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ABSTRACT OF THESIS 
 
 
 
 

USE OF SURFACE GEOPHYSICAL TECHNIQUES TO LOCATE A KARST 
CONDUIT IN THE CANE RUN - ROYAL SPRING BASIN, KENTUCKY 

 

Groundwater flow in karst terrains is difficult to map because it can be 
concentrated through conduits that do not necessarily coincide with the surface features. 
We applied electrical resistivity (ER) and self-potential (SP) techniques at three sites to 
locate an inferred trunk conduit feeding a major spring in the Inner Bluegrass region of 
Kentucky. Royal Spring is the primary water supply for the city of Georgetown; the 
upper part of its basin coincides with the Cane Run watershed. ER and SP profiles were 
perpendicular to the inferred trunk conduit orientation. ER profiles (972 m total length) 
were measured using a dipole–dipole electrode configuration with 2- to 3-m spacing. SP 
measurements were taken along those ER lines and an additional test profile (230 m) 
using one stationary reference electrode and another roving electrode at a fixed interval.  

The low resistivity of water in the conduit, as compared to the high background 
resistivity of limestone bedrock, is the ER exploration target. A negative SP anomaly 
corresponds to a low ER anomaly for most of the profiles, but a few are not comparable. 
Five of seven SP profiles measured over a period of several months were found to be 
reproducible. Although the overall trends of the final SP profiles for different dates were 
similar, the SP magnitudes varied with the amount of precipitation and the average soil 
temperature. The low-resistivity anomalies in the 2D inverted sections and corresponding 
negative SP anomalies could be water-filled conduits, although mud-filled voids 
encountered during drilling suggest that these may be tributary conduits rather than the 
trunk conduit. 
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Chapter 1. Introduction 

1.1 Groundwater in Karst 

Karst is a term commonly associated with carbonate rocks, but other soluble 

rocks, such as evaporites, gypsum and anhydrite, are also susceptible to development of 

karst features (Bakalowicz 2005). Karst is developed on carbonate rocks when mildly 

acidic water (containing dissolved CO2) dissolves the rock mass along preferential 

flowpaths. Groundwater transports the dissolution products and simultaneously enlarges 

the flowpaths (joints, fractures, bedding surfaces, grain boundaries, etc.) thus creating 

voids and conduits (Bakalowicz 2005). The voids formed may be occluded with 

sediments deposited following high storm events.  

In granular aquifers, groundwater flow paths are commonly delineated by 

mapping distribution of hydraulic heads from observation wells or piezometers. 

However, in karst aquifers flow paths are difficult to map because of the extreme 

heterogeneity of karstified rocks (Bakalowicz 2005). Multiple researchers have sought to 

define and characterize karst aquifer systems using different techniques (Romanov et al. 

2002, White 2002, Motyka 1998, John et al. 2006, Kiraly 2003, White and White 2005). 

John et al. (2006) attempted to model heterogeneity in karst groundwater flow with a 

sequence of model cells that simulate the network of conduit flow. Kiraly (2003) 

explained the karstification process using a theoretical numerical model in terms of both 

hydrological and geological discontinuities that emphasizes the effect of karst channel 

network and epikarst zone. Motyka (1998) produced a conceptual model based on 

examples from Poland incorporating the role of sediment-filled karstic features in 
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groundwater flow. Similarly, Romanov et al. (2002) studied the interaction between 

fracture and conduit flow to produce a numerical model that simulates the karst aquifer. 

White (2002) and White and White (2005) discussed the karst aquifer modeling in terms 

of triple porosity or triple permeability model (groundwater flow in matrix, fractures and 

conduits). 

1.2 Integrated Geophysical Techniques in Karst 

Geophysical methods such as electrical resistivity (ER), self-potential (SP), 

ground penetrating radar (GPR), electromagnetic induction (EM), microgravity and 

seismic refraction/reflection can aid in identifying and delineating subsurface voids in 

karst terrains. For example, an integrated geophysical approach using multiple 

techniques, EM and ER (Ahmed and Carpenter 2003) and GPR and 2D ER tomography 

(Carpenter and Ekberg 2006), was useful for identifying features such as buried 

sinkholes, soil pipes and associated bedrock fractures in northern Illinois. Similarly, GPR 

and ER tomography were used to locate shallow subsurface cavities in the vicinity of 

Cairo, Egypt (El-Qady et al. 2005), and to identify a potentially unstable zone above a 

cave roof in southern Italy (Leucci and De Giorgi 2005). SP and ER responses over a 

thick conductor were tested on a laboratory model (Adeyemi et al. 2006). The authors 

concluded that SP was more efficient in locating and determining the orientation of a 

target in comparison to ER. Gravity, magnetic and GPR techniques were applied to detect 

underground cavities in northeast Spain (Mochales et al. 2008) and EM, gravity and SP 

were applied to study Kartchner Caverns State Park, Arizona (Lange 1999). Jardani et al. 

(2007) used SP and EM data to locate sinkholes and crypto-sinkholes. A microgravity 

survey in south Wales, United Kingdom, was able to identify confined and unconfined 
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conduits at varying depths (Styles et al. 2005). However, the authors emphasized the need 

for an integrated geophysical approach to validate the results. Researchers in Florida 

found that commercially available seismic refraction tomography software is capable of 

detecting typical undulating bedrock surfaces (Hiltunen et al. 2007). Similarly, seismic 

refraction tomography has been used to delineate possible karst conduits on the Oak 

Ridge Reservation, Tennessee (Sheehan et al. 2005).  

The SP method has been widely used in groundwater flow studies due to its 

effectiveness in detecting subsurface water movement. The natural electric potential 

difference produced by streaming, or electrokinetic potential due to the underground 

movement of water, is more efficiently detected by the SP method than by any other 

geophysical technique. Laboratory experiments to study the streaming potential generated 

by water movement through different geologic media have been performed by Ahmed 

(1964) and Bogoslovsky and Ogilvy (1972). Ahmad (1964) investigated the streaming 

potential generated due to water movement through unconsolidated rock while the 

laboratory experiments on fissured media models by Bogoslovsky and Ogilvy (1972) 

expanded the scope of streaming potential to the study of karst groundwater flow. Unlike 

other geophysical techniques, relative SP amplitude along the same survey line varies 

significantly with time while preserving an overall trend, and in most cases the variations 

can be related to hydrogeological and meteorological parameters (Ernstson and Scherer 

1986). Corwin (1990) has given a more detailed account of the SP field techniques in 

environmental and engineering applications. Either positive or negative SP expressions 

can be expected over the cave passages. These expressions could be related to the 

downward filtration effect through the cave walls and ceilings; movement toward the 
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surface by capillary action; streaming potential of flowing water in conduits; and/or the 

pH of the electrolyte (Lange and Kilty 1991, Ishido and Mizutani 1981). Lange and Kilty 

(1991) described many case studies of SP response over caverns in different parts of the 

United States and possible effects from artificial current sources such as cathodic  

protection devices on pipelines. In volcanic areas, Aubert and Atangana (1996) found a 

linear correlation between the unsaturated zone thickness and the range of negative SP 

anomalies. Those authors proposed a new concept of self-potential surface (SPS) that 

differentiates the unsaturated zone from the saturated and/or impermeable zone. Wanfang 

et al. (1999) developed a methodology to remove the topographic effect from SP data and 

applied it to identify discrete recharge zones for a karst aquifer. Concentrated vertical 

groundwater movement through sinkholes produces a significant negative anomaly for an 

uncontaminated karst aquifer. Several attempts have been made to quantify surface SP 

data to reproduce reliable subsurface information both in the lab and in the field. A new 

method to interpret the surface SP data quantitatively by determining the shape factor of 

an anomaly has been tested on synthetic data with and without noise component and 

implemented for a field data set (El-Araby 2004). Fagerlund and Heinson (2003) utilized 

the SP method in the laboratory and in the field to determine drawdown and other aquifer 

parameters. 

There are very limited examples of ER being applied independently in karst 

studies. However, Schwartz and Schreiber (2009) quantified potential recharge through 

mantled sinkholes using differential electrical tomography. In most cases this method has 

been implemented in conjunction with other geophysical methods. The effectiveness of 

different electrode arrays in ER surveys differs with the properties of the geological 
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target, and depth and selection of an appropriate electrode array are of prime importance 

in getting reliable subsurface information (Zhou et al. 2002). Those authors compared 

Wenner, Schlumberger and dipole-dipole electrode arrays to study potential karst hazards 

associated with sinkholes and found the dipole-dipole array to be the most appropriate 

technique in such studies. Roth and Nyquist (2003) evaluated the applicability of the 

multi-electrode earth resistivity technique in karst, comparing several resistivity sections 

obtained from Wenner, dipole-dipole and Schlumberger arrays with the boring results, 

and found encouraging results in locating subsurface voids and determining bedrock 

depths with few limitations. In the Inner Bluegrass region of Kentucky, Bonita (1993) 

used the ER response to identify different geological formations and correlated their 

thicknesses with available standard stratigraphic sections. Graham (2000) studied the area 

to identify the water-bearing conduits supplying Royal Spring in the nearby city of 

Georgetown. 

SP in conjunction with ER was found to be effective for locating sinkholes and 

crypto-sinkholes in chalk karst in northwestern France (Jardani et al. 2006). Those 

authors compared the SP results measured during spring and summer and found negative 

SP anomalies associated with the same sinkholes and crypto-sinkholes, but the number 

and magnitude of anomalies were reduced in the summer data. In a lab experiment, the 

SP technique was more reliable than ER in locating a thick conductor buried at different 

orientations (Adeyemi et al. 2006). In general, the usefulness of a geophysical technique 

can vary depending on the depth and geometry of the target feature, the composition and 

thickness of overlying soils, and whether the feature is water-filled or not.  
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1.3 Geology of the Region and the Study Area 

The Inner Bluegrass region of central Kentucky is characterized by karstic 

features developed in the limestone bedrock on the surface and subsurface. The 

Cincinnati Arch, which is a major regional geological structure, controls the overall 

gentle dip of the bedrock strata. This north-south trending arch forms the Jessamine and 

Nashville domes along its axis, which are separated by a saddle in Cumberland County, 

Kentucky (Nosow et al. 1960). The general stratigraphic sequence of this area consists of 

the Ordovician-era High Bridge Group, Lexington Limestone and Clays Ferry Formation 

in ascending order. The High Bridge Group is sub-divided into the Camp Nelson 

Limestone, Oregon Limestone and Tyrone Limestone (Cressman 1965). The oldest 

exposed rock in the region can be found in the Kentucky River gorge at Camp Nelson. A 

disconformity separates the Lexington Limestone from the underlying Tyrone Limestone. 

The Lexington Limestone is sub-divided mainly on the basis of lithologic characteristics 

into 11 members (Cressman 1967).  

The study area generally lacks exposed rock sections for stratigraphic studies. The 

nearest measured stratigraphic section, located in the area of the Vulcan quarry, is about 

1.5 to 5 km away. A section of about 21 m has been measured at this location (Bonita 

1993). On the basis of stratigraphic position and lithologic characteristics, the Lexington 

Limestone there was subdivided into the Millersburg, Tanglewood, Brannon, and Grier 

members (Fig. 1.1).  
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Figure 1.1. Stratigraphic section measured in Vulcan quarry (Bonita 1993). 

The Grier Member is the oldest exposed unit of the Lexington Limestone in this 

area. It is characterized by nodular-bedded, fossiliferous calcisiltite and calcarenite which 

are poorly sorted (Cressman 1973). The Grier Member is locally intertongued with the 

Tanglewood Member which makes the contacts with the lower and upper unit of the 

sequence more complex. The Tanglewood Member is comprised of medium-grained, 

well-sorted bioclastic calcarenite containing bryozoan fragments and silicified 

brachiopods (Cressman 1973). Although the Brannon Member overlies the Tanglewood 

Member in normal stratigraphic sequence, the Brannon Member has been exposed 

between the Grier and Tanglewood Members in the study area (Bonita 1993). The 

Brannon Member is characterized by interbedded shale and fine-grained argillaceous 
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limestone in nearly equal proportions. The total thickness of the unit measured in the 

Vulcan quarry was about 2.7 m, including an 8 cm thick bentonite bed (Bonita 1993). 

The youngest exposed member of the Lexington Limestone in the quarry, the Millersburg 

Member, is composed of fossiliferous limestone and shale. The beds are generally 

discontinuous with irregular surfaces resembling nodules, as in the Grier Member. 

1.4 Hydrogeology of the Study Area 

Because of the dissolution of the Lexington Limestone, groundwater flow tends to 

be channeled through a network of tributary conduits to a main conduit and thence to a 

spring. Karst aquifers receive direct recharge through sinkholes and swallets in addition 

to infiltration. Surface water and groundwater basins do not necessarily coincide with 

each other. Several groundwater basins have been identified within the Inner Bluegrass 

region (Thrailkill et al. 1982, Currens et al. 2002). Generally, shallow subsurface 

(epikarstic) flow characterizes interbasin areas and deeper subsurface flow through the 

integrated conduit system characterizes groundwater basin areas (Thrailkill et al. 1982). 

Palmquist and Hall (1961) prepared hydrogeologic maps of the region. Faust (1977) used 

data from more than 500 wells to construct the first hydraulic-head map of the region. 

One of the largest groundwater basins in the Inner Bluegrass region, and perhaps 

the most studied, is the Royal Spring basin. Royal Spring, which is the main water supply 

for the city of Georgetown, emerges from the Grier Member of the Lexington Limestone. 

Prior investigations of the Royal Spring basin have been tended to use tracer techniques 

and wells (Thrailkill et al. 1982, Hamilton 1950, Matson 1909). In particular, Sullivan 

(1983) studied the relationship between velocity and discharge, conduit geometry and 
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type of flow using fluorescent dyes. Spangler et al. (1982) reported that all of their dye 

introduction points (mainly swallets) were within the Grier or Tanglewood member and 

interpreted the conduit or conduits to have developed within a narrow stratigraphic 

interval. Thrailkill and Gouzie (1984) conducted preliminary field studies to determine 

discharge and travel time in the basin and also tried to estimate the trunk conduit 

geometry. Paylor and Currens (2004) determined and mapped groundwater travel times 

to Royal Spring for a range of discharge values. 

Although geophysical exploration techniques can complement hydraulic studies 

in estimating the geometry, depth and orientation of conduits, geophysical studies of the 

Royal Spring basin have been few and incomplete. Bonita (1993) performed an ER 

survey and fracture trace analysis in the basin. The results from the fracture trace analysis 

were inconsistent and did not show the preferential flow direction of groundwater. Bonita 

(1993) utilized the resistivity data to establish the subsurface lithostratigraphy of the area 

and correlated it with the standard lithostratigraphic section. The author concluded that 

the groundwater basin underlies highly fractured areas and the interbasin underlies less 

fractured areas. Graham (2000) tested the ER survey technique on a known karst feature 

(Marshall Spring, Scott County) and applied it at the Kentucky Horse Park. A drillhole in 

the area encountered a water-bearing conduit, which the author interpreted to feed Royal 

Spring. 

Despite multiple previous studies, the trunk conduit that drains the Royal Spring 

basin remains largely unmapped. Locating the trunk conduit is important for 

understanding the potential susceptibility of Royal Spring to non-point source pollution 

(for example, from urban and agricultural runoff into sinkholes) and point source 
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pollution (such as from chemical spills along highways crossing the groundwater basin). 

Integrated geophysical investigations could reduce the number and expense of drillholes 

needed to locate the conduit at various points. However, the depth, geometry and water 

content of the conduit may limit the usefulness of certain geophysical techniques. 

1.5 Objectives 

Electrical resistivity and self-potential geophysical techniques were applied to 

delineate the major karst conduit that supplies water to Royal Spring at Georgetown. The 

geophysical studies were intended to constrain the probable location of conduit for 

drilling. We hypothesized that water flowing through the conduit will produce a low 

resistivity anomaly and negative SP anomaly. The three sites selected for this study were 

the UK Agricultural Research Farm north of Interstate 64, along Berea Road and the 

Kentucky Horse Park. These sites were selected based on the locations of sinkhole and 

dye tracer results (Spangler et al. 1982, Paylor and Currens 2004). The first two sites are 

located in northern Fayette County and the latter is located in southern Scott County (Fig. 

1.2). 
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Figure 1.2. Map showing geophysical survey lines at study sites (1, UK Agricultural Research Farm; 2, Berea Road; 3, 

Kentucky Horse Park). (Contour interval: 3 m).
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Chapter 2. Methods 

 

Two electrical surveying methods, one using natural currents and other using 

artificially generated currents, have been implemented in the present study. We used the 

self-potential method (measuring potential difference due to natural currents flowing 

within the Earth’s surface) and electrical resistivity method (measuring the resistance to 

current artificially injected into the ground) in an attempt to locate the karst conduit 

within the Royal Spring groundwater basin. Both techniques are briefly discussed under 

different sub-topics in this chapter. 

2.1 Electrical Resistivity 

2.1.1 Basic principles 

The systematic use of electrical resistivity techniques to investigate the sub-

surface goes back to about 1920 (Parasnis 1986). The fundamental principle of the 

resistivity method is based on Ohm’s law, which states that current (I) passing through 

any two points in a circuit is directly proportional to the potential difference (dv) and 

inversely proportional to the resistance (R) between them. The resistance (R) of any 

medium or conductor depends on the length (l) and cross-section area (A) through which 

the current is passing. These two relations are expressed as equations 1 and 2 below: 

   /  …………......................................... (1) 
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measuring potential difference between the two current electrodes, then this is equal to 

the difference between the total potential at each electrodes due to the two current sources 

(Fig. 2.2). This can be represented by equation 4 below (Telford et al. 1983): 

                 ∆ …………………………… (4) 

                                              

 

 

 

 

Figure 2.2. Representative electrode arrangements for four-electrode spreads commonly 
used in resistivity field work. (Modified from Telford et al. 1983, Fig. 8.3.) 

 
The detailed derivation of the above-mentioned equations can be found in 

standard textbooks, such as Telford et al. (1983), Parasnis (1986), and others. 

2.1.2 Data acquisition (Field methods) 

In this method, artificially generated current is injected into the ground through a 

pair of metal electrodes (current electrodes) and the resulting potential difference is 

measured by another pair of electrodes (potential electrodes). Various electrode 

configurations have been proposed by many researchers. The Wenner and Schlumburger 

arrays have been the most popular. In a Wenner array, the electrodes are spread at 

uniform distance along a line with the current electrodes at the two ends and the potential 
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electrodes in the middle of the array. All four electrodes are extended away from a fixed 

center with equal electrode spacing for depth exploration (sounding) while all four 

electrodes are moved along a line with constant electrode separation for mapping. In the 

Schlumberger array, the distance between the potential electrodes placed at the middle of 

the array is much less than the distance between the current electrodes at both ends. The 

Wenner array is commonly used to map the lateral variation while the Schlumberger 

array is mostly used to explore greater depths. 

A resistivity survey with fixed electrode spacing and moving along a constant 

distance to map lateral variation is termed resistivity profiling or mapping, whereas a 

resistivity survey undertaken with increasing electrode spacing for each measurement to 

explore greater depth is called electrical sounding or drilling (Telford et al. 1983). We 

used the dipole-dipole array (Fig. 2.3) for this study. In comparison to the Wenner and 

Schlumberger methods, the dipole-dipole method has greater sensitivity to vertical 

resistivity boundaries and is more capable of detecting subsurface voids filled with water 

(Zhou et al. 2002).  Roth and Nyquist (2003) evaluated several multi-electrode 

configurations and concluded the dipole-dipole configuration is most reliable and capable 

of providing subsurface detail in karst areas.  

 

 

Figure 2.3. Dipole-dipole spread. A, B and M, N are current and potential electrode 
pairs,respectively, separated by a constant distance ‘a’. (Modified from Parasnis 

(1986), Fig.  4.13(c)). 

We collected resistivity data at three different sites within the Inner Bluegrass 

region. Resistivity data along two lines at each site were collected using an eight-channel 

a a  na

A  B  M N 
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SuperSting (R8/IP) multi-electrode earth resistivity meter, a product of Advanced 

Geosciences Inc. (AGI). The two lines at the first site (Fig. 1.2) were surveyed at 2-m 

electrode spacing and the other four resistivity lines at the remaining two sites were 

surveyed at 3-m electrode spacing. The survey lines were expected to run perpendicular 

to the inferred trunk conduit. The relative distances between the current and potential 

electrode pairs were increased for each measurement in order to sample greater depth. 

The maximum separation between current and potential dipole was set at six times the 

dipole (current or potential) spacing for data with better resolution (Loke 2001).  

2.1.3 Data processing 

The electrical resistivity survey data obtained were processed using EarthImager 

2D version 2.2.0 (AGI, Austin, Texas) to get the inverted resistivity sections for all the 

survey lines.  EarthImager 2D is a professional (commercial) software for resistivity and 

IP inversion. The resistivity data file format collected by the SuperSting is directly 

compatible with this software. In the initial setting menu in the settings window, the 

definition of the y-axis and orientation of the vertical axis need to be set before reading 

the data file while other settings can be set after reading the data file. As a first attempt at 

noisy data removal, the bad electrodes were identified and removed using the electrode 

editor submenu of the edit main menu. Thresholds for all the criteria of noisy data 

removal in the initial setting window were set (Table 2.1). Any data beyond these 

thresholds will automatically be removed in the inversion. Noisy data can also be 

removed manually by selecting with mouse clicks and deleting the data. Damped least-

squares, smooth model inversion and robust least-squares inversion are three available 

options in the software to invert the resistivity data. The robust inversion method was 
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chosen for the inversion of the entire data set but the other two methods of inversion were 

also tested during data processing. The robust least-squares inversion method is more 

efficient in inverting noisy data as compared to the smoothness constrained least-squares 

inversion (Dahlin and Zhou 2004). In robust inversion the model is produced by 

minimizing the absolute value of data misfit (L1-norm), while in the smooth inversion it 

is obtained by minimizing the square of data misfit (L2-norm) (Dahlin and Zhou 2004).  

Table 2.1. Inversion settings applied to data 
Initial Settings 

Data Removing Thresholds 

Minimum 
Voltage 
(mV) 

Minimum 
abs(V/I)‐Ohm 

Maximum 
Repeat 
Error (%) 

Minimum 
Apparent 
Resistivity 
(Ohm‐m) 

Maximum 
Apparent 
Resistivity 
(Ohm‐m) 

Maximum 
Reciprocal 

Error 

0.2  0.0005  3  1  10,000  5 
Forward Modeling settings 

Forward 
Modeling 
Method 

Forward 
Equation 
Solver 

Type of 
Boundary 
Condition 

Number 
of Mesh 
Divisions 

Thickness 
Incremental 
Factor 

Depth 
Factor 

Finite 
Element 

Cholesky 
Decomposition

Dirichlet  2  1.1  1.1 

Resistivity Inversion Settings 

St
op

 C
ri
te
ri
a  Number of Iterations  8 

Maximum RMS Error (%)  3 

Error Reduction (%)  5 
Stabilizing Factor/Damping Factor  10 

Starting Model 
Average Apparent 

Resistivity 

Model Parameter Width  1 

Model Parameter Height  1 
Resolution  0.2 

Horizontal/Vertical Roughness Ratio  1.5 
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A finite-element forward modeling method was used to create a model setting 

Cholesky decomposition as a forward equation solver with the Dirichlet boundary 

condition. The number of mesh divisions was set to 2 between two electrodes. The 

thickness incremental factor and depth factor were set to 1.1 with the assumption that the 

thickness of the layers increases with depth.    

In the resistivity inversion settings, the stop criteria were set with maximum 

number of iterations at 8, 3 % RMS error and 5 % error reduction. The inversion 

terminates on meeting one of the criteria in these settings. Both the stabilizing and 

damping factors were set to 10 and the robust data conditioner and robust model 

conditioner were set to 1 to avoid over-smoothing in the resulting model. For resolution 

factor the default value of 0.2 was accepted. The average apparent resistivity 

pseudosection was set to starting model for the inversion of all the data sets. Minimum 

resistivity was set to 1 ohm and maximum resistivity was set looking at the pseudosection 

after reading the data file. The horizontal/vertical roughness ratio was set to 1.5 to 

enhance the effect of lateral variations along the survey profile. 

The inversion process progresses iteratively by taking the average apparent 

resistivity pseudosection as a starting model, to find a best fit between measured and 

predicted resistivity values and finally to produce the inverted resistivity section. In each 

iteration the model is adjusted to match the measured pseudosection utilizing a least 

squares optimization technique (Roth and Nyquist 2003).   
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2.1.4 Survey equipment  

The following details on survey equipment have been summarized from the 

instruction manual for the SuperStingTM with SwiftTM automatic resistivity and IP system 

(AGI 2005). As the name suggests, it collects data eight times faster than the single 

channel meter because of its ability to measure the potential between nine electrodes 

simultaneously for each current injection. Unlimited numbers of electrodes can be used 

with this instrument, which makes resistivity data acquisition less labor-intensive and 

time-consuming for large area coverage.  

 

Figure 2.4. Eight-channel SuperSting R8/IP resistivity meter used for the survey. 

This instrument consists of 12-V DC batteries, a switch box, 56 stainless-steel 

electrode stakes and a passive electrode cable (Swift cable). Six different electrode arrays 

(resistance, Schlumberger, Wenner, dipole-dipole, pole-dipole and pole-pole) are 

currently supported by this instrument. A command file must be loaded and stored in the 

instrument RAM before creating a new data file for any measurements. The command 

file controls the SuperSting to perform within a user-defined electrode configuration. It 



 

20 
 

can be created either using the “command creator module” of the SuperSting 

Administrator or manually by using any text editor. Separate command files are created 

for measurements with different electrode configurations. For each survey a new data file 

is created that works with a particular command file. 

After the electrodes are laid out on the ground, the batteries inject the DC current 

through two current electrodes and the other two electrodes are used to measure the 

potential difference. The instrument was set up for automatic survey creating a data file 

with the appropriate command file. The unit of measurement was selected as meter and 

the electrode spacing was entered. If the survey line is longer than the electrode cable the 

roll-along survey option is chosen. We used the roll-along survey technique along three 

out of six survey lines (two at the Kentucky Horse Park [Lines 5 and 6, Fig. 1.2] and one 

at the Berea Road soccer field site [Line 4, Fig. 1.2]). The contact resistance test was 

performed before taking the measurements to assure good contact between electrodes and 

the ground. The switch box connected to the instrument changes the current and potential 

electrode position for each measurement according to the survey configuration set in the 

command file.  

2.2 Self-Potential Method 

The SP method is very simple, cost-effective and less sophisticated than other 

geophysical methods. This method measures the natural electrical potential of the ground 

surface generated by various sources. Clearly defined sources of the SP are mainly the 

fluid and heat fluxes, diffusion between regions of different chemical composition, and 

redox reactions between ore bodies and their surroundings (Fagerlund and Heinson 
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2003). Flow of fluids through the subsurface media produces electrokinetic or streaming 

potential that is different from areas without this kind of fluid movement. Similarly, 

diffusion and mineralization potentials are produced in areas with different chemical 

composition and mineralized ore bodies, respectively. The high sensitivity of SP method 

compared to other geophysical techniques, particularly in the measurement of streaming 

potential due to groundwater flow, has been found to be more efficient than any other 

geophysical technique (Lange and Kilty 1991, Fagerlund and Heinson 2003, Stevanovic 

and Dragisic 1998, Aubert and Atangana 1996). We used the SP method because of its 

inferred sensitivity to groundwater flow within a conduit. 

2.2.1 Theory of streaming potential  

Streaming or electrokinetic potentials result during the flow of any fluid through 

or against a solid medium. Helmholtz in the 19th century found that an electrolyte flowing 

through a capillary tube generates an electric potential difference between its ends. He 

was first to study this kind of phenomenon in detail (Parasnis 1986). This basic principle 

of streaming potential has been applied successfully in the study of groundwater flow. 

The motion of ions in the flowing liquid is the main source of this potential. The electric 

field (Vm-1) due to the ions in motion can be obtained by solving equation 5 below 

(Parasnis 1986): 

  ……………………………….. (5) 

where ε is the dielectric constant of the electrolyte, ρ is the resistivity of the electrolyte, ζ 

is the streaming potential, p is the pressure gradient and μ is the dynamic viscosity of the 

electrolyte. 
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Along the solid-liquid interface, excess charge accumulates to form an electrical 

double layer that generates streaming potential in the flowing liquid. According to the 

Gouy-Chapman model (Fig. 2.5), the uniform surface charge in the solid medium is 

balanced by the excess charge of opposite sign in the liquid phase. In the diffuse layer the 

charge density is maximum nearest the solid wall and decreases linearly to zero at some 

distance away from the interface. In the Stern model, an additional layer (the Stern layer) 

has been defined between the interface and the diffuse layer. According to this model, the 

layer next to the solid surface accommodates more adsorbed ions. Consequently, the 

potential in the Stern layer increases linearly and approaches zero at the diffuse layer. 

Figure 2.6 depicts this principle.    

 

Figure 2.5 Gouy-Chapman model showing electrical double layer at clay-water interface 
(Eslinger and Pevear 1988). 
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Fig. 2.6. Stern model showing electrical double layer at a rock-water interface (Fagerlund 
and Heinson 2003). 

The electric potential (V) is shown as a function of distance (x) from the pore 

wall. The hydrodynamic slipping plane (S) separates the mobile and immobile phases of 

the liquid. The potential at this plane is the zeta or streaming potential (ζ). Depending on 

the amount of specific adsorption in the Stern layer between the pore wall and plane H, ζ 

can be positive (B) or negative (A). For a negative ζ, more positive than negative ions are 

transported with the fluid (Fagerlund and Heinson 2003). 

2.2.2 Data acquisition 

The gradient and fixed-base survey configurations are the main configurations 

widely used to collect SP data along a survey profile (Telford et al. 1983, Parasnis 1986, 

Corwin 1990). In the gradient array, the two non-polarizing electrodes are connected 

through a digital multi-meter with a fixed length cable and moved along the survey line. 

After each measurement, the trailing electrode occupies the position of leading electrode 
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for the new measurements and the process is continued to cover the entire survey length. 

As its name suggests, the fixed-base survey is performed by keeping one electrode 

(reference or base electrode) at a fixed base station while the other electrode (roving 

electrode) is moved at a constant interval to cover the entire survey line. The fixed-base 

array has many advantages over the gradient array: it lowers the level of cumulative 

error, can be conducted by a single operator, offers flexibility in reoccupying the previous 

stations, and offers better data reproducibility because stations with anomalous readings 

can be repeated (Corwin 1990). We used the fixed-base configuration for all of our 

survey lines, moving the roving electrode every 3.05 m (10 feet) or 4.57 m (15 feet) from 

the previous station. The base electrode (reference electrode) is buried about 30 cm and 

the roving electrode was placed about 15 to 20 cm below the ground surface. The holes 

were watered only in case of extremely dry soil, taking caution not to generate any kind 

of infiltration effect, to make a good contact between the electrodes and the ground. Two 

lines at Site 1 were measured every 3.05 m and the other lines were measured every 4.57 

m from the base station. The base station was reoccupied every half an hour to correct for 

possible electrode drift caused by the temporal effect. As reported by Ernstson and 

Scherer (1986), we also observed a direct temperature effect on the electrodes during the 

day, particularly during sunny days. We tried to avoid this effect by putting the electrodes 

in shade. The fluctuation in meter readings increased as we moved farther away from the 

base station. At each station the minimum and maximum SP values were recorded for 2 

to 3 minutes in accordance with the site condition (more sampling time for higher 

fluctuation in SP readings). The mean value is the representative SP for that station. The 

measurements were taken two to four times on different dates at each site. 
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2.2.3 Data processing 

The SP data collected in the field were smoothed taking the moving average of 

the SP value along each survey line. This technique filters the high frequency noise from 

the data. SP varies with site conditions, such as temperature variation, electrode drift and 

polarization, rainfall, construction activity, topography, and water table depth (Corwin 

1990). SP variations could be significant even for an hour-long survey, as well as over a 

period of months or years (Corwin 1990). The drift in the SP data is mainly the result of 

temporal variation in temperature and change in soil moisture content during the course 

of measurements. The temporal drift for each measurement should be corrected with the 

drift data collected during the survey. We used equation 6 to correct for the drift, which 

assumes a linear drift between successive base station readings (Wanfang et al. 1999): 

………………………… (6) 

where Vcj  is drift-corrected SP; Vj is measured voltage at time Tj on line j; Vpi and Vni 

are previous and subsequent readings at base station i at times Tpi and Tni, respectively; 

and Vo is the first base-station reading.  

Where topography is irregular, the SP data vary inversely relative to changes in 

elevation (Telford et al. 1983, Ernstson and Scherer 1986, Aubert and Atangana 1996). 

We used the topographic correction method described by Wanfang et al. (1999) to 

remove the probable topographic effect on the data from site 3 at the Kentucky Horse 

Park, where topographic relief is 5.13 and 3.7 m for Lines 5 and 6, respectively.  

Topographic effects for other two sites were not calculated because relief at those sites is 
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less than 1 m. The topographic effect for each SP data point is calculated using equation 

7 (Wanfang et al. 1999): 

  ……………………………… (7) 

where Vj is the potential at elevation hj along line j; Kj is the topographic correction 

factor; and hoj is elevation of the first measurement. 

The data obtained after processing were plotted against the distance along the 

survey line to get the final SP profile for analysis and interpretation. 

2.2.4 Survey equipment 

The components required for SP measurements were assembled from different 

sources. The instrumentation includes two non-polarizing electrodes, a digital multi-

meter, and connecting cable, as well as a shovel to dig holes for electrodes, distilled or 

de-ionized water to clean electrodes between measurements, and a connecting cable 

about 220 m long with a reel. Non-polarizing electrodes were selected in order to avoid 

possible polarization while using ordinary metal stakes as electrodes (Telford et al. 1983, 

Parasnis 1986). Copper-copper sulfate half-cell electrodes were used, in which the copper 

rod is submerged in a supersaturated copper sulfate solution inside a container with a 

porous ceramic base that establishes contact between the electrode and the soil. A digital 

multi-meter with high input impedance value of 10 M-ohm was used to measure the 

potential difference (mV) between the reference and roving electrodes. An 18-gauge 

insulated connecting cable was used to connect two electrodes with the multi-meter.   
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Chapter 3. Interpretation and Discussion 

 

3.1 Electrical Resistivity Data Interpretation 

The resistivity data were interpreted to reflect the subsurface based on the 

response of underlying material to the injected currents. In the past, plots of resistivity 

data against the electrode spacing along the survey line were matched with theoretically 

calculated master curves to find the layer parameters such as apparent resistivity, layer 

thickness and the depth to the layer interface. Nowadays, with the development of 

sophisticated data acquisition and data processing techniques, it has become less time-

consuming and labor-intensive to model the subsurface with resistivity data. As the 

measured apparent resistivity is the result of the cumulative effect of subsurface media, 

the inhomogeneous and anisotropic nature of real Earth material introduces ambiguity in 

interpretation.  

All the sounding data gathered from the field applying the dipole-dipole electrode 

configuration were used to produce an inverted resistivity section along each survey 

profile. The inverted resistivity sections were interpreted on the basis of resistivity ranges 

that can be attributed to different Earth materials. The average apparent resistivity values 

measured during this study and in the study of Graham (2000) are constraints to 

distinguish the anomaly from the background resistivity values. The area is 

predominantly underlain by the Lexington Limestone and the discontinuity in the high 

resistivity layer along the profile is interpreted as due to the change in rock mass qualities 

(such as fractures, moisture content, etc.) along the profile. The average depth of 
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penetration varies with the properties of overburden soil and bedrock quality. The 

elevation changes between Royal Spring and the study sites are the major constraints on 

the probable target depths, i.e. the inferred conduit in the area. 

3.1.1 ER line 1, University of Kentucky Agricultural Research Farm (Site 1)  

This ER line is located within the University of Kentucky Agricultural Research 

Farm site north of Interstate 64. The ER data were collected along the NE–SW trending 

line with total profile length of 86 m. The model was adjusted from trial to trial during 

inversion by setting a threshold value of 12% relative data misfit for data removal and 

finally the data were inverted to get the resistivity section along the profile. Poorly-fit 

data above this threshold, 44 out of 515 points, were removed for this line. The effective 

depth of penetration for the section is around 15 m, which is equivalent to about 17% of 

the profile length. In general, the image gets distorted below 14 – 25% of the total survey 

length (AGI 2007) depending on the field condition. 

 

Figure 3.1. Interpreted inverted ER section along line 1 at the University of Kentucky 
Agricultural Research Farm (Site 1). 

 

 The inverted resistivity section shows a pronounced low-resistivity anomaly at 

approximately 14 m depth, between stations 60 and 70 m along the transect (Fig. 3.1). 

The apparent resistivity ranges between 10 and 50 ohm-m, which falls within the typical 
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resistivity range of fresh groundwater (Palacky 1987). Between stations 0 and 20 m the 

data suggest a very thin soil cover over weathered bedrock, whereas the remaining profile 

exhibits a relatively thick soil overburden. The thin soil cover was subsequently verified 

by direct soil probes. Beyond station 20 m, the topmost soil extends to the end of the 

profile and it attains maximum thickness of almost 3 m between stations 36 and 38 m. A 

resistivity range of about 30 – 75 ohm-m characterizes this layer. This layer is underlain 

by another 2- to 3-m thick layer of intermediate resistivity ranging from about 80 to 240 

ohm-m, which continues throughout the profile except below the stations 35 to 42 m and 

60 to 66 m. This layer is exposed almost at the surface between stations 0 and 20 m and 

the bottom of the layer is present at 2.5 m depth at the NE end of the profile, while it 

continues beneath most of the rest of the profile at a consistent depth of about 4.5 m. The 

lowermost distinguishable layer, with a higher resistivity ranging from about 240 to 678 

ohm-m, appears throughout the section except in two places where it is interrupted by 

relatively low resistivity zones. These zones are interpreted as the result of poor rock-

mass quality due to fractures and joints or the void being filled with clay-rich sediments, 

while the exceptionally low-resistivity anomaly has been treated as the water-bearing 

target. The thickness of this anomaly varies from 8 to 12 m and the top and bottom of the 

layer are located between 3 and 15 m depth from the surface.   

 

3.1.2 ER line 2 (Site 1)  

ER line 2 is located in the same field at site 1 and 93 m west of ER line 1. This 

line, 88 m long, runs almost parallel to the first resistivity line. The inverted resistivity 

section shows a close correlation with ER line 1. All three distinct layers on both of the 

sections at this site are closely correlated. The data above 24% relative data misfit, 52 out 
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of 512 points, were removed before inverting to get the final resistivity section (Fig. 3.2). 

The effective depth of penetration for the section is also around 15 m, which is equivalent 

to about 17% of the profile length. 

 

Figure 3.2. Interpreted inverted ER section along line 2 at the UK Agricultural Research 
Farm (Site 1). 

 

The inverted resistivity section shows a pronounced low-resistivity anomaly 

centered at approximately 15 m depth between stations 42 and 50 m along the transect 

(Fig. 3.2). The apparent resistivity (between 10 and 100 ohm-m) falls within the typical 

resistivity range of fresh groundwater. Between stations 0 and 22 m the data suggest a 

very thin soil cover over weathered bedrock, whereas the remaining profile exhibits a 

relatively thick soil overburden. The topmost low-resistivity layer in this section strikes 

SW and attains its maximum thickness (to a depth of about 4.5 m) at the end of the 

profile. A resistivity range of about 32 – 80 ohm-m characterizes this layer. This layer is 

underlain by another 1- to 4-m thick layer of intermediate resistivity ranging from about 

80 to 318 ohm-m, which continues throughout the profile except below the stations 44 to 

48 m. This layer is exposed almost at the surface between stations 0 and 22 m. The 

bottom of the layer is present at 4.8 to 7.5 m along the ends of the profile and the layer 

thins between the stations 24 to 58 m. The lowermost distinguishable layer, with a higher 
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resistivity ranging from about 318 to 530 ohm-m, appears along the NE end of the profile 

from about 0 to 24 m and along the SW end from about 50 to 88 m, with a localized high-

resistivity anomaly at about 36 to 42 m along the profile. The intervening low-resistivity 

zone is interpreted as fractures, joints or clay fills, while the exceptionally low-resistivity 

anomaly (from about 36 to 50 m along the profile) has been treated as the water-bearing 

target. The thickness of this anomaly varies from 5 to 10 m and the top and bottom of the 

anomaly are located between 2.5 and 17 m depth from the surface.  

 

3.1.3 ER line 3, Berea Road (Site 2) 

ER line 3 at the Berea Road site, west of Cane Run, is 135 m long and oriented 

NE–SW . The resistivity section along this line also shows three distinct layers with low, 

intermediate and high resistivities. The poorly-fit data above 15% (69 of 553) relative 

data misfit were removed before final inversion to get the inverted resistivity section 

along the profile (Fig. 3.3). The effective depth of penetration for the section is around 25 

m which is equivalent to about 18% of the profile length.  

 

Figure 3.3. Interpreted inverted ER section along Line 3 at Berea Road (Site 2). 

 

 The inverted resistivity section shows a pronounced low-resistivity anomaly at 

approximately 16.6 m depth between stations 69 and 81 m along the transect (Fig. 3.3). 
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The resistivity of the center of the anomaly is 56.9 ohm-m, which falls within the typical 

resistivity range of fresh groundwater.  The topmost low-resistivity layer, approximately 

24 to 110 ohm-m, is not continuous throughout the section, but it stands out as a layer 

with different electrical properties compared to the layers underlying it. This layer is 

undifferentiable between stations 42 to 81 m and 99 to 120 m. The second or 

intermediate-resistivity layer, with values ranging from 110 to 275 ohm-m, is less distinct 

but continuous along the profile. This layer is thinner than in the sections at site 1. The 

thickness of the layer varies from 2 to 4 m and its bottom extends to a depth of 8 m below 

the surface at the NE end of the section. The lowermost distinguishable layer, with 

resistivity ranging from about 275 to 800 ohm-m, appears throughout the section except 

between stations 66 to 81 m, where it is interrupted by a relatively low-resistivity zone. 

The relatively low-resistivity zone is interpreted as the result of poor rock mass quality 

while the exceptionally low-resistivity anomaly has been treated as the water bearing 

target.  The thickness of this anomaly varies from 4 to 20 m and the top and bottom of the 

anomaly are located between 2 and 26 m depth below the surface.  

 

3.1.4 ER line 4 (Site 2) 

ER line 4 at the Berea Road soccer field site, east of Cane Run, is 249 m long and 

runs NE–SW. The resistivity section along this line also shows three distinct layers with 

low, intermediate and high resistivities. The poorly-fit data above 5% (66 of 1242 points) 

relative misfit were removed to get the inverted resistivity section along the profile (Fig. 

3.4). The effective depth of penetration for the section is about 20 m, which is equivalent 

to only about 8% of the profile length. The relatively shallow effective depth of 
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penetration compared to the total survey length could be the result of highly conductive 

soil overburden. 

 
 

 
Figure 3.4. Interpreted inverted ER section along line 4 at Berea Road soccer field 

(Site 2). 
 

The inverted section shows a pronounced low-resistivity anomaly at 

approximately 19 m depth (top of the anomaly), between stations 141 and 147 m along 

the transect (Fig. 3.4). The resistivity of the center of the anomaly is 20 ohm-m, which 

falls within the typical resistivity range of fresh groundwater. Unlike the other sections, 

line 4 shows only two distinguishable layers, with vast difference in their electrical 

properties. The topmost intermediate-resistivity layer, approximately 100 to 550 ohm-m, 

overlies a layer with apparent resistivity ranging from about 550 to 2400 ohm-m, 

surrounding even higher discrete resistivity zones reaching up to 3700 ohm-m. The 

topmost layer is continuous throughout the profile with discrete low-resistivity zones 

along both sides of Cane Run. The high- to very high-resistivity layer toward the NE part 

of the profile continues to station 144 m, beyond which it thins significantly toward the 

SW part of the profile and is absent beneath Cane Run. Between stations 105 and 111 m, 

the high- to very-high resistivity layer is vertically offset about 3 m downward, which is 

clearly seen on the section. The consistency of the layer to the NE and SW directions and 

identical resistivity range of rock units on both sides of the offset (discontinuity) indicates 
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that a fault passes through the profile (Fig. 3.4).  The average depths to the top of the high 

resistivity layer to the NE and SW sides of the fault plane are 4.5 and 7.5 m, respectively.  

 

3.1.5 ER line 5, Kentucky Horse Park (Site 3) 

ER line 5 is a 165-m long, NE–SW profile near the Barton well at the Kentucky 

Horse Park. The resistivity section along this line can be tentatively divided into three 

layers of distinct ER responses (low, medium and high resistivity). These ranges do not 

necessarily correspond with the ranges used to categorize resistivity layers in other 

sections. The poorly-fit data above 15% (43 of 739) relative misfit were removed to get 

the inverted resistivity section along the profile (Fig. 3.5). The effective depth of 

penetration for the section is around 25 m, which is equivalent to about 15% of the 

profile length. 

 

 

Figure 3.5. Interpreted inverted ER section along line 5 at the Kentucky Horse Park 
(Site 3). Note that ER is plotted versus elevation rather than depth because relief along 

the line warranted correction for elevation differences. 
 

The inverted resistivity section shows three anomalous low-resistivity zones at 

about the same depths from the surface. The first anomaly (441 ohm-m, against 1000 to 

2000 ohm-m background resistivity) is located at approximately 16.8 m depth between 

stations 33 and 42 m (Fig. 3.5). The other two low-resistivity anomalies (about 345 ohm-
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m) lie between 75 to 108 m and at 123 m along the transects. This last anomaly is located 

close to a sinkhole and has an ER response typical of a sinkhole, but there is no surface 

expression. The low-resistivity zone extending from the surface into the underlying 

bedrock might indicate the ongoing process of new sinkhole formation. The topmost low-

resistivity layer (41 to 200 ohm-m) above the very high resistivity layer (1300 to 2000 

ohm-m) in the section is indistinct and discontinuous. The top of the intermediate layer of 

moderate resistivity (200 to 520 ohm-m) is unclear, but the bottom of the layer is 

consistent almost all along the profile length at about 5 m depth (256 m MSL) from the 

surface. The thickness of the very high-resistivity layer, which is continuous to 120 m 

along the profile, varies from 5 to 15 m and its bottom occurs at 10 to 20.5 m depth.  

 

3.1.6 ER line 6 (Site 3) 

The data along ER line 6 were collected using the roll-along survey technique and 

the two sets of measurements were processed separately as ER line 6(a) and 6 (b) (Figs. 

3.6(a) and (b)). The composite ER line 6 runs 249 m NE–SW and almost parallel to ER 

line 5. The poorly-fit data above 10.5% (38 of 762 points) relative misfit were removed 

to get the inverted resistivity section along the profile (Fig. 3.6(a)). The effective depth of 

penetration for the section is around 20 m, which is equivalent to about 12% of the 

profile length. 
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Figure 3.6(a). Interpreted ER section along line 6(a) at the Kentucky Horse Park (Site 3). 
Note that ER is plotted versus elevation rather than depth because relief along the line 

warranted correction for elevation differences. 
 

Three zones of low-resistivity anomalies surrounded by high-resistivity 

background are distinctly visible along line 6(a) (Fig. 3.6(a)). The first low-resistivity 

anomaly (107.6 ohm-m), between 14 and 17 m distance along the profile, is located at 

about 15.4 m depth. The second low-resistivity anomaly (around 500 ohm-m, compared 

to 1000 to 1600 ohm-m background) is located at about 15 m depth and lies between 

stations 72 to 111 m along the profile. The third anomaly (293 ohm-m), at the SW end of 

the profile (129 to 150 m) is located only about 3 m from a sinkhole. The resistivity 

section along this line shows a similar response to that of ER line 5 to a depth of about 5 

m from the surface. The topmost low-resistivity (22 to 141 ohm-m) layer is indistinct and 

discontinuous. The intermediate-resistivity (141 to 440 ohm-m) layer is continuous 

throughout the section. The bottom of this layer is almost consistent at around 5 m below 

the ground surface. This layer is underlain by a high-resistivity layer (440 to 1320 ohm-

m) with discrete very high resistivity (1320 to 1630 ohm-m) zones.  
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Figure 3.6(b). Interpreted ER section along line 6(b) at the Kentucky Horse Park (Site 3). 
Note that ER is plotted versus elevation rather than depth because relief along the line 

warranted correction for elevation differences. 
 

Line 6(b) is the continuation of line 6(a) toward the SW and it overlaps the station 

at 84 m. The poorly-fit data above 19.5% (5 of 762 points) relative data misfit were 

removed from the data set before the inversion to produce the final resistivity section 

(Fig. 6(b)). The effective depth of penetration for the section is around 22 m, which is 

equivalent to about 13% of the profile length.  

Line 6(b) shows two distinct anomalous low- to medium-resistivity (190 to 500 

ohm-m) zones compared to high-resistivity (500 to 1800 ohm-m) surroundings. The 

anomaly at the NE end, extending between stations 99 to 126 m along the profile, is 

located at about 15 to 20 m depth. This anomalous zone (around 200 ohm-m) is 

immediately overlain by high-resistivity (up to 1800 ohm-m) bed rock. The anomaly 

below the station at 138 m may reflect sinkhole formation because of its proximity (about 

3 m) to the sinkhole at the ground surface. A typical sinkhole-like resistivity signature is 

also visible in the section between 198 and 210 m, but there is no surface expression. The 

topmost layer is indistinct with isolated low-resistivity (38 to190 ohm-m) patches 

throughout the section.  An intermediate layer of medium-resistivity (190 to 500 ohm-m) 

continues throughout the section. The contact between the medium-resistivity layer and 
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underlying high-resistivity layer (500 to 1800 ohm-m) occurs throughout the section at an 

average depth of about 5 m from the surface.   

Table 3.1. Details of ER profiles. 

Site name and 
number 

Profile 
number 

Survey 
date 

Profile 
length 
(m) 

Electrode 
spacing 
(m) 

Number of 
electrodes 

Survey 
method 

U
ni
ve
rs
ity

 o
f K

en
tu
ck
y 

A
gr
ic
ul
tu
ra
l R
es
ea
rc
h 

Fa
rm

 (S
ite

 1
) 

ER line 
1 

6/11/2008 86  2  44  Dipole‐dipole 

ER line 
2 

6/10/2008 88  2  45  Dipole‐dipole 

Be
re
a 
Ro

ad
 

(S
ite

 2
)  ER line 

3 
6/10/2008 135  3  46  Dipole‐dipole 

ER line 
4 

6/10/2008 249  3  84  Dipole‐dipole 

Ke
nt
uc
ky
 H
or
se
 

Pa
rk
 (S
ite

 3
)  ER line 

5 
6/11/2008 165  3  54  Dipole‐dipole 

ER line 
6 

6/9/2008  249  3  84  Dipole‐dipole 

 

 3.2 Self-Potential Data Interpretation 

SP data were collected along ER lines at all three sites for comparison with ER 

responses and were collected on multiple dates as a check on reproducibility. SP 

measurements were repeated at half-hour intervals at the base stations and used to correct 

for the electrode drift during the course of measurements. The SP data along lines 5, 6 

and 7 were corrected for elevation due to the irregular topography. The topographic 

correction factors (K) for lines 5 and 6 (0.97 and 0.69, respectively) were determined by 

linear regression because these lines exhibit linear topography along the transect with 
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almost constant slope between the stations. Since line 7 exhibits irregular topography, 

values of K were individually determined to calculate the topographic effect for each set 

of SP readings (-0.72 for August 7, 2008, 0.79 for August 29, 2008, and -0.55 for March 

18, 2009, respectively). Moving averages for SP data were calculated to remove the high-

frequency noise. The averaged data were plotted against the electrode spacing along each 

survey profile and the subsurface geology was interpreted based on negative or positive 

SP anomalies.  

3.2.1 SP Line 1, University of Kentucky Agricultural Research Farm (Site 1) 

 

Figure 3.7. SP plot along line 1 at the UK Agricultural Research Farm (Site 1). 

 

The processed SP data collected on September 14 and December 28, 2008, show 

similar trends with a major anomaly along the transect but with different SP values. The 

SP profiles show a monotonous response between 0 and 60 m and a negative anomaly 

across the remainder of the profile. The September anomaly is 13 mV more negative than 

the average background SP (3 mV) while the December anomaly is 5 mV less than the 

average background SP (2 mV). The total precipitation and average soil temperature for 
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the week preceding each measurement during September and December were 1.1 cm and 

23 °C and 5.8 cm and 3.8 °C, respectively (Table 3.2). The low precipitation and high 

soil temperature during September measurements suggest drier field conditions than for 

the December measurements.  

3.2.2 SP line 2 (Site 1) 

 

Figure 3.8. SP plots along line 2 at the UK Agricultural Research Farm (Site 1). 

 

SP data acquired on three different dates in September 2008 through March 2009 

show similar trends, with a significant negative anomaly between stations 40 and 50 m. 

The anomaly was 11.5 mV more negative than the average background SP in September 

(-7.5 mV), 6.5 mV more negative than the background SP in December (0.5 mV) and 7.8 

mV more negative than the background SP in March (-2.2 mV).  

The total precipitation and average soil temperature for each week preceding SP 

measurements were 1.1 cm and 23 °C in September, 5.8 cm and 3.8 °C in December, and 
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0.4 cm and 6.9 °C in March (Table 3.2). The difference between September and 

December responses was qualitatively similar for SP lines 1 and 2. The intermediate SP 

response for March is consistent with relatively mild temperature compared to late 

summer and early winter.  

3.2.3 SP line 3, Berea Road (Site 2) 

SP line 3 was surveyed on two dates in November 2008 and one in March 2009. 

The first two measurements were done along the same line while the third measurement 

was made along a parallel line with 3-m offset to the north.  

 

Figure 3.9. SP plots along line 3 at Berea Road (Site 2). 

The negative SP anomaly for all three SP plots falls between stations 60 and 80 

m, but the anomalous target is likely to lie between 68 and 73 m along the profile. The 

differences between the average background SP and the anomaly are -14.1 mV for the 

November 4, 2008, data, -11.8 mV for the November 23, 2008, data and -12.9 mV for the 

March 5, 2009 data. 
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The total precipitation and average soil temperature for each week preceding SP 

measurements were 0.0 cm and 11.1 °C (for November 4 data), 0.0 cm and 4.4 °C (for 

November 23 data), and 1.5 cm and 3.6 °C (for March 5 data), respectively (Table 3.2). 

Considering the relatively short time interval (19 days) between the first two sets of 

measurements and the 3-m offset between those transects and the March transect, the SP 

responses for all three surveys along line 4 are similar. 

3.2.4 SP line 4 (Site 2)  

 

Figure 3.10. SP plots along line 4 at Berea Road soccer field (Site 2). 

In contrast to SP lines 1 through 3, the shapes of SP curves along line 4 vary 

markedly over time, with a pronounced positive anomaly beyond about 40 m for the 

March 5, 2009, survey and pronounced negative anomaly beyond about 60 m for the 

November 23, 2008, survey. The total precipitation and average soil temperature for each 

week preceding measurements were 0.0 cm and 4.4 °C (for November data) and 1.5 cm 
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and 3.6 °C (for March data), respectively (Table 3.2). Since the profiles collected on 

different dates diverged, the SP data along line 4 are not utilized to delineate the conduit. 

3.2.5 SP line 5, Kentucky Horse Park (Site 3)  

SP measurements were collected multiple times along this line as well but only 

one set of data (collected on March 8, 2009) was processed and interpreted. The data 

collected on other dates did not correspond to each other or with the parallel SP line 6 

that is only about 10 m away from line 5, perhaps because of instrument malfunction 

resulting from damage to the porous ceramic base.  

The SP profile shows an overall negative anomaly between 25 and 130 m (Fig. 

3.11). Discrete negative SP peaks occur at 34 m, 64 m, 96 m and 122 m. The difference 

between maximum and minimum SP values ranges from about 5 to 6 mV along this 

profile and these values are relatively small as compared to other SP lines.

 

Figure 3.11. SP plot along line 5 at the Kentucky Horse Park (Site 3). 
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3.2.6 SP line 6 (Site 3)  

Although SP measurements were made on more than two dates, only two sets of 

measurements were processed for analysis (Fig. 3.12) because of meter malfunction and 

electrode damage. The SP profile for November 2, 2008, shows several negative 

anomalies, including a broad anomaly from about 50 to 100 m, which is centered around 

70 m, and sharp anomalies at about 115 m, 150 m, and 200 m. In comparison, the SP 

profile for March 8, 2009, is generally convex downward, with relatively subtle negative 

anomalies at about 85 m, 115 m, and 140 m. The total precipitation and average soil 

temperature for the week preceding each set of measurements were 1.0 cm and 10.8 °C 

for November and 0.4 cm and 4.4 °C for March, respectively (Table 3.2). The SP 

response was generally more negative with higher amplitude for data taken during the 

relatively dry, mild period (i.e., in November vs. March).

 

Figure 3.12. SP plots along line 6 at the Kentucky Horse Park (Site 3). 
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3.2.7 SP line 7, Kentucky Horse Park (Site 3) 

SP line 7 is located at the north end of the Kentucky Horse Park near Interstate 

75.  It runs approximately parallel to and about 300 m north of the SP lines 5 and 6 at this 

site. This line was surveyed multiple times on different dates to check SP data 

reproducibility but ER data were not collected along this line. 

In contrast to the other lines, the SP responses along line 7 tended to be convex 

upward (Fig. 3.13). A consistent negative anomaly for all the SP plots, surveyed at 

different dates, falls around 150 m. The difference between average background SP and 

this anomaly was 7 mV for August 29, 2008, 6.7 mV for September 12, 2008, and 6.25 

mV for March 18, 2009. 

 

Figure 3.13. SP plots along line 7 at the Kentucky Horse Park (Site 3). 
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 Although the overall trends in the profiles are similar, the SP magnitudes vary by 

as much as 15 mV at individual survey points. The total precipitation and average soil 

temperature for the week preceding each set of measurements were 0.9 cm and 24.4 °C 

for August 29, 2008, 0.04 cm and 23 °C for September 12, 2008, and 0.4 cm and 7.7 ° C 

for March 18, 2009, respectively (Table 3.2). The March SP profile, which reflected 

wetter and cooler conditions, is more positive than the September profile, while the 

August response is intermediate between the two subsequent profiles beyond 50 m. 

Table 3.2. Precipitation and soil temperature data (Station: Spindletop). 

 SP 
line 

Survey date 
Precipitation 
duration 

Total 
precip. 
(in.) 

Total 
precip. 
(cm) 

One‐week 
avg. soil T. 
(grass),deg. 
Fahrenheit 

One‐week 
avg. soil T, 

deg. 
Celsius 

Line 
1 

09/14/2008  09/08/08 ‐ 09/14/08  0.43 1.1 73.5  23
12/ 28/2008  12/22/08 ‐ 12/28/08  2.27 5.8 39  3.8

Line 
2 

09/ 14/2008  09/08/08 ‐ 09/14/08  0.43 1.1 73.5  23
12/ 28/2008  12/22/09 ‐ 12/28/08  2.27 5.8 39  3.8
03/10/2009  03/04/09 ‐ 03/10/09  0.16 0.4 44.5  6.9

Line 
3 

11/ 04/2008  10/29/08 ‐ 11/04/08  0 0 52  11.1
11/23/2008  11/17/08 ‐ 11/23/08  0 0 40  4.4
03/05/2009  02/27/09 ‐ 03/05/09  0.61 1.5 38.5  3.6

Line 
4 

11/23/2008  11/17/08 ‐ 11/23/08  0 0 40  4.4
03/0 5, 2009  02/27/09 ‐ 03/05/09  0.61 1.5 38.5  3.6

Line 
5  03/08/2009  03/02/09 ‐ 03/08/09 0.16 0.4 40.5  4.7

Line 
6 

11/02/2008  10/27/08 ‐ 11/02/08  0.39 1 51.5  10.8
03/08/2009  03/02/09 ‐ 03/08/09  0.27 0.7 40.5  4.7

Line 
7 

08/07/2008  08/01/08 ‐ 08/07/08  0.51 1.3 78  25.5
08/29/2008  08/23/08 ‐ 08/29/08  0.35 0.9 76  24.4
09/12/2008  09/06/08 ‐ 09/12/08  0.01 0 73.5  23
03/18/2009  03/12/09 ‐ 03/18/09  0.16 0.4 46  7.7

Source: UK Agricultural Weather Center (2009). 
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3.3 Comparison of ER and SP Results 

3.3.1 UK Agricultural Research Farm (Site 1) 

 The inverted resistivity section and residual SP plot along Line 1 (Fig. 3.14) at 

this site show a pronounced low resistivity and negative SP anomaly at approximately 14 

m depth, between stations 60 to 70 m along the transects (Fig. 3.14). However, a hole 

drilled into this anomaly at 63.5 m did not encounter a solution conduit. The well log 

indicates that it could be a soil-filled sinkhole (James Dinger, Kentucky Geological 

Survey, personal correspondence). The identification of metallic objects in a hole dug 

during an SP survey is consistent with the negative SP response. Between stations 0 and 

20 m, the data suggest very thin soil cover over weathered bedrock, which was 

subsequently verified by direct soil probes. The inverted resistivity section and the SP 

plots show a pronounced anomaly at approximately 17 m depth between stations 40 and 

50 m along line 2 (Fig. 3.15). However, a borehole drilled into the anomaly did not 

encounter a solution conduit.
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Figure 3.14. ER and SP profiles along line 1 at the University of Kentucky Agricultural 
Research Farm (Site 1). 

 

 

Figure 3.15. ER and SP responses along line 2 at UK Agricultural Research Farm (Site 1) 
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3.3.2 Berea Road (Site 2) 

 The plots along line 3 (Fig. 3.16) at this site show a pronounced low resistivity 

and negative SP anomaly at approximately 16.6 m depth between stations 69 and 81 m 

(Fig. 3.16). Two holes (#1 at 72 m and #2 at 80 m along line 3) drilled into this target 

encountered a water-bearing conduit, whereas two holes drilled off the transect were dry. 

The static water levels measured (James Currens, Kentucky Geological Survey, personal 

communication) in both wells were 15.7 m below the ground surface. The low-resistivity 

layer at the top of the section is interpreted as soil overburden and might be the flood 

plain deposit of Cane Run.  

 

 

Figure 3.16. ER and SP responses along line 3 at Berea Road (Site 2). 
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 The ER profile along line 4 (Fig. 3.17) at this site shows a prominent resistivity 

low at an approximate depth of 19 m around 144 m along the transect. The large 

resistivity contrast relative to the background makes this a potential target for the conduit, 

but it has not been drilled yet. The SP measurements along the same line begin as station 

0 corresponding to station 97 m on the ER profile. In contrast to other sites, the SP profile 

did not show any anomaly corresponding to the ER anomaly. The inconsistency in SP 

results could be the result of emplacing fill to make the soccer field level or the existence 

of the inferred fault. The low- and intermediate-resistivity layers along line 4, in contrast 

to the sections at other sites, are not distinguishable into two layers. However, the top of 

the underlying high-resistivity layer is almost uniform on either side of the fault (with 3-

m vertical offset) inferred between stations 105 and 111 m. Many other small scale faults 

have been documented in the vicinity (Kentucky Geologic Map Information Service 

2009).     

                                                      

Figure 3.17. ER and SP responses along line 4 at Berea Road (Site 2). 
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3.3.3 Kentucky Horse Park (Site 3) 

 The three low-resistivity anomalies along line 5 (Fig. 3.19) correspond roughly 

with the negative SP anomalies along the same line, although a fourth anomaly (at about 

64 m along the transect) does not have a matching ER anomaly. The low-resistivity 

anomalies are located approximately at 17 m depth. The apparent resistivity for the 

anomaly located between stations 33 and 42 m is about 441 ohm-m, which exceeds the 

typical range for fresh groundwater; however, the high contrast between the anomaly and 

the background resistivity (1000 to 2000 ohm-m) could have a masking effect on the 

anomaly. The apparent resistivity is the volumetric average for the particular location and 

the surrounding high resistivity might have raised a true low-resistivity value in this case. 

The second anomaly (345 ohm-m) is located between stations 75 and 108 m. The 

proximity of the low-resistivity anomaly at 123 m to a sinkhole and the typical sinkhole-

like ER response (Ahmed and Carpenter 2003, Jardani et al. 2007) suggest an ongoing 

process of sinkhole formation below ground surface. The top of the medium resistivity 

layer (200 to 520 ohm-m) in this section is not distinct but the bottom of this intermediate 

layer is clear and continuous throughout the section.  
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Figure 3.18. ER and SP responses along line 5 at the Kentucky Horse Park (Site 3). 

 Along line 6 low ER signatures correspond with negative SP anomalies in most 

cases. However, the resistivity low (107.6 ohm-m) visible between stations 14 and 17 m 

along line 6(a) (Fig. 3.19) is not visible in the SP plots. The SP plots show an overall 

negative anomaly along approximately the middle third of the transect (Fig. 3.19). The 

resistivity low (around 500 ohm-m) located at about 15 m depth between stations 72 and 

111 m (line 6(a)) was also reflected in the SP profile. The three wells (W-1, W-2 and W-

3) drilled into this anomaly encountered water. Average depth to static water levels at 

these wells was around 14 m, while a well (W-4) drilled slightly away, at station 68.58 m 

along the transect, was dry. The target depth obtained from the ER section is about 7% 

higher than the measured depth in the well. The differences in true and calculated depth 

could be the result of oblique orientation of survey line to the conduit, insufficient sample 

data points or over-processing during the inversion. Another ER anomaly at the SW end 
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of line 6(a) was also drilled but the conduit was not encountered at the expected depth. 

This anomaly is located adjacent to a sinkhole and the resistivity signature could be the 

effect of ongoing sinkhole formation.  

ER line 6(b) overlaps line 6(a) at station 84 m and continues toward the SW. The 

ER section shows distinct low-resistivity anomalies (around 200 ohm-m) between 

stations 99 to 126 m, located at a depth of 15 to 20 m, and below the station at 138 m, 

which might be a result of the nearby sinkhole. Similarly, the ER signature between 

stations 198 and 210 m at the SW end of the transect could also be a result of a sinkhole 

about 3 m away. The anomaly at station 138 m along line 6(a) and 6(b) exactly matches, 

but the anomaly between stations 72 and 111 m along line 6(a) only partly matches with 

the anomaly between stations 99 and 126 m along line 6(b). The mismatch between 72 to 

99 m and 111 to 126 m along the line may be the result of edge effects due to insufficient 

data and relative misfit data removal. The SP profiles also show negative anomalies for 

these targets, but they have not been drilled to verify the result. 
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Figure 3.19. ER and SP responses along line 6 at the Kentucky Horse Park (Site 3). 
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The upper 5 meters of the sections along lines 5 and 6 show similar ER responses 

of low to medium resistivity with discrete low-resistivity patches near the surface. The 

contact between the medium-resistivity layer and the underlying high-resistivity layer is 

located at a nearly uniform depth throughout the section, which suggests that the bedrock 

and the surface slope are dipping in the same direction. The maximum soil (overburden) 

thickness at this site is perhaps 2 m from the surface.  

 
3.4 Temporal Variability in SP Results 

Qualitative comparison of profiles collected on different dates indicates that the 

relative magnitude of SP anomalies tends to vary with soil dryness. The anomalous SP 

values along the same profile on different dates vary up to 8 mV but the principal 

anomaly for all the profile is at least 5 mV higher than the background SP.  Excepting 

line 5, for which results were erratic, and the March 5, 2009 for line 3, which was offset 

by 3 m from previous surveys, SP anomalies became less negative as one-week 

antecedent precipitation increased. Similarly, anomalies became less negative as 

temperature decreased (except for line 7, where the anomalies became more negative as 

both precipitation and temperature decreased between August 29 and September 12, 

2008). For lines 1, 2, 4, 6, and (considering the final two surveys) 7, the elapsed time 

between SP surveys spanned at least one season through the cool portion of the year (i.e., 

from late summer to early winter, early winter to late winter, autumn to late winter, or 

late summer to late winter). Consequently, the differences in SP responses may reflect 

not merely short-term (i.e., weekly) variability in weather, but also seasonal variability in 

soil moisture (i.e., soil moisture recharge during autumn, winter, and spring [Domenico 

and Schwartz 1998, Fig. 1.5]). Such recharge is consistent with GIS estimates for Fayette 
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County showing that, as of 1997, average precipitation exceeded pan evaporation from 

November through April (UK Agricultural Weather Center 2009). 
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Chapter 4. Conclusions 

 

Six coincident ER and SP lines (86 to 249 m) and an additional SP line (230 m) 

were surveyed on different dates at three sites within the Inner Bluegrass karst region, 

Kentucky. The two different geophysical techniques were applied along coincident 

survey lines to correlate the interpreted results. The ER and SP methods complement 

each other in the delineation of anomalies that may correspond to karst conduits. 

Combined use of these methods can potentially decrease the ambiguities inherent in the 

geophysical data interpretation. The following conclusions can be drawn from the present 

study: 

 Four out of six ER sections and SP profiles along lines 1, 2, 3 and 5 closely 

corresponded with each other. 

 In most of the cases, the low-resistivity anomalies are reflected as negative SP 

anomalies. Holes drilled into these anomalies along line 3 (between stations 69 

and 81 m along the transect) at Berea Road and along line 6 (between stations 72 

and 111 m along the transect) at the Horse Park encountered water-bearing 

conduits. 

 The holes drilled over matched low-resistivity and negative SP anomalies at the 

University of Kentucky Agricultural Research Farm did not encounter the water-

bearing target. However, the core log suggests the anomaly along line 1 may 

represent soil-filled sinkholes. The target on line 2 needs to be verified with 

additional ER and SP profiles.   
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 Low-resistivity anomalies around 144 m along line 4, low ER and negative SP 

targets between stations 33–42 m and 72–111 m along line 5, low ER targets 

betweens stations 14–18 m along line 6, and the negative SP anomaly around 150 

m along line 7 are potential targets for future drilling.  

 SP data change over time but the overall trends remain similar. In general, SP 

responses become less negative as precipitation increases and soil temperature 

decreases. Therefore, under wet field conditions, a negative SP anomaly 

generated by groundwater flow could be masked by the positive SP response 

generated by infiltration. 

 Further investigation, such as drilling the potential targets identified in this study 

and running a few more geophysical lines across the inferred conduit at other 

locations, are needed to determine whether the anomalies represent the main 

conduit or tributary conduits in the Royal Spring groundwater basin. 
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Appendices 
Appendix I 

A.   Inverted resistivity sections with and without relative data 
misfit removed.  
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Site – 1:  University of Kentucky Agricultural Research Farm 

Line – 1, without relative misfit data removed 
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Line – 1, relative data misfit above 12% removed 
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Line – 2, without relative misfit data removed 
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Line – 2, with relative data misfit above 24% removed  
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Site – 2: Berea Road 

Line – 3, without relative misfit data removed 
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Line - 3, with relative data misfit above 15% removed 
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Line - 4, without relative misfit data removed 

 

 

 



 

 
 

67 

 

Line - 4, with relative data misfit above 5% removed 
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Site – 3: Kentucky Horse Park 

Line - 5, without relative misfit data removed 
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Line - 5, with relative data misfit above 15% removed 
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Line – 6(a), without relative misfit data removed 
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Line – 6(a), with relative data misfit above 10.5% removed 
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Line – 6(b), without relative misfit data removed 
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Line – 6(b), with relative data misfit above 5% removed 
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Appendix I 
B.   Convergence curves of root mean square (RMS) versus 

number of iterations.  
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Site – 1:  University of Kentucky Agricultural Research Farm 

Line – 1, without relative misfit data removed 
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Line – 1, with relative data misfit above 12% removed 
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Line – 2, without relative misfit data removed 
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Line – 2, with relative data misfit above 24% removed 
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Site – 2: Berea Road 

Line – 3, without relative misfit data removed 
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Line – 3, with relative data misfit above 15% removed 
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Line – 4, without relative misfit data removed 
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Line – 4, with relative data misfit above 5% removed 
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Site – 3: Kentucky Horse Park 

Line - 5, without relative misfit data removed 
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Line - 5, with relative data misfit above 15% removed 
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Line – 6(a), without relative misfit data removed 
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Line – 6(a), with relative data misfit above 10.5% removed 
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Line – 6(b), without relative misfit data removed 
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Line – 6(b), with relative data misfit above 19.5% removed 
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Appendix I 
 

C.   Data misfit crossplots. These plots show relative fitness 
between calculated and measured apparent resistivity. 
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Site – 1:  University of Kentucky Agricultural Research Farm 

Line – 1, with relative data misfit above 12% removed 
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              Line – 2, without relative misfit data removed 
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Line – 2, with relative data misfit above 24% removed 
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Site – 2: Berea Road 

Line – 3, without relative misfit data removed 
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                   Line – 3, with relative data misfit above 15% removed 
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Line – 4, without relative misfit data removed 
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Line – 4, with relative data misfit above 5% removed 
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                                   Site – 3: Kentucky Horse Park 

                                Line - 5, without relative misfit data removed 
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Line – 5, with relative data misfit above 15% removed 

 

 

 



 

 
 

99 

 

                                               Line – 6(a), without relative misfit data removed 
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Line – 6(a), with relative data misfit above 10.5% removed 
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                            Line – 6(b), without relative misfit data removed 
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Line – 6(b), with relative data misfit above 19.5% removed 
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Appendix II 
 

Self-potential field data 
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Site - 1 
UK Agricultural Research Farm (Line - 1) 

Sept. 14, 2008 Dec. 28, 2008 

Electrode 
Spacing 

(ft.) 

SP 
reading1 

(mV) 

SP 
reading2 

(mV) 

Average 
SP 

(mV) 

Electrode 
Spacing 

(ft.) 

SP 
reading1 

(mV) 

SP 
reading2 

(mV) 

Average 
SP 

(mV) 

10 8.6 9.7 9.15 10 0.4 0.5 0.45
20 7.9 8 7.95 20 -1.1 -1.2 -1.15
30 4.8 5.5 5.15 30 2.5 2.6 2.55
40 6.7 7.2 6.95 40 3.1 3.4 3.25
50 1.6 2.2 1.9 50 4.4 4.7 4.55
60 2.1 3.5 2.8 60 -0.4 -0.5 -0.45
70 3.8 5.1 4.45 70 1 1.3 1.15
80 0.5 2.4 1.45 80 3 3.1 3.05
90 1.8 3.3 2.55 90 2.3 2.5 2.4

100 1.7 3.8 2.75 100 2.5 2.7 2.6
110 0.9 3.4 2.15 110 2.6 2.9 2.75
120 2.1 5.6 3.85 120 1.3 1.7 1.5
130 1.2 3.9 2.55 130 2.7 2.9 2.8
140 0.1 1.8 0.95 140 1.7 1.9 1.8
150 0.4 3.2 1.8 150 0.1 0.4 0.25
160 -2.2 -0.2 -1.2 160 1.2 1.6 1.4
170 -2.1 0.3 -0.9 170 1.9 2.4 2.15
180 -5.4 -1.9 -3.65 180 0.8 1.2 1
190 -2.2 -0.6 -1.4 190 1.4 2.1 1.75
200 -6.5 -5.5 -6 200 1.7 1.9 1.8
210 -13.2 -10.5 -11.85 210 4.6 3.7 4.15
220 -13.4 -11.6 -12.5 220 4.5 4.8 4.65
230 -16.1 -13.8 -14.95 230 6.4 6.9 6.65
240 -15.7 -14.4 -15.05 240 6.9 7.3 7.1
250 -15.1 -11.9 -13.5 250 7.9 8.1 8
260 -13.5 -11.6 -12.55 260 5.3 6 5.65
270 -14 -12.6 -13.3 270 5.3 6.1 5.7
280 -11.3 -10.4 -10.85 280 4.1 5.6 4.85
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UK Agricultural Research Farm (Line - 2) 
Sept. 14, 2008 Dec. 28, 2008 March 10, 2009 

Electrode 
Spacing 

(ft.) 

SP 
reading1 

(mV) 

SP 
reading2 

(mV) 

Average 
SP 

(mV) 

SP 
reading1 

(mV) 

SP 
reading2 

(mV) 

Average 
SP 

(mV) 

SP 
reading1 

(mV) 

SP 
reading2 

(mV) 

Average 
SP 

(mV) 

10 -4.2 -4.2 -4.2 -2.8 -2.7 -2.75 -1.8 -2.2 -2
20 -0.7 -0.8 -0.75 -3.4 -3.5 -3.45 0.7 0.7 0.7
30 -0.7 -0.9 -0.8 -2.7 -2.6 -2.65 0.1 0 0.05
40 -0.4 -0.8 -0.6 -2.7 -2.9 -2.8 1.4 1.5 1.45
50 -3.5 -4.8 -4.15 -3.5 -3.7 -3.6 1.2 1.5 1.35
60 -3.9 -4.8 -4.35 -2.6 -2.7 -2.65 0.9 1.2 1.05
70 -0.2 -0.4 -0.3 -2.7 -2.9 -2.8 1.4 1.8 1.6
80 -5.6 -6 -5.8 -0.1 -0.2 -0.15 -0.6 -0.1 -0.35
90 -7.7 -8.1 -7.9 -2 -2.3 -2.15 0.8 1.2 1

100 -7.7 -8 -7.85 -2.5 -2.6 -2.55 0.4 0.8 0.6
110 -7.1 -7.7 -7.4 -2.6 -2.9 -2.75 1.8 2.3 2.05
120 -11.2 -11.8 -11.5 -0.8 -0.9 -0.85 -0.1 0.7 0.3
130 -14.1 -14.5 -14.3 -0.1 -0.2 -0.15 -0.2 0.4 0.1
140 -13.9 -14.1 -14 1.4 1.7 1.55 -0.8 -1.7 -1.25
150 -18.2 -18.6 -18.4 5.1 5.4 5.25 -3.7 -5 -4.35
160 -14.9 -15.4 -15.15 2.7 3 2.85 -1.7 -2.4 -2.05
170 -10.2 -10.9 -10.55 0.8 1.1 0.95 -0.5 0.2 -0.15
180 -8.6 -9.3 -8.95 -0.1 0.2 0.05 0.5 1 0.75
190 -5.6 -6.4 -6 -0.1 -0.6 -0.35 2.4 3.1 2.75
200 -5.6 -6.2 -5.9 -1.1 -1.4 -1.25 2.4 3.1 2.75
210 -4.9 -5.7 -5.3 -0.9 -1.2 -1.05 1.7 2.7 2.2
220 -3.9 -4.3 -4.1 -1.1 -1.5 -1.3 3.7 4.1 3.9
230 -5.6 -6.1 -5.85 -2.7 -3 -2.85 4.8 5.2 5
240 -3.4 -4.2 -3.8 -3.3 -2.9 -3.1 5.8 6.2 6
250 -2.7 -3.5 -3.1 -5.3 -5.5 -5.4 6.4 7.2 6.8
260 -5 -6.1 -5.55 -5.7 -6 -5.85 6.5 7.1 6.8
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Site - 2 

Berea Road (Line - 3) 
Nov. 4, 2008 Nov. 23, 2008 March 5, 2009 

Electrode 
Spacing 

(ft) 

SP 
Reading 
1 (mV) 

SP 
Reading 2 

(mV) 

Average 
SP 

(mV) 

SP 
Reading 
1 (mV) 

SP 
Reading 
2 (mV) 

Average 
SP 

(mV) 

SP 
Reading 
1 (mV) 

SP 
Reading 
2 (mV) 

Average 
SP 

(mV) 

15 -12.4 -12.4 -12.4 -4.2 -3.5 -3.85 -5 -5.3 -5.15 
30 -15.9 -15.8 -15.85 -4.3 -4.4 -4.35 -5.2 -5.5 -5.35 
45 -14 -13.8 -13.9 -3.1 -3.3 -3.2 -7.6 -8.2 -7.9 
60 -17.7 -17.8 -17.75 -6.4 -6.5 -6.45 -9.8 -10.4 -10.1 
75 -17.8 -18 -17.9 -8 -8.2 -8.1 -12.1 -13.2 -12.65 
90 -20.8 -20.9 -20.85 -11.4 -11.6 -11.5 -13.7 -14.4 -14.05 

105 -20.1 -20.4 -20.25 -12.7 -13 -12.85 -15.1 -16.2 -15.65 
120 -20.7 -20 -20.35 -11.6 -12 -11.8 -19.1 -20.1 -19.6 
135 -20.6 -20.2 -20.4 -14.3 -14.8 -14.55 -18.6 -20.1 -19.35 
150 -23.1 -23.4 -23.25 -16.2 -16.6 -16.4 -21.9 -22.4 ‐22.15 

165 -24.2 -24.5 -24.35 -15.9 -16.5 -16.2 -22.7 -24.1 -23.4 
180 -27.6 -27.4 -27.5 -17.1 -17.9 -17.5 -23.8 -24.3 -24.05 
195 -28.8 -28.4 -28.6 -19.7 -20.2 -19.95 -27.7 -28.3 -28 
210 -29.9 -30.3 -30.1 -20.7 -21.2 -20.95 -30.6 -31.2 -30.9 
225 -35.2 -34.9 -35.05 -25.3 -25.8 -25.55 -34.7 -36.2 -35.45 
240 -36.5 -37.1 -36.8 -23.5 -24 -23.75 -34.6 -36 -35.3 
255 -32.2 -31.5 -31.85 -20.2 -20.8 -20.5 -30.7 -31.9 -31.3 
270 -28.3 -27.9 -28.1 -18.9 -19.5 -19.2 -31.4 -32.2 -31.8 
285 -26.4 -26 -26.2 -19.6 -20.2 -19.9 -30.5 -32.1 -31.3 
300 -27.5 -28 -27.75 -20.2 -20.8 -20.5 -30.5 -33.1 -31.8 
315 -27.3 -26.8 -27.05 -18.2 -18.8 -18.5 -30.6 -32 -31.3 
330 -27.1 -26.5 -26.8 -16.5 -17.3 -16.9 -26.7 -29.6 -28.15 
345 -25.4 -24.5 -24.95 -17.2 -18 -17.6 -26.6 -27.9 -27.25 
360 -25.8 -24.9 -25.35 -14.2 -15.1 -14.65 -26.2 -29.4 -27.8 
375 -21.5 -20.4 -20.95 -12.9 -14.2 -13.55 -24.4 -27.6 -26 
390 -21.8 -20.7 -21.25 -12.1 -13.2 -12.65 -24.3 -27.8 -26.05 
405 -18.4 -16.9 -17.65 -11.2 -12.2 -11.7 -20.6 -23.3 -21.95 
420 -17.1 -16.8 -16.95 -8.9 -10.1 -9.5 -21.3 -22.7 -22 
435 -13.8 -11.9 -12.85 -6.1 -7.3 -6.7 -20.1 -22.9 -21.5 
450 -9.1 -8.3 -8.7 -4.3 -5.8 -5.05 -18.6 -21.7 -20.15 
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Berea Road Soccer Field (Line - 4) 
Nov. 23, 2008 March 5, 2009 

Electrode 
Spacing 

(ft) 

SP 
Reading 
1 (mV) 

SP 
Reading 
2 (mV) 

Average 
SP 
(mV) 

Electrode 
Spacing 

(ft) 

SP 
Reading 
1 (mV) 

SP 
Reading 
2 (mV) 

Average 
SP 
(mV) 

15 -3.4 -3.5 -3.45 15 -1.8 -1.9 -1.85
30 -0.4 -0.6 -0.5 30 -2 -2.2 -2.1
45 -3.1 -3.3 -3.2 45 -0.7 -0.8 -0.75
60 -1.9 -2.1 -2 60 -1.1 -1.6 -1.35
75 -0.9 -1.2 -1.05 75 -0.9 -1.6 -1.25
90 -2.6 -3 -2.8 90 -0.1 -0.3 -0.2

105 -1.2 -1.6 -1.4 105 -0.7 -1.2 -0.95
120 -2 -2.4 -2.2 120 -0.1 -0.3 -0.2
135 0.8 1.2 1 135 2 2.2 2.1
150 -0.5 -0.8 -0.65 150 3.2 3.5 3.35
165 0.2 0.6 0.4 165 3.1 3.7 3.4
180 0.1 0.3 0.2 180 4.6 5.2 4.9
195 0 -0.2 -0.1 195 4.1 4.6 4.35
210 -2.1 -2.6 -2.35 210 3.9 4.6 4.25
225 -3.3 -3.8 -3.55 225 4.2 5.2 4.7
240 -1.8 -2.4 -2.1 240 5.6 6.2 5.9
255 -3.5 -4 -3.75 255 6.1 6.8 6.45
270 -3 -3.5 -3.25 270 5.7 6.1 5.9
285 -4.2 -4.8 -4.5 285 4.3 5.1 4.7
300 -7.9 -8.4 -8.15 300 3.6 4.1 3.85
315 -9.5 -10 -9.75 315 1.7 2 1.85
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Site - 3 

Kentucky Horse Park (Line - 5) 
March 8, 2009 

Electrode Spacing (ft) SP Reading 1 (mV) SP Reading 2 (mV) Average SP (mV) 

15 3.6 2.8 3.2 
30 3.9 4 3.95 
45 4.3 4.1 4.2 
60 4.1 5 4.55 
75 5 5.3 5.15 
90 8.4 9 8.7 

105 10.3 10.6 10.45 
120 9.8 10 9.9 
135 11.2 11.5 11.35 
150 12 12.2 12.1 
165 15.1 15.3 15.2 
180 13.8 14 13.9 
195 15.1 15.3 15.2 
210 15.7 16 15.85 
225 16.7 17 16.85 
240 17.1 17.4 17.25 
255 19 19.4 19.2 
270 18.4 19 18.7 
285 19.7 20.2 19.95 
300 18.7 19 18.85 
315 19.2 19.5 19.35 
330 19.7 20.3 20 
345 21.9 22.3 22.1 
360 21.1 21.5 21.3 
375 23 24 23.5 
390 22.6 23.2 22.9 
405 24.7 25.1 24.9 
420 23.2 24.1 23.65 
435 25.1 25.6 25.35 
450 27.1 28 27.55 
465 26.9 27.9 27.4 
480 25.4 26 25.7 
495 25.1 25.9 25.5 
510 25.5 26.2 25.85 
525 25.4 26.2 25.8 
540 24 25.2 24.6 
555 26.5 26.8 26.65 
570 25.8 26.9 26.35 
585 26.5 27.6 27.05 
600 24.4 25.4 24.9 
615 21.2 23.4 22.3 
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Kentucky Horse Park (Line - 6) 
Nov. 2, 2008 March 8, 2009 

Electrode 
Spacing 

(ft) 

SP 
Reading 1 

(mV) 

SP 
Reading 
2 (mV) 

Average 
SP 

(mV) 

Electrode 
Spacing 

(ft) 

SP 
Reading 1 

(mV) 

SP 
Reading 2 

(mV) 

Average 
SP (mV) 

15 -1.2 -1.3 -1.25 15 5 5.1 5.05 
30 -1.9 -2 -1.95 30 8.3 8.5 8.4 
45 -4.5 -4.8 -4.65 45 9.6 9.9 9.75 
60 -1.6 -2 -1.8 60 9.3 9.9 9.6 
75 -1 -1.5 -1.25 75 9.3 9.6 9.45 
90 -5.6 -6 -5.8 90 8.9 9.4 9.15 

105 -5.3 -6.1 -5.7 105 10.7 11 10.85 
120 -1.6 -2.1 -1.85 120 13 13.3 13.15 
135 -0.6 -1.9 -1.25 135 13.3 13.6 13.45 
150 -1.3 -1.1 -1.2 150 13 13.4 13.2 
165 -4.5 -5.4 -4.95 165 15.2 15.6 15.4 
180 -6.8 -8.1 -7.45 180 16 16.4 16.2 
195 -7.3 -7.8 -7.55 195 15.9 16.3 16.1 
210 -8.6 -9.1 -8.85 210 16.6 17.1 16.85 
225 -8.7 -8.9 -8.8 225 20 20.3 20.15 
240 -8.3 -9 -8.65 240 19.5 19.8 19.65 
255 -8.8 -9.4 -9.1 255 19.5 19.8 19.65 
270 -8.5 -9.5 -9 270 19 19.3 19.15 
285 -4.2 -5 -4.6 285 20.2 20.7 20.45 
300 -2.2 -2.8 -2.5 300 25.7 25.9 25.8 
315 -8.4 -8.9 -8.65 315 25.5 26.2 25.85 
330 -7.4 -8 -7.7 330 25.4 26.1 25.75 
345 -11.8 -12.6 -12.2 345 26.8 27.4 27.1 
360 -11.1 -11.6 -11.35 360 27.3 28.1 27.7 
375 -10.9 -11.6 -11.25 375 25.7 26.3 26 
390 -9.6 -10.1 -9.85 390 26 27 26.5 
405 -9.5 -10 -9.75 405 28.1 29 28.55 
420 -11.4 -12.2 -11.8 420 28.1 29.1 28.6 
435 -11.3 -11.6 -11.45 435 28.6 29.1 28.85 
450 -11.5 -12.3 -11.9 450 29.2 29.8 29.5 
465 -12.9 -13.9 -13.4 465 27 28.2 27.6 
480 -14.9 -15.5 -15.2 480 27.3 28 27.65 
495 -10.8 -11.3 -11.05 495 27.1 27.8 27.45 
510 -10.5 -11.1 -10.8 510 26.7 27.3 27 
525 -12.3 -12.8 -12.55 525 28.2 28.6 28.4 
540 -10.4 -11.1 -10.75 540 29.1 30 29.55 
555 -10.5 -11.5 -11 555 30.1 30.8 30.45 
570 -7.1 -8 -7.55 570 30.2 30.6 30.4 
585 -7.7 -8.5 -8.1 585 30.4 31.3 30.85 
600 -9.3 -10.1 -9.7 600 30.9 31.2 31.05 
615 -11.5 -12 -11.75 615 31.2 32 31.6 
630 -12 -12.8 -12.4 630 31.4 32.1 31.75 
645 -8.9 -9.7 -9.3 645 32.2 32.7 32.45 
660 -9.1 -10.1 -9.6 660 33 33.7 33.35 
675 -7.5 -8.5 -8 675 32.2 31.3 31.75 
690 -8.3 -9 -8.65 690 31.3 31.4 31.35 
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Kentucky Horse Park (Line - 7) 
Aug. 29,2008 Sept. 12,2008 March 18, 2009 

Electron 
Spacing 
(ft.) 

SP reading 1 
(mV) 

SP 
reading 2 

(mV) 

Average 
SP (mV) SP 

reading 1 
(mV) 

SP 
reading 2 

(mV) 

Average 
SP 

(mV) 

SP 
reading 1 

(mV) 

SP 
reading 2 

(mV) 

Average 
SP 

(mV) 

15 7.7 8.2 7.95 -2.1 -2.2 -2.15 5.4 5.6 5.5 
30 -1.5 -0.7 -1.1 -2.7 -4.1 -3.4 5.4 5.8 5.6 
45 7.6 8.8 8.2 -1.6 -2.8 -2.2 9.7 10.2 9.95 
60 10.5 11.5 11 -0.2 1.8 0.8 9.6 10.3 9.95 
75 23.1 24.1 23.6 3.2 6.4 4.8 11.5 12.4 11.95 
90 10 10.8 10.4 0.2 2.6 1.4 14.2 15.4 14.8 

105 10.4 11.7 11.05 0.7 4.1 2.4 14.8 16.2 15.5 
120 12.2 13.6 12.9 1.8 6.4 4.1 18.3 19.2 18.75 
135 18.5 19.9 19.2 3.2 10.5 6.85 19.8 21.2 20.5 
150 15.8 17.5 16.65 -0.1 7.3 3.6 20.5 21.4 20.95 
165 15.9 18.5 17.2 0.8 8.8 4.8 21.1 23.6 22.35 
180 23.7 25.1 24.4 2.4 10.3 6.35 23.7 25.2 24.45 
195 16.1 18.4 17.25 0.4 10.5 5.45 23.4 25.3 24.35 
210 15.4 17.1 16.25 2.1 9.2 5.65 26.4 28 27.2 
225 21 23.9 22.45 4.1 13.6 8.85 26.6 28.1 27.35 
240 15.7 18.5 17.1 1.4 11.8 6.6 28.6 29.4 29 
255 9 12.7 10.85 1.4 13.9 7.65 28.8 31.7 30.25 
270 18.3 21.5 19.9 5.2 16.4 10.8 30.9 33.2 32.05 
285 13.8 16.6 15.2 4.9 16.6 10.75 33.5 35.8 34.65 
300 22.9 25.8 24.35 7.8 16.5 12.15 35.7 38.3 37 
315 18.3 21.8 20.05 6.9 17.5 12.2 33.3 36.5 34.9 
330 18.8 23 20.9 11.9 25.5 18.7 36.5 38.4 37.45 
345 22.8 26.1 24.45 9.3 21.9 15.6 35.8 38.3 37.05 
360 16.7 21.3 19 11.6 25.7 18.65 39.6 41.2 40.4 
375 26.8 29.1 27.95 13.3 24.1 18.7 39.8 42.3 41.05 
390 24.3 29.2 26.75 11.9 23.9 17.9 39.1 42.4 40.75 
405 24.5 28.1 26.3 15.4 24.4 19.9 40.1 43.5 41.8 
420 26.3 31.4 28.85 16.2 25.3 20.75 40.9 42.6 41.75 
435 24.7 28.4 26.55 14.4 26.9 20.65 39.7 41.8 40.75 
450 24.2 2.9 13.55 16.8 27.1 21.95 42.8 44.5 43.65 
465 36 42 39 18.5 30.9 24.7 41.5 44 42.75 
480 28.7 32.7 30.7 13.7 24.6 19.15 39.7 42.6 41.15 
495 26.9 31.4 29.15 12.5 23.2 17.85 36.4 41.4 38.9 
510 22.2 27.6 24.9 11.3 22.1 16.7 40.7 43.2 41.95 
525 22.8 27.3 25.05 13.9 25.1 19.5 42.6 45.8 44.2 
540 27.3 32.4 29.85 16.2 29.2 22.7 42.6 46.1 44.35 
555 26.8 32.2 29.5 14.6 26.5 20.55 43.7 47.2 45.45 
570 26.1 31.2 28.65 16.7 28.4 22.55 42.7 46.5 44.6 
585 27.7 33.3 30.5 15.8 30.4 23.1 42.8 46.4 44.6 
600 26 30.7 28.35 18 32.5 25.25 44.7 46.4 45.55 
615 28 32.2 30.1 12.1 26.7 19.4 43.9 46.3 45.1 
630 18.3 23.8 21.05 

  
41.4 45.7 43.55 

645 13.6 18.3 15.95 38.9 43.1 41 
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