disease. Recently, our group has developed whole-cell sensing systems 

for the detection of AHLs and shown that these signaling molecules are present at 

distinct concentrations in saliva and stool samples from CD patients and infants with 

various types of intestinal inflammatory illnesses.  These results suggest that quorum 

sensing molecules may be potential non-invasive biomarkers of gastrointestinal 

inflammatory disease27. 

 A bioassay based on the V. harveyi strain BB170, which is able to emit 

bioluminescence in the presence of AI-2 molecules, was developed by Bassler et al.16. 

This bioassay has mainly been employed to screen cell culture supernatants to identify 

and investigate bacteria able to produce AI-2; as such, it has not been characterized in 

terms of analytical performance and standardized for detection of AI-2 in clinical 

samples. Herein, we present the design, development, optimization, standardization, 

and characterization of a biosensing system based on V. harveyi BB170, as well as its 

application for the quantitative detection of AI-2 in saliva, stool and intestinal samples 

from IBD patients and control subjects.  



67 

 

Experimental Section 

Materials: Sodium chloride and anhydrous magnesium sulfate were purchased from 

Sigma (St. Louis, MO). Vitamin free casamino acids were purchased from BD Scientific 

(Franklin Lakes, NJ). Autoinducer-2 was purchased from Omm Scientific (Dallas, TX). 

Reverse osmosis (RO) filtered water (Milli-Q water purification system, Millipore, 

Bedford, MA) was utilized for all experiments. Sterile 14-mL culture tubes were 

purchased from BD Biosciences (San Jose, CA). 1.5-mL microcentrifuge tubes were 

purchased from Eppendorf (Westbury, NY). 96-well polystyrene microtiter plates were 

purchased from Costar (Corning, NY). The orbital shaker incubator was from Fisher 

Scientific (Fair Lawn, NJ). Bioluminescence measurements were performed using the 

FLUOstar Optima microplate reader (BMG Labtech, Durham, NC). 

Bacterial Strain and Culture Conditions: V. harveyi strain BB170 was purchased from 

ATCC (Manassas, VA). The BB170 strain is genetically modified to express luciferase and 

emit light only in response to the autoinducer-216. The autoinducer bioassay (AB) media 

described by Greenberg et al. was used to grow cells108. Cells were grown overnight in 

AB media in the orbital shaker at 30 °C, 250 rpm and glycerol stocks were prepared by 

adding 250 µL glycerol to 750 µL cell culture; the stocks were then stored at -80 °C. 

Fresh cell cultures were grown from the glycerol stocks as needed by incubation in the 

orbital shaker at 30 °C, 250 rpm until an optical density at 600 nm (O.D.600nm) of 0.01-

0.02 was reached. 
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Sample Collection and Preparation. Saliva, stool and intestinal samples were assayed 

for the presence of AI-2 molecules. Saliva and intestinal samples were obtained from 

patients with inflammatory bowel disease in the Gastroenterology Clinic of the 

University of Kentucky Medical Center (Lexington, KY). Intestinal samples were 

comprised of rectal samples, which can be assimilated to stools, and ileal as well as 

duodenal washings collected during endoscopy. Saliva samples were also obtained from 

healthy volunteers. Additionally, stool samples were obtained from infants in the 

Newborn Intensive Care Unit (NICU) of the University of Kentucky Medical Center. Saliva 

samples were collected in the morning immediately after brushing the teeth in order to 

minimize collection of oral bacteria and debris. They were then processed by 

centrifugation in sterile microcentrifuge tubes at 13,000 rpm for 7-8 minutes to facilitate 

settling of any debris and particles to the bottom of the tubes. Supernatants were then 

stored in sterile tubes at -80 °C till needed. For analysis, saliva samples were diluted 1:10 

(v/v) and 1:100 (v/v) using RO filtered water. Stool and intestinal washing samples were 

frozen right after collection and stored at -80 °C until assayed. Stool samples were 

prepared for analysis by weighing certain amounts of specimens and then suspending 

and diluting them in RO filtered water to a final dilution of 1:750 (w/v). Washing 

samples were analyzed directly without any sample preparation. 

Dose-Response Curves. A commercially available 3.9 mM stock solution of AI-2 in water 

was employed. Just before use, the stock solution was serially diluted with RO filtered 

water to prepare AI-2 standard solutions at concentrations ranging from 1 × 10-4 M to 

2.5 × 10-8 M. RO filtered water served as blank. 10 µL of each AI-2 standard solution and 
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blank was added in triplicate to the microtiter plate wells containing 90 µL of cell culture 

grown to an O.D.600nm of 0.010. The plate was incubated in the orbital shaker at 30 °C, 

175 rpm for 2.5 hours. Bioluminescence was recorded in the microplate reader and 

measurements were expressed as relative light units (RLU) and plotted using Microsoft 

Office Excel 2007. 

Dose-Response Curves in Saliva and Stool Matrices. Dose-response curves were 

generated in saliva and stool matrices. A pool of saliva was prepared by mixing equal 

volumes of processed saliva samples obtained from healthy volunteers. Pooled saliva 

was then diluted 1:100 (v/v) with RO filtered water. The 3.9 mM stock solution of AI-2 

was serially diluted with 1:100 (v/v) pooled saliva to prepare AI-2 solutions at 

concentrations ranging from 1 × 10-4 M to 2.5 × 10-8 M. A solution containing 1% RO 

filtered water in 1:100 (v/v) pooled saliva served as blank. 10 µL of each AI-2 solution 

and blank was added in triplicate to the microtiter plate wells containing 90 µL of cell 

culture, and the assay was performed as described above. A dose-response curve 

without matrix was also obtained in the same analytical run, which served as a 

reference. In order to prepare a pool of stool samples, 10 samples from infants admitted 

to the NICU were weighed in equal amounts, mixed together, and then suspended and 

diluted 1:750 (w/v) in RO filtered water. The 3.9 mM stock solution of AI-2 was serially 

diluted with 1:750 (w/v) pooled stool to prepare AI-2 solutions at concentrations 

ranging from 5 × 10-4 M to 5 × 10-8 M. A solution containing 1% RO filtered water in 

1:750 (w/v) pooled stools served as blank. 10 µL of each AI-2 solution and blank was 

added in triplicate to the microtiter plate wells containing 90 µL of cell culture, and the 
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assay was performed as described above. A typical dose-response curve without matrix 

was also obtained in the same analytical run as a reference. 

Analysis of Physiological Samples. Collection and processing of saliva, stool and bowel 

secretion samples is described above. A final volume of 10 µL of each of the processed 

samples was added in triplicate to the microtiter plate wells containing 90 µL of cell 

culture, and the assay was performed as described above. Each analytical run included a 

dose-response curve generated using standard AI-2. 

 

Results and Discussion 

 Several recent reports implicate intestinal microorganisms in the pathogenesis of 

IBD. Studies on animal models have shown that IBD does not occur in germ free 

environments and that enteric bacteria are essential for development of colitis109. A 

number of bacteria have been postulated to play a role in the pathogenesis of Crohn’s 

disease, including Mycobacterium avium subspecies paratuberculosis, Pseudomonas 

species, adherent-invasive Escherichia coli, and Streptococci106; however, no definitive 

evidence exists to support any specific microorganism as the causative agent of IBD. 

Additionally, some Crohn’s patients subjected to prolonged treatment with antibiotics 

have shown improvement110, indicating that bacterial flora must play a crucial role in 

IBD. Importantly, it has been demonstrated that the bacterial composition of IBD 

inflamed intestine differs from that of healthy intestine, with decreased microbial 

diversity and increased relative abundance of certain taxa in IBD111,112. 
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The above mentioned reports, along with other published data point to the presence of 

bacterial quorum sensing molecules in human samples; however, only a few analytical 

studies have been performed to identify and quantify these signaling molecules in 

physiological specimens. Kumari et al. have utilized whole-cell based biosensing systems 

for detecting and quantifying nanomolar levels of AHL molecules in complex clinical 

samples, like saliva and stool27.  Sperandio et al. report that fecal filtrates contain AI-2, 

although quantitative analysis has yet to be performed113. Recently, Campagna et al. 

have utilized liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) 

to quantify AI-2 molecules in saliva of healthy individuals114.  The method required 

analyte derivatization, which is time consuming and may result in inaccurate 

measurements caused by low efficiency of the derivatization reaction due to the 

complex nature of the biological matrix. 

Herein we developed, optimized, and characterized a whole-cell sensing system 

based on V. harveyi BB170 for the quantitative detection of AI-2 in physiological 

samples, i.e., saliva, stool and intestinal fluids, from healthy individuals as well as IBD 

patients. The bioluminescent bacterium V. harveyi, in its natural wildtype form has 

multiple parallel quorum sensing circuits that regulate bioluminescence.  Among those, 

there is a circuit that responds to AHLs and another one to AI-2 (Figure 2). The V. harveyi 

BB170 variant employed in this study was, in contrast, genetically modified to only 

respond to AI-2. When AI-2 enters the cells, it binds to the periplasmic binding protein 

LuxP, which undergoes a change in conformation upon binding to AI-2 and initiates the 

transcription of the luxCDABE cassette, which codes for bacterial luciferase and other 
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enzymes that catalyze the synthesis of the luciferase substrate. Thus, presence of AI-2 

triggers the expression of luciferase, its substrate, and ultimately results in the 

generation of bioluminescence.  In the optimized conditions described in this work, the 

light signal derived from the luciferase-dependent reaction is proportional to the AI-2 

present in the environment of the sensing cells. Therefore, the whole-cell sensing 

system is appropriate for monitoring the levels of AI-2 in saliva, stool, and intestinal 

washing samples. It is well established that the concentration of biomolecules and drugs 

in saliva reflects their systemic concentration because of the ability of many substances 

to reach saliva via intracellular and extracellular routes115. On the other hand, stool and 

rectal samples as well as intestinal washings are considered to be representative of the 

environment present in the bowel116.  

As mentioned above, the V. harveyi strain BB170 has been employed as the 

detection element in a bioassay aimed at investigating the ability of a variety of bacterial 

species and strains to produce AI-2. For that, the bacteria under examination are grown 

for a period of time and the culture supernatants are then exposed to the reporter 

strain for induction of bioluminescence due to the presence of AI-2. The conventional 

experimental protocol employed in these studies is time-consuming (4 hours) and only 

provides qualitative data117,118.  In that regard, the goal of this work was to develop a 

whole-cell sensing system based on V. harveyi BB170 for the quantitative detection of 

AI-2 molecules in physiological samples.  To that end, we first developed a sensing 

system for the detection of AI-2 quorum sensing molecules.  We then optimized and 
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standardized the experimental protocol for effective and efficient use of the biosensing 

system in clinical applications.  

Modifications to the conventional assay protocol allowed for a 40% reduction in 

time to perform the entire assay (2.5 h vs. 4 h). By exposing the sensing cells to standard 

solutions containing various concentrations of AI-2, we were able to establish a dose-

response curve with a detection limit of 2.5 × 10-8 M AI-2 and a dynamic range of 2.5 × 

10-8 M to 1 × 10-5 M. The limit of detection (LOD) was defined as sum of the average of 

the blank signal and three times its standard deviation. The sensing system proved to be 

precise and reproducible, with intra- and inter-assay percent relative standard deviation 

(%RSD) values less than 8%. It is noteworthy to point out that the limit of detection 

obtained with our whole-cell sensor is well below the levels of AI-2 found in human 

saliva (244-965 nM) by Campagna et al. using LC-MS/MS119. This further supports the 

applicability of the cell-based sensing system to the analysis of physiological/clinical 

samples. 

When the whole-cell biosensing system was used for detection of AI-2 in stool, 

significant quenching of the bioluminescence signal was observed.  Dilution studies 

were then performed in order to determine a proper stool dilution that did not show 

any matrix interference (data not shown). A 1:750 (w/v) dilution of stool with RO 

filtered water was found to be required to eliminate matrix effect. A dose-response 

curve was constructed in 1:750 diluted pooled stool samples and compared with a 

standard dose-response curve (Figure 3). As observed in the figure, the two dose-
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response curves virtually overlapped and exhibited similar analytical characteristics 

(Table 1). Thus, a 1:750 (w/v) dilution was chosen to test unknown stool samples. A 

matrix effect was also observed when saliva samples were analyzed directly, without 

dilution. A dose-response curve was obtained by adding AI-2 solutions at known 

concentrations to a pool of saliva samples, which showed signal intensities lower than 

those observed when the dose-response curve was generated with known AI-2 

standards in water.  Optimization studies determined that a 1:100 (v/v) dilution of saliva 

was able to eliminate the matrix effect and allowed for the generation of analytically 

sound dose-response curves (Figure 4). The analytical parameters of dose-response 

curves obtained in different matrices are reported in Table 1.   

After optimizing the assay conditions, we employed the whole-cell sensing 

system to detect AI-2 levels in individual saliva, stool, and intestinal samples collected 

from IBD patients and healthy subjects (Table 2). The obtained data proved that AI-2 

was detectable in all three different types of samples. Although only a few samples were 

analyzed, it is interesting to observe that distinct levels of AI-2 were detected in the 

tested samples. Specifically, AI-2 levels varied considerably in stool samples from IBD 

patients, which may support the hypothesis that variations in the concentrations of 

QSMs in those samples may reflect perturbation of the microflora in the inflamed 

intestine111,112. To the best of our knowledge, this is the first time that the levels of AI-2 

are quantified in human stool and intestinal samples.  The results obtained point out to 

a potential use of our method as a rapid and inexpensive tool for diagnosis and 

monitoring of bacterial-related conditions, including IBD, where bacteria is thought to 



75 

 

play an important role.  We postulate that correlation of AI-2 levels in physiological 

samples with the status of the disease may have implications in the potential use of AI-2 

as a biomarker of disease.  Work toward the verification of this hypothesis by 

performing clinical studies is underway in our laboratories. 

Conclusion 

In conclusion, we have designed, developed and optimized a whole-cell based 

biosensing system that allows for quantitative detection of AI-2 quorum sensing 

molecules in human samples. When employed for the detection of AI-2 in physiological 

specimens, the method proved to be rapid, reproducible, and sensitive, with a detection 

limit of 2.5 × 10-8 M. Additional advantages of the method lie in the requirement of 

small unprocessed sample amounts (approximately 1 µL of saliva and less than 1 mg of 

stool) and the potential for high-throughput analysis which are important for clinical 

applications, such as monitoring of IBD patients for their AI-2 levels over a period of 

time. This sensing system should also be applicable to other bacteria-related conditions. 

Furthermore, the analytical features of this method make it amenable to investigation 

of compounds that may act as agonists or antagonists in the AI-2-mediated QS system; 

this may lead to the identification of QS inhibitors that could be employed as drugs in an 

alternative approach for the treatment of bacteria-related disorders. 
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Figure 1.  Synthesis of DPD in bacteria. By the action of methyltransferases, S-

adenosylmethionine (SAM) is converted to S-adenosylhomocysteine (SAH). SAH is 

metabolized to adenine and S-ribosylhomocysteine (SRH) by Pfs enzyme. SRH is the 

substrate for the enzyme LuxS catalyzing the synthesis of 4,5-dihydroxy-2,3-

pentanedione (DPD). (b) DPD undergoes spontaneous cyclization and forms (2R,4S)- and 

(2S,4S)-2,4-dihydroxy-2-methyldihydrofuran-3-one (R- and S-DHMF, respectively). R- 

and S-DHMF undergo hydration to form (2R,4S)- and (2S,4S)-2-methyl-2,3,3,4-

tetrahydroxytetrahydrofuran (R- and S-THMF, respectively). In the presence of borate, 

S-THMF converts to (2S,4S)-2-methyl-2,3,3,4-tetrahydroxytetrahydrofuran-borate (S-

THMF-borate), i.e., the autoinducer-2 form utilized by Vibrio harveyi. R-THMF is the 

autoinducer-2 form utilized by other bacteria, such as, Salmonella typhimurium. Figure 

copyright from Xavier et al.19 
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Figure 2. Quorum sensing regulation of bioluminescence in V. harveyi BB170. System 1, 

which uses an AHL as quorum sensing molecule, has been silenced. Therefore, 

production of bioluminescence only depends on AI-2 (System 2). 
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Figure 3. Standard dose-response curve (black) compared with dose-response curve in 

1:750 (w/v) stool (red). 
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Figure 4. Standard dose-response curve (blue) compared with dose-response curve in 

1:100 saliva (red). 
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Table 1. Analytical parameters of the whole-cell biosensing system in buffer and 

physiological matrices. 

 

Signal Intensity 
with 5 x 10-5 M 

AI-2 
(× 104 RLU) 

Signal Ratio LOD 
(M) 

Dynamic Range 
(M) 

Buffer 7.9 1 
2.5 × 10-

8 
2.5 × 10-8 - 5.0 × 
10-5 

1:750 (w/v) 
Stool 7.1 1.11 

5.0 × 10-

8 
5.0 × 10-8 - 5.0 × 
10-5 

1:100 (v/v) 
Saliva 7.7 1.03 

2.5 × 10-

8 
2.5 × 10-8 - 5.0 × 
10-5 
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Table 2. Detection of AI-2 in clinical samples from IBD patients (white) and healthy 

subjects (gray).  

Samples 
Signal Intensity 

(× 104 RLU) 
%RSD 

Stool 1 1.8 6 

Stool 2 3.8 7 

Ileal washing 2.5 7 

Saliva 1 2.5 6 

Saliva 2 2.4 10 

Saliva 3 1.9 1 

Saliva 4 1.2 6 

Saliva 5 1.3 5 

Saliva 6 2.3 6 
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CHAPTER THREE 

DETECTION OF QUORUM SENSING MOLECULES IN BLOOD SERUM 

 

Introduction 

 Bacteria are known to cause a variety of disorders from acute and chronic 

infection to inflammation, within and on the surface of the human body. Bacterial 

infections can be caused by a variety of microorganisms and result in mild to life-

threatening conditions. Furthermore, certain bacteria are involved in chronic diseases, 

such as, inflammatory bowel disease (IBD)120 and cystic fibrosis26. A notable feature of 

bacteria is their ability to form biofilms. Biofilms were first reported by J. W. Costerton 

in 1978; using light and electron microscopy, he demonstrated the presence of biofilms 

on inanimate surfaces in an aquatic environment121. The presence of biofilms in cystic 

fibrosis lung infections has been shown by Singh et al.25. Bacterial infections are 

generally treated by antibiotic administration. Formation of biofilms contributes to 

pathogenicity and makes the treatment less effective as bacteria are encased in a matrix 

composed of polysaccharides and proteins that reduces the contact between bacteria 

and antibacterial agent122. In addition, due to extensive usage of antibiotics, several 

pathogenic bacteria have gained antibiotic resistance through mutations and lateral 

gene transfer. Indeed, alternative strategies against bacterial infections that involve new 

classes of antibiotics are needed more than ever. In that regard, compounds that are 

inhibitors of quorum sensing, the mechanism by which bacterial cells communicate and 

ultimately leads to biofilm formation, provide with a new approach to combating 



83 

 

bacterial infection. Other bacterial behaviors such as virulence factor production, 

swarming, and motility are also modulated through quorum sensing. Bacterial quorum 

sensing circuits operate via synthesis and secretion of small organic molecules, termed 

as quorum sensing molecules (QSMs), which are recognized by bacteria of the same 

species (intra-species communication) or of other species (inter-species 

communication). Once these molecules enter the bacterial cell, they initiate a cascade 

of events leading to the expression of certain target genes. A general schematic of the 

quorum sensing circuits in the pathogenic bacterium Pseudomonas aeruginosa is shown 

in Figure 1. The expression of the aforementioned genes is regulated in a cell-density 

dependent manner. When cell density is low, the amount of QSMs in the environment 

around bacteria is low and the expression of genes is repressed. As the cell density 

gradually increases, the amount of QSMs in the environment also increases 

proportionally and, when a certain QSM threshold concentration is reached, the genes 

are expressed12. Gram-negative bacteria utilize N-acyl homoserine lactones (AHLs) and 

Gram-positive bacteria utilize autoinducing peptides (AIPs) for intra-species 

communication. A third category of molecules, known as autoinducer-2 (AI-2), is used 

for interspecies communication as the genes coding for the proteins that either 

synthesize or bind AI-2 are present in both Gram-negative and Gram-positive bacteria. 

Recently, Sperandio et al. postulated that a new type of QSM, autoinducer-3, is involved 

in interkingdom communication between bacteria and their hosts17. Figure 2 lists few 

examples of QSMs and the bacteria that synthesize them. 
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 Reports relating quorum sensing to bacterial infections have emerged in the last 

decade. Singh et al. reported the presence of biofilms of the pathogenic bacterium P. 

aeruginosa in the lungs of cystic fibrosis patients. It has been demonstrated that the 

presence of biofilms reduce the effectiveness of even aggressive antibiotic treatment25. 

Two AHLs, N-butyryl-L-homoserine lactone (C-4 HSL) and N-(3-oxododecanoyl)-L-

homoserine lactone (3-oxo-C-12 HSL), used by P. aeruginosa to control biofilm 

formation as well as virulence determinant production, were identified in sputum 

samples from these patients. The significance of quorum sensing in burnt wound 

infections in mice was demonstrated by Rumbaugh et al. who found that mice infected 

with mutant strains of P. aeruginosa that were unable to synthesize AHLs had lower 

levels of virulence expression as compared to those infected with wild type P. 

aeruginosa22. Another study also highlighted the importance of quorum sensing using a 

mouse model with ascending urinary tract infections123. These studies demonstrate the 

relevance of detecting and quantifying QSMs. If a relationship between levels of QSMs 

in physiological specimens and status of the disease is established, QSMs could be used 

as biomarkers of bacteria-related disorders. 

The most common techniques to detect QSMs include various physical-chemical 

methods and biosensing systems. Physical-chemical methods, such as, GC-MS124,125, 

HPLC-UV126, and LC-MS-MS127 require extensive sample preparation steps, often 

including derivatization119, expensive instrumentation, and specialized laboratory 

personnel, along with being time consuming and low throughput. While protein-based 

biosensing systems to detect QSMs are rapid, cost-effective, and easy to use, they are 
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limited by the stability of the sensing proteins in biological matrices and relatively high 

limits of detection128. Our group developed and employed two bioluminescent bacterial 

whole-cell biosensing systems based on the recognition and signal generation afforded 

by plasmids pSB406 and pSB1075, respectively, to detect with high sensitivity, 

selectivity, and reproducibility short and long chain AHLs in human saliva and stool 27.  

Bodily fluids such as saliva and blood are known to contain a variety of small molecules 

and proteins, many of which have been investigated for potential utility as biomarkers 

of diseases. We have previously demonstrated that AHLs are present in saliva and stool 

specimens27. However, until now blood has not been studied for the presence of QSMs. 

Blood transports oxygen and nutrients to cells and takes metabolic waste away from 

cells. In addition, it helps maintain body temperature, regulates pH, and allows 

protection against foreign agents by the action of white blood cells. Furthermore, blood 

represents one of the most commonly used fluids where clinically relevant molecules 

and drug metabolites are detected.   

In this study we aimed at investigating blood for the detection of QSMs. To the 

best of our knowledge, this is the first time that the presence of AHLs in blood serum is 

reported. Moreover, we validated our findings, which were achieved in human blood 

serum employing whole-cell sensing systems, by analyzing the serum samples using LC-

MS-MS. Furthermore, we demonstrated that AHLs can also be detected in animal 

serum. Specifically, in order to support the hypothesis of employing QSMs as biomarkers 

of disease, we report the results of a pilot study investigating the effects of 

experimentally induced colitis on the serum and stool levels of QSMs in mice models. 
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Experimental section 

Materials. N-hexanoyl-DL-homoserine lactone (C-6 HSL), N-dodecanoyl-DL-homoserine 

lactone (C-12 HSL), sodium chloride, anhydrous magnesium sulfate, Luria Bertani (LB) 

media, ampicillin, and kanamycin were purchased from Sigma-Aldrich (St. Louis, MO). 

Acetonitrile and methylene chloride used in all experiments were of HPLC grade and 

were purchased from VWR Scientific (Pittsburgh, PA). AI-2 was purchased from Omm 

Scientific (Dallas, TX). The 96-well microtiter plates were purchased from Costar 

(Corning, NY). Vitamin free casamino acids were purchased from BD Biosciences 

(Franklin Lakes, NJ).  

Plasmids, bacterial strains, and culture conditions. The plasmids pSB406 and pSB1075 

were originally provided by Dr. Paul Williams (University of Nottingham, Nottingham, 

UK) and previously transformed in Escherichia coli JM109 cells. The transformed cells 

were then stored at -80 °C as glycerol stocks. Fresh cell cultures were obtained from the 

glycerol stocks and grown in LB media (100 µg/mL aAmpicillin) overnight in an orbital 

shaker at 37 °C, 250 rpm, refreshed in the morning, and allowed to grow until an optical 

density at 600 nm (OD600nm) of 0.45-0.50 was reached. Vibrio harveyi MM32 cells were 

purchased from American Type Culture Collection (ATCC), and glycerol stocks were 

stored at -80 °C. Fresh cell cultures were obtained by growing cells in autoinducer 

bioassay (AB) media with 30 µg/mL of kanamycin overnight in the orbital shaker at 30 

°C, 250 rpm, and then refreshing the cultures in the morning to obtain an OD600nm of 

0.01-0.02. The procedure to prepare AB media has been described elsewhere16,129. 
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Dose-response curves. Commercially available N-acyl-homoserine lactones were 

dissolved in acetonitrile to obtain 1 x 10-2 M stock solutions, which were serially diluted 

with RO filtered water to obtain standard solutions at concentrations ranging from 1 x 

10-4 M to 1 x 10-8 M. A 1% (v/v) solution of acetonitrile in RO filtered water (0.1% (v/v) 

acetonitrile after adding to the sensing cell suspension) was used as blank. This amount 

of acetonitrile was not toxic for the sensing cells. A volume of 10 μL of each of these 

solutions was added in triplicate to a 96-well white polystyrene microtiter plate 

containing 90 µL/well of the corresponding E. coli cell culture grown to an OD600nm of 

0.45-0.50. C-6 HSL solutions were employed for the whole-cell sensor with pSB406, 

while C-12 HSL solutions were employed for the whole-cell sensor with pSB1075. The 

microtiter plate was then incubated in an orbital shaker at 37 °C at 175 rpm for two 

hours. Commercially available aqueous AI-2 solution (3.7 × 10-3 M) was serially diluted 

using RO filtered water to obtain solutions at concentrations ranging from 1 × 10-4 M to 

1 × 10-8 M. RO filtered water was used as blank. A 10 µL volume of each AI-2 solution 

and blank in triplicate was incubated with 90 µL of V. harveyi MM32 cell culture grown 

to an OD600nm of 0.01-0.02, in a microtiter plate. The produced bioluminescence from all 

the sensing systems was then measured using the FLUOstar Optima microplate reader 

(BMG Labtech, Durham, NC). The light intensity was expressed in relative light units 

(RLU). 

Human blood serum samples. Blood serum samples were obtained from IBD patients 

and healthy volunteers (Division of Gastroenterology, Department of Medicine, 

University of Miami Miller School of Medicine). Individual serum samples were stored at 
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-80 °C until analyzed. To prepare a pool of serum for matrix effect studies, equal 

volumes of serum samples from various healthy individuals were mixed together in a 

14-mL tube and vortexed for 5 minutes. Several aliquots of pooled serum were prepared 

and stored at -80 °C until needed.  

Serum dilution study. One aliquot of pooled serum was removed from -80 °C, thawed, 

and equilibrated to room temperature. To test for potential matrix effect, the serum 

was serially diluted with RO filtered water to obtain 1:10, 1:100, and 1:1000 dilutions. 

Each standard QSM (C-4 HSL, C-12 HSL, or AI-2) was added to aliquots of undiluted and 

diluted serum to achieve a final 1 × 10-6 M concentration. A 10 µL volume of each of 

these spiked and non-spiked serum samples at various dilutions was added in triplicate 

to 90 µL of the appropriate sensing cells, and the assay was performed as described 

above. A dose-response curve with the respective QSM was also included in each 

analytical run. 

Dose-response curves in serum matrix. 1 × 10-2 M stock solutions (prepared in 

acetonitrile) of C-6 HSL and C-12 HSL were serially diluted with 1:10 serum/water 

solution to obtain AHL concentrations ranging from 1 × 10-4 to 1 × 10-8 M. Acetonitrile at 

1% in the 1:10 serum/water solution was used as blank. Similarly, the available stock of 

AI-2 (aqueous solution at 3.7 × 10-3 M) was serially diluted with 1:10 serum/water 

solution to obtain AI-2 concentrations ranging from 1 × 10-4 to 1 × 10-8 M. A 10 µL 

volume of each of these solutions was added in triplicate to the wells of a microtiter 

plate, followed by addition of 90 µL of cell culture of the respective biosensing system. 
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The assay was then performed as described above. A reference dose-response curve 

was included in each analytical run.  

Serum storage study. Aliquots of pooled serum were spiked with C-6 HSL to obtain final 

concentrations in serum of 1 × 10-6 M and 1 × 10-7 M. Three sets of spiked serum 

samples were prepared; the first set was assayed immediately, the second set was kept 

at room temperature for six hours and then assayed, and the third set was kept at room 

temperature for two hours, later stored at -80 °C for 48 hours, and then assayed. Final 

concentration of Serum containing RO filtered water, instead of C-6 HSL solution, was 

used as blank for each storage condition. Aqueous solutions of C-6 HSL at 1 × 10-6 M and 

1 × 10-7 M concentrations served as controls. The serum samples were diluted 1:10 using 

RO filtered water, 10 µL of each diluted sample was added in triplicate to a microtiter 

plate containing 90 µL/well of the whole-cell biosensing system bearing pSB406, and the 

assay was carried out as described above.  

Analysis of human serum samples. After optimizing the experimental conditions, 

individual serum samples were diluted 1:10 using RO filtered water. A 10 µL volume of 

each diluted sample was added in triplicate to the wells of a microtiter plate and 

incubated with 90 µL of cell culture of each of the biosensing systems for detection of 

short chain AHLs, long chain AHLs, and AI-2, respectively. The assays were performed as 

described above. 

LC-MS-MS analysis of serum samples.  

Preparation of AHL standard solutions. Commercially available standard N-acyl-

homoserine lactones were dissolved in acetonitrile to obtain 1000 μg/mL solutions. 
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Twenty microliters of each of these 1000 μg/mL solutions of N-butyryl-DL-homoserine 

lactone (C-4 HSL), N-hexanoyl-DL-homoserine lactone (C-6 HSL), N-(3-oxohexanoyl)-DL-

homoserine lactone (3-oxo-C-6 HSL), N-octanoyl-DL-homoserine lactone (C-8 HSL), N-

decanoyl-DL-homoserine lactone (C-10 HSL), N-dodecanoyl-DL-homoserine lactone (C-

12 HSL), and N-tetradecanoyl-DL-homoserine lactone (C-14 HSL) was added to 860 μL of 

methanol/water (35:65, v/v) with 0.1% formic acid, in order to obtain a stock mixture 

solution containing 20 μg/mL of each of the seven AHLs. From this stock solution, AHL 

standard mixture solutions, which contained 50, 25, 10, 5, 1, and 0.5 ng/mL of each AHL, 

respectively, were prepared for calibration. N-heptanoyl-DL-homoserine lactone (C-7 

HSL) was used as an internal standard (since C-7 HSL is not produced by bacteria) for all 

the standard mixtures. A specific volume of 1 μg/mL solution of C-7 HSL in 

methanol/water (35:65, v/v) with 0.1% formic acid was added to each of the standard 

mixture solutions to achieve a final internal standard concentration of 25 ng/mL. These 

standard mixture solutions with the added internal standard served as laboratory 

control spike (LCS) solutions. Similarly, a specific volume of 1 μg/mL internal standard 

solution was added to water to obtain a final C-7 HSL concentration of 25 ng/mL. The 

resulting solution served as blank.  

Extraction of AHLs from serum samples. An extraction protocol similar to that used by 

Kumari et al. to extract AHLs from saliva samples130 was employed with modifications in 

this study. Briefly, an equivalent volume of acetonitrile was added to a pool of serum to 

precipitate the proteins out. The precipitate formed was centrifuged and the 

supernatant separated. The supernatant was then extracted using methylene chloride, 
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evaporated to dryness, reconstituted using mobile phase to about 100 µL and C-7 HSL 

was added as internal standard. The LC-MS-MS analysis was performed at the 

Environmental Research Training Laboratories (ERTL) of the University of Kentucky as 

previously described130. 

Animal Study. Wild type C57BL/6 mice were purchased from Jackson Laboratories (Bar 

Harbour, Maine). A total of nine mice, between 13 and 17 weeks of age, were used. In 

the course of study, mice were fed manufacturer prescribed diet (LabDiet® 5K52/5K67). 

Over a period of seven days, five mice were given a 3% aqueous solution of dextran 

sulfate sodium (DSS) through drinking water (5 mL per day) to experimentally induce 

colitis. Four mice that received equivalent amount of water, without DSS, served as 

controls. Serum and stool samples were collected from both animal groups on day 0 

(before DSS administration) and on day 7. Serum and stool samples were frozen at -80 

°C immediately upon collection. Serum samples were processed and analyzed as 

described above for human serum. Stool samples were processed by following the 

procedure described by Kumari et al.27. Briefly, a 20 mg/mL suspension of stool was 

prepared using 25:75 acetonitrile/water solution and diluted using RO filtered water to 

obtain a 1:1600 stool suspension. For analysis, a 10 µL volume of this stool suspension in 

triplicate was then incubated with 90 µL of cell culture of each of the whole-cell sensing 

systems. The assays were performed as described above. 

 

Results and Discussion 
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 A biosensing system consists of a biological recognition component coupled to a 

transducer component. A whole-cell biosensing system consists of the intact bacteria as 

the recognition component; the bacteria are genetically engineered to generate a 

readable output upon selective recognition of the analyte. The biosensing system 

produces a dose-dependent readable output in response to the analyte. The whole-cell 

biosensing systems carrying plasmids pSB406 and pSB1075 respond to short and long 

chain AHLs, respectively. Plasmid pSB406 contains the gene rhlR, which codes for the 

recognition/regulatory protein RhlR, and the reporter gene cassette luxCDABE, which is 

under the transcriptional control of promoter PrhlI. Similarly, plasmid pSB1075 bears the 

gene lasR, which codes for the recognition/regulatory protein LasR, and the reporter 

gene cassette luxCDABE, which is under the transcriptional control of promoter PlasI. The 

gene cassette luxCDABE encodes for the bioluminescent enzyme luciferase and enzymes 

that catalyze the synthesis of the luciferase substrate. In the presence of AHLs, the 

reporter is expressed in a dose-dependent manner and the produced bioluminescent 

signal is proportional to the AHL concentration present inside the cell.  In a similar 

manner, the whole-cell biosensing system based on V. harveyi MM32 responds to AI-2 

by producing bioluminescence in a dose-dependent fashion. V. harveyi is a 

spontaneously bioluminescent marine microorganism that controls light emission 

through various quorum sensing systems, which employ various QSMs. Specifically, the 

bacterium uses QS circuits that utilize N-3-hydroxybutanoyl homoserine lactone (HAI-1), 

(S)-3-hydroxytridecan-4-one (CAI-1), AI-2, and recently discovered nitric oxide (NO). V. 

harveyi strain MM32 is genetically modified in such a way that it only emits 
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bioluminescence in response to AI-2. Additionally, it lacks the gene luxS encoding for 

LuxS protein, which synthesizes AI-215; in this way the cells do not produce their own AI-

2 and they can only produce bioluminescence in response to exogenous AI-2. Therefore, 

this strain can be employed as a sensor that responds with emission of light to AI-2 

present in the environment of the cells. In this work we optimized, characterized, and 

utilized E. coli pSB406 and pSB1075 based whole-cell biosensing systems, and V. harveyi 

MM32 based whole-cell biosensing systems, to detect AHLs and AI-2, respectively, in 

blood serum samples. 

 In our studies, we collected individual blood serum samples from healthy 

volunteers and mixed them together to obtain a pool of serum in order to take in 

account possible variations between samples.  Serum electrolytes, antibodies, 

hormones, and exogenous substances can affect the performance of biosensing 

systems, and therefore, serum needs to be evaluated in terms of its potential matrix 

effect on the determination of the AHLs in this sample.  For that, dilution studies were 

undertaken by preparing serial dilutions of serum with water followed by spiking studies 

in which a known concentration of analyte was added to serum. Serum 1:10, 1:100, and 

1:1000 dilutions were prepared using RO filtered water and incubated with the whole-

cell biosensing systems employed in this study. RO filtered water served as control. 

When undiluted pooled serum was incubated with the whole-cell biosensing systems, 

reduced bioluminescence was observed as compared to that of the control; the control 

bioluminescence was due to the background signal of the sensing cells. However, signals 

equivalent to that from the control were obtained from all the serum dilutions tested, 
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which showed that the quenching/inhibiting matrix effect was eliminated at even a very 

low dilution of the serum, i.e., 1:10 dilution of serum in water. These data were 

confirmed by spiking the undiluted serum and above serial serum dilutions with a 

known concentration of QSM and employing the corresponding whole-cell biosensing 

system to detect the AHLs as described in the Methods Section. As an example, Figure 3 

shows the results of the matrix effect studies performed using the whole-cell biosensing 

system containing pSB406. Dose-response curves using 1:10 dilution of the serum were 

then obtained. Standard solutions of QSMs were prepared by serial dilution in either 

1:10 serum or water and incubated with the sensing cells. As shown in Figure 4 for 

detection of short chain AHLs with the pSB406-based sensing system and AI-2 with the 

V. harveyi MM32-based sensing system, the two dose-response curves of each sensing 

system overlap, thus confirming that a 1:10 dilution of serum eliminates the matrix 

effect. Similar results were obtained with the sensing systems for detection of long 

chain AHLs. Limits of detection of 1 × 10-9 M for short and long chain AHLs, and of 5.0 × 

10-8 M for AI-2 were obtained in 1:10 diluted serum.  

Following optimization and characterization of the sensing systems for use in 

serum by evaluating and eliminating matrix effect through serum dilution, and defining 

the analytical parameters of the sensing systems in serum, we analyzed the blood serum 

samples obtained from IBD patients and control individuals. Inflammatory bowel 

disease is a chronic inflammatory condition of the intestine, which is characterized by 

recurrent acute inflammation episodes (flare-ups) over chronic persistent inflammation. 

The most common forms of IBD are Crohn’s disease (CD), which mainly affects the small 



95 

 

intestine as well as other parts of the gastrointestinal tract, and ulcerative colitis (UC), 

which affects the colon. The causes of IBD are not well understood; it is believed that 

several factors, including bacteria, play a role in the etiology of the disease. Specifically, 

there is evidence that an overly aggressive immune response towards the intestinal 

microflora occurs in genetically predisposed individuals131. Additionally, altered gut 

bacterial composition, with less diversity and changed relative abundance of species, 

has been demonstrated in IBD patients as compared to healthy subjects132. For this 

study, we obtained 6 samples from control individuals, 10 samples from UC patients, 

and 8 samples from CD patients. The serum samples were analyzed after a 1:10 dilution 

with RO filtered water. When the whole-cell biosensing system containing plasmid 

pSB406 was employed, short chain AHLs were detected in a number of samples. 

Specifically, all control samples, except one, exhibited undetectable levels of AHLs; on 

the other hand, AHLs were detected in the majority of IBD samples, with UC patient 

samples showing a trend of higher bioluminescence signal intensities as compared to CD 

patient samples (Figure 5). Each sample was tested at least twice to confirm the above 

observation; consistent results were achieved, with good reproducibility as expressed by 

percent relative standard deviation (%RSD) values ranging from less than 1% to 10%. 

Although a limited number of samples were analyzed as proof of principle, the obtained 

data suggest that the differences in intestinal bacterial composition between IBD and 

healthy subjects, as reported in the literature, may be revealed by differences in QSM 

levels in physiological samples. This would support the use of QSMs as biomarkers of 

bacteria-related diseases. However, more samples derived from larger numbers of IBD 
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patients and controls need to be analyzed in order to confirm the observed trend. When 

the whole-cell biosensing system containing plasmid pSB1075 was employed, long chain 

AHLs were not detected in any of the tested samples. Additionally, when samples were 

analyzed using the MM32-based sensing system, none of them showed AI-2 levels in our 

detection range. One could speculate that this may be due to limited stability of certain 

QSMs, e.g., AI-2 in serum. On the other hand, stability of long chain AHLs in human 

serum should not be an issue, as shown by the LC-MS-MS study discussed below. 

Further investigations are required to clarify the obtained data.  

Since no studies have previously reported the presence of QSMs in serum, we 

deemed it necessary to confirm our findings using a conventional physical-chemical 

technique, such as LC-MS-MS. Recently, our group developed an LC-MS-MS method to 

detect AHLs in saliva130. In this work, using HPLC coupled to tandem mass spectrometry 

and the above protocol with slight modifications, we were able to separate and 

quantitate AHLs present in standard mixture solutions, with nanomolar limits of 

detection. We subsequently analyzed pooled serum samples. Unlike saliva, serum forms 

an emulsion if methylene chloride is used for AHL extraction. Therefore, we first 

precipitated the proteins from serum by adding acetonitrile. This step ensured that AHLs 

were solubilized in acetonitrile. After separating supernatant from precipitate, 

methylene chloride extraction was performed; the extract was then evaporated, dried, 

and reconstituted with mobile phase to run the sample on LC-MS-MS. As shown in 

Figure 6, C-8 HSL, C-10 HSL, C-12 HSL, and C-14 HSL were detected in extracted serum 

samples. The daughter ion analysis (Table 1) further confirmed the identity of AHLs that 
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were present in serum. These results are significant because they support that AHLs are 

actually present in serum and validate the use of whole-cell sensing systems for 

detection of AHLs in this type of physiological sample.  

Sample storage conditions are crucial when collecting and analyzing clinical 

samples. To that end, we carried out a study where we spiked pooled serum samples 

with C-6 HSL to obtain two final concentrations of, 1 × 10-6 M and  1 × 10-7 M, and then 

stored these spiked samples in various conditions before assaying them with the whole-

cell biosensing system containing pSB406. The storage conditions tested were meant to 

represent those actually employed when collecting patient serum samples in hospital 

settings. After spiking, sets of serum samples were either assayed immediately, or after 

being kept at room temperature for 6 hours, or after being kept at room temperature 

for 2 hours followed by storage at -80 °C for 48 hours. We found that (Figure 7), among 

these spiked serum samples, only those that were assayed immediately showed a 

bioluminescence signal intensity similar to that of the control (same AHL concentrations 

in water. This indicates that AHLs rapidly degrade in serum at room temperature; hence, 

serum samples should not be left at room temperature and should rather be frozen as 

soon as possible after collection. 

 While no reports are available with regard to stability of AI-2 in blood, few 

studies have indicated that blood of mammals carries enzymes, known as paraoxonases 

(PONs), which are capable of degrading AHLs133-136. In humans, three kinds of 

paraoxonases have been identified – PON1, PON2, and PON3. PON1 and PON3 are 

synthesized in the liver and secreted into the blood. PON2, which has the highest 
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activity for AHLs hydrolysis, is expressed in many tissues, including brain, kidney, liver, 

and testis, but not in blood. While PON1 and PON3 are mostly involved in hydrolysis of 

organophosphates, both of them are active lactonases, although with activity much less 

than that of PON2134,136. The presence of PON1 and PON3 in blood may affect the 

stability of lactones, including AHLs, and thus affect the amount of AHLs detected. 

Interestingly, one report has indicated reduced levels of PON1 enzymes in the serum of 

CD and UC patients as compared to controls137. This reduced lactonase activity may 

explain, at least in part, the higher levels of short chain AHLs that we observed in IBD 

patients with respect to controls. In healthy individuals, higher levels of PON enzymes 

may degrade AHLs more effectively, while in IBD patients lower levels of PON enzymes 

are unable to degrade AHLs effectively, leading to accumulation in serum.   

In order to further test the hypothesis that intestinal inflammation may be 

associated with changes in the gut microflora, which can be detected by changes in 

QSM production, we employed a well-established animal model of colitis and monitored 

the QSM levels. Specifically, we used mice that were orally administered dextran sulfate 

sodium (DSS) for 7 days to induce colitis40,138. DSS-induced murine colitis represents an 

experimental model for human IBD. A group of five mice were treated with DSS, while a 

group of 4 mice served as control. Serum and stool samples from all mice were collected 

at day 0 and day 7. Serum samples were analyzed by using the protocol developed in 

this work. Stool samples were analyzed by using a protocol that was previously 

developed in our lab27. Figure 8 shows the comparison of long chain AHL levels between 

day 0 samples and day 7 samples in control and DSS treated mice. At day 0, before the 
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beginning of DSS treatment, the bioluminescence signals were nearly the same for most 

samples, without distinctions between the two groups of animals, as expected. At day 7, 

the control mice samples exhibited bioluminescence signals either at the same level or 

higher than those at day 0. On the other hand, four out of five DSS treated mice showed 

a marked decrease in bioluminescence signals. Further, it is important to note that a 

similar trend was observed in all animals, with the exception of mouse DSS4, when 

comparing the changes in AHL levels in stool and serum samples; for example, if the 

serum AHL levels increased between day 0 and day 7 in a certain mouse, the stool AHL 

levels also increased in that same mouse. These results further support the feasibility of 

analyzing serum samples for AHL molecules. Although a very limited number of mice 

were employed in this study, the data clearly suggested that, under the conditions of 

colitis, changes in the levels of AHLs occurred that might be related to changes in 

bacterial flora. 

 

Conclusion 

In conclusion, we successfully utilized whole-cell biosensing systems to detect 

AHL molecules in serum samples of IBD patients and animal models. The method was 

standardized using a pool of serum and 1:10 dilution allowed to overcome the serum 

matrix effect. Nanomolar limits of detection were obtained in water as well as in 1:10 

diluted serum. Similar slopes of the dose-response curves obtained in water and 1:10 

diluted serum, indicating that whole-cell biosensing systems can be utilized to detect 

AHLs in serum samples without loss of analytical performance. While we did not yet 
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analyze a substantial number of samples, doing so may enable us to confirm our 

observation that there is a difference between the levels of AHLs in control and IBD 

samples, and between the levels of AHLs in the two types of IBD conditions, UC and CD. 

As we analyze more serum samples, a relationship between the levels of AHLs in serum 

and the status of the disease may be established, thus pointing out at the potential of 

employing AHLs as biomarkers of IBD. Additionally, the ability to detect AHLs in serum 

may also serve in studies aimed at investigating the role and relationship between the 

levels of AHLs in serum and the concentration and activity of paraoxonase enzymes in 

individuals suffering from IBD, which have been suggested to have quorum-quenching 

activity137. These studies should aid in understanding the role of bacteria and, in general, 

the microbiome in IBD. 
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Figure 1. Schematic of LasI/LasR and RhlI/RhlR quorum sensing circuits in P. aeruginosa. 

LasI catalyzes synthesis of 3-oxo-C-12 HSL (triangle), which accumulates in the 

environment. At a threshold level, 3-oxo-C-12 HSL binds to LasR; 3-oxo-C-12 HSL bound 

LasR activates transcription of several virulence genes along with the rhlR gene, which 

encodes for RhlR, thus initiating the RhlI/RhlR quorum sensing circuit. RhlI catalyzes 

synthesis of C-4 HSL (pentagon), which accumulates in the environment and, at a 

threshold level, binds to RhlR. C-4 HSL bound RhlR activates transcription of target genes 

including a subset of virulence genes. Adapted from Miller et al.12. 
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Figure 2. Quorum sensing molecules. (A) N-acyl-homoserine lactones. (B) Autoinducer-2. 

(C) Quinolone signaling molecule. (D) Autoinducing peptides (AIPs). 

(A)  

 

(B)  

 

(C) 
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Figure 3. Undiluted and diluted serum samples were incubated with whole-cell 

biosensing system containing plasmid pSB406 (yellow). Undiluted and diluted serum 

samples were spiked with 1 × 10-7 M C-6 HSL and incubated with whole-cell biosensing 

system containing plasmid pSB406 (green). Blank 1 contains RO filtered water. Blank 2 

contains RO filtered water spiked with 1 × 10-7 M C-6 HSL.  
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Figure 4. Comparison of dose-response curves in clinical samples with standard dose-

response curve. (A) Using solutions of C-6 HSL, a dose-response curve was obtained in 

pooled serum (red) and compared with that obtained in water (black) in the same 

analytical run. C-6 HSL solutions were incubated with whole-cell biosensing system 

containing plasmid pSB406. (B) Using solutions of AI-2, a dose-response curve was 

obtained in pooled serum (red) and compared with that obtained in water (black) in the 

same analytical run. AI-2 solutions were incubated with V. harveyi MM32-based whole-

cell biosensing system.  
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Figure 5. Analysis of serum samples from IBD patients and controls. Yellow – Serum 

samples obtained from healthy volunteers. Red – Serum samples obtained from UC 

patients. Green – Serum samples obtained from CD patients. Short chain AHLs were 

detected using the whole-cell sensing system containing plasmid pSB406. The reported 

signal values are blank-subtracted. 
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Figure 6. LC-MS-MS analysis of serum. (A) A standard mixture of AHLs (1 ng/mL each). 

(B) Mobile phase alone. (C) Pooled serum was extracted using acetonitrile/methylene 

chloride followed by reconstituting in the mobile phase. 
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Figure 7. Stability of C-6 HSL in serum stored under various conditions. Serum was 

spiked with (1) 1 × 10-6 M C-6 HSL (yellow) and (2) 1 × 10-7 M C-6 HSL (blue). Control 1 is 

serum spiked with 1 × 10-6 M C-6 HSL and control 2 is serum spiked with 1 × 10-7 M C-6 

HSL. 
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Figure 8. Mice treatment with colitis inducing agent dextran sulphate sodium (DSS). (A) 

Comparison of long chain AHL levels in serum samples before DSS treatment (green) 

and after a 7 day DSS treatment (red). The plotted values are blank-subtracted. 

Horizontal lines indicate the cutoff for each set of values. The cutoff is determined as 

the signal corresponding to 3 standard deviations of the blank. (B) Comparison of long 

chain AHL levels in stool samples before DSS treatment (green) and after a 7 day DSS 

treatment (red). The plotted values are blank-subtracted. Horizontal lines indicate the 

cutoff for each set of values. The cutoff is determined as the signal corresponding to 3 

standard deviations of the blank. 
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Table 1. LC-tandem MS detection of AHLs 
 

AHLs [M + H-101]+ (m/z) [M – H2O]+ (m/z) 

C-7 HSL 113 196 

3-oxo-C-8 HSL 141 224 

C-8 HSL 127 210 

C-10 HSL 155 238 

C-12 HSL 183 266 

C-14 HSL 211 294 
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CHAPTER FOUR 

DETECTION OF BACTERIAL QUORUM SENSING MOLECULES IN FOOD MATRICES 

Introduction 

 Foodborne illnesses are a major health issue affecting over 15% of the US 

population and resulting in 3000 deaths each year139.  Most of these diseases are due to 

infections caused by viruses, bacteria, and parasites, which enter into the 

gastrointestinal tract by consumption of contaminated food. While diseases caused by 

pathogens, such as Yersinia, Escherichia coli O157:H7, and Listeria have decreased over 

the past few years, those caused by Salmonella and Vibrio have been on the rise140. 

None of these bacterial-related foodborne illnesses have been eradicated, and rather, 

multistate foodborne outbreaks have increased consistently over the past several 

years10. 

 Food contamination can occur at any stage, from farms and slaughter houses to 

distribution at restaurants and shopping centers. The list of edibles that are known to 

carry bacterial contamination includes milk and milk products (such as cheese, yogurt, 

and ice cream), meat products (such as beef, pork, chicken, and turkey), vegetables 

(such as broccoli, lettuce, tomato, and sprouts), eggs, and sea products. In the past, the 

time lag between food production and consumption was relatively short, and therefore, 

chances of food contamination were limited.  Current market demands that food be 

stored for longer durations of time.  To limit bacterial growth, a number of food 

preservation techniques have emerged. For example, milk is pasteurized by heating to 
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high temperatures for short periods of time, and vegetables and meat are packaged 

under a variety of controlled conditions.  

 Initial processing by heat treatments reduces the initial bacterial content 

considerably, and the recontamination thereafter determines shelf-life. The most 

commonly employed approach to improve shelf-life of foods involves focusing on 

packaging techniques that extend the viability of the food. Various methods are 

employed that utilize air, vacuum, or modified atmosphere packaging of food. A method 

is chosen depending on the food product and market requirements. For example, 

packaging with high oxygen content helps preserve the color of retail cut meat; 

however, shelf-life is only slightly improved141. On the contrary, storage of meat 

products in 100% carbon dioxide ensures maximum shelf life, but can cause 

discoloration142. Furthermore, different packaging methods differently affect the growth 

of various species of bacteria. In aerobic packaging a variety of bacteria can grow, 

including Pseudomonas spp., Brochothrix thermosphacta, Lactobacillus spp., and many 

Enterobacteriaceae, while in vacuum and anaerobic packaging a few bacteria can 

survive, the most common being Lactobacillus spp. Other factors impacting the growth 

of bacteria include temperature and pH. Many foods are amenable to storage at low 

temperatures, which, in most cases, extends the shelf-life by decreasing the rate of 

bacterial growth. Temperature studies involving Jalapeño peppers143, shell eggs144, 

pork145, and minced beef146 have shown that the bacterial count was lower when food 

was stored at low temperature as compared to when it was stored at higher 

temperatures. Moreover, while a decrease in pH may favorably reduce the growth of 
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certain bacteria, that is not the case for the Lactobacillus spp. , which produce lactic 

acid, and thus, contribute to a reduction of the pH147.  

 The economic and health consequences, caused by food spoilage, have fueled 

efforts to detect early food spoilage and contamination. The bacterial count is one of 

the indicators that food may either be spoiled or prone to spoilage. The number of 

bacteria is often counted by determining the colony forming units (cfu) per gram of food 

under consideration; when the cfu value from a food sample is higher than that of 

standard/unspoiled food, it is indicative of potential food spoilage. The determination of 

cfu has been used in a number of applications, ranging from evaluation of food spoilage 

to assessment of the effectiveness of an agent for prevention of food spoilage148,149. 

However, cfu determination cannot be considered accurate as it neglects the bacterial 

population that cannot grow under the conditions of the cfu assay. Hence, other ways 

to count bacteria are employed, which include epifluorescence, an ATP bioluminescence 

assay, impedance measurements, and spectroscopic methods. When using 

epifluorescence, bacteria present in the food sample are concentrated on a filtration 

membrane, stained with a fluorescent dye, and enumerated using epifluorescence 

microscopy150,151. Indirect measurement of bacterial load in the sample can be obtained 

by measuring ATP concentration. Highly sensitive ATP determination is achieved using 

firefly luciferase, which in the presence of adenosine 5’-triphosphate (ATP), converts the 

substrate luciferin to oxyluciferin emitting a photon of light. Non-microbial ATP present 

in food is first removed either by enzymatic degradation152 or by filtration153, and 

microbial ATP is then detected.  
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The bacterial load can also be estimated by measuring the change in current in 

the microbiological media as bacteria grow, consume nutrients, and release such highly 

charged molecules as fatty acids, amino acids, and organic acids. Impedance 

measurements have been used to measure bacteria in raw milk154, frozen vegetables155, 

meat156, and fish157.  Bacteria also release a range of volatile compounds during their 

growth that are different depending on the bacterial species.  Thus, the volatile 

compounds can be considered a fingerprint of the type of bacteria present in a sample; 

by using an array of sensors responsive to various volatile compounds, Blixt et al. 

evaluated the degree of spoilage of vacuum packaged beef158. Methods such as Fourier 

transform infrared (FT-IR) and short-wavelength-near-infrared (SW-NIR) spectroscopy 

have been used to discriminate among pathogens159 and to detect overall food 

spoilage160, respectively. Furthermore, molecular methods, such as the polymerase 

chain reaction (PCR)161 and real-time PCR162
, have been employed to detect food 

spoilage caused by specific microorganisms.  

 Bacteria are known to communicate with one another by producing, releasing, 

and responding to small signaling molecules14. When these molecules reach a critical 

threshold concentration corresponding to a given cell density, certain specialized genes 

are expressed. This type of cell-to-cell communication, termed quorum sensing (QS), 

enables bacteria to regulate specialized phenotypes, including virulence factors 

production and biofilm formation, depending on their population size. Among the 

quorum sensing molecules (QSMs) employed for bacterial chatter are N-acyl 

homoserine lactones in Gram-negative bacteria, autoinducing peptides (AIPs) in Gram-
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positive bacteria, and autoinducer-2 (AI-2) in both Gram-negative and Gram-positive 

bacteria. 

Bacteria are involved in the spoilage of food by producing food degrading 

enzymes, whose synthesis and release are regulated by the QS circuitry in many 

bacteria. Hence, bacterial QS might play a crucial role in food spoilage. Another 

significant QS regulated function is biofilm formation, which enables bacteria to 

propagate and establish themselves on the contaminated surfaces by generating 

complex three-dimensional structures where bacteria are included and protected from 

other bacteria and antibiotics163. A biofilm is defined as “microbially derived sessile 

community characterized by cells that are irreversibly attached to a substratum or 

interface or to each other, are embedded in a matrix of extracellular polymeric 

substances that they have produced, and exhibit an altered phenotype with respect to 

growth rate and gene transcription”164. In the biofilm mature state, the extracellular 

matrix is composed of exopolysaccharides, proteins, dead bacteria, and DNAs. Biofilms 

can be comprised of single bacterial species; however, mixed species biofilms dominate 

under most environmental conditions165,166. Some features of biofilms include primitive 

homeostasis, metabolic cooperation, exchange of genetic material, and circulatory 

systems to facilitate waste disposal. Such biofilms can be present on the surface of 

foods as well as on food processing surfaces and equipment. Examples of food-related 

biofilm-forming bacteria include Bacillus spp. from dairy processing plants167 and 

Salmonella from poultry processing plants168, among others. In few foodborne 

pathogens, biofilm formation has been linked to quorum sensing. Specifically, wild type 
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Hafnia alvei, a milk and meat pathogen that employs the AHL-based QS signaling for 

communication, regularly forms biofilms, while a mutant from the same bacterial 

species Hafnia alvei that is unable to synthesize AHLs, cannot form biofilms169. 

In light of the evident important role that QS plays in food contamination and 

spoilage, we deemed necessary to further explore the relationship between food 

spoilage and QS. Methods that can detect QSMs in food samples should allow for the 

early detection and prevention of food contamination. Conventional physical-chemical 

methods, such as separation techniques coupled to various detection principles, are 

cumbersome, time-consuming, and often not sufficiently sensitive to detect QSMs at 

low concentrations.  In addition, most of these techniques require extensive sample 

preparation, expensive instrumentation, and specialized technical personnel170. On the 

other hand, whole-cell biosensing systems are sensitive, with limits of detection in the 

micromolar to nanomolar ranges27, rapid, easy to use, cost-effective, and require simple 

instrumentation and minimal or no sample preparation. Furthermore, they are 

amenable to multiplexing and high-throughput analysis, as well as on-site monitoring 

when incorporated into portable devices. 

To that end, we utilized cell-based biosensing systems to develop an analytical 

method for the quantitative detection of QSMs in food matrices such as milk and 

ground beef. Specifically, we employed Vibrio harveyi MM32-based whole-cell 

biosensing system for the detection of AI-2, and two E. coli-based whole-cell biosensing 

systems, one containing plasmid pSB406 and the other containing plasmid pSB1075, for 
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the detection of short chain AHLs and long chain AHLs, respectively. Most food products 

are either in liquid or solid form. We chose milk as an example of a liquid food, and 

ground beef as an example of a solid food. Initially, the whole-cell biosensing systems 

were optimized for use in these food matrices. The effect of the sample matrix on the 

performance of the sensing system’s response was evaluated by performing recovery 

studies.  In addition, the limit of detection, dynamic range, and reproducibility afforded 

by the sensing system in the two food samples were determined. In order to simulate 

food spoilage conditions, we employed food contaminating bacteria that naturally 

produce QSMs. For this purpose, we contaminated milk and ground beef samples with 

Escherichia coli AB1157 strain and Hafnia alvei 718 strain. The former communicates 

through and produces AI-2, while the latter employs the short chain AHL regulatory 

system. To demonstrate the validity of our proposed method in the detection of 

bacterial contamination, we then employed our cell-based biosensing systems in the 

quantitative determination of both types of quorum sensing molecules in milk and 

ground beef. 
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EXPERIMENTAL SECTION 

Materials. AHLs, N-hexanoyl-DL-homoserine lactone (C-6 HSL) and N-dodecanoyl-DL-

homoserine lactone (C-12 HSL), ampicillin, and kanamycin were purchased from Sigma 

(St. Louis, MO). AI-2 was purchased from Omm Scientific (Dallas, TX). Luria Bertani (LB) 

broth, nutrient broth, and vitamin free casamino acids were purchased from Difco 

(Sparks, MD). Acetonitrile used in all experiments was of HPLC grade and was from VWR 

Scientific (Pittsburgh, PA). The 96-well microtiter plates were purchased from Costar 

(Corning, NY). Lean ground beef (93% lean), fat free milk (skim milk), 2% fat milk, and 

whole milk were purchased from a local grocery store. Reverse osmosis (RO) filtered 

water (Milli-Q water purification system, Millipore, Bedford, MA) was utilized in all 

experiments as needed. 

The microcentrifuge was purchased from Eppendorf (Westbury, NY). The orbital 

shaker incubator was purchased from Fisher Scientific (Fair Lawn, NJ). Bioluminescent 

measurements were performed using the FLUOstar OPTIMA microplate reader (BMG 

Labtech, Durham, NC). The Spectronic 21D spectrophotometer used to measure optical 

density of the bacterial cultures was purchased from Artisan Scientific (Champaign, IL). 

Plasmids, bacterial strains, and culture conditions. The plasmids pSB406 and pSB1075 

were originally provided by Dr. Paul Williams (University of Nottingham, Nottingham, 

UK) and previously transformed in E. coli JM109 cells. The transformed AHL-sensing cells 

were then stored at -80 °C as glycerol stocks. Fresh cell cultures were obtained from the 

glycerol stocks, grown in LB media (100 µg/mL ampicillin) overnight, in the orbital 

shaker at 37 °C, 250 rpm, and then refreshed and allowed to grow until an optical 
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density at 600 nm (OD600nm) of 0.45-0.50 was reached. V. harveyi MM32 (AI-2-sensing 

strain), E. coli AB1157 (AI-2-producing strain), and H. alvei 718 (AHL-producing strain) 

were purchased from American Type Culture Collection (Manassas, VA). Cultures of V. 

harveyi MM32 cells were setup in autoinducer bioassay (AB) media containing 30 µg/mL 

kanamycin and grown overnight in the orbital shaker at 30 °C, 250 rpm. Overnight 

cultures were then diluted 1:100 to obtain an OD600nm of 0.01-0.02. The procedure to 

prepare AB media has been described elsewhere129. E. coli AB1157 cells were grown in 

LB media (no antibiotic) at 37 °C, 250 rpm, while H. alvei 718 cells were grown in 

nutrient media (no antibiotic) at 30 °C, 250 rpm, in the orbital shaker. 

Dose-response curves. Commercially available N-acyl-homoserine lactones were 

dissolved in acetonitrile to obtain 1 x 10-2 M stock solutions, which were serially diluted 

with RO filtered water to obtain standard solutions at concentrations ranging from 1 x 

10-4 M to 1 x 10-8 M. A 1% solution of acetonitrile in RO filtered water was used as blank 

(upon addition to the bacterial culture, the acetonitrile final concentration of 0.1% did 

not result toxic for the sensing cells). A volume of 10 μL of each of these solutions was 

added in triplicate to a 96-well white polystyrene microtiter plate containing 90 µL/well 

of cell culture grown to an OD600nm of 0.45-0.50. C-6 HSL solutions were employed for 

the whole-cell sensor with pSB406, while C-12 HSL solutions were employed for the 

whole-cell sensor with pSB1075. The microtiter plate was then incubated in the orbital 

shaker at 37 °C, 175 rpm for two hours. The produced bioluminescence was then 

measured using the microplate reader. The light intensity was expressed in relative light 

units (RLU). 
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AI-2 aqueous stock solution (3.7 × 10-3 M) was serially diluted with RO filtered 

water to prepare AI-2 standard solutions at concentrations ranging from 1 × 10-4 M to 1 

× 10-8 M. RO filtered water was used as blank. A volume of 10 μL of each of these 

standard solutions and blank was added in triplicate to a 96-well black polystyrene 

microtiter plate containing 90 µL/well of V. harveyi MM32 cell culture at an OD600 nm of 

0.01-0.02. The microtiter plate was then incubated in the orbital shaker at 30 °C, 175 

rpm for three hours. The produced bioluminescence was then measured using the 

microplate reader. The light intensity was expressed in relative light units (RLU). 

Food sample collection and processing. Food samples used in this study were lean 

ground beef (93% lean), fat free milk, milk with 2% fat, and whole milk. They were 

purchased from a local grocery store. The ground beef sample was further ground, with 

slow addition of water, using a high performance blender to form a uniform suspension. 

The volume of water was then adjusted to prepare a 10% w/v suspension, which was 

stored as 20 mL aliquots at -80 °C. When needed, beef suspension aliquots were thawed 

at room temperature and diluted using RO filtered water. For simplicity, 10% w/v beef 

suspension is referred to as beef suspension in the rest of the manuscript. All milk 

samples were stored at -80 °C in 15 mL aliquots. When needed, milk aliquots were 

thawed at room temperature and diluted using RO filtered water. 

Food sample dilution study. To test for potential matrix effect of the food samples on 

the whole-cell sensing systems response, an aliquot of 10% w/v beef suspension was 

serially diluted with RO filtered water to obtain 1:10, 1:100, and 1:1000 dilutions. At 
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each dilution step, proper care was given to vortex the suspensions thoroughly to avoid 

settling of meat particles. Similarly, a fat free milk aliquot was serially diluted with RO 

filtered water to obtain 1:10, 1:100, and 1:1000 dilutions. To test the beef and skim milk 

samples with the E. coli whole-cell biosensing systems containing plasmids pSB406 or 

pSB1075, a 10 µL volume of the above beef suspensions and milk solutions was added in 

triplicate to a microtiter plate followed by addition of 90 µL/well of the sensing bacterial 

cells grown to an OD600nm of 0.45-0.50. Similarly, to test the beef and skim milk samples 

with the V. harveyi MM32 whole-cell biosensing system, a 10 µL volume of the above 

beef suspensions and milk solutions was added in triplicate to a microtiter plate 

followed by addition of 90 µL/well of the sensing bacterial cells at an OD600nm of 0.01-

0.02. A reference dose-response curve with the respective QSM was included in each 

analytical run. The assays were performed as described above for standard dose-

response curves. 

Evaluation of food matrix effects in the presence of QSMs. Beef suspensions and skim 

milk solutions at various dilutions, prepared as described above, were spiked with a 

fixed concentration of QSM, namely 1 × 10-6 M C-6 HSL, 1 × 10-6 M C-12 HSL, or 1 × 10-5 

M AI-2. A 10 µL volume of each of these spiked samples was added in triplicate to a 

microtiter plate followed by addition of 90 µL/well of the corresponding sensing cell 

suspension. The assays were then performed as described above.  

Dose-response curves in sample matrix. Acetonitrile 1 × 10-2 M stock solutions of C-6 

HSL and C-12 HSL were serially diluted with 1:10 beef suspension or undiluted skim milk 
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to obtain AHL solutions of concentrations ranging from 1 × 10-4 to 1 × 10-9 M. A 1% 

acetonitrile solution in each of the above food sample dilution was used as blank. 

Similarly, 3.7 × 10-3 M aqueous stock solution of AI-2 was serially diluted with 1:10 beef 

suspension or undiluted skim milk to obtain AI-2 solutions of concentrations ranging 

from 1 × 10-4 to 1 × 10-9 M. 1:10 beef suspension and undiluted skim milk served as 

blanks. A 10 µL volume of each of the obtained solutions and blanks was added in 

triplicate to a microtiter plate followed by addition of 90 µL/well of cell culture of the 

respective biosensing system. The assays were performed as described above. A 

reference dose-response curve was included in each analytical run.  

Monitoring of QSM production by E. coli AB1157 and H. alvei 718. E. coli AB1157 was 

grown in LB media (no antibiotic) overnight, in the incubator shaker at 37 °C, 250 rpm. 

H. alvei 718 was grown in nutrient media (no antibiotic) overnight, in the incubator 

shaker at 30 °C, 250 rpm. Overnight cultures were diluted 1:100 and 1:15, respectively, 

with fresh media and allowed to grow in the above conditions. One-milliliter fractions of 

culture media were collected at each hour for 8 hours, followed by collection of an 

overnight fraction. The collected fractions were centrifuged at 13,000 rpm for 5 minutes 

at room temperature and the supernatants were stored at -20 °C until analyzed. To 

measure the QSMs produced, 10 µL of each supernatant sample was added in triplicate 

to the wells of a microtiter plate followed by addition of 90 µL of the proper sensing cell 

suspension, prepared as described above. For E. coli AB1157 culture media fractions, V. 

harveyi MM32 sensing cells were used, while for H. alvei 718 culture media fractions, 
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the whole-cell sensing systems containing pSB406 and pSB1075 were employed. The 

assays were performed as described above.  

Food contamination study. To investigate QSM production in food matrices, we 

contaminated beef and skim milk with AHL producing H. alvei 718 and AI-2 producing E. 

coli AB1157, respectively. An overnight grown culture of E. coli AB1157 was added into 

10% w/v beef suspension to obtain a 1:100 dilution of the original culture and allowed 

to grow in the incubator shaker at 37 °C, 250 rpm.  Similarly, an overnight grown culture 

of H. alvei 718 was added into 10% w/v beef suspension to obtain a 1:15 dilution of the 

original culture and allowed to grow in the incubator shaker at 30 °C, 250 rpm. 

Procedures similar to those used for contaminating beef suspension were employed to 

contaminate skim milk. One-milliliter fractions of media from each of the contaminated 

food samples were collected at each hour for 8 hours, followed by collection of an 

overnight fraction. The collected fractions were centrifuged at 13,000 rpm for 5 minutes 

at room temperature and the supernatants were stored at -20 °C until analyzed. To 

measure the QSMs produced, the supernatant samples were assayed using the 

respective whole-cell biosensing systems as described above.  
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Results and discussion 

The purpose of our work was to demonstrate the feasibility of employing whole-

cell biosensing systems to detect bacterial presence as a measure of spoilage and 

contamination of foods.  Three different specific biosensing systems were employed in 

the determination of two different classes of quorum sensing molecules, AI-2 and AHLs 

(long and short chain), in ground beef and milk. The AI-2 quorum sensing regulatory 

system is used by both Gram-negative and Gram-positive bacteria, while AHL-based 

communication is employed by Gram-negative bacteria.  The role of QS in food spoilage 

was validated by identification of QSMs in spoiled foods171,172. For example, bacterial 

presence and AHL molecules were detected in vacuum packed meat samples171. In 

addition, AI-2 has been identified in food samples such as fish, tomato, carrots, tofu, and 

milk172. The methods employed in both of the above studies were qualitative and time 

consuming due to a need for processing steps and the fact that detection relied on color 

development by reporter cells upon exposure to AHLs171. To the best of our knowledge, 

this is the first application of cell-based biosensing systems in the quantitative detection 

of QSMs in food samples aimed at aiding in the early detection of food contamination 

and prevention of food spoilage. 

In this work, we employed E. coli whole-cell biosensing systems containing 

plasmids pSB406 and pSB1075 to detect short and long chain AHLs, respectively.  For AI-

2 detection, we used a whole-cell biosensing system that is based on V. harveyi MM32. 

The plasmids pSB406 and pSB1075 bear recognition and regulatory elements that are 
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originally derived from Pseudomonas aeruginosa AHL-dependent RhlR/RhlI and 

LasR/LasI QS systems23. Plasmids pSB406 and pSB1075 carry the promoters PrhlI and PlasI, 

respectively, as well as the genes rhlR and lasR, encoding for the recognition/regulatory 

proteins RhlR and LasR, respectively. In addition, both plasmids contain the luxCDABE 

cassette that is under transcriptional control of the respective promoters. The luxCDABE 

genes encode for bioluminescent bacterial luciferase and the enzymes catalyzing the 

synthesis of the luciferase substrate (Figure 1a). The plasmids are lacking the rhlI and 

lasI genes that code for the AHL synthase enzymes, thus, exogenous AHLs need to be 

supplied in order for the sensing cells to produce bioluminescence. When AHLs are 

present in the environment of the sensing cells, they bind to the recognition/regulatory 

proteins, triggering the expression of luciferase and other enzymes part of the luxCDABE 

cassette.  This results in the production of bioluminescence in a manner proportional to 

the concentration of AHLs present. The whole-cell biosensing systems based on plasmid 

pSB406 and pSB1075 had been previously characterized in our laboratory and employed 

to detect AHLs in saliva and stool samples27. V. harveyi MM32 is a mutant of wild-type V. 

harveyi BB120, a marine bioluminescent bacterium that controls light emission through 

multiple QS systems. Strain MM32 was genetically modified to only emit 

bioluminescence in response to AI-2 and not to produce its own AI-215; therefore, light 

emission is only triggered by AI-2 present in the environment of the cells. When AI-2 

binds to its recognition element, the periplasmic binding protein LuxP, the binding event 

triggers a cascade of phosphorylation and de-phosphorylation processes in a number of 

proteins that control the expression of luxCDABE, responsible for bioluminescence, 



126 

 

along with other genes (Figure 1b). Thus far, V. harveyi MM32 has been used as a 

reporter strain in bioassays for a number of applications – to evaluate QS regulated 

functions173, to screen compounds for agonistic and antagonistic activities57, and to 

identify bacteria that produce AI-2174. Herein, we employed V. harveyi MM32 to develop 

a whole-cell biosensing system for quantitative detection of AI-2. Due to the high 

sensitivity and selectivity demonstrated by the above whole-cell biosensing systems for 

AHL and AI-2 detection, we utilized them as sensitive and rapid tools for the analysis of 

QSMs in various food matrices. The levels of QSMs should correlate with the extent of 

bacterial contamination and serve as indicators of food spoilage. 

In our study, milk and ground beef were chosen as food representative models 

to investigate whether whole-cell biosensing systems could be used with liquid as well 

as solid foods. Initially, the analytical parameters of the biosensing systems were 

determined using standard solutions of QSMs in RO water (Table 1). The limits of 

detection for each analyte were found to be 1 × 10-9 M. In addition, dynamic ranges of 

at least three orders of magnitude were obtained with all biosensing systems. At least 

three sets of experiments were performed to verify reproducibility, both with standard 

solutions and in food matrix.  

Next, we evaluated the effect exerted by the food sample matrices on the 

whole-cell biosensing systems response. Being solid, ground beef was mixed with RO 

filtered water and using a grinder, a 10% w/v suspension (referred to as beef 

suspension) was prepared. As can be seen from Figure 2a-2c, when beef suspension was 
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incubated with whole-cell biosensing systems, bioluminescence signals lower than those 

of the controls were observed. Such decrease was probably due to components of the 

sample matrix diminishing the ability of the system to emit bioluminescence. The matrix 

effect was eliminated when beef suspension was diluted 1:10, 1:100, and 1:1000. At 

these dilutions, bioluminescence signals were similar to those of the controls, 

confirming that dilution was necessary and that a 1:10 dilution was sufficient to 

eliminate the matrix effect. Recovery studies were performed by spiking the beef 

suspension with a known concentration of a QSM standard solution. A complete signal 

recovery was observed when employing a 1:10 dilution of beef suspension (Figure 3a-

3c).  

To evaluate the performance of the biosensing systems in the beef matrix at 

various concentrations of QSMs, dose-response curves using a 1:10 dilution of the beef 

suspension were obtained and compared to the dose-response curves obtained in water 

during the same analytical run (Figure 4). The slopes of the dose-response curves 

obtained in the 1:10 beef suspension were nearly identical to those of the reference 

dose-response curves for all three sensing systems. Therefore, we concluded that short 

chain AHLs in the range of 1 × 10-5 M to 1 × 10-9 M, long chain AHLs in the range of 1 × 

10-6 M to 1 × 10-9 M, and AI-2 in the range of 1 × 10-5 M to 1 × 10-9 M can be detected in 

1:10 beef suspension using our whole-cell biosensing systems. The results obtained 

prove that these biosensing systems could be employed to detect QSMs in solid foods, 

such as beef, with minimal sample processing.  
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Similar studies were carried out to investigate the effect of matrix on QSM 

detection in skim milk.  When undiluted skim milk was incubated with the whole-cell 

biosensing systems, we observed an emission of bioluminescence signal similar to that 

of the controls. Further, dilutions of skim milk did not alter the bioluminescence signals 

(Figure 5). However, when milk was spiked with fixed concentrations of QSMs, followed 

by incubation with the respective sensing cells, increases in bioluminescence were 

observed in spiked milk samples as compared to the controls; the controls consisted of 

aqueous solutions with the same fixed QSM concentrations (data not shown). Dose-

response curves obtained in skim milk also showed higher bioluminescence emission 

than those obtained with reference dose-response curves in the same analytical run 

(Figure 6). The observed increase in bioluminescence could be due to the presence of 

very small amounts of fat (<0.5%) and slight acidity of the skim milk, which might 

increase the solubilization and stability of the QSMs. Fatty acids present in the milk may 

help better solubilize AHLs, thus enhancing their bioavailability to the sensing cells. This 

effect would be more pronounced as the hydrophobicity of AHLs increases. This 

conforms to our observation that a larger increase in bioluminescence was observed 

with long chain AHLs than with short chain AHLs.  

To further evaluate the effect of fat content in milk, we spiked and analyzed two 

additional types of milk (whole milk, 2% fat milk), along with skim milk, which differ in 

fat content. We observed that as the fat percentage increased, bioluminescence also 

increased, thus supporting improved AHL solubility and bioavailability in the presence of 
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fat. As the pH effect is concerned, lower pH values are known to enhance the stability of 

AHLs, by reducing lactonolysis175.  

To further prove that our whole-cell biosensing systems can be employed in food 

analysis, the next step of the study was to detect QSMs in simulated spoiled food 

samples that were subjected to bacterial contamination. We chose E. coli AB1157 and H. 

alvei 718 as model organisms, given that they produce AI-2 and AHLs, respectively, to 

artificially contaminate skim milk and beef suspension. First, we characterized the two 

bacterial strains in order to find out the amount of time required for maximum 

production of QSMs. When grown in LB media at 37 °C, E. coli AB1157 produces 

maximum concentration of AI-2s in six hours, while maximum production of AHLs in H. 

alvei 718 was observed after five hours growth in nutrient media at 30 °C.  

To perform spoilage studies, overnight separate cultures of E. coli AB1157 and H. 

alvei 718 were added into a beef suspension and skim milk, respectively. A 1 mL-volume 

sample was collected hourly, centrifuged to remove debris, and the supernatant 

analyzed for the presence of QSMs using the whole-cell biosensing systems. The results 

obtained with beef suspension contaminated with H. alvei 718 indicating the ability of 

the employed sensing system to detect the produced short chain AHLs are shown in 

Figure 7a. Only minor production of long chain AHLs was observed, which is consistent 

with the fact that H. alvei produces and uses short chain AHLs as QSMs171. Similarly, 

when the beef was contaminated with AI-2 producing E. coli AB1157, our V. harveyi 

MM32 whole-cell biosensing system was able to detect the AI-2 produced in beef 



130 

 

(Figure 7b). The same trend was observed when skim milk was contaminated with E. coli 

AB1157 and H. alvei 718, respectively. In sum, these data demonstrate that the whole-

cell biosensing systems can be successfully utilized to detect different QSMs in various 

contaminated food matrices. 

 

Conclusion 

 The incidences of food spoilage and foodborne illnesses have been on the rise, 

with more multistate outbreaks reported each year. There are numerous bacteria 

responsible for the outbreaks and foods that spread the illnesses, thus making the 

source of contamination difficult to identify. However, a feature common to many 

bacteria, including foodborne pathogens, is the production of QSMs. Herein, we 

investigated the feasibility of employing QSMs as quantitative markers of bacterial 

presence in foods. To that end, we have developed an analytical method to detect 

QSMs for early detection of food contamination and prevention of food spoilage in two 

different food matrices, namely beef and milk.  The proposed method is based on the 

use of whole-cell biosensing systems that are sensitive, easy to use, rapid cost-effective, 

and amenable to miniaturization, thus exhibiting potential for high throughput and on-

site analysis.  The optimized method allowed for detection of QSMs in a sensitive 

manner with limits of detection down to nanomolar levels. Additionally, food spoilage 

studies proved that our whole-cell biosensing systems can be successfully employed to 
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detect QSMs in spoiled food, thus suggesting potential usefulness in the early detection 

of food spoilage and prevention of foodborne illnesses.  
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Figure 1. (A) Plasmids pSB406 and pSB1075 contained in E. coli-based whole-cell sensing 

systems for detection of short and long chain AHLs, respectively. (B) V. harveyi AI-2-

based quorum sensing regulatory pathway. V. harveyi MM32 lacks LuxS, thus not 

producing its own AI-2 and only responding to exogenous AI-2.  

(A) 

 

(B)  
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Figure 2. Beef suspension (BS) and its dilutions were incubated with whole-cell based 

biosensing systems. Data shown is the average ± one standard deviation (n=3). 

(A) Whole-cell biosensing system containing plasmid pSB406 for detection of short chain 

AHLs. 

 

(B) Whole-cell biosensing system containing plasmid pSB1075 for detection of long 

chain AHLs.  
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(C) V. harveyi MM32-based whole-cell biosensing system for detection of AI-2. 
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Figure 3. Effect of beef matrix on the whole-cell sensing systems response in the 

presence of QSMs. Beef suspension and its dilutions containing 1 × 10-6 M of C-6 HSL, 1 

× 10-6 M of C-12 HSL, or 1 × 10-5 M of AI-2 were incubated with whole-cell biosensing 

system containing pSB406, whole-cell biosensing system containing pSB1075, or V. 

harveyi MM32 biosensing system, respectively. Data shown is the average ± one 

standard deviation (n=3).  

(A) Whole-cell biosensing system containing plasmid pSB406 for detection of short 

chain AHLs. 

 

(B) Whole-cell biosensing system containing plasmid pSB1075 for detection of long 

chain AHLs. 
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(C) V. harveyi MM32-based whole-cell biosensing system for detection of AI-2. 
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Figure 4. Standard dose-response curve (black) compared with dose-response curve in 

1:10 beef suspension (red) obtained using (A) whole-cell biosensing system containing 

plasmid pSB406, (B) whole-cell biosensing system containing plasmid pSB1075, and (C) 

V. harveyi MM32-based whole-cell biosensing system. 

(A) 

 

(B) 
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Figure 5. Skim milk and its dilutions were incubated with whole-cell based biosensing 

systems. Data shown is the average ± one standard deviation (n=3). 

(A) Whole-cell biosensing system containing plasmid pSB406 for detection of short 

chain AHLs. 

 

(B) Whole-cell biosensing system containing plasmid pSB1075 for detection of long chain 

AHLs. 
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(C) V. harveyi MM32-based whole-cell biosensing system for detection of AI-2. 
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Figure 6. Standard dose-response curve (black) compared with dose-response curve in 

undiluted skim milk (red) obtained using (A) whole-cell biosensing system containing 

plasmid pSB406, (B) whole-cell biosensing system containing plasmid pSB1075, and (C) 

V. harveyi MM32-based whole-cell biosensing system.  

(A) 

 

(B) 
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(C) 
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Figure 7. Contamination of food matrix with QSM producing bacteria. 

(A) Short chain AHL production in beef suspension contaminated with H. alvei 718, 

as monitored with whole-cell biosensing system containing plasmid pSB406. 

 

(B) AI-2 production in beef suspension contaminated with E. coli AB1157, as 

monitored with V. harveyi MM32 whole-cell biosensing system.  
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Table 1. Analytical parameters of the whole-cell biosensing systems. 

Biosensing system Limit of detection (M) Dymanic range (M) 

E. coli pSB406 1 × 10-9 1 × 10-5 - 1 × 10-9 

E. coli pSB1075 1 × 10-9 1 × 10-6 - 1 × 10-9 

V. harveyi MM32 1 × 10-9 1 × 10-5 - 1 × 10-9 
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CHAPTER FIVE 

INTERFERENCE OF GENERALLY RECOGNIZED AS SAFE (GRAS) COMPOUNDS WITH 

BACTERIAL QUORUM SENSING 

Introduction 

The discovery of bacterial communication was paradigm shifting in terms of 

bacteria being viewed as organisms that exert their effects as a community, not as 

independent single cell organisms. Cell-to-cell communication occurs via the synthesis 

and release of small signaling molecules, termed quorum sensing molecules (QSMs) that 

are transported out of the cell and can be detected by bacteria of the same (intra-

species communication) or different species (inter-species communication). Such QSMs 

include N-acyl homoserine lactones (AHLs), autoinducing peptides (AIPs), and 

autoinducer-2 (AI-2), which are utilized by Gram-negative, Gram-positive, and both 

Gram-negative and Gram-positive bacteria, respectively.  This system of communication, 

which bacteria employ to modulate their behavior in a cell-density dependent manner, 

is termed quorum sensing (QS). Specifically, when the cell population reaches a critical 

size reflected by a critical threshold QSM concentration in the environment surrounding 

the cells, certain specialized genes are expressed. Hence, this communication process 

allows a population of bacteria to change the community behavior in response to 

changes in its size. More recently, it has been reported that certain QSMs not only 

mediate bacterial communication, but also interkingdom communication – 

communication between microorganisms and their hosts17,103. Figure 1(a) depicts the 

aforementioned QS phenomenon. QS is utilized by both pathogenic and non-pathogenic 
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Gram-positive and Gram-negative bacteria25,176,177. Employing QS, bacteria regulate 

various functions such as sporulation, swarming motility, biofilm formation, and 

production of virulence factors and antibiotics. Among these phenomena, QS regulation 

of virulence in human pathogens such as Staphylococcus aureus, Pseudomonas 

aeruginosa, and enterohaemorrhagic Escherichia coli, has been well documented178. 

Bacterial infections are generally treated with antibiotics; however abuse of use 

of antibiotics in humans and animals that humans consume has caused the emergence 

of a number of antibiotic resistant bacteria179. This has created the need for the 

identification of classes of new antibacterial compounds that are efficient in attacking 

the aforementioned resistant bacteria.   To that end, the discovery of compounds that 

may interfere with bacterial communication may provide with a potential alternative to 

current classes of antibacterial drugs52,180. Molecules that can interfere with QS should 

be able to mislead the bacteria about their surrounding environmental conditions, and 

therefore, affect their growth and behavior181. In the past few years, a number of such 

molecules have been identified. For instance, some synthetic analogs of AI-2 were found 

to act as agonists in Vibrio harveyi, while others were antagonists in P. aeruginosa182. 

More recently, modified imidazolines have been reported to inhibit QS33. The list of such 

interfering compounds is extensive and there are several possible mechanisms of 

interference as pointed out in  a recent review by Ni et al.52 One of the most significant 

advantages of using QS interfering molecules as a means to limit bacterial growth and 

pathogenicity is that QS interfering molecules, unlike antibiotics, do not directly kill the 
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bacteria and, therefore, do not add evolutionary pressure to develop resistance against 

interfering molecules183,184. 

 To date several molecules that interfere with QS have been identified, but their 

use in practical applications is limited because of potential side-effects on human 

health. An approach to address this issue is to test compounds that are safe to consume, 

or known to improve the quality of food products, as QS interfering agents185-187. The 

United States Department of Food and Drug Administration maintains a list of food 

additives that are considered safe and approved suitable for consumption. These 

substances are classified as Generally Recognized As Safe (GRAS). Sources of GRAS 

substances include angelica, basil, bergamot, chamomile roman, chamomile german, 

cinnamon bark, citrus rind (all), clary sage, clove, coriander, dill, eucalyptus, 

frankincense, galbanum, geranium, ginger, grapefruit, hyssop, juniper, jasmine, bay 

laurel, lavender, lemon, lemongrass, lime, melissa (lemon balm), marjoram, myrrh, 

myrtle, nutmeg, orange, oregano, patchouly, pepper, peppermint, petitgrain, pine, 

rosemary, rose, savory, sage, sandalwood, spearmint, spruce, tarragon, tangerine, 

thyme, valerian, vetiver, and ylang ylang, among others. 

Phenolic compounds, which are known to protect the plants from pathogens188, 

constitute a key ingredient of a number of GRAS substances. The three major classes of 

phenolic compounds are tannins, flavonoids, and lignins. Among them, flavonoids have 

a variety of beneficial biological properties and, therefore, are the most studied among 

all189. To date, a limited number of compounds originating from GRAS substances have 
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been shown to affect QS. For example, Niu et al. have reported that cinnamaldehyde, an 

ingredient of cinnamon, inhibited the bacterial growth in sub-millimolar ranges36. In 

addition, tannic acid, which is abundant in oak bark, antagonized QS in 

Chromobacterium violaceum as well as reduced biofilm formation in Proteus mirabilis190. 

In another study, garlic extract and p-coumaric acid were proven to act as antagonists in 

the QS systems of various bacteria such as Escherichia coli, Chromobacterium violaceum, 

Agrobacterium tumefaciens, Pseudomonas putida, and Pseudomonas chlororaphis191.  

Phenolic compounds originating from GRAS substances are under investigation 

at the College of Agriculture of the University of Kentucky; some of them have been 

shown to possess antimicrobial properties192 and are being considered for use as food 

preservatives. However, the mechanism of action of these compounds is not known. We 

postulated that they may act by interfering with bacterial QS. There are a number of 

ways in which a molecule can interfere with QS; Figure 2 represents some of them. 

Specifically, we hypothesized that test GRAS compounds 1) may affect the 

concentration of QSMs produced by food contaminating bacteria or 2) may act as 

agonists or antagonists in the QS systems of bacteria. The former may occur if QSM 

synthesis is inhibited. In order to test this hypothesis, we selected 12 compounds that 

had shown antimicrobial effect, and incubated each of them with cultures of QSM 

producing bacteria. QSM production was then monitored in the culture media at 

different time intervals using a panel of bacterial whole-cell sensing systems designed to 

quantitatively respond to AI-2, short chain AHLs, and long chain AHLs, respectively. 

These experiments allowed us to detect the amount of QSMs that the cultured bacteria 
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produced and verify if GRAS compounds affected the QSM synthesis. To test the latter, 

we performed experiments to determine if the GRAS compounds had an effect on the 

QS response of the above sensing bacteria, both, in the presence and absence of QSMs. 

These studies provided insight into the mode of action of GRAS compounds based on 

their effects on the QS sensing/regulatory elements of the whole-cell biosensing 

systems.  

 

Materials and methods 

Materials. AHLs, N-hexanoyl-DL-homoserine lactone (C-6 HSL) and N-dodecanoyl-DL-

homoserine lactone (C-12 HSL), ampicillin, kanamycin, and compounds originating from 

GRAS substances, namely curcumin, capsaicin, thymol, thymoquinone, coumarin, 

ascorbic acid, p-coumaric acid, t-cinnamic acid, tannic acid, eugenol, quercetin, and o-

dianisidine, were purchased from Sigma (St. Louis, MO). AI-2 was purchased from Omm 

Scientific (Dallas, TX). Luria Bertani (LB) broth, nutrient broth, and vitamin free casamino 

acids were purchased from Difco (Sparks, MD). Acetonitrile used in the experiments was 

of HPLC grade and was purchased from VWR Scientific (Pittsburgh, PA). The 96-well 

microtiter plates were purchased from Costar (Corning, NY). The microcentrifuge was 

purchased from Eppendorf (Westbury, NY). The orbital shaker incubator was purchased 

from Fisher Scientific (Fair Lawn, NJ). Bioluminescent measurements were performed 

using the FLUOstar OPTIMA microplate reader (BMG Labtech, Durham, NC). 



150 

 

Plasmids, bacterial strains, and culture conditions. The plasmids pSB406 and pSB1075 

were originally provided by Dr. Paul Williams (University of Nottingham, Nottingham, 

UK) and previously transformed in E. coli JM109 cells. The transformed AHL-sensing cells 

were then stored at -80 °C as glycerol stocks. Fresh cell cultures were obtained from the 

glycerol stocks, grown in LB media (100 µg/mL ampicillin) overnight, in the orbital 

shaker at 37 °C, 250 rpm, and then refreshed and allowed to grow until an optical 

density (OD) at 600 nm of 0.45-0.50 was reached. V. harveyi MM32 (AI-2-sensing strain), 

E. coli AB1157 (AI-2-producing strain), and Hafnia alvei 718 (AHL-producing strain) were 

purchased from American Type Culture Collection (Manassas, VA). Cultures of V. harveyi 

MM32 cells were setup in autoinducer bioassay (AB) media containing 30 µg/mL 

kanamycin  and grown overnight in the orbital shaker at 30 °C, 250 rpm. Overnight 

cultures were then diluted 1:100 to obtain an OD (600 nm) of 0.01-0.02. The procedure 

to prepare AB media has been described elsewhere129. E. coli AB1157 cells were grown 

in LB media (no antibiotic) at 37 °C, 250 rpm, while H. alvei 718 cells were grown in 

nutrient media (no antibiotic) at 30 °C, 250 rpm, in the orbital shaker. 

Dose-response curves. Commercially available N-acyl homoserine lactones were 

dissolved in acetonitrile to obtain 1 x 10-2 M stock solutions, which were serially diluted 

with RO filtered water to obtain standard solutions at concentrations ranging from 1 x 

10-4 M to 1 x 10-8 M. A 1% solution of acetonitrile in RO filtered water was used as blank 

(upon addition to the bacterial culture, the acetonitrile final concentration of 0.1% did 

not result toxic for the sensing cells). A volume of 10 μL of each of these solutions was 

added in triplicate to a 96-well white polystyrene microtiter plate containing 90 µL/well 
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of cell culture grown to an OD (600 nm) of 0.45-0.50. C-6 HSL solutions were employed 

for the whole-cell sensor with pSB406, while C-12 HSL solutions were employed for the 

whole-cell sensor with pSB1075. The microtiter plate was then incubated in the orbital 

shaker at 37 °C, 175 rpm for two hours. The produced bioluminescence was then 

measured using the microplate reader. The light intensity was expressed in relative light 

units (RLU). 

 AI-2 aqueous stock solution (3.7 × 10-3 M) was serially diluted with RO filtered 

water to prepare AI-2 standard solutions at concentrations ranging from 1 × 10-4 M to 1 

× 10-8 M. RO filtered water was used as blank. A volume of 10 μL of each of these 

standard solutions and blank was added in triplicate to a 96-well black polystyrene 

microtiter plate containing 90 µL/well of V. harveyi MM32 cell culture grown to an OD 

(600 nm) of 0.01-0.02. The microtiter plate was then incubated in the orbital shaker at 

30 °C, 175 rpm for three hours. The produced bioluminescence was then measured 

using the microplate reader. The light intensity was expressed in relative light units 

(RLU). 

Monitoring of QSM production by E. coli AB1157 and H. alvei 718. E. coli AB1157 was 

grown in LB media (no antibiotic) overnight, in the incubator shaker at 37 °C, 250 rpm. 

H. alvei 718 was grown in nutrient media (no antibiotic) overnight, in the incubator 

shaker at 30 °C, 250 rpm. Overnight cultures were diluted 1:100 and 1:15, respectively, 

with fresh media and allowed to grow in the above conditions. One-milliliter fractions of 

culture media were collected at each hour for 8 hours, followed by collection of an 
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overnight fraction. The collected fractions were centrifuged at 13,000 rpm for 5 minutes 

at room temperature and the supernatants were stored at -20 °C until analyzed. To 

measure the QSMs produced, 10 µL of each supernatant sample was added in triplicate 

to the wells of a microtiter plate followed by addition of 90 µL of the proper sensing cell 

suspension, prepared as described above. For E. coli AB1157 culture media fractions, V. 

harveyi MM32 sensing cells were used, while for H. alvei 718 culture media fractions, 

the whole-cell sensing systems containing pSB406 and pSB1075 were employed. The 

assays were performed as described above. 

Solubility study and preparation of GRAS compounds solutions. While the selected 

GRAS compounds are soluble in several solvents, the cell based biosensing systems 

employed in this work have been characterized in terms of behavior in the presence of 

water and acetonitrile. Therefore, when solubility properties allowed, we prepared 

solutions of GRAS compounds in either of the two solvents. Tannic acid, eugenol, and 

ascorbic acid were dissolved in RO filtered water to obtain 10 mg/mL stock solutions. A 

set of 10 mg/mL stock solutions of coumarin, p-coumaric acid, t-cinnamic acid, 

capsaicin, thymoquinone, and thymol were prepared in acetonitrile. Curcumin was not 

completely soluble either in water or acetonitrile at 10 mg/mL; therefore, a 1 mg/mL 

stock solution in acetonitrile was prepared. A 10 mg/mL stock solution of o-dianisidine 

was prepared in dimethyl sulfoxide (DMSO). Quercetin was dissolved in 0.1 N NH4OH to 

obtain a 10 mg/mL stock solution. The GRAS compound stock solutions were serially 

diluted with RO filtered water to obtain the desired range of concentrations. Table 1 

lists the GRAS compounds, their structures, solvents used to dissolve them, and the 
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concentration ranges that were tested. All of the GRAS compound solutions were 

evaluated in the experiments described below along with the respective controls. For 

each compound, the control was comprised of a RO filtered water solution containing 

an amount of solvent equivalent to that present in the solution of GRAS compound at 

the highest concentration tested. 

Effect of GRAS compounds on the response of the bacterial sensing systems in the 

absence of QSMs. A 10 µL volume of the GRAS compound solutions at various 

concentrations and of the respective controls was added in triplicate to 90 µL of cell 

culture of each of the sensing systems, prepared as described above, in a microtiter 

plate. The assays were performed as described above for standard QSM solutions. A 

matched standard dose-response curve was included in each analytical run. 

Effect of GRAS compounds on the response of the bacterial sensing systems in the 

presence of QSMs. A fixed concentration of QSM was added to each of the GRAS 

compound solutions at various concentrations and to the respective controls. 

Specifically, 2 × 10-6 g/mL C-6 HSL, 2.8 × 10-7 g/mL C-12 HSL, or 1.9 × 10-6 g/mL AI-2 was 

added to each sample. A 10 µL volume of the obtained GRAS compound solutions at 

various concentrations and of the respective controls, containing a fixed concentration 

of QSM, was added in triplicate to 90 µL of cell culture of the corresponding sensing 

system, prepared as described above, in a microtiter plate. The assays were performed 

as described above for standard QSM solutions. A matched standard dose-response 

curve was included in each analytical run. 
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Effect of GRAS compounds on the production of QSMs by E. coli AB1157 and H. alvei 

718. E. coli AB1157 produces AI-2 molecules, while H. alvei 718 produces AHL 

molecules. The two bacterial strains were grown overnight, and the overnight cultures 

were then diluted 1:100 with fresh LB media (E. coli AB1157) and 1:15 with fresh 

nutrient media (H. alvei 718), respectively, as described above. Volumes of 100 µL of 

GRAS compound solutions at various concentrations and of the respective controls were 

added in triplicate to 1-mL aliquots of diluted cell cultures in 14 mL culture tubes; cells 

were then allowed to grow in proper conditions, as described above, for a period of six 

hours (time needed for maximum production of QSMs by bacteria). At the end of this 

time period, the cultures were centrifuged at 12,000 rpm for 5 minutes at room 

temperature. The supernatants were stored at -20 °C until analyzed. The QSMs 

produced were measured in the supernatant samples following the protocol described 

above for monitoring of QSM production by bacteria. 
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Results and discussion 

 Bacterial QS plays a major role in the survival of bacteria and their success in 

colonizing various environments. Since QS is utilized by a number of bacteria, 

interference with QS could be employed as a general tool to mitigate bacterial growth 

and pathogenicity. To that end, a variety of natural and synthetic compounds have been 

investigated and shown to be able to disrupt the bacterial chatter52. The compounds 

that we selected in our study were initially evaluated for antimicrobial properties at the 

College of Agriculture of the University of Kentucky. Specifically, phenolic compounds of 

GRAS origin were tested against some of the most common Gram-positive and Gram-

negative foodborne pathogens to determine their minimum inhibitory concentration 

(MIC) values192. Compounds that exhibited antimicrobial properties were chosen to be 

tested as QS interferants (Table 1). For that, we utilized whole-cell based biosensing 

systems that can quantitatively detect QS signaling molecules, namely AHLs and AI-2. E. 

coli based whole-cell biosensing systems either containing plasmid pSB406 or plasmid 

pSB1075 detect short-chain AHLs and long-chain AHLs, respectively. These 

bioluminescent cell-based sensors have been previously optimized, characterized, and 

employed as analytical tools in our lab to detect AHLs in physiological samples27 and to 

assess QS-interfering characteristics of antibiotics193. V. harveyi MM32 is derived from 

spontaneously bioluminescent marine bacterium V. harveyi, which controls light 

emission by means of various QS systems; in strain MM32, bioluminescence is only 

triggered by AI-2 since the other QS regulatory systems have been silenced15. Recently, 

we developed a whole-cell biosensing system based on V. harveyi MM32 for 



156 

 

quantitative detection of AI-2 (this dissertation, Chapter 5). All three biosensing systems 

contain genetic modifications so that the sensing cells cannot produce their own QSMs 

and, therefore, emit bioluminescence only in response to the QSMs present in the 

environment. Examples of QSMs detected by these biosensing systems are shown in 

Figure 1(b). 

Initial solubility tests were performed to select a suitable solvent for each of the 

GRAS compounds, while making sure that it did not have harmful effects on the 

bacterial sensing cells.  A range of solutions of GRAS compounds were prepared after 

dissolving each compound in appropriate solvent by serially diluting the stock solution 

with RO filtered water.  In order to test the effect of GRAS compounds on the response 

of the whole-cell biosensing systems, these solutions were then incubated with the 

biosensing cells in the absence as well as in the presence of a fixed concentration of the 

respective QSM.  

GRAS compounds, curcumin, capsaicin, eugenol, quercetin, p-coumaric acid, 

thymol, and o-dianisidine did not alter the bioluminescence emitted by all of the sensing 

cells, both, in the absence and presence of the QSM. Namely, the compounds alone did 

not trigger a response in the sensing systems and, when incubated along a fixed 

concentration of QSM, they did not affect the sensing systems’ responses to the 

respective QSMs. As an example, Figure 3 shows the response of the whole-cell sensing 

system that harbors pSB406 to various concentrations of p-coumaric acid (from 1 × 10-4 

g/mL to 1 × 10-9 g/mL), in the absence and presence of 2.0 × 10-7 g/mL C-6 HSL. 
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Decreased signal intensities with 1 × 10-4 g/mL p-coumaric acid were likely due to the 

cell toxicity of the compound. In addition, when the above mentioned GRAS compounds 

were incubated with AHL producing H. alvei 718 cells and AI-2 producing E. coli AB1157 

cells, no change in the QSM production profile of these bacteria was observed. Hence, 

we concluded that these compounds did not interfere with QS, at least through the 

investigated mechanisms, that is, interaction with QS recognition/regulatory proteins 

and effect on QSM synthesis. 

Thymoquinone is known to inhibit the formation of bacterial biofilms194; 

however, its mechanism of action is not known. A potential mechanism may involve 

interference with bacterial QS. Therefore, we employed whole-cell biosensing systems 

to investigate if thymoquinone interferes with QS. In our study, we found that 

thymoquinone affected the bioluminescence response of the biosensing system 

harboring plasmid pSB1075, both, in the absence and presence of C-12 HSL (Figure 4). 

The increase in bioluminescence observed with 1 × 10-5 g/mL of thymoquinone alone 

(Figure 4a) indicates that the compound induces a response in the sensor and may be 

recognized by the LasR QS recognition/regulatory protein present in the sensing cells, 

thus suggesting potential for interference with QS. The observed decrease in 

bioluminescence, when both 1 × 10-5 g/mL thymoquinone and C-12 HSL are present 

(Figure 4b), suggests that thymoquinone may interfere with the binding between C-12 

HSL and the receptor protein LasR. Based on the overall results, one could speculate 

that thymoquinone may bind to LasR, although causing a less effective response as 

compared to C-12 HSL. The hydrophobic binding pocket of LasR, being more 
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hydrophobic than that of RhlR, may interact with thymoquinone. This might help explain 

the effect on the pSB1075 based whole-cell biosensing system. Further experiments and 

molecular modeling studies are underway to investigate and elucidate the observed 

effects. Thymoquinone did not alter the bioluminescence emitted by the E. coli pSB406-

based and V. harveyi MM32-based whole-cell biosensing systems, both, in the absence 

and presence of the respective QSMs. Additionally, when thymoquinone was incubated 

with AHL and AI-2 producing bacteria, no effect was observed on the QSM production. 

Ascorbic acid has been previously reported to reduce bioluminescence of the AI-

2 reporter strain V. harveyi BB170195. Therefore, we studied ascorbic acid with the V. 

harveyi MM32-based whole-cell biosensing system. In our study, ascorbic acid solutions 

were incubated with V. harveyi MM32 sensing cells in the presence and absence of AI-2. 

We observed that, in both conditions, ascorbic acid at concentrations from 1 × 10-3 g/mL 

to 1 × 10-8 g/mL did not influence the bioluminescence response of the biosensing cells. 

Similarly, ascorbic acid did not induce a response in the developed FRET biosensing 

system for AI-2 detection (this dissertation, Chapter 6). Therefore, we may conclude 

that ascorbic acid does not bind to the LuxP protein. On the other hand, in both 

experiments, with and without AI-2, a sharp decrease in bioluminescence signal was 

observed with 1 × 10-2 g/mL of ascorbic acid, which may be attributed to general toxicity 

of ascorbic acid to the sensing cells (data not shown). Next, ascorbic acid solutions (1 × 

10-2 g/mL to 1 × 10-8 g/mL) were incubated with AI-2 producing E. coli AB1157 cells, and 

cell culture supernatants were analyzed with V. harveyi MM32 sensing cells to measure 

the levels of AI-2 produced. Increased levels of bioluminescence, corresponding to 
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increased AI-2 concentrations, were detected in supernatant samples derived from E. 

coli AB1157 cultures incubated with ascorbic acid at concentrations from 1 × 10-5 g/mL 

to 1 × 10-3 g/mL (Figure 5). These data suggest that ascorbic acid seems to enhance the 

production of AI-2 by E. coli AB1157 cells, although there are currently no clear 

indications that the ascorbic acid metabolic pathway is linked to the AI-2 synthetic 

pathway. Further studies are required to clarify if ascorbic acid acts through a specific 

effect on the QS regulatory system or a general effect on the cell metabolism. Ascorbic 

acid at the concentrations tested did not affect the response of the whole-cell 

biosensing systems containing plasmids pSB406 or pSB1075, both, in the absence and 

presence of the respective AHLs. In addition, ascorbic acid did not influence the AHL 

production by H. alvei 718.  

When t-cinnamic acid at concentrations of 1 × 10-3 g/mL to 1 × 10-9 g/mL was 

incubated with the whole-cell biosensing systems containing pSB406 or pSB1075, in the 

absence of AHLs, a significant increase in bioluminescence was observed at 1 × 10-4 

g/mL and 1 × 10-5 g/mL of t-cinnamic acid (Figure 6). The effect was dose-dependent, at 

least for the sensor bearing pSB1075. These data indicate that t-cinnamic acid may be 

able to bind to the AHL receptors. No data are available at this time to confirm whether 

t-cinnamic acid binds to the AHL-binding site or to other binding pockets on the AHL 

receptors. If the binding was to occur in the AHL-binding site, the fact that the receptors 

have higher affinity for their cognate AHLs would explain why a much higher 

concentration of t-cinnamic acid (1 × 10-5 g/mL) is needed to obtain a detectable 

response, as compared to the cognate AHLs that induce a response at nanomolar levels. 
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t-Cinnamic acid at the concentrations tested did not affect the response of the whole-

cell biosensing systems containing plasmids pSB406 or pSB1075 in the presence of the 

respective AHLs, as well as the response of V. harveyi MM32 sensing system, both, in 

the presence and absence of AI-2. In addition, t-cinnamic acid did not influence either 

the AHL production by H. alvei 718 or AI-2 production by E. coli AB1157. 

Recently, the anti QS activity of tannic acid was reported by Taganna et al.196, 

who demonstrated that tannin-rich methanolic leaf extract of Terminalia catappa 

(tropical almond) inhibited AHL-dependent QS regulated violacein production in 

Chromobacterium violaceum. The same extract also inhibited AHL-dependent biofilm 

maturation in P. aeruginosa. Further, tannic acid and its derivatives are known to inhibit 

biofilm formation in E. coli139 and Proteus mirabilis190. Our studies have confirmed that 

tannic acid interferes with AHL based quorum sensing; however, we observed that the 

sensors bioluminescence response increased as the concentration of tannic acid 

increased. This trend was observed when tannic acid solutions were incubated with 

whole-cell biosensing systems containing plasmid pSB406 or pSB1075 (Figure 7), both, in 

the presence and absence of C-6 HSL or C-12 HSL, respectively. In addition, tannic acid 

also interfered with the AI-2 based QS system as evident by increased bioluminescence 

signals obtained when tannic acid was incubated with V. harveyi MM32-based whole-

cell biosensing system, both, in the presence and absence of AI-2 (data not shown). 

Tannic acid does not have any structure similarities with either AHLs or AI-2. However, it 

has been shown that certain compounds can interfere with QS by binding to the QSM 

recognition proteins in a non-agonistic manner52,140. Therefore, we speculate that tannic 
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acid may interact with the AHL or AI-2 recognition proteins by binding to a site other 

than the ligand binding pocket. No effect was observed on the AHL production by H. 

alvei 718 or AI-2 production by E. coli AB1157. Since tannic acid interferes with QS 

systems of both Gram-negative and Gram-positive bacteria, it may potentially be used 

as a universal molecule to fight bacterial infections. 

Although coumarin is not a GRAS compound, we analyzed it due to its known 

antimicrobial properties. In a study by Ojana et al., coumarin exhibited antimicrobial 

activity against E. coli, P. aeruginosa, and S. aureus197. In addition, coumarin, alone and 

in combination with antibiotics, significantly reduced incidence of local peritoneal 

infections in animal models198. In our study, coumarin did not show any effect on the 

biosensing system with plasmid pSB406, both, in the presence and absence of C-6 HSL, 

as well as on the biosensing system with plasmid pSB1075, both, in the presence and 

absence of C-12 HSL. However, when coumarin solutions were incubated with V. harveyi 

MM32-based whole-cell biosensing system, both, in the presence and absence of AI-2, 

bioluminescence signals higher than those of the controls (no coumarin) were obtained 

between 1 × 10-4 g/mL and 1 × 10-5 g/mL of coumarin (Figure 8). Additionally, when 

coumarin was incubated with E. coli AB1157, higher levels of bioluminescence, 

corresponding to higher AI-2 concentrations, were measured in supernatant samples 

from cultures of E. coli AB1157 exposed to 1 × 10-8 g/mL to 1 × 10-6 g/mL of coumarin. 

No effect on AHL production by H. alvei 718 was observed. The data obtained supports 

that coumarin is capable of interfering with AI-2 dependent bacterial QS, both, by 

interacting with the QS regulatory system and affecting the synthesis of AI-2. 



162 

 

 

Conclusion 

We evaluated twelve compounds for their effect on bacterial QS. Although some 

of them did not exert an effect that we could measure using our whole-cell biosensing 

systems, other compounds, such as, thymoquinone, t-cinnamic acid, ascorbic acid, 

tannic acid, and coumarin affected the bioluminescence response of the bacterial 

biosensing systems. In these biosensing systems, bioluminescence depends on 

activation of QS regulated circuits; therefore, a molecule that causes a change in 

bioluminescence in the sensors may have an effect on the QS systems of naturally 

occurring bacteria. While some of the compounds that influenced bioluminescence are 

structurally related to QSMs, for instance, ascorbic acid and AI-2 are both furanones, 

others are not. Therefore, there must be various ways by which these compounds 

interfere with QS. Further investigation is essential to elaborate on the mechanisms of 

action of the tested compounds. Moreover, animal studies using these GRAS 

compounds should provide further insight into the feasibility of employing them as 

alternatives to antibiotic treatment and as food preservatives. 

 

 



163 

 

Figure 1. (a) General schematic of quorum sensing in bacteria. For intra-species 

communication, Gram-negative bacteria utilize AHLs and Gram-positive bacteria utilize 

AIPs. For inter-species communication, AI-2 molecules are utilized by both Gram-

negative and Gram-positive bacteria. (b) Chemical structures of AI-2, C-6 HSL, and C-12 

HSL.  
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(b) 
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Figure 2. Interference with QS. Possible interference mechanisms include (1) 

interference with the binding between QSM and its cognate recognition protein, (2) 

interference with activation of gene expression, including genes encoding QSM 

synthases, and (3) degradation of QSM. 
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Figure 3. (a) p-Coumaric acid solutions were incubated with the whole-cell biosensing 

system containing plasmid pSB406 for 2 h at 37 °C, 175 rpm. Blank (0 mg/mL p-coumaric 

acid) contains 1% acetonitrile (v/v). (b) p-Coumaric acid solutions containing 2.0 × 10-6 

g/mL C-6 HSL were incubated with the whole-cell biosensing system containing plasmid 

pSB406 for 2 h at 37 °C, 175 rpm. Blank (0 mg/mL p-coumaric acid) contains 1% 

acetonitrile (v/v), along with 2.0 × 10-6 g/mL C-6 HSL. Upon addition to the biosensing 

cells, the final concentration of C-6 HSL is 2.0 × 10-7 g/mL. 
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Figure 4. (a) Thymoquinone solutions were incubated with the whole-cell biosensing 

system containing plasmid pSB1075 for 2 h at 37 °C, 175 rpm. Blank (0 mg/mL 

thymoquinone) contains 1% acetonitrile (v/v). (b) Thymoquinone solutions containing 

2.8 × 10-7 g/mL C-12 HSL were incubated with the whole-cell biosensing system 

containing plasmid pSB1075 for 2 h at 37 °C, 175 rpm. Blank (0 mg/mL thymoquinone) 

contains 1% acetonitrile (v/v), along with 2.8 × 10-7 g/mL C-12 HSL. Upon addition to the 

biosensing cells, the final concentration of C-12 HSL is 2.8 × 10-8 g/mL. 
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Figure 5. Ascorbic acid solutions, from 1 × 10-2 g/mL to 1 × 10-8 g/mL, were added to 

cultures of AI-2 producing E. coli AB1157 cells. After 6 hours (time required for 

maximum AI-2 production) the cell cultures were centrifuged, and the supernatants 

were analyzed for AI-2 content using the V. harveyi MM32 based whole-cell biosensing 

system. Blank (0 mg/mL ascorbic acid) contained RO filtered water. 
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Figure 6. (a) t-Cinnamic acid solutions were incubated with the whole-cell biosensing 

system containing plasmid pSB406 for 2 h at 37 °C, 175 rpm. Blank (0 mg/mL t-cinnamic 

acid) contains 1% acetonitrile (v/v). (b) t-Cinnamic acid solutions were incubated with 

the whole-cell biosensing system containing plasmid pSB1075 for 2 h at 37 °C, 175 rpm. 

Blank (0 mg/mL t-cinnamic acid) contains 1% acetonitrile (v/v).  
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Figure 7. (a) Tannic acid solutions were incubated with the whole-cell biosensing system 

containing plasmid pSB1075 for 2 h at 37 °C, 175 rpm. Blank (0 mg/mL tannic acid) 

contains RO filtered water. (b) Tannic acid solutions containing 2.8 × 10-7 g/mL C-12 HSL 

were incubated with the whole-cell biosensing system containing plasmid pSB1075 for 2 

h at 37 °C, 175 rpm. Blank (0 mg/mL tannic acid) contains RO filtered water, along with 

2.8 × 10-7 g/mL C-12 HSL. Upon addition to the biosensing cells, the final concentration 

of C-12 HSL is 2.8 × 10-8 g/mL. 
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Figure 8. (a) Coumarin solutions, from 1 × 10-6 g/mL to 1 × 10-2 g/mL, were incubated 

with the V. harveyi MM32 based whole-cell biosensing system for 3 h at 30 °C, 175 rpm. 

Blank (0 mg/mL t-cinnamic acid) contains 1 % acetonitrile (v/v). (b) Coumarin solutions, 

from 1 × 10-6 g/mL to 1 × 10-2 g/mL, containing 2.0 × 10-6 g/mL AI-2 were incubated with 

the V. harveyi MM32 based whole-cell biosensing system for 3 h at 30 °C, 175 rpm. 

Blank (0 mg/mL t-cinnamic acid) contains 1 % acetonitrile (v/v), along with 2.0 × 10-6 

g/mL AI-2. Upon addition to the biosensing cells, the final concentration of AI-2 is 2.0 × 

10-7 g/mL. 
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Table 1. GRAS compounds and their properties. 

GRAS 

compounds 

Structure Solubility 

Curcumin 

 

Acetonitrile 

Capsaicin 

 

Acetonitrile 

Thymol 

 

Water 

Thymoquinon

e 

 

Acetonitrile 

Coumarin 

 

Acetonitrile 

Ascorbic acid 

 

Water 

p-Coumaric 

acid 

 

Acetonitrile 
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Table 1 (continued) 
 

t-Cinnamic 

acid 

 

Acetonitrile 

Eugenol 

 

Water 

Quercetin 

 

0.1 N ammonium 

hydroxide 

o-Dianisidine 

 

DMSO 

Tannic acid 

 

Water 
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CHAPTER SIX 

BREAKING INTO THE BACTERIAL QUORUM SENSING CIRCUITS: DETECTION OF THE 

AUTOINDUCER-2 VIA A FLUORESCENCE BIOSENSING SYSTEM 

 

Introduction 

 

 Bacteria, both Gram-positive and Gram-negative modulate the expression of 

certain genes in a cell-density dependent manner via the production, release, and 

sensing of small signaling molecules known as quorum sensing molecules (QSMs).  This 

phenomenon, termed quorum sensing (QS), is known to regulate a diverse array of 

functions including the production of virulence factors9,199,200 and antibiotics142,201, 

biofilm formation202, and motility203. Specifically, specialized genes involved in the above 

functions are expressed when a QSM threshold concentration representative of a 

certain population size is reached. The most common types of QSMs are N-acyl 

homoserine lactones (AHLs), autoinducing peptides (AIPs), and autoinducer-2 (AI-2). 

Gram-negative and Gram-positive bacteria employ AHLs and AIPs, respectively, for 

communicating with members of the same species. AI-2 molecules are used by both 

types of bacteria and also involved in communication between species204.  Bacteria are 

not limited to the use of just one type of QSM or QS circuit, and many bacteria utilize 

multiple QS circuits to regulate their various functions205-207. In that regard, Vibrio 

harveyi, a marine bacterium, employs multiple QS systems to regulate multiple 

functions, such as siderophores208 and metalloproteases production209, type III 

secretion210, biofilm formation211, and bioluminescence205. These QS circuits are based 
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on the use of different QSMs (Figure 1A), namely, N-(3-hydroxybutanoyl) homoserine 

lactone (HAI-1), (Z)-3-aminoundec-2-en-4-one (CAI-1), (2S, 4S)-2-methyl-2,3,3,4-

tetrahydroxytetrahydrofuran-borate (BAI-2), and nitric oxide (NO), which was recently 

shown to participate in QS regulation of bioluminescence through a newly discovered 

QS pathway212. HAI-1 is found only in V. harveyi and its close relative Vibrio 

parahaemolyticus, CAI-1 is mostly present in the Vibrio species, while the class of AI-2 

molecules is found in a wide variety of bacterial species and genera211. This suggests 

that HAI-1 is involved in intra-species communication, CAI-1 in intra-genera 

communication, and AI-2 in inter-bacterial communication amongst different species 

and genera. 

 The class of AI-2 molecules, including borated autoinducer-2 (BAI-2), is 

composed by a family of compounds that originate from the precursor 4,5-dihydroxy-

2,3-pentanedione (DPD). In V. harveyi, DPD is formed as a by-product of an enzymatic 

reaction part of a bacterial metabolic pathway.  Specifically, the essential coenzyme S-

adenosyl methionine (SAM) is converted into S-adenosyl homocysteine (SAH) upon 

transfer of methyl groups to DNA, RNA, and proteins48. SAH is toxic to cells as it inhibits 

SAM-dependent methyltransferases213 and is metabolized to S-ribosyl homocysteine 

(SRH) by 5′-methylthioadenosine-SAH nucleosidase as a first step to dampen its toxic 

effects. SRH is subsequently converted into homocysteine by the enzyme LuxS, with 

DPD being formed as a by-product of this enzymatic reaction. DPP is then employed by 

the bacterial quorum sensing circuit to produce AI-2.  The biosynthesis of AI-2 from DPD 

is illustrated in Figure 1B. Under aqueous conditions, DPD undergoes spontaneous 



176 

 

cyclization to generate various interconverting hydrated forms, (2R,4S)- and (2S,4S)-2,4-

dihydroxy-2-methyldihydrofuran-3-one (R- and S-DHMF, respectively), as well as 

(2R,4S)- and (2S,4S)-2-methyl-2,3,3,4-tetrahydroxytetrahydrofuran (R- and S-THMF, 

respectively). In the presence of borate, S-THMF is converted into (2S,4S)-2-methyl-

2,3,3,4-tetrahydroxytetrahydrofuran-borate (S-THMF-borate), i.e., BAI-2104. Two of 

these AI-2 molecules, BAI-2 and R-THMF, are known to be utilized as QSMs by Vibrio 

harveyi and Salmonella typhimurium, respectively, while other forms of AI-2 are used by 

other bacterial species15.   

AI-2 serves a vital role in QS-regulated pathways in a number of human and 

foodborne pathogens, including S. typhimurium and various pathogenic E. coli 

strains15,214.  Thus, detection of AI-2 in physiological samples may be critical in the early 

detection of bacterial infections and monitoring of the efficacy of antibacterial therapy. 

To that end, we have developed a rapid, highly sensitive, and selective protein-based 

biosensing system aimed at the detection of AI-2 molecules in physiological samples. 

In V. harveyi, the periplasmic binding protein LuxP is responsible for recognition 

and binding of the BAI-2 molecule. Similar to other periplasmic binding proteins94,215, 

LuxP undergoes a change in conformation when it binds BAI-2, a property that has been 

employed by researchers to create protein biosensing systems for AI-2 detection. For 

example, Rajamani et al. developed a Förster Resonance Energy Transfer (FRET)-based 

system128 in which the gene sequence of the LuxP protein was inserted between that of 

two different variants of the Green Fluorescent Protein, Cyan Fluorescent Protein (CFP) 



177 

 

and Yellow Fluorescent Protein (YFP) to create a hybrid CFP-LuxP-YFP fusion protein. 

Upon excitation at 440 nm, CFP emits at 485 nm, while YFP excitation and emission 

wavelengths are 485 nm and 527 nm, respectively.  Thus, excitation of the CFP-LuxP-YFP 

fusion protein at 440 nm causes emission of CFP at 485 nm, which, in turn leads to 

fluorescence resonance energy transfer (FRET) from CFP to YFP, resulting in YFP 

fluorescence emission at 527 nm.  When BAI-2 is present in the environment, it binds to 

the LuxP part of the fusion protein, changes its conformation, and alters the 

fluorescence emission at 527 resulting from the FRET between CFP and YFP.  

Specifically, addition of BAI-2 caused a dose-dependent decrease in FRET of the sensing 

CFP-LuxP-YFP fusion protein that was used to detect the levels of the QSM.  This 

biosensing system responded selectively to BAI-2 with an apparent Kd of 270 nM. In 

another approach, Zhu et al. modified the LuxP protein with environmentally sensitive 

fluorophores216, such as, 6-acryloyl-2-dimethylaminonaphthalene (acrylodan), 6-

bromoacetyl-2-(dimethylamino) naphthalene (badan), N,N’-didansyl-L-cystine (DDC), 

and Dapoxyl (2-bromoacetamidoethyl)sulfonamide (Dapoxyl). The fluorophores were 

chemically conjugated to Cysteines near the ligand binding site so that upon analyte 

binding, change in the microenvironment surrounding the fluorophore would lead to a 

change in the fluorescence emission. These systems were able to detect BAI-2 at 

micromolar levels.  

The biosensing systems developed by Rajamani et al. and Zhu et al. exhibited a 

selective response to BAI-2, but the detection limits were not sufficient for  their use in 

clinical samples, such as saliva and stool.  Data obtained by us (this dissertation, chapter 
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3) and others119,217, suggests that AI-2 is present in a sub-micromolar to low nanomolar 

range. Physicochemical methods, such as GC-MS124 and LC-MS-MS119
, have also been 

employed to detect DPD with limits of detection of 5.6 nM and 0.23 nM, respectively. 

However, DPD must be derivatized with the proper chemical moiety before analysis can 

be performed, negating the usefulness of these methods for direct quantitative 

detection without prior pre-treatment of any physiological sample.  

In order to address the current need for systems that can detect QSMs in 

physiological samples in a quantitative manner, we designed and developed a 

fluorescecce-based sensing system that takes advantage of the exquisite molecular 

recognition properties of the LuxP protein to its ligand, AI-2, coupled with the sensitive 

detection afforded by fluorescence resonance energy transfer methods.  The design of 

our system is based on a combination of genetic fusion methods with site-selective 

incorporation of a fluorophore into selected the amino acids of LuxP.  Specifically, we 

prepared a fusion protein between LuxP and enhanced green fluorescent protein 

(EGFP).  This LuxP-EGFP fusion protein was capable of emitting fluorescent light upon 

excitation at 485 nm, and the fluorescence produced was not significantly altered by the 

presence of AI-2.  This characteristic of the system inspired us to design a FRET 

biosensing system for AI-2 detection that involved labeling the LuxP part of the LUxP-

EGFP fusion protein with a fluorophore. In particular we utilized the fluorophore 7-

diethylamino-3-[N-(2-maleimidoethyl)carbamoyl]coumarin (MDCC) and the fusion of 

the LuxP protein with EGFP as the donor-acceptor pair for FRET.  MDCC, when excited at 

425 nm, transferred energy to EGFP in the LuxP-EGFP fusion protein, causing EGFP 
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excitation and consequent emission with a peak at 507 nm.  Addition of BAI-2 caused a 

dose-dependent decrease in FRET, which translated in a lower fluorescence emission 

signal at 507 nm.  The biosensing system developed was selective to AI-2 molecules, had 

detection limits in the sub-micromolar range, and its utility was validated by 

determining the concentration of AI-2 molecules in human saliva and blood serum. 

 

Materials and Methods 

 

Materials 

Plasmid pGEX-4T-1-LuxP was kindly provided by Dr. Bonnie Bassler (Princeton 

University). Plasmid pEGFP and ExTaq DNA polymerase were purchased from Clontech 

(Mountain View, CA). Plasmid pET28a(+) was purchased from EMD Millipore (Billerica, 

MA). Chemically competent Escherichia coli cells BL21 (DE3) were purchased from 

American Type Culture Collection (Manassas, VA). Pfu DNA polymerase was purchased 

from Promega (Madison, WI). The TOPO TA cloning kit, MDCC, and Microcon YM-10 

centrifugal device were purchased from Invitrogen (Carlsbad, CA). Restriction 

endonuclease enzymes, NheI and BamHI, Calf Intestinal Alkaline Phosphatase, and T4 

DNA ligase were purchased from New England Biolabs (Ipswich, MA). The QIAprep 

Miniprep DNA extraction kit and Nickel-NitriloTriAcetic acid (Ni-NTA) agarose were 

purchased from Qiagen (Valencia, CA). Primers were purchased from Operon 

(Huntsville, AL). AI-2 was purchased from Omm Scientific (Dallas, TX). Isopropyl-β-D-

thiogalactoside (IPTG) was purchased from Gold Biotechnology (Houston, TX). The 
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Bradford protein assay kit was purchased from Bio-Rad Laboratories (Hercules, CA). 

Polystyrene petri dishes and culture tubes were purchased from BD Biosciences (Sparks, 

MD). Boric acid was purchased from Fisher Scientific (Pittsburgh, PA). Sodium Dodecyl 

Sulfate (SDS) was purchased from Curtin Mathesin Scientific (Houston, TX). Luria Bertani 

(LB) media and 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulphonic acid (HEPES) were 

purchased from VWR International (Bridgeport, NJ). Ampicillin, kanamycin, and sodium 

chloride were purchased from Sigma (St. Louis, MO). All solutions were prepared using 

deionized reverse osmosis filtered water (Milli-Q Water Purification System, Millipore, 

Bedford, MA).  

Apparatus 

Cell cultures were grown using an orbital shaker incubator purchased from 

Forma Scientific (Marietta, OH). Cells were harvested using a Beckman J2-MI centrifuge 

(Palo Alto, CA). DNA amplification and overlap Polymerase Chain Reaction (PCR) 

reactions were performed using an Eppendorf Mastercycler personal thermal cycler 

(Hauppauge, NY). Bacterial colonies were grown on agar plates using an Isotemp 

incubator from Fisher Scientific (Pittsburgh, PA). Fluorescence studies were performed 

using a PTI Laserstrobe™ Fluorescence Lifetime Spectrofluorometer (Birmingham, NJ). 

The optical density of bacterial cultures was measured using a Spectronic 21D 

spectrophotometer (Artisan Scientific, Champaign, IL).  
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Isolation and cloning of DNA 

The plasmids pGEX-4T-1-LuxP and pEGFP, respectively, were transformed and 

maintained in E. coli BL21 (DE3) cells. Cultures of pGEX-4T-1-LuxP and pEGFP containing 

cells were grown overnight in LB media supplemented with 100 µg/mL of ampicillin 

using an orbital shaker incubator set at 37 °C and 250 rpm. The DNA from each culture 

was harvested using the Qiagen DNA extraction kit. LuxP DNA was amplified from pGEX-

4T-1-LuxP by PCR using primers 5’-GCTAGCACACAAGTTTTGAATGGGTACTGG-3’ and 5’-

TATTCAGATAATTCAGGTGGAGGTGGATCA-3’. EGFP DNA was amplified from pEGFP by 

PCR using primers 5’-TCAGGTGGAGGTGGATCAGTGAGCAAGGGC-3’ and 5’-

CTCGGCATGGACGAGCTGTACAAGGGATCC-3’. By using these primers, a site for the 

nuclease NheI was introduced at the beginning of the LuxP DNA sequence and a site for 

the nuclease BamHI was introduced at the end of the EGFP DNA sequence. An overlap 

PCR reaction was then carried out using the primers 5’-

TATTCAGATAATTCAGGTGGAGGTGGATCA-3’ and 5’-

TCAGGTGGAGGTGGATCAGTGAGCAAGGGC-3’. A high fidelity Pfu polymerase was used 

for the above PCR reactions. The overlap PCR product was further incubated with ExTaq 

polymerase to introduce A (adenine) overhangs at the 3’ terminus of the amplified DNA. 

The obtained DNA product was then cloned into the TA vector using a TA cloning kit. 

The plasmid ligation product was transformed and maintained in the TOP10F’ cells 

supplied with the TA cloning kit.  The primers used enabled creation of a fusion between 

the DNAs of LuxP and EGFP connected by a linker corresponding to the peptide Ser-Hys-

Hys-Hys-Hys-Ser. Using the restriction enzymes, NheI and BamHI, the LuxP-EGFP DNA 
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was cloned into vector pET28a(+) to obtain plasmid pET28a(+)-LuxP-EGFP, which was 

transformed and maintained in E. coli BL21 (DE3) cells. 

Purification of LuxP-EGFP fusion protein 

A culture of E. coli BL21 (DE3) cells containing plasmid pET28a(+)-LuxP-EGFP was 

grown overnight in LB media supplemented with 30 µg/mL kanamycin using an orbital 

shaker incubator set at 37 °C and 250 rpm. A 4 mL volume of overnight grown culture 

was added to 500 mL of fresh LB media (30 µg/mL kanamycin) and allowed to grow at 

37 °C, 250 rpm until an optical density (600 nm) of 0.40 to 0.50 was reached. The culture 

was moved to an orbital shaker incubator that was set at 16 °C, 250 rpm, and protein 

expression was induced by adding IPTG at a final concentration of 10 mM. The following 

day, the fusion protein was harvested and purified using a Ni-NTA resin drip column. 

The purified protein was analyzed using SDS-PAGE and dialyzed extensively (16 buffer 

changes over 2 days) using a buffer containing 50 mM HEPES and 150 mM NaCL (pH 

7.0). The concentration of the purified protein was determined using the Bradford 

protein assay according to the manufacturer’s instructions. 

DNA and protein sequence analysis 

DNA was isolated from a culture of E. coli BL21 (DE3) cells containing plasmid 

pET28a(+)-LuxP-EGFP using QIAprep miniprep kit and sent for sequencing at the 

University of Kentucky Advanced Genetic Technologies Center. The fusion protein was 

expressed, purified, and analyzed by SDS-PAGE, as reported above. The gel band of the 

protein was digested with trypsin, and LC-ESI-MS-MS analysis was performed using a 
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ThermoFinnigan LTQ linear ion trap instrument at the University of Kentucky Mass 

Spectrometry Facility. The resulting MS-MS spectra were searched in the Swiss-Prot 

protein sequence database using the Mascot search engine to confirm the presence of 

both proteins, LuxP and EGFP.  

Method optimization for FRET signal detection 

The fluorophore MDCC was dissolved in anhydrous dimethyl sulfoxide (DMSO) to 

obtain a 1 × 10-4 g/mL stock solution, which was serially diluted with 50 mM HEPES, 150 

mM NaCl buffer (pH 7.0) to obtain 1 × 10-5 to 1 × 10-9 g/mL MDCC solutions. LuxP-EGFP 

solutions, ranging from 1 × 10-6 M to 1 × 10-10 M, were prepared by serial dilution of the 

purified fusion protein solution using 50 mM HEPES, 150 mM NaCl buffer (pH 7.0). The 

excitation and emission peak wavelengths of MDCC were 425 nm and 475 nm, 

respectively. The excitation and emission peak wavelengths of EGFP in the fusion 

protein were 488 nm and 507 nm, respectively. The overlap between the emission 

spectrum of MDCC and absorption spectrum of the fusion protein, which contained 

EGFP, was determined by using a Varian Cary Eclipse Spectrophotometer. A 900 µL 

volume of MDCC solution, at a fixed concentration, was incubated with 100 µL of fusion 

protein solutions at various concentrations for 15 minutes. The obtained solutions were 

excited at 425 nm and the emission spectra were recorded from 450 nm to 600 nm. The 

optimal FRET, i.e., the maximum transfer of energy from MDCC to the fusion protein, as 

demonstrated by the emission intensity at 507 nm, was observed when 2.5 × 10-7 M 
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MDCC was used in combination with 5 × 10-9 M fusion protein. The resulting FRET 

donor-acceptor solution was referred to as FRET complex.  

Dose-response curve using BAI-2 

The FRET complex contained 90% (v/v) MDCC at 2.5 × 10-7 M concentration and 

10% (v/v) fusion protein at 5 × 10-9 M concentration. A 1 × 10-3 M solution of boric acid 

was prepared in 50 mM HEPES, 150 mM NaCl buffer (pH 7.0). The commercially 

available AI-2 aqueous solution was serially diluted using the 1 × 10-3 M boric acid 

solution to obtain standards of the borate isomeric form (BAI-2) ranging in 

concentration from 1 × 10-4 M to 1 × 10-10 M. A 180 µL volume of the FRET complex was 

incubated with 1.8 µL of BAI-2 solutions at various concentrations in triplicate for a 

period of 3 minutes. The incubation was performed in a 300 µL quartz microcuvette. The 

samples were then excited at 425 nm and the emission spectra were recorded from 450 

nm to 600 nm. A 180 µL volume of the FRET complex with 1.8 µL volume of 1 × 10-3 M 

boric acid solution in 50 mM HEPES, 150 mM NaCl buffer (pH 7.0) served as blank.  

Selectivity studies 

The compounds tested included AI-2, ascorbic acid, and 4-hydroxy-2,5-dimethyl-

3(2H)-furanone (DMHF). AI-2 (3.7 × 10-3 M) and ascorbic acid (1 × 10-3 M) stock solutions  

were prepared in water, while DMHF stock solution (1 × 10-3 M) was prepared in 

ethanol. These stock solutions were serially diluted with 50 mM HEPES, 150 mM NaCl 

buffer (pH 7.0) to obtain 1 × 10-4 M to 1 × 10-10 M solutions. A 1.8 µL aliquot of each 

solution in triplicate was incubated with 180 µL of FRET complex and fluorescence 
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measurements were performed as described above. A 1.8 µL volume of 50 mM HEPES, 

150 mM NaCl buffer (pH 7.0) served as blank. 

Dose-response curves in saliva and blood serum 

Saliva samples were obtained from healthy volunteers. Each saliva sample was 

centrifuged to remove debris and the supernatant was stored at -80 °C until needed. A 

pool of saliva was obtained by mixing equal volumes of individual saliva sample 

supernatants followed by 5 min of vortexing. BAI-2 standard solutions, ranging in 

concentration from 1 × 10-3 M to 1 × 10-9 M, were prepared as described above. A 10 µL 

aliquot of each BAI-2 solution was added to 90 µL of pooled saliva to obtain spiked saliva 

samples ranging from 1 × 10-4 M to 1 × 10-10 M BAI-2 concentration. A 1.8 µL volume of 

the spiked saliva samples was incubated in triplicate with the FRET complex as described 

above. A 10 µL volume of 1 × 10-3 M boric acid solution in 50 mM HEPES, 150 mM NaCl 

buffer (pH 7.0) was added to 90 µL of pooled saliva to serve as a blank.  

Blood serum samples were obtained from healthy volunteers. A pool of serum 

was prepared by mixing equal volumes of individual serum samples followed by 

vigorous vortexing. A 10 µL aliquot of each BAI-2 solution, ranging in concentration from 

1 × 10-3 M to 1 × 10-9 M, was added to 90 µL of pooled serum to obtain spiked serum 

samples ranging from 1 × 10-4 M to 1 × 10-9 M BAI-2 concentration. A 1.8 µL volume of 

the spiked serum samples was incubated in triplicate with the FRET complex as 

described above. Because a serum matrix effect was observed, similar spiking studies 

were repeated by diluting the pooled serum 1:10, 1:25, 1:50, 1:75, and 1:100 with 50 
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mM HEPES, 150 mM NaCl buffer (pH 7.0). A 10 µL volume of 1 × 10-3 M boric acid 

solution in 50 mM HEPES, 150 mM NaCl buffer (pH 7.0) was added to 90 µL of undiluted 

and diluted pooled serum to serve as a blank.  

Detection of AI-2 in saliva and blood serum samples 

 Saliva samples were obtained from healthy volunteers and processed as 

described above. A 1.8 µL volume of each saliva sample was added in triplicate to the 

FRET complex and fluorescence measurements were performed as described above. 

Serum samples were obtained from patients with inflammatory bowel disease (IBD) and 

diluted 1:100 using 50 mM HEPES, 150 mM NaCl buffer (pH 7.0). A 1.8 µL volume of 

each 1:100 diluted serum sample was added in triplicate to the FRET complex and 

fluorescence measurements were performed as described above. A total of 10 saliva 

and 10 serum samples were analyzed. A dose-response curve was included in each 

analytical run and data were plotted using GraphPad Prism 5. AI-2 concentrations in 

samples were calculated after interpolating the FRET ratio values and multiplying by the 

dilution factor. 
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Results and discussion 

  

In this work, we designed and developed a biosensing system to detect the 

quorum sensing autoinducer-2, AI-2, class of molecules. The biosensing system was 

based on the principles of fluorescence resonance energy transfer, FRET, by employing  

a fluorophore attached to a recognition protein as the donor of a donor-acceptor pair 

where the acceptor is a fluorescent protein part of a LuxP-EGFP fusion protein.  

Specifically, MDCC is the donor and EGFP the acceptor. LuxP undergoes a 

conformational change upon binding BAI-2128,218. The X-ray crystal structure analysis of 

LuxP without BAI-2, i.e., apoLuxP and with bound BAI-2, i.e., holoLuxP revealed 

differences in the protein conformation (Figure 2). Hence, we postulated that we could 

detect BAI-2 with high sensitivity and selectivity by employing an appropriate reporter 

system to monitor this conformational change. 

EGFP and its variants are traditionally used as reporter elements in fusion 

protein constructs 219,220. Employing overlap PCR, the two genes, luxP and egfp, were 

joined together at the 3’- terminus of luxP.  The two genes were separated by 18 bases 

that encoded for a six-amino acid peptide linker, to allow for enough flexibility so that 

BAI-2 binding to LuxP was not hindered by EGFP. In addition, to ease the purification 

process, nucleotides encoding for six-His residues to be employed as an affinity 

chromatography tag to bind a Ni-NTA resin column were incorporated at the N-terminus 

of the protein.  The luxP-egfp construct was cloned into the pET28a(+) vector and placed 

under the control of a lac operon, which enabled overexpression of the fusion protein.  
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The use of the fluorophore MDCC, a coumarin derivative, as donor in the FRET 

system was based on our observation that coumarin caused an increase in the 

bioluminescence response of a V. harveyi MM32-based whole-cell biosensing system for 

AI-2 detection (Thesis Chapter 5). In this sensing system, the binding of AI-2 to the 

recognition element, LuxP, triggers a cascade of phosphorylation and de-

phosphorylation events that lead to the expression of the luxCDABE cassette and 

production of bioluminescence. One possible reason for the observed effect of 

coumarin is that it may act as an agonist and bind to the LuxP protein at the BAI-2 

binding site or bind to another binding pocket on the protein. Therefore, we 

hypothesized that MDCC, which is structurally related to coumarin, may also bind to the 

LuxP protein. Additionally, since EGFP is connected to LuxP, it may be in close enough 

proximity to MDCC so that FRET between MDCC and EGFP may occur. Furthermore, 

MDCC was excited at 425 nm, and the emission spectrum was recorded. An absorption 

spectrum for the fusion protein LuxP-EGFP was also obtained. We confirmed that the 

emission of MDCC overlaps with the absorption of the fusion protein, thus deeming it 

suitable as a donor for use in our proposed FRET system (Figure 3).  

In order to optimize the experimental conditions, various molar ratios of MDCC 

and fusion protein were tested; upon exciting at 425 nm, the emission intensities of 

MDCC at 475 nm and LuxP-EGFP at 507 nm were measured. The LuxP-EGFP construct 

alone exhibited background emission at 507 nm when excited at 425 nm; however, in 

the presence of MDCC, the emission intensity of the construct increased. Figure 4 shows 

the emission spectra from three different concentrations of the fusion protein, with and 
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without a fixed concentration of MDCC. An increase in emission intensity of the fusion 

protein was observed with increases in its concentration, both, in the presence and 

absence of MDCC. Protein concentrations greater than 5 × 10-8 M did not show any 

improvement in the FRET ratio, i.e., the ratio of the emission intensities of acceptor and 

donor. Further, we found that a solution of MDCC and fusion protein, at final 

concentrations of 2.5 × 10-7 M and 5 × 10-9 M, respectively, resulted in the highest FRET 

ratio. This solution of LuxP-EGFP and MDCC, which was used in all subsequent 

experiments, is referred to as “FRET complex”. Incubation times longer than 15 min did 

not improve the FRET ratio from the fusion protein-MDCC solution. Therefore, all 

experiments were performed by incubating the FRET complex for a period of 15 min.  

The FRET complex was then incubated with solutions of BAI-2 at concentrations 

ranging from 1 × 10-5 M to 1 × 10-12 M. The BAI-2 standard solutions were prepared 

using 1 × 10-3 M boric acid in 50 mM HEPES, 150 mM NaCl buffer, pH 7.0. It has been 

previously reported that in the biosynthesis of BAI-2, a 4 equivalent amount of borate, 

with respect to the starting material S-ribosylhomocysteine, was sufficient to obtain a 

borate isomer of AI-2104. Hence, we ensured that boric acid was in sufficient excess 

while preparing our BAI-2 standards. The presence of boric acid did not affect the pH of 

the solution221, thus not affecting the properties of the fluorophore and the 

conformation of the LuxP-EGFP fusion.  As shown in Figure 5, as the concentration of 

BAI-2 increased, the acceptor emission peak at 507 nm decreased, while the donor 

emission peak at 475 nm increased; this caused a dose-dependent decrease in the FRET 

ratio. The biosensing system developed herein allowed us to detect BAI-2 at sub-
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nanomolar levels with a limit of detection (LOD) of 1 × 10-10 M, which is the lowest limit 

of detection reported for a LuxP protein-based biosensing system128,216. The limit of 

detection was defined as the analyte concentration that produced a signal lower than 

the average of the blank minus three standard deviations of the blank. In addition, a 

dynamic range of five orders of magnitude and linear response over three orders of 

magnitude was observed (Figure 6).  

To test our hypothesis, which postulates direct binding of MDCC to the LuxP 

protein in the FRET process followed by an observed FRET signal and not to a direct 

interaction of MDCC with EGFP, we performed experiments using MDCC and 

commercially available EGFP.  While maintaining all the experimental conditions  

described above, various concentrations of EGFP were incubated with 2.5 × 10-7 M 

MDCC. When the solutions were excited at 425 nm, no changes in the emission intensity 

of EGFP were observed as compared to EGFP alone, thus showing that the EGFP 

emission intensity was independent of the presence of MDCC. This clearly indicates that 

there are no interactions taking place between MDCC and EGFP that could result in a 

FRET signal. Further, when standard solutions of BAI-2 were added to the solution 

containing MDCC and EGFP, no changes in the emission intensities of MDCC and EGFP 

were observed (data not shown). These results point to the requirement for MDCC to 

bind to LuxP in order to be in close proximity of EGFP for the energy transfer to occur. 

One of the limitations of the previously reported LuxP protein-based sensors is 

their inability to respond to non-borate forms of AI-2128,216. As noted in the introduction, 
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the BAI-2 precursor, DPD, generates various hydrated non-containing boron isomeric 

forms that exist in equilibrium. Rather recently, Globisch et al. reported the existence of 

an additional isomer of DPD222, although currently, only two forms of AI-2 are known to 

take part in QS, namely BAI-2 in V. harveyi and R-THMF in S. typhimurium.  Nevertheless, 

it is speculated that other isomeric forms might also be involved in the quorum sensing 

regulatory pathways of certain bacteria222. To that end, we tested the ability of our 

sensing system to respond to the hydrated forms of DPD. A dose-response curve for 

DPD was obtained by incubating various concentrations of DPD with the sensing system.  

The dose-response curve had a dynamic range of over three orders of magnitude with a 

limit of detection of 1 × 10-9 M (Figure 6). The ability to detect both forms of AI-2 is 

significant as the sensor can be utilized in applications where samples might contain 

borate free as well as borated AI-2.  

The selectivity of our protein biosensing system was evaluated by exposing it to 

(5R)-[(1S)-1,2-dihydroxyethyl]-3,4-dihydroxyfuran-2(5H)-one (ascorbic acid) and 5-

methyl-4-hydroxy-3(2H)-furanone (MHF).  The reason for choosing furanone derivatives 

was because of literature reports claiming that furanones affect the AI-2 bacterial 

quorum sensing circuitry, although the mechanisms of action have not been 

elucidated195,223,224. Solutions of these compounds at concentrations ranging from 1 × 

10-5 M to 1 × 10-12 M, were incubated with the protein biosensing system and the 

potential emission due to FRET was observed. Ascorbic acid did not elicit a change in the 

concentration range tested. On the other hand, MHF induced a response in the protein 

biosensing system at concentrations of 1 × 10-6 M and 1 × 10-5 M. Due to solubility 
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constraints, higher concentrations of MHF could not be tested. Based on these 

observations, we conclude that the biosensing system is able to respond to the AI-2 

class of compounds and to structurally related furanones. However, it is important to 

point out that the biosensing system responded to MHF at concentrations at least three 

orders of magnitude higher than that of AI-2 molecules. The response of the sensing 

system to various concentrations of BAI-2, DPD, MHF, and ascorbic acid is shown in 

Figure 6. 

Next we explored the feasibility of employing our sensing system for the 

detection of AI-2 in saliva and blood serum. For that, we investigated potential matrix 

effects by creating pools of saliva and serum samples, respectively, and spiking them 

with various concentrations of BAI-2 to obtain dose-response curves in these matrices. 

As shown in Figure 7, the slope of the dose-response curve obtained in saliva was nearly 

identical to the slope of the dose-response curve obtained in buffer and both curves can 

be superimposed. Serum, on the other hand, caused a shift of over 25 nm in the MDCC 

emission peak. Therefore, serum dilution studies were performed that showed that 

1:100 dilution was necessary in order to effectively eliminate the matrix effect 

mentioned above. As it can be seen from Figure 7, the dose-response curve in 1:100 

diluted serum overlapped with the dose-response curve obtained in buffer.  

We then employed the biosensing system to detect AI-2 molecules in individual 

saliva and serum samples. AI-2 was not detected in any of the 10 blood serum samples 

tested. These results conform to those of our previous study where, using a V. harveyi 
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MM32-based whole-cell biosensing system, we were not able to detect AI-2 in serum 

samples (this dissertation, chapter three). While it is possible that serum does not 

contain levels of AI-2 that are detectable by protein or whole-cell biosensing systems, 

physical-chemical methods119 may be employed to confirm the presence or absence of 

AI-2 in serum. On the other hand, three out of ten saliva samples showed distinct levels 

of AI-2, varying between approximately 1 × 10-8 M and 1 × 10-10 M (Table 1). The 

presence of AI-2 in saliva was also demonstrated in another study using a whole-cell 

biosensing system (this dissertation, Chapter 2). Analysis of additional samples is 

necessary to potentially establish the method developed herein as an analytical tool for 

detection of AI-2 to be employed in the diagnosis and monitoring of bacterial-related 

conditions.  

Conclusion 

We designed and developed a FRET protein-based sensing system for AI-2 

detection, which employed the LuxP protein as the recognition element along with the 

fluorophore MDCC and the photoprotein EGFP, genetically fused to LuxP, as the FRET 

donor-acceptor pair. The biosensing system proved to be rapid, in that it required an 

incubation time with the analyte of only 3 min to obtain a dose-dependent response; 

this represents a significant improvement as compared to conventional physico-

chemical methods. Furthermore, the protein biosensing system described in this work 

has a lower limit of detection for BAI-2 (1 × 10-10 M) than previously reported protein 

biosensing systems employing LuxP combined with synthetic fluorophores216 (1 × 10-6 
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M) or yellow and cyan fluorescent proteins as reporters128 (> 1 × 10-8 M BAI-2). One of 

the main advantages of our biosensing system lies in its ability to respond to non-borate 

forms of AI-2. This broadens the scope of the biosensing system for use in applications 

where detection of non-borate forms of AI-2 is required; for instance, human 

pathogens, such as S. typhimurium, are known to employ non-borate forms of AI-2 for 

QS regulation. Detection of QSMs in clinical samples has attracted attention, especially 

in bacteria related conditions such as cystic fibrosis25 and Crohn’s disease170. We 

demonstrated that the developed biosensing system can be applied to the detection of 

QS AI-2 molecules in saliva and blood serum. In conclusion, our FRET-based protein 

biosensing system offers rapid, sensitive, selective, and quantitative detection of AI-2 

molecules, and has potential to be used in clinical applications.  
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Figure 1(A). Quorum sensing signaling molecules of V. harveyi. (a) HAI-1, (b) CAI-1, (c) 

BAI-2, and (d) NO. (B) Biosynthesis of BAI-2.  

(A) 

(a)  

 

(b) 

 

(c) 

 

 

(d) 

N≡O 

 
(B)  

 



196 

 

Figure 2. The 3-D crystal structures of apo-LuxP, without bound AI-2, (left) and holo-

LuxP, with bound AI-2, (right). Protein data bank structures 1ZHH (apo-LuxP) and 2HJ9 

(holo-LuxP). 
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Figure 3. The emission spectrum of MDCC (blue) overlaps with the absorption spectrum 

of LuxP-EGFP (red). 
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Figure 4. Emission spectra of the LuxP-EGFP fusion protein. LuxP-EGFP at 1 × 10-10 M 

(orange), 1 × 10-9 M (green), and 5 × 10-8 M (blue) concentrations in the presence of 2.5 

× 10-7 M MDCC. LuxP-EGFP at 1 × 10-10 M (pink), 1 × 10-9 M (red), and 5 × 10-8 M (white) 

concentrations in the absence of MDCC. Samples were excited at 425 nm. 
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Figure 5. FRET response of construct to BAI-2. A decrease in FRET signal with increase in 

concentration of BAI-2 was observed. The solutions were excited at 425 nm; the 

emission peak wavelengths of MDCC and LuxP-EGFP are 475 nm and 507 nm, 

respectively. The FRET complex contained 2.5 × 10-7 M MDCC and 5 × 10-8 M LuxP-EGFP. 

BAI-2 concentrations were 1 × 10-5 M (red), 1 × 10-6 M (violet), 1 × 10-7 M (green), 1 × 10-

8 M (yellow), 1 × 10-9 M (orange), 1 × 10-10 M (pink), and 1 × 10-11 M (blue). The FRET 

complex with 1 × 10-3 M boric acid (BAI-2 diluent) served as control (white). 
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Figure 6. Dose-dependent response of the protein biosensing system to BAI-2 (red), DPD 

(blue), MHF (black), and ascorbic acid (green). 
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Figure 7. Comparison of dose-response curves obtained in buffer (red), undiluted saliva 

(blue), and 1: 100 diluted blood serum (black). 
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Table 1. Analysis of clinical samples using FRET based biosensing system. 

Sample AI-2 concentration (M) %RSD 

Saliva 1 2.5 × 10-10 
2 

Saliva 2 4.2 × 10-10 6 
Saliva 3 6.9 × 10-9 

3 
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CHAPTER SEVEN 

CONCLUSION AND FUTURE STUDIES 

 Similar to higher organisms, bacteria have the ability to communicate with each 

other. This phenomenon, termed quorum sensing (QS), enables bacteria to coordinate 

their behavior in a cell-density dependent manner. Bacteria synthesize small molecules, 

known as quorum sensing molecules (QSMs), which are transported out of the cell and 

can enter other bacteria. By monitoring these molecules, bacteria can monitor the cell-

population density since the QSM concentration in the surrounding environment is 

proportional to the number of bacterial cells. At a certain population size, several genes 

that are under the control of QS regulation are expressed. In many species of bacteria, 

QS controls behaviors such as biofilm formation, antibiotic and virulence factor 

production, swarming motility, and sporulation. 

 Inflammatory Bowel Disease (IBD), which includes Crohn’s disease (CD) and 

ulcerative colitis (UC), is a chronic gastrointestinal inflammatory condition with 

unknown etiology. The involvement of bacteria in IBD is supported by the identification 

of serological markers against microbial antigens and improvement in patient health 

after treatment by antibiotics. In addition, the bacterial flora has been shown to be 

different in healthy individuals and patients with IBD, with less diversity and modified 

relative abundance of species in IBD.  Given that QSMs are bacterial products involved in 

the regulation of functions involved in bacterial pathogenicity, we hypothesized that 

monitoring of the levels of QSMs in physiological samples might provide information on 
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the bacterial load and on the status of the disease, thus offering a non-invasive 

diagnostic tool that can be used for management of IBD as well as other bacteria related 

conditions.  

The first step towards achieving this goal is to develop tools and methods that 

can detect QSMs in physiological samples in a sensitive and selective manner. 

Physiological samples such as saliva, stool, and bowel secretions might contain QSMs at 

concentrations that represent their systemic level. To that end, we developed a method 

to detect QS autoinducer-2 (AI-2) molecules in these physiological samples by 

employing a Vibrio harveyi based biosensing system. Whole-cell biosensing systems 

offer several advantages; for instance, they can withstand a variety of environmental 

conditions (ionic strength of media, wide range of pH) and provide information about 

the analyte bioavailability. Due to their sensitivity and selectivity, whole-cell biosensing 

systems have been used in a variety of environmental and biomedical applications. The 

V. harveyi based whole-cell biosensing system developed in this work encompasses a QS 

regulatory system as recognition element and the bioluminescent luxCDABE gene 

cassette as reporter element. The biosensing system produces bioluminescence in 

response to the presence of AI-2 molecules. Most importantly, the bioluminescence 

produced is proportional to the amount of AI-2 present in the environment of the 

sensing cells. Therefore, by measuring bioluminescence we can quantitate the amount 

of AI-2 present in a sample. By employing the developed method, we obtained limits of 

detection of 25 nM and 50 nM in saliva and stool matrices, respectively. In addition, 

analysis of physiological samples obtained from IBD patients revealed the presence of 
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AI-2. Specifically, different levels of AI-2 were observed in stool samples from different 

individuals; this observation supports the hypothesis that changes in the microflora of 

the inflamed intestine may result in changes in the levels of AI-2. To our knowledge, this 

is the first attempt to quantify AI-2 levels in saliva, stool, and bowel secretion samples 

from IBD patients. 

Furthermore, we investigated blood serum for the presence of QSMs. Saliva and 

stool samples are advantageous to use since they are collected non-invasively; however, 

blood samples only require minimally invasive collection and are commonly employed 

to detect a variety of biomarkers pertaining to several diseases. Additionally, blood is 

also routinely collected from IBD patients to determine various parameters, including 

inflammation status and presence of specific antibodies, and to differentiate between 

CD and UC. Since we were able to detect QSMs, both, N-acyl homoserine lactones 

(AHLs) and AI-2 in saliva and stool samples, we hypothesized that these molecules may 

also enter the blood stream. To that end, we developed analytical methods for the 

detection of QSMs in blood serum by utilizing whole-cell biosensing systems for AHL and 

AI-2 molecules, respectively. E. coli based whole-cell biosensing systems containing 

plasmid pSB406 or pSB1075 were employed to detect short and long chain AHL 

molecules, respectively, while a V. harveyi based biosensing system was used to detect 

AI-2 molecules. The developed methods allowed us to achieve nanomolar limits of 

detection in serum with all three sensors. Most importantly, the analysis of blood serum 

samples from IBD patients and controls revealed differing levels of short-chain AHLs. 

Serum samples of healthy individuals exhibited undetectable levels of short chain AHLs, 
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while IBD samples showed the presence of short chain AHLs with slightly higher levels in 

UC patients as compared to CD patients. Since no previous reports existed that could 

support the presence of AHLs in serum, we deemed it necessary to employ a 

conventional analytical method to validate our findings. To that end, we confirmed the 

presence of AHLs in blood serum by analyzing pooled serum samples using high 

performance liquid chromatography coupled with tandem mass spectrometry. 

Furthermore, when we employed a mice model of colitis, which is representative of 

human IBD, we detected a difference between the levels of AHLs in, both, serum and 

stool samples of colitic mice and control mice. Although a limited number of mice were 

used, this observation supports our hypothesis that microflora perturbations caused by 

acute inflammation can lead to changes in the levels of QSMs.  These findings can serve 

as a basis for further studies aimed at proving the use of QSM detection as a diagnostic 

and monitoring tool for IBD as well as other bacteria-related conditions. 

In addition to whole-cell based biosensing systems for QSM detection, we also 

developed a protein based biosensing system to detect AI-2 molecules. In wild type V. 

harveyi, the borated form of AI-2 (BAI-2) binds to the periplasmic binding protein LuxP, 

which undergoes a change in conformation upon binding. By using techniques of 

molecular cloning, we fused egfp, coding for the enhanced green fluorescent protein 

(EGFP), to the C-terminus of luxP. The LuxP in the LuxP-EGFP fusion protein is able to 

bind to 7-diethylamino-3-((((2-maleimidyl)ethyl)amino)carbonyl)coumarin (MDCC), an 

environmentally sensitive fluorophore. Based on the emission and absorption spectra of 

MDCC and EGFP, we developed a protein biosensing system, LuxP-EGFP-MDCC, 
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exploiting the principle of Förster Resonance Energy Transfer (FRET). In this construct, 

energy is transferred from MDCC to EGFP. The presence of BAI-2, which is the cognate 

molecule of LuxP, causes a decrease in the FRET ratio. Using this system, we achieved a 

limit of detection of 0.1 nM, the lowest obtained using LuxP protein based sensing 

systems and lower than that afforded by the developed whole-cell based biosensing 

system. Additionally, the sensor is selective to the AI-2 class of molecules and is able to 

respond to, both, BAI-2 and non-borated forms of AI-2, thus widening the sensor’s 

utility for applications where AI-2 as well as BAI-2 molecules might be present. 

Furthermore, the protein biosensing system was characterized and optimized for 

detecting AI-2 molecules in physiological samples such as saliva and blood serum. 

In addition to disease detection, monitoring of QSMs can also prove useful for 

early detection of food contamination and, thus, prevention of foodborne illnesses. 

Bacteria are known to thrive on a variety of food surfaces. Moreover, certain foodborne 

pathogens are known to employ QS regulation and QSMs have been found in various 

foods, including milk and meat products. Therefore, detecting QSMs in food samples 

can provide a convenient method for early detection of food spoilage. To that end, we 

developed methods to detect QSMs in food matrices by employing whole-cell 

biosensing systems that can detect AHLs and AI-2 molecules. We selected ground beef 

and milk as model foods. We showed that QSMs can be detected in these foods with 

minimal sample processing, while maintaining the analytical parameters of the sensing 

systems. In addition, we applied the sensing systems to detect QSMs produced in 
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artificially spoiled food samples. This further corroborates that whole-cell biosensing 

systems can be applied to detect food spoilage. 

Finally, we tested a number of compounds originating from Generally 

Recognized As Safe (GRAS) substances for their effect on QS. These compounds were 

previously found to act as antibacterials, although their mechanisms of action have not 

been elucidated. For that, we tested these compounds to evaluate whether they may 

act through interference with bacterial quorum sensing. Such compounds were 

incubated with whole-cell sensing systems alone and in the presence of QSMs. This 

allowed us to assess their ability to induce a response in the sensing systems, as well as 

to interfere with the bacterial sensing systems response to QSMs. Selected compounds 

were also incubated with bacteria that produce QSMs to evaluate their effect on QSM 

synthesis. Our study identified four such compounds, namely ascorbic acid, t-cinnamic 

acid, tannic acid, and coumarin that affected bacterial QS. 

As research at the molecular level in the fields of biology and microbiology 

continues, novel features of bacteria are revealed. QS is one such feature of bacteria 

that has been discovered and studied extensively only over the past two decades. Given 

the close association between bacteria and humans, it is imperative that we enhance 

our understanding of QS. We believe that the ability to detect QSMs represents a step 

towards understanding the intricate workings of bacteria in the human body. While we 

lay the foundation, additional work is necessary to illustrate that QSM detection can be 

utilized as a diagnostic tool. This would involve analysis of large numbers of clinical 
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samples, such as saliva, stool, bowel secretions, and blood serum, as well as tissue 

specimens to ascertain that the levels of QSMs correlate with the status of the disease.  

While in the present work we mainly focused on IBD, in principle, these 

biosensing systems could also be used to detect QSMs in other bacteria-related 

conditions. Furthermore, the developed cell and protein sensing systems could be 

immobilized on optical fibers or incorporated into microfluidic platforms to generate 

portable analytical devices. This would enable the sensing systems to be used in on-site 

applications, such as, in the physician’s office and at the patient’s bedside in hospitals. 

Further enhancements in the protein-based sensing system can be brought 

about by employing a variety of approaches. For instance, the length of the linker 

between the two proteins in the fusion can be changed. A linker length of six amino 

acids was employed in the protein construct described in this work; varying the linker 

length may further improve the sensor’s limit of detection for AI-2 molecules. 

Additionally, the selectivity of the sensor could be tailored in order to enable the 

recognition of individual forms of AI-2. In that regard, it is possible to alter the protein 

construct by employing other variants of the GFP protein, which would facilitate 

multiplex detection.  

QS biosensing systems are ideal for the screening of synthetic as well as natural 

compounds. The list of such compounds is extensive; while we tested a few compounds 

originating from GRAS substances, many other compounds have shown antibacterial 

properties and should be evaluated for their effect on QS. The compounds found to 
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affect QS could then be studied in animal models to investigate their effects in vivo. This 

could be achieved by feeding the animals with a known amount of the QS interfering 

compound for a period of time and then comparing the QSMs levels found in various 

specimens of the treated animals with those of control animals. Bacterial involvement in 

conditions such as IBD is supported by improvement in patient health due to antibiotic 

treatment. It would be interesting to study QS interfering compounds, alone and in 

combination with antibiotics, to determine if they are effective in treating bacterial 

conditions. This hypothesis could also be tested using animal models and evaluating a 

number of circulating molecules and tissue parameters.  
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