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A STUDY OF QUEING THOERY IN LOW TO HIGH REWORK ENVIRONMENTS 
WITH PROCESS AVAILABILITY  

 
 
 

 In manufacturing systems subject to machine and operator resource constraints 
the effects of rework can be profound. High levels of rework burden the resources 
unnecessarily and as the utilization of these resources increases the expected queuing 
time of work in process increases exponentially. Queuing models can help managers to 
understand and control the effects of rework, but often this tool is overlooked in part 
because of concerns over accuracy in complex environments and/or the need for limiting 
assumptions. One aim of this work is to increase understanding of system variables on 
the accuracy of simple queuing models. A queuing model is proposed that combines 
G/G/1 modeling techniques for rework with effective processing time techniques for 
machine availability and the accuracy of this model is tested under varying levels of 
rework, external arrival variability, and machine availability. Results show that the model 
performs best under exponential arrival patterns and can perform well even under high 
rework conditions. Generalizations are made with regards to the use of this tool for 
allocation of jobs to specific workers and/or machines based on known rework rates with 
the ultimate aim of queue time minimization. 
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1 INTRODUCTION 
In many cases an effective queuing model can provide accurate estimates for 

steady-state queuing times (Whitt 1983).  Knowledge of these queuing relationships for 

systems with immediate-feedback rework can be used in resource and skill management 

to facilitate effective queue time reduction, thereby improving the ratio of value-added to 

non-value added production time (de Treville and van Ackere 2006).  Using conventional 

symbols from queuing theory, immediate feedback rework is depicted in Figure 1.1. 

Methods to obtain exact solutions for expected queue times are analytically intractable 

without the use of limiting assumptions such as the requirement for exponential service 

times and for stationary arrival distributions (Jackman and Johnson 1993).  Because of 

perceived limitations arising from these requirements, the use of queuing models for 

performance analysis has been outweighed by discrete event simulation (DES).  When 

compared to the number of DES case studies, the use of queuing models is extremely 

limited especially for the analysis of complex systems with rework. 

 

 

Figure 1.1:  Single stage queuing diagram with immediate feedback rework 

 

When conducted properly, DES modeling provides the ability to replicate high 

levels of system detail, but this ability comes with a cost of added complexity as shown 

in the modeling spectrum of Figure 1.2.   To counter this argument, queuing researchers 



2 
 

suggest an approximate analysis of realistic systems as an alternative to exact analysis of 

over-simplified systems (Whitt 1980; Kim et al 2005).  In the literature regarding 

approximate analysis of queuing networks, a simple approach to handling feedback in the 

system is proposed and tested against simulation models with a fair amount of success 

(Takacs 1962; Keuhn 1979).  Nonetheless, the technique is inexact for queues with non-

exponential arrival distributions, and the full behavior of the accuracy of the calculated 

average queue time is not demonstrated for the full range of rework rates and varying 

arrival distributions. 

 

Figure 1.2: (Jackman and Johnson 1993), Spectrum of manufacturing systems modeling 

techniques 

The purpose of this work is to provide a detailed specification of a modeling 

technique that captures the effects of rework on the important metric of queuing time, 

specifically when the rework process utilizes the same resources as the original job 

(immediate feedback rework). The full range of applicability is demonstrated for the 

method, which acts as a tool for lead time reduction.  Although it may not be clear what 

combination of factors leads to a specific rework rate at a given workstation, certainly 

this rate is tied to worker skills, and if the rework rate can be monitored with any 

certainty, the effects of rework rate on the ever-important lead time can be examined. 

Designing policy for lead time reduction necessitates the examination of system 

variability. Reducing variability not only cuts lead time but allows more accurate 
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prediction of lead time, which in turn improves customer satisfaction.  Shorter lead times 

mean quicker response to the customer, less inventory in the system, and therefore less 

holding cost (Suri 1998).  Most importantly lead time reduction eliminates non-value 

added waiting time. 

In order to demonstrate the potential seriousness of the effects of rework, it may 

be useful to review the Lean manufacturing principle of waste reduction.  Practitioners of 

Lean often refer to the seven deadly wastes:  transportation, inventory, motion, waiting, 

overproduction, over processing, and defects (Womack and Jones 2003).  Of the seven 

wastes, at least three (defects, waiting, and inventory) can be tied directly to rework 

activity.  The value stream map (VSM) is a tool used for Lean implementation to capture 

the presence and location of these wasteful, non-value added activities such as queuing.  

Unfortunately, the VSM does not give a full depiction of the dynamic nature of the 

production line.  Inventory is simply counted between operations at the time of study and 

divided by the average daily demand to obtain the approximate number of days’ worth of 

inventory on hand (Rother and Shook 1999).  For example, if 500 parts are on hand in the 

queue before a process and the process completes 50 parts per day, then the existing 

inventory could last for 10 days, and the last part in line would actually wait 10 days 

before being completed. This calculated time provides a decent portrayal of waiting 

typically seen in the system, but still it is a static reflection based on system status and the 

value could be drastically different from one day to the next.  For example, consider the 

inventory at a station subject to a lot of tacit, manual work and how queuing time could 

change based on operator experience.  Of course the Lean solution here would be to 

improve standard work, remove tacit knowledge requirements, and build quality into the 

system.  Queuing analysis is no replacement for such efforts, but rather a tool to give 

these efforts better direction.  Understanding queuing effects can allow management to 
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direct limited resources while estimating the benefits of making improvements in certain 

areas. 

In many cases the level of rework and the expected queue time links back to 

operator skill.  It has been shown in the field of organizational behavior that job 

performance is linked directly to worker motivation, skill, and technical support (Mitchell 

1982).  Though important in any case, the benefits of skill flexibility are especially 

emphasized in cellular manufacturing environments where workers act as team 

communities on the shop floor.  One key element of these cells is the cross-training of the 

employees to perform multiple tasks within the cell.  This environment facilitates mutual 

problem solving, and increases resilience to sudden changes that may occur such as 

absenteeism or demand surge (Slomp et al. 2005).  Nevertheless, for every skill that a 

worker adds, there is a sacrifice in specialization, there is a training cost, and overall there 

is a complication added in the need to manage the use of these varying skills.  Since not 

every worker is equally trained, allocation of workers to cells and to stations within cells 

can have significant impact on rework rate and queuing (Kuo and Yang 2007).  Queuing 

models help the management of these heterogeneous skills. 

Consider the following scenario presented by Hopp and Spearman in Factory 

Physics (2001).  In the example, two machines are considered conducting a similar 

process.  The first machine requires no setups between jobs but has longer expected 

processing times than the second.  Equation 1.1 demonstrates the contribution of setups 

to “effective processing time” et  which is equal to the sum of the normally observed time 

0t  and the expected setup time per part.  Here st  is the average setup time and sN  is the 

expected number of parts between setups.  

s

s
e N

t
tt += 0

 
Equation 1.1 
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Because of the tradeoff with machine 2 having setups and shorter processing and 

machine 1 having longer processing but no setups, the effective capacity in terms of parts 

per hour or production is equivalent for both machines.   Now consider the standard 

deviation of processing time for each machine according to equation 1.2. Here the 

standard deviation is eσ is the effective standard deviation with adjustments for setups. 

Furthermore, 0σ is the naturally observed processing time standard deviation, and sσ  is 

the standard deviation of setup time. 

2
2

2
2
0

2 1
s

s

s

s

s
e t

N
N

N
−

++=
σ

σσ  Equation 1.2 

 In the example, machine 2 has less variance in processing times but actually has 

the greater “effective variance” when the effect of setups is considered.  Of course the 

answer to which machine is better (less variable) depends on the specific values for 

number of jobs between setups, average setup time, processing variability, etc.  The 

example does not even incorporate rework rate, which if altered by changing any number 

of outside factors could alter the selection of best machine.  This example shows how 

explicit knowledge of different forms of variability can reveal leverage points in a 

system.  For example, questions about which setups should be reduced and where 

reduction of rework could have the biggest payoff can be answered.  These answers 

would not be obvious through simple observation of inventory levels between processes.  

Managers may not fully comprehend the dynamic nature of the system and as a result 

take actions, such as increasing utilization, that act to increase lead times (Suri 1998).  In 

an ideal situation, queuing models could be used in conjunction with an optimization 

technique to provide suggestions for the best allocation of heterogeneously-skilled 

workers.  Before this can be done the queuing models and their accuracy and limitations 

must be fully understood. 
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The research question to be addressed in this work can be divided into five parts: 

• What are the advantages of using queuing theory to model system 

performance? 

• Can the proposed queuing model accurately represent the average waiting 

time per part in a system with rework?   

• In what circumstances, if any, are more-refined analytic models required 

to improve accuracy?   

• What relationships can be observed between system parameters and the 

accuracy of the proposed method? 

• What generalizations can be made regarding the use of queuing estimates 

in optimization? 

 The remainder of this thesis will be presented as follows.  A three part literature 

review begins with the discussion of analytical models considering workers with mixed 

skill levels, continues with a focus on simulation models for similar scenarios, and finally 

examines the use of queuing approximations to study complex systems where such 

factors as human skills may be present.  Chapter 3 discusses development of the queuing 

model and associated assumptions.  Chapter 4 demonstrates the observed relationships of 

the developed model, while Chapter 5 examines the cause of an observed discrepancy 

between the queuing calculations and initial simulation observations.  Chapter 6 presents 

results on the accuracy of the queuing model as compared to a refined version of the 

simulation output.  Finally, Chapter 7 concludes with a recap of the above research 

questions and brief discussion of directions that may be taken in future work. 

 

 



7 
 

2 LITERATURE REVIEW 

 Queuing time is related to rework which is in turn related to human resource 

management. Human resources can be considered to be homogeneous or heterogeneous 

with respect to human and technical skills. Heterogeneous workers are by nature skill-

flexible. Realistically, any given set of workers must be heterogeneous to some extent, 

and there may be any number of ways to represent this fact. Some ways to represent skill-

flexibility are by the number of skills each worker possesses, the overlapping of skill 

from worker to worker, and the degree to which each worker possesses the same number 

of skills (Yue et al. 2011).  Most methods used to answer the question of how to manage 

a heterogeneous workforce involve some form of analytic modeling, discrete event 

simulation (DES), or hybrid simulation-analytic modeling.  Analytic models are most 

suited for mathematical optimization (deciding the best allocation of workers), whereas 

DES models are more detailed but are typically limited to analysis through statistical 

examination of experimental scenarios.  Hybrid models typically use analytic 

optimization to direct the search for optimal or near-optimal simulation scenarios, 

specifying parameters to improve a given performance measure. Queuing theory provides 

a unique type of analytic model in that it incorporates some of the stochastic nature of the 

production system by providing expected steady-state values, but is less complex than 

DES modeling. 

 This literature review attempts to outline the advantages of using queuing theory 

to model system performance. It focuses on three modeling techniques. Sections 2.1 and 

2.2 examine deterministic analytic models and discrete event simulation, respectively. In 

2.3 queuing theory is introduced in general and some light is shed on the potential pros 

and cons of its implementation, especially with regard to modeling of manufacturing 

systems with heterogeneous workers.   
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 One of the resounding themes of this research is the importance of worker skills. 

Cross-training and the utilization of worker flexibility is one of the primary motivations 

behind cellular manufacturing, and its importance is also realized in dual resource 

constrained (DRC) job shop environments.  For this reason, much of the literature on 

heterogeneous workers and their allocation to various tasks is presented in the context of 

cellular and DRC systems. 

 

2.1 Analytic Models 

One of the greatest advantages of the analytic approach is the applicability to 

optimization. Much of the work presented in this section can be seen as some variation on 

the classic worker assignment optimization problem well-known to the operations 

research field.  In the classic problem some n tasks are assigned to n workers and there is 

an associated cost with each possible assignment.  The goal of the optimization is to 

minimize the total cost of assigning workers to tasks. In the adaptations presented here, 

skill affects the assignment decision.   

One adaptation of the classic version is the ‘assignment problem recognizing 

agent qualification’ for which not every worker is capable of doing every task (Pentico 

2005).  That is, not every worker-task assignment is feasible.  This variant relates to skill 

distribution in the work force, as some operators may not be trained for certain jobs.  One 

method of capturing this kind of worker flexibility in an analytical model is to assign a 

parameter to each worker that specifies whether or not he or she can be selected to 

perform a given job (Kuo and Yang 2007). In an extension to this idea, some models 

institute a measure of worker effectiveness or efficiency.  In this way analytic models can 

represent workers with varying capability at performing any given job or set of jobs that 

exist in some manufacturing cell.  Tiwari et al. (2009) presents an interesting model 
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considering worker effectiveness based on a service organization where various skills are 

required at multiple stages in the service provision.  Due to a constraint on the number of 

employees with each required skill, the optimization model must decide whether or not a 

less skilled worker should be assigned to a task in order to meet time objectives. 

Depending on the expertise of the worker assigned at a given stage, there may be a need 

for the more experienced workers to follow up with an enhancement activity. Although 

this model involves rework, it differs from the research of this thesis in that the 

enhancement effort (rework) is done at separate stations rather than at the original 

process with the same worker.  Slomp et al. (2005) present an integer programming 

model to study the effectiveness of workers subject to various skill chaining patterns.  

This model does not consider varying effectiveness between workers at a given task, but 

rather decides for which machines each worker should be trained in relation to the others 

in the work cell so as to ensure a balanced work load. 

Both technical and human skills such as communication and problem solving can 

be shown to have some effect on the cost of worker assignment (Norman et al. 2002).  

Furthermore, some studies discuss the importance of learning effects, where the skills of 

each worker can be enhanced over time subject to some training cost (Slomp et al. 2005). 

When speaking about human skills, it makes logical sense to include some learning 

ability, especially if the model result is expected to hold over changing conditions.  The 

model presented by Norman et al. (2002) incorporates productivity, quality cost, and 

training cost into the objective function which attempts to maximize profit in assigning 

workers to cells.  There is an associated productivity with each skill level as well as a 

quality cost which accounts for any rework or scrap that might occur.  If advantageous, 

the model acts to increase worker skills at some predetermined cost.  

Because of the dynamic nature of cells and DRC job shops where workers may 

shift jobs regularly, it is important to take careful consideration of the way in which 
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productivity is captured in a deterministic model.  Slomp et al. (2005) model the 

operating cost of a cell based on the workload of the bottleneck worker. This method is 

reasonable considering that the bottleneck of the cell would determine the length of time 

necessary to complete an order.  A similar outlook is taken by Kuo and Yang (2007) in a 

model set to minimize multiplication of skill levels.  Niemi (2009) discuses the optimal 

assignment of workers in make-to-order assembly cells considering congestion loss 

which accounts for difficulty encountered when trying to divide a single task among 

multiple workers.  The optimization is a makespan minimization where the processing 

times and congestion loss measures are deterministic observed values.  Huq et al. (2003) 

likewise show a makespan minimization model with deterministic processing times 

known according to the number of workers at a given station.  This model also considers 

the effects of lot sizing on required setup times. A common shortcoming of analytic 

modeling of manufacturing systems is the reliance upon deterministic processing times. 

These models could be used for a kind of rough cut capacity analysis, such as to answer 

questions like how many machines will be needed to do a certain task in a certain time, 

but as soon as more detailed operating policies are included it becomes necessary, or at 

least highly compelling to resort to DES modeling. 

 

2.2 Discrete Event Simulation 

 The importance of worker skill considerations on staffing production cells has 

been demonstrated through the use of DES modeling (Juran and Schruben 2004).   DES 

models are useful for quantifying the effectiveness of certain operating policies for 

systems with flexible workers.  Since cellular and job-shop type environments allow the 

workers some freedom to switch tasks, two common questions that arise in this context 

are when a worker should be permitted to change jobs and to which job he or she should 
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move (Bobrowski and Park 1993).  Two common “when” rules are known as 

centralization and decentralization.  With centralization, workers can move after finishing 

each job.  With decentralization, the workers should move only when the queue in front 

of their current processes are empty. “Where” rules might be always to move to the 

workstation with the longest queue or to the workstation at which the worker is most 

efficient. Operating under these flexible operating policies makes it difficult to predict 

what job each worker will be performing at a given time, especially when arrival and 

processing times are highly variable. By running several replications of experimental 

combinations of the “when” and “where” rules under different levels of variability, the 

importance of these factors on the flow time of each job can be determined (Bobrowski 

and Park 1993).  These effects would be difficult to discern using an analytic model. 

 In addition to the advantage DES models have for representing detailed operating 

policy, they are also ideal for study of short-term transient effects that may not be 

discernible with analytic models. Stratman et al (2004) study the impact of temporary and 

permanent workers on manufacturing cost.  The added cost of rework and variable 

processing time associated with the less experienced workers is somewhat offset by the 

reduced cost of labor.  Also the effect of lot size and frequency of changeover is studied 

as it pertains to the workers with different learning rates.  Short term impacts in this lot-

to-lot example are ideal for simulation study. Furthermore, McCreery et al (2004) show 

that the complexity of work is important to the benefit of cross training and worker 

flexibility.  As complexity increases, forgetting effects become significant and cross 

training is less valuable.  In this flexible environment, workers often switch tasks and it 

may be difficult to model utilization without resorting to simulation. 

 One weakness of DES modeling is somewhat unquantifiable but has to do with 

stakeholder engagement.  In their review of simulation practices from 1997-2006, 

Jahangirian et al (2010) show that although DES is the most popular simulation 
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technique, the extensive data collection phase that is required has the tendency to divert 

the interest of the user. Stakeholder engagement is partially represented by the percentage 

of reviewed papers which involve the use of real data.  Lower than expected levels of 

engagement may be attributed to the inability of DES models to directly reflect 

qualitative descriptions as is possible with other simulation techniques such as system 

dynamics. Similarly, de Treville and van Ackere (2006) study the use of DES and 

queuing models in the classroom, and come to the conclusion that queuing better equips 

the students with the inherent knowledge of how to reduce manufacturing lead times.  

Queuing models may provide a theoretical best and worst case scenario which may be 

invaluable to the process of DES model validation. 

 

2.3 Queuing Models 

 Historically queuing theory begins in the early 1900’s with the work of A.K. 

Erlang on telephone traffic.  In this work Elrang sought to answer such questions as how 

many telephone circuits and operators are required to satisfy a given demand (Erlang 

1909, 1917).  Applications to manufacturing, however, begin largely with the later work 

of J.R. Jackson (1963) which outlines the now well-known Jackson queuing network. A 

solution for queue length probability distribution is provided for jobshop-like queuing 

networks.  External arrivals enter the first workstation according to the Poisson 

distribution and are subsequently routed either to the next process with probability ijp or 

out of the system with probability ijp−1 . Processing times are also Poisson, and there is 

infinite buffer capacity.  Queue discipline must not rely on future routing or service time 

information, and thus is considered first come first serve (FCFS).  Utilization of any 

station should not exceed 100%. Under these conditions, a product form solution exists 

stating that the probability that the network as a whole will be in a state, defined by the 
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number of jobs waiting at each queue, is simply the product of the probabilities of each 

queue individually having said number of jobs waiting. However, the limitations of the 

necessary conditions lead researchers to seek out adaptations of the method so as to 

reflect more realistic systems. 

 Suri et al (1995) outline the evolution of queuing publications, applications, and 

software development from the 1960’s onward.  This includes a significant amount of 

work on closed-queuing networks in which the number of jobs is constant; jobs cycle 

repeatedly rather than being created and disposed (Gordon and Newell 1967).  This work 

was largely applied to the parallel programming of resources in computer systems.  Later, 

closed-queuing networks became useful in the modeling of flexible manufacturing 

systems (FMS).  An FMS is a system of numerically controlled machines connected with 

an automated material handling system, typically with a single load/unload station where 

parts are mounted on specialty fixtures that travel throughout the system.  Because of 

resource limitations and variability in processing from one part type to the next, 

understanding of queuing effects is highly important to the effectiveness of FMS 

operation. Solberg (1977) linked work in closed-queuing networks to FMS systems. 

 Although useful in many cases, closed-queuing networks are less applicable to 

typical manufacturing systems than open networks.  Unfortunately, the open Jackson 

network is subject to highly limiting assumptions and exact solutions for more realistic 

systems are not available (Rabta 2009). This leads researchers to focus on 

approximations for open queuing networks that would provide results that are more 

representative of realistic situations (non-Poisson arrivals and processing times, limited 

buffer size, etc).  As outlined by Rabta (2009) queuing approximation techniques include 

diffusion approximations, mean value analysis, operational analysis, exponentialization 

approximations, and decomposition methods.  
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 Node decomposition techniques are the most widely used queuing network 

approximation method and form the basis of research in this thesis.  The method allows 

the modeler to study performance of a queuing network with non-exponential arrival and 

service times.  The approximation involves studying each queue in the network as if they 

were independent.  Rabta (2009) describes the process in three steps: merging of arrivals 

from outside the system and from other queues into a single arrival flow at each station, 

computation of performance measures and departure times at each station, and splitting 

of the overall departure into individual flows to other stations and to the outside.  In so 

doing, the departure times of one station determine the arrival times of any subsequent 

stations. The specific type of arrival and processing distribution is not specified but 

instead represented only by a mean and squared coefficient of variation. 

 With node decomposition, each individual queue in the system is approximated as 

a renewal process, that is where the interarrival intervals of jobs are independent, 

identically distributed (iid).  A typical queuing network that might be analyzed with node 

decomposition is shown in Figure 2.1.   

 

Figure 2.1: (Whitt 1983), Open Queuing Network 
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In order to consider the queues in isolation, the arrival variability must be 

calculated at each node according to three key equations for queuing, splitting, and 

superposition.  These actions are depicted in Figure 2.2.  The equations essentially keep 

track of the variability in flow as jobs merge, separate, and travel through variable 

processes.  

  

Figure 2.2: (Whitt 1983), The three actions of queuing networks (a) 

Superposition, (b) Splitting and (c) Queuing 

 Node decomposition can be applied to a number of types of problems with open 

queuing networks, and is particularly useful for job shop and dual resource constrained 

manufacturing environments.  One particular application where queuing can be applied is 

capacity planning and control (Rao 1992).  Rao states that capacity adjustments are 

typically performed through means of overtime, reallocation of workers, routing 

adjustments, and splitting and overlapping of operations. Queuing decomposition may 

help managers to successfully control WIP levels, bottleneck utilization, and lead times 

by enhancing the understanding of the effects these capacity adjustments can have on the 

system. Rajagopalan and Yu (2000) point out the lack of consideration of lead time 

performance by most capacity planning models.  They present an optimization model to 

decide whether or not a new machine should be purchased and if so what percentage of a 

product’s demand should be completed on the machine.  The expected wait time with an 
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allowance for variability, as determined with queuing theory, is constrained to be less 

than or equal to the desired lead time.  The objective is to minimize the sum of fixed cost 

from buying machines and production cost. 

 Queuing theory provides long-run steady state performance measures and is thus a 

good fit for making long-term strategic decisions. Crowley et al (1994) present a queuing 

analysis performed during the initial design of a production facility for electromechanical 

devices. The procedure, described as flow ratio analysis, is based on Jackson queuing 

networks and provides an early estimate for labor and resource requirements before the 

construction of a more detailed simulation model. Anderson (1987) also shows the 

benefits that queuing models can have in the early stages of design for a printed circuit 

board test cell.  Using minimal information about machine reliability, lot size, and routing 

the modeler very quickly obtains key information on expected flow time, WIP, resource 

utilization, etc.  Because of the quick development time, queuing models are less 

restrictive in the early stages as compared to simulation, allowing the modeler to make 

significant structural changes in layout and plan without worrying about disrupting the 

statistical significance of the result.  Furthermore, queuing theory was useful for 

determination of staffing levels at an L.L. Bean call center for catalog orders (Andrews 

and Parsons 1993).  Previously the staffing level was determined by monitoring the 

percentage of calls answered within a pre-specified time range.  The queuing analysis 

allows for an economic optimization based on the cost of labor, telephone use cost, and 

cost of lost customers due to excessive waiting, leading to incredible savings for the 

company. 

 Some researchers have found queuing models to be particularly useful in the 

modeling of systems with rework. Pradhan and Damodaran (2008) study an 

optoelectronics assembly line which is set up like a flow line except that jobs can fail at 

any stage and be rerouted back to the station of failure or any previous stage.  In addition, 
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multiple product classes are considered with some resource sharing, so the problem of 

predicting flow time and WIP levels becomes complex.  In order to maintain customer 

satisfaction and reduce late penalties, improved predictions of flow time are required.  

Using node decomposition techniques the authors study the accuracy of lead time 

predictions vs. simulation results for 25 problem instances.  The study shows an increase 

in error between queuing theory estimates and simulation observations as the number of 

nodes shared by different job classes increases. Hu and Chang (2003) study a similar 

situation in semiconductor wafer fabrication where jobs can fail and be rerouted to any 

prior station (re-entrant lines).  The problem is unique in that it uses a backward queuing 

network analysis (BQNA) to derive the necessary means and variances required to obtain 

pre-specified cycle times and WIP levels.   

 Suri et al (1995) outline a shortcoming of many queuing models in their lack of 

consideration for learning effects when studying just-in-time (JIT) systems.  Based on 

simulation studies conducted for this research systems can require several hundred hours 

to reach confidence intervals of one or two minutes for average queue time.  Over that 

time frame (queuing models represent the steady state), learning effects would have 

changed rework and production rates from the initialization of the study.  Reallocation of 

workers may still be studied assuming workers have reached the end of their learning 

curves, but short term effects will require simulation or some further queuing model 

refinement, possibly through use of diffusion approximation techniques.  Furthermore, 

what is lacking from the reviewed case studies is the follow-up analysis once the later-

stage simulation models and finally the production lines are put into place.  This follow-

up would be invaluable in assessing the accuracy of the early-stage queuing models and 

ultimately for improving the worth of future models. 
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3 MODEL DEVLOPMENT 

 The focus of this section is the methodology followed to address the second and 

third research questions: a) whether or not the proposed model can provide a good 

estimate for steady state queuing time in a system with immediate feedback rework, and 

b) whether or not more refined techniques are needed and in what instances.  Several 

steps led up to the choice of queuing model that is examined.  The first part of the 

methodology outlines the process leading to an analytic model while fully explaining the 

components of the model and assumptions involved. This involves the synthesis of ideas 

from Hopp and Spearman (2001) and Whitt (1983) regarding machine availability and 

rework with regards to queuing time. In chapter four a sample problem demonstrates how 

this model might be used to optimize the allocation of workers with different skill levels, 

and an initial simulation model is presented to test accuracy of the queuing model.  In 

chapter five, the accuracy of the queuing model is discussed in greater detail. The 

complete outline of the methodology is depicted in Figure 3.1. 

 

 

 

 

 

 

 

 

 



 

 
 

 

 

 

Figure 3.1:  Methodology framework 
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3.1 Queuing Model Specification 

 Inspiration for the use of queuing theory begins with Factory Physics. (Hopp and 

Spearman, 2001) Here the concept of measuring system variability with the squared 

coefficient of variation (SCV) is introduced.   This quantity is equal to the squared 

standard deviation of a random variable divided by the mean squared.  Random variables 

with low variability have coefficient of variation less than .75, medium variability have 

coefficient of variation 0.75-1.33, and high variability have coefficient of variation 

greater than 1.33 (Hopp and Spearman 2001).   This measure is particularly useful 

because it provides a description of the importance of the variation with respect to the 

mean.  SCV gives a fair reflection of the variation in a dimensionless value. Here 

standard deviation is σ and mean is μ, and the SCV can be represented as 2c . 

2

2
2

µ
σ

== cSCV
 Equation 3.1

 

 Hopp and Spearman (2001) discuss two main types of disruption, preemptive and 

non-preemptive, both of which can be quantified using the SCV.  Preemptive outages are 

issues that can occur during the processing of a job, where machine breakdown is the 

most commonly studied cause.  Non-preemptive outages are disruptions that occur 

between the processing of jobs, such as machine setups.  Before these outages can be 

considered, the “natural variability” should be measured over the long term.  This entails 

variability seen on a regular basis due to unassignable causes and is represented by the 

SCV with symbol 2
0c which is described by the natural observed mean processing time 2

0t

and natural standard deviation 2
0σ . 
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2
0

2
02

0 t
c

σ
=

  Equation 3.2
 

  

Adjustments are made to the observed natural SCV to account for machine breakdowns 

and setups, and the resulting value is known as the effective SCV with symbol 2
ec .  First, 

adjustments for machine breakdowns depend on a commonly used metric known as 

availability, A.  Availability of a machine depends on the mean time to failure fm  and 

mean time to repair rm . 

rf

f

mm
m

A
+

=
 Equation 3.3

 

The effective processing time et  is equal to natural processing time 0t  divided by 

availability A . 

A
tte

0=
 Equation 3.4

 

The natural standard deviation must be adjusted as well as the natural processing time to 

obtain effective standard deviation of processing time 2
eσ . This adjustment also depends 

on the standard deviation of repair times rσ . 

( )( )
r

rr
e Am

tAm
A

0
222

02 1−+
+


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

=

σσ
σ

 Equation 3.5
 

Finally the effective SCV 2
ec  for machine breakdowns is the ratio of the effective 

variability and mean processing times.   
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 Equation 3.6
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 In this work the emphasis is on the effects of rework which can be seen as a type 

of non-preemptive disruption.  Hopp and Spearman (2001) also presents an adjustment 

for non-preemptive disruptions.  This adjustment is designed with machine setups in 

mind, rather than rework, but it may be possible to view rework as equivalent to a setup 

event that would occur between processing of normal jobs.  There are limitations to this 

technique, but the equations are presented here for completeness. 

 Where sN  represents the number of jobs completed between setups and st

represents the average time for each setup, the effective processing time adjusted for non-

preemptive disruptions can be specified as, 

s

s
e N

ttt += 0

 Equation 3.7
 

The standard deviation of setup times 2
sσ is also needed to capture the effective standard 

deviation with adjustment for setups. Therefore, 

2
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 Equation 3.8

 

Finally, because SCV is the ratio of effective variance to effective processing time,  

s

s
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s
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N
ttttN

N
ttN

t
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0

2

2
2

2 ++
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 Equation 3.9
 

 Because the focus of this work is on rework rather than setups, there are some 

limitations to the above non-preemptive adjustments.  Setups occur somewhat regularly 

as parts are produced (every 100 parts the cutting tool must be changed, etc.) so the 

number of parts between setups is a feasible measure.  Rework is much more 



 

23 
 

 

unpredictable and could occur in irregular patterns.  In the case of rework it is much more 

convenient to rely on a simple measure such as the expected percentage of parts that will 

need to be reprocessed.  This type of measure is also much more straightforward to model 

with DES software for the later purpose of validation of the analytic model.  Furthermore, 

it can be noted that the majority of the literature involving queuing network calculations 

uses this technique, known as probabilistic routing.  The jobs may be routed to the next 

process or to an earlier one for reprocessing based on a matrix of routing probabilities.  

This technique draws upon the seminal work of Jackson (1954) on queuing systems.  In 

such systems with this probabilistic (Markovian) routing from process to process, the 

number of times a job has been through the cycle does not affect the likelihood of the 

next step that will be taken.  A part that has been reworked 10 times is just as likely to be 

reworked again as a first run job. 

 At this point the work turns to the extensive field of queuing network 

approximations, the background of which was presented in the literature review, from 

which it can be recalled that the most commonly used queuing network approximation 

technique is node decomposition.   

 

3.2 Node Decomposition With Removal of Immediate Feedback Rework 

 

In the case of immediate feedback rework, the external arrival stream and the 

rework stream are merged together and the two input streams may have different 

parameters depending on the variability of the process and other factors.  In reality, where 

multiple arrival streams are superimposed, the process is not renewal hence the 
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approximation (Whitt 1980).  Keuhn (1979) and Whitt (1983) suggest the implementation 

of a unique adjustment for processing time and SCV of processing time in the case of 

immediate feedback rework. Without this adjustment, Keuhn (1979) suggests 

unacceptable error in the queuing approximations will result due to the failings of the 

renewal approximation for the superimposed arrivals due to the strong correlation 

between input and output streams, i.e. arrival times from the rework stream tend to be 

equal to the external arrival time plus the time required for one processing cycle. 

 The suggested adjustment is known as the removal of immediate feedback, and 

essentially means that rework is processed immediately as opposed to being put back at 

the end of the queue after its first run. In short, all the rework time is administered in one 

cycle.  Because all of the rework is conducted immediately, the jobs are never rerouted 

into the queue, but the average processing time and variance are adjusted to account for 

the extra-long processing requirements for reworked parts. The average number of parts 

in the queue is not affected by this change and thus the expected queue time remains 

unaltered. The technique deals with the issues of correlation between arrivals and 

departures, but there still may be error introduced by approximation of a renewal process.  

Using the same subscripts from Hopp and Spearman (2001) for natural and effective 

times, and with the parameter p representing the probability that a part must be reworked 

the adjusted values for processing time and processing variability are as follows. 

p
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0  Equation 3.10 
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3.3 Synthesis of Techniques for Rework and Machine Availability 

 

 Thus far two adjustments have been described for processing time and variability.  

From Hopp and Spearman (2001) the adjustment accounts for preemptive disruptions 

seen in the case of machine breakdown.  These adjustments are based on the machine 

availability parameter.  Furthermore, a separate adjustment is seen in Whitt (1983) that 

accounts for non-preemptive disruptions from rework. Fortunately, both adjustments act 

on the processing time and variability, and thus can be combined into one analytic model 

that estimates steady state queuing time. 

 First consider an effective processing time that combines the adjustment shown in 

equation 3.4 with the one from equation 3.10. If these adjustments are conducted 

iteratively, such that the effective processing time from equation 3.4 takes the place of 

natural processing time variability in equation 3.10, then the result is the following 

equation 3.13. 

( )pA
tte −

=
1

0  Equation 3.13 

In a similar fashion, the equations for effective SCV of processing time, equation 3.6 and 

equation 3.12, can be combined. Again, using the iterative technique, 2
ec from equation 

3.6 is used in place of 2
0c in equation 3.12, and the following relationship results. 
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e  Equation 3.14 

Note that when station availability is 1, meaning no failures, equation 3.14 reduces back 

down to equation 3.12, and when the probability of rework p is 0 then equation 3.14 

reduces to equation 3.6 (assuming the SCV of repair times is equal to 1). 
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 The performance measures for the queuing systems to be studied are average 

queue time per cycle and average entity wait time (wait time per part).  Kingman’s 

equation for queue cycle time ( )1// GGCTq  is used, where the notation indicates 

applicability to generally distributed arrival and processing times with one server.  There 

is infinite space and first come first serve (FCFS) queue discipline applies. 

( ) e
ea

q t
u

uccGGCT 






−







 +
=

12
1//

22

 Equation 3.15
 

 When the removal of immediate feedback approach is followed, the SCV of  

arrivals 2
ac  does not change with rework rate. Effective processing time et  is derived from 

equation 3.13 and the effective SCV of processing time by equation 3.14. Routing for 

rework is removed, meaning the wait time is approximated with only one cycle, so the 

solution to this equation yields the total expected flow time per part.  To divide the total 

queue time over the expected number of cycles, the expected wait time EW  is adjusted 

as follows. 

( )1//)1( GGCTpEW q−=  Equation 3.16 

Station utilization is maintained at 80%.  The decision regarding station utilization is 

derived from the relationship between utilization and lead time.  As the utilization 

increases, the expected lead time increases exponentially, and it is at approximately the 

80% utilization mark that the exponential effects start to take hold and increase the lead 

time drastically. In short, 80% utilization marks the point at which increased resource 

utilization does not pay off because of the inadvertent effects on lead time.  
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Using this method an expected queue time for each time a part cycles through the process 

is estimated, with the capability of taking into account both preemptive and non-

preemptive disruptions. 
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4 QUEUING MODEL RESULTS 

 In order to test the relationship between expected rework rate and the machine 

availability on queue time, an array of scenarios was tested with rework ranging from 0 to 

95 percent and availability from .5 to 1. The study begins with no rework and the 

percentage is increased in increments of 10% up until 90%. An additional data point at 

95% rework is added to show the trend as rework approaches but cannot be allowed to 

reach 100%. Three cases are tested for machine availability starting at 50% availability 

and incrementing to 75% and then 100% availability.  Queuing time was evaluated 

according to equation 3.15 using an Excel spreadsheet designed to read in as many as 9 

inputs: mean time to failure, mean time to repair, probability of rework, average 

processing time, standard deviation of processing time, average interarrival time, 

standard deviation of interarrival time, standard deviation of repair time, and number of 

parallel stations.  Of course, several inputs were held in control.  Processing time is held 

constant with zero standard deviation, primarily to simplify the analysis of arrival 

variability where external and rework input streams are combined.  Also, the standard 

deviation of repair times and number of parallel stations are constant for the following 

experiments.   

4.1 Effects of Machine Availability and Rework Rate on Queue Time 

  

Figure 4.1 demonstrates the relationship between per-entity queue time and both 

the probability of rework and machine availability.  As expected, queue time increases 

exponentially with the probability of rework.  The effects of machine availability are 



 

29 
 

 

largely linear, given a constant rework rate.  However, the effect of machine availability 

is more pronounced at higher rework rates.  That is, the expected queue time decreases by 

about half as the availability of the machine increases from .5 to 1.  

 

 

Figure 4.1: Per-Entity queue time over varying levels of machine availability 

  

The data behind the Figure 4.1 is shown in Table 4.1 for additional reference. 

Table 4.1:  Per-Entity Queue Time [min] over levels of rework rate and machine 

availability 

    Availability 
    0.5 0.75 1 

Pr
ob

ab
ili

ty
 o

f R
ew

or
k 

0 18 11.64 8 
0.1 22.69 14.81 10.29 
0.2 27.08 17.67 12.5 
0.3 32.7 21.41 15.32 
0.4 40.14 26.38 19.05 
0.5 50 33.04 24 
0.6 66 43.62 32 
0.7 97.54 64.68 47.72 
0.8 146 97.05 72 
0.9 306 203.16 152 
0.95 626 417.52 312 

0

100

200

300

400

500

600

700

0 0.2 0.4 0.6 0.8 1

Probability of Rework

Pe
r 

E
nt

ity
 Q

ue
ue

 T
im

e 
[m

in
]

A=.5
A=.75
A=1



 

30 
 

 

 Because the iid approximation required by the queuing approximation used, the 

accuracy of the model estimate may depend on the external arrival variability.  For this 

reason the model output is also tested for three levels of SCV of arrivals (.5, 1, and 2.25).  

The arrival variability for the previous tests was held at 1.  Similar to the machine 

availability case, the pattern observed with external arrival variability is largely linear 

with slope dependent upon the rework rate.  Queuing time decreases as arrival variability 

decreases.  The effect of arrival variability is less pronounced at low rework rates because 

it generally causes a four-fold increase in queuing time from the SCV of .5 to the SCV of 

2.25.  These trends are observed in Figure 4.2.  Again, the data behind this plot is 

presented in Table 4.2 

 

 

Figure 4.2: Per-Entity queue time over varying external arrival variability 

 

 

0

100

200

300

400

500

600

0 0.2 0.4 0.6 0.8 1
Probability of Rework

Pe
r-

En
tit

y 
Q

ue
ue

 T
im

e 
[m

in
]

SCV=.5
SCV=1
SCV=2.25



 

31 
 

 

Table 4.2: Per-Entity Queue Time [min] over levels of rework rate and external 

arrival variability 

  
  SCV, external arrivals 
  0.5 1 2.25 

Pr
ob

ab
ili

ty
 o

f R
ew

or
k 

0 4 8 18 
0.1 5.61 10.29 22 
0.2 7.29 12.5 25.52 
0.3 9.43 15.32 30.04 
0.4 12.24 19.05 36.05 
0.5 16 24 44 
0.6 22 32 57 
0.7 33.68 47.72 82.81 
0.8 52 72 122 
0.9 112 152 252 
0.95 232 312 512 

 

4.2 Simulation 

 

 An initial simulation study was conducted to assess the accuracy of the queuing 

model.  The simulation model was built using Simul8 discrete event simulation software. 

For the test, only the effects of rework were included whereas machine availability was 

held constant at 100%. The results, seen in Figure 4.3 indicate a discrepancy between the 

calculated values for expected wait time and the observed values from simulation. The 

discrepancy appears to widen at an increasing rate as the probability of rework increases. 

These data were collected using only a single replication, and unfortunately in these early 

stages of study the warmup period and runtime are not noted, although these parameters 

were held constant for all cases.  Later in the simulation refinements discussed in section 

5.3 the importance of these parameters is noted. 
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Figure 4.3: Initial finding for accuracy of queuing theory calculations as compared to 

simulation 

 

 Given the unexpected nature of the above result, further simulation was postponed 

until a better understanding of the system variability was developed. 
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5 RESOLVING THE GAP BETWEEN QUEING THEORY AND SIMULATION 
Given the observed discrepancy between the calculated values and the observed 

values from simulation, it is desired to study further the possible effects of increasing 

rework rate on the queuing theory estimates.  Of the literature studied on queuing 

networks and the node decomposition technique, there is little mention of the specific 

effects of rework rate on model accuracy, specifically how rework rate might affect 

accuracy of the immediate feedback removal technique.  Typically, proposed queuing 

models are tested for an assortment of different types of queuing networks (with and 

without feedback, varying in size and complexity, single or multiple part types) and an 

assessment is made as to the worth of the proposed model over these types of networks.  

Though narrower in scope, the following analysis attempts to relate model accuracy 

specifically to system characteristics (rework rate, machine availability, and external 

arrival variability) which can be easily controlled in both the queuing model and the 

simulation. 

 

5.1 Node Decomposition without Removal of Immediate Feedback 

 

Because the processing step in these experiments is assumed to have a constant 

time requirement, as the rework rate approaches 100% the arrival stream from the rework 

loop becomes nearly deterministic.  Every four minutes, a part is completed, and with 

near certainty is rerouted back to the processing step.  Because it is important to these 

studies to maintain a process utilization of 80%, as the rework rate increases the external 
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arrival rate must decrease.  As a result, the external arrival stream which follows a 

specified statistical distribution will be replaced by regular arrivals from rework.  This 

observation suggests arrival variability will be reduced in cases of high rework rate, 

which should have a limiting effect on the expected queuing time, which may explain the 

overestimation of the calculated values. 

 In the node decomposition approach with removal of immediate feedback, there is 

no adjustment of the arrival variability term 2
ac  to account for the merging of external and 

rework arrival streams.  Rather, rework is accounted for by adjusting the variability of the 

processing time, where reworked parts are given longer times than parts without rework.  

The alternative approach is to allow routing back to the same process, with the job 

entering at the end of the queue.  Using the splitting, queuing, and superposition 

equations from the node decomposition technique, the SCV of interarrival times 2
ac  is 

determined for the merged external and rework arrival streams.   

In the original node decomposition approach without removal of immediate 

feedback, the arrival variability 2
ac  is adjusted for the merging of two arrival streams, and 

it is assumed the combined arrival distribution is stationary iid.  Because the distribution 

of combined arrival streams will not be exactly iid, there is some error introduced at this 

stage.  The hypothesis at hand suggests that the severity of this error from the original 

node decomposition approach could be less than the error caused by the alternate 

feedback removal method’s lack of direct consideration for arrival variability.  Ultimately, 

as seen in Figure 5.1 this hypothesis is proven to be erroneous.  The queuing theory 

approach without removal of immediate feedback greatly underestimates the average per-

cycle waiting time. 
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Figure 5.1: Queuing theory calculations with and without removal of immediate feedback 

for increasing levels of rework 

 

5.2 Inquiry into the Failed Hypothesis  

 

In order to improve the understanding of the discrepancies for both queuing 

approaches it was required to perform a detailed analysis of the arrival patterns observed 

in the simulation. To accomplish this, a new simulation model was created in Arena. The 

change in DES software from Simul8 was done primarily to take advantage of the data 

analysis capability. A ReadWrite module was placed in the Arena model directly in front 

of the process step, as shown in Figure 5.2. By writing the arrival times of each entity to 
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Excel, the arrival patterns from the two input streams, rework and external, could be 

studied. 

 

Figure 5.2:  Rework loop with ReadWrite module to collect arrival times at process 1 

 

In addition to the arrival pattern observed at the process, the 2
ac can actually be 

calculated for the interarrival times.  Repeating this for increasing probabilities of rework, 

one observes some interesting results as shown in figures 5.3(a)-(k).  In the cases with 

low probabilities of rework, the range of observed interarrival times, when organized into 

descending order, fall into a relatively smooth curve. Starting around the 40% rework 

case, a tier in the curve can be observed at the interarrival time of 4 minutes. The 4 

minute increment is a result of the constant 4 minute processing time at Process 1. As a 

control, the processing time was held constant so as to understand only the effects of 

arrival variability. An added benefit is that the proportion of arrivals from the external 

and rework streams can be discerned.  The observed tier at 4 minutes is a result of the 

arrivals from rework becoming a more significant percentage of the total arrivals.  The 

tier at 4 minutes grows longer with increasing rework rates, and starting at 50% rework a 

second tier is discernible at the interarrival time of 8 minutes.  This occurs when no jobs 

arrive externally for several cycles.   These tiers would increase in increments of 4 
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minutes if the simulation run time were increased so as to allow for more occurrences of 

long interarrival times. 

(a)  0% Rework (b)  10% Rework   

(c)  20% Rework (d)  30% Rework 

  

(e)  40% Rework (f)  50% Rework 

 



 

38 
 

 

 

(g)  60% Rework (h)  70% Rework  

(i)  80% Rework (j)  90% Rework  

 

 

 

 

 

(k)  95% Rework 

Figure 5.3 (a)-(k):  Observed interarrival times from combined external and rework 

arrival streams 

 

 The SCV of interarrival times is calculated for each rework rate, and the results 

are shown in Figure 5.4. Clearly the variability is not decreasing with rework rate, despite 
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the fact that a majority of arrivals fall along the 4 minute and 8 minute tiers in these cases.  

This can be attributed to significantly long interarrival times, i.e. 140 minutes, which can 

occur when several parts pass through the process without rework consecutively. 

   

Figure 5.4:  SCV of interarrival times for increasing rework rates calculated from 

simulation data 

 

The drastic difference between these long interarrival times and the standard 4  

minute time creates a high overall variability.  Note that this may not be evident in 

figures 5.3(a)-(k) as these represent only one simulation replication each.  The variability, 

in contrast, is calculated as an average of 10 replications to fully capture the effects of 

randomness.  Ultimately, the conclusion from this observation is that queuing time should 

indeed be increasing with rework and that the node decomposition approach without 

removal of immediate feedback must show a decreasing trend for reasons other than 

decreasing arrival variability. 
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 In order for the node decomposition approach without removal of immediate 

feedback to be accurate, the arrivals from multiple streams must be at least approximately 

equally distributed. The external arrival distribution is specified to be exponential, so a 

relevant test then would be to capture the arrival times solely from the rework stream so 

as to observe the actual distribution. 

5.3 Simulation Refinements 

 

 It is desired to fully understand the effects of rework rate and external arrival 

distribution on the accuracy of the queuing theory estimates for steady state waiting time.  

To accomplish these tasks, a DES model is built using Arena software and statistical 

analyses are conducted to compare DES observations with the expected values as 

determined using equations 3.15 and 3.16.  A screenshot of the Arena model structure is 

shown in Figure 5.5.  The decide module is conducted by percentage and represents the 

stated rework rate. 

 

Figure 5.5:  Arena model structure used to obtain queue time observations 

  

As discussed in Kelton et al. (2010) several steps are required to ensure 

confidence in the results from a steady state type simulation.  The first requirement is that 
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the warmup period must be set so as to eliminate any bias caused by start-up conditions.  

Initially, there are no parts waiting in the queue for process 1, which causes the initial 

queuing time to be below average.  Kelton et al (2010) suggests that warmup period 

should be set during which the simulation runs but data is not collected.  To decide the 

warmup length, the simulation is initially run with no warmup period with 10 replications 

for a long time period, in this case 700 hours.  For each replication, data on the average 

queue time is collected for the entire 700 hours, and this data is plotted over time using 

Arena’s output analyzer.  A typical plot of this data is shown in Figure 5.6.  The time at 

which the average queue time settles for all 10 replications can be assumed to be a 

reasonable warmup period, after which startup conditions have been exhausted. Figure 

5.6 shows the queue time leveling off after about 20,000 minutes or 333 hours. 

 

Figure 5.6: Transient behavior of average queue time for 20% rework, exponential arrival 

distribution 

 

After setting the warmup period, a run time and number of replications must be 

specified in order to ensure the steady state value for queuing time has been achieved.  

Both techniques of adding run time and adding replications result in the collection of 
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more data points, which facilitates reduction of the 95% confidence interval.  That is, the 

range over which the average queue time will fall 95% of the time.  Extreme values may 

occur due to the stochastic nature of the system, but with the collection of more data 

these extreme points will be outweighed by the many data points which fall much closer 

to the average value.  With more data points, this half width of the confidence interval 

becomes more precise, so the best approach is to pre-specify the desired level of 

precision.  For the case of these studies, the desired half width is specified so that it must 

be less than 1 minute.  When a test scenario having parameters for warmup period, run 

time, and number of replications provides the desired confidence interval, then the 

performance measures (average queue time and average entity wait time) can be collected 

as the steady state values. 

Figure 5.7 shows how the number of replications and run time affect the 

simulation value for average queue time. The scenario shown is for 80% rework rate with 

external interarrival time taking the exponential distribution.  The value starts out 

sporadic in nature and eventually settles around the horizontal line which in this case 

represents the calculated queue time using the queuing theory model.  The number of 

replications affects the run time requirement to reach the desired confidence interval, but 

in general is less crucial than the actual run time.  Without a long enough run time, the 

steady state cannot be reached.  Figure 5.8 shows the absolute percent error between the 

simulated values and queuing theory values for the various run times and number of 

replications, where the colors on the surface plot represent ranges (2% in height) of the 

absolute percent error. Note that as the number of replications increases, the percent error 
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decreases but at short run times, such as 2400 minutes, even at high numbers of 

replications the system may not reach near zero percent error. 

 

Figure 5.7: Effects of simulation run time and number of replications on average queue 

time, 80% rework rate and exponential arrival distribution 

 

Figure 5.8: Surface plot of absolute % error vs. run time and # of replications, 80% 

rework rate and exponential arrival distribution 



 

44 
 

 

Using Arena’s process analyzer (PAN) tool, data can quickly be collected over a 

range of increasing run time and, if needed, increasing number of replications.  At first, 5 

replications are run over increasing run time and the half width of the confidence interval 

is observed for each run.  When the half width drops below 1 minute and stays at this 

width for two consecutive scenarios, then for the second scenario the steady state values 

are taken.  If after an exceedingly long run time, here 800 days, the half width does not 

fall and stay below 1 minute, the number of replications is increased by 5 and the 

procedure is repeated.  Figure 5.9 shows a screen shot of the process analyzer for 80% 

rework and external interarrival times set to the exponential probability distribution.  

 

 

 

 

 

Figure 5.9: Screen shot of process analyzer used to gather data 
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A box and whisker plot is created for each run time (called rep length in the PAN) for a 

given number of replications.  The plot shown in the figure 5.9 is for 20 replications.  In 

the chart options window, seen to the right of Figure 5.9, the 95% confidence interval on 

the observed average queue time is given. Note that for run time of 172800 minutes, the 

confidence interval falls below 1 minute for the first time at .9835 minutes.  To ensure 

that the confidence interval is consistently below 1 minute, the average queue time is 

taken at the subsequent run time of 230400 minutes where the confidence interval 

is .7213 minutes. The average queue time for the simulation with 20 replications of 

length 230400 minutes is 15.138 minutes and the average queue time per part is 75.639 

minutes. 

  

5.4 Testing High and Low Arrival Variability Cases  

 This procedure of determining the steady state queue time values from simulation 

are repeated for rework rates ranging from 0% to 90% in increments of 10%, and finally 

again for 95% rework.  Furthermore, it is desired to observe the effects of the external 

arrival distribution, or the arrival variability, on the accuracy of the queuing theory 

estimates.  For this reason the queuing theory estimates are computed for low, medium, 

and high arrival variability.  These correspond to SCV of arrivals of 0.5, 1.0, and 2.25 

respectively.  However, because the queuing theory estimate is based only on the 

moments of the distribution and the simulation requires specification of some probability 

density function, appropriate distributions are fit with parameters corresponding to these 

arrival SCV’s.  For the exponential distribution, the mean and standard deviation are 
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equal to each other and the SCV is then naturally equal to 1.0.  Exponential distribution is 

then assumed for the case where SCV equals 1.0.  As demonstrated in Whitt (1983) the 

Erlang distribution is convenient for low variability arrivals as its SCV is always less than 

1.  Furthermore, the hyperexponential distribution will always have SCV greater than 1.  

Therefore these are the distributions fitted in the simulation for low and high variability. 

 Chinnaswamy (2005) demonstrates techniques for fitting parameters to the Erlang 

and Hyperexpnential distributions so that a desired SCV can be achieved. The Erlang 

distribution is used to represent the summation of r arrival streams, where each 

individual stream is exponential. In addition to the number of streams, the rate parameter 

λ is needed which is the arrival rate of each input stream.  This is the inverse of the 

interarrival time. Equations 5.1 and 5.2 represent the mean and squared standard 

deviation of the Erlang distribution. 

λ
µ r
=  Equation 5.1 

2
2

λ
σ r

=  Equation 5.2 

Subsequently, the SCV is as shown in equation 5.3. 

rr

r

ca
1

2

2

22 ==

λ

λ  Equation 5.3 

As an example, when the process has 0% rework, the external arrival rate which allows 

80% utilization of the process is one part every 5 minutes with exponential arrivals. If the 

desired SCV is .5, then the number of arrival streams must be 2. Since the average 

interarrival time must remain 5 minutes to maintain the desired 80% utilization, the 
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interarrival time for each of the 2 streams must then be 2.5 minutes. Using Arena, the 

expression used in the Create module is then ERLA(2.5, 2). 

 The case for the Hyperexponential distribution is somewhat more complicated. 

This distribution is used to represent a mixture of r arrival streams with exponential 

distributions. The mean of the Hyperexponential distribution is shown in equation 5.4 

where ip is the probability that arrivals will come from arrival stream i . 

∑
=

=
r

i i

ip
1 λ

µ  Equation 5.4 

When there are 2 arrival streams being mixed together, the variance of the 

Hyperexponential distribution can be stated according to equation 5.5 
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2 2 −− += λλσ pp  

 Equation 5.5 

Finally, the SCV of the Hyperexponential is shown in equation 5.6. 
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As described in Whitt (1980), the probabilities ip can be fitted to a desired SCV 

independently from the rate parameters of each stream under the assumption of balanced 

means.  Once the probabilities are specified to provide the desired SCV, the rate 

parameters can be calculated based on the interarrival time required to attain 80% 

utilization. The concept of balanced means is represented by equation 5.7. 

1
22

1
11

−− = λλ pp  Equation 5.7 

Equation 5.8 shows how the probability of each arrival stream can be determined given 

some desired SCV. 
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p  Equation 5.8 

In the test cases presented an SCV of 1.5 was used, which corresponds to probabilities 

of .81 for 1p and .19 for 2p . Finally, the arrival rate parameter for the two arrival streams 

can be found using equation 5.9. 

1

1
1

2
µ

λ p
=  Equation 5.9 

For each rework rate, there is an associated 1µ interarrival time that ensures 80% process 

utilization. 

 

5.5 Simulation test with rework and breakdowns 

 In addition to the simulation test for varying arrival variability, simulation is 

performed taking into account machine availability.  This process is relatively 

straightforward. In the Arena simulation model, a resource associated with the processing 

step is given a time-based failure pattern such that the mean time to failure is equal to 1 

minute and the mean time to repair is also 1 minute, giving an availability of 50%. This 

change has the effect that the interarrival times must be doubled relative to the 100% 

availability case in order to ensure the process does not become over-utilized. 
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6 RESULTS ON QUEING THEORY ACCURACY 

6.1 Observed Error for high, medium, and low external arrival variability 

 Accuracy of queuing estimates is provided over the full range of rework rate from 

0% to 95% for three levels of arrival variability.  These levels of external arrival 

variability are specified by the squared coefficient of variation of arrivals. Specifically 

the values are .5, 1, and 2.25 for low, medium and high. In the simulation model, the low, 

medium, and high levels must be fitted with a distribution and those used are Erlang, 

Exponential, and Hyperexponential, respectively. Figure 6.1 shows the first result for 

queuing model accuracy vs. the simulation with exponential arrival distribution.  The 

error bars shown around the simulation data points indicate the 95% confidence interval 

half width.  95% of the time the average per-cycle queue time will be within this error bar. 

 

Figure 6.1:  Comparison of per-cycle queuing time for queuing calculations and 

simulation for exponential arrival distribution, SCV=1 

  

The primary metric used to establish accuracy of the queuing calculations is the 

per-cycle queue time.  This represents the average time a job waits before processing 
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each time it cycles through the system. Figure 6.1 demonstrates this per-cycle queue time 

over incremental levels of rework for the exponential arrival distribution.  With external 

arrivals fitting the exponential distribution the queuing calculations should be at their 

most accurate as this is the case in which the node decomposition technique with removal 

of immediate feedback is proven to be exact as compared to the system with feedback 

(Kuehn 1979).  The percent error at each data point is shown in Figure 6.2. 

 

 

Figure 6.2: Percent error for per-cycle queue time with exponential arrival distribution, 
SCV=1 
  
 There is no discernable relationship between probability of rework and accuracy 

of the queuing calculations according to Figure 6.2.  Less than 4% error is observed in all 

cases. It should be noted, however, that with increasing probability of rework the run 

time required by the simulation to resolve to the specified confidence interval with half-

width equal to one minute significantly increases, and in the cases of .9 and .95 

probability of rework the number of simulation replications also had to be increased to 
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reach the desired resolution. Table 6.1 demonstrates the run times and number of 

replications used to aquire each data point. 

 

Table 6.1: Simulation run time and number of replications, Exponential arrival distribtion, 

SCV=1 
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0 0.3947 230400 5 
0.1 0.3256 115200 5 
0.2 0.5406 230400 5 
0.3 0.8416 345600 5 
0.4 0.9109 230400 5 
0.5 0.8111 230400 5 
0.6 0.5912 1152000 5 
0.7 0.8551 460800 5 
0.8 0.7403 345600 5 
0.9 0.5131 11520000 10 
0.95 0.3256 460200 10 

 
 

 In addition to the per-cycle queue time, it is also interesting to look at the 

comparison between the per-entity queue time as obtained from the queing theory 

calculation and from the simulation.  To the practicioner, this metric may be more 

relevant as it demonstrates the potential cost per part as well as the feasibility of meeting 

a delivery deadline. Figure 6.3 shows average total waiting time per entity as summed 

over the total number of cycles through the system.  Accuracy remains good for the per-
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entity case, however it should be noted that the corresponding half widths for each data 

point are considerably higher than in the per-cycle case.  This is attributed to the added 

uncertainty in the number of times an entity may cycle throughout the system.  With very 

high rework rates, there can be a significant difference in the minimum number of cycles 

required and the maximum, creating a wider range of total queing time per entity. 

 

 

Figure 6.3:  Average queuing time per entity for exponential arrival distribution 

  

Figure 6.4 demonstrates the percent error in the per-entity queue times shown in 

Figure 6.3.  Error remains below 4% for all cases other than for the instance of .9 

probability of rework where the error is over 50%. 
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Figure 6.4:  Percent error for per-entity queue time with exponential arrival distribution, 

SCV=1 

  

A similar presentation of results is repeated for the low and high arrival variability 

cases. Figure 6.5 shows the per-cycle accuracy of the queuing calculations for the Erlang 

arrival pattern, which along with Figure 6.6 shows a decreasing percent error as 

probability of rework increases. Table 6.2 shows the simulation run time and replication 

requirements needed to reach the desired confidence interval half width of less than one 

minute. 

 

Figure 6.5: Comparison of per-cycle queuing time for queuing calculaitons and 

simulation for Erlang arrival distribution, SCV=.5 
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Figure 6.6: Percent error for per-cycle queue time for Erlang arrival distribution, SCV=.5 

Table 6.2: Simulation run time and number of replications, Erlang arrival distribution, 

SCV=.5 
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0 0.2619 7200 5 
0.1 0.9643 12000 5 
0.2 0.8588 12000 5 
0.3 0.5136 24000 5 
0.4 0.6555 172800 5 
0.5 0.4919 28800 5 
0.6 0.7568 230400 5 
0.7 0.7061 288000 5 
0.8 0.9056 345600 5 
0.9 0.8892 403200 5 
0.95 0.8223 345600 15 

 

For the Erlang arrival distribution (low external arrival variability) the pattern of 

percent error between queing calculations and simulation continues for the per-entity 
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queuing times. Figure 6.7 demonstrates good accuracy despite increasing width of the 

confidence interval as rework rate increases. 

 

 

Figure 6.7: Average queuing time per-entity for Erlang arrival distribution, SCV=.5 

 

 

Figure 6.8:  Error for per-entity queue time for Erlang arrival distribution, SCV=.5 
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Although more erratic, the accuracy of the queuing calculations for highly 

variable arrivals also tend to increase as the probability of rework increases, seen in 

Figure 6.9.  This pattern is observed  most clearly in the plot of percent error over 

increasing levels of rework in Figure 6.10. 

 

Figure 6.9: Comparison of per-cycle queuing time for queuing calculaitons and 

simulation for Hyperexponential arrival distribution, SCV=2.25 

 

 

Figure 6.10:  Error for per-entity queue time for Hyperexponential arrival distribution, 

SCV=2.25 
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Table 6.3: Simulation run time and number of replications, Hyperexponential arrival 

distribution, SCV=2.25 
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0 0.9885 172800 5 
0.1 0.8214 345600 10 
0.2 0.8372 230400 10 
0.3 0.7731 288000 10 
0.4 0.3939 1152000 10 
0.5 0.8645 345600 10 
0.6 0.546 230400 10 
0.7 0.8378 460800 10 
0.8 0.8256 1152000 25 
0.9 0.6689 1152000 25 
0.95 1.368 1152000 25 

 

 Again, the accuracy of the per-cycle queuing time translates to the per-entity time 

as seen in Figure 6.11 and 6.12.  Given the highly variable external arrival pattern, the 

Hypergeometric case proved to be the most cumbersome in terms of resolving the 

simulation to the desired confidence interval.  This can be observed in Table 6.3, 

especially in the final cases of .8 to .95 probability of rework where the return on adding 

replications diminishes greatly. 
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Figure 6.11:  Average queuing time per-entity for Hyperexponential arrival distribution, 

SCV=2.25 

 

Figure 6.12: Percent error for per-entity queue time for Hyperexponential arrival 

distribution, SCV=2.25 

 

 In order to capture the effects of only the external arrival distribution, Figure 6.13 

shows the average percent error aross all rework rates.  From this plot, it is clear that the 
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exponential arrival pattern yields the most accurate queing calculations, wheras the cases 

of low and high arrival variability each show reduced accuracy of approximately the 

same magnitude. 

 

 

Figure 6.13:  Average of % error for all rework rates according to external arrival 

distribution 

 

6.2 Observed Error for rework and breakdown case 

  

Finally the performance of the queuing model over ranges of rework rate and 

subject to machine breakdowns is analyzed. Figure 6.14 shows that given the right run 

time and number of replications, the percent error is quite good, even at high rework rates 

and 50% machine availability. In fact the highest observed percent error occurs on the 

0% rework scenario at 12% error. Figure 6.15 demonstrates to error for each scenario 

having machine availability of 50%, with mean time to failure and mean time to repair 
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both equal to 1 minute. It would appear that there is a downward trend in the % error as 

rework increases.  Tighter tolerances in the confidence interval cannot explain this as the 

95% confidence interval does not show a decreasing trend with rework rate. Table 6.4 

shown the run times and number of replications needed to obtain these data points. 

 

 

Figure 6.14: Comparison of per-cycle queuing time for queuing calculaitons and 

simulation for Availability=.5, exponential arrival distribution, SCV=1 

 

 

Figure 6.15: Error for per-cycle queue time for availability=.5, Exponential arrival 

distribution, SCV=1  
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7 CONCLUSIONS AND FUTURE WORK 

7.1 Conclusions:  Recap of research questions 

 Here the initial research discussion questions are reviewed, the first of which 

asked the advantage of using queuing theory to model system performance.  From the test 

cases and results, it was seen that queuing models using the node decomposition 

technique with removal of immediate feedback can provide good results when compared 

to simulation observations. In nearly all cases 10% error or less was observed.  This 

includes test cases with rework rate ranging from 0% to 95%, varying levels of arrival 

variability, and varying levels of machine availability. In short, the queuing model can 

provide a good estimate of steady state queuing time. The queuing model offers a quicker 

result than a discrete event simulation model which would prove especially useful if 

several scenarios need to be tested in a short time. Furthermore, the queuing model 

incorporates the random nature of the system as opposed to more simplified optimization 

models which typically require estimates for deterministic processing times. 

 The second research question asks if the proposed queuing model provides an 

accurate representation of the average waiting time per part in a system that may be 

subject to high levels of rework.  This was tested meticulously using the Arena DES 

model and the result showed no significant relationship between the rework rate and the 

accuracy of the queuing model.  Specifically, the model does not show deteriorating 

accuracy as the probability of rework increases, as was the initial suspicion.  As a follow 

up, the third question asks if more refined models would be needed to improve accuracy 

in any specific circumstances. The more significant response here may be as to the 

relevance of the proposed steady state value for average queuing time.  Of course, the 
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steady state value represents the waiting time that would be expected on average over a 

long period of time, without changing conditions.  That is, the external arrival distribution 

should remain constant, the processing time distribution should remain constant, the 

rework rate should not change, and the machine availability should be consistent.  In 

cases where the rework rate is quite high (above 50%) and where the machine availability 

is quite low (50%) the simulation suggests that it may take the system several hundred 

hours to reach a steady state with desirably low confidence interval.  In reality, no system 

will perform for such a long time without being subjected to change (worker learning, 

machine deterioration, etc) and this may be the primary reason for the limited application 

of queuing theory. For the cases studied, however, the proposed method is sufficient. 

 The final two research questions are with regard to the relationship between 

system parameters and the accuracy of the queuing model, and any generalizations that 

might be made with regards to the use of queuing theory in optimization problems. As 

stated previously, no clear relationship emerged between the rework rate and machine 

availability with regards to percent error of the queuing model. Still, if the results of this 

model are to be integrated into an optimization model, it should be noted that if a real 

system is being monitored, if the system is highly variable it is likely that some observed 

wait times will skew the average away from the expected steady state.  Only over 

extended observations would the effects of these extreme results be rectified. Other 

relevant information would be to look at the standard deviation about the expected steady 

state value. 
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7.2 Future Work 

 Valuable additions to this work would include integration of the result with an 

optimization model designed to schedule jobs to work stations with varying rework rates 

depending on the job type.  Some of this work was completed in the formulation of a 

sample problem of this type (Brown 2011) and this should be continued with a detailed 

analysis of the accuracy of the predictions in light of this work and the results of the 

optimization.  Secondly, the accuracy of the outlined technique should be studied for 

more complex networks, such as those that occur in job shops.  The ability of the queuing 

methods to provide useful information for systems subject to both human and machine 

constraints is imperative. Finally, incorporation of these concepts with those of 

manufacturing cell formation, wherein the skill of the workers and the capability of the 

machines assigned to a given cell would help in their initial designs.  In conclusion, the 

methods outlined in this work provide a strong background for future inquiry into the 

expanded application of queuing theory in manufacturing.  The results show that a 

relatively simple and fast-running model can provide good results in cases where realistic 

conditions apply. 
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Appendix A: Table of Notations 

 
effective processing time te 
natural processing time t0 
average setup time ts 
number of parts between setups Ns 

effective variance of processing time σe
2 

natural variance of processing time σ0
2 

variance of setup time σs
2 

probability of job being routed from process i to process j pij 
squared coefficient of variation SCV or c2 
standard deviation σ 
Mean μ 
natural coefficient of variation c0 
machine availability A 
mean time to failure mf 
mean time to repair mr 

variance of repair time σr
2 

squared coefficient of variation of processing time ce
2 

probability of rework p 

squared coefficient of variation of interarrival times ca
2 

Utilization u 
expected wait time EW 
queue cycle time CTq 
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