
University of Kentucky University of Kentucky 

UKnowledge UKnowledge 

University of Kentucky Master's Theses Graduate School 

2009 

ELECTRICAL AND MECHANICAL PROPERTIES OF MWCNT FILLED ELECTRICAL AND MECHANICAL PROPERTIES OF MWCNT FILLED 

CONDUCTIVE ADHESIVES ON LEAD FREE SURFACE FINISHED CONDUCTIVE ADHESIVES ON LEAD FREE SURFACE FINISHED 

PCB's. PCB's. 

Keerthi Varma Mantena 
University of Kentucky, keerthivarma@uky.edu 

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you. 

Recommended Citation Recommended Citation 
Mantena, Keerthi Varma, "ELECTRICAL AND MECHANICAL PROPERTIES OF MWCNT FILLED 
CONDUCTIVE ADHESIVES ON LEAD FREE SURFACE FINISHED PCB's." (2009). University of Kentucky 
Master's Theses. 613. 
https://uknowledge.uky.edu/gradschool_theses/613 

This Thesis is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted 
for inclusion in University of Kentucky Master's Theses by an authorized administrator of UKnowledge. For more 
information, please contact UKnowledge@lsv.uky.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Kentucky

https://core.ac.uk/display/232561164?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/gradschool_theses
https://uknowledge.uky.edu/gradschool
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu


 
 

ABSTRACT OF THESIS 

 

ELECTRICAL AND MECHANICAL PROPERTIES OF MWCNT FILLED 
CONDUCTIVE ADHESIVES ON LEAD FREE SURFACE FINISHED PCB’s. 

Electrically conductive adhesives (ECA) are an alternative to tin/lead solders for 
attaching Surface Mount Devices (SMD) in electronic assemblies. ECAs are mixtures of 
a polymer binder (for adhesion) and conductive filler (for electrical conductivity). They 
bring more conductivity, higher strength, less weight and longer durability than metal 
alloys. ECAs can offer numerous advantages such as fewer processing steps, lower 
processing temperature and fine pitch capability. Multi walled carbon nanotubes 
(MWCNT) were used as conductive fillers in this research because of their novel 
electronic and mechanical properties. 
 

The high aspect ratio of the nanotubes makes it possible to percolate at low 
loadings to obtain good electrical and mechanical properties. Replacing the metal filler 
with CNTs in the adhesive made the ECA light weight, corrosion resistant, reduced 
processing temperature, lead free, electrically conductive and high mechanical strength. 
The MWCNTs at different loadings were mixed with epoxy and epoxy: heloxy to form a 
composite mixture. Different loadings, additives and mixing methods were used to obtain 
good electrical and mechanical properties and pot life. Pressure dispensing, screen and 
stencil printing were the processing techniques used for making the samples. The volume 
resistivity, contact resistance, die shear and lap shear tests were conducted on different 
surface finished Printed Circuit Boards (PCB) like silver, tin and Electro less Nickel 
Immersion Gold (ENIG). The results are summarized and compared with traditional 
methods. 
 
KEYWORDS: Carbon nanotubes(CNTs), Electrically conductive adhesives(ECAs),Multi 
walled carbon nanotubes (MWCNTs), Printed Circuit Boards (PCB),epoxy, heloxy. 
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Chapter 1 Introduction 

Lead based solder materials have been in use for the interconnection of electronic 

components on printed circuit boards (PCBs) for a long time now. As the environmental 

awareness in increasing, there is a great deal of pressure on the industry to eliminate or 

try to reduce the usage of lead. The policies and legislations have been proposed 

worldwide to ban and reduce the use of lead in solders through RoHS, and the United 

States is also taking the restrictions seriously. There has been a great effort with in the 

industry to develop lead-free and environment friendly solder materials to replace the 

lead-based solders.  

An alternative to the lead based solder are the lead free electrically conductive 

adhesives (ECAs).  ECAs consist of polymer binder which provides mechanical strength, 

and conductive fillers, that offer electrical conduction. ECAs provide environment 

friendly solution for interconnection in electronic applications. ECAs also have some 

potential  advantages over the conventional solder techniques which include low 

temperature processing , finer pitch and simple processing [1][2]. From these the ECAs 

are considered as the next generation interconnection materials for electronic packaging. 

This interconnection technology is relatively new when compared to other technologies 

so it does have some limitations and drawbacks. The reliability issues that include limited 

impact resistance [3], increased contact resistance and weak mechanical strength in some 

climatic conditions [4] [5] are some of the major drawbacks that are preventing ECAs 

from replacing the solder in certain electrical applications. It is necessary to understand 

the mechanisms underlying these problems, and to improve the electrical properties of 

the conductive adhesives before ECAs can be widely used as solder replacement. 

Integrated chip packaging is the first level packaging which provides mechanical 

strength, environment protection, heat dissipation and electrical connections for the 

semiconductor devices. The second level packaging is system level packaging which 

provides interconnection of the devices on the system level board as well mechanical 

support and heat dissipation for the system. The important package interconnection 

technologies presently in the market are wire bonding, flip chip bonding and tape 

automated bonding [6]. 
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The IC packaging processes make individual electrical components ready to be 

handled; Printed Wiring Assembly processes integrate different electrical components 

into fully functional units. The two major PWB assembly technologies are through-hole 

assembly and surface mount assembly. In through assembly, leads of the components are 

inserted into the conducting plated through holes and soldered on the back side of the 

PWB. Where as in surface mount assemble the components can be placed on either side 

of the board and soldered. Due to the fact that surface mount assembly utilizes both sides 

of the board and size of surface mount components is usually smaller than comparable 

through-hole components, surface mount assembly has grown in popularity [6]. 

In this thesis, we focused on the electrical and mechanical properties of carbon 

nanotube adhesives on the commercially available surface finishes in the market. We also 

modified the adhesive by using a heloxy, which is a viscosity modifier. We tested this 

composite in five different variations on all the three surface finishes gold, silver and tin. 

Replacing the MWCNTs with metal fillers have the advantages of being lead free, 

resistant to corrosion, light weight and good mechanical strength.  
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Chapter 2         Background 

2.1 Conductive adhesives 

 Electrically conductive adhesive (ECA) technology is one of the lead free 

alternatives to solder technology. ECAs consist of a polymer binder and conductive filler. 

The polymer based adhesives are widely used in the industry. They are used as insulators 

due to their excellent dielectric properties. Conductive filler particles are mixed into the 

polymer adhesive to provide electrical continuity. Metal filled isotropic conductive 

adhesives were commercially available in the market even before RoHS. ECAs can be 

classified as thermoplastic or thermosetting, based on their physical properties upon 

curing. The two main classifications of ECAs are isotropic conductive adhesive (ICA) 

and anisotropic conductive adhesive (ACA). 

 ICAs can be either thermoplastic or thermosetting. Thermoplastics have a long 

linear molecular structure which gives them the ability to melt even after curing when 

heated to a particular melting point without altering their intrinsic properties[b]. They are 

based on conductive filler particles mixed in a solvent and dispersed in a polymer matrix. 

Thermoplastic adhesives have unlimited shelf life at room temperature. Thermoplastic 

adhesives are rework able [7]. One main disadvantage is it has a longer curing time when 

compared to most of thermosetting adhesives [8]. 

 Thermosets have a three dimensional polymer structure. Thermosets undergo 

chemical reactions and form chemical cross links between the polymer chains. Due to 

these they resist deformation even at very high temperatures. Most of the thermosets do 

not require solvents. Due to the reduced use of solvents, there is a minimum possibility of 

formation of bubbles and voids due to emissions during curing. The main drawbacks of 

thermosets are limited shelf life and poor rework ability. 

 ECAs can offer numerous advantages such as fewer processing steps which 

reduce processing cost, lower processing temperature which makes the use of heat-

sensitive and low cost substrate possible, and fine pitch capability. The main limitations 

of the ICA technology are lower conductivity, unstable contact resistance with non-noble 

metal finished components, and poor mechanical impact performance [9]. 
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2.1.1 Isotropic and Anisotropic Conductive Adhesives  

 

Isotropic conductive adhesive 

 Isotropic conductive adhesives consist of polymer resin such as epoxy and 

conductive fillers particles such as silver flakes. Most of the commercial ICAs are based 

on thermosetting resins [10]. The most common binders are thermoset epoxies due to 

their properties, such as excellent adhesive strength, good chemical and corrosion 

resistances and low cost, while thermoplastics are usually added to allow softening and 

rework under moderate heat [10]. Most commonly used conductive fillers are silver, 

gold, nickel, copper and carbon in various sizes and shapes. The conductive fillers 

provide the composite with electrical conductivity through contact between the 

conductive particles. Silver flakes are the most commonly used conductive fillers because 

of the high conductivity, simple process and the maximum contact with flakes. Nickel- 

and copper-based conductive adhesives generally do not have good resistance stability, 

because both nickel and copper are easily oxidized. Even with antioxidants, copper-based 

conductive adhesives show an increase in bulk resistivity after aging, especially under 

high-temperature and -humidity conditions. The conductive fillers in the ICA composite 

make contact with each other and form a conductive path to provide electrical 

conductivity. To ensure good electrical conductivity the volume fraction loading of the 

conductive filler particles must be higher than the percolation threshold. The conductive 

filler provides the electrical conductivity and the polymer resin gives the mechanical 

strength between the component and the substrate. An increase in loading will result in 

better electrical conductivity; on the other end it decreases the mechanical strength of the 

polymer resin. In a typical ICA the volume fraction loading conductive fillers is about 

25% to 30% [11]. For silver the corresponding weight percent is 78% to 82%. 

  

Anisotropic conductive adhesive 

  

Anisotropic conductive adhesives are pastes or films of thermoplastics. The 

volume fraction of filler in ACAs is 0.5% to 5% which is far below the percolation 
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threshold, thus there is no continuous electrically conductive path in ACAs before 

bonding. The component terminations are pressed against the corresponding pads on the 

substrate in order to compress the conductive particles trapped between the component 

terminations and substrate pads in order to form the electrically conductive path during 

bonding. ACAs require high heat and pressure during the bonding process. After bonding 

the ACAs become electrically conductive in one direction and remain insulating the other 

direction. The use of ECAs is a no-clean process, since there is no flux involved in the 

assembly process, The ECAs work well with all types of board finishes [12]. 

 

2.1.2 Percolation and Conductivity in ICA 

 There are two conductive pathways for isotropic conductive adhesives as shown 

in Figure 1. One is genuine conduction, caused by particle-to-particle contact within the 

polymer matrix. The other is percolation, which involves electron transport brought about 

by quantum-mechanical electron tunneling between particles close enough to allow 

dielectric breakdown of the matrix [12]. The conductivity of isotropic conductive 

adhesives depends on uniform dispersion of the filler particles to form a conductive path 

in the polymer matrix. Most of the traditional metal filled conductive adhesives require 

25 to 30% volume fraction to overcome the percolation threshold and ensure electrical 

conductivity [11]. However for less than 1% volume fraction of carbon black in the resin 

can cause electrical conduction. The largest reduction in volume resistivity is observed 

at0.25 wt% which means the percolation threshold is less than 0.25 wt% [20]. 

  

 

 
           1(a) Particle-to-particle                            1(b) electron tunneling  
  

                     Fig 1: Conduction Mechanism in conductive adhesives [12] 
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2.2 Carbon Nanotubes 

Carbon nanotubes are added as conductive fillers in the ECA. High aspect ratio, large 

surface area multiwall carbon nanotubes (MWCNTs) have the potential as ICA filler 

particles to reach the percolation threshold with small volume fraction loading compared 

to silver filled adhesives. The MWCNT used in the present study have aspect ratios of 

2500:1. 

 Carbon nanotubes are molecular-scale tubes of graphitic carbon with outstanding 

properties. They are among the stiffest and strongest fibers known, and have remarkable 

electronic properties and many other unique characteristics. They are chemically stable, 

mechanically very storing and conduct electricity. For this reason they open up new 

perspectives for various applications, such as nanotransistors in circuits, field emission 

displays, artificial muscles or added reinforcements in alloys. They exhibit extraordinary 

strength and unique electrical properties and are efficient conductors of heat [13].   

 
2.2.1 Geometry of Carbon nanotubes 

An ideal nanotube is a hexagonal network of carbon atoms that has been rolled up to 

make a seamless cylinder. Just nanometer across, the cylinders can be tens of microns 

long, and each end is "capped" with half of a fullerene molecule. Single-wall nanotubes 

have a fundamental cylindrical structure, and these form the building blocks of both 

multi-wall nanotubes and the ordered arrays of single-wall nanotubes called ropes. The 

atoms in CNT are arranged in hexagons, the same arrangement as in graphite. In graphite 

the hexagons lie in flat sheets on top of each other while in a nanotube, the sheet is rolled 

into a tube [14]. 

 

 

 

 

 

 

 

 



7 
 

 

 
Figure 2: Unrolled hexagonal lattice of a carbon nanotube [14]. 

 
 

.There are three unique geometries of carbon nanotubes. They are also referred to 

as flavors. The three flavors are armchair, zigzag, and chiral [e.g. zigzag (n, 0); armchair 

(n, n); and chiral (n, m)]. These flavors can be classified by how the carbon sheet is 

wrapped into a tube as shown in the below figure 3. 

 

 
Figure 3: Three distinctive arrangements of carbon in SWNTs [14]. 
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Shown in Figure 3 is a (5, 5) armchair nanotube (top), a (9, 0) zigzag nanotube 

(middle) and a (10, 5) chiral nanotube. The diameter of the nanotubes depends on the 

values of n and m [14]. 

There are two main types of nanotubes, single walled nanotubes (SWNTs) which 

are one layer of carbon hexagons and multiwalled nanotubes (MWCNTs) wherein one 

single tube is encased inside several larger tubes. The arrangement of the single walled 

and multi walled carbon nanotubes are shown in Figure 4. 

 
        Fig 4: Single walled and Multi walled Carbon Nanotubes. 

 

2.2.2 Single walled nanotubes (SWCNTs) 

These can be considered as long graphite sheets. Nanotubes generally have a 

length to diameter ratio of 1000 so they can be approximated as one dimensional 

structure. Single walled nanotubes are a very important variety of carbon nanotube 

because they exhibit important electric properties that are not shared by the multi walled 

carbon nanotube (MWCNT) variants. Single walled nanotubes are the mostly likely 

candidate for miniaturizing electronics past the micro electromechanical scale that is 

currently the basis of modern electronics [13].  

The most basic building block of these systems is the electric wire, and SWNTs 

can be excellent conductors. One useful applications of SWNTs is in the development of 

first intramolecular field effect transistors (FETs). Single walled nanotubes are still very 
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expensive to produce, and the development of more affordable synthesis techniques is 

vital to the future of carbon nanotube technology [13]. 

2.2.3 Multi walled Carbon Nanotubes (MWCNTs) 

Multi walled nanotubes consist of multiple layers of graphite rolled in on them to 

form a tube shape. These can be considered as a collection of concentric SWNTs with 

different diameters, lengths and properties. Multi walled nanotubes consist of multiple 

layers of graphite rolled in on them to form a tube shape. The distance between each 

layer is approximately 0.34 nm, slightly larger than the interlayer distance of graphite 

sheets and the layers are coupled to each other through van der Waals forces [13]. 

 High aspect ratio, large surface area multiwall carbon nanotubes (MWCNTs) 

have the potential as ICA filler particles to reach the percolation threshold with small 

volume fraction loading. The MWCNT used in the present study have aspect ratios of 

2500:1. MWCNT are electrically conductive independent of synthesis method and have 

extremely high strength to weight ratio offering the potential to improve the stiffness of 

the polymer matrix. The unique mechanical and electronic properties of multiwall 

nanotubes are proving to be a rich source of new physics and could also lead to new 

applications in materials and devices. 

 

2.2.4 Properties of Carbon nanotubes 

Multiwall carbon nanotubes (MWCNT) are metallic, whereas single wall carbon 

nanotubes (SWCNT) may be metallic or semiconducting depending on the chirality of 

the grapheme walls. The measured electrical conductivity of metallic carbon nanotubes is 

in the order of 104 S/cm [15]. The thermal conductivity of carbon nanotubes at room 

temperature can be as high as 6600 W/mK [16]. Carbon nanotubes have a Young's 

modulus of approximately 1 TPa and a maximum tensile strength of nearly 30 GPa [17]. 

The density of MWCNT is 2.6 g/cm3 and the density of SWCNT range from 1.33 g/cm3 

to 1.40 g/cm3 depending on the chirality [18]. Carbon nanotubes are the strongest and 

stiffest materials on earth, in terms of tensile strength and elastic modulus respectively. 



10 
 

Blending the extreme properties of carbon nanotubes into polymer matrix composites has 

tremendous potential for increasing strength, strength to weight ratio, thermal 

conductivity and electrical conductivity of the bulk polymer.  

 

2.3 Different Surface Finishes of Printed Circuit Boards (PCBs) 

 

RoHS directive impacts not only the solder alloys that one is permitted to use, but 

also many other aspects of the electronics assembly process, including the selection and 

compatibility of board fabrication materials. The selection of an appropriate surface 

finish plays an important role in printed circuit board manufacturing to ensure solder 

ability, reliability and high yield assembly of through whole and surface mount products. 

Surface finish is applied to copper pads and exposed traces for protection during storage 

and transportation from the time of board manufactured to the time the circuit is 

assembled. Therefore, the surface finish must maintain the solder ability of the board and 

protect the metal areas from contamination and oxidation, thus increasing its shelf-life. 

PCB Surface Finishes vary in price, availability, shelf life, reliability and assembly 

processing. While each finish has its own benefits, in most cases, the process, product or 

environment will dictate the surface finish that is best suited for the application. All 

Printed Circuit Boards (PCBs) have copper finishes on their surface. If the copper finish 

is left unprotected the copper will oxidize and deteriorate, there are various protective 

finishes available. The most prevalent are; Hot Air Solder Leveling (HASL), Organic 

Solder Preservative (OSP), Electroless-Nickel Immersion Gold (ENIG), Immersion 

Silver and Immersion Tin. We carried out the tests on Immersion Silver, Immersion Tin 

and Electro less-Nickel Immersion Gold [19]. 

2.3.1 Electroless Nickel Immersion Gold  

ENIG coatings have been used with great success on many boards despite the high per 

unit cost. It has a flat surface and excellent solder ability. The main drawback is that the 

electroless nickel layer is brittle and has been found to break up during mechanical stress. 

This effect is known in the industry as 'black pad' or 'mudflat cracking'.  
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 The advantage of ENIG is excellent solder ability, coplanar - flat surface, 

excellent shelf life and withstands multiple reflows. The disadvantages are higher cost, 

'black pad' issue, manufacture process uses cyanide and other hazardous chemicals [19]. 

2.3.2 Immersion Tin 

Immersion tin is a newer alternative surface finish, with many similar characteristics to 

its silver counterpart. However, there are major health and safety issues to consider. It is 

mainly used in Europe and Asia whilst its use in the US is restricted due to the concern 

over the thiourea used in tin solution (a suspected carcinogen). 

 The advantages of immersion tin are good solder ability, flat surface area and 

relatively low cost. The disadvantages are health and safety concerns and limited number 

of heat cycles [19]. 

2.3.3 Immersion Silver 

Immersion silver is a relatively recent addition to the PCB finish. Its main use has been in 

Asia and is gaining popularity in North America. Europe now has an emerging market. 

During the soldering process the silver layer dissolves into the solder joint leaving a 

tin/lead/silver alloy on the copper which provides very reliable solder joints for Ball Grid 

Array (BGA) packages. The contrasting color makes it easy to inspect, as opposed to 

OSP. It has also been a drop in replacement for HASL for soldering operations. There is 

although an underlying issue over silver 'migration'. 

 The advantages of immersion silver are good solder ability, coplanar - flat 

surface, and 'drop in' replacement for HASL. The disadvantages are insufficient data as it 

is recently added to the market.         
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Chapter 3      MWCNT Epoxy and Epoxy/Heloxy Composite Preparation 

3.1 Materials 

The epoxy resin and viscosity modifier used for the experiments were diglycidyl 

ether bisphenol-F (Epon 862, Shell Chemical, USA) and neopentyl glycol diglycidyl 

ether (Miller-Stephenson Chemical, USA), respectively. The curing agent used is methyl 

hexahydro phthalic anhydride (MHHPA, Miller-Stephenson Chemical, USA). 

Cyanoethyl-2-ethyl-4 methylimidazole is used as a catalyst (2E4MZ-CN, Shikoku 

Chemical, Japan). Multiwall carbon nanotubes grown by chemical vapor deposition were 

obtained from University of Kentucky Center for Applied Energy (CAER). As grown 

MWCNT have an average length of 50 µm and diameter of 20 nm. Shatter milled 

MWCNT were processed at CAER by grinding for 10 minutes in a shatter mill. 

 

3.2 MWCNT-Epoxy composite preparation 

The resin to curing agent to catalyst ratio is 100:85:0.5 for each batch of 

conductive adhesive. Each component in a 20 gram batch is added by weight to a 

polyethylene container and a Thinky AR-250 planetary mixer blends the adhesive. The 

planetary mixer generates large continuous centripetal forces (up to 400G) by compound 

motion of the revolving centrifuge and the counter-rotation of the material container. The 

high shear mixing action achieves uniform distribution and removes air bubbles from the 

mixture. No blending tool is required and each batch is mixed in a new clean container to 

prevent cross contamination. First, the resin, curing agent and catalyst are added to the 

sample container and then the desired weight percent loading of MWCNT are added. 

Each mixing cycle includes five minutes at 800 rpm rotation and 2000 rpm revolution 

rates followed by a three minute defoaming cycle at 60 rpm rotation and 2200 rpm 

revolution rates. Batches are stored in a refrigerator at 40°C. At room temperature, the 

mixtures have a pot life of approximately 72 hours. Formulations are allowed to come to 

room temperature and remixed prior to sample fabrication using a 3 minute mix and 2 

minute defoam cycle. Pads are stencil printed onto the ceramic substrates using an 

Aremco 3230B screen printer. All samples are held at 80°C for 4 hours to evaporate the 

solvents in the epoxy and then cured at 150°C for 45 minutes. 
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3.3 SMWCNT-Epoxy composite preparation: 

 

Shatter milled MWCNT were processed at CAER by grinding for 10 minutes in a 

shatter mill. The Nanotubes thus formed were shorter than the as grown nanotubes. The 

SEM picture of the shatter milled MWCNTs are as shown in the Figure 5. The length of 

the SMWCNTs is approximately halved when compared to the original MWCNT. 

 

 

 
Figure 5: Scanned Electron Microscopic image of a shatter milled MWCNT. 

 

 

The preparation of this composition is same as that of the MWCNT- epoxy composite 

preparation. 
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3.4 MWCNT-epoxy: Heloxy composite preparation 

While the epoxy resin has a room temperature viscosity of 25-45 P, the Heloxy 

viscosity modifier has a viscosity of 13-18 cP. The resin portion of the formulation was 

varied to include Heloxy modifier at epoxy to Heloxy ratios of 30:70, 40:60, 50:50, 60:40 

and 70:30. First, the epoxy and Heloxy modifier are taken in required proportions and are 

mixed with the curing agent and catalyst in desired weight ratio in a clean container. 

Then the total weight of the mixture is measured and then the corresponding weight of 

MWCNTs for desired %loading is calculated and CNTs are added to this mixture. Now 

the total weight along with the container is determined and that weight is compensated in 

the Thinky mixer. Thus 8wt%, 12wt%, 14wt% MWCNT mixtures are prepared with 

varying epoxy-Heloxy compositions as 2:3, 3:7, 1:1, 3:2,7:3 for each wt % except for 14 

wt% which was limited only to 2:3, 1:1, 3:2 ratio of epoxy-Heloxy. 

 

Chapter 4    Experimental Setup 

 

4.1 Volume Resistivity Measurement  

The electrical conductivity of a conductive adhesive is often evaluated as the volume 

resistivity (ohm-cm) of the material. For bulk material, volume resistivity can be 

measured by the method shown in Figure 21. In Figure 21, the bulk material is placed 

between the two electrode plates. A digital ohmmeter is connected to the two electrode 

plates and reading is taken once the display stabilized. Volume resistivity can be 

calculated using the following formula:  

                                                          Rvol =
Where  

 (R × l × w) / t                                             

Rvol

R = measured resistance (ohm)  

 = volume resistivity (ohm-cm)  

l = length of the electrode plate (cm)  

w = width of the electrode plate (cm)  

t = thickness of the conductive adhesive (cm)  
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 To measure the volume resistivity, the mixed epoxy/MWCNT composites can be 

either injection molded to make in bar shape and use the method discussed above or 

printed as a film and use four-point probe method. In our experiment, MWCNT/epoxy 

composites were stencil-printed onto aluminum oxide substrates (4 inches × 4 inches, 

CoorsTek, USA) to form uniform film samples. On the stencil pattern were six 1 cm × 

1cm Figure 6 square openings and two substrates were printed for each epoxy/MWCNT 

loading, thereby ten squares for each loading were printed. Samples were held at 80 °C 

for 4 hours to out gas and then cured at 150 °C for 30 minutes. The volume resistivity of 

each sample was calculated by multiplying the sheet resistance by the average thickness 

of the epoxy/MWCNT composite layer. 

 

 
Figure 6: Volume Resistivity Pattern 

 

  

A four-point probe tester (Signatone, USA) was used to record the voltage drop with the 

injected current. The sheet resistance (Rs) is proportional to the ratio of the voltage, V to 

the current, I.  The schematic of the four point probe is shown in Figure 7. 

Rs

C=4.53 (for infinite film)  

= C.V/I 
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A stylus profilometer (Alpha-Step 500, Tencor, USA) was used to scan each 

square in four directions to achieve the average thickness, t. Figure 22 illustrates the 

volume resistivity measurement sample and arrows indicate scan directions for stylus 

profilometer thickness measurements. The sheet resistance was converted to volume 

resistivity, ρv by multiplying by thickness, t (in cm). Volume resistivity for each of the 

ten squares was calculated and averaged to determine the volume resistivity for each 

loading.  

ρv = 

 

4.53 × (V/I) × t 

 

 

 

    Figure 7: Schematic of four point probe 
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4.2 Contact Resistance Measurement 

 

To measure the contact resistance of MWCNT filled ICAs, initially the adhesive 

is stencil printed using a stencil printer on to the pads of chosen printed circuit board and 

later,1206 size zero ohm resistors are mounted on the pads using a pick and place 

machine which uses a vacuum tip to hold the resistors. These resistors are mounted in 

daisy chain patterns. There are 10 zero ohm resistors on each daisy chain and 4 such 

daisy chains are fabricated onto the test board [22]. During the curing process, certain 

amount weight was placed on the sample for applying pressure. The weight enlarges the 

contact area while the height between the pads is reduced so that more contact points 

between pads and MWCNT are achieved there by reducing the contact resistance. The 

sample is placed in a heated oven for 240 minutes at a temperature of 85 oC and then the 

temperature is adjusted to 150
0

 

C and sample is cured for 40 minutes. Then the oven is 

turned off and sample is taken out for resistance measurement. The schematic of the 

Contact resistance pattern is shown in the Figure 8. 

 

 

 
Figure 8: Contact resistance Measurement test board. 
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A digital multimeter RSR MAS830 is used to measure the resistance for each 

daisy chain and the resistance for each daisy chain is calculated and divided by 20 to 

obtain the average contact resistance for each set of 10 resistors. Hence the reported 

contact resistance is calculated by averaging the resistance values for 4 daisy chains. 

Samples on different surface finishes (silver, gold, tin) are prepared and each with 

different %MWCNT loadings such as 2 wt% MWCNT to 6 wt% MWCNT and different 

mixtures of epoxy and different epoxy and heloxy (E: H) ratios. 

 

4.3 Lap Shear Strength Measurement 

To evaluate the mechanical degradation of the polymer matrix caused by adding 

MWCNT, a lap shear test was conducted by using an Instron 4442 tensile tester (Instron, 

USA). The test sample was prepared by attaching two copper clad printed circuit board 

tabs using the epoxy/MWCNT composite. The lap area was 0.25 inch × 0.25 inch. Figure 

9 illustrates the test sample. The amount of adhesive dispensed on the contact area was 

controlled by using a pressure dispenser. The tensile tester grips the 1×1 inch tabs and 

pulls until the composite attached lap area fails. The break force was recorded and 

divided by the lap area to calculate the lap shear strength (psi). Five samples were 

prepared to determine the average lap shear strength for each loading of MWCNT. Tabs 

were milled  from bare printed circuit boards using a MITS FP-21T milling machine. To 

prepare the samples, tabs were attached by MWCNT/epoxy composite and 

MWCNT/epoxy/heloxy composite [23]. 
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                                              Figure 9: Lap shear test sample 

 

 

 

4.4 Die shear Test Measurement 

Die shear testing is usually used to determine the adhesion strength between the 

semiconductor die and the package substrate. In this test, the whole assembly is tightly 

fastened, force parallel to the substrate is gradually applied on the edge of the die, the 

break force is measured for each die-substrate assembly and the type of failure is 

determined by visual examination of the residual. Mil-Std-883 Method 2019 [21] is the 

most  widely-used die shear test standard. To conform to this test standard, the following 

requirements for the test equipment must be fulfilled. First, the tool contacting the die 

should uniformly distribute the force to the full length of an edge of die. Second, the 
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contact tool must be perpendicular the die attach plan. Third, a rotational substrate 

holding fixture is needed to ensure the die edge and contact tool are parallel. Forth, a 

binocular microscope (10X min magnification) and lighting system is needed to observe 

the die and contact tool interface while the test is being performed. The direction of the 

applied force must be perpendicular to the die edge and parallel to the substrate plane. 

The contact tool must only contact with the die edge and avoid contacting the die attach 

material or the substrate. There are three die separation modes: the die cracks and die 

residual remains, die separates from the die attach material and die attach material 

separates from the substrate. Schematic of the die shear test board with 32 pads is shown 

in Figure 11 below. 

 

 

                            Figure 10: Schematic of die shear test sample 

 

 

MWCNT filled conductive adhesive is stencil printed according to the pattern shown in 

Figure. A manual pick and place machine is used to place the silicon die on the metal 

pads and the assembly is cured. The silicon die size is 0.06 inch × 0.05 inch = 0.003 

inch2

 

. Testing for the Die shear samples were performed at the NASA jet propulsion 

laboratory. 
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4.5 Aging Experiments 

The aging experiments were conducted on the volume resistivity samples. The 

samples were tested in order to see how time and temperature effect the volume 

resistivity of the samples. The samples were tested after 24 hours at 85°C in an oven and 

72 hours at 85°C in an oven. 

 All the experiments were conducted on the 12% MWCNT loading across all the 

epoxy : heloxy compositions. 

 

Chapter 5 Results and Discussion 

 

5.1 Volume resistivity Results 

5.1.1 MWCNT Loadings with Epoxy composite vs. Volume Resistivity  

  

The volume resistivity was measured for varying weight percentages of MWCNT 

loadings in MWCNT/Epoxy composition. Table 1 shows the measured volume resistivity 

of the epoxy/MWCNTs composites with different loadings. As the weight percentage of 

MWCNTs was increased, it was observed that the resistivity decreased. As it can be seen 

in Figure 12. It was observed that the viscosity of the epoxy/MWCNT composite 

increases with the increase in loadings. And above 12 wt% the composite becomes too 

viscous to process by screen printing, stencil printing or pressure dispensing. 

 From the Figure 12 it can be observed that the volume resistivity decreases with 

the increase in the MWCNT loading. I was also observed that the value does not change 

much from 8% to 12% loadings, which means the processability is limited above  8%. 

Increasing the weight percentage of MWCNT reduces the resitivity as expected.  Contact 

between nanotubes form conductive paths through the composite structure.  As more 

nanotubes are added the number of conductive paths increases.  The variance also 

decreases with increased loading indicating that the resistivity measurement becomes 

more reliable with increased loading.  In those formulations an upper limit of 

approximately 12 wt% MWCNT was observed, beyond which the mixtures were too 

viscous to process by printing or dispensing. 
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5.1.2 SMWCNT Loadings with Epoxy composite vs. Volume Resistivity 

 The SMWCNTs were shatter milled in University of Kentucky Center for 

Applied Energy (CAER). They are grinded in shatter mill for 10 minutes and the length is 

almost reduced to half of the original length.  

Volume resistivity of the shatter milled multiwall nanotubes was also observed. 

The volume resistivity was measured at higher load percentages of SMWCNTs. The high 

resistivity at the lower percentages of SMWCNT could be due to the lower aspect ratio 

making them less likely to contact each other to form an electrical path. Higher loadings 

are possible due to the lower viscosity and increased process ability of the SMWCNT. 

But it was observed that the resistivity was much higher than MWCNT/epoxy composite. 

 

 

Table 1: Measured Volume resistivity for epoxy/MWCNT composites for Different 

MWCNT loadings 

 

Loading (Wt 
%) Volume resistivity Standard deviation 

2% 16.79 4.34 

3% 11.73 4.94 

4% 8.82 1.46 

5% 4.61 0.88 

6% 4.46 0.82 

7% 3.37 0.61 

8% 2.72 0.38 

12% 2.62 0.32 
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Figure 11: Average Volume resistivity vs. weight percentage of MWCNT in Epoxy 

Mixtures. 
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Figure 12: Average volume resistivity vs. weight percentage of SMWCNTs in Epoxy 

mixture. 
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5.1.3 MWCNT Loadings with Epoxy/Heloxy composite vs. Volume Resistivity 

The volume resistivity was also measured by varying Epoxy-Heloxy composition. 

The heloxy is a viscosity modifier which when added decreases the viscosity of the 

composite. We then varied the weight proposition of the epoxy heloxy from 40:60, 50:50, 

and 60:40 for 14% loadings of MWCNTs. The 70:30 and 30:70 was limited to 12% 

MWCNTs. The variation of the resistivity for different weight percentages and the 

proportion of Epoxy-Heloxy composition are plotted as shown in the Figure 14. The 1:1 

composition demonstrates a decreasing resistivity with increasing MWCNT loading, 

while the 2:3 and 3:2 ratios show minimum resistivities at 12 wt%.   

 

 

 
 

Figure 13: Average volume resistivity versus Epoxy to Heloxy ratio and weight 
percentage of MWCNT in Epoxy-Heloxy mixtures. 
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5.2 Contact Resistance Results and Discussion 

 

5.2.1 Contact resistance results for MWCNT epoxy composite 

Contact resistance measurement tests were conducted with 50um long MWCNT. 

The following table shows the experimental results for contact resistance measurements 

for various loadings on three different metals likely tin, gold and silver. This set of results 

is taken immediately after curing the sample. The results obtained from the experiments 

are shown in Table 2. 

Although the contact resistance daisy chains allow us to average 80 contact points 

per test board, the results are often dominated by a few high resistance joints.  The 

resulting data includes large standard deviations from various sample combinations.  All 

three surface finishes silver, tin and gold displayed the extreme variance leading us to 

focus on tin coated boards as the least expensive test circuits.  Unlike the volume 

resistivity graphs, the data presented in Figure 15 for average contact resistance does not 

show a clear trend as a function of loading wt%. 

One explanation for the variability in the contact resistance data may be the absence of 

flux.  Lead-tin and lead free solders contain thermally activated flux compounds to 

remove native oxides from the circuit board pads and component leads at temperatures 

below the melting point of the solder.  The MWCNT filled adhesives do not contain a 

fluxing agent and rely primarily on pressure applied during curing to form electrical 

contacts between the component leads, nanotubes and circuit board pads.  Conversely, 

MWCNT filled adhesives do not produce flux residues and therefore eliminate the need 

for cleaning and reduce long term corrosion of printed circuit assemblies. 

It is observed that applying pressure on zero ohm resistors during curing 

dramatically improves conductivity. It is also observed that the contact resistance is 

variable with % loading and surface finishes. All the values are high for use as a solder 

replacement. In general, the obtained values from figure 15 indicate that contact 

resistance for gold is highest and for silver is least in the order Rag > Rsn > RAu.   

A shift in contact resistance is also observed for each of these samples after room 

temperature storage illustrating that contact resistance increases with aging time. This 

may be because of galvanic corrosion of metal after moisture penetrated into cured 
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polymer matrix and condensed at the interface between ECA and metal surface. Galvanic 

corrosion happens only under wet conditions with the presence of an electrolyte solution. 

Moisture absorbed by the cured ECA diffuses into the interface between the ECA and the 

 

non noble metal and forms an electrolyte solution. Metal oxide formation caused by 

galvanic corrosion of the non noble metal at the interface is responsible for the contact 

resistance increase.  

 

 

Table 2: Contact resistance on different surface finished PCBs for different 

MWCNT (wt%)-Epoxy composite. 

 

Loading 
(wt %) 

Silver  tin gold 
Average 

resistance 
Std 

Deviation 
Average 

resistance 
Std 

Deviation 
Average 

resistance 
Std 

Deviation 

2% 127.5 73.6 239.625 73.5 X X 

3% 361.125 77.9 387.5 381.5 906.667 100.5 

4% 216 102.9 665 325.1 550 317.4 

5% 258.25 137.1 478.75 192.6 488.75 99.53 

6% 211.25 88.4 353.75 36.1 812.5 238.5 
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5.2.2 Contact resistance results for MWCNT epoxy: heloxy composite: 

The contact resistance values for the epoxy composite were svery high so we tried 

additional formulations using the heloxy, viscosity modifier. The combinations were 

30:70, 40:60, 50:50, 60:40, and 70:30, as before. The MWCNT loadings that we tested 

were 8%, 12% and 14%. All the loadings were tested on three different PCB surface 

finishes silver, tin and gold. The values are represented in the following graphs. There are 

a many values so for better understanding the data were grouped by MWCNT loading.. 

The graphs are shown in Figure 15, Figure 16 and Figure 17 for 8, 12 and 14% 

respectively. 

From the above figures, it is clear that by adding Heloxy to the composition, the 

contact resistance values are reduced by 1/10 of the previously observed results obtained 

with epoxy-MWCNT composition. As Heloxy acts as viscosity modifier of Resin, the % 

loading of the MWCNTs in the mixture is able to be increased. Previously, the % loading 

is limited to 12% with only epoxy, but by adding Heloxy, the loading limit is increased to 

14 wt%. Above the loading limit, the MWCNTs do not disperse well and the adhesive is 

not processable by screen printing. It is observed that of all metals, tin has shown least 

contact resistance with E-H composition. The minimum contact resistance with least 

variability for all the metals for 8% loading is observed at 2:3 ratio of epoxy-Heloxy, for 

12% loading at 3:2 Composition and for 14% at 3:2. 

It can also be observed that silver has shown least contact resistance of all the 

three metals. Gold has the highest value. Tin has shown consistent values at 12 wt% 

loading. This type of behavior from gold is seen at 14 wt% loading. Silver has shown 

decreasing contact resistance with increase in Heloxy ratio for 14 wt%. Though the 

obtained values are not consistent enough for applications, these variations in the values 

may be due to outlier contacts in the chain. This presence of faulty resistance may 

increase the average value of the chain, thus increasing the resistance per contact on the 

whole. The variations in resistance for same batch of mixture for all the three metals may 

be because of the pot life of the mixture and its process ability after it is stored. 
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Figure 14: Average Contact resistance on different surface finished PCBs with 

8wt% MWCNT loading and varying epoxy-Heloxy ratios. 
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Figure 15:  Average Contact resistance on different surface finished PCBs with 

12wt% MWCNT loading and varying epoxy-Heloxy ratios. 
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Figure 16:  Average Contact resistance on different surface finished PCBs with 

14wt% MWCNT loading and varying Epoxy-Heloxy ratios. 
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5.3 Lap shear Results and Discussions: 

 

The lap shear strength for the samples was tested on silver, tin and gold for the 

loadings of 2%, 3%, 4% and 8% with the epoxy composite. The strength was measured in 

pound per square inch (psi). The lap shear strength was observed to be very high when 

compared to the Ag filled adhesive which is of the order of 200 psi. The values obtained 

for different metals for different loadings are presented in a graphical plot as shown in 

Figure 18. 

 From the graph we can observe that the lap shear strength for gold is higher the 

silver and tin finishes. The trend shows that the lap shear strength decreases with the 

increase in the loading of MWCNTs. The lap shear strength is way higher when 

compared to the Ag filled adhesive. 

 The next step was the addition of the heloxy, a viscosity modifier to the epoxy 

composite to help improve the electrical properties. Different epoxy and heloxy 

combinations were used like 2:3, 1:1, and 3:2. The loadings that were tested on the 

composite were 8%, 12%, 14%. The tests were conducted on the tin, silver and gold 

metals. The figures 19, figure 20 and figure 21 show the results of the strengths of all the 

three metals individually. 

 From the results obtained we observe that the lap shear strength is high at lower 

MWCNT loadings and decreases with the increase in the loadings. The best values 

obtained are at 8% loadings for gold at 2:3 composite ratio, for silver at 1:1 composite 

ratio and tin at 2:3 composite ratio. 
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Figure 17: Lap shear Strength for different MWCNT loadings on Gold, Silver and 

Tin with Epoxy composite. 
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Figure 18: Lap shear Strength for different MWCNT loadings on Gold with 

different Epoxy: Heloxy composite ratio. 
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Figure 19: Lap shear Strength for different MWCNT loadings on Silver with different 
Epoxy: Heloxy composite ratio. 
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Figure 20: Lap shear Strength for different MWCNT loadings on Tin with different 
Epoxy: Heloxy composite ratio. 
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5.4 Die Shear Results and Discussion: 

 

  The experiment that was conducted on a test board which had 32 pads 

each of a different surface finish. The MWCNT/epoxy was dispensed on to the pads by 

an air pressure dispenser. A manual pick and place a place machine was used to attach 

the dies on to the pads. The size of the die is 0.06 inch ×0.05 inch = 0.003 inch2

 The Figure 22 shows the shear strength values obtained for different surface 

finishes at different MWCNT loadings. It was observed that the values obtained are 

higher than the minimum requirement. Compared to all the three surface finishes silver 

has the high die shear strength for all the loadings. The high standard deviation shows 

there is a large variance in the die shear strength. It may be due to the variance in the 

amount of composite being dispensed and the adhesion of the die on to the pad. 

. 

According to the Mil-Std-883 Method 2019, the minimum strength for this die is 2.5Kg.  

 

5.5 Aging Experiments Results and Discussion: 

  

The aging experiments were done all the 12% MWCNT/ Epoxy: Heloxy 

composite samples. The results indicate that the volume resistivity of the samples 

increased and decreased for different ratios of Epoxy: Heloxy. It is show in Figure 23 

below. We observe for 7:3 there is very slight variation in the values. 

 

 

 

 

 

 

 

 

 

 

 



38 
 

 

 

 

 

 
Figure 21: Die shear Strength for different MWCNT loadings on Gold, Silver, and 

Tin with Epoxy composite.     
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Figure 22: Variation of volume resistivity with aging experiments on 12% MWCNT/ 

Epoxy: heloxy composite. 
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Chapter6 Conclusion and Future Work 

 

 The research focuses on the potential of replacing metal fillers with MWCNTs in 

electrically conductive adhesives with good electrical and mechanical properties and 

testing the conductive adhesives on different surface finishes like gold, silver and tin. 

Electrical conduction and mechanical strength of the MWCNT/epoxy composite and the 

MWCNT/epoxy: heloxy composite were analyzed. 

 

 The results for the epoxy/MWCNT composite shows that the volume resistivity 

decreases with the increase in the loading. Above 12% loading the epoxy composite is 

not processable. The volume resistivity for the epoxy:heloxy/MWCNT composite was 

reduced even more when compared to the epoxy/MWCNT composite. SMWCNT/epoxy 

composite gave very high values, although higher loadings up to 20% were possible. 

Contact resistance values were very high for the epoxy/MWCNT composite. The contact 

resistance reduced by 10 times for the epoxy:heloxy/MWCNT composite when compared 

to the epoxy/MWCNT. However, the volume resistivity and contact resistance are not 

comparable to the commercially available metal filled ICAs. 

 

 The results for lap shear strength with epoxy/MWCNT on different metals was 

high when compared to the metal filled ICAs. The lap shear strength decreased with the 

usage of heloxy in the composite but was still higher than the metal filled ICAs. The 

results for the die shear strength for the epoxy/MWCNT composite were higher than the 

standards. The MWCNT filled adhesive has good mechanical properties than the metal 

filled ICAs. 

 

 The preparation of the composite involved the usage of epoxy, curing agent, 

heloxy and catalyst. The pot life for the composite was observed to be 72 hrs. The 

composite was able to be reused when refrigerated. The MWCNT filled adhesives were 

compatible with oven curing, pressure dispensing and stencil printing.  
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Based on the results from the thesis, the possible directions to extend this research can be 

as follows: 

 The rework of the conductive adhesives which is analogous to desoldering of 

solder paste. 

 A detailed study of chemical reactions involved between the surface finishes and 

epoxy mixtures used. 

 Investigate the properties of the composite by mixing the MWCNTs with Ag 

flakes and carrying out electrical and mechanical properties. 

 Even though gold does not form oxides we obtained a large value of contact 

resistances. This can be due to Ni coating on copper pads before gold is coated. A 

deeper study into the chemical reactions is needed. 

 A good detailed study of the accelerated aging tests using the environmental 

chamber is a good topic. 
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