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This dissertation develops surface integral equations using constraint-based 
Helmholtz decompositions for electromagnetic modeling. This new approach is applied 
to the electric field integral equation (EFIE), and it incorporates a Helmholtz 
decomposition (HD) of the current. For this reason, the new formulation is referred to as 
the EFIE-hd. The HD of the current is accomplished herein via appropriate surface 
integral constraints, and leads to a stable linear system. This strategy provides accurate 
solutions for the electric and magnetic fields at both high and low frequencies, it allows 
for the use of a locally corrected Nyström (LCN) discretization method for the resulting 
formulation, it is compatible with the local global solution framework, and it can be used 
with non-conformal meshes. 

To address large-scale and complex electromagnetic problems, an overlapped 
localizing local-global (OL-LOGOS) factorization is used to factorize the system matrix 
obtained from an LCN discretization of the augmented EFIE (AEFIE). The OL-LOGOS 
algorithm provides good asymptotic performance and error control when used with the 
AEFIE. This application is used to demonstrate the importance of using a well-
conditioned formulation to obtain efficient performance from the factorization algorithm. 
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Chapter 1 Introduction 

1.1 Motivation 

The development of fast and efficient full-wave solution methods for large, linear, 

time-harmonic electromagnetic problems requires two basic elements. One is stable, 

well-posed formulations that, upon discretization, provide controllably accurate solutions 

under a variety of conditions. Another requirement is a strategy for solving the resulting 

linear system in a manner that scales efficiently as the number of degrees of freedom 

(DOF) is increased. 

In the following, we will consider primarily a surface integral equation (SIE) 

approach to the aforementioned problem. The SIE method is widely used for modeling 

electromagnetic field interactions with perfect conductors. The most appealing feature of 

the SIE is that it allows the underlying problem to be represented by meshing only the 

surfaces of the conductors. This reduces number of DOF compared to methods based on 

either volume integral equations or methods that rely on a partial differential equation. 

There are two basic SIE representations for a conductor, the electric field integral 

equation (EFIE) and the magnetic field integral equation (MFIE). The EFIE provides 

accurate solutions for both open structures and structures with geometric singularities. 

However, it will break down at low frequency or with electrically small structures [1]. 

The MFIE is better conditioned than the EFIE, but it can be used only for closed 

geometries, and it is less accurate compared to the EFIE for geometric singularities [2]. 

However, the MFIE is still indispensable to form the combined field integral equation 

(CFIE) which is used to suppress interior spurious resonance [3]. In this work, surface 

integral equations using constraint-based Helmholtz decompositions (HD) are proposed 
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to resolve the low frequency breakdown problem of the EFIE. The new formulation is 

referred to as the EFIE-hd, because it relies on a Helmholtz decomposition (HD) of the 

current. As will be shown later, the EFIE-hd is frequency stable yet provides accurate 

solutions for the electric and magnetic fields at both high and low frequencies. 

To address large-scale and complex electromagnetic problems using an integral 

equation based (IE-based) method, sparse iterative or direct solution methods are 

imperative. In this work, a sparse direct solution method based on the local-global 

solution (LOGOS) framework [4, 5] is used to factorize the resulting system matrix. It 

has been observed that it can provide efficient factorizations for several practical 

formulations. For electrically small objects, the complexity of the corresponding 

factorization has been found to range between approximately ( )O N  and ( )logO N N  

when N  was increased via mesh refinement. 

In this work, the locally corrected Nyström method (LCN) [6-9] is employed to 

discretize the EFIE-hd formulation. The LCN method is a point-based high-order method. 

This method has some advantages over Galerkin schemes. Only a single integration is 

required for evaluate near interactions, and single-point kernel evaluation suffice for the 

far interaction. 

In summary, the purpose of this dissertation is to develop surface integral 

equations using constraint-based Helmholtz decompositions for electromagnetic 

modeling. This strategy provides accurate solutions for the electric and magnetic fields at 

both high and low frequencies, it allows for the use of the LCN discretization method for 

the resulting formulation, it is compatible with the LOGOS framework, and it can be used 
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with non-conformal meshes. To the best of our knowledge, no SIE-based approach to 

electromagnetic modeling provides these capabilities. 

1.2 Review 

In this section, various formulations aimed at addressing the low frequency 

breakdown problem of the EFIE are briefly reviewed. Iterative and direct solution 

methods are also reviewed. 

1.2.1 The formulation 

A well-known limitation of the EFIE is the fact that the formulation breaks down 

at low frequencies or with electrically small structures [1]. This breakdown occurs 

because the scalar potential contribution to the tangential electric field overwhelms the 

contribution from the vector potential at low frequencies or with electrically small 

structures during the numerical process. The scalar potential term has null space due to 

the divergence operator. It yields a poorly conditioned linear system when the EFIE is 

discretized at low frequencies. This issue will be further examined in Chapter 3. 

A number of strategies have been developed to address this low frequency 

breakdown. These include approaches that rely on an approximate Helmholtz 

decomposition (HD) of the vector bases used to represent the current [1, 10, 11], 

approaches that rely on the self-stabilization properties of the EFIE integro-differential 

operator [12-14], and methods that introduce charge as an additional unknown [15-17]. 

While the aforementioned strategies are effective in many cases, they introduce 

additional complexities that make their application difficult in some circumstances. For 

example, if one is interested in using the (LCN) method to discretize the continuous 

formulation, then the use of methods that decompose the surface current into solenoidal 
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and nonsolenoidal spaces are not straightforward. It is similarly difficult to obtain an 

efficient LCN discretization of formulations that utilize the self-stabilization properties of 

the EFIE. Furthermore, both approaches (decomposed vector bases and self-stabilizing 

formulations) introduce an additional degree of non-locality into the problem formulation. 

In the former case, this can occur through the presence of global loops; in the latter case 

one encounters a product of integral operators. Both of these scenarios complicate the 

application of sparse solution methods that are based on the localization of the degree of 

freedom (DOF) in the problem (e.g., LOGOS solution framework). 

Augmented formulations [15-17] avoid both of these limitations. They are 

amenable to both LCN discretization and localization-based factorizations [18, 19]. 

Unfortunately, formulations such as [18] are difficult to effectively extend for the case of 

non-PEC materials. This is related to the fact that the augmented formulation of [18] can 

yield incorrect results for the magnetic fields scattered from conducting bodies at low 

frequencies. These methods also fail when applied to non-conformal meshes. 

The new formulation considered herein uses a constraint-based Helmholtz 

decomposition to overcome the limitations of these approaches. 

1.2.2 The solution method 

In the frequency domain, many simulation problems in electromagnetic analysis 

involve solving linear matrix equations of the form 

 ,i=Zx F   (1.1) 

where the matrix Z  is referred to as the N N×  system matrix. The vector x  contains 

either the unknown field or current coefficients and iF  contains spatial samples of an 

impressed or incident source. The system indicated by (1.1) can be either obtained by 
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PDE based approaches or integral equation based (IE-based) methods [3]. In this 

dissertation we limit our attention to the surface integral equation (SIE) method. In this 

case, the system matrix Z  is dense. Standard direct methods for solving the above linear 

equations have ( )3O N  CPU time complexity and ( )2O N  memory complexity. These 

costs are usually prohibitive for practical applications involving a large number of 

unknowns. Typically, such problems are solved either by sparse and fast iterative solution 

methods or sparse direct solution methods. One such representative iterative solver is the 

Fast Multipole Method (FMM) [20]. The FMM has been used to dramatically reduce the 

CPU complexity and the memory complexity associated with SIE methods. More 

recently, fast, direct solution methods have been investigated for IE based system 

matrices. Generally, the fast, direct solution strategy consists of developing efficient 

procedures for directly factoring one or more of the various compressed representations 

of the IE system matrix. The compressed representation of the system matrix used herein 

is based on an algebraic variant of the low-frequency version of the FMM. 

1.3 Research Outline 

Chapter 2 presents the LCN method, which is used to discretize the surface 

integral equation formulations. First, the conventional Nyström method is introduced. 

Next the LCN method is discussed in detail. The local correction of the LCN facilitates 

the treatment of the singular kernels that arise in electromagnetic operators. In addition, 

two sets of basis functions, polynomial complete basis functions and mixed-order basis 

functions are discussed and compared. 

Chapter 3 provides the fundamental materials required in the development of the 

new formulation, which includes the derivation of the surface integral equations (SIE). 
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The LCN discretization of the SIE kernels is also discussed, especially focusing on the 

special treatment of the near interactions. Furthermore, the low frequency breakdown of 

the EFIE is analyzed comprehensively. 

Chapter 4 provides the detailed derivation of the new EFIE-hd formulation, which 

is based on the electric field integral equation and incorporates a Helmholtz 

decomposition of the current. Several essential features are discussed, such as the 

Helmholtz decomposition of the current and the zero divergence constraints. The EFIE-

hd formulation is first formulated for closed PEC geometries. The extension to open 

structures is also considered. Initial numerical examples are provided, and it is observed 

that the initial version of the EIFE-hd provides accurate solution at moderate frequencies. 

However the system still fails at low frequencies. This limitation is finally overcome 

through the inclusion of an additional constraint on the divergence of the EFIE and an 

appropriate, physically meaningful, scaling of the irrotational component of the current. 

Chapter 5 considers a fast, direct numerical analysis method using overlapped 

localizing LOGOS modes for solving electromagnetic problems at low frequencies. The 

formulations used are the augmented EFIE (AEFIE) and augmented EIFE-G (AEFIE-G) 

formulations. These overcome the low-frequency breakdown inherent in the conventional 

EFIE through the use of the current continuity equation. Then the overlapping localized 

LOGOS (OL-LOGOS) framework is reviewed. The extension of the OL-LOGOS to an 

over-determined system obtained from the AEFIE and AEFIE-G formulation is presented 

and numerical results are provided 1[19]. 

1 The application of the OL-LOGOS factorization to the EFIE-hd formulation is not considered in this dissertation. The 
work on the application of the OL-LOGOS factorization to the AEFIE and AEFIE-G is included to demonstrate the 
importance of using a well-conditioned formulation to obtain efficient performance from the factorization algorithm. 
Similar work using the EFIE-hd formulation will be considered elsewhere. 
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Chapter 6 concludes the work developed in this dissertation and identifies the 

future research directions based on this work.   

Copyright © Jin Cheng 2012 
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Chapter 2 The Locally Corrected Nyström Method 

The locally corrected Nyström (LCN) method [6-9] is a point-based high-order 

method, which is used to obtain numerical solutions of integral equations. Compared to 

low-order methods [21] (such as the method of moments (MoM) employing low-order 

basis and testing functions with Galerkin formulation), a high-order method has the 

ability to obtain high-order convergence rates with relatively small additional effort as 

well as control the rate of convergence. 

The matrix fill of a high-order MoM (HO-MOM) with Galerkin formulation is 

time consuming, since it requires 2N  numerical double integrations, where N  is the 

number of unknowns. Thus the LCN has a distinct advantage over HO-MOM with 

Galerkin formulation in that just a single kernel evaluation is required to fill most matrix 

elements (far interactions) and only ( )O N  single integrations and some low-rank linear 

algebra to fill the other (near) interactions [7]. 

The conventional Nyström method is designed to handle regular kernels. Thus it 

cannot be used directly for integral equations with singular kernels such as those that 

arisie in electromagnetic analysis. In such situations, the high-order convergence 

advantage of the Nyström method is lost. Fortunately, by incorporating local correction in 

conventional Nyström method, the LCN [7] technique overcomes the problems 

associated with singular kernels. The essence of the local correction is to use specialized 

quadrature rules of the form introduced by Strain [22] to integrate the singular kernel to 

high order. 

The remainder of this chapter is organized as follows. In Section 2.1, the 

conventional Nyström method is presented and followed by a discussion of the 
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differences with MoM. The LCN formulation is described in detail in Section 2.2, the 

connection between the LCN and a high-order method of moments (HO-MoM) solution 

with point-based discretization is also briefly introduced. Then Section 2.3 discusses 

basis functions and discretization required by local correction. Finally, Section 2.4 

summarizes this chapter. The formulation and notation used in the follow introduction of 

the LCN method closely follows that used elsewhere [6, 8]. 

2.1 The Conventional Nyström Method 

The basic idea of the Nyström method is that the problem domain (the surface of 

a perfect electric conductor (PEC) in this dissertation) is discretized into N  patches, and 

the integral operator is replaced with a suitable quadrature rule (such as the Gauss-

Legendre quadrature rules) over each patch [9]. The unknown quantity, which is usually 

the surface current density, is represented by its samples at the abscissa points of the 

underlying quadrature rule. The integral equation is then enforced at the same abscissa 

points, yielding a square linear system of equations. The solutions of this system are the 

samples of the current density. Consider the integral equation used to solve for a surface 

current density ( )J ′r  [6, 7], 

 ( ) ( ) ( ), ,i

S

K J dsφ ′ ′ ′= ∫r r r r   (2.1) 

where S  represented a smooth surface, ( )iφ r  is the known forcing vector evaluated at r  

on S , and ( ),K ′r r  is the kernel of the integral. The surface S  is discretized into pN  

curvilinear patches that represent the underlying surface to HO. Then the integral 

operator is replaced with a suitable quadrature rule. The right hand side (RHS) is also 
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sampled at the abscissa points, yielding a square linear system of equations, with the th
mq  

row defined as 

 ( ) ( ) ( )
1 1

, ,
qP

m p m p p

NN
i

q q q q q
p q

K Jφ ω
= =

=∑∑r r r r   (2.2) 

where 
pqr  and 

pqω  are the abscissas and weights on the thp  patch (source patch), and 
mqr  

is an abscissa point on the thm  patch (field patch). If ( ),K ′r r  is regular and a high-order 

quadrature rule is used, then (2.2) will yield a high order approximation to the exact 

solution. However, most kernels arising in electromagnetic analysis are singular at 

vanishing distance between source point and field point, thus ( ),K ′r r  is undefined when 

field point coincides with the source point ( ′=r r ). To handle singular kernels, local 

corrections can be used. This procedure is described in detail in the next section. 

It is useful to compare the well-known MoM approach with the Nyström method 

in terms of the meaning of the unknowns, the complexity of the respective procedures, 

and their computational costs [9]. First, the meanings of the unknowns of the two 

methods are different. In the MoM approach, the integral equation is discretized into a 

finite set of linear equations with finite number of unknowns. This is accomplished by 

first representing the surface current density as an expansion in a set of basis functions, 

and then taking the inner product of the integral equation with each member of a set of 

testing functions. The unknown coefficients of the expansion basis are finally determined 

by a numerical procedure such as matrix inversion and multiplication with the RHS. 

Once the unknown coefficients are solved, the surface current density at any point of the 

surface can be computed via the basis function expansion. 
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In contrast, for the Nyström method, the unknowns are the surface current density 

sampled at abscissa points of the underlying quadrature rule. In Section 2.2, it is 

demonstrated that a change of basis [6] can be used to connect the unknown of the MoM 

approach and the unknown of the Nyström method. Second, the Nyström method is 

simpler than the MoM method in implementation. There are two ways to improve the 

accuracy of either approach. The first is to refine the meshes ( h -refinement), and the 

second is to use better representation of the surface current ( p -refinement). To 

accomplish the p -refinement of the MoM approach, higher degree polynomials are used 

as basis functions, since surface current density is explicitly expanded by a set of basis 

functions, thereby increasing the computational amount for each entry of the system 

matrix. In the Nyström method, the accuracy of the representation of current is 

determined by the choice of the underlying quadrature rule. Therefore the p -refinement 

is realized by using a quadrature rule with more points, which does not change the 

computation amount for each entry of the system matrix. Third, as pointed earlier in this 

chapter, the MoM is more time consuming than the Nyström method during the matrix 

fill phase. 

2.2 The Locally Corrected Nyström Method 

The strategy of the LCN method to handle singular kernels is to use local 

corrections for the near interactions (in the vicinity of the kernel singularity), which 

employs the specialized quadrature rule to effectively corrects the underlying quadrature 

rule to integrate the singular kernel to high order. For far interactions where the kernel is 

smooth, the conventional Nyström indicated in (2.2) is used. The local corrections 

indicate that the “correction domain” is local to the field point. Therefore the LCN 
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method can be formulated for the same problem mentioned in section 2.1 but with 

singular kernel as [6] 

 ( ) ( ) ( ) ( ) ( )
1 1

, ,
q q

m p m p p pp

N N
i

q q q q q qq m
p far q p near q

K J Jφ ω ω
∈ = ∈ =

= +∑ ∑ ∑ ∑r r r r r   (2.3) 

where the notations were already illustrated in (2.2) except for ( )pq mω , which are the 

weights of the specialized local quadrature rule for the singularity at 
mqr . Note also that 

the abscissa points of the specialized quadrature rule are chosen to be the same as the 

underlying quadrature rule used to discretize the far interaction. 

The procedure of determining ( )pq mω  is provided below [6]. The weights ( )pq mω  

are obtained by placing a set of regular basis functions ( )kF r  over the thp  patch, which 

typically are representative of those defining the underlying quadrature rule and then 

equating the quadrature rule to the moments, 

 ( ) ( ) ( ) ( )
1

, .
q

p mp

p

N

k q q kq m
q S

F K F dsω
=

′ ′ ′=∑ ∫r r r r   (2.4) 

Forcing this equality for 1, qk N=  yields the linear system of equations 

 ,
mp q=L ω κ   (2.5) 

where pL  is a matrix local to the thp  patch with entries ( ) ( ), pp k jk j
F=L r , and the thk  

element of vector 
mqκ  is the right hand side of (2.4), which can be evaluated to desired 

precision using adaptive quadrature. The local quadrature weights ( )pq mω  are the elements 

of the vector ω , which can be calculated from (2.5). By generating ( )pq mω  in this fashion, 

the second part of the right hand side of (2.3) should produce the accurate near field for 
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any current density as long as that can be approximately well enough by the basis 

function expansion, which is denoted as ( )kF r  [9]. As we recall from the conventional 

Nyström method described in Section 2.1, the accuracy of the representation of current is 

determined by the choice of the underlying quadrature rule. Unlike the MoM method, the 

representation of the current in Nyström scheme is implicit, since it is not explicitly 

expressed in terms of a set of basis functions. However, the local correction requires a set 

of basis functions suitable for representing the current density, which suggests that the 

approximations in the generation of ( )pq mω  are equivalent to the use of an explicit 

representation of the current density in terms of basis functions, thus the accuracy of the 

current approximation is limited to the degrees of freedom within the basis functions. 

The procedure indicated by (2.3) to (2.5) yields a square matrix to solve for the 

current at the sampling points of the underlying quadrature rule. The contribution to the 

th
mq  row from patches that are far enough from 

mqr  is written in the operator form as 

 ( ) ,
m m

Tfar
q q=Z k   (2.6) 

where superscript T  indicates the transpose. The th
pq  term of the row vector ( )m

T

qk  is 

( ),
p m pq q qKω r r . The contribution to the th

mq  row from the near interaction can be written 

as the row vector, 

 ( ) 1
.

m m

T
near
q p q

− =   
Z L κ   (2.7) 

It has been demonstrated in [6] that through a change of basis procedure, the HO-MOM 

with point-based discretization [23] can be projected into a form identical to that derived 

via the LCN scheme. Now consider again the integral equation in (2.1). Via the MoM 

13 



procedure, the surface current density ( )J r  is approximated over each patch by a basis 

function expansion, 

 ( ) ( )
1

,
k

p

N

k k
k

J b F
=

≈∑r r   (2.8) 

where 
pkb  are constant coefficients for the basis function expansion and ( )kF r  represent 

a set of smooth basis functions placed over the thp  patch that is complete to order kN . 

The detailed derivation of this point-based HO-MoM is reported in [6, 23]. The final 

form is expressed as 

 ( ) ( ) ( )
1 1

, ,
kP

m p m

p

NN
i

q k q k
p k S

b K F dsφ
= =

′ ′ ′= ∑∑ ∫r r r r   (2.9) 

where 
mqr  is a quadrature abscissa point on the thm  patch (filed patch). The expression 

indicated by (2.9) looks like a MoM formulation with point matching. It is actually 

derived via an expansion of smooth test functions complete to order kN . In the regions 

which are sufficiently far from the field point, the outer integral in (2.9) can be evaluated 

to HO via a fixed point quadrature rule. Then the contribution to the th
mq  row from 

patches that are sufficiently far from 
mqr  is written as 

 ( ) ( )
1 1

, ,
k k

m p pp p

N N

q q k qk q
p far k q

b K Fω
∈ = =

 
 
 

∑ ∑ ∑ r r r   (2.10) 

where 
pqr  and 

pqω  are the abscissa points and the weights of the kN − point quadrature 

rule, respectively. Equation (2.10) is written in the operator form as 

 ( ) ( ) ( ) ,
m m

T T T

p q q p=L k b k L b   (2.11) 
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where the matrix pL  is defined in (2.4) and (2.5), the vector 
mqk  is defined in (2.6), and 

the vector b  contains coefficients of the basis functions indicated in (2.8). ( )pqJ r  

denotes the current density at the abscissa point 
pqr . From the expansion in (2.8), ( )pqJ r  

is expressed as 

 ( ) ( )
1

.
k

p p p

N

q k k q
k

J b F
=

≈∑r r   (2.12) 

Therefore the samples of the current density at the abscissa points of the thp  patch, 

denoted as pJ , are given by 

 ( ) ,
T

p p=J L b   (2.13) 

Equation (2.13) indicates a transformation from coefficients of basis functions to the 

current density at the quadrature points, which is actually a change of basis. Thus in the 

operator form, the contribution to the th
mq  row from patches sufficiently far from 

mqr  via 

the point-based HO-MOM is expressed as 

 ( ) .
m m

Tfar
q q=Z k   (2.14) 

This transformation can also be used for the near interaction calculation. The 

integral in (2.9) must be evaluated via adaptive quadrature to the desired precision. In the 

operator form, this is written as  

 ( ) ,
m

T

qκ b   (2.15) 

where 
mqκ  is defined in (2.4) and (2.5). The inverse relation of (2.13) is given by 

 ( )
1

.
T

p p

−
 =   

b L J   (2.16) 
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Then (2.15) is rewritten as 

 ( ) ( ) ( )1 1

m m

T TT

q p p p q p

− −   =      
κ L J L κ J   (2.17) 

The contribution to the th
mq  row from the near interaction can be written as 

 ( ) 1
.

m m

T
near
q p q

− =   
Z L κ   (2.18) 

We observe that (2.14) and (2.18) are identical to (2.6) and (2.7), respectively. It 

follows that point-based HO-MOM scheme is equivalent to the LCN procedure. 

2.3 Basis Functions and Discretization 

The choice of basis functions should be consistent with the underlying quadrature 

rule [6]. For example, for smooth geometries, the basis functions are chosen to be 

Legendre polynomials, and the corresponding Gauss-Legendre quadrature rule is used. 

For a surface with edge singularities, for example, Jacobi polynomials would provide a 

much better representation of the singular behavior of the current, and a Gauss-Jacobi 

quadrature rule should be used. 

In this dissertation, we restrict our attention to Legendre polynomials and the 

corresponding Gauss-Legendre quadrature rule. Polynomial complete basis functions and 

mixed-order basis functions are introduced in Section 2.3.1 and Section 2.3.2, 

respectively. 

2.3.1 Polynomial complete basis functions 

For current density on a PEC surface S , the basis functions should be tangential 

to the surface. The surface of the conductor is discretized using curvilinear patches that 

represent the surface to sufficient accuracy. The surface of the patch can be uniquely 
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represented by a two-dimensional curvilinear space ( )1 2,u u .The unitary vectors are 

defined in [24] as 

 , 1, 2,i i i
u
∂

= =
∂

ra   (2.19) 

which is tangential to the curve. The surface current density is expanded over each patch 

via a set of local vector basis functions. Then the vector basis functions on each patch 

take the form 

 ( ) ( ) ( ), 1, 2ki i
k k i

F
b i

g
= =

r
J r a   (2.20) 

where ( )kF r  are smooth functions placed on each patch, 1 2 ng = × ⋅a a a , and na  is the 

unit normal to S . The choice of ( )kF r  in this dissertation is the product of Legendre 

polynomials for three dimensional surface scattering. Note that these functions are 

truncated at the cell boundaries. As a result the basis functions or the current density are 

generally discontinuous across cell boundaries. The use of Legendre polynomials makes 

local correction matrix pL  defined in (2.4) and (2.5) well-conditioned. If pL  is square, it 

is orthogonal and can be inverted simply by transposition. 

Following the above notation, the polynomial-complete basis functions that are 

complete to order p , are expressed with local support in curvilinear coordinates as [8] 

 ( ) ( ) ( ) ( )
, 1 2

1 2, 1, 2; , 0... ,
j k

i i j kpc
i

b P u P u
u u i j k p

g
= = =

a
J   (2.21) 

where ( )jP u  are thj  order Legendre polynomials, and ,j k
ib  are unknown constant 

coefficients. Therefore there are ( )22 1p +  degrees of freedom per patch for the surface 
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current density. Unfortunately, the use of a polynomial complete basis can lead to 

spurious solutions for geometries with edge singularities. This can be addressed through 

the introduction of the mixed-order basis [8, 25]. 

2.3.2 Mixed-order basis functions 

The basis functions in (2.21) are used to approximate the electric surface current 

densities. However, many surface integral equations incorporate a contribution through 

the divergence of the current. In such cases, the electric charge density is implicitly 

modeled by the divergence of those basis functions. The electric surface charge density 

within each cell of the surface can be obtained by taking the divergence of the current, 

which is expressed [8] 

 ( )
( ) ( ) ( ) ( )

( )

2

1

1 2
, 2 , 1

1 21 2

1

1 1

1

, 0... .

s

i pc
ii

i

j kj k j k
k j

j

g
j ug

P u P u
b P u b P u

j u u
j k p

g

ρ
ω

ω

ω

=

= − ∇ ⋅

∂
= − ⋅

∂

 ∂ ∂
− + 

∂ ∂  = =

∑

J

a J   (2.22) 

It is indicated in (2.22) that the electric charge density is represented to an incomplete 

polynomial order. This incompleteness can yield spurious charges in the solution space 

that can spoil the solution, especially for scatterers with edge singularities. However, this 

can be alleviated by the use of mixed-order basis functions. 

Mixed basis functions are expressed as [8] 

 ( ) ( ) ( ) ( )
, 1 2

1 11 2
1 , 0... 1; 0... ,

j k
j kmo

b P u P u
u u j p k p

g
= = + =

a
J   (2.23) 
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 ( ) ( ) ( ) ( )
, 1 2

2 21 2
2 , 0... ; 0... 1 ,

j k
j kmo

b P u P u
u u j p k p

g
= = = +

a
J   (2.24) 

where ( )1 2
1 ,mo u uJ  is polynomial complete to order 1p +  along 1u  and to order p  along 

2u , whereas ( )1 2
2 ,mo u uJ  is polynomial complete to order p  along 1u  and to order 1p +  

along 2u . Then the corresponding electric surface charge density within in each cell is 

expressed as [8] 

 ( )
( ) ( ) ( ) ( )

2

1

1 2
, 2 , 1

1 21 2

1

1 1

1

,

s

i mo
ii

i

j kj k j k
k j

j

g
j ug

P u P u
b P u b P u

j u u

g

ρ
ω

ω

ω

=

= − ∇ ⋅

∂
= − ⋅

∂

 ∂ ∂
− + 

∂ ∂  =

∑

J

a J   (2.25) 

where, the range of j  and k  in the first term of the last line of (2.25) is the same as that 

of (2.23), whereas the range of j  and k  in the second term of the last line of (2.25) is the 

same as that of (2.24). It is indicated in (2.25) that the surface charge density is 

polynomial complete to order p . It is demonstrated in [8] that using mixed-order basis 

function improves the performance of the LCN method for both smooth scatterers and 

scatterers with edge singularities in terms of the solution accuracy and the condition 

number. 

2.4 Summary 

This chapter has presented the locally corrected Nyström method, which is a 

point-based high-order method. Compared to the conventional Nyström method, the LCN 

provides a high accuracy discretization of integral operators whose kernels have either 
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weak or strong singularities (such as most of the operators of interest in electromagnetic 

analysis) by incorporating local correction strategy. In addition, two different sets of basis 

functions are introduced for the local corrections. The first is polynomial complete basis 

function that represents the current completely to a specified order on each cell. This can 

lead to spurious solution for the scatterers with edge singularizes. However, this can be 

remedied by the use of the mixed order basis function that represents the charge density 

completely to a specified order. In the following chapters, the LCN method implemented 

with Gauss-Legendre quadrature rules and Legendre polynomials basis functions (either 

polynomial complete or mixed-order) will be used to discretize the surface integral 

operators that are encountered.   

Copyright © Jin Cheng 2012 
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Chapter 3 Surface Integral Equations for a Perfect Electric Conductor 

Surface integral equation methods (SIE) [3] are widely used for solving time-

harmonic electromagnetic radiation and scattering problems from perfect electric 

conductors (PECs). The use of SIE for such problems provides several advantages 

relative to other alternatives. First, compared to PDE-based methods such as finite 

element method (FEM) [26], it incorporates the radiation condition exactly, leading to 

fewer approximations. Furthermore, it allows the underlying problems to be represented 

by meshing only the surfaces of the conductors. 

There are two basic surface integral equations for PECs [3], the electric field 

integral equation (EFIE) and the magnetic field integral equation (MFIE). In the EFIE, 

the boundary condition is enforced on the tangential electric field, whereas in the MFIE, 

the boundary condition is enforced on the tangential magnetic field. The EFIE is 

formulated as a first-kind integral equation, since the unknown quantity appears only 

under the integral operator. The MFIE is formulated as a second-kind integral equation, 

since the unknown quantity appears both outside and under the integral operators (MFIE 

consists of a diagonal operator plus a compact operator). Therefore, the impedance matrix 

obtained from the MFIE is better conditioned than that from the EFIE. The conditioning 

of the underlying system matrix is a critical factor either for iterative solvers or for direct 

solution methods. In this sense, the MFIE should be more useful than the EFIE. But the 

fact is that the EFIE is useful for much wider range of applications than the MFIE, this is 

because the EFIE provides accurate solutions for both open structures and structures with 

geometric singularities. This is the case in spite of the fact that the EFIE possesses a well-
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known limitation. The formulation breaks down at low frequencies (or, equivalently, 

when used with electrically small structures). 

Both the EFIE and the MFIE suffer from the interior resonance (or irregular 

frequency) problem when used with closed structures. In this situation, the uniqueness of 

the solution of either the EFIE or the MFIE is not guaranteed at the interior resonance 

frequencies. One of the remedies of such problem is the combined field integral equation 

method (CFIE) [3], which is obtained from a linear combination of the EFIE and the 

MFIE. Although the CFIE is the linear combination of the EFIE and the MFIE, its system 

matrix is better conditioned than that from either the EFIE or the MFIE at such resonant 

frequencies. For this reason, it is a preferred choice for modeling closed conducting 

objects. But unfortunately, the low frequency breakdown inherent in the EFIE spoils the 

conditioning of the CFIE for fine discretization or at low frequencies, and the inaccuracy 

of the MFIE negatively affects the accuracy of the CFIE when used with geometrically 

singular structures. 

For these reasons, much effort has been spent by many investigators to develop 

methods and/or formulations that remedy some of the aforementioned limitations of the 

standard formulations (CFIE, EFIE, MFIE). However existing strategies for addressing 

these difficulties have their own limitations. The purpose of this dissertation is to develop 

and demonstrate a new framework for resolving several of these (and related) limitations. 

Before moving on to this new work, we spend the remainder of this chapter with a 

detailed discussion of the standard surface integral equations for PEC obstacles (the EFIE, 

the MFIE and the CFIE). The remainder of this chapter is organized as follows. Section 

3.1 develops the EFIE, the MFIE and the CFIE using field expressions in terms of the 
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vector potentials. In Section 3.2, the locally corrected Nyström (LCN) [6] discretization 

of the SIE is demonstrated. In Section 3.3, the well-known low frequency breakdown 

inherent in the EFIE [1] is analyzed. Finally, Section 3.5 summarizes this chapter. 

3.1 The SIE Formulations for Perfectly Electric Conducting Scatterers 

The EFIE and the MFIE are derived by using the source-field relationships, the 

surface equivalence principle and the boundary conditions [3, 27]. We will start from 

Maxwell’s equations and the boundary conditions. 

Consider a homogeneous medium with impressed electric current density J  and 

M . The electromagnetic fields must satisfy Maxwell’s equations [27] (an j te ω  time 

dependence is assumed), 

 ,jωµ∇× = − −E M H   (3.1) 

 ,jωε∇× = +H J E   (3.2) 

 ,eρ∇⋅ =D   (3.3) 

 ,mρ∇⋅ =B   (3.4) 

where E  is electric field intensity, H  is magnetic field intensity, ε=D E  is electric flux 

density, µ=B H  is magnetic flux density, eρ  is the electric charge density, mρ  is the 

magnetic charge density, ε  is electric permittivity, and µ  is magnetic permeability, 

respectively. In addition to the four Maxwell’s equations, there is another equation that 

relates the change of the current density and the charge density. It is referred to as the 

continuity equation [27] 

 ,ejωρ∇⋅ = −J   (3.5) 

 .mjωρ∇⋅ = −M   (3.6) 
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At interfaces between media where there are discrete changes in the electrical parameters 

(such as ε  and µ ), the field vectors are also discontinuous and their behavior across the 

boundaries is governed by the boundary conditions [27] 

 ( )1 2ˆ ,sS
× − = −n E E M   (3.7) 

 ( )1 2ˆ ,sS
× − =n H H J   (3.8) 

 ( )1 2ˆ ,esS
ρ⋅ − =n D D   (3.9) 

 ( )1 2ˆ ,msS
ρ⋅ − =n B B   (3.10) 

where the subscripts 1 and 2 refer to the medium 1 and medium 2, respectively, n̂  is the 

unit normal vector to the boundary pointing from medium 2 to medium 1, and the 

subscript, S , indicates that the current and charge are on the surface. When medium 2 is 

a perfect electric conductor (PEC) which has infinite conductivity, the electric and 

magnetic field vectors satisfy the conditions [27] 

 ˆ 0,
S

× =n E   (3.11) 

 ˆ ,sS
× =n H J   (3.12) 

 ˆ ,esS
ρ⋅ =n D   (3.13) 

 ˆ 0.
S

⋅ =n B   (3.14) 

It is observed that there is a duality that exists in Maxwell’s equations describing 

the complementary fields and sources. Table 3.1 summarizes the duality relationships. 

By using Maxwell’s equations, the source-field relationships are derived next. In 

a source free region, equation (3.4) indicates that H  is solenoidal and thus can be written 

as the curl of another vector, 
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 ,= ∇×H A   (3.15) 

where A  is referred to as the magnetic vector potential and is an arbitrary vector. Then 

substituting (3.15) into (3.1) yields 

 ( ) 0j jωµ ωµ∇× = − ∇× ⇒∇× + =E A E A   (3.16) 

It follows that 

 .jωµ= − −∇ΦE A   (3.17) 

We will refer to Φ  as the electric scalar potential and Φ  is an arbitrary scalar that is a 

function of position. Taking the curl of both sides of (3.15) and applying the vector 

identity ( ) 2∇×∇× = ∇ ∇⋅ −∇A A A  yields 

 ( ) 2 .∇× = ∇ ∇⋅ −∇H A A   (3.18) 

Then substituting (3.18) into (3.2) leads to 

 ( ) 2 .jωε∇ ∇⋅ −∇ = +A A J E   (3.19) 

Substituting (3.17) into (3.19) reduces it to 

 ( )2 2 ,k jωε∇ + = − +∇ ∇⋅ + ∇ΦA A J A   (3.20) 

where 2 2k ω µε= . 

The Helmholtz Theorem indicates that to uniquely define the vector field A , the 

divergence of A  is required in addition to the curl of A  shown in (3.15). The Lorentz 

Gauge is used to simplify (3.20), 

 .jωε∇⋅ = − ΦA   (3.21) 

Then by substituting (3.21) into (3.20), (3.20) reduces to 

 2 2 ,k∇ + = −A A J   (3.22) 
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where the fact ( )j jωε ωε∇ − Φ = − ∇Φ  is used for homogeneous medium. Equation (3.22) 

is a vector Helmholtz equation. The solution to it can be obtained by the convolution of 

J  with the Green’s function [3], 

 ( ) ( ) ( ), ,
V

G dv′ ′ ′= ∫A r J r r r   (3.23) 

where r  and ′r  are the field and source position vector, respectively, and 

( ),
4

jkeG
π

′− −

′ =
′−

r r

r r
r r

 is the three-dimensional Green’s function. 

The fields due to J  are expressed as 

 1 ,j j
j

ωµ ωµ
ωε

= − −∇Φ = − + ∇∇⋅E A A A   (3.24) 

 .= ∇×H A   (3.25) 

By duality relationships listed in Table 3.1, the fields due to the magnetic current 

density, M , are written as 

 ,= −∇×E F   (3.26) 

 1 ,mj j
j

ωε ωε
ωµ

= − −∇Φ = − + ∇∇⋅H F F F   (3.27) 

where F  is the electric vector potential, 1
m jωµ

Φ = ∇⋅
−

F  is referred to as the magnetic 

scalar potential. By duality, F  is expressed as [3] 

 ( ) ( ) ( ), .
V

G dv′ ′ ′= ∫F r M r r r   (3.28) 

Thus for arbitrary impressed electric and magnetic current sources, the fields can 

be expressed as 
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 1 ,j
j

ωµ
ωε

= − + ∇∇⋅ −∇×E A A F   (3.29) 

 1 ,j
j

ωε
ωµ

= ∇× − + ∇∇⋅H A F F   (3.30) 

where A  and F  are indicated in (3.23) and (3.28), respectively. 

Next, the EFIE and MFIE on the perfect electric conductor (PEC) surface are 

derived from the equivalence principal and the boundary conditions on the PEC surface 

[3]. Figure 3.1 shows a PEC embedded in homogeneous medium characterized with 1ε  

and 1µ  illustrated by an incident electromagnetic wave with the electric field iE  and the 

magnetic field iH . Figure 3.2 depicts the equivalent problems. In the equivalent problem, 

the PEC scatterer is replaced by a homogeneous medium with the same constitutive 

parameters as the exterior region and the fields in the interior region are set to be zero. 

The equivalent source sJ  is placed along the surface of the PEC scatterer, which will 

produce the correct scattered fields in the exterior region. Then we can describe this 

scattering problem as 

 t i s= +E E E   (3.31) 

 t i s= +H H H   (3.32) 

where, iE  and iH  denote the incident fields which are produced by the primary source in 

the absence of the scatterer; sE  and sH  denote the scattered fields which are produced by 

the equivalent sources, sJ  in this case. Thus the original fields (total fields) in the 

presence of the scatterer are the superposition of the incident fields and the scattered 

fields, which are denoted as tE  and tH . 
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The EFIE is derived by enforcing the zero tangential electric field boundary 

condition of a PEC scatterer indicated in (3.11) 

 ˆ 0.t

S
× =n E   (3.33) 

where n̂  is the outward normal vector to the surface, S , which bounds the conductor. 

Then the EFIE can be written as 

 ( )ˆ 0.i s

S
× + =n E E   (3.34) 

Using vector potentials to express sE  in terms of sJ  indicated by (3.29), the EFIE can be 

more explicitly written as (cf.(3.23)) 

 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1ˆ ˆ ˆ

1ˆ ˆ, ,

ˆ ˆ, , ,

i

s s
S S

s s
S S

j
j

j G ds G ds
j

jk G ds j G ds
k

ωµ
ωε

ωµ
ωε

ηη

− × = − × + × ∇∇⋅

′ ′ ′ ′ ′ ′= − × + ×∇∇⋅

′ ′ ′ ′ ′ ′= − × − ×∇∇⋅

∫ ∫

∫ ∫

n E r n A r n A r

n J r r r n J r r r

n J r r r n J r r r

  (3.35) 

where η  is the impedance of the background medium, k  is the wave number, S∈r . 

Alternatively, the tangential component of the electric field can also be obtained by the 

dot product of a vector t  that is tangential to the surface with tE , then the scalar form of 

the EFIE is expressed as 

 ( ) ( ) ( ) ( ) ( ), , .i
s s

S S

jk G ds j G ds
k
ηη ′ ′ ′ ′ ′ ′− ⋅ = − ⋅ − ⋅∇∇⋅∫ ∫t E r t J r r r t J r r r   (3.36) 

The MFIE is derived by enforcing the tangential magnetic field boundary 

condition of a PEC scatterer indicated in (3.12) 

 ( )ˆ ,i s
sS+

× + =n H H J   (3.37) 
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where S +  denotes the surface just outside the PEC surface. Similar as that for the EFIE, 

the MFIE is expressed through (3.23) and (3.30) as 

 ( ) ( ) ( )ˆ ˆ , ,i
s s

S

G ds′ ′ ′× = − ×∇× ∫n H r J n J r r r   (3.38) 

where S +∈r . Because sH  undergoes a jump discontinuity between the surface just 

outside the PEC surface and that just inside, the integral in (3.38) is dual valued, which 

must be evaluated via a principal value integral. After applying the principal value, it can 

be shown that 

 ( ) ( ) ( )1ˆ ˆ , ,
2

s
s s

S

G ds′ ′ ′× = + ×∇×−∫n H r J n J r r r   (3.39) 

where, S∈r , 1
2 sJ  is the residual and 

S

−∫ is the principal value. Then the MFIE becomes 

 ( ) ( ) ( )1ˆ ˆ , ,
2

i
s s

S

G ds′ ′ ′× = − ×∇×−∫n H r J n J r r r   (3.40) 

Applying the vector identity ( )φ φ φ∇× = ∇ × + ∇×a a a  and ( ) 0s ′∇× =J r , equation (3.40) 

is expressed as 

 ( ) ( ) ( )1ˆ ˆ , .
2

i
s s

S

G ds′ ′ ′× = − ×−∇ ×∫n H r J n r r J r   (3.41) 

It is noted that (3.41) is written in a vector form. It is more practical to write it in a scalar 

form. We can apply a dot product of a tangential vector t  with both sides of (3.41), 

which leads to 

 ( ) ( ) ( )1ˆ ˆ , .
2

i
s s

S

G ds′ ′ ′⋅ × = ⋅ − ⋅ ×−∇ ×∫t n H r t J t n r r J r   (3.42) 
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Applying vector identity ( ) ( )⋅ × = ⋅ ×a b c c a b , equation (3.42) can be further expressed 

as 

 ( ) ( ) ( ) ( )1ˆ ˆ , .
2

i
s s

S

G ds′ ′ ′⋅ × = ⋅ − × ⋅−∇ ×∫t n H r t J t n r r J r   (3.43) 

As pointed earlier in this chapter, the CFIE [3] is one way to eliminate interior 

resonance problems and is also better conditioned than either the EFIE or the MFIE. The 

CFIE is the weighted average of the EFIE and MFIE, 

 ( )1 , 0 1,CFIE EFIE MFIEα α η α= + − ≤ ≤   (3.44) 

where α  is a constant. 

3.2 The LCN Implementation of the SIE Kernels 

In this section, the LCN implementation for the EFIE and the MFIE are presented, 

especially focusing on the treatment to the hypersingular term. In particular, curvilinear 

quadrilateral patches will be used to represent the underlying PEC surfaces. The electric 

current density J  on each patch will represented using a Legendre approximation for 

each vector component. The resulting global representation of J  can be written as 

 
( ) ( )

( )

1

1 1
,

p

p k

p

N

p
p

N N

k
p k

=

= =

=

=

∑

∑∑

J r J r

J r

  (3.45) 

where ( )pJ r  indicates the polynomial representation of ( )J r  on thp  patch, and pN  is 

the number of quadrilateral patches in the mesh. In the local correction, ( )pJ r  is 

expanded using mixed-order basis functions, thus ( )
pkJ r  takes the form indicated in 

(2.23) and (2.24). 
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3.2.1 The EFIE 

Consider the LCN implementation of the EFIE. A single-point kernel evaluation 

is required for all far interactions. In this regard it is important to recognize that, there is a 

divergence operator acting ( ) ( ),G′ ′J r r r , in the EFIE, which is not amenable to the 

single-point kernel evaluation. To accommodate a point-matching implementation, it is 

necessary to express the EFIE in an alternate form via the vector identity 

( )φ φ φ∇ ⋅ = ∇ ⋅ +∇ ⋅a a a  and ( ) 0′∇ ⋅ =J r . It follows 

 

( ) ( ) ( )

( ) ( )

,

, .

i

S

S

jk G ds

j G ds
k

η

η

′ ′ ′− ⋅ = − ⋅

′ ′ ′− ⋅∇ ∇

∫

∫

t E r t J r r r

t r r J r
  (3.46) 

Next the Gauss-Legendre quadrature rule with weights 
pqω  and abscissas 

pqr  is 

introduced on thp  patch to replace the integral in (3.46). The th
mq  row from patches that 

are sufficiently far from the filed point 
mqr  is expressed as 

 
( ) ( ) ( )

( ) ( )( )

2

1
,

, ,

q

q m p q p m pm m

p q m p pm

N
i

j q q j q q q
p far q

q j q q q

j k G
k

G

η ω

ω

∈ =

− ⋅ = − ⋅

+ ⋅∇ ∇ ⋅ 

∑ ∑a E r a J r r r

a r r J r
  (3.47) 

where, 
qmja  is a unitary vector evaluated at 

mqr ; ( ) ( )
( )

( )p

p p

p

q

q i q

q

J

g
=

r
J r a r

r
 indicated by 

(2.20), ( )pqJ r  is the unknown to be evaluated. 

For the near interaction, just a single integration is required. It is observed that the 

first integral in (3.46) has a singularity of ( )1O R , which is evaluated to the controllable 

precision using Duffy transform [28] and adaptive quadrature, but the second term is 
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hypersingular when the source point is approaching the field point. A derivation of an 

amenable numerical expression is provided below. First, the current density is expanded 

with the basis functions indicated in (3.45), then the hypersingular term can be expressed 

as 

 

( ) ( )( )

( ) ( )( ) ( )( )

( )( )( ) ( )( )

,

,

, ,

q m pm

p

q p mm

p

p q mm

p

j q k
S

j k s q
S

k s j q
S

G ds

G ds

G ds

′ ′ ′⋅∇ ∇ ⋅

′′ ′ ′= − ⋅∇ ⋅∇

′′ ′ ′= − ⋅∇ ⋅∇

∫

∫

∫

a r r J r

a J r r r

J r a r r

  (3.48) 

where, ( ) ( ), ,
m mq qG G′ ′ ′∇ = −∇r r r r ; ( ) ( ) ( ) ( ), ,

m p m pq k s q kG G′′ ′ ′ ′ ′∇ ⋅ = ∇ ⋅r r J r r r J r ,since 

( )
pk ′J r  is tangential to the surface and s

′∇  is the tangential component of the gradient 

operator; the second line of (3.48) is obtained by the complementary nature of the 

operators ( )( )( )p qmk s j
′′ ⋅∇ ⋅∇J r a . Then using vector identity ( )s s sφ φ φ∇ ⋅ = ∇ ⋅ + ∇ ⋅a a a , 

(3.48) is written as 

 

( )( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )( )

,

,

, .

p q mm

p

p q mm

p

p q mm

p

k s j q
S

s k j q
S

s k j q
S

G ds

G ds

G ds

′′ ′ ′− ⋅∇ ⋅∇

 ′ ′ ′ ′= − ∇ ⋅ ⋅∇ 

′ ′ ′ ′+ ∇ ⋅ ⋅∇

∫

∫

∫

J r a r r

J r a r r

J r a r r

  (3.49) 

The first term on the right hand side of (3.49) can be further expressed using the 

divergence theorem for open surfaces [7] as 
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( )( ) ( )( )

( )( )( ) ( )( )

,

ˆ , ,

p q mm

p

p q mm

p

s k j q
S

p k j q
C

G ds

G dl

 ′ ′ ′ ′− ∇ ⋅ ⋅∇ 

′ ′ ′ ′= − ⋅ ⋅∇

∫

∫

J r a r r

e J r a r r


  (3.50) 

where pC  is the closed contour bounding pS ; ˆ p′e  is used to indicate the unit outward 

normal vector to pC  , which is also tangential to pS  . The second term on the right hand 

side of (3.49) is written as 

 ( )( ) ( )( ) ( ) ( )( ), , ,
p q m m q pm m

p p

s k j q q j s k
S S

G ds G ds′ ′′ ′ ′ ′ ′ ′∇ ⋅ ⋅∇ = ∇ ⋅ ∇ ⋅∫ ∫J r a r r r r a J r   (3.51) 

which still has a ( )21O R  singularity and is not yet numerically integrable. This can be 

overcome by introducing a tangential vector, ( )
mq ′K r , which is constructed to be equal 

to ( )
q pmj s k

′ ′∇ ⋅a J r  where the source point coincides with the field point (singular point), 

thus cancelling out one order of the singularity. Then with ( )
mq ′K r , (3.51) is further 

written as 

 

( ) ( )( )
( ) ( ) ( )( )
( ) ( )

,

,

, .

m q pm

p

m q p mm

p

m m

p

q j s k
S

q j s k q
S

q q
S

G ds

G ds

G ds

′′ ′ ′∇ ⋅ ∇ ⋅

′′ ′ ′ ′= ∇ ⋅ ∇ ⋅ −

′ ′ ′+ ∇ ⋅

∫

∫

∫

r r a J r

r r a J r K r

r r K r

  (3.52) 

( )
mq ′K r  is constructed as 

 ( ) ( ) ( ) ,m

m p
qm

q
q s kg

g ′=

′  ′′ ′= ∇ ⋅ ′  r r

ψ r
K r J r   (3.53) 

Then ( )
mq ′ψ r  is defined by 
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 ( ) ( ) ( ) ( ) ( )1 2
1 2 .

m q qm m
q qm m

q j j
′ ′= =

′ ′ ′= ⋅ + ⋅
r r r r

ψ r a a a r a a a r   (3.54) 

Such that ( ) ( )
m q pmq j s k

′′ ′= ∇ ⋅K r a J r  at the singular point. Then the singularity in the first 

term on the right hand side of (3.52) is ( )1O R  now and can be integrated by using 

Duffy transform [28] and adaptive quadrature. The second term on the right hand side of 

(3.52) can be further expressed as 

 
( ) ( ) ( ) ( )( )

( ) ( )

, ,

,

m m m m

p p

m m

p

q q s q q
S S

q s q
S

G ds G ds

G ds

′ ′ ′ ′ ′ ′ ′∇ ⋅ = − ∇ ⋅

′ ′ ′ ′+ ∇ ⋅

∫ ∫

∫

r r K r r r K r

r r K r
  (3.55) 

From (3.53) to (3.54), it is obvious that ( ) 0
ms q′ ′∇ ⋅ =K r . Then by using the open surface 

divergence theorem on the remaining part, 

 ( ) ( ) ( ) ( ), , .
m m m m

p p

q q q q
S C

G ds G dl′ ′ ′ ′ ′ ′ ′∇ ⋅ = − ⋅∫ ∫r r K r e K r r r


  (3.56) 

In summary, the hypersingular term can be rewritten as 

 

( ) ( )( )

( ) ( ) ( )( )
( )( ) ( )( )
( ) ( )

,

,

ˆ ,

, .

q pm

p

m q p mm

p

p qm

p

m m

p

j k
S

q j s k q
S

p k j
C

q q
C

G ds

G ds

G dl

G dl

′ ′ ′⋅∇ ∇ ⋅

′′ ′ ′ ′= ∇ ⋅ ∇ ⋅ −

′ ′ ′ ′− ⋅ ⋅∇

′ ′ ′ ′− ⋅

∫

∫

∫

∫

a r r J r

r r a J r K r

e J r a r r

e K r r r





  (3.57) 

The test points 
mqr  are assumed to be inside of the patch and hence do not lie on the 

contour, thus the contour integrals are non-singular and can be evaluated by using 
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adaptive quadrature. The surface integral has ( )1O R  singularity, thus can be computed 

to controllable accuracy by the Duffy transform [28] and adaptive quadrature. 

3.2.2 The MFIE 

Consider the LCN implementation of the MFIE. For far interaction, the th
mq  row 

can be written as (cf.(3.43)) 

( )( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( )1

1ˆ
2

ˆ , ,

p

q q m q pm m m

p

q
p

q q p m p pm m

p

qi
j j q j i q

q

N
q

j j q q q i q
p far q

q

J

g

J
G

g
ω

∈ =

⋅ × = ⋅

− × ⋅ ∇ ×∑ ∑

r
a n H r a a r

r

r
a n r r a r

r

  (3.58) 

where ˆ
qmjn  is the outward unit normal to the PEC surface evaluated at the field point 

mqr . 

For the near interaction, just a single integration is required. Rewrite the integral 

indicated by (3.43) as 

 

( ) ( ) ( )

( ) ( )( ) ( )

ˆ ,

,ˆˆ ,

s
S

s
S

G ds

G
ds

R

′ ′ ′× ⋅ ∇ ×

′∂ 
′ ′= − × ⋅ ×  ∂ 

∫

∫

t n r r J r

r r
t n J r R

  (3.59) 

where ′= −R r r , and R = R , and ˆ R=R R . The term ( ),G
R

′∂
∂
r r

 has ( )21O R  

singularity. Note also that, as 0R → , the vector dot product ( ) ( )( )ˆˆ 0s ′× ⋅ × →t n J r R . It 

is because the first cross product is tangential to the surface and the second cross product 

is normal to the surface at the field point. Therefore this zero cancels out one of the poles. 

Therefore, the kernel indicated by (3.59) has ( )1O R  singularity. Then the integral can 
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be evaluated to the controllable precision using the Duffy transform and adaptive 

quadrature. 

3.3 The Low Frequency Breakdown of the EFIE 

A well-known limitation of the EFIE is the fact that the formulation breaks down 

at low frequencies [1]. The EFIE operator is the sum of a vector potential term that is 

directly proportional to the frequency and a scalar potential term that is inversely 

proportional to the frequency. Thus the breakdown occurs because the scalar potential 

contribution to the tangential electric field overwhelms the contribution from the vector 

potential at low frequencies. Since the scalar potential places no constraint on the 

rotational part of the current, this imbalance between the scalar and vector potentials 

yields a poorly conditioned linear system when the EFIE is discretized. 

This breakdown is closely related to the natural Helmholtz decomposition of the 

current at low frequencies. In Maxwell’s equations, the electric and magnetic fields 

decouple at zero frequency. Accordingly, the electric current J , can be separated into 

rotational and irrotational components ,  

 ,R I= +J J J   (3.60) 

where, the rotational component, RJ , is divergence free and generates the magnetic field. 

The irrotational component IJ  generates the electric field. The continuity equation can 

be expressed in terms of IJ  as 

 ( )
e s

s R I

s I

jωρ− = ∇ ⋅

= ∇ ⋅ +

= ∇ ⋅

J
J J

J
  (3.61) 

As the frequency is approaching zero, the electric charge density, ρ  can be expressed as 
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0

lim s I
e jω

ρ
ω→

∇ ⋅
=

−
J   (3.62) 

It is observed from (3.62), to produce a physically finite charge as frequency vanishes, 

IJ  must have a frequency scaling as ( )I O ωJ  , whereas RJ  has no such frequency 

scaling. Furthermore, RJ  is in the null space of the hypersingular (i.e., scalar potential) 

operator of the EFIE. Therefore, the scalar potential contribution to the EFIE depends 

only on IJ , whereas the contribution from the vector potential term depends on the total 

current J . As stated previously, the vector potential part will be numerically lost at very 

low frequencies, therefore the electric current solved by the EFIE only constrains IJ , 

which makes the system under-determined. Although small, the vector potential part is 

essential, since it will generate a non-zero magnetic field when the frequency tends to 

zero. 

3.5 Summary 

This chapter has introduced the surface integral equations, the EFIE, the MFIE 

and the CFIE and their LCN implementations. Their advantages and disadvantages were 

discussed, especially focusing on the low-frequency breakdown associated with the EFIE. 

A new strategy for addressing this limitation of the EFIE is provided in the next chapter.  
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Table 3.1 Principle of Duality 
E  H  
H  −E  
J  M  
M  −J  

eρ  mρ  
mρ  eρ−  
ε  µ  
µ  ε  
A  F  
F  −A  
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Figure 3.1 Original problem involving a PEC scatterer 
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Figure 3.2 Equivalent exterior problem associated with Figure 3.1. 
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Chapter 4 EFIE-hd Formulation for a Conductor 

A new approach to formulate electromagnetic scattering from perfect electric 

conductors (PEC) is presented in this chapter. This new approach is applied to the electric 

field integral equation (EFIE), and it incorporates a Helmholtz decomposition (HD) of 

the current. For this reason, the new formulation is referred to as the EFIE-hd. Unlike the 

stabilization methods cited in Chapter 1 [1, 10, 11], the HD of the current is 

accomplished herein via appropriate surface integral constraints, and leads to a stable 

linear system without having to introduce a HD of the tangential electric field. 

For aforementioned reasons, the EFIE-hd enables the use of standard locally 

corrected Nyström (LCN) discretization methods for the resulting formulation. As with 

the augmented EFIE (AEFIE) of [18], the frequency stability of the EFIE-hd formulation 

is achieved without introducing additional non-locality into the problem formulation via 

either global basis functions or stabilizing global operators. Because of this, the EFIE-hd 

is amenable to localization-based factorizations [18, 19]. In contrast to the AEFIE, this is 

accomplished here without introducing charge as an unknown. The EFIE-hd also 

provides accurate solutions for both the near electric and magnetic fields in cases for 

which the AEFIE of [18] does not. 

The remainder of this chapter is organized as follows. The basic EFIE-hd 

formulation is developed in Section 4.1, as well as its LCN discretization. Section 4.2 

presents the low frequency version of the EFIE-hd (LF-EFIE-hd) formulation and its 

LCN implementation, since the initial EFIE-hd formulation fails at low frequencies. The 

numerical results are provided in Section 4.3. Finally section 4.4 concludes this chapter. 
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4.1 The Development of the EFIE-hd Formulation 

4.1.1 The Helmholtz decomposition of the current 

Consider the problem of electromagnetic scattering from a perfect electric 

conductor (PEC) embedded in a homogeneous medium. As discussed in Chapter 3, this 

problem can be formulated by enforcing the zero tangential electric field boundary 

condition on the PEC surface, which is referred to as the EFIE, 

 

( ) ( ) ( )

( )( ) ( )

ˆ ,

ˆ , ,

i

S

s
S

jk G ds

j G ds
k

η

η

′ ′ ′= − ×

′ ′ ′ ′− ×∇ ∇ ⋅

∫

∫

M r n J r r r

n J r r r
  (4.1) 

where J  denotes the electric current density on the conductor, η  is the impedance of the 

background medium, and ( ),G ′r r  is the Green’s function of the homogeneous medium. 

The source term is related to the incident electric field, ( )iE r , as 

 ( ) ( )ˆ ,i i= − ×M r n E r   (4.2) 

where n̂  is the outward normal vector to the surface, S , which bounds the conductor. 

For the purposes of the following discussion, it is convenient to express the EFIE 

in terms of contributions from the vector and scalar potentials, 

 ( ) ( ) ( )1 ˆ ˆ ,i jjk
kη

− = × + ×∇ΦM r n A J n J   (4.3) 

where  

 ( ) ( ) ( ), ,
S

G ds′ ′ ′= ∫A J J r r r   (4.4) 

 ( ) ( )( ) ( ), .s
S

G ds′ ′ ′ ′∇Φ = ∇ ∇ ⋅∫J J r r r   (4.5) 

The Helmholtz decomposition (HD) of the current can be expressed as 
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 ,R I= +J J J   (4.6) 

where RJ  is the rotational part of the current, and IJ  is the irrotational part. The specific 

forms of these currents are [29], 

 ,I sϕ= ∇J   (4.7) 

 ˆ ,R sψ= ×∇J n   (4.8) 

where ϕ  and ψ  are scalar functions defined over the surface of scatterer [29]. 

Using the representation (4.6) in (4.3) provides 

 ( )1ˆ ˆ ˆ ,R i

I

jjk jk
k η

  × × + ×∇Φ = −     

J
n A n A n M r

J
  (4.9) 

which was obtained by using the fact that [29], 

 ( )ˆ 0.s R s sψ∇ ⋅ = ∇ ⋅ ×∇ =J n   (4.10) 

Equation (4.9) may be solvable if discretized using a vector basis that facilitates 

an explicit HD of the DOF. However, if a standard Nyström basis is used for the currents, 

then (4.9) is not solvable because it is under-constrained. This occurs because a standard 

Nyström basis introduces both rotational and irrotational DOF for both RJ  and IJ . 

Additional constraints are therefore required to effectively distinguish between rotational 

and irrotaional currents in (4.9) when using basis functions that do not provide an explicit 

Helmholtz decomposition. For this reason, we next consider the imposition of global 

constraints on the spaces used for RJ  and IJ . 

4.1.2 Zero divergence constraints 

To develop the appropriate constraints for the rotational and irrotational current 

spaces, the Nyström discretization described in Chapter 2 is employed. In particular, 
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curvilinear quadrilateral patches are used to represent the underlying PEC surfaces. The 

currents RJ  and IJ  on each patch will be represented using a Legendre approximation 

for each vector component. The resulting global representation of RJ  can be written as 

 
1

,
pN

p
R R

p=
=∑J J   (4.11) 

where p
RJ  indicates the polynomial representation of RJ  on a given cell, and pN  is the 

number of quadrilateral patches in the mesh. A corresponding representation of IJ  is 

 
1

.
pN

p
I I

p=
=∑J J   (4.12) 

Given the general forms indicated by (4.7) and (4.8), the current should satisfy the 

following zero-divergence conditions (cf. (4.10)), 

 0,s R∇ ⋅ =J   (4.13) 

 ( )ˆ 0.s I∇ ⋅ × =n J   (4.14) 

Using (4.11) in (4.13) provides 

 

( ) ( ) ( )

1
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1 1
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p e
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N N
p p e
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p e
J δ

=
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 
∇ ⋅ = ∇ ⋅  

 

= ∇ ⋅ + − =

∑

∑ ∑

J J

J l l r

  (4.15) 

The first term on the last line of (4.15) indicates the divergence of the polynomial 

representation of the current within each patch. The second term is the contribution from 

any discontinuities of the current across patch boundaries. The scalar function ( ),
e
R diffJ l  

denotes the difference between the values of the currents normal to and on opposite sides 

of an edge, and eN  is the number of edges. The vector l  is used to denote the vector 

43 



location of all edge points. In the case of two adjacent cells, this can be mathematically 

represented as 

 ( ) ( ) ( )1 2
, 1 2ˆ ˆ ,e

R diff R RJ = ⋅ + ⋅l e J l e J l   (4.16) 

where 1ê  and 2ê  are used to indicate the outward normal vectors emanating from the two 

cells at the point indicated by the vector l . Similarly, 1
RJ  and 2

RJ  indicate the current on 

opposite sides of the edge at the point l . (The treatment of open surfaces is discussed in 

Section 4.1.3.) 

The constraint (4.15) is equivalent to the two separated conditions 

 ( )
1

0,
pN

p p
s R

p=
∇ ⋅ =∑ J   (4.17) 

 ( ),
1

0,
eN

e
R diff

e
J

=

=∑ l   (4.18) 

where the delta-function has been dropped in (4.18). 

To improve the conditioning of the final linear system, it is useful to convolve 

(4.17) with the Green’s function, 

 ( ) ( )( )
1

, 0.
p

p

N
p p

s R
p S

G
=

′ ′ ′∇ ⋅ =∑ ∫ r r J r   (4.19) 

For notational convenience, we will respectively represent (4.19) and (4.18) as 

 0,s RD =J   (4.20) 

 0.l RD =J   (4.21) 

The definitions of sD  and lD  are apparent through a comparison of (4.20) with (4.19) 

and (4.21) with (4.18). 
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Conditions analogous to (4.20) and (4.21) can be developed from (4.14) when a 

similar, piecewise continuous representation is used for IJ . From (4.12), 

 ( )
1

ˆ ˆ .
pN

p
I I

p=
× = ×∑n J n J   (4.22) 

Using this in (4.14) yields constraints similar to (4.19) and (4.18), 

 ( ) ( )( )( )
1

ˆ, 0,
p

p

N
p p

s I
p S

G
=

′ ′ ′∇ ⋅ × =∑ ∫ r r n J r   (4.23) 

 ( ),
1

0,
eN

e
I diff

e
J

=

=∑ l   (4.24) 

where, 

 ( ) ( )( ) ( )( )1 2
, 1 2ˆ ˆ ˆ ˆ .e

I diff I IJ = ⋅ × + ⋅ ×l e n J l e n J l   (4.25) 

Equations (4.23) and (4.24) can be respectively expressed as 

 ( )ˆ 0,s ID × =n J   (4.26) 

 ( )ˆ 0,l ID × =n J   (4.27) 

where operators sD  and lD  are identical to those defined above. 

Combining (4.20) through (4.27) with (4.9) yields  
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  (4.28) 

The formulation indicated by (4.28) is referred to as the EFIE-hd formulation for closed 

surfaces. 
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4.1.3 Modification for open surfaces 

The extension of (4.28) to open structures can be accomplished through 

appropriate modifications of (4.16) for RJ  and (4.25) for IJ . Equation (4.16) reduces at 

an open edge to 

 ( ) ( ), ˆ .e
R diff RJ = ⋅l e J l   (4.29) 

When used in (4.18), this effectively imposes the condition that the component of the 

rotational current that is normal to an edge of the open surface must vanish. Because the 

modification indicated by (4.29) is a straightforward specialization of (4.16) that, in 

practice, amounts to incorporating all rotational currents available at each edge, the 

condition indicated by (4.21) will be used without change for both open and closed 

surfaces (for an open edge, there is only one current and (4.16) naturally reduces to 

(4.29)). 

In contrast, the form of lD  required in (4.27) is changed for an open surface. At 

an open edge, the constraint indicated by (4.25) is not used; the current ˆ I×n J  is only 

constrained via (4.25) at internal mesh edges. We denote the modified form of (4.27) as 

 ( ), ˆ 0.l I ID × =n J   (4.30) 

The operator ,l ID  differs from lD  in that it imposes no constraints at open edges of the 

mesh. Using (4.30), the EFIE-hd for open surfaces is thus, 
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  (4.31) 
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The only change in (4.31) relative to (4.28) is the incorporation of ,l ID  rather than lD  in 

constraining ˆ I×n J . 

4.1.4 The LCN implementation of EFIE-hd 

The formulations indicated by (4.28) and (4.31) are discretized using the locally 

corrected Nyström (LCN) method [6, 8] For local corrections, a mixed-order Legendre 

polynomial basis with order ( )1p p× +  is used for each of the tangential components of 

IJ , and a p p×  order representation is used for each tangential component of RJ . The 

scalar ranges of the sD  operators were tested on a ( ) ( )1 1p p+ × +  grid of points on each 

patch. The edge operator lD  in (4.28) is tested at ( )1p +  points along each edge of the 

mesh. For open geometries, ,l ID  of (4.31) is tested at ( )1p +  points along all interior 

mesh edges; test points are not used on open edges. The last row of (4.28) is the EFIE, 

which is tested using the strategy discussed in Section 3.2.1. 

The specified LCN discretization of (4.28) yields a system matrix that has the 

following row and column dimensions: 

 

( )2

2

2 2

2

2

2( 1) 2

4 2

2( 1)

4 2 2

4 6
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p p

rows p e p e p

p p e

p p

n q q q N

q N qN

n q N qN q N qN q qN

q N qN qN

q N qN

= + +

= +

= + + + + +

= + +

= +

  (4.32) 

where 1q p= +  is the number of quadrature points, and we have used the fact that the 

number of edges in a closed quadrilateral mesh is twice the number of patches 
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( )2e cN N= . The number of rows ( )rowsn  in (4.32) was obtained from the number of test 

points used for each equation in (4.28), as indicated above. 

From (4.32) it is clear that the proposed LCN discretization of (4.28) yields an 

over-determined linear system ( )rows colsn n> . A similar result is obtained from (4.31) for 

open structures. These over-determined linear systems are herein solved using an 

Hermitian complement strategy. In particular, let the matrix equation obtained from the 

LCN discretization of (4.28) or (4.31) be denoted 

 ,=Zx F   (4.33) 

where Z  is the over-determined system matrix. This system is herein solved by 

performing an LU factorization of the following square system, 

 ,H H=Z Zx Z F   (4.34) 

where HZ  denotes the Hermitian conjugate of Z . 

It has previously been shown that sparse direct solution methods can also be used 

for non-square systems such as (4.33) [19], which will be described in the next chapter. 

Not surprisingly, the EFIE-hd eventually breaks down as the frequency is lowered. 

As can be observed from (4.28), the contributions from the vector potential and the scalar 

potential are still imbalanced. At sufficiently low frequencies, the contribution of the 

vector potential to the EFIE is numerically negligible. This is problematic since the 

vector potential provides the primary constraints on the rotational current, RJ . The next 

section outlines a strategy for addressing this low-frequency breakdown of the EFIE-hd. 
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4.2 The Low Frequency version of EFIE-hd 

4.2.1 Formulation and matrix form 

In order to solve the low-frequency breakdown of the aforementioned EFIE-hd 

formulation, the constraints provided by the vector potential can be more effectively 

incorporated by considering the divergence of the EFIE (4.3), 
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  (4.35) 

where we have again used (4.10). The operator Q  is introduced in (4.35) for notational 

convenience, 

 ( ) ( )( )ˆ .sQ = ∇ ⋅ ×J n A J   (4.36) 

Using (4.35) with (4.28) and scaling IJ  with the wavenumber provides the 

following form of the EFIE-hd, 
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  (4.37) 

An additional factor of ( )1 2π  is included in the last row of the system in order to 

balance the norms of the operators and improve the conditioning of the resulting linear 

system. The corresponding formulation for open geometries is obtained by replacing lD  
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with ,l ID  in the fourth row of (4.37) (cf.(4.31)). Equation (4.37) will be referred to as the 

low-frequency (LF) version of the EFIE-hd. 

The scaling of the irrotational current introduced in (4.37) is motivated by the 

dual divergence constraints imposed on IJ  and ˆ I×n J . The divergence of IJ  is indicated 

by the continuity equation [27], 

 ,s I jωρ∇ ⋅ = −J   (4.38) 

where ρ  is the surface charge density. The divergence of ˆ I×n J  is constrained in (4.37) 

as indicated by (4.14). Taken together, these conditions indicate that I k∝J . 

4.2.2 The LCN implementation of the LF EFIE-hd 

The LF EFIE-hd indicated by (4.37) is discretized using the same locally 

corrected Nyström method described for open and closed geometries in Section 4.1.5. 

The newly introduced row obtained from (4.36) is tested on a scalar grid of 

( ) ( )1 1p p+ × +  points on each quadrilateral patch, and the over-determined system is 

again solved using the method indicated by (4.34). 

4.3 Numerical Examples 

In this section, the frequency stability of LF EFIE is studied and the validity of 

EFIE-hd at high frequencies and LF EFIE-hd at both high frequencies and low 

frequencies are demonstrated. 

4.3.1 Frequency stability of LF EFIE 

For this study, a one-meter radius PEC sphere, a one-meter PEC cube, and a one-

meter square PEC plate are used. The surface of the sphere, the cube and the square plate 

are discretized using 367, 150, 25 bilinear quadrilateral patches, respectively. The basis 
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order is 1p = . As pointed out previously in this chapter, the EFIE-hd eventually breaks 

down as the frequency is lowered. This is indicated in Figure 4.1, which depicts the 

condition number of (4.28) as a function of frequency for the 1-meter radius PEC sphere. 

The condition number is observed to increase quadratically with the inverse of the 

frequency. The source of this behavior is evident from (4.28): contributions to (4.28) 

from the vector potential terms are proportional to frequency, whereas the contributions 

from the scalar potential term are proportional to the inverse of the frequency. Also in 

Figure 4.1, the condition number of the LF EFIE-hd is plotted versus frequency for the 

above three geometries. Unlike the EFIE-hd (4.28), the condition number of (4.37) is 

stable as the frequency is decreased. Note also that, in the case of the sphere, the 

condition number of the LF EFIE-hd (4.37) is somewhat higher than the condition of the 

EFIE-hd (4.28) at 100 MHz. This difference in the condition numbers obtained from the 

two formulations is primarily due to the scaling of IJ  by the wavenumber in (4.37). That 

scaling is physically most appropriate at lower frequencies. 

4.3.2 High frequencies 

In this section, the validity of EFIE-hd as well as LF EFIE-hd at higher 

frequencies for deferent geometries is demonstrated. 

The first example considers the problem of a ˆ−z  travelling plane wave (polarized 

along the x̂  direction) scattering from a one-meter radius, PEC sphere. The surface of the 

sphere is discretized using 367 bilinear quadrilateral cells, and the basis order is 1p = . 

Figure 4.2 and Figure 4.3 show the scattering cross-sections of the sphere at frequencies 

of 50 and 300 MHz, respectively. The EFIE-hd and LF EFIE-hd solutions are in good 

agreement with both the analytical solution and the standard EFIE solution. 
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The cross-sections obtained for a one-meter cube at 50 MHz using the standard 

EFIE, the EFIE-hd (4.28) and the LF EFIE-hd (4.37) with 1p =  are shown in Figure 4.4. 

Although not shown, similarly good agreement is observed at 300 MHz for this geometry. 

Finally, consider the problem of scattering from the corner reflector illustrated in 

Figure 4.5. The excitation in this case is a plane wave incident from the 4, 4θ π ϕ π= =  

direction. The linearly polarized electric field points in ˆ ˆ ˆ0.5 0.5 0.707+ −x y z  direction. 

The corner reflector is an open geometry, and it is necessary to use the EFIE-hd 

formulation indicated by (4.31) and the LF EFIE-hd formulation indicated by (4.37) 

replacing lD  with ,l ID  in the fourth row of (4.37) (cf.(4.31)). Figure 4.6 shows scattered 

cross-sections obtained at 50 MHz using the EFIE and EFIE-hd formulations with 1p =  

and 2p = . The agreement between the two solutions is good, and both solutions appear 

to be converging to the same result as the order is increased. Figure 4.6 also shows the 

computed scattered cross-section obtained at 50 MHz using the LF EFIE-hd formulation 

with 1p = , which agrees well with those computed using the standard EFIE and the 

EFIE-hd of (4.31). Although not shown, similarly good agreement is observed at 300 

MHz for this geometry. 

4.3.3 Low frequencies 

Consider the near fields excited by a 1 Hz, ˆ−z  traveling plane wave polarized 

along the x̂  direction incident on a one-meter radius PEC sphere discretized with 367 

bilinear quadrilaterals and basis order 1p = . Figure 4.7 illustrates the ϕ − directed near 

electric and magnetic fields computing using the LF-EFIE-hd at a distance of 0.5 meters 

above the sphere. Also shown are the Mie series and AEFIE [18] solutions. Good 

agreement among all three formulations is obtained for the near electric field. Similarly 
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good agreement is observed between the Mie series and LF EFIE-hd solutions for the 

near magnetic field. Large errors are observed in the near magnetic field obtained from 

the AEFIE at this frequency. The latter errors might be corrected by using a perturbative 

strategy similar to that reported in [30]; this possibility is not investigated here. 

Finally, Figure 4.8 displays the near electric and magnetic scattered fields 

computed using the AEFIE and LF EFIE-hd for the corner reflector of Figure 4.5. The 

excitation is a 1 Hz plane wave incident from the 4, 4θ π ϕ π= =  direction. The 

linearly polarized electric field points in the ˆ ˆ ˆ0.5 0.5 0.707+ −x y z  direction. Excellent 

agreement is again observed between the AEFIE and LF EFIE-hd solutions for the near 

electric field. As observed above for the PEC sphere, there is a large difference between 

the two solutions for the near magnetic field. While it appears that the AEFIE solution for 

s
φH  is inaccurate due to its large magnitude, the accuracy of the LF EFIE-hd solution is 

more difficult to evaluate in this case due to the lack of an analytical solution. 

4.4 Summary 

In this chapter, a new electric field-based formulation for scattering from perfect 

electric conductors, which is referred to as the EFIE-hd, is presented and developed in 

detail. The formulation provides stable and accurate solutions for the electric and 

magnetic fields at low frequencies through a Helmholtz decomposition of the surface 

current. Instead of relying on a topological decomposition of the basis into rotational and 

irrotational subspaces, the EFIE-hd incorporates appropriate global constraints to 

effectively enforce the desired decomposition on the independent vector basis spaces 

used for the rotational and irrotational currents. Furthermore, the new formulation does 

not rely on a HD of the tangential electric field. 
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By also incorporating a constraint on the divergence of the EFIE, it has been 

shown that the resulting system enables the application of a single LCN discretization 

strategy at all frequencies considered. The solutions obtained from the resulting over-

determined system have been observed to be accurate for both open and closed 

geometries. 

The EFIE-hd does not rely on charge to achieve frequency stability. However, it 

does approximately double the number of degrees of freedom used to represent the 

surface current when used with an LCN discretization. This is because there is no 

convenient method for topologically identifying rotational and irrotational subspaces 

when using a Nyström discretization. It may be possible to avoid this increase in the DOF 

by using a current representation that admits a topological decomposition, but this 

possibility has not been explored.  
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Figure 4.1 Condition number of matrix obtained from LCN discretization of EFIE-hd and 
LF EFIE-hd for several PEC geometries ( )1p = . 

 
Figure 4.2 The cross-section at 300 MHz for plane wave scattering from a 1-meter radius 
PEC sphere ( )0ϕ = . 
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Figure 4.3 Same as Figure 4.2 at 50 MHz. 

 
Figure 4.4 Cross-section at 50 MHz for plane wave scattering from a one-meter PEC 
cube ( )0ϕ = . 
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Figure 4.5 The corner reflector geometry is composed of three, 1-meter square plates and 
discretized using a uniform quadrilateral mesh. 

 
Figure 4.6 50 MHz cross-section for plane wave scattering form the corner reflector 
illustrated in Figure 4.5 ( )0ϕ = .  
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Figure 4.7 Scattered electric (top) and magnetic (bottom) fields computed using a Mie 
series, AEFIE and LF EFIE-hd formulations for 1 Hz plane wave scattering from 1-meter 
radius PEC sphere. The near fields are sampled 0.5 m above the PEC surface. 

 
Figure 4.8 Near electric and magnetic scattered fields for 1 Hz plane wave excitation of 
the corner reflector of Figure 4.5. Fields are sampled on the semicircle of radius 2 m 
centered on the origin.  

Copyright © Jin Cheng 2012 
 

58 



Chapter 5 Direct Solution Method Using Overlapped Localizing LOGOS Modes for 

AEFIE and AEFIE-G at Low Frequencies 

In this chapter, a fast, direct numerical analysis method using overlapped 

localizing local-global modes (OL-LOGOS) [4, 5] is considered for solving 

electromagnetic problems at low frequencies. We focus on the importance of using well-

conditioned formulations to obtain efficient numerical performance from the OL-LOGOS 

solution algorithm. The well-conditioned formulation that will be considered is the 

augmented EFIE(AEFIE) [18, 19]. The application of the OL-LOGOS algorithm to the 

EFIE-hd formulation developed in the previous chapter will not be treated in this 

dissertation. 

The augmented electric field integral equation (AEFIE) with a locally corrected 

Nyström (LCN) discretization [18, 19] can partially overcome the low frequency 

breakdown problem inherent in the conventional EFIE. The AEFIE remains well 

conditioned at very low frequencies, and it provides accurate solutions for the electric 

field. However, the magnetic fields computed using the AEFIE are incorrect (see Figure 

4.7 above), and it is difficult to effectively extend the well-conditioned nature of the 

AEFIE to non-PEC materials. The performance of the OL-LOGOS algorithm for the 

AEFIE is considered nevertheless as it provides a relevant formulation that is well-

conditioned with respect to both frequency changes and mesh refinement. It thus provides 

a useful vehicle for exploring the performance of the OL-LOGOS algorithm. 

The AEFIE is obtained by augmenting the conventional EFIE with the continuity 

equation and including charge as additional set of unknowns [16, 18]. In this way, the 

59 



contributions of the vector potential and the scalar potential terms are separated to 

remove the imbalance at low frequencies. 

The LCN method is used to discretize the AEFIE formulation [18]. As pointed out 

in Chapter 2, the LCN method has several advantages. In addition to providing high order 

error convergence, the LCN scheme has a distinct advantage over Galerkin scheme in 

that only a single integration is required for the near interaction and just a single-point 

kernel evaluation is required for the far interaction. This feature speeds up the fill 

procedure in local-global solution (LOGOS) framework. 

When using a Nyström scheme the current is represented in terms of Legendre 

polynomials in each patch of the mesh and is generally discontinues across cell 

boundaries. This discontinuity in the current gives rise to line charges on cell boundaries. 

Therefore, in the implementation of AEFIE with the LCN discretization, additional 

degrees of freedom for line charges are required, and a reduced version of the continuity 

equation is obtained for line charge along patch edges. It has been shown that the surface 

charge and line charge still satisfy charge neutrality constraints, which can be included as 

an additional row in the system matrix, thus yielding an over-determined system matrix. 

While the resulting AEFIE is frequency stable, it is not stable with respect to mesh 

refinement. An improved formulation is obtained by convolving the continuity equation 

on the surface with the Green’s function. The resulting formulation is herein referred to 

as the AEFIE-G. It has been found that, with appropriate (diagonal) scaling. The AEFIE-

G provides a formulation for low frequency field interactions with conducting structures 

that is stable with respect to both frequency and mesh refinement. 
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In order to solve large scale and complex electromagnetic problems, a LOGOS 

based fast direct solver [4, 5] is used to factor the AEFIE and AEFIE-G system matrices. 

In particular, the overlapped localizing LOGOS (OL-LOGOS) framework will be 

considered here. To solve the rank deficiency issue of the system matrix at low 

frequencies, the charge neutrality constraint can be explicitly enforced by reducing the 

number of unknowns [16]. However, this may result in poor local conditioning of the 

system matrix. Alternatively, the charge neutrality constraint can be added to the existing 

AEFIE or AEFIE-G matrix [19], yielding an over-determined system matrix (more rows 

than columns). As shown later in this chapter, it is straightforward to apply a LOGOS-

based solver to the resulting over-determined system [19]. In particular, the additional 

row is carried along as an additional constraint, which is imposed at each step of the 

factorization. 

The remainder of this chapter is organized as follows. In Section 5.1, the AEFIE 

and the AEFIE-G with LCN discretization are developed in detail. The conditioning of 

the underlying system matrix is also discussed. The LOGOS factorization is reviewed in 

Section 5.2, especially focusing on the OL-LOGOS scheme. The modification to the 

over-determined system is also provided. Numerical results are presented in Section 5.3. 

Finally conclusions are provided in Section 5.4. 

5.1 The AEFIE and AEFIE-G formulation 

5.1.1 Derivation from the regular EFIE 

In deriving the AEFIE we begin with the EFIE for a PEC surface expressed as [3] 

 ( ) ( ) ( ) ( ) ( )( ), , ,i

S S

jk G ds j G ds
k
ηη ′ ′ ′ ′ ′ ′⋅ = ⋅ + ⋅∇ ∇ ⋅∫ ∫t E r t J r r r t r r J r   (5.1) 
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where ( ),G ′r r  is the free-space Green’s function, S  is the surface of the underlying PEC 

object, ( )′J r  is the unknown surface current density, ( )iE r  is the incident electric field, 

and t  is the test vector tangential to S  evaluated at the observation point r , and j te ω  is 

assumed. The surface S  is discretized using general curvilinear quadrilateral patches. 

Since the current expanded in terms of Legendre polynomials is continuous within each 

patch, the integrals in (5.1) can be split into integrals over cells. Then by applying some 

vector identities and surface divergence theorem [7] to the integral over each patch, we 

obtain [18, 19] 
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  (5.2) 

where pC  is the contour bounding a patch surface pS , ˆ′e  is the outward unit vector 

normal to pC  tangential to pS  at the source point ′r . The last term of the right hand side 

of (5.2) is the contribution from the current discontinuities, since in a Nyström 

discretization, the normal continuity of the current is not explicitly enforced. This is 

rewritten as a summation over all edges in the mesh [18, 19] 

 ( ) ( )( ) ( ) ( )( )1 1 2 2
1

ˆ ˆ, ,
e

e

N

e l

j k G dl
=

′ ′ ′ ′ ′ ′⋅∇ − ⋅ − ⋅∑∫ t r r e J r e J r   (5.3) 
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where eN  is the total number of edges in the mesh, el  is an edge, 1ˆ′e  and 2ˆ′e  are the two 

outward unit vectors associated with the patches on either side of the edge el  that are 

perpendicular to el  and tangential to the surface of associated cell at the source point ′r . 

The continuity equation on the patch surface yields 

 ( ) ( ) ,s sj qω′∇ ⋅ = −J r r   (5.4) 

And its reduced version on an edge is 

 ( ) ( ) ( )1 1 2 2ˆ ˆ .sj qω− ⋅ − ⋅ = −e J r e J r r   (5.5) 

The use of (5.3) to (5.5) in (5.2) leads to [18, 19] 
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  (5.6) 

where ( )sq ′r  is the surface charge within patches, ( )lq ′r  is the line charge on edges, and 

c  is the speed of light. If ( )jk ′J r , ( )scq ′r  and ( )lcq ′r  are used as unknowns, it is 

recognized that there is no imbalance between vector and scalar potential terms in the 

EFIE. It also should be noted that on each connected conductor, the charge neutrality still 

holds for (5.4) and (5.5). For each connected surface [18] 

 ( ) ( )
1 1

0.
p e

p e

N N

s l
p eS l

cq ds cq dl
= =

′ ′ ′ ′− =∑ ∑∫ ∫r r   (5.7) 

The above charge neutrality constraint can be explicitly enforced by removing one 

column and one row from the system matrix indicates by (5.6) which corresponds to one 
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charge unknown. The selection of the redundant charge unknown is arbitrary, which may 

result in bad conditioning of the system matrix and will be shown later. Alternatively, this 

charge neutrality constraint is added to the existing AEFIE system matrix as an additional 

constraint, yielding an over-determined system matrix (more rows than columns). The 

EFIE augmented with continuity equations and charge neutrality constraint is represented 

as [19] 
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  (5.8) 

The definition of the quantities in (5.8) are obvious from a comparison of (5.8) to (5.6), 

(5.4), (5.5) and (5.7). sD  and lD  are sparse. 

The AEFIE-G is obtained by the convolution of (5.4) with the free space Green’s 

function on each patch [19] 

 ( ) ( ) ( ) ( ), , .
p p

s s
S S

G ds G j q dsω′ ′ ′ ′ ′ ′∇ ⋅ = −∫ ∫r r J r r r r   (5.9) 

The left-hand-side is not amenable to a single point kernel evaluation for far interaction 

due to the operation of s′∇  on the unknown, ( )′J r . This is inconvenient for a Nyström 

implementation. Thus we further manipulate (5.9) using a vector identity and the surface 

divergence theorem. In this way, the left hand side can be expressed as 
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where pC  is the contour bounding pS , ′e  is the outward unit vector normal to pC  

tangential to pS . With ( )jk ′J r , ( )scq ′r  and ( )lcq ′r  as unknowns, equation (5.10) can 

be rewritten for the whole mesh as 
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  (5.11) 

Note also that there are no operators in front of the unknowns, which is convenient for a 

Nyström implementation. The matrix form of AEFIE-G can finally be written as 
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  (5.12) 

The definition of quantities of the second row of (5.12) is obvious from a comparison of 

(5.12) with (5.11). It is observed that (5.12) is more symmetric than (5.8). 

5.1.2 The LCN implementation of AEFIE and AEFIE-G 

The AEFIE and AEFIE-G are discretized using the LCN method [6, 8]. For the 

local corrections, a mixed-order Legendre polynomial basis with order ( )1p p× +  is used 

for each of the tangential components of ( )jk ′J r , a polynomial complete Legendre 

polynomial basis with order p p×  is used for the surface charges ( )sc ′q r  and a 

polynomial complete Legendre polynomial basis with order p  is used to present the line 

charges lcq . 
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5.1.3 Discussion on frequency and mesh stability 

Note that, elements in (5.8) and (5.12) depend on frequency through Green’s 

function ( ),G ′r r . When frequency is very low, ( ),G ′r r  becomes a static Green’s 

function ( )1 4π ′−r r  that is not depending on the frequency. Therefore, the AEFIE and 

AEFIE-G system matrix are frequency independent at low frequency. However, the 

condition numbers obtained from above formulations are still fairly large and the 

resulting system matrixes are unstable with mesh refinement at a fixed frequency. We 

next consider diagonal scaling to further reduce the condition number and to achieve 

mesh stability. 

To investigate this mesh instability, a 1 1m m×  plate is studied with mesh 

refinement when the frequency is 1 Hz. The mesh is discretized using a uniform 

distribution of square cells arranged as 3 3× , 9 9×  and 16 16×  arrays, respectively. Take 

AEFIE system matrix indicated by (5.8) for example, at very low frequencies, the matrix 

elements of 2k− I  are quite small due to 2k . Thus we restrict our attention to studying 

how the singular values of the remaining nonzero matrix blocks scale with the mesh 

refinement. Figure 5.1 shows the singular value distribution of 
sqL  with mesh refinement. 

From the top figure, it is observed that the distributions of the singular values of this 

block for the different meshes are widely apart from each other. If this matrix block is 

scaled by a constant, ps  equal to the area of the patch, i.e., 
sp qs L . In this case, since the 

plate is uniformly discretized, the areas of each individual cell for a fixed mesh are the 

same. Then the new singular value distributions for the various mesh resolutions exhibit 

much less variation, as shown in the bottom of Figure 5.1. Then the same numerical 
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experiments are carried out to other block matrices, similar conclusions are obtained. It is 

found that by appropriate scaling (diagonal scaling) in terms of corresponding area of the 

patch and length of the edge, the condition number of the system matrix is significantly 

reduced. Table 5.1 shows the condition number of the system matrix before and after 

scaling, and we refer this scaling strategy to as usual scaling. It should be noted that, in 

this case, the charge neutrality constraint is explicitly enforced to form a square system. 

Also from Table 5.1 we can see that the conditioning of the AEFIE-G system is better 

than that of the AEFIE system. Note also that, the condition numbers of both 

formulations are reduced significantly. However, the system is still unstable with mesh 

refinement, in that the condition number increases versus mesh refinement. 

In the previous test, charge neutrality is enforced directly by reducing the number 

of unknowns, which is way too arbitrary and will result in bad conditioning of the system 

matrix. Instead, we stack the charge neutrality constraint as an additional row with 

AEFIE/AEFIE-G matrix to form an over-determined system matrix, then solve for the 

solution by the method of least squares. Table 5.2 shows the condition number of the 

square and over-determined AEFIE matrix with usual scaling for the 1 1m m×  plate 

example. Though improved, the formulation is still unstable with mesh refinement. 

Figure 5.2 and Figure 5.3 show the singular value distributions versus mesh refinement of 

AEFIE and AEFIE-G, respectively for the 1 1m m×  plate test case when the frequency is 

set to be 1 Hz. It is observed that as mesh is refined, there are more small drops of the 

singular values with the largest singular value almost unchanged for both formulations. 

Note also that, better conditioning is still obtained by AEFIE-G formulation. However 

after further scaling in terms of area of patch and length of edge for specific matrix 
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blocks on top of usual scaling, the small drops of singular values can be lifted a lot. 

Figure 5.4 and Figure 5.5 show the singular value distributions versus mesh refinement of 

AEFIE and AEFIE-G after further scaling. It is observed that mesh stable and small 

condition number system matrix can be obtained through this scaling strategy, and the 

AEFIE-G formulation is more stable than AEFIE. 

5.2 The OL-LOGOS Framework 

5.2.1 Review 

Local-global solution (LOGOS) modes provide a computationally efficient 

framework for developing fast, direct solution methods for electromagnetic simulations 

[4]. The basic idea behind the solution framework consists in representing the system 

matrix and its inverses in an organized basis of local solutions that satisfy global 

constraints. These solutions are referred to as local-global solution (LOGOS) modes. An 

essential feature of this framework is that LOGOS modes provide a single basis within 

which both the system matrix and its inverse are sparse. When combined with other CEM 

technologies (e.g., compression methods for system matrix), this feature of the LOGOS 

basis can be used to develop fast direct solvers. 

Integral equation (IE) based formulations are used to simulate the electromagnetic 

problems in frequency domain, which involves solving linear matrix equations of the 

form 

 ,i=Zx F   (5.13) 

where the matrix Z  is the dense N N×  system matrix. The vector x  contains the 

unknown field or current coefficients, and iF  contains spatial samples of an impressed or 

incident source. Standard direct methods for solving the above linear equations have 
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( )3O N  CPU time complexity and ( )2O N  memory complexity. The LOGOS framework 

can provide improved CPU and memory efficiencies. A brief review of the LOGOS 

solution method is provided below [4]. 

Let the domain (surface is used herein) where the underlying simulation domain is 

defined be denoted S . S  is then decomposed into two non-overlapping pieces 

 1 2S S S= +   (5.14) 

1S  and 2S  are referred to as “Region 1” and “Region 2”, respectively. Above 

decomposition of S  leads to an associated decomposition of (5.13) 

 1,11 12 1,

2,21 22 2,

,
i

m m
i

m m

   
=    

     

xZ Z F
xZ Z F

  (5.15) 

where 1,mx  is the portion of mx  associated with Region 1, 2,mx  is the portion associated 

with Region 2, 12Z  indicated interactions from Region 2 to Region 1, etc. The integer 

subscript “ m ” on mx  and i
mF  is used to index the LOGOS modes. A single LOGOS 

mode is thus defined by an excitation/solution pair ( ),i
m mF x . 

The determination of LOGOS modes for which mx  has nonzero support only in 

Region 1 (i.e., 1, 2,0, 0m m≠ =x x ) is provided below. The local condition associated with 

these modes is 

 11 1, 1, .i
m m=Z x F   (5.16) 

The global condition is 

 21 1, 2, .i
m m=Z x F   (5.17) 

Combing (5.16) and (5.17) provides a local-global condition 
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 1
21 11 1, 2, ,i i

m m
− =Z Z F F   (5.18) 

which is satisfied by all LOGOS modes. The condition (5.18) can be used to determine 

LOGOS modes that have sources ( )mx  only confined to Region 1, to ( )O ε . However, 

the scattered field ( )mZx  may or may not be confined to Region1. Up until this point, it 

is useful to introduce two classifications for LOGOS modes: localizing versus non-

localizing, and overlapping versus non-overlapping. 

The localizing LOGOS modes are required to develop efficient solvers for low- to 

mid- frequency problems where the maximum linear dimension of the scatterer is not 

large relative to the wavelength, whereas non-localizing modes are required to develop 

efficient factorizations at high frequencies. Localizing LOGOS modes are obtained by 

imposing (to order ε− ) (5.18) for the case 2, 0i
m =F  

 1
21 11 1, 0.i

m
− =Z Z F   (5.19) 

These LOGOS modes are denoted as “localizing” LOGOS modes because the field 

scattered from Region 1 to Region 2 is zero to order ε− ( )21 1, 0m ≈Z x . Note also that, 

equation (5.19) is not a non-radiating condition, which only imposes the weaker 

condition that the desired sources in Region 1 do not radiate to observers in Region 2 (to 

order ε− ). The localizing LOGOS modes determined from the constraint (5.19) may 

actually radiate strongly to spatial regions outside of Region 1 and Region 2. These 

localizing modes can be used to factor the system matrix Z . The modes satisfying (5.18) 

which do not also satisfy (5.19) (to order ε− ) are referred to as non-localizing LOGOS 

modes. A non-localizing LOGOS mode is a solution/excitation pair, ( ),m mF x , in this 

situation, the source ( )mx  is localized to a small region of a larger target, and the 
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excitation ( )mF  is a global function, which is generally nonzero over the entire 

simulation domain. The localizing LOGOS modes determined from constraint (5.19) lead 

directly to sparse representations of Z  and 1−Z  (due to localization in both the domain 

and range of Z ), whereas the scattered fields ( )Zx  associated with non-localizing 

LOGOS modes are generally nonzero over the entire simulation domain. In this 

dissertation, the localizing LOGOS modes are used to factor the underlying system 

matrix. 

The LOGOS modes, determined by the algebraic constraints (5.18) and (5.19), 

relies on the non-overlapping decomposition of the simulation domain indicated by (5.14). 

For this reason, the LOGOS modes determined using (5.19) are referred to as non-

overlapping, localizing LOGOS (NL-LOGOS) modes. Overlapped LOGOS modes are 

determined by modifying (5.18) as follows: 

 †
2 1 1, 2, ,i i

n n m m=Z Z F F   (5.20) 

where ( )1 2n nZ Z  is the corresponding system matrix block which maps from sources in 

Region 1 and its touching neighbor groups to scattered fields in Region 1 (Region 2). The 

symbol †  indicates a pseudo-inverse. Overlapped LOGOS modes can be used to develop 

more efficient factorization methods for general electromagnetic applications in two and 

three dimensions, which will be used in this dissertation.  

5.2.2 The OL-LOGOS procedure 

The formulation and notation used in the following description of the OL-LOGOS 

procedure closely follows that used elsewhere [5] and Figure 5.6 and Figure 5.7 are cited 

also from reference [5]. Before proceeding to the discussion on the OL-LOGOS 
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factorization, it is convenient to introduce how this LOGOS framework works. Let us 

begin with the NL-LOGOS factorization. 

The LOGOS factorization starts with the decomposition of a discretized geometry 

into a multilevel oct-tree in a manner similar to the fast multipole method (FMM) [20]. A 

thin, perfectly electric conducting (PEC) strip is used to illustrate the following 

discussion. The PEC strip is decomposed by a 3-level oct-tree which is shown in Figure 

5.6(a) [5]. As it is shown, there are four non-empty groups at level-3, two non-empty 

groups at level-2 and one at level-1. The surface electric field integral equation (EFIE) is 

used to formulate the scattering problem associated with this thin PEC strip, which yields 

a square dense system matrix Z  with either MoM or the LCN discretization, as shown in 

Figure 5.6(b) [5]. The matrix Z  is partitioned according to the level-3 groups. 

In a NL-LOGOS factorization, a sparse square matrix, ( ) ( )
3 3 3 ,L N =  Λ Λ Λ  is used 

to denote the source modes at level-3, where ( )
3
LΛ  contains the localizing source modes 

and ( )
3
NΛ  contains the non-localizing source modes which are shown in Figure 5.6(b) [5]. 

The corresponding scattered fields are expressed as 

 ( ) ( ) ( ) ( )
3 3 ,L N L N   ≈   E E Z Λ Λ   (5.21) 

where ( )LE  are the localized (block diagonal) fields. The approximation made in (5.21) is 

controlled by the factorization tolerance [31]. Figure 5.6(b) [5] shows the configuration 

of ( )LE  and ( )NE . Then a unitary projection matrix, ( ) ( )
3 3 3 ,L N =  P P P  is subsequently 

obtained by QR factorizations for every matrix block in ( )LE  such that 

 ( ) [ ] 1
1 2 .L  

= =  
 

R
E QR Q Q

0
  (5.22) 
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Then let ( )
3 1

L =P Q  and ( )
3 2

N =P Q . Matrix ( )
3

LP  has the same configuration as ( )LE  and 

spans ( )LE . Matrix ( )
3

NP  has the same configuration as ( )
3
NΛ  and is orthogonal to ( )

3
LZΛ . 

Thus the NL-LOGOS factorization of Z  at level-3 can be expressed as 

 1
3 3 3 3

ˆ ,−= =Z Z P Z Λ   (5.23) 

where, 
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( )( ) ( )
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3 3 3 3
3 3 3 3
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0 Z0 P Z Λ
  (5.24) 

The inverse of Z  then can be obtained as 

 
( )

( )( )
1 3 13 3

3

.
LN

H
NN

−
−

  −  =  
    

I 0I ZZ Λ P
0 Z0 I

  (5.25) 

( )( ) 1

3
NN −

Z  can be represented similarly using a NL-LOGOS factorization at a coarser 

level. The error control of the NL-LOGOS factorization depends on the strict 

orthogonality between ( )L
lΛ  and ( )N

lΛ . Such orthogonality is difficult to achieve when 

OL-LOGOS factorization is used. 

It can be seen from Figure 5.6(b) [5] that the NL-LOGOS source modes are 

confined to the same groups to which their radiated fields are localized. The OL-LOGOS 

are obtained by allowing the support of the source modes to spread into neighboring 

groups without changing the fact that the support of the (localized) radiated field is 

confined to a single group at a given level. This group is referred to as the “index group” 

of the source modes in the following discussion. For the same strip example, in the OL-

LOGOS factorization, a sparse, square matrix, ( ) ( )
3 3 3

L N =  Λ Λ Λ , indicates the overlapped 
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source modes at level-3 and its structure is shown in Figure 5.6(c) [5]. It can be seen the 

support of the source modes includes not just the index group but also all touching 

neighbors. Note also that, the matrix blocks ( )
3
NΛ , and ( )

3 3
LZ Λ  for both NL-LOGOS and 

OL-LOGOS factorizations have the same non-overlapped configuration, which is 

required to facilitate the multilevel factorization. The OL-LOGOS modes are nonzero 

over an expanded domain. Therefore they cover all group boundaries at every level of the 

oct-tree. This strategy allows more DOFs to be included in the analysis, hence more 

localized modes to be found at finer levels of the tree. Consequently, coarser level 

factorizations are left with smaller matrices. However, the OL-LOGOS factorization just 

described above has been observed to suffer from significant overhead and poor error 

control in some cases. A new procedure has been presented in [5] that overcomes these 

limitations by using a so-called shifted-grid to define the overlapping LOGOS modes. 

Instead of covering all seams in the oct-tree at every level, the localizing functions used 

in the resulting factorization cover all tree seams after every four levels. It is observed 

that the resulting OL-LOGOS factorization provides both good error control and 

efficiency. 

The OL-LOGOS factorization described in [5] requires shifted oct-tree groups at 

every level in addition to the original tree groups. The details of it can be found in the 

reference [5]. 

Figure 5.7 [5] shows the flow chart of the full OL-LOGOS factorization. Since 

the system matrix obtained from IE methods is usually dense, it is efficient to represent it 

by compression method. We use the multilevel simply sparse method (MLSSM) [32, 33], 

to prepare the system matrix, which is indicated in the first step in Figure 5.7 [5]. 
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The structure of the MLSSM representation is written as the multilevel recursion 

formula, 

 ( )1
ˆ , 2, , ,H

l l l l l l L−= + =Z Z U Z V 
  (5.26) 

where, ˆ
lZ  is the sparse matrix that contains all near-neighbor interactions at level l−  that 

were not represented at finer level of the tree. The matrices lU  and lV  are rectangular, 

orthonormal, block diagonal matrices that compress interactions between sources in far 

groups at level l−  of the tree. The original impedance matrix is obtained from (5.26) 

when l L= . The recursion procedure proceeds to level 2− , since all interactions at level

2−  are between near-neighbor groups. The details of the MLSSM method can be found 

in [32, 33]. For the following discussions we will focus on the OL-LOGOS procedure 

indicated on the right side of the flow chart. We again use the PEC strip shown in Figure 

5.6  to illustrate this factorization procedure. 

In step O-1, the normal NL-LOGOS factorization is used to reduce the 

computational load of computing the OL-LOGOS factorization. The result of the NL-

LOGOS factorization can be obtained by combing (5.23) and (5.24), 

 
( )

( )
3 1

3 3 3

3

.
LN

NN
−

 
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I Z
Z P Λ

0 Z
  (5.27) 

The second step, O-2, is finding the intermediate modes, the purpose of that is 

also to reduce the computational load of directly finding the OL-LOGOS mode. The 

intermediate modes are localized in the index group but radiate to the fields consist of 

both the index group and its touching neighbors. The intermediate modes are found by 

analyzing the matrix block, ( )
3
NNZ  of (5.27), which is partitioned according to level 3−  
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groups. Let ( )
3
IΛ  be the matrix formed by the intermediate localizing modes, then the 

corresponding field ( )
3

IP  can be obtained by 

 ( ) ( ) ( )
3 3 3 .I NN I≈P Z Λ   (5.28) 

( )
3
IΛ  has a block diagonal configuration, while ( )

3
IP  has the same block overlapping 

configuration as ( )
3
LΛ  in Figure 5.6(c) [5]. 

The third step, O-3, calculates the OL-LOGOS modes within the localized 

intermediate modes, ( )
3
IΛ , thus only ( )

3
IP  is analyzed. Now a shifted grid [5] is used. The 

nonzero support of the level-3 source modes is defined by the extent of the level-2 shifted 

groups. Therefore, the matrix blocks ( )
( )

1 3
IP , ( )

( )
( )
( )

2 3 3 3,I I 
 P P  and ( )

( )
4 3

IP  are individually 

analyzed to find the OL-LOGOS modes to form ( )
3
LΛ  that denotes the localizing OL-

LOGOS modes of all groups at level-3. (Note also that, the subscript ( )i l  denotes group 

i  at level l− , whereas a single subscript i  denotes the level.) 

Now take ( )
( )

( )
( )

2 3 3 3,I I 
 P P  as an example. First, perform a QR factorization[34] 
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, ,

x

I I
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 
 
   = =   
 
 
 

Q

Q
P P QR R

Q

Q

  (5.29) 

where ( )2 3Q  and ( )3 3Q  are the portions of Q  that contain row DOFs in group 2 and 3, 

respectively, whereas ( )3xQ  and ( )3yQ  contains remaining DOFs. To find the OL-LOGOS 

modes radiating fields localized to group 2 of level-3, an SVD [34] is performed on the 
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block matrix ( )2 3Q  such that ( ) ( ) ( ) ( )2 3 2 3 2 3 2 3 .H=Q U S V  The singular values ( )2 3S , indicate how 

much energy is concentrated in group 2 due to source modes ( )
1

2 3
−R V  since 

 ( )
( )

( )
( )

( )( ) ( )
1

2 3 3 3 2 3 2 3, .I I −  = P P R V QV   (5.30) 

Since ( )2 3QV  is orthonormal, more energy concentrated in group 2 that means less energy 

is received by other parts. Once the appropriate cut-off threshold in ( )2 3S  is determined, 

the localizing modes to group 2 are given by ( )
( )

( )
( )1

2 3 2 3
L L−=Λ R V , where ( )

( )
2 3

LV  contains the 

portion of the right singular vectors of ( )2 3Q  corresponding to the large (near unity) 

singular values that are retained. 

Repeat the QR-SVD procedure described above for all the other groups at level 3. 

Once ( )
3
LΛ  is obtained, the final localizing OL-LOGOS modes at level-3 are given by 

 ( ) ( ) ( )
3 3 3 ,L I L=Λ Λ Λ   (5.31) 

which has the configuration indicated by Figure 5.6(d).[5] The corresponding radiated 

fields by these modes are given by 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
3 3 3 3 3 3 3 3 .L NN L NN I L I L≈ = =E Z Λ Z Λ Λ P Λ    (5.32) 

Then by QR factorization, the projection matrices, ( )
3

LP  and ( )
3

NP  can be found as 

 ( ) ( ) ( )
( )

3 3 3 .
L

L L N  
 = =   

 

RE QR P P
0

  (5.33) 

To enable the multilevel factorization, the non-localizing modes, ( )
3
NΛ , must be block 

diagonal. Ideally, they should also be orthogonal to matrix ( )
3
LΛ . It cannot be achieved in 

most cases due to the overlapping nature of ( )
3
LΛ . Thus the contribution to ( )

3
NΛ  for a 
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given level-3 group is set to be the orthogonal complement of the corresponding section 

of ( )
3
LΛ . 

With the OL-LOGOS modes defined above, the OL-LOGOS factorization for 

level-3 can be given by 

 ( )
( )

( )
3 1

3 3 3

3

.
LN

NN

NN
−

 
≈  

  

I Z
Z P Λ

0 Z
  (5.34) 

Combining (5.27) and (5.34), the factorization at level-3 is expressed as 
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3 3 33 1
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I Z

Z P ΛI Z
0 P Λ

0 Z

  (5.35) 

where the over-bar notation indicates that factorization is carried on the shifted grid. A 

multilevel factorization for the square system Z  is obtained by repeating the single-level 

factorization indicated by (5.35) for the sequence of square matrices NN
lZ . At each level 

this yields an equation with the form indicated by (5.27), (5.34) and (5.35) 
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  (5.36) 

where ( )
1

NN
l l+ ≡Z Z . Indicated by Figure 5.7 [5], this OL-LOGOS factorization procedure 

is carried out from the finest level to level-3. At level-2 the NL-LOGOS factorization 

indicated by the first line of (5.36) is used. 
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5.2.3. The modification to the over-determined system 

In this section, the OL-LOGOS factorization [5] described above is extended to 

handle over-determined systems. The charge neutrality constraint can be added to the 

existing AEFIE or AEFIE-G matrix [19], yielding an over-determined system matrix 

(more rows than columns). In particular, the additional row is carried along as an 

additional constraint, which is imposed at each step of the factorization. The 

corresponding modification of (5.36) is written as 
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  (5.37) 

where ( )
,
N

n lZ  indicate the additional charge neutrality row at the each step of the 

factorization. 

5.3 Numerical Examples 

5.3.1 Frequency and mesh stability 

In this section, we will demonstrate that the AEFIE-G formulation is stable with 

respect to both frequency and mesh refinement [19]. 

As the first example, a PEC sphere with radius 0.5 m is tested to evaluate the 

frequency behavior of the AEFIE-G formulation. Figure 5.8 shows the condition number 

of the system matrix obtained from the AEIFE-G and the conventional EFIE versus 

frequency for a fixed mesh. It is observed that the condition number of AEFIE-G is 
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almost constant over the whole low frequency spectrum whereas the condition number of 

the conventional EFIE increases sharply as the frequency decreases, and it breaks down 

around 1 MHz. Note also that, the condition number of the EFIE appears to flatten near 

0.1 MHz, which is due to numerical precision issues. This clearly demonstrates that the 

AEFIE-G formulation provides a frequency stable system matrix, which is free of the 

low-frequency breakdown problem inherent in the conventional EFIE. 

Next, mesh refinement of a 1 1m m×  plate is studied at the frequency of 1 Hz. The 

mesh is discretized using a uniform distribution of square patches. Figure 5.9 shows that 

the original AEFIE-G is instable with mesh refinement and has relatively large condition 

number. With appropriate scaling in terms of patch area and edge length, the scaled 

AEFIE-G is stable with mesh refinement and has a much smaller condition number. 

5.3.2 Computational cost and error 

To evaluate the computational cost and the error of the OL-LOGOS factorization 

applied on the over-determined AEFIE-G system matrix, a PEC sphere with radius 1 m is 

tested with mesh refinement with the 1 Hz incident plane wave [19]. 

Figure 5.10 shows the factorization time for different factorization tolerances, 

facε . An ( )O N  factorization time complexity is observed for both tolerances 0.005 and 

0.001. For tolerance 0.0001, the factorization time complexity is between ( )O N  and 

( )logO N N . Figure 5.11 shows the ( )O N  memory usage for these three tolerances. 

Figure 5.12 shows the residual error of the solution. It demonstrates that OL-

LOGOS provides an error-controlled solution for AEFIE-G over several orders of 

magnitude for tolerance 0.001 and 0.0001. Figure 5.13 shows the relative Root-Mean-
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Square (RMS) error of the near electric field as compared with the Mie series solution. 

The RMS error is calculated as 

 ( ) ( )2 2
,s s s

RMS Mie MieE E Eθ θ θε = −   (5.38) 

where sEθ  is the near electric field scattering from a PEC sphere with radius 1 m and 

frequency 1 Hz for vertical polarization at distance 0.5 m above the PEC surface, and 

( )
s

MieEθ  is the corresponding Mie series solution. It can be seen that with mesh refinement, 

the near field obtained by AEFIE-G converges to the Mie series solution. 

Figure 5.14 shows the DOF remaining at the root level. It shows that the number 

of DOF remains at the root level scales as ( )0.33O N . Since the OL-LOGOS factorization 

is formulation sensitive, strong singular kernels, such the EFIE, are more difficult to 

localize. Figure 5.14 demonstrates that the AEFIE-G formulation is a good candidate for 

the OL-LOGOS factorization, since it is well conditioned and stable with frequency and 

mesh refinement. 

5.4 Summary 

The local-global solution concept provides a useful framework for developing fast, 

direct solution methods for EM simulation. The AEFIE and AEFIE-G formulation are 

demonstrated to be frequency and mesh stable. The OL-LOGOS algorithm provides good 

asymptotic performance and error control when used with AEFIE-G. However, the 

drawback of the AEFIE/AEFIE-G is that it cannot provide correct near magnetic field at 

low frequency, which might be corrected by using a perturbative strategy reported in [30], 

this possibility is not investigated here. 
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Table 5.1 The condition number of system matrix before and after scaling 
 AEFIE AEFIE-G 

Mesh Before After Before After 
3x3 2014 246 937 120 
9x9 23135 751 23135 607 

16x16 127070 4478 127070 2140 

Table 5.2 The condition number of the square and the over-determined AEFIE system 
matrix 

Mesh square AEFIE matrix Over-determined AEFIE 
matrix 

9x9 751 282 
16x16 4478 952 
20x20 9009 1480 
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Figure 5.1 The singular value study with mesh refinement 

 
Figure 5.2 Singular value distributions of AEFIE with usual sacling 
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Figure 5.3 Singular value distributions of AEFIE-G with usual scaling 

 
Figure 5.4 Singular value distribution of AEFIE with further scaling 
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Figure 5.5 Singular value distribution of AEFIE-G with further scaling 
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Figure 5.6 Structure of matrices of NL-LOGOS and OL-LOGOS source modes and their 
fields for a patch decomposed into 4 groups. ( )a  Patch decomposed into 4 groups. ( )b  

Z , Λ  and ×Z Λ  for NL-LOGOS factorization. ( )c  Z , Λ  and ×Z Λ  for OL-LOGOS 

factorization. ( )d  Z , Λ  and ×Z Λ  OL-LOGOS factorization with shifted grid. 
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Figure 5.7 Flowchart for the OL-LOGOS factorization. 
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Figure 5.8 Condition numbers versus frequency for EFIE, AEFIE system matrices of a 
0.5-m PEC sphere. 

 
Figure 5.9 Condition numbers versus mesh refinement for AEFIE-G and scaled AEFIE-G 
matrices of 1-m PEC plate.  
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Figure 5.10 OL-LOGOS factorization time for the AEFIE-G formulation of a 1-m PEC 
sphere for 1 Hz plane wave excitation. Number of DOF increases via uniform mesh 
refinement.  

 
Figure 5.11 OL-LOGOS factorization memory for the AEFIE-G formulation of a 1-m 
PEC sphere for 1 Hz plane wave excitation. Number of DOF increases via uniform mesh 
refinement.  
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Figure 5.12 Residual error of OL-LOGOS factorization for the AEFIE-G formulation of a 
1-m PEC sphere for 1 Hz plane wave excitation. Number of DOF increases via uniform 
mesh refinement. 

 
Figure 5.13 RMS Near-Field error of OL-LOGOS factorization for the AEFIE-G 
formulation of a 1-m PEC sphere for 1 Hz plane wave excitation. Number of DOF 
increases via uniform mesh refinement. The near electric fields are sampled 0.5 m above 
the PEC surface.  
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Figure 5.14 DOF remaining at root level of OL-LOGOS factorization for the AEFIE-G 
formulation of a 1-m PEC sphere for 1 Hz plane wave excitation. Number of DOF 
increases via uniform mesh refinement.  

Copyright © Jin Cheng 2012 
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Chapter 6  Conclusions and Future Work 

6.1 Conclusions 

A new electric field integral equation (EFIE) based formulation that relies on the 

Helmholtz decomposition (HD) (EFIE-hd) of the current is proposed and developed. It 

has been demonstrated that the EFIE-hd is frequency stable and provides accurate 

solutions for the electric and magnetic fields at both high and low frequencies. It is also 

shown that this strategy allows for the use of the locally corrected Nyström (LCN) 

method for the resulting formulation. To the best of our knowledge, the EFIE-hd 

represents the first formulation of electromagnetic scattering from a PEC obstacle that 

provides accurate solutions for both the electric and magnetic fields without relying on 

either global basis functions or global stabilizing operators. For this reason, the EFIE-hd 

is compatible with both an LCN discretization and the OL-LOGOS factorization method. 

While the ultimate goal of the efforts that is supporting this work lie in developing 

a sparse, direct solution of the EFIE-hd formulation, that goal is beyond the scope of this 

dissertation. We have instead used the AEFIE formulation to investigate the significance 

of using a well-conditioned formulation with the OL-LOGOS algorithm. The AEFIE-G is 

observed to be frequency and mesh stable, with the AEFIE-G exhibiting better 

conditioning than the AEFIE. It was observed that the overlapped localizing LOGOS 

(OL-LOGOS) factorization provides nearly optimal computational complexity when 

applied to this formulation. 

6.2 New Contributions 

The new work presented in this dissertation includes the following: 
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• A new electric field integral equation (EFIE) based formulation that relies 

on the Helmholtz decomposition (HD) (EFIE-hd) of the current is proposed and 

developed. It has been demonstrated that the EFIE-hd is frequency stable and 

provides accurate solutions for the electric and magnetic fields at both high and 

low frequencies. 

• The well-conditioned augmented EFIE-G (AEFIE-G) formulation with 

appropriate diagonal scaling using the LCN method is developed. It is observed to 

be frequency and mesh stable and can provide correct electric filed at both high 

and low frequencies. 

• The OL-LOGOS algorithm is first extended to factorize the over-

determined system matrix (i.e., AEFIE/AEFIE-G). It is observed that the OL-

LOGOS factorization provides nearly optimal computational complexity when 

applied to AEFIE-G system matrix. 

6.3 Future Work 

There are several areas for additional work related to the new EFIE-hd 

formulation. These include the possibility of modifying the formulation to obtain a square 

system matrix rather than the over-determined system used herein. Another issue is the 

possibility of using the EFIE-hd to treat non-conformal meshes at any frequency. Both of 

these issues are currently under investigation and some progress has been made in both 

directions. 

The second issue is associated with the discretization. In the current work, it has 

been observed that when polynomial complete bases are used for rotational current and 

mixed-order bases are used for irrotational current, a well-conditioned system and an 
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accurate solution can be obtained. However, a theoretical justification is still on the way, 

which will serve as the guideline on how to select appropriate discretization. 

Though the EFIE-hd system is frequency stable, the version presented herein is 

still not stable with respect to mesh refinement. This is due to the presence of the 

hypersingular kernel. It is expected that this can be addressed by including continuity 

equations and to introduce charge as an additional unknown. 

The globally constrained HD is also expected to be useful when applied to the 

magnetic field integral equation (MFIE) to improve its accuracy when sharp corners are 

considered. It is similarly expected that the HD framework will be extensible to surface 

integral equation formulations of electromagnetic scattering from dielectric materials. 

Finally, all of these developments on the EFIE-hd are being pursued with the 

intention of eventually solving large system using the OL-LOGOS factorization 

algorithm. Due to the structure of the EFIE-hd formulation, this is expected to be 

straightforward; the EFIE-hd was developed with this integration of the methods in mind. 
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