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ABSTRACT OF THESIS

Auditory stream denotes the abstract effect a source creates in the mind of the listener. An 
auditory  scene  consists  of  many  streams,  which  the  listener  uses  to  analyze  and 
understand the environment. Computer analyses that attempt to mimic human analysis of 
a scene must first perform Audio Scene Segmentation (ASS). ASS find applications in 
surveillance, automatic speech recognition and human computer interfaces. Microphone 
arrays  can  be  employed  for  extracting  streams  corresponding  to  spatially  separated 
sources. However, when a source moves to a new location during a period of silence, 
such a system loses track of the source. This results in multiple spatially localized streams 
for the same source. This thesis proposes to identify local streams associated with the 
same source using auditory features extracted from the beamformed signal. ASS using the 
spatial  cues is  first  performed.  Then auditory features are extracted and segments  are 
linked together based on similarity of the feature vector. An experiment was carried out 
with two simultaneous speakers. A classifier is used to classify the localized streams as 
belonging to one speaker or the other. The best performance was achieved when pitch 
appended with Gammatone Frequency Cepstral  Coefficeints  (GFCC) was used as  the 
feature vector. An accuracy of 96.2% was achieved.

KEYWORDS:  Audio  Scene  Segmentation,  Sound  Source  Tracking,  Computational 
Auditory Scene Analysis, Microphone Arrays, Speaker Recognition.
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Chapter 1. Introduction

Auditory scene analysis (ASA) is the perceptual process by which a listener make sense 

of the auditory world consisting of multiple sources. The composite signal that enters our 

ears is used for the purpose. The human auditory system consisting of ear canals, ear-

drums, cochlea and auditory nerves produce nerve impulses. These impulses are received 

by the  brain,  which  uses  it  along  with  prior  knowledge,  redundancy in  speech  and 

linguistic considerations (grammar and semantics) to identify distinct objects/events. The 

objective of Computational Auditory Scene Analysis (CASA) is to make a computational 

model  of  ASA. CASA almost  always assumes  that  no  a priori knowledge of  source 

locations or number of  sources is available.

 1.1.  Terms Related to CASA

The following are the important terms used in CASA.

Acoustic source –“the concrete, physical manifestation of a sound wave” [1]. The source 

can be a human speaker, music being played or a car driving pass a listener etc.

Cues - Cues in the context of ASA are the features which represent all or part of a sound. 

They are the means by which a certain goal is achieved in ASA. The goal can be listening 

to a particular source in a backdrop of noises or other interfering sources, or it can be just 

identifying the location of a speaker. Some cues that are used are pitch,  onset,  offset, 

amplitude modulation or envelope and spatial location[2].

Tracks – They are the outcomes of low level  feature extraction.  They are formed by 

linking  continuous  points  of  the  sound  signal  in  a  time-frequency(TF)  space.  The 

principle of proximity in time and frequency[1] serves as the basis for defining a track. 

Figure  1.1 shows the spectrogram of an utterance of the vowel sound 'aa'. Each pixel 

defines a point in TF space and the color represents its intensity. The continuous pixels 

which can be grouped together on the basis of their intensity form a track. 
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Segments – Segments are formed by combining the tracks or regions in TF space which 

are related. If the source to be segregated is periodic in nature, the harmonically related 

tracks are grouped to form segments. In Figure 1.1 the distinct tracks are grouped together 

as they are related harmonically. In case of unvoiced signal, cues like onset and offset are 

used[3].  Computationally  auditory segmentation  is  analogous  to  image  segmentation. 

Binary gain masks and region growing (cluster analysis) are used in this stage[3].

Auditory snapshot -  Consider the case of image segmentation,  where non-overlapping 

segments are identified. Segments consist of a group of pixels which represent one object. 

The union of segments define the image. Similarly auditory segments existing at a given 

instant of time define the space of interest; analogous to an image. It can be called as an 

Auditory Snapshot (AS).

Auditory Stream - Auditory stream denotes the abstract, conceptual effect a source has in 

the mind of the listener[1]. An auditory stream is always associated with a source. In a 

computational model streams are obtained by linking segments across time. This is an 

application specific task and is the most open problem in CASA. 

Scene – Scene is a continuous series of AS which are linked by a high percentage of 

streams. A scene change is characterized by a change in dominant sources. Two scenes 

cannot exist  at  the same time.  The task of segmenting the scene into streams can be 

termed as Audio Scene Segmentation (ASS).

Event – An event is a physical happening which corresponds to termination of one scene 

and the beginning of another. The event is marked by an appreciable change in the state 

(amplitude,  pitch,  location,  etc.)  of  multiple  sources  and/or  the  introduction  or 

termination of sources. An example for an event could be musician starting or finishing 

his performance and the performance constitute the scene. 
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 1.2.  Principle Stages of CASA

A CASA system is depicted in Figure1.2. The various stages involved are[4] :

Peripheral processing: It is the process of making a  time-frequency representation of the 

audio signal. 

Low level feature extraction:  The tracks in  time-frequency space are extracted at  this 

stage. Only one frequency will be associated with a track at any given instant of time. 

Tracks are continuous in nature.

Mid-level grouping: The tracks are grouped together to form the building blocks for high 

level grouping. The tracks in the same group may be harmonically related or have similar 

contours in time-frequency space.

High level  streaming:  This  is  the process  of  linking  segments  across  time  to  form a 

stream. A representation of an object is formed in this stage.  

3
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 1.3.  Computational Auditory Scene Analysis and Acoustic Scene Analysis (AcSA)

Wang and Brown [3] propose a more specific definition for CASA

 “...  It  (CASA) is  the field  of  computational  study that aims to achieve human  

performance  in  ASA  by  using  one  or  two  microphone  recordings  of  the  acoustic  

scene ...”.  

This definition makes CASA applicable for fields like developing hearing aids. Though 

CASA does not in any way restrict itself to the modeling of psychoacoustic system of 

humans, many works in this field is based on it[3]. 

AcSA is defined by [5] as 

“...the task of extracting information contained in the acoustic wave-field, such as 

the waveform itself or parameter describing the source of the wave-field....” 

4
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AcSA relies on classic signal processing algorithms. A wave-field produced by a source 

is spread spatially and in time. Hence the use of microphone arrays is a standard way of 

completing the task.  This differs  from CASA in that  the modeling of human hearing 

system is not directly used in developing its  methods;  however the outcomes may be 

similar.

The  technique  developed  for  CASA  and  AcSA  can  be  combined  for  improving  the 

performance  of  Audio  Scene  Segmentation.  Microphone  arrays  can  provide  spatial 

location with greater accuracy than the human auditory system. The information provided 

by acoustic  waveform modeling along with information from human ASA model  can 

provide superior performance to that of techniques developed using conventional signal 

processing tools. 

 1.4.  Objective

The  goal  is  to  extract  streams  with  enhanced  intelligibility  using  all  the  available 

methods. Each stream is potentially an input to an automatic speech recognition (ASR) 

system. Also events can be used to trigger automated processes. Such a system would 

also find application in simultaneous sound source tracking. Steered Response Coherent 

Power (SRCP) estimated using a microphone array has been used for the estimation of 

source locations in previous works[6][7]. The task was to detect the presence of sound 

sources at any location within a field of view. This thesis aims to link the detected sound 

sources across time frames. If sound sources are within a time and distance threshold of 

each other, this can be used to link detected sources together over time. But intervals of 

silence in which the source moves to a different location complicate  this  process and 

additional cues are needed to link sources to the same object/person when separated by 

periods of silence. 

This thesis  uses high level features used in CASA and Automatic Speaker Recognition 

systems along with the spatial location to link the same source across the time frames. 

The  system would  find  applications  in  multiple  sound source  tracking  and advanced 

human computer interfaces[8].  This would allow the system to focus the attention on one 
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speaker of interest among multiple sources irrespective of the location within the field of 

view and the state of motion.  

 1.5.  Hypothesis

This thesis proposes that streams associated with each source can be extracted from a 

multi channel recording using sound source localization, beamforming and CASA feature 

analysis in sequence. The proposed system is depicted in Figure  1.3. The focus is on 

forming the streams first with spatial and temporal proximity and then linking these local 

streams using CASA and speaker recognition features.

 1.6.  Approach

The objects  considered in  all  auditory scenes for this  work are  human speakers.  The 

approach examined in this  thesis  uses several  levels  of detection and classification to 

establish a relationship between speakers in a scene over time and space.  At the lowest 

level,  the location of a speaker is detected in each time frame applying sound source 
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Figure 1.3: Functional block diagram of the ASS system. 
It takes the multi channel recording of FOV as the input and gives the 
streams associated with each source as the output. Thick lines represent 
multi channel data.



localization techniques[6] with microphone arrays.  On the second level detected sources 

are  grouped  together  based  on  space  and  time  proximity.  If  there  is  limited  silence 

between two consecutive detections,  proximity in space could be used to identify the 

streams linked to each source. In cases where source is at  x1, y1, z1 and remains silent for 

some time and then is  again detected at another location x2, y2, z2 spatial  coordinates 

cannot  be  used.  Hence a  third  level  is  required that  uses  others  features  that  remain 

relatively invariant for each speaker to link detect segments together. Once a source is 

detected, a delay and sum beamformer is used to enhance the source signal before feature 

extraction. The features listed below are considered in this work. These are analyzed for 

its effectiveness in ASS, and include:

1. Pitch

2. Envelope energy (loudness)

3. Rate of change in speech.

4. Mel Frequency Cepstrum Coefficients (MFCC) and its first order delta.

5. Gamma-tone Feature Cepstral Coefficients (GFCC) and its first order delta.

6. Vocal chord transfer function

7. Center of mass of vocal chord transfer function.

 1.7.  Outline

A review on Beamforming, specifically Delay and Sum Beamforming(DSB) is presented 

in Chapter 2. Then Sound Source Localization(SSL) using SRCP and the lowest level of 

processing is explained in Chapter 3. In Chapter 4, the identified sources are linked using 

proximity in spatial location. The result of Auditory Scene Segmentation using spatial 

cues is shown and the need for using auditory cues is explained. Chapter 5 introduces and 

analyzes the auditory features which may be used for Auditory Scene Segmentation. The 

better  performing feature  is  identified  here.  In  Chapter  6 a  classifier  which  uses  the 

suitable features to perform Scene Segmentation in the case of two simultaneous speakers 

is introduced. The work is summarized in Chapter 7.
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Chapter 2. Beamforming

 2.1.  Introduction

Beamforming is the process of enhancing the target signal contaminated by interfering 

sources  and  ambient  noises  by  spatial  filtering[9][10][11].  An  array  of  sensors, 

(microphones in case of audio) is employed for this. If the source signal and interfering 

signal originate from different spatial locations,  beamforming can be used to enhance the 

desired  signal.  The  simplest  form  of  the  beamformer  is  the  Delay  and  Sum 

Beamformer(DSB). DS beamformer and its design issues are discussed. Beamfoming is 

used in this  thesis  for  steering the array to focus its  attention to a point in Field Of 

View(FOV) for Sound Source Localization(SSL). After SSL, it is again used for source 

signal enhancement.

 2.2.  Delay and Sum Beamformer

A DS Beamformer[9][10] consists of basically two steps; delaying the signals received at 

each microphone array element by Time Difference Of Arrival (TDOA) and then adding 

up the delayed signals to obtain DSB output. Figure 2.1 depicts a DSB. 
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In Figure 2.1 xn t   denotes the signal at the nth  microphone and can be modeled as :

xn t =ht , r s , r n∗s  t− tn 

h t , r i , rn∗bi t−t i , nn t 
(2.1)

r s is the target location and r n are the microphone locations. n=1,2,3… , N . N is the number 

of  microphones.  s(t)  is  the  direct  path  source  signal,  bi are  the  first  i significant 

reverberations  of  s(t). r i are locations  from where i  reverberations  originate.  t is  the 

propagation delay of the sound from the source to the microphone. nt  is the additive 

uncorrelated  noise.  The  sound  sources  other  than  the  target  also  contribute  to  the 

uncorrelated noise. Let microphone 1 be the reference microphone which implies : 

 t n=ref −n ;1=0 (2.2)

n is the Time Difference Of Arrival between the nth microphone and the 1st  microphone. 

Substituting for  t n in Eq.2.1:

xnt =h  t , r s , r n∗s t−ref n
h t , r i , rn∗bi t−ref i ,nn t−ref n

(2.3)

In order to beamform to any point in the FOV the unique combination n s corresponding 

to that point is used. The DSB output is given by :

y t =∑
n=1

N

xn t−n 



=∑
n=1

N

h  t , rs , rn∗s t−ref ∑
n=1

N

h  t , r i , rn∗bi  t−ref i , n−n∑
n=1

N

n t−ref 

(2.4) 

In Eq.2.4 while the uncorrelated noises are reduced by incoherent summatio, the effect of 

reverberations(correlated noise) cannot be completely reduced as the speech signals are 

strongly correlated with itself, especially for small lag n−i ,n of the order of 20 – 40 

ms.

9



 2.3.  Directivity pattern  and Design issues of  DSB

The response of the beamformer to different spatial locations of the target is known as its 

directivity/spatial pattern. The directivity pattern is dependent on the actual geometry of 

the microphone array.  Consider a uniformly spaced linear microphone array(Figure 2.2.).

TDOA for the nth microphone is given by :

n = n−1 ;
 = d cos /c

(2.5)

where  is the TDOA between the second and first microphone. The Array response can 

be  obtained  by  substituting  unit  impulse t  for xn t  in  Eq.2.4 [9].  Also n is 

substituted using Eq. 2.5.

y  t =∑
n=1

N

 t −n−1d cos /c  (2.6)

Taking spatial (with respect to t and then  ) Fourier Transform of Eq.2.6 :

10

Source is located in the far field.  is the angle of incidence.
Figure 2.2:  Equi-spaced linear microphone array



Y  , = 1
N

∑
n=1

N

[exp  j2n−1 f d / c cos]exp − j2n−1 f d / c cos

 = 1
N

∑
n=1

N

[exp − j2n−1 f d / c cos−]

(2.7)

where  0≤≤ is  the  directional  angle  and  f is  the  frequency of  the  source.  The 

magnitude response is then given by [9]:

A ,=∣Y  ,∣

=∣sin [N  fd cos−cos/c ]
N sin [ fd cos−cos/c ]∣ (2.8)

It can be seen that as the inter microphone spacing d increases beam-width decreases. i.e. 

the directivity of the array improves.  But an increase in d also causes an increase in side 

lobe  intensity.  Also  if  d is  greater  than /2 where =c/ f spatial  aliasing  occurs. 
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=90o , d = 8cm, c= 350m/s, f = 2000 Hz, N = 10. Beam pattern plotted using  Eq. 2.8
Figure 2.3: Beam Pattern of equi-spaced linear array



Figure2.4 Shows a case of spatial aliasing. It can be  noted that there are two more side 

lobes with intensity at 0dB. 

 2.4.  Conclusion

The Delay and Sum beamformer is the simplest type of beamformer. The target signal is 

enhanced by coherent addition. The uncorrelated noise signals tends to cancel each other 

by incoherent addition. Beam pattern and design issues of DSB were discussed for an 

equi-spaced linear microphone array. There exists a trade off between beam-width and 

side-lobe intensity. The design objective is to make the beam-width as narrow as possible 

while keeping side-lobe intensities at acceptable level. Spatial aliasing should be avoided 

and hence half the shortest wavelength in the input signal acts as the upper bound for the 

inter microphone spacing. A Simple DS beamformer is used in this work as a part of the 

SSL algorithm.
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d = 24cm, c= 350m/s, f = 2 kHz, N = 10. Beam pattern plotted using  Eq.2.8   =17.5 cm
Figure 2.4: Beam Pattern of an equi - spaced linear array with spatial aliasing



Chapter 3. Sound Source Localization

 3.1.  Introduction

The movement of a speaker will be localized in space for a given duration. If the location 

of a speaker is known at a given instance of time, the locus of points where he/she is 

present  at  any  given  time  can  be  defined  by   the  points  within  a  circle(2D)  or  a 

sphere(3D) with current location as the center. The radius is a function of the maximum 

velocity with which he/she can move. 

This chapter aims at estimating the spatial coordinates of the speakers present in the Field 

of View(FOV).  Most popular Sound Source Localization(SSL) methods  are based on 

Time  Delay  of  Arrival(TDOA),  Steered  Response  Power(SRP)  or  signal  and  noise 

subspace-based approaches[5]. All of them come under the domain of AcSA .  TDOA 

based algorithms can be used only to locate a single source whereas SRP algorithms can 

be used in the scenarios where there are multiple sources. The SRP based approach used 

in this thesis is explained in detail in this chapter.

SSL is  performed in  overlapping windows of  time  to  obtain  a  sequence  of  AS.  The 

detections present in a sequence of ASs are linked together to achieve streaming. ASS by 

which streams are obtained are explained in the coming chapters (4 and 5).

 3.2.  SSL by Steered Response Power

In this approach a microphone array is made to beamform on each point in the FOV . The 

beamformer  output  signal  power  is  then  calculated.  If  it  is  above  a  predetermined/ 

adaptive threshold a source is deemed to be present. 

The DS beamformer discussed in section 2.2 is used for steering the microphone array to 

each grid point.  Let  I(x,y) be the grid points within the FOV. I(x,y) can be defined by its 

distance from at least three non collinear reference points. The coordinates of microphone 

array elements acts as the reference points. If the speed of sound c is known or estimated, 
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the time taken for the sound to travel from  I(x,y) to the  nth  microphone at r xn , y n is 

given by:

  tn=
 xn−x 2 y n− y 2

c
; n=1,2,. .. , N   (3.1)

where N is the number of microphones. The microphone with largest n is taken as 

reference ref and DSB output  is found out using Eq. 2.4. and Eq. 2.3.  The SRP is given 

by:

V  I =∫
−∞

∞

Y I Y I *d 

i.e ;

V  I =∫
−∞

∞ ∑n=1

N

∑
q=1

N

X n , I  X q , I *e− j n−qd 

(3.2)

V(I)  is the the SRP  at I.  YI  is the Fourier Transform of DSB output while it beamforms 

at the location  I.  The source is then detected by thresholding of  V(I). If the number of 

sources is assumed to be K, then the set of points source location can be identified by[25]:

P k=argmax {V  I  , k }; k=1,2,... , K (3.3)

where argmax {⋅, k } gives I for the kth maximum value.

 3.2.1. SRP – PHAT β

During  the  propagation  of  sound  higher  frequencies  are  more  attenuated  than  lower 

frequencies. This is characterized by a  tilt in the magnitude response of the room transfer 

function.  This  means  that  SRP  computation  in  Eq.  3.2 is  dependent  on  the  spectral 

coloring  of  the  source  and  the  room impulse  response.  But  for  SRP  to  be  a  better 

indication  of  the  location  of  a  source  it  should  be made  independent  of  the  spectral 

magnitude  and more sensitive to the phase. This can be done using a PHAT whitening 

filter[6][12]. The PHAT filter is given by Eq. 5.28

But the conventional PHAT transform also tends to amplify the noise level if the SNR is 

less than 0dB over a large spectral region. This problem can be addressed by performing 
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controlled/partial whitening. Parameterized PHAT, referred to as PHATβ [6][7] can be 

used for this. 

PHATβ is given by[6] :

n ,  , I =
X n , I 

∣X n , I ∣
; 0≤≤1 (3.4)

where X n is the Fourier Transform of xn t  ; the signal received at each of the array 

elements. β is the whitening parameter. Conventional PHAT is obtained for β = 1. β= 0 
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The effect  of  β  on the  signal  spectrum is  shown.  β =  1  whitens  the 
spectrum completely. Partial  whitening is obtained when  β = 0.5. The 
Phase response is preserved in all instances.

Figure 3.1:  PSD and Phase Response after PHATβ



means no PHAT is performed.  β  can be  varied  in the range 0 to 1 to obtain various 

levels of whitening. Figure 3.1 shows the effect of PHAT- β on the spectrum. Substituting 

from 3.4 in 3.2 and including constant weights (An , Aq) , SRP – PHATβ  is given by :

V  I =∫
−∞

∞ ∑n=1

N

∑
q=1

N

An Aq n ,   , I q ,  , I *d  (3.5)

The signal at the closer microphones are weighted more than farther ones. Inverse of the 

distance from the target point  is used as the weight. They are normalized such that the 

closest microphone will have a weight of one.

An=
min ∥r s−rn∥

∥r s−rn∥
(3.6)

 3.2.2. SRCP – PHAT β and CFAR Thresholding
V   I  is a representation of the AS as it gives an indication of possible locations of the 

sound source.  Higher V   I  indicates the presence of a sound source. A threshold must 

be applied to the SRP image to detect the presence of a sound source at a given grid point 

I. A Constant False Alarm(CFAR) threshold based on negative peaks of Steered Response 

Coherent Power (SRCP)[13] is used. 

SRCP is a slight modification to SRP – PHAT  β and is given by [13]: 

V  I =∫
−∞

∞ ∑n=1

N

∑
q≠n

N

An Aqn , , I q , , I *d  ; (3.7)

Figure 3.2 illustrates an SRCP image after partial whitening (β = 0.7). Field of View is 

from 0-3.6m in both x and y direction. A spatial resolution of 0.04m is used resulting in a 

91 x 91  array of grid points. In computing SRCP the autocorrelation terms are subtracted 

out. This makes it possible for SRCP to be negative also. Negative areas in the SRCP 

image indicate an incoherent summation and represent noise.  These points are used to 

statistically model the noise[6] . 

The  positive  peaks V   I p are  possible  candidates  to  represent  a  source. V  I pj , the 

negative values in the neighborhood of V   I p are used for determining the threshold. 
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The neighborhood is defined by the grid points in a square(2D) or a cube (3D) with IP  as 

the center. 

Noise  is  modeled  using  the  Weibull  distribution[14].  The  probability  of  a  False 

Alarm(FA) is given by : 

P FA=1−expT FA

a 
b (3.8)

where TFA is the threshold for given rate of FA, a is the scale parameter and b is the shape 

parameter.  The value of b is dependent on the actual geometry of the array. a is estimated 

from the local statistics as:

a= 1
N ∑

j

V  I pj 
b

1
b (3.9)
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SRCP  image  of  the  FOV  with  β  =  0.7  intensity   is 
represented as a scale from black to white. 

Figure 3.2: SRCP -PHAT β



The value of a estimated is used to find TFA  from Eq. 3.8 :

T FA=−a ln 1
PFA 

1
b (3.10)

Now the sound source  is detected using a soft- thresholding.  

 I p={ V  I p−T FA ;V  I p≥T FA

0 ;V  I pT FA } (3.11)

γ(I) acts as the detection statistic for the source. Higher values indicate greater probability 

of finding a source.  Let P represent the set of all possible candidates where there exists a 

source.

Pw={ I p , tu :  I p0 and u=w}

P= w  P w
(3.12)

where  is a vector with space and time dimensions. V   I  is computed in overlapping 

time windows. This results in a sequence of ASes indexed by w and center time denoted 

by tw .  The set of detections in  wth AS is denoted by  Pw. Figure  3.3 shows the sources 

estimated from the SRCP image shown in Figure 3.2.   A PFA  of 6.04 x 10-5 (1/(91 x 91) ) 

corresponding to one in every two frames is used. b = 1.26.

The thresholding performed is the lowest level of scene segmentation where the pixels in 

AS which do not represent a source are rejected and a set of all possible sound sources is 

defined.  The following stages  of  Scene Segmentation  refine  the set   Pw   and tag the 

remaining elements with a stream ID. 
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The solid circles represent detections. The radius of the 
spot is scaled according to the confidence of detection.

Figure 3.3: SRCP image with adaptive thresholding

Each  intersection  corresponds  to  a  grid  point.  P1 and  P2 are  sound 
sources. d is the inter microphone spacing. a is the inter grid spacing. m1, 
m2 and m3 are the distances from P1 to M1 M2 and M3.

Figure 3.4: Setup for Sound Source Localization using SRP



 3.2.3. Design Issues

Figure  3.4 shows the basic setup for SSL using SRCP–PHATβ .   P1   and  P2   are the 

sources present.  The intersection of horizontal and vertical lines represent a grid point. d 

is the inter microphone spacing and  a is the inter grid spacing. The factors to be decided 

are a, d, β and the number of microphones in the array N.

Inter- grid distance a : 

The grids must be close enough so that irrespective of the target's actual position, it will 

be approximated to the nearest grid point. The inter grid spacing is given by[6] :

Q a=sinc 2 f h / f sD a

2  (3.13)

where Q(a) is the power loss due to grid quantization.  fh  is the highest frequency in the 

target signal and  fs is the sampling frequency for discrete processing. D is the number of 

dimensions.

Inter- microphone spacing d : 

d is a design parameter of the DS beamformer and section 2.3 explains the effect of d on 

the performance of DSB. d c / f h may be considered as the design constraint to avoid 

spatial aliasing. But spatial aliasing will not be occurring irrespective of  d as [15] :

1. The source in the FOV is  present  at  the near field rather than the far field as 

assumed in section 2.3. 

2. The higher frequencies present in the speech signals enhances its harmonically 

related lower frequencies. Hence even the frequencies above the cut off would 

enhance the directionality.

Higher  d is desirable as it increases the array aperture and ensures uniform coverage of 

FOV which is located in the near field. Hence the size of FOV and physical realizability 

are the factors governing d.

20



Number of microphones N:  

The minimum number of microphones required for SSL is 3 for a 2D FOV and 4 for  3D 

FOV.  For  DSB  there  is  a  3dB  increase  with  every  doubling  of  number  of 

microphones[16]. In the experiments for this thesis 16 microphones are used.

Whitening parameter β :

β  can take  a  value  from 0 to  1.  The  optimum value  of  β has  been  suggested after 

simulation  studies in  [6] and experimental  studies  in  [12].  For human speakers in  an 

office room environment  β  ranging from 0.65 – 0.7  is  found to  be giving optimum 

performance in sound source detection.

 3.3.  Conclusion

There are  broadly TDOA based and SRP based SSL techniques.  The SRP technique 

outperforms TDOA when multiple sources are involved.  Whitening  tends to improve 

SRP  performance.  SRP  –  PHATβ[6] a  partial  whitening  method  was  reviewed.  An 

adaptive thresholding of the SRCP(modification of SRP) image is  done to  obtain the 

source locations.

Figure 3.5 shows an overview of SSL using SRP PHAT β . Individual channels are pre-

filtered to obtain the desired amount of spectral whitening. Then SRCP is found using a 

DS steering array. A Constant False Alarm(CFAR) thresholding is done to detect sound 

sources and estimate their location. It should be noted that the goal of this system is not 
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Figure 3.5: SSL using SRP PHAT β and CFAR



the enhancement  of sound. The source location obtained here can be used for spatial 

filtering and enhancement of the source signal. 

SSL results in multiple detections across ASs. There can be false detections as well as 

multiple detections of the same source. These must be removed to the maximum possible 

extent and the remaining detections be linked together to result in streams.
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Chapter 4. Audio Scene Segmentation Using Spatial Cues

After thresholding and estimating the sources present in a time frame the next task in 

ASA is to link the sound sources across time. This chapter presents an attempt to link 

sources using proximity in spatial location. This is the simplest approach to ASS where 

the sources are tracked across time. After that a beamformer can be set up to focus on one 

speaker at a time to obtain the stream.  Figure 4.2  depicts a part of a scene. Contiguous 

AS linked  together  by streams  form a  scene.   See  section   1.1.   for  more  rigorous 

definition of the terms.

 4.1.  Mathematical Model

First a metric to measure proximity is defined. Spatial proximity is measured using norm-

2 distance.  The norm-2 spatial distance between any two detections in space  I ,t  , is 

given by : 

∥ I i , tu−I j , t v∥S ≝ ∥I i− I j∥

≝x i−x j 
2 y i− y j

2
(4.1)

where Pu ∋  I i ,t u , P v ∋  I j , t v
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Pn represent the sources and the black line represents a stream. 
Each rectangle is an AS of FOV at time window tn.

Figure 4.1: Concept of Stream and Audio Scene Segmentation. 



The temporal proximity is measured using:

∥ I i , tu− I j , t v∥T ≝ ∣t u−t v∣ (4.2)

where  i,  j denotes  the  sources  and  u,  v denotes  ASes.  I i , t u and  I j , t v are 

considered as belonging to the same stream if they are in space-time proximity.  They 

belong to same stream  for :

∥ I i ,t u− I j , t v∥S   and

0∥ I i , t u− I j , tv ∥T  
 (4.3)

where  ,   are the spatial and temporal thresholds.

 4.2.   Removal of  Secondary detections

Sound Source  Detection  (SSD)  sometimes  results  in  multiple  detections  of  the  same 

source.  Before  the  sources  are  linked  across  time  these  must  be  removed.  First  the 

detection with highest  I p is found. Then any detection within the distance of 0 from 

it is taken as a secondary detection of the same source. Hence they are dropped. Then the 

detection with next higher  I p is searched for and any of its secondary detections are 

dropped.  This process is continued until all the detections in the AS are verified. The 

same process is done for all AS.  This results in set G.

G w={ I i , tw : ∥ I i , tw− I j , tw∥S 0 ∀ i≠ j }

also Gw⊂Pw ;G= 
w Gw 

(4.4)

Figure 4.2 shows the flow chart for the removal of secondary detections. Each element of 

G is represented by G[w][i] where the first index correspond to the AS and the second 

index correspond to the detection.
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Figure 4.2: Removal of secondary detection of the same source in one AS.



 4.3.  Linking Detections across AS

Here each element in  G is assigned a stream ID such that the elements which have the 

same stream ID are said to be the member of same stream. The detections are processed 

sequentially.  G obtained in the previous process is read in. w,i are the indexes for AS and 

the detections. All detections in G which are within temporal distance of  of the current 

point  I i ,w are checked for spatial proximity so that : 

 
C w , i={ I j , twtm : ∥ I j , twtm− I i , tw∥  };

G∋  I i , tw ,G∋  I j , twtm
(4.5)

m=1,2,. .. ,−1 and j=1,2,. .. , N wm. N w is the number of detections in the wth AS.   

C w , i is  a set  of  detections  which are  linked to  I i ,tw  .  It  must  be ensured that  no 

detection is linked to two previous points. i.e 

E = Cn ,l∩C p , m=∅ ∀ l≠m  & n≠p (4.6)

This is ensured by using the minimum distance measure.

 f , k =argmaxn\p,l\m {∥ I j , t f − I l , tn∥S ,∥ I j ,t f − I p , t m∥S }

where  I j ,t f ∈ E
(4.7)

C f ,k=C f ,k−{ I k , t f } (4.8)

Figure 4.3 illustrates the flowchart for linking detections across ASS. The stream ID of 

each element in G is stored at  StrID[w][i]. Dis[w][i] has the distance from the previous 

detection in the same stream. If the current point  I i ,t w  (G[w][i])   is the origin of a 

stream, Dis[w][i] is set to infinity(very large number).  A value of  'Null' for StrID[w][i] 

means that no stream ID has been assigned for G[w][i] yet. This results in streams defined 

by :

H  ≝ { I i , tw : ∥ I i , tw − I j , t f ∥S
0∥ I i , tw− I j , t f ∥T

;
 I i , tw ∈ G
 I j , t f  ∈ G}

where =1,2,3,… , N str ; N str  is the number of streams.
(4.9)
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Figure 4.3: Flowchart for ASS using spatial cues



 4.4.  Experiment Setup

The experiment was set up in a typical office space. An array of  16 microphones was 

used. Two male speakers were made to read out different printed texts while moving in a 

predefined hexagonal path. The microphones were placed in the perimeter of a 3.6 m. X 

3.6 m. square which circumscribes the speakers' paths. Microphones were at a height of 

1.5 m. from the floor.  Figure 4.4 shows the experimental setup. The gray bars represent 

the acoustic foam panels  used to reduce the reverberations from the walls. The colored 

circles define the path for each speaker. The dark color represents speaker1 and light 

color represents speaker2. At each spot, the speakers are made to read out simultaneously 

for 3 seconds. Then they move to the next spot within the next 3 seconds. The speakers' 

position for time 3-6, 9-12, 15-18, ... seconds are hence known. Initial 3 seconds are used 

for  speakers  to  settle  down.  Speaker1  is  made  to  move  in  clockwise  direction  while 

speaker2 in anti-clockwise direction.  
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Figure  4.4:   Experiment  setup for ASS using spatial 
cues.



Table 4.1. lists the location of speakers at various times after the recording has started. '-' 

denotes that the speaker location is unknown. The sound sources were approximately at a 

height of 1.5m.

Table 4.1:  Predefined speaker locations.(in meters;ordered pair(x,y))

Time (sec.) 0-3 3-6 6-9 9-12 12-15 15-18 18-21 21-24 24-27 27-30 30-33 33-36

Speaker 1  - 2.0,2.0 - 2.8,1.2 - 2.0,0.4 - 1.2,0.4 - 0.4,1.2 - 1.2,2.0

Speaker 2 - 0.4,2.0 - 1.2,1.2 - 2.0,1.2 - 2.8,2.0 - 2.0,2.8 - 1.2,2.8

The scene was recorded using 16 microphones at a sampling frequency of 22.05 kHz and 

digitally stored for further processing. The noise sources include air conditioner vents, 

CPU fans and sound of traffic  through the windows. Also while locating one speaker the 

other speaker acts as noise. The recordings are done with the help of a Delta 1010™ 

sound-card. The microphones are phantom powered by Audio Buddy™ pre-amplifiers. 

The apparatus details are listed in Table 4.2. 

Table 4.2: Apparatus details for experimental evaluation of ASS using spatial cues

Equipment Details

Microphone Behringer© ECM8000 [17], condenser type, Omni 
directional, Frequency response:15Hz to 20 kHz . 

Acoustic Foam 
Panels

Auralex MAX-WallTM [18],
Noise Reduction Coefficient - 1.05

A/D converter
M-Audio Delta1010™ [19] Digital recording system (2 
Nos.), Frequency response:20Hz – 22kHz, 8 X 8 
analog I/O

Pre-amplifier M-Audio Audio Buddy™ [20], 2-channel, Phantom 
power, Frequency response :5Hz – 50kHz 

Software Jack audio connection kit 0.3.2 [21],
Ubuntu studio 8.04 

The 16 channel audio data is recorded for 36 seconds. The data is then processed off-line. 

The  processing  involved  are  pre-whitening(Eq.3.4),  finding  SRCP(Eq.3.7)  CFAR 
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thresholding (Eq.3.11 and Eq.3.12), and ASS( Figure 4.2 and Figure 4.3).  The processing 

parameters are listed in Table.4.3

Table 4.3:  Processing parameter for experiment (ASS using spatial cues)

Parameter Value

Whitening Parameter -  0.7

Inter Grid Spacing - a 0.04m

Processing Window 4.0x10-3s. With 50% overlap. (50 AS / sec)

Microphone Geometry Perimeter with inter-microphone spacing of 
0.81 m

Bound for the Neighborhood - r 7 grid points , 0.28m

Probability of False alarm PFA 1 False alarm per 2 AS;
1/(Number of grid points) = 
1/(91 X 91 X 2) = 6.04 x 10-5 

Shape Parameter - b 1.26

Minimum length for a valid stream 20 AS (0.4 seconds)
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The  solid  circles  with  different  shades  represent 
different speakers. Here two speakers were detected.

Figure 4.5: AS representation after scene 
segmentation.



Figure  4.5 shows an AS after  ASS is  carried out.  It shows two detections roughly at 

(1.2,2.0)m and (1.1,2.8)m. This AS is taken at a time instant of 34 seconds. It corresponds 

approximately with predefined location given in Table 4.1 

 4.5.  Performance Analysis

ASS was carried out for varying values  and  . The performance metric is defined as :

 , ≝ { N TD/N TD

N
s
/N

s

; N s≥N s

0 ; N sN s
} (4.10)

where N TD is the number of true detections obtained experimentally. N TD is the maximum 

number of true detections achievable. N S is the number of streams resulted because of 

segmentation and  N S is the number of streams actually present. In the experiment the 

segmentation should ideally result in two streams (one for each speaker). i.e. N S = 2 . The 

maximum number of true detections achievable is equal to the true detection achieved 

after  SRCP – PHATβ and removal  of secondary detections.  i.e. N TD is  the number of 

elements in G (Eq. 4.4). All the values are estimated only during the duration where the 

speaker locations are known (Table 4.1). Figure 4.6 shows  as a function of  and  . 

It can be seen that the performance is not tightly dependent on the spatial threshold. This 

is because the speakers were stationary  for short intervals of time( <  3 seconds). In this 

experiment the optimum performance was achieved at  =7.5cm. and =6s At these 

values  there  were   28  segments.  The  number  of  segments  were  counted  after  short 

segments(< 0.4s.) are dropped.

When speakers change their position while remaining silent, the algorithm is unable to 

track the source.  It is also observed that at every brief period of silence or miss-detection 

a new stream is created. An over segmentation is results as the algorithm is very sensitive 

to these factors. 
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 4.6.  Result

Table 4.4 shows the streams obtained after ASS with ρ= 0.30m. , ψ = 6s. There were 30 

streams detected out  of  which two were false  detections.  The last  column shows the 

speaker to which the stream actually belonged. This is inferred using the predetermined 

locations listed in Table  4.1. The difference in the detected and predetermined source 

locations are due to measurement error in setting up the microphones, marking of the 

coordinates  and  grid  resolution.  It  is  observed  that  detections  which  are  within  the 

thresholds also end up in different streams. This happens as false initiation of segment 

results in parallel streams within the threshold. In that case the detection is classified into 

the closer stream.
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Figure 4.6: Performance of ASS using spatial cues.

Figure 4.7:Performance of ASS using spatial cues  as a function of Ψ at  ρ= 7.5 cm 



Table 4.4: Streams Detected at ρ= 0.30m. , ψ = 6sec.

Time ID Time Stream ID Median. Spatial 
Coordinate Speaker1/2

1 3 – 6

1 2.04, 2.04 Speaker 1
2 2.00, 2.04 Speaker 1
3 2.00, 2.08 Speaker 1
4 0.40, 2.00 Speaker 2
5 0.40, 1.96 Speaker 2
6 0.44, 1.96 Speaker 2
7 1.60, 1.60 False Detection

2 9 – 12

8 1.24, 1.32 Speaker 2
9 2.68, 1.20 Speaker 1
10 2.72, 1.20 Speaker 1
11 2.74, 1.16 Speaker 1
12 2.88,2.92 False Detection 
13 2.72, 1.16 Speaker 1

3 15 – 18
14 1.96, 1.36 Speaker 2
15 1.92,0.52 Speaker 1
16 1.88,0.52 Speaker 1

4 21 – 24
18 2.64, 2.08 Speaker 2
19 1.16, 0.56 Speaker 1
20 1.12, 0.56 Speaker 1

5 27 – 30

21 1.96, 2.72 Speaker 2
22 0.60, 1.24 Speaker 1
23 1.92, 2.72 Speaker 2
24 1.96, 2.76 Speaker 2
25 0.60, 1.28 Speaker 1

6 33 – 36

26 1.12, 2.80 Speaker 2
27 1.20, 1.96 Speaker 1
28 1.16, 2.76 Speaker 2
29 1.24, 1.96 Speaker 1
30 1.24, 1.96 Speaker 1

 4.7.  Conclusion

In a 36 second recording of two speakers with about 18 seconds of active speech in it, 28 

streams is a case of over segmentation. The number of streams would have been higher if 

shorter segments (< 20 AS) were not dropped. This demonstrates a need for finding other 

robust features for performing ASS. The features to be used must be speech-invariant and 

must be dependent on the speaker. Some features are analyzed for these characteristics in 
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the  coming chapter.  These  features  can  be  used  to  do  a  second pass  combining  the 

localized streams. The processing thus far cannot be considered as streaming. For the 

streaming process to be complete the sources with the same stream ID must be enhanced 

using beamforming and then linked together. 
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Chapter 5. Auditory Features for ASS

 5.1.  Introduction

Chapter 4 demonstrated the need of using auditory features for performing ASS. Spatial 

cues alone could not give an acceptable level of performance. Since the speaker locations 

are known, they can now be beamformed on and their auditory features extracted. The 

task of grouping the localized streams essentially becomes a speaker recognition task. 

The problem is easier than standard speaker recognition as the number of candidates will 

be limited ( 2 in this thesis). But the streaming system is not trained on any particular 

speaker and therefore does not have a priori statistical knowledge about speaker features. 

Also the beamformed signal will have interference from other speakers. As the recordings 

are from distant microphones, the resulting feature will be degraded by the room modes 

and reverberations.

In  this  chapter  possible  features  and  their  combinations  are  analyzed  using  single 

microphone clean speech recordings. They are tested to assess  recognition performance 

on text independent speech.  The feature or combination of features which give better 

recognition rate will  then be used on the beamformed signals to  perform ASS in the 

coming chapters.

 5.2.  Audio Features ; Mathematical Models

 5.2.1. Pitch

Pitch is defined as the perceived fundamental  frequency of a sound[22]. The auditory 

system can perceive the pitch of a complex tone even when the fundamental frequency is 

actually missing  [23]. The algorithms to estimate the pitch can be broadly classified as 

place(spectral), time, and place-time approaches[2]. Spectral methods include harmonic 

sieves[24] and partial frequency histograms. Time domain methods extract the periodicity 

information from the autocorrelation of the signal. In the place-time approach the signal- 

is passed through a filter bank and the outputs are analyzed temporally and spectrally. In 
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[25] place-time  approach  is  used  for  multiple  pitch  and  vowel  estimation  for 

simultaneous utterance. 

The  spectral  approach  suffers  from  its  dependence  on  analysis  window  shape  and 

duration. The place-time method gains over the temporal method as it allows to undo any 

amplitude mismatches between spectral regions before detecting periodicity in time[3]. 

For example, in the spectro-temporal approach  the weights of each frequency channel 

can be adjusted to perform  “spectral whitening”.  But the disadvantage of these methods 

is that they are computationally expensive as they try and model the hearing system using 

filter banks. A computationally less expensive way is proposed in [26] where the signal is 

divided into two channels; one less than 1kHz and the other greater than 1kHz .  Taking 

the collapsed average of the generalized spectrum after pre whitening[27] also achieves 

the same goal with lesser computation. [27] and [26]  use conventional signal processing 

tools whereas [25] uses CASA.

In this thesis the pitch estimation as in [27] is used. Consider a sound segment s(t), which 

is  50ms in  duration  and sampled  to  obtain  s[n]  where t=nt and  t is  the sampling 

interval.  S[m]  represents  the  FFT of  s[n].  Then by  [27] the  generalized  spectrum is 

defined as: 

G [m ,k ]=E {S [m ]⋅S *[m−k ]}

where k , m=0,1,2,. .. , M −1 ; M =[50ms
 t ]

 (5.1)

G[m,k]  is a matrix  of order  M by  M  where each row indexed by  m  and each column 

indexed by k.  The average of G[m,k] over m will reveal the periodicity in spectrum. The 

normalized collapsed average of G[m,k] is obtained by [27] :

C [k ]=
∑
m=0

M−1

S [m] S*[m−k ]

∑
m=0

M −1

S [m ]S *[ m]
          (5.2)
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C[k] is normalized such that the  zero lag (power) is unity. The peaks in C[k] are directly 

related to the pitch and the resulting harmonics. Hence IFFT of C[k] is taken and the 

highest peak in the pitch range 12.5ms (80 Hz) to 33ms (300 Hz) is taken as the pitch.

n p=argmaxn {c [n ]}

L p=
1

n p t
  (5.3)

Lp is the pitch in Hertz. Each feature will be represented by L  followed by a subscript 

representing the feature.

 5.2.2. Envelope Power

The power contained in  the envelope of  the speech signal  gives  an indication  of  the 

loudness of the speaker. Loudness may be a stable parameter especially within a scene or 

conversation.  The squared envelope is obtained by :

senv[n ] =∣ s [n ]  i H s [n] ∣ (5.4)

where H . represents  the  Hilbert  transform. senv [n] is  then  down sampled  to  1200Hz 

after anti aliasing.  The envelope power is computed by :

Le=
1
N ∑

n=0

N −1

Senv
2 [n]; where N  t=50ms (5.5)

 5.2.3. Rate of speech 

The rate of change of the envelope S env [n] is measured using the mean of log-difference 

of the envelope. log-difference is used as it is independent of the magnitude. Its value is 

dependent on  the pace at which the speaker is talking. 

Lr=
1

N −1∣loge 1S env [n ]−loge 1S env [n−1]∣;
where n=1,2,. .. N−1

(5.6)
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 5.2.4. Mel Frequency Cepstral Coefficients (MFCC)

MFCC is a feature which is commonly used in Automatic Speaker Recognition[28][29]

[30]. It is obtained by mapping the cepstral power to the melody(Mel)  scale. The Mel 

scale is an exponential frequency scale which approximates the human perceptual scaling. 

Calculating MFCC involves the  following steps:

1. The cepstral  power SdB[ m] is computed by :

 SdB [m]=20log10 ∣S [m ]∣1  (5.7)

where S [m ] is the DFT of s[n].

2. The Mel axis is obtained by N regularly spaced points (fl) from 0 to 4kHz, which 

are mapped to a Mel scale by:

f m[ k ]=log10 f l [k ]
700

12595  (5.8)

where  fl and  fm are in Hertz.The numerical equivalent of  Eq.  5.8 which is also 

widely used is :

f m[ k ]=loge f l
[k ]
700

11127.01048 (5.9)

3. Then a Hanning overlapping window is used to average and map the linear scale 

to the Mel scale. The maxima or the center point of the window coincides with 

f m[ k ] and the window length is  f m[ k1]− f m[ k−1] where k is the index of 

Mel- frequency.

Smel [k ]=

∑
l= f m [k−1 ]

f m [k1 ]

S dB[ l ] . hW k
[l− f m [k−1]]

W k

(5.10)

where W k=
f m[k1]− f m [k−1]

 t
; hW k

is the Hanning window of length W k

38



Smel [k ] is called the Mel Cepstrum. 

4. The Discrete Cosine Transform (DCT) of Smel [k ] is taken to obtain the MFCC. 

Lm [n ]= 1
N

Smel [1]cos n
2 N  2

N
∑
k=2

N

Smel [k ]cos2k−1 n
2 N 

where n=0,1,2,. .. , N −1

(5.11)

 5.2.5. ΔMFCC

First order differential of MFCC is obtained by :

L m[n ]=
∑
w=1

W

MFCC [nw ]−MFCC [n−w ]

2∑
w=1

W

w2

 (5.12)

where W = 2.  The edges are truncated to avoid index overflow.

 5.2.6. Vocal tract impulse response

Vocal tract can be coarsely modeled as set of coaxial tubes[22]. Each of the tube will 

have its resonant frequency and can be modeled as a filter with a pair of complex poles. 

The IIR filter representing the vocal tract is obtained by cascading these filters.  For a 

model of N/2 tubes, there are N poles and combined filter may be written as [22]:

H v  z =
1

1−a1 z−1−a2 z−2− ...−aN z−N (5.13)

where N = 2(BW +1) ; BW is the bandwidth of the signal expressed in kHz. Since a 

sampling frequency of 8kHz is used, the signal is band limited to 4kHz. N =10. Here the 

gain of the filter is not of concern and is kept at unity. i.e. Hv(z) is evaluated over the unit 

circle. In order to determine the coefficients a i consider the time domain response:

y [n]=x [n]∑
i=1

N

ai y [n−i ]             (5.14)
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where x[n] is the input and y[n] is the output of the filter. If the filter is used as a predictor 

for a wide sense stationary signal like voiced speech it becomes :

y [n]=∑
i=1

N

a i y [n−i ]                                  (5.15)

and a i is estimated for least mean square error. a i s are the Linear Predictive Coefficients 

(LPC).  The feature vector is obtained as :

LH [n ]=DCT {20 log10∣H v  z∣}

where z=e
 j2n

N 
; N =50ms. t

 (5.16)

where  t=1.25 x 10−4 s. DCT is used to make the feature points orthogonal. This allows 

the optimization of number of dimensions by changing the number of DCT  coefficients 

used in the feature vector. The optimum value for feature length is derived in section  5.4.

The DCT is computed as in Eq.5.11.  

 5.2.7. Center of Mass of Vocal Tract Impulse Response

The center of mass of  ∣H v [ z ]∣ is obtained by:

Lc=
∑

z

∣H v [ z ]∣⋅z

∑
z

∣H v [ z ]∣

where z = e
 j2 n

N 
(5.17)

 5.2.8. Gammatone Frequency Cepstral Coefficients (GFCC)

GFCC [28] is functionally similar to MFCC. It maps the spectral energy to a frequency 

scale which follows the sensitivity of the ear. The signal is passed through a Gamma-tone 

filter bank. The filter bank crudely models the cochlear response of the human ear.  The 

center  frequencies  of  the  filter  bank  are  placed  equally  in  Equivalent  Rectangular 

Bandwidth(ERB) scale. The mapping between linear and ERB scale is given by[31] :

f ERB=24.7log104.37 f
1000

1 (5.18)
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where f is in Hertz. The Gamma-tone filter impulse response is given by [28]:  

Gi t =at r−1cos 2 f i te−2bt 
(5.19)

pn[ t ]=G n[n]∗s [n] (5.20)

where b , , r , a are bandwidth, phase correction, order and amplitude respectively.  fc  is 

the center frequency of the ith filter. The filter bank outputs N cochlear channels p i where 

i=1,2,. .. ,N . Each of the frequency channel  P i is down sampled to 100Hz to obtain a 

feature vector every 10 ms.  Pi  is loudness compressed using the cube root function to 

obtain Gamma-tone Feature(GF). GFCC is obtained by taking the DCT of the resulting 

signal.

Gi [n]=∣pdownsample [n]∣1/3 (5.21)

LG [ j ]= 2
N

∑
n=0

N −1

Gi [n ]cos
j
2N

2n1;

where j=0,1, ... , N −1

(5.22)

The GFCC is obtained at every 10 ms. 

 5.2.9. ΔGFCC

The first order differential of GFCC is obtained by :

L G[ j ]=
∑
w=1

W

GFCC [ jw]−GFCC [ j−w ]

2∑
w=1

W

w2
 (5.23)

where W = 2. The edges are truncated to avoid index overflow. 

 5.3.   Data set

The data set for analyzing the features listed in  5.2.  consist of clean speech recording of 

3  female  and  5  male  speakers  extracted  from  the  repository[32].   Three  different 

recordings are made for each speaker. Each recording is roughly 20 seconds long.  So the 
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total data set consists of  24 (8 x 3) recordings of approximately 20 seconds duration. 

They are recorded in a close microphone configuration and sampled at 44.1 kHz. 

The analysis of the data will only be valid if the data  can be characterized as a stationary 

signal. Voiced sound can be considered to be stationary over a short window(50 ms.). 

Hence the unvoiced and silent portions of the signal are first removed from the speech

 5.3.1. Removal of voiced and silent speech segments

Voiced speech mainly consisting of glottal  waves is characterized by concentration of 

energy in lower bands of the spectrum whereas in unvoiced speech energy is spread out to 

higher  frequencies  also.  A  simple  way to  test  for  the  existence  of  higher  frequency 

components is  to find out the Zero Crossing Rate (ZCR). ZCR can hence be used to 

determine whether the speech segment is voiced or unvoiced. The data is analyzed in 

25ms. segments. ZCR is given by :

zr [n ]=1
2
∑
n=1

N −1

∣sgn s [n ]−sgn s [n−1 ]∣;

sgn  x ={ 1 ; x0
−1 ; x≤0} and N =[25ms

 t ]
(5.24)

Also it is noticed that the energy content in unvoiced segment is less compared to that of 

voiced segment.  Also using this  criteria the silence will  also be removed.  Hence log-

energy is used for verifying whether the given speech segment is voiced or not. The log 

energy is computed by :

E log [n]=log10∑
n=0

N −1

s [n]2 (5.25)

A study on the TIMIT corpus has found that unvoiced phonemes accounted for 23.1 % of 

all  the  phonemes[33].  The  TIMIT  corpus  consists  of  6,300  sentences  read  by  630 

different speakers from 8 major dialect regions in America. Considering this percentage 

and intervals of silence  in the data set a conservative threshold is taken. The objective is 
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to ensure that the test signal contains minimal unvoiced segments. Loss of some voiced 

segments is tolerated. 

The segments with zr = 50 (corresponding to 2000 Hz) and E log > 60% of the median for 

the whole recording (about 20 s duration) is classified as the voiced segment.

The  steps involved in data preparation are summarized below :

1. Up sample the speech signal to 48 kHz.

2. Take the windowed signal (window length of 25 ms.)

3. Find Zr and Elog .

4. Drop the segments  with  Zr   >  50 and  Elog  <  60 % of  the median  Elog  for  the 

recording.

5. After processing all the segments are joined together and is down sampled to 8 

kHz after anti- aliasing.

Down sampling smooths out the discontinuities  that occur while the segments are joined 

back together. Figure 5.1 and Figure 5.2 show the speech signals before and after removal 

of unvoiced and silent segments.  The spectrograms of the signals are also shown. In the 

spectrogram higher energies are represented by darker pixels. It can be observed that in 

the voiced only signal the segments with higher energy at higher frequencies are removed. 

Silent segments (low envelope energy) are also removed.  Table  5.1 lists the result of 

voiced-unvoiced-  silence  segregation  for  all  the  signals  in  the  dataset.  Only  voiced 

segments are retained.
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Figure 5.1: Speech signal of a male speaker first 3.5 seconds

The signal shown in 5.1 is the input. When unvoiced segments are dropped the signal is 
shifted backwards.

Figure 5.2: Speech signal after unvoiced and silent segments are removed.



Table 5.1: Amount of voiced , unvoiced, silent segments in the dataset

Speaker ID 
(p) Speaker Recording 

(r) Voiced Unvoiced Silence

1 Male 1
Recording 1 58.45% 27.61% 13.94%
Recording 2 56.69% 23.25% 20.06%
Recording 3 52.24% 35.86% 11.90%

2 Male 2
Recording 1 55.77% 28.75% 15.48%
Recording 2 55.79% 34.15% 10.06%
Recording 3 50.07% 39.32% 10.61%

3 Male 3
Recording 1 64.03% 22.47% 13.50%
Recording 2 63.16% 17.52% 19.32%
Recording 3 63.53% 18.09% 18.38%

4 Male 4
Recording 1 56.69% 27.08% 16.23%
Recording 2 56.89% 21.19% 21.93%
Recording 3 49.47% 30.50% 20.03%

5 Male 5
Recording 1 53.31% 29.28% 17.41%
Recording 2 48.87% 30.26% 20.88%
Recording 3 51.67% 37.00% 11.33%

6 Female 1
Recording 1 40.72% 42.57% 16.71%
Recording 2 41.36% 37.83% 20.80%
Recording 3 39.34% 42.39% 18.27%

7 Female 2
Recording 1 50.54% 37.79% 11.67%
Recording 2 58.62% 28.82% 12.55%
Recording 3 39.81% 39.81% 20.37%

8 Female 3
Recording 1 48.48% 17.09% 34.42%
Recording 2 41.28% 38.08% 20.64%
Recording 3 41.66% 35.77% 22.57%

 5.4.   Feature Analysis

The voiced speech data created in the previous section is used for feature analysis. The 

features are found for each recording for every 50 ms window. Features extracted from 

each recording are then averaged together to obtain a reference template:

p ,r [n]=
1

N W
∑
nw =1

N W

Lx [n ,nw ; p , r ] (5.26)
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where N W =146 is the total number of 50ms windows present. r = 1,2 ,3 is the recording 

per speaker, p = 1,2,..,8 represents the speaker (See Table 5.1) . Lx,[nw ;p,r]  represents the 

features presented in section  5.2.  for the wth segment. And p ,r is the reference template 

obtained from the rth recording of pthspeaker. Subscript x represents any one of the feature 

presented in section  5.2.  or their combination taking two at a time. p ,r is tested for its 

ability to identify speaker p from a pair of speakers. The test set for p ,r , ℂ is given by 

the pair :

 ℂ={Lx [nw ; p , l ] , Lx [nw ; q ,m ]} ∀ q≠ p ,l ≠r (5.27)

The condition l≠r ensures that the performance measured will be speech independent. 

 5.4.1. Distance measure and classifier

A minimum distance classifier is used to distinguish between the speakers q and p.  The 

Mahalanobis  distance  from  the  reference  p , r  to Lx [nw ; p , l ]  and Lx [nw ; q ,m ] is 

obtained as :

DM [nw ; Lx , p , l ,p , r]=Lx [nw ; p , l ]− p , r
T −1  Lx [nw ; p , r ] Lx [nw ; p , l ]− p , r

DM [nw ; Lx ,q ,m , p , r]=Lx [nw ;q ,m ]− p , r
T −1  Lx [nw ; p , r ] Lx [nw ;q , m]−p ,r

(5.28)

where Σ represents the covariance matrix. The dependency of  L on the speaker and the 

recording is  denoted as suffix from now on. The time sample index  n  is  dropped for 

readability.  Mahalanobis distance gives each dimension of the feature vector a weight 

which  is  dependent  on  its  variance across  time.  Higher  variance will  result  in  lesser 

weight.

The speaker is detected as :

p=argmin p/q {DM [ nw ; Lx , p ,l ,p ,r ] , DM [nw ; Lx ,q ,m ,p, r]} (5.29)

The truth hypothesis  can be defined as  H p : p= p . Probability of true detection for a 

given speaker and recording is:
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 P H p | p , r , Lx=
n  p= p

n  p
(5.30)

where n(.)  represents  the number of (.).  The probability of true detection for a given 

speaker is given by :

P H p | p , Lx =
1

N r
∑
r=1

N r

P H p |p , r (5.31)

Variation in P H p | p , Lx  across the speakers will give a measure of  dependency of the 

feature on the speaker. The probability of true detection for a  feature  is given by :

P H p | Lx=
1

N r N p
∑

1

N p

∑
r=1

N r

P H p | p, r (5.32)

The feature or the combination of features which give the highest P H p | Lx  is selected 

to be used for linking the localized streams. 

 5.4.2.  Feature length/dimension

The length/dimension of the multi dimension features namely, MFCC,  MFCC , GFCC 

GFCC  and  Vocal  Tract  Impulse  Response  are  empirically  estimated. P H p | Lx is 

determined by increasing the dimension from 1 in steps of 1. The length is not further 

increased if there is no further significant improvement in the true detection rate. Table 

5.2. lists the features and their dimensions.

Table 5.2: Auditory features used and their Dimension

Auditory Features used for ASS Dimension

Power 1

Pitch 1

Rate 1

MFCC 28

 MFCC 23

Vocal tract Impulse Response 12

GFCC 26

 GFCC 23
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 5.5.  Result and Discussion

Each feature is analyzed for dependence on speaker and gender (same or different). Table 

5.3 shows the number of true detections when it is attempted to detect MALE1(p=1) in 

all  possible  dataset  as  mentioned in  Eq.5.27.  There are  292 decisions  made for  each 

combination of (p,r). Table 5.4 shows the consolidated True Detection Rate (TDR) for all 

the detections with p=1 (Male1). As expected the detection rate when the speakers are of 

different gender is considerably higher than if they are of same gender.  Similar analysis 

was carried out for all the speakers (p = 1,2, …, 8) and the TDR is listed in Table 5.5.  
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Table 5.3: TDR using GFCC 

True Detection Rate

Voice (q, m) r = 1;l  
=2,3

r = 2; l = 
1,3 r = 3; l = 1,2

MALE2 Recording1 52.40% 44.18% 57.19%

MALE2 Recording2 68.15% 53.77% 65.07%

MALE2 Recording3 62.67 58.56% 65.75%

MALE3 Recording1 74.32% 69.18 76.37%

MALE3 Recording2 64.38% 58.90% 63.70%

MALE3 Recording3 59.25% 50.34% 64.04%

MALE4 Recording1 48.29% 50.34% 64.04%

MALE4 Recording2 48.97% 51.37% 51.71%

MALE4 Recording3 50.34% 56.51% 45.89%

MALE5 Recording1 59.25% 57.88% 60.62%

MALE5 Recording2 69.18% 66.78% 66.10%

MALE5 Recording3 68.49% 59.93% 58.90%

FEMALE1 Recording1 83.90% 82.53% 84.93%

FEMALE1 Recording2 83.22% 79.11% 81.85%

FEMALE1 Recording3 82.53% 75.34% 79.45%

FEMALE2 Recording1 82.53% 76.03% 77.40%

FEMALE2 Recording2 83.22% 77.74% 84.59%

FEMALE2 Recording3 84.93% 76.71% 81.16%

FEMALE3 Recording1 73.29% 59.93% 76.37%

FEMALE3 Recording2 86.30% 73.29% 81.51%

FEMALE3 Recording3 81.51% 75.00% 78.42%

Data shown for  MALE 1 (p =1), Number of decisions  = 292
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Table 5.4: Consolidated TDR for GFCC , MALE1

  r  = 1   r  = 2  r  = 3 Overall

TDR 69.86% 64.60% 68.97% 67.81%

TDR Same gender 60.47% 56.74% 60.22%

TDR Cross gender 82.38% 75.08% 80.63%

Table 5.5: TDR with  GFCC for all speakers

Speaker Success Rate

MALE1 67.81%

MALE2 69.51%

MALE3 73.66%

MALE4 82.23%

MALE5 78.26%

FEMALE1 84.16%

FEMALE2 77.94%

FEMALE3 77.39%

Mean 76.37%

Std Deviation 5.73%

Table5.6 lists the TDR for all the features analyzed. It can be observed that GFCC and 

GFCC  performed better for text independent speaker identification when compared to 

other proposed features. Pitch acted as a good classifier when the speakers are of different 

genders. The performance of pitch decreased drastically when both speakers were of the 

same gender.

The features were also analyzed appending two at a time. The order in which they are 

combined will not affect the performance. Figure  5.3 shows a plot of TDR for all the 

possible combination of features taking two at  a time. The top 10 performing feature 

combinations are listed in Table 5.7. It can be observed that GFCC combined with other 
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features  outperforms  other  analyzed  features.  It  is  also  seen  that  the  GFCC-pitch 

combined outperforms GFCC alone by only about 1.1%. 

Table 5.6: TDR for various features (Tested on voiced segments)

Feature
True 
Detection 
Rate (%)

Standard 
Deviation (w.r.t 
to speaker, %)

TDR Same 
gender(%)

TD Cross 
gender(%)

GFCC 76.37 5.73 67.96 82.42

Δ GFCC 75.67 4.88 68.29 81.27

Pitch 70.01 7.74 58.75 79.78

MFCC 65.42 5.75 60.53 69.30

Vocal Tract 
Imp. Response 65.35 5.67 63.84 65.92

Δ MFCC 65.31 4.94 60.11 69.64

Center of Mass 
of (Hv)

53.03 4.61 52.72 54.19

Power 49.38 5.64 49.56 50.68

Rate 49.04 3.05 48.81 50.57
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Table 5.7: TDR  for auditory  features taken 2 at a time(Tested on voiced segments)

Rank Features TDR Std. 
Dev.

TDR 
Same 
gender

TDR 
Cross 
gender

1 Pitch_GFCC 77.48% 5.90% 68.25% 84.39%

2 Hv_GFCC 77.02% 5.86% 69.28% 82.68%

3 COM_GFCC 76.61% 6.03% 68.45% 82.55%

4 Power_GFCC 76.44% 5.52% 67.99% 82.53%

5 Rate_GFCC 75.99% 5.53% 67.57% 82.09%

6 Δ MFCC_GFCC 72.11% 5.95% 65.34% 77.28%

7 MFCC_GFCC 71.62% 6.45% 64.98% 76.69%

8 Pitch_ΔGFCC 71.40% 5.96% 65.22% 77.64%

9 Pitch_Hv 70.86% 6.24% 65.48% 75.58%

10 H_ΔGFCC 69.90% 4.77% 66.04% 73.58%

 5.6.  Conclusion

This chapter introduced and analyzed various auditory features which can be used for 

ASS.  Clean speech recordings  of  eight  speakers  were used to  test  the features.  Only 

voiced  segments of speech were used. It was observed that the  combination of GFCC 

and Pitch  gave the  best  performance  of  all  of  them.  It  gave  a  TDR of  77.5% while 

classifying between two speakers. The decision was made using 50ms of clean speech. 

For linking the localized streams there would be many 50ms. windows available in each 

stream. This would result in a higher TDR. In the following chapter, the combination 

GFFC- Pitch is used to link the localized streams obtained in Chapter 4. 
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Chapter 6. Auditory Features for ASS on Beamformed Signals

 6.1.  Introduction

ASS using spatial cues resulted in over segmentation and produced spatially localized 

streams.  These streams should be linked across time to represent the same object (human 

speaker) irrespective of their position. The high level features used in CASA and speaker 

recognition tasks can be used for this. A few of such features were analyzed in Chapter 5. 

Combination  of  GFCC  and  Pitch  was  found  to  be  performing  better  than  the  other 

analyzed features(Table  5.6 and Table  5.7). In this  chapter these auditory features are 

extracted  after  DS  beamforming  on  localized  stream locations.  Then  their  ability  to 

classify the streams as speaker1 or speaker2 is tested. The actual positions of the speakers 

are known, and hence the classifier can be tested for its accuracy.

 6.2.  Beamforming on Localized Streams

The experiment run in  Chapter 4 resulted in a set of positions where source detections 

were  denoted  by H  for  segment  index  ζ (Eq.4.9).  The  set  of  respective  streams 

associated with each position are obtained with:

yt =BH  ; X N  (6.1)

where B ⋅ represents  DS  beamforming(Eq.2.4).  XN  is  the  array  of  signals  at  N 

microphones(16 in this thesis). The beamformer target location is a time varying function 

and is determined by the elements of H  arranged sequentially in time. The beamforming 

is carried out every 20ms. Sometimes due to intervals of silence or miss detections the 

target coordinates may not be available for all the time instants. In that case the most 

recently available coordinate is used. Table 6.1 shows the first few points for stream H1. 

The spatial coordinates are estimated every 20ms. But it can be observed that coordinates 

are not available at 3.48 through 3.56 seconds. Hence  during this period the beamformer 

will target at (2.04, 2.04)m; location estimated at 3.48sec. Similar discontinuities can be 

observed at many instances. 
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Table 6.1: Stream 1 (H1 , Tracking information (first few points).

Time (s) x coordinate (m) y coordinate (m)
3.46 2.04 2.04

3.48 – 3.56 Miss detections 
3.58 2.04 2.04
3.60 2.04 2.04
3.62 2.04 2.04
3.78 2.04 2.08
3.80 2.04 2.04

3.82 – 3.88 Miss detections 
3.90 2.04 2.04
4.14 2.04 2.04
4.16 2.04 2.04
4.18 2.04 2.04
4.20 2.04 2.04
4.22 2.04 2.04
4.24 2.04 2.04

 6.3.  Binary Least Mahalanobis Distance Classifier

It  is  attempted  to  classify the  detections  into  either  speaker1 or  speaker2.  Let  Sp, Sq 

represent the set of all streams belonging to speaker1 and speaker2 respectively. Also let 

the  auditory feature vector  representing  each stream yt   be represented  by L [nw ] . 

Then by Eq.5.28 the Mahalanobis distance to a reference signal can be calculated as:

DM [L[nw ] ; ref ]= L[nw ]−ref
T −1Lref

[nw ] L[ nw ]− ref


(6.2)

where ref
is the reference signal and is obtained by : 

ref
=

1
N W

∑
nw=1

N W

Lref
[nw ] (6.3)

where NW is the number of 50ms segments present in the reference stream y t ref
and nw  

indexes the 50ms non-overlapping analyzing windows. The candidate stream is compared 

with the reference signal and   a preliminary decision is made every 50ms. 
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One localized stream is selected from each set  Sp  , Sq  and the reference feature vector 

represented  by p  and q  are  formed  by  Eq.6.3.  Let y p t   and yqt  represent  the 

streams of speaker1 and speaker2.  Then the preliminary decision is made  by : 

 
DM [Lp , p]
DM [Lq ,P ]

p= p

≶
p=q

1 and
DM [L p ,q]

DM [ Lq ,q]

q= p

≶
q=q

1 (6.4)

Implicit  dependency on time  index nw is  dropped for  readability.  Ideally p= p⇒ q≠ p  

and vice versa. But in reality there can be conflicts.  A conflict  is said to occur when 

p=q .  The conflict in which  p is assigned to both p and q  is resolved by :

DM [ Lp ,p ]
DM [ L p ,q ]

p= p

≶
q= p

1 (6.5)

If the conflict is with the assignment of q, then p is replaced by q in Eq.6.5.

If l preliminary decisions  are made, then the final classification is based on the “majority 

criterion” rule. i.e : 

p={p ; H p /q ≥ 0.50
q ; H p /q  0.50 }

where H p/q=
n  p= p

l

(6.6)

True Detection Rate is defined as :

Dt≝
n  p= p

n  p= pn  p=q (6.7)

 6.4.  Performance Analysis

 6.4.1. The feature vector

From the analysis in Chapter 5. GFCC-Pitch was identified to be the best feature vector 

among the tested ones.  GFCC-Pitch  is  used here to  classify the  localized  streams as 

belonging to one speaker or the other. Since GFCC is a multi  dimensional feature, its 
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length is varied from 1 to 26 and the performance is analyzed.   The feature vector is 

obtained by:

L=[ L p LG1 LG2 ... LGN ] (6.8)

where L p  is the pitch extracted and LG , N  is the N dimensional GFCC. The total feature 

length is N+1.

 6.4.2. Test Data

By comparing the spatial coordinates of  H   and the predefined speaker locations the 

streams  corresponding to  each  speaker  in  the  experiment  in  Chapter  4 are  identified 

manually. The set of streams belonging to the same speaker is given by (Table 4.4) :

S p={ yt : =1, 2, 3,9, 10, 11,13, 15,16, 19, 20, 25, 27, 29, 30}

S q={yt :=4,5 , 6 , 8 ,14, 18, 21, 23, 24, 26, 28}
(6.9)

One stream each from S p  and S q  is chosen as the reference. The test set is given by the 

pair:

ℂ={L p ,T , Lq ,T }; for T =1,2,... ,6  (6.10)

where T represents the Time ID (Table 4.4). Only streams which intersect in time (same 

Time ID) are paired together for testing. Table 6.2. shows the data set for T = 1. Similar 

datasets are made for all values of T. =20 is chosen as the reference for S p  and  =18

is  chosen  as  the  reference  for Sq .  The  references  were  empirically  chosen  with  the 

restriction that they have the same Time ID. 
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Table 6.2: Test Data Set for Time ID = 1

Time ID  for S p  for Sq N

1

1
4 44
5 31
6 49

2
4 44
5 31
6 50

3
4 44
5 31
6 50

DM [ L p ,p ]  and DM [ L p ,q ] are computed  and preliminary decisions are made l times 

where l is given by :

l=min {N p , N q };

N p=[ T p

50ms. ]; N q=[ T q

50ms ] (6.11)

where T p  and T q  are the length of streams y pt  and yqt   respectively. 

 6.4.3. Results

At Time ID = 1 there are 9 test cases possible (Table  6.2).  Figure  6.1 shows H p /q (in 

percentage)  for  all  the  9  instances.  In  all  cases H p /q50% which  implies  that  TDR, 

Dt=100% for Time ID,T = 1. The same test is carried out for T = 1, 2, …, 6.  and N = 

1,2, …, 26. The result is shown in Figure  6.2. The intensity is proportional to  Dt. It is 

observed that the best result is achieved when  N = 21 (feature length of 22). At  T = 4 

TDR of 100% is obtained for all feature length. This is because the feature vectors also 

have the same time ID.  
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Table  6.3 lists  the  performance  of  the  classifier.  N  = 21 is  used as  it  gave the  best 

performance.   A 65.17% of preliminary decisions made were true.
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   The horizontal line (at 50%) marks the boundary for final decision. Feature 
'   length (N + 1) = 22.

Figure 6.1:  Percentage of correct preliminary decisions for the binary classifier.

Figure 6.2: TDR for  the binary classifier after applying majority criterion.



Table 6.3: True Detection Rate for Binary classifier; N =21

Time 
ID

Distance 
between 

Speakers (m)

Number of 
Preliminary 

Decision

True 
Preliminary 
Decision(%)

Number 
of final 

Decision

True 
Detection 
Rate (%)

1 1.589 374 62.03 9 100

2 1.534 88 69.32 4 100

3 1.404 85 61.18 2 100

4 1.683 101 95.05 2 100

5 1.699 140 61.43 3 100

6 1.058 168 57.14 6 83.33

Total - 956 65.17 26 96.15

Figure  6.3 shows TDR of preliminary and final decisions as a function of the feature 

length.
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 6.5.  Conclusion

In this chapter a binary classifier which classifies the localized streams into two  streams 

(representing two speakers) was designed and tested.  The results obtained demonstrate 

that  auditory features  extracted  from the  beamformed  signal  can  be  used  to  link  the 

speaker detections across time. Out of 26 decisions made 25 of them are correct. i.e. a 

final TDR of 96.15 % is achieved. With around 2 seconds (40 preliminary decisions) of 

localized streams available the streams can be linked to the correct speaker with over 

90% accuracy. 

The performance of the classifier for varying length of GFCC is also studied. Apart from 

the unstable behavior for N = 1,2, ..., 7 the general trend is that the TDR improved with 

increasing length of GFCC.  The TDR seems to oscillate around 90 %  for N >19 (feature 

length of 20, Figure  6.3). Any further increase  in length may not bring any significant 

improvement.  The fluctuation  in  TDR is  due to  the small  population  size.   TDR for 

preliminary decision is a better indicator as the population size is high (956). 

60



Chapter 7.  Conclusion and Future Work

 7.1.  Overview

This  thesis  aimed at  extracting the  streams representing distinct  sources  in  the audio 

scene. Specifically the case of two simultaneous talkers was considered. A microphone 

array was used for localizing the sound sources and then to beamform on them. Spatial 

and temporal thresholds were applied to obtain localized streams. The system using just 

these thresholds was unable to track the speaker when he/she moved to a new position 

while  remaining silent.  This necessitated the use of auditory features for merging the 

spatially localized streams. Auditory features namely GFCC, pitch, MFCC, vocal tract 

impulse response, loudness and rate of speech envelope were analyzed using clean speech 

recordings. Pitch appended with GFCC outperformed other examined features. Hence it 

was used for audio scene segmentation and the result is noted.

 7.2.  Conclusion

The following was demonstrated in this work :

1. Gammatone  Frequency Cepstral  Coefficients  (GFCC)  along  with  pitch  of  the 

speakers gave an accuracy of 96.2 %  in separating the streams belonging to two 

simultaneous speakers.  This demonstrates the viability of using them as features 

for Audio Scene Segmentation.

2. Feature length for optimum performance is estimated as 22; pitch appended with 

the 21 point GFCC. 

3. In the  clean speech analysis done in Chapter 5, GFCC gave a true detection rate 

of 76.4% compared to MFCC (65.42 %). The limited study done presents a case 

for using GFCC  as a feature for  automatic speaker recognition.
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 7.3.  Future Work

This thesis opens up a few issues which need further analysis. First among them would be 

to  evaluate  the  presented  system as  a  function  of  the  beamformer  performance.  It  is 

obvious  that  the  features  extracted  will  be  more  reliable  with  higher  beamformer 

performance. A fall in TDR from 77.48 % for clean speech to 65.15% in the case of 

simultaneous speakers (refer Table  5.7 and Table  6.3) demonstrates this. A metric for 

beamformer performance evaluation may be required. 

The spatial separation between the speakers and their position in the beamfield of the 

array may have an effect on the performance. Future experiments will have to take this 

into account. The speakers can be placed in accordance with the beam pattern (in the 

main lobe area, nulls etc). 

The tests were conducted only for a two speaker scenario. For a more generic solution a 

threshold for the distance from the reference feature must be obtained. With a threshold 

value setup, the feature vector extracted from the any one of the localized streams can be 

used  as  reference  and  audio  scene  segmentation  can  be  performed.  Any unassigned 

localized stream can be iteratively merged to one of the final streams.  This will make the 

algorithm independent of the number of speakers.  This calls  for threshold estimation 

using a larger database.

Due  to  the  complexity  of  the  analysis  only  one  experimental  set  up  was  used  for 

performing  audio  scene  segmentation.  i.e.  array  geometry  and  the  pair  of  speakers 

remained the same for the whole analysis. The performance analysis for different array 

geometries may be carried out. Also using different combinations of speakers (both male 

and female) will help in generalizing the results further.
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