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ABSTRACT OF THESIS 
 
 
 

 
AN ALGORITHM TO SOLVE THE ASSOCIATIVE PARALLEL MACHINE 

SCHEDULING PROBLEM 

Effective production scheduling is essential for improved performance. Scheduling 
strategies for various shop configurations and performance criteria have been widely 
studied. Scheduling in parallel machines (PM) is one among the many scheduling 
problems that has received considerable attention in the literature. An even more complex 
scheduling problem arises when there are several PM families and jobs are capable of 
being processed in more than one such family. This research addresses such a situation, 
which is defined as an Associative Parallel Machine scheduling (APMS) problem. This 
research presents the SAPT-II algorithm that solves a highly constrained APMS problem 
with the objective to minimize average flow time. A case example from a make-to-order 
industrial product manufacturer is used to illustrate the complexity of the problem and 
evaluate the effectiveness of the scheduling algorithm. 
 
KEYWORDS: Associative Parallel Machines, Algorithm, Scheduling, Sequence-

Depending Setups, Eligibility Constraint. 
 
 
 
 
 
 
 

Mohannad Abdelrahman Shuaib 
____________________________________________________________ 

 
07/16/2009 

____________________________________________________________ 

  



 
 

 
 
 
 
 
 
 
 
 
 

AN ALGORITHM TO SOLVE THE ASSOCIATIVE PARALLEL MACHINE 
SCHEDULING PROBLEM 

 
 
 

By 
 

Mohannad Abdelrahman Shuaib 
 
 
 
 
 
 
 
 
 

 
 

Dr. Fazleena Badurdeen 
__________________________________________________________ 

Director of Thesis 
 

Dr. Dusan Sekulic 
__________________________________________________________ 

Director of Graduate Studies 
 

07/16/2009 
__________________________________________________________ 

  



 
 

 
 
 
 
 

RULES FOR THE USE OF THESES 
 
 

Unpublished theses submitted for the Master’s degree and deposited in the University of 
Kentucky Library are as a rule open for inspection, but are to be used only with due 
regard to the rights of the authors. Bibliographical references may be noted, but 
quotations or summaries of parts may be published only with the permission of the 
author, and with the usual scholarly acknowledgments. 
 
 
Extensive copying or publication of the thesis in whole or in part also requires the 
consent of the Dean of the Graduate School of the University of Kentucky. 
 
 
A library that borrows this thesis for use by its patrons is expected to secure the signature 
of each user. 
 
 
 Name Date 
 
 
_____________________________________________________________ 
 
 
_____________________________________________________________ 
 
 
_____________________________________________________________ 
 
 
_____________________________________________________________ 
 
 
_____________________________________________________________ 
 
 
_____________________________________________________________ 
 
 
_____________________________________________________________ 



 
 

 
 
 
 
 
 
 
 
 
 

THESIS 
 
 
 
 
 
 
 
 
 
 

Mohannad Abdelrahman Shuaib 
 
 
 
 
 
 
 
 

 
The Graduate School 

 
University of Kentucky 

 
2009 

  



 
 

 
 
 
 
 
 
 
 

AN ALGORITHM TO SOLVE THE ASSOCIATIVE PARALLEL MACHINE 
SCHEDULING PROBLEM 

 
 
 
 
 

________________________________________ 
 

THESIS 
________________________________________  

 
A thesis submitted in partial fulfillment of the  

requirements for the degree of Master of Science in Manufacturing 
Systems Engineering in the College of Engineering 

 
 
 

By 
 

Mohannad Abdelrahman Shuaib 
 

Lexington, Kentucky 
 

Director: Dr. Fazleena Badurdeen, Assistant Professor of Mechanical Engineering 
 

Lexington, Kentucky 
 

2009 
 

Copyright 
© 

Mohannad Abdelrahman Shuaib 2009 
  



 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Dedicated to my family: Dad, Mom, Nasr, Mohammed, Sara, Nada and Moataz 
 



 

iii 
 

ACKNOWLEDGEMENTS 

I would like to acknowledge and thank everyone for the guidance and assistance in 

completing my thesis. First, thanks to my advisor, Dr. Fazleena Badurdeen, for providing 

continuous guidance and support. She inspired me by challenging me to achieve higher 

standards, providing continuous and valuable feedback, maintaining the highest level of 

professionalism, and being a role model that I respect. Next, thanks to my committee 

members, Dr. Ibrahim Jawahir and Dr. Larry Holloway, for the valuable supervision and 

feedback during my thesis defense. Also, thanks to four anonymous resources for the 

support in my experimental work. I would also like to extend my deepest gratitude to the 

rest of the faculty in the Manufacturing Systems Engineering program in the University 

of Kentucky. Finally, I would also like to thank my family and friends for believing in 

me, and for always being there for me. 

  



 

iv 

TABLE OF CONTENTS 

Acknowledgements ............................................................................................................ iii 

List of Figures .................................................................................................................... vi 

List of Tables .................................................................................................................... vii 

1  Introduction ................................................................................................................. 1 

2  Problem Statement ....................................................................................................... 3 

2.1  The Associative Parallel Machine Scheduling Problem ...................................... 3 

2.1.1  Research Objective ....................................................................................... 5 

2.1.2  Assumptions .................................................................................................. 7 

2.2  Case Study ............................................................................................................ 7 

3  Literature Review ...................................................................................................... 13 

3.1  Surveys on PMS Problem Research ................................................................... 14 

3.2  Identical PMS Problem ...................................................................................... 14 

3.3  Uniform PMS problems ..................................................................................... 15 

3.4  Unrelated PMS problems ................................................................................... 15 

3.5  Summary ............................................................................................................ 17 

4  Methodology .............................................................................................................. 18 

4.1  Solving the APMS Problem ............................................................................... 18 

4.1.1  Mathematical Modeling .............................................................................. 18 

4.1.2  Scheduling Algorithms ............................................................................... 22 

4.2  Automated Scheduling Tool............................................................................... 25 

5  Experimentation Design ............................................................................................ 26 

5.1  MIP Model ......................................................................................................... 26 

5.2  Scheduling Algorithms ....................................................................................... 27 

5.2.1  Identifying Resources ................................................................................. 27 

5.2.2  Order Set ..................................................................................................... 28 

5.2.3  Data Set ....................................................................................................... 28 

5.2.4  Scheduling Algorithms ............................................................................... 33 

5.2.5  Assumptions ................................................................................................ 39 



 

v 

6  Results ....................................................................................................................... 40 

6.1  MIP Results ........................................................................................................ 40 

6.2  Algorithms Results ............................................................................................. 43 

6.2.1  Phase I ......................................................................................................... 44 

6.2.2  Phase II........................................................................................................ 48 

6.2.3  Phase III ...................................................................................................... 52 

6.3  Automated Scheduling Tool............................................................................... 54 

6.3.1  Main Interface Window .............................................................................. 55 

6.3.2  Data Input.................................................................................................... 55 

6.3.3  Resources .................................................................................................... 56 

6.3.4  Output ......................................................................................................... 58 

7  Conclusions and Future Research.............................................................................. 60 

7.1  Conclusions ........................................................................................................ 60 

7.2  Future Research .................................................................................................. 61 

Appendix A: Resources .................................................................................................... 63 

Phase I ........................................................................................................................... 63 

Phases II & III ............................................................................................................... 63 

Appendix B: Performance Measures ................................................................................ 65 

Phase I ........................................................................................................................... 65 

Phase II .......................................................................................................................... 68 

Appendix C: Schedule Charts, MIP Model ...................................................................... 71 

MIP Model Schedule Charts ......................................................................................... 71 

SAPT Schedule Charts .................................................................................................. 74 

Appendix D: Schedule Charts, Experimentation Phase III ............................................... 77 

SAPT Algorithm ........................................................................................................... 77 

SAPT-II Algorithm ....................................................................................................... 80 

References ......................................................................................................................... 83 

Vita .................................................................................................................................... 86 

  



 

vi 

LIST OF FIGURES 

Figure  2-1 Machine Classification in APMS Problem ....................................................... 4 

Figure  2-2 Process Flow Chart ........................................................................................... 9 

Figure  4-1 Three phases of experimentation .................................................................... 24 

Figure  4-2 Scheduling with Different Algorithms ............................................................ 25 

Figure  5-1 Dimensions of APMS Problem Sets ............................................................... 27 

Figure  6-1 Processing Times ............................................................................................ 41 

Figure  6-2 Comparing SAPT to MIP – Objective Function Ratio ................................... 42 

Figure  6-3 Production Schedule, Phase I, SPT ................................................................. 44 

Figure  6-4 Production Schedule, Phase I, LPT ................................................................. 45 

Figure  6-5 Production Schedule, Phase I, Min CO ........................................................... 45 

Figure  6-6 Production Schedule, Phase I, SAPT .............................................................. 46 

Figure  6-7 Production Schedule, Phase I, Actual Execution ............................................ 46 

Figure  6-8 Production Schedule, Phase II, LPT ............................................................... 49 

Figure  6-9 Production Schedule, Phase II, LPT-F ............................................................ 49 

Figure  6-10 Production Schedule, Phase II, SAPT ........................................................... 50 

Figure  6-11 Production Schedule, Phase II, Actual .......................................................... 50 

Figure  6-12 Scheduling software main window ............................................................... 55 

Figure  6-13 Summary information about the available resources .................................... 57 

Figure  6-14 Resources menu allows user to redefine the machine information ............... 57 

Figure  6-15 Summary of the schedule performance measures ......................................... 58 

Figure  6-16 Schedule Gantt chart with end times shown ................................................. 59 

  



 

vii 

LIST OF TABLES 

Table  2-1 Notations in Problem Formulation ..................................................................... 6 

Table  4-1 Notations in Mathematical Model .................................................................... 20 

Table  4-2 MIP Model Schedule Matrix ............................................................................ 22 

Table  5-1 Dimensions of APMS Problem Sets................................................................. 26 

Table  5-2 Flexibility ......................................................................................................... 28 

Table  5-3 Determining Eligibility* ................................................................................... 30 

Table  5-4 Processing Times .............................................................................................. 30 

Table  5-5 Determining Sequence-Dependent Changeover Time ..................................... 31 

Table  5-6 Compatibility and Processing Times for Sample Data Set .............................. 32 

Table  5-7 Sample Sequence-Dependent Setup Time Matrix ............................................ 32 

Table  5-8 Sample APT Matrix for Family 1 ..................................................................... 33 

Table  6-1 MIP Trials Processing Time in Seconds .......................................................... 40 

Table  6-2 Comparing SAPT to MIP – Objective Function Ratio ..................................... 42 

Table  6-3 Result for Each Algorithm and Actual Execution ............................................ 47 

Table  6-4 Result for Each Algorithm and Actual Execution ............................................ 51 

Table  6-5 Comparing SAPT-II to SAPT .......................................................................... 53 

 



 

1 

1 INTRODUCTION 

Effective production scheduling is essential for improved performance. Meeting customer 

expectations through on time delivery, better resource utilization and increasing 

profitability are all dependent upon effectively scheduling the jobs on available resources. 

Job scheduling is an even greater challenge for companies involved in make-to-order 

manufacturing, where the product variety is high and the customer demand is dynamic. 

Scheduling strategies for various shop configurations and performance criteria have been 

widely studied. Nevertheless, many companies—particularly small and medium-sized 

ones—continue to experience difficulty in effectively scheduling jobs. The reason, on the 

one hand, appears to be difficulties in translating the academic findings into practical 

applications. On the other hand, as product mixes evolve and additional capacity is 

added, companies are faced with new and more complex manufacturing environments to 

which existing scheduling strategies cannot be applied. 

Scheduling in parallel machines (PM) is one among the many scheduling problems that 

has received considerable attention in the literature. Many real-life manufacturing 

environments can be equated to a PM situation. However, even the PM scheduling (PMS) 

problem with two machines has been shown to be NP hard (Garey and Johnson 1979). 

Thus, as the number of machines increase and other constraints are considered, solving 

this problem to find optimal solutions gets more complicated. 

An even more complex scheduling problem arises when there are several PM families 

and jobs are capable of being processed in more than one such family. This research 

addresses such a situation, which is defined as an Associative Parallel Machine 

scheduling (APMS) problem. In this situation, there are several PM families with 

different production capabilities. While each job can be processed in one of several PM 

families the processing time can vary depending on which PM family it is assigned. In 

this context, the scheduling problem involves (1) selecting one of the PM families and a 

machine in the family to assign every job to as well as (2) determining the processing 
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sequence on each machine in every family to optimize the desired performance criteria 

overall. In an APMS environment, some PM families could be capable of processing only 

a limited set of jobs, while others may be more flexible to process a broader set of jobs. 

Setup times could also depend on the job sequence on each machine. The APMS problem 

will be presented in detail in the next chapter. 

This research presents the SAPT-II algorithm that solves a highly constrained APMS 

problem with the objective to minimize average flow time. While APMS problems can be 

observed in many industry sectors, a case example from a make-to-order industrial 

product manufacturer is used to illustrate the complexity of the problem and evaluate the 

effectiveness of the scheduling algorithm. 
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2 PROBLEM STATEMENT 

This chapter presents the APMS problem studied in this research. Section  2.1 presents the 

APMS problem and provides the problem notation in the manner commonly used to 

present scheduling problems. Section  2.2 presents the case study that defines the 

scheduling problem. Details disclosing information about the company targeted by the 

case study or the description of its products will be withheld due to privacy reasons. 

2.1 The Associative Parallel Machine Scheduling Problem 

The problem presented in this thesis involves job scheduling in a unique machine 

configuration, which is a hybrid between Identical and Unrelated Parallel Machines. A 

new term is introduced to classify this unique configuration: Associative Parallel 

Machines (Am), and the scheduling problem becomes Associative Parallel Machine 

Scheduling Problem (APMS). Figure  2-1 illustrates the configuration in an APMS 

problem. 
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Figure  2-1 Machine Classification in APMS Problem 

In the APMS problem, the machines are grouped into families which are denoted as M1, 

M2, …, Mf. Each family Ml has ml identical machines. The APMS problem presented 

also has a set of constraints. For each machine, there can be periods of non-availability. 

This introduces the non-availability constraint, which is denoted by NCwin. These 

windows represent the times that the machines are not available for production depending 

on shifts worked and/or human resource availability. There are n jobs in each weekly 

scheduling bucket. Each job represents as single order from the production bucket, and 

can be processed in one or more families. The eligibility constraint is denoted by the set 

E = {ej,l: j = 1→n, l = 1→f}. The processing time for each job j is family-dependent and 

is denoted by pj,l. The setup times are sequence-dependent and machine-independent. 

When job j is processed after job i the setup time for job j is denoted as si,j. 
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2.1.1 Research Objective 

The flow time for job j is denoted as Fj. For a job j, the flow time (Fj) equals the 

completion time (Cj) minus the ready time (Rj). Since the ready time for all the jobs is 

zero, the completion time and flow time are equal as shown in equation 1-1. 

 (Rj = 0;  j = 1 → n);   (Fj = Cj)  2-1 

The goal in the scheduling problem is to minimize the average flow time (or average 

completion time) ∑ / . The APMS problem can be presented using the 3-field 

notation adapted by (Graham et al., 1979) where the problem is described by three fields: 

α | β | γ. The first field (α) describes the production environment and the machine 

classification. The second field (β) describes the constraints, production conditions and 

other details of the production process. The third field (γ) describes the objective of the 

scheduling problem. Using the three-field notation, the APMS problem is described as 

 Am, NCwin | si,j, Rj=0 ,ej,l | ∑ C /n  2-2 

The notations used in the problem formulation are summarized in Table  2-1.  
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Table  2-1 Notations in Problem Formulation 

Notation Representation 

subscript  l machine family l 

subscript  i reference to job i 

subscript  j reference to job j 

subscript  f number of machines in family l 

m total number of machines 

n total number of jobs 

Am associative parallel machines 

NCwin non-availability windows 

si,j sequence-dependent setup time 

pj,l processing time for job j in machine family l 

ej,l eligibility of job j on family l 

Cj completion time for job j 

Fj flow time for job j 

Rj ready time for job j 

Cavg Average completion time 

Cmax Makespan 

PTtot Total processing time 

COtot Total changeover time 

CO% Percentage of changeover 
 

In addition to the main objective, several performance measures were also tracked to 

understand their relation with the main objective. The following points list the measures 

observed and how they are calculated: 

• Makespan; the time between the start and finish of the production bucket 

    2-3 
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• Total Processing Time 

 ∑    2-4 

• Total Changeover Time; the sum of all the changeover times 

 ∑       ,    &      2-5 

• Changeover % 

 %    2-6 

2.1.2 Assumptions 

Several assumptions are made in this research to solve the APMS problem. These are: 

• All jobs are available at time t = 0  

• Preemption is not allowed; once a job is loaded on a machine, it cannot be 

removed until it is complete 

• Job splitting is not allowed; if a job consists of multiple units, all the units go on 

the same machine 

• Combining different jobs with identical unit specifications is not allowed 

• There are no unplanned windows of non-availability (e.g. breakdowns, unplanned 

maintenance, crew absence, raw material shortage) 

2.2 Case Study 

The scheduling problem presented in this thesis relates to a real-life scheduling problem 

at a company that produces electrical equipment. To maintain anonymity, the company 
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will be referred to as the Electric Company. The production environment for this 

company is best described as a mass customization environment. The products are highly 

customized and are made-to-order. Once the customized order is received by marketing 

and released for production, each product passes through seven production stages. The 

process flow is illustrated in Figure  2-2. Though the orders are released to all the 

Fabrication Departments simultaneously, the operations in Fab 1 (see Figure  2-2) are the 

most time consuming with large lead times. The machine configuration in this 

department is quite unique (as will be discussed later), leading to scheduling 

complexities. As a result, this department has become the bottleneck, delaying operations 

in Fab 4 and leading to high Work-In-Progress (WIP) build-up before that. Therefore, 

scheduling jobs in the Fab 1 Department is the focus of this research. 



 

9 

 

Figure  2-2 Process Flow Chart 

Machine Setup 

The Fab-1 Department has a single-pass production system. All products are processed 

similarly, but there is high variety in the specifications. To accommodate this requirement 

there are a large number of machines in the department. There are several machines of 

each type (i.e. parallel) which are grouped into families. Any two machines from the 

same family are identical, while two machines from different families are unrelated. 

The department operates 2 shifts a day, 5 days a week. Each machine is operated by one 

person. The machines are not fully crewed; some machines have two operators assigned 
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and run both shifts every day, while others have only one operator assigned and run only 

one shift every day. 

Product Description 

Each order consists of a number of identical units ordered by a single customer. The 

structure of the units is similar. The major difference is in the size of each unit, which is 

dependent on the unit specifications. All the machines have an identical manufacturing 

process. The different between machines from different families is in the number of 

stations; the number of stations in a machine equals the number of units that machine can 

process simultaneously in each production run. For example, 3-station machines can 

process 3 units simultaneously in each production run. If a job consisting of 8 units is 

processed on a machine from that family, the sequence of production would be: produce 

3 units – unload – produce 3 units – unload – produce 2 units. As mentioned above, the 

specifications of the singular unit will determine the compatible machine families, i.e., 

the number of machine families eligible to manufacture each order. In most cases, each 

order is compatible with more than one machine family. Processing time is generally a 

function of the machine family (i.e. machine family capability), since the production 

sequence for each job changes when the number of stations in the machine chage; time 

taken to complete an order will depend on the machine family it is assigned to. There are 

no restrictions on sequencing two orders on a machine that they are both compatible with. 

While the setup times are machine-independent, they are sequence-dependent; the greater 

the difference in specifications between the two successive orders, the greater the setup 

time. 

Planning and Scheduling 

Production is managed on a make-to-order basis. The planning and scheduling cycle 

starts at the marketing department. Customers initiate the process by contacting the 

marketing team. Then, with assistance from the engineering team, product specifications 

are defined and orders are placed. Marketing then divides all the existing orders to 
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weekly production buckets, based on a first-come first-served basis. These weekly order 

buckets are transformed to weekly production buckets and passed to each production 

department. The weekly schedules are subsequently created independently by each 

department based on the available capacity. 

Current Situation 

In the focal department, Fab 1, currently the management uses an ad-hoc approach to 

scheduling by manually assigning jobs to the machines as they become available. There is no 

systematic approach to scheduling, and jobs are picked arbitrarily from the production 

bucket. The poor balance in scheduling leads to a decrease in the overall production 

efficiency. Random sequencing leads to increased setup times further decreasing efficiency. 

Also, there is no special consideration in scheduling for orders with higher eligibility 

constraints, that is, orders that can be processed on a fewer number of families. When only 

these jobs are remaining in the planning bucket, some machines might become idle since 

there are no compatible jobs remaining. As a result, the efficiency of the idle machines drops 

drastically. 

 A major drawback of using ad-hoc scheduling in Fab-1 department is excessive delays and 

waiting in downstream operations. Furthermore, there is no coordination between production 

departments. Since the production buckets cover a whole week of production, a component 

may be manufactured in one department in the beginning of the week and lay as WIP until 

the matching components are produced in other departments at the end of the week before 

moving to downstream assembly operations. 

Objective 

The goal at the Electric Company is to improve production scheduling at the Fab-1 

department. The management expects that once scheduling is improved, the department 

will no longer be a bottleneck in the production operations. Better assignment and 

sequencing will lead to improving machine efficiencies and utilization. Improvement in 
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scheduling will be measured by monitoring several performance measures including the 

average completion time, makespan, total processing time and changeover time. The 

objective function to this specific case of APMS problem will be to minimize the average 

flow time. Another objective is to develop a scheduling tool that generates a schedule that 

can be visually managed. The schedule will be used as a pacer to coordinate the 

production operations in other departments. As a result, the inventory levels are expected 

to drop in all production departments. The schedule will also be used as a daily 

management tool to track and improve resource efficiencies. 
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3 LITERATURE REVIEW 

The systematic approach to scheduling production operations started in the 1950’s 

(Allahverdi, et al. 2008). Since then, much research has been aimed at developing 

practical and efficient optimization methods for different scheduling problems. Most of 

the research focused on real life problems. Therefore, these problems came in a wide 

variety depending on the production environment (or machine configuration), production 

system conditions, characteristics of the production system and the objective to be 

optimized. The focus in this literature review will be on scheduling problems focused on 

scheduling problems for one machine configuration: Parallel Machine Scheduling (PMS). 

The PMS problem belongs to the wide class of Combinational Optimization problems. 

Many of these problems are known to be NP-hard. This means that it is hard to find 

efficient optimization solutions for these problems (Mokotoff 2001). Because PMS 

problems are practical applications which are NP-hard, researchers were led to develop 

more efficient solution methods. For general scheduling problems, the most common 

methods used are branch-and-bound algorithms, mathematical programming 

formulations, dynamic programming algorithms, heuristics and meta-heuristics 

(Allahverdi, et al. 2008). In the special case of PMS problems, little research has been 

aimed at at developing optimization methods. Instead, most research focused on 

heuristics (Zhu and Wilhem 2006). 

The focus in the literature research was structured as follows. First, for the production 

environment, the focus was on PMS problems, with an emphasis on unrelated parallel 

machines. In terms of limitations and constraints, the focus was also on problems with 

sequence-dependent setup times, machine availability constraints and compatibility 

constraints. Finally, in terms of the objectives studied, the research was limited to 

methods that minimize flow time and makespan. The next section, surveys on various 

scheduling problems are presented, grouped based on the production environment 

studied; the constraints and objectives studied are discussed within each section. 
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3.1 Surveys on PMS Problem Research 

There are several surveys that connect different research done to solve diverse PMS 

problems. Lam and Xing (1997) studied the new trends in PMS affected by JIT (Just-in-

time), with pre-emption, set-up times and capacitated machines. Allahaverdia, et al. 

(1999), Allahaverdi, et al. (2008) and Zhu and Wilhem (2006) discussed methods used to 

solve scheduling problems with sequence-dependent setup times or costs applied to 

single machine, parallel machine, flow-shop and job shop systems. Mokotoff (2001) 

presented a survey of research done to study the Identical, Uniform and Unrelated PMS 

problems with an emphasis on makespan minimization. He also discussed the NP-

hardness of the PMS problem. Leung and Li (2008) studied scheduling problems with 

processing set restrictions. They studied Identical, Parallel and Unrelated PMS problems 

and their emphasis was on polynomial-time algorithms, complexity issues, and 

approximation schemes. They mainly looked at problems with a goal to minimize the 

makespan in addition to discussing other performance criteria. Li and Yang (2009) 

surveyed the research done on non-identical parallel-machine scheduling problems with 

the objective to minimize total (or mean) weighted (or un-weighted) completion time. 

They collected and classified mathematical models and relaxations. They also presented 

the heuristics and optimization techniques used to solve the scheduling problems 

surveyed. 

3.2 Identical PMS Problem 

Considerable research has been done to address the Identical PMS problem. Gao, et al. 

(1998) solved the Identical PMS problem to minimize total weighted tardiness using a 

four-step algorithm. The solution was applied by an electrical appliance company. Kurz, 

and Askin (2001) solved the Pm|ri, si,j|Cmax scheduling problem. They developed four 

heuristics. In their experimentation, they examined a scheduling problem with 100 jobs to 

be scheduled on 10 identical machines. They also developed a Mixed Integer Linear 

Programming (MILP) model incorporating the Pm| |Cmax scheduling problem. Mendes, et 

al. (2002) also attempt to solve the Identical PMS problem with sequence-dependent 
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setup times and the goal to minimize the makespan by proposing and comparing the 

performance of two meta-heuristic methods. The first is a tabu search-based heuristic and 

the second is a memetic approach, which combines a population-based method with local 

search methods. Yalaoui and Chu (2003) discussed the Pm|Sij|Cmax with job splitting 

scheduling problem. They applied a heuristic to decompose the scheduling problem into 

independent one-machine problems and then used a step-by-step improvement 

methodology. They were able to determine a lower bound for the solution and 

demonstrate that the heuristic method shows a good performance in comparison to the 

lower bound solution. Chang, et al. (2005) applied the Two-phase Sub Population 

Genetic Algorithm (TSPGA) to solve the multi-objective Identical PMS problem. They 

compared the solution to the Non-dominated Sorting Genetic Algorithm (NSGA2) by 

Deb, et al. (2002) and the Multi Objective Genetic Algorithm (MOGA) by Muruta and 

Ishibuchi (1996). Nessah, et al. (2007) addressed an identical parallel machine scheduling 

problem, with sequence-dependent setup times and release dates to minimize total 

completion time. They developed a branch-and-bound algorithm that can handle 40 jobs 

on 2 machines. 

3.3 Uniform PMS problems 

Lin and Liao (2008) studied the Uniform PMS problem with the goal to minimize the 

makespan by proposing an optimal algorithm that transforms the scheduling problem to 

an identical machine problem and applying an algorithm to solve the new single machine 

scheduling problem. Although the computational time for their algorithm is exponential, 

it is still efficient for various sizes of scheduling problems. Their results are compared to 

the LPT heuristic. 

3.4 Unrelated PMS problems 

Some of the research addressed the unrelated PMS problem. Piersma and Van Dijk 

(1996) studied the Unrelated PMS problem with the objective to minimize makespan. 

They proposed and compared the performance of new local search algorithms. Suresh 
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and Chaudhuri (1996) studied the Unrelated PMS problem on two machines while 

considering machine availability and interruptions. They developed algorithms to solve 

the problem in two cases: when the machine availability is known, and when the machine 

availability is not known. Suresh and Chaudhuri (1996) solved the Unrelated PMS 

problem with no preemption. The objectives are to minimize the makespan and minimize 

the maximum tardiness. They proposed an algorithm based on tabu search and compared 

its performance to a heuristic they have proposed earlier. Weng, et al. (2001) addressed 

the Unrelated PMS problem with sequence-dependent setup times and the objective of 

minimizing the weighted mean completion time. They proposed and compared the 

performance of seven heuristic algorithms. Mokotoff and Chretienne (2002) developed 

an exact algorithm and an approximate algorithm to solve the R||Cmax problem. Yu, et al. 

(2002) tried to eliminate the bottleneck operation in a Printed Wiring Board 

manufacturing line. The problem was defined as an Unrelated PMS problem with 

negligible setup times and multiple performance measures including: makespan, average 

finish time, mean flow time, utilization, number of lots and total amount of overtime 

beyond the release interval. They proposed a heuristic to solve the problem and compared 

its performance with a network model and a modified FIFO method. Kim, et al. (2002) 

solved the Unrelated PMS problem with sequence-dependent setup times using simulated 

annealing. Arnaout and Rabadi (2005) addressed the batch scheduling problem in 

Unrelated Parallel Machines with the objective of minimizing the weighted mean 

completion time. They developed a solution heuristic and compare it to three other 

algorithms, including Weng’s Algorithm 7 in Weng, et al. (2001). Rabadi, et al. (2006) 

addressed the Rm|Sijk|Cmax scheduling problem. They applied the Meta-heuristic for 

Randomized Priority Search (Meta-RaPS) to minimize the makespan. Their results were 

compared to the Partitioning Heuristic by Al-Salem (2004). He and Hui (2007) presented 

a genetic algorithm for the single-stage multi-product scheduling problem (SMSP). Their 

research looked at a high-constrained large-size SMSP. They found that it is difficult for 

MILP to obtain acceptable solutions to the large-size problems within reasonable time. 

To solve the problem, they proposed a Genetic Algorithm (GA) based on heuristic rules.  
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3.5 Summary 

In the majority of the literature studied, researchers used algorithms and heuristic 

methods to solve various scheduling problems. Some of the heuristic methods and 

algorithms were based on simpler, more trivial scheduling algorithms like the SPT and 

LPT rules. Another observation was that many researchers presented their scheduling 

problems with assumptions or relaxations. By doing so, they were able to present solution 

methods that were more efficient in computation time. Also, most research tackled one or 

two constraints at a time. In real-life scheduling problems – including the scheduling 

problem addressed in this thesis – the production environment is complicated and there 

are many constraints and limitations to the production and scheduling environment. Few 

researchers have experimented with large size, highly constrained PMS problems. 

The Meta-heuristic for Randomized Priority Search (Meta-RaPS) applied by Rabadi, et 

al. (2006) was a base to the work done to solve the scheduling problem in hand. There 

were two motives. First, the scheduling problem in hand and the problem discussed in 

their research have a similar constraint; sequence dependent setup times. In their 

approach, they sum up the processing and setup times to produce ‘adjusted processing 

times’ as an input to the scheduling problem. Second, the scheduling problem in hand has 

the objective of minimizing the average flow time. Accordingly, it is expected that 

heuristics that are based on SPT rules would perform better. The Meta-RaPS heuristic 

proposed schedules the jobs based on combining the sequence-dependent setup time and 

the processing time and picking the job with the shortest combined time. 
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4 METHODOLOGY 

In this chapter, the methodology to solve the APMS problem is presented. The objective 

of the research is to, 

1. Solve the presented APMS problem. 

2. Develop an automated scheduling tool to be applied at the Electric Company. 

Section  4.1 presents the methods used to solve the APMS problem. Section  4.2 presents 

the method used to develop the automated scheduling tool. 

4.1 Solving the APMS Problem 

There are two approaches to solve scheduling problems. The first is to use mathematical 

modeling to find the optimum solution. However, solving mathematical models for 

complex (NP-hard) scheduling problems can be time consuming. In such situations, the 

use of heuristics would be the alternative to follow. Though such algorithms cannot find 

the optimal solution, an effective algorithm that can find a near-optimal solution in a 

reasonable time is a more practical choice. 

4.1.1 Mathematical Modeling 

A Mixed Integer Programming (MIP) model is developed to optimally solve the APMS 

problem. The mathematical model includes the eligibility and sequence-dependent setup 

constraints in the APMS problem. However, the model was relaxed by excluding the 

non-availability constraint because it would complicate the mathematical model. The 

goal was to establish the NP-hardness of the relaxed mathematical model to confirm the 

NP-hardness of the complete APMS problem. The MIP formulation is presented in the 

following formula set. The model will be applied to actual production data from the Fab-

1 department. 
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4.1.1.1 MIP Model 

• Objective function: 

 Minimize ∑ ∑ ∑ c l, m, kNMF N⁄    4-1 

• Subject to: 

 , , , ,       , ,  ,    4-2 

 ∑ , , ,       , ,    4-3 

 ∑ ∑ ∑ , , ,          4-4 

 ∑ , , , ∑ , , , , ,    4-5 

 , ,       ,    4-6 

 , ,       , ,    4-7 

 , , , , ,  , , , ∑ , , ,  ,  

      , , ,      ,     ,  ,       4-8 

 , , , ,       , ,  ,    4-9 

 , , ,       ,    4-10 

The representations of the mathematical notations used in the formula set are presented in 

Table  4-1. 
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Table  4-1 Notations in Mathematical Model 

Notation Representation Category 

i,j Refer to jobs Subscript, used 
for reference 

k Refers to the rank (the order in which a 
job is processed on a machine) 

Subscript, used 
for reference 

l Refers to machine family Subscript, used 
for reference 

m Refers to machines  

A Very large integer User input 

N Number of jobs User input 

F Number of families User input 

Ml Number of machines in family l  User input 

x(l,m,j,k) 

Assignment of a job 
=      1  if job j is scheduled on machine 

m from family l in rank k 
        0  otherwise 

Decision variable 

c(l,m,k) 
Completion time for job the job 
scheduled on machine m from family l in 
rank k  

Decision variable, 
objective 

s(i,j) Setup time for job j when it is scheduled 
after job i User Input 

e(j,l) 

Eligibility of job j on family l 
=      1  if job j is eligible for scheduling 

on family l  
        0  otherwise 

User input 

p(j,l) Processing time for job j in family l User input 

 

Each formula represents a constraint that the MIP solver must follow when generating the 

optimum solution. The following explains the objective of each formula. 
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• Formula 1-1 states the objective to be minimized; the average completion time 

(equal to the average flow time). 

• Formula 1-2 enforces the eligibility constraint, ensuring that each job j can be 

scheduled on family f only if it is eligible to run on that family. 

• Formula 1-3 ensures that a maximum of one job is scheduled in each rank for all 

the machines. 

• Formula 1-4 ensures that each job is scheduled only once. 

• Formula 1-5 ensures that each job is scheduled in the rank immediately following 

the rank of the preceding job. 

• Formula 1-6 sets the completion of the dummy job j = 0 to zero. 

• Formula 1-7 ensures that completion times are non-negative. 

• Formula 1-8 is used to calculate the completion times. Here, the completion time 

for a job j is compared to the completion time of every other job plus its 

processing time and setup time. If the job compared was not actually scheduled 

before job j, its completion time is multiplied by a large negative number making 

the right side of the inequality a negative number. For the job that was scheduled 

before job j, its completion time is multiplied by 1. 

• Formula 1-9 ensures that x is binary. 

• Formula 1-10 introduces dummy job j = 0 that is scheduled in rank k = 0 on each 

machine. The job scheduled in rank k = 1 follows the dummy job. 

The outcome of the model is a schedule matrix for each machine as shown in Table  4-2. 



 

22 

Table  4-2 MIP Model Schedule Matrix 

 

4.1.1.2 Problem Sets 

The MIP model was applied to several data sets varying in the number of families, 

machines and jobs. A limitation to the size of the problem sets applied in mathematical 

modeling was caused by the NP-hardness of the APMS problem. To handle within 

practical processing times, the problem sets had to be much smaller compared to the 

actual production environment. The experimentation conducted with these data sets and 

results obtained are explained in Chapters 5 and 6. 

4.1.2 Scheduling Algorithms 

Another approach to solve the APMS problem is to apply scheduling algorithms. Such 

algorithms are often more efficient than mathematical models in finding a reasonable 

family # 1 (l = 1)
machine # 1 (m = 1)

0 1 2 3 4 5 6

0 1 0 0 0 0 0 0

1 0 0 0 1 0 0 0

2 0 1 0 0 0 0 0

3 0 0 0 0 0 0 0

4 0 0 1 0 0 0 0

5 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0

Job (j)

Rank (k)

Dummy Job 0; 
x(1,1,0,0) = 1

x(1,1,1,3) = 1  means that  
job 1 is scheduled in rank 3 
on machine 1 in family 1
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solution with low computational time. The main steps are applicable to any APMS 

problem, but the specifics mentioned address the specific case study at the Electric 

Company. 

The following algorithms were applied in the experimentation: 

• Shortest Processing Time (SPT) – selected because SPT minimizes the average 

lead time in less complicated scheduling problems. 

• Longest Processing Time (LPT) – selected because LPT results in a better 

balanced load, which is crucial to prevent overloading one or more families due to 

poor assignment with the eligibility constraint in effect. 

• Longest Processing Time by Family (LPT-F) – a special adaptation from the LPT 

customized to achieve a better load balance. 

• Shortest Changeover (or setup) Time (Min CO) – selected because setup time is a 

significant part of the APT, and varies depending on the sequence of assignment. 

• Shortest Adjusted Processing Time (SAPT) – new algorithm introduced to solve 

the APMS problem. 

• Shortest Adjusted Processing Time, Improved Version (SAPT-II) – based on the 

SAPT algorithm, improved after the second phase of experimentation. 

The actual execution of the bucket used in the problem set is also presented to verify the 

assumptions made in the experiments. A different combination of these algorithms was 

used during the different phases of experimentation. Figure  4-1 shows the combination at 

each experimentation phase. 
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Figure  4-1 Three phases of experimentation 

 

Figure  4-2 summarizes the method of scheduling using the algorithms mentioned above. 

The steps to apply each algorithm will be presented in Chapter 5. The Data sheet, 

Sequence-Dependent Setup Matrix, Ranking Tables and APT Matrix contain specially 

formatted data containing information about job specification, processing times, setup 

times and eligibility. The format and content of these elements will also be presented in 

the Appendix. 
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Figure  4-2 Scheduling with Different Algorithms 

4.2 Automated Scheduling Tool 

Since the research addresses a real industrial problem, the application part was a key 

deliverable. The goal was to develop a scheduling tool in Visual Basic 2005 Express that 

interfaces with data files and automatically generates production schedules. The tool must 

be user-friendly, and able to generate an output that can easily be visually controlled.  
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5 EXPERIMENTATION DESIGN 

This chapter presents the details of the methods followed during experimentation work. 

Section  5.1 shows how the MIP model was applied, and section  5.2 shows how the 

scheduling algorithms were applied to solve the APMS problem. 

5.1 MIP Model 

The first step in the experimentation was to apply the MIP model to optimally solve the 

APMS problem. The trials were done on different data sets with different dimensions (i.e. 

different number of families, machines and jobs) in each set. The processing times and 

sequence-dependent setup times were randomly generated and followed a uniform 

distribution. The eligibility matrices were also randomly generated, with each machine 

capable of processing 70-80% of the jobs. Five different sizes of the APMS problem with 

one or more trials for each size were studied, as shown in Table  5-1 Dimensions of 

APMS Problem Sets and Figure  5-1. 

Table  5-1 Dimensions of APMS Problem Sets 

Case 1 Case 2 Case 3 Case 4 Case 5 
# of Families 2 2 2 3 4 
# of Machines 2 3 4 4 6 

# of Jobs 6 9 12 12 18 
# of Trials 3 3 1 1 1 
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Figure  5-1 Dimensions of APMS Problem Sets 

5.2 Scheduling Algorithms 

Here, the details of the method followed to apply different scheduling algorithms to the 

APMS problem are explained. Each section presents a step in the process. 

5.2.1 Identifying Resources 

In this step, the number of families and the number of machines in each family is defined. 

Also, the number of crews staffing each machine is specified. Carefully defining the 

available resources is key to simulate an environment similar to the actual operation 

environment. 

Another attribute that is critical in the APMS problem in hand is the concept of flexibility 

of machine families. In this problem, jobs can be processed in multiple families. The 

families that can process a higher number of jobs in the production bucket are considered 

more flexible. In contrast, the families that can process a lower number of jobs are 

considered less flexible. Family flexibility is used in the scheduling algorithms presented 

2 2 2 3 4
2 3 4 4

66
9

12 12

18

Case 1 Case 2 Case 3 Case 4 Case 5

MIP Problem Sets - Dimensions

Families

Machines

Jobs
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to determine machine assignment. Table  5-2 below shows how flexibility is determined 

for 3 families and 6 jobs. 

Table  5-2 Flexibility 

Family 1 Family 2 Family 3 
Job Compatibility 
1 x x x 
2 x x 
3 x x 
4 x 
5 x x x 
6 x x 

Flexibility 
# of Comp. Jobs 4 3 6 

Flexibility Medium Lowest Highest 
 

5.2.2 Order Set 

The order set is an input of raw information about the bucket (batch) of jobs to be 

scheduled. It includes information about each job including: 

• Each job’s specifications and standard unit processing times  

• The number of units in each job 

5.2.3 Data Set 

The order set is the input for the data generation process. The outcome of this step is 

information about: 
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• Eligibility of each job on each family 

• Sequence-dependent setup times for any possible job sequence 

• Processing time for each job on each family 

In the specific case of the Electric Company; based on the nature of the operations setup, 

the eligibility of each job on each machine family is determined based on each job’s unit 

specifications. The rules determining the eligibility are presented in Table  5-3. Then the 

processing time for each job on all the compatible PM families is computed. Processing 

time of an order depends on the processing time for a single unit on each family, the 

number of stations in each family and the number of units in that order. The points below 

summarize the method to calculate the processing time for each job on all families. Table 

 5-4 shows a sample of one job’s processing times on different families. 

• Processing time per unit on each family is recorded from the order specifications 

sheet. 

• # of full runs = round (order qty / # of stations), rounded to the smaller integer. 

Example: order qty = 8, running on machine with 5 stations. # of full runs = round 

(8/5) = 1 

• For specific orders: on machines with 3 stations – 1 winding per run; on machines 

with 5 stations – 2 windings per run 

• # in final run = Mod (order qty / # of stations); the remainder in the division 

• Time for full runs = # of full runs * # of windings in full run * unit processing 

time 

• Time for last partial run = # of windings in final partial run * unit processing time 

• Time for machine reloading = (# of full runs + # of partial runs  [1 or 0] – 1) * 10 

/ 60 

• Total run time = time for full runs + time for last partial run + time for reloading 
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Table  5-3 Determining Eligibility* 

Family Spec 1 
Spec 2  

Spec 3 Spec 4 Spec 5  
Spec 6 Spec 7 

1 2 3 1 2 3 1 2 

1 ≥ 167     x ≥ 22.51 ≥ 12.0 A - #6 or 
#7, B - all x x x   x 

2 ≤ 100 x x   ≤ 22.50 9.0 - 
12.0 

#8 or 
smaller x x   x   

3 ≤ 100 x x   ≤ 20.00 7.0 - 
9.0 

#8 or 
smaller x x   x   

4 ≤ 100 x x   ≤ 20.00 7.0 - 
9.0 

#8 or 
smaller   x   x   

5 ≤ 100 x     ≤ 17.00 ≤ 7.0 #8 or 
smaller   x   x   

* To maintain anonymity, the units of measurement are not shown in the table 
 

Table  5-4 Processing Times 

Order # Units (#) Fam 1 Fam 2 Fam 3 Fam 4 Fam 5 

1 6 8 h 9 m 5 h 6 m 5 h 7 m 5 h 7 m 4 h 30 m 

2 5 6 h 34 m 3 h 29 m 3 h 3 m 3 h 3 m 3 h 3 m 

3 12 9 h 31 m 5 h 24 m 5 h 2 m 5 h 2 m 4 h 41 m 

 

Standard setup times depend on the number of specification changes (therefore, setup 

changes) between any two sequential jobs. Based on the difference in specifications 

between each two sequential jobs, one or more of three components must be changed 

during the changeover. The number of components changed determines the sequence-

dependent setup time. The elements in the changeover matrix are denoted by sij, where i 

represents the preceding job and j represents the succeeding job, and i ≠ j. For the SAPT 

algorithm, the two sets of data are then combined to generate adjusted processing time 
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(APT) (= setup time + processing time) matrices for each PM family. A separate APT 

matrix for each PM family is necessary due to the variation in processing time for jobs on 

each family. The elements in the APT matrix are denoted by APTij, where i represents the 

preceding job and j represents the succeeding job, and i ≠ j. APTjj represents the 

processing time for job j when it is first in the sequence of jobs scheduled on a machine. 

Table  5-5 Determining Sequence-Dependent Changeover Time 

Component 1 Component 2 Component 3 C/O 
Time 

x   10 

x x  15 

x  x 45 

x x x 60 

 

The process described above is demonstrated in the following tables in an example with 6 

jobs that can be processed in one or more of three families. 

The job compatibility with each family and the corresponding processing times in those 

families is presented in Table  5-6. Table  5-7 shows the sequence-dependent setup times. 

Rows represent the preceding job, and columns represent the succeeding job. Table  5-8 

shows the APT matrix for Family 1. Again, rows represent the preceding job, and 

columns represent the succeeding job. 
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Table  5-6 Compatibility and Processing Times for Sample Data Set 

 Compatibility Processing Time (hrs) 

Job Family 1 Family 2 Family 3 Family 1 Family 2 Family 3

1 x x x 2 3 4 

2  x x - 5 5 

3 x  x 5 - 4 

4   x - - 2 

5 x x  5 5 - 

6 x   5 - - 
 

Table  5-7 Sample Sequence-Dependent Setup Time Matrix 

  1 2 3 4 5 6 

1 - 0.5 0.25 0.25 1 0.75 

2 0.5 - 0.25 0.25 1 0.75 

3 0.25 0.25 - 0.25 1 1 

4 0.25 0.25 0.25 - 1 1 

5 1 1 1 1 - 0.25 

6 0.75 0.75 1 1 0.25 - 
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Table  5-8 Sample APT Matrix for Family 1 

 

1 2 3 4 5 6 

1 - - 5.25 - 6 5.75 

2 - - - - - - 

3 2.25 - - - 6 6 

4 - - - - - - 

5 3 - 6 - - 5.25 

6 2.75 - 6 - 5.25 - 

 

5.2.4 Scheduling Algorithms 

Applying the scheduling algorithms involves (1) selecting one of the PM families and a 

machine in that family to assign each job to as well as (2) determining the processing 

sequence on each machine in every family. The outcome is presented in a Gantt chart 

showing the assignment and sequence of the jobs in the available resources. Once the 

schedule is produced, the performance measures are calculated and the solution set 

becomes ready for analysis.  

The following is an explanation of each algorithm. 

SPT  

1. Starting with the data sheet, find the minimum processing time for each job. 
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2. Highlight the families with processing time equal to the minimum processing time 

for each job. 

3. Rank the jobs in increasing order of minimum processing time. 

4. All the machines are flagged as available 

5. Begin scheduling process by picking the machine from the pool of available 

machines with the minimum load. 

6. If there is a tie between two or more machines, the tie is broken by selecting the 

machine from the least flexible family. If the machines are from the same family, 

the tie is broken arbitrarily. 

7. Next, pick the job to be scheduled on the selected machine by looking at all the 

compatible jobs highlighted in step 2 and picking the job with the lowest rank 

(lowest processing time). 

8. If all the highlighted jobs have been scheduled, pick the compatible job with the 

lowest rank. 

9. If there are zero compatible jobs remaining, the selected machine is flagged as 

full, and removed from the pool of available machines. 

10. Schedule the selected job on the selected machine. Setup time depends on the 

preceding job and is retrieved from the sequence-dependent setup matrix. 

11. Repeat steps 5 to 10 until all the machines are full. 

LPT  

1. Starting with the data sheet, find the minimum processing time for each job. 

2. Highlight the families with processing time equal to the minimum processing time 

for each job. 

3. Rank the jobs in decreasing order of minimum processing time. 

4. All the machines are flagged as available 

5. Begin scheduling process by picking the machine from the pool of available 

machines with the minimum load. 
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6. If there is a tie between two or more machines, the tie is broken by selecting the 

machine from the least flexible family. If the machines are from the same family, 

the tie is broken arbitrarily. 

7. Next, pick the job to be scheduled on the selected machine by looking at all the 

compatible jobs highlighted in step 2 and picking the job with the lowest rank 

(highest processing time). 

8. If all the highlighted jobs have been scheduled, pick the compatible job with the 

lowest rank. 

9. If there are zero compatible jobs remaining, the selected machine is flagged as 

full, and removed from the pool of available machines. 

10. Schedule the selected job on the selected machine. Setup time depends on the 

preceding job and is retrieved from the sequence-dependent setup matrix. 

11. Repeat steps 5 to 10 until all the machines are full. 

Minimum Changeover Time (Min CO) 

1. Start with the data sheet and the sequence-dependent setup matrix. 

2. All the machines are flagged as available 

3. Begin scheduling process by picking the machine from the pool of available 

machines with the minimum load. 

4. If there is a tie between two or more machines, the tie is broken by selecting the 

machine from the least flexible family. If the machines are from the same family, 

the tie is broken arbitrarily. 

5. Next, look at the sequence-dependent setup matrix to pick the next job. The job j 

that satisfies  

                5-1 

is selected where i is the preceding job on the selected machine. In the special 

case that the job is the first in the sequence of scheduled jobs on the selected 
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machines, the job j with the shortest processing time on that machine is selected. 

Ties between jobs are broken arbitrarily 

6. If there are zero compatible jobs remaining, the selected machine is flagged as 

full, and removed from the pool of available machines. 

7. Schedule the selected job on the selected machine.  

8. Repeat steps 3 to 7 until all the machines are full. 

LPT-F  

1. Starting with the data sheet, find the minimum processing time for each job. 

2. Highlight the families with processing time equal to the minimum processing time 

for each job. 

3. Rank the jobs in decreasing order of minimum processing time. 

4. All the machines are flagged as available 

5. All the families are flagged as not available 

6. Begin by selecting the family flagged as not available with the lowest flexibility 

and flagging it as available 

7. Pick the machine from the pool of available machines in the available family with 

the minimum load. 

8. If there is a tie between two or more machines, the tie is broken by selecting the 

machine from the least flexible family. If the machines are from the same family, 

the tie is broken arbitrarily. 

9. Next, pick the job to be scheduled on the selected machine by looking at all the 

compatible jobs highlighted in step 2 and picking the job with the lowest rank 

(highest processing time). 

10. If all the highlighted jobs have been scheduled, pick the compatible job with the 

lowest rank. 

11. If there are zero compatible jobs remaining, the selected machine is flagged as 

full, and removed from the pool of available machines. In this case, go back to 

step 7 until all the machines in that family are full. 
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12. Schedule the selected job on the selected machine. Setup time depends on the 

preceding job and is retrieved from the sequence-dependent setup matrix. 

13. Once all the machines in the selected family are full, flag this family as full and 

go back to step 6. 

14. Repeat steps 6 to 13 until all the families are full. 

SAPT 

1. Starting with the data sheet and the sequence-dependent setup matrix, generate the 

APT matrix for each machine family. 

2. The APT matrix for each machine will be a copy of the APT matrix for its family. 

3. All the machines are flagged as available 

4. Begin scheduling process by picking the machine from the pool of available 

machines with the minimum load. 

5. If there is a tie between a couple of machines, the tie is broken by selecting the 

machine from the least flexible family. If the machines are from the same family, 

the tie is broken arbitrarily. 

6. Next, look at APT matrix for the selected machine to pick the next job. The job j 

that satisfies  

                5-2 

is selected where i is the preceding job on the selected machine. In the special 

case that the job is the first in the sequence of scheduled jobs on the selected 

machines, the job j that satisfies  

                5-3 

is selected. Ties between jobs are broken arbitrarily 
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7. The selected job j cannot be scheduled again, so column j in all the APT matrices 

is deleted. Also, job j cannot be the preceding job in any machine other than the 

selected machine, so the row j in all the other machines’ APT matrices is deleted. 

8. If there are zero compatible jobs remaining, the selected machine is flagged as 

full, and removed from the pool of available machines. 

9. Schedule the selected job on the selected machine. 

10. Repeat steps 4 to 9 until all the machines are full. 

SAPT-II  

1. Starting with the data sheet and the sequence-dependent setup matrix, generate the 

APT matrix for each machine family. 

2. The APT matrix for each machine will be a copy of the APT matrix for its family. 

3. All the machines are flagged as available 

4. Start with the first available machine. Look at APT matrix for each machine to 

pick the next potential job. The job j that satisfies  

                5-4 

is selected where i is the preceding job on the selected machine. In the special 

case that the job is the first in the sequence of scheduled jobs on the selected 

machines, the job j that satisfies  

                5-5 

is selected. Ties between jobs are broken arbitrarily. 

5. If there are zero compatible jobs remaining for any machine, that machine is 

flagged as full, and removed from the pool of available machines. 

6. Repeat step 4 for all the available machines. 

7. The loads of the machines are compared after the potential job picked for each 

available machine is scheduled. 
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8. The machine/job pair with the lowest load is selected and that job is actually 

scheduled on that machine. 

9. If there is a tie between a couple of machines, the tie is broken by selecting the 

machine from the least flexible family. If the machines are from the same family, 

the tie is broken arbitrarily. 

10. The selected job j cannot be scheduled again, so column j in all the APT matrices 

is deleted. Also, job j cannot be the preceding job in any machine other than the 

selected machine, so the row j in all the other machines’ APT matrices is deleted. 

11. Repeat steps 4 to 10 until all the machines are full. 

5.2.5 Assumptions 

• All jobs are available at time t = 0  

• All machines are available at time t = 0 

• Machines are running on a continuous schedule; 24 hours/day, 7 days/week 

• Preemption is not allowed; once a job is loaded on a machine, it cannot be 

removed until it is complete 

• Job splitting is not allowed 

• There are no unplanned windows of non-availability (e.g. breakdowns, unplanned 

maintenance, crew absence, raw material shortage) 

• Unit processing times are equal to standard processing times provided in job 

specification sheets 
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6 RESULTS 

In this chapter, the results of the experimentation work done are presented. Section  6.1 

presents the results from the MIP. Section  6.1 presents the results from the mathematical 

model. Section  0 presents the results of applying scheduling algorithms to the APMS 

problem. Section  4.2 presents the automated scheduling tool developed to solve the 

APMS problem. 

6.1 MIP Results 

The MIP model was used to solve several problem sets varying in their dimensions, as 

presented in the previous chapter. Each problem set was also solved using the SAPT 

algorithm to provide some sense to whether the SAPT algorithm would be an appropriate 

method to apply to the APMS problem. A total of 9 trials were executed, and the results 

are summarized as follows: 

MIP Processing Time (seconds) 

Table  6-1 MIP Trials Processing Time in Seconds 

Case 1 Case 2 Case 3 Case 4 Case 5 
Trial 1 2.15 638.40 16361.70* 16361.70* 53640.00*

Trial 2 1.09 200.11       
Trial 3 1.43 134.74       

Average 1.56 324.42 16361.70 16361.70 53640.00
* Size of problem set cause optimizer to stop run before 100% completion, out-of-

memory error 
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Figure  6-1 Processing Times 

As noted in Table  6-1, the optimizer stopped running before reaching the 100% 

optimized solution. The reason is that the number of variables and constraints was huge 

and caused the optimizer to run out of memory. Figure  6-1 presents the same data in a 

chart with a log-scale x-axis. From the chart, it can be concluded that the processing time 

exponentially increases with increasing number of machines. 

Schedule Charts 

Each generated APMS problem set was applied to the MIP model and the SAPT 

algorithm. The schedule charts generated by the model and the algorithm are presented in 

Appendix C. 

Objective Function Ratio 

To compare the performance of the SAPT algorithm to the optimal schedules generated 

by the MIP, the ratio of the objective function, the average completion time, for the 
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SAPT algorithm versus the optimal schedule was calculated. The results are presented in 

Table  6-2 and Figure  6-2.  

Table  6-2 Comparing SAPT to MIP – Objective Function Ratio 

Case Trial MIP SAPT SAPT/MIP Average 

Case1 
Trial 1 30.61 30.67 1.00 

1.03 Trial 2 37.01 39.94 1.08 
Trial 3 36.48 36.48 1.00 

Case 2 
Trial 1 38.22 43.55 1.14 

1.07 Trial 2 35.91 38.34 1.07 
Trial 3 39.88 40.59 1.02 

Case 3 30.11 32.46 1.08 1.08 
Case 4 29.36 26.99 0.92 0.92 
Case 5 6.72 8.06 1.20 1.20 

 

 

Figure  6-2 Comparing SAPT to MIP – Objective Function Ratio 
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Observations 

After the trials using the MIP and the SAPT algorithm, the following was observed. 

• The exponential increase in the processing times confirmed the NP-hardness of 

the APMS problem. The appropriate approach to solve larger APMS problems is 

to apply scheduling algorithms. 

• By observing the objective function ratio comparison between the MIP and the 

SAPT algorithm, it was confirmed that the SAPT would result in near-optimum 

solutions to the APMS problem; so the SAPT algorithm will be the base to start 

the experimentation in the next phase. 

• By observing the schedule charts, it is obvious that the less balanced a schedule is, 

the further the objective function is from the optimum. The emphasis on load 

balancing will be carried to the next step in the experimentation. 

6.2 Algorithms Results 

After observing the results from the mathematical model, it was confirmed that the MIP 

model was effective for really small APMS problems. The more practical approach to 

solve larger APMS problems would be the application of scheduling algorithms. The 

SAPT algorithm was introduced, and its performance was compared to the optimal 

schedule produced by the MIP. Based on that, it was verified that the SAPT algorithm 

could solve the APMS problem with a high level of effectiveness. To validate that 

assumption, the SAPT algorithm will be applied to larger APMS problem sets, and 

compared to several other scheduling algorithms. 

Experimentation to apply and compare the scheduling algorithms was done in three 

phases. The experimentation was progressive, and result analysis in each phase was used 

to make adjustments and modifications to the experimentation design and data sets. The 

sections are divided to present the results from each phase separately. Details about the 

data sets, resources and scheduling results are available in the appendix. 
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6.2.1 Phase I 

Algorithms 

• SPT 

• LPT 

• Min CO 

• SAPT 

Bucket Set – Set # 1 [total number of jobs: 29, total number of units: 340] 

Schedule Charts 

 

Figure  6-3 Production Schedule, Phase I, SPT 
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Figure  6-4 Production Schedule, Phase I, LPT 

 

Figure  6-5 Production Schedule, Phase I, Min CO 
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Figure  6-6 Production Schedule, Phase I, SAPT 

 

Figure  6-7 Production Schedule, Phase I, Actual Execution 
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Performance Measures 

The performance of the four scheduling algorithms along with the actual execution of the 

bucket used in the problem set at this phase is presented as a summary of the performance 

measures in Table  6-3. 

Table  6-3 Result for Each Algorithm and Actual Execution 

SPT LPT SAPT Min CO Current 
Avg. Completion time* 8.30 9.24 8.09 9.51 24.54 

Makespan* 24.09 21.32 21.32 21.32 56.00 
Total Time* 207.34 203.77 204.19 203.86 446.1 
CO Time* 9.17 8.12 8.92 7.42 - 

* All times are in hours 
 

Observations 

The following observations were made after comparing the results of the experimental 

work done in phase I: 

• SAPT algorithm was best for reducing the average completion time per order. 

• LPT policy was best for reducing bucket completion time and makespan. 

However, the difference is not significant between the four scheduling methods 

evaluated (ΔTrun, max < 4 hrs). Except for a few machines, LPT application also 

helps distribute the load evenly across all the machine families (can be seen in 

schedule Gantt charts). 

• Min CO algorithm was best for achieving minimal setup time and maximum 

machine utilization, particularly when applied together with APT. Again, the 

difference in total setup time was small (ΔTC/O, max < 4 hrs). 
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• The actual processing times were found to be significantly different from the 

actual times recorded in the bucket execution records. This shows that comparing 

the theoretically generated schedules to the actual bucket execution might not 

possible. The assumptions regarding the processing times must be revised and 

adjusted to have the right comparison. 

6.2.2 Phase II 

Adjustments 

The same set of assumptions in phase I apply to the second phase in addition to: 

• Theoretical processing times from job specification sheets are multiplied by 1.8 to 

reflect estimates of actual processing times. 

• Machines are operating with availability constraints according to the actual 

production schedule. The schedule is presented in Appendix A. 

Algorithms 

• LPT 

• LPT-F 

• SAPT 

Bucket Set – Set # 2 [total number of jobs: 73, total number of units: 560] 
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Schedule Charts 

 

Figure  6-8 Production Schedule, Phase II, LPT 

 

Figure  6-9 Production Schedule, Phase II, LPT-F 
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Figure  6-10 Production Schedule, Phase II, SAPT 

 

Figure  6-11 Production Schedule, Phase II, Actual 
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Performance Measures 

The performance of the four scheduling algorithms along with the actual execution of the 

bucket used in the problem set at this phase is presented as a summary of the performance 

measures in Table  6-4. 

Table  6-4 Result for Each Algorithm and Actual Execution 

Actual LPT LPT-F SAPT 
AVG Completion Time* 38.48 43.20 45.37 25.72 

Makespan* 67.5 74.41 68.09 67.41 
Total Time* 834 669 744 736 

C/O % - 7.2% 6.1% 5.9% 
Utilization % - 80% 89% 88% 

* All times are in hours 
 

Observations 

The following observations were made after comparing the results of the experimental 

work done in phase II: 

• The superiority of the SAPT algorithm was verified versus the LPT and the LPT-F 

algorithms 

• Comparing the LPT and LPT-F algorithms, the LPT-F performed better in 

minimizing the makespan and maximizing the utilization. This fact is useful for 

future studies tackling the APMS problems with a different objective. 

• The SAPT algorithm did not perform well in balancing the machine loads and 

improving the utilization. The presumption is that this was caused by the 

introduction of the availability constraint; where the SAPT algorithm does not 

compare machine availability when selecting machines in each scheduling 
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iteration. In the next phase, there will be an attempt to improve the performance 

of the SAPT algorithm by looking into the future. This improvement should also 

help minimize the average lead time. 

6.2.3 Phase III 

Adjustments 

The experimentation in this phase builds on Phase II. In this phase, the problem set used 

in the previous phase was applied, in addition to five more problem sets. The automated 

scheduling tool was used to generate the production schedules and summarize the 

performance measures. Starting with the problem set used in the previous set allowed the 

validation of the functionality of the scheduling tool. Adding the five problem sets 

increased the number of trials; consequently providing additional results to confirm the 

observations and conclusions made at the end of this phase. 

Algorithms 

• SAPT 

• SAPT-II 

Bucket Sets 

• Set # 2 [total number of jobs: 73, total number of units: 560] 

• Set # 3 [total number of jobs: 75, total number of units: 642] 

• Set # 4 [total number of jobs: 55, total number of units: 654] 

• Set # 5 [total number of jobs: 75, total number of units: 739] 

• Set # 6 [total number of jobs: 60, total number of units: 604] 

• Set # 7 [total number of jobs: 65, total number of units: 607] 
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Schedule Charts 

There are six schedule charts for each algorithm; a total of twelve charts. These charts are 

presented in Appendix D. 

Performance Measures 

The table below compares the SAPT-II algorithm to the SAPT algorithm. The color of 

the cell highlights the improvement or decline in performance (green – better, yellow – 

same, red – worse). The direction of the arrow shows the direction of the change (up – 

increase, down – decrease). 

Table  6-5 Comparing SAPT-II to SAPT 

 

Bucket Set

Algorithm SAPT SAPT-II Δ SAPT SAPT-II Δ SAPT SAPT-II Δ

# of Jobs 73 73 75 75 55 55

Avg. Completion Time (hrs) 25.39 23.19 27.07 22.62 29.31 25.21

# of Jobs Scheduled 72 73 75 75 54 54

Makespan (hrs) 84.88 83.82 87.68 68.05 82.24 86.65

Total Proc. Time (hrs) 709.71 776.11 749.14 795.16 722.08 768.09

CO Time (hrs) 42.08 42.42 49.42 51.83 31.58 29.17

CO % 5.90% 5.50% 6.60% 6.50% 4.30% 3.80%

Bucket Set

Algorithm SAPT SAPT-II Δ SAPT SAPT-II Δ SAPT SAPT-II Δ

# of Jobs 75 75 60 60 65 65

Avg. Completion Time (hrs) 27.96 26.07 27.3 24 27.18 23.32

# of Jobs Scheduled 72 75 60 60 64 65

Makespan (hrs) 83.67 83.82 84.31 83.03 86.79 86.86

Total Proc. Time (hrs) 756.26 893.83 732.14 780.82 722.68 798.41

CO Time (hrs) 43.33 43.83 39.17 41.5 43.92 42.67

CO % 5.70% 4.90% 5.30% 5.30% 6.10% 5.30%

Set # 5 Set # 6 Set # 7

Set # 2 Set # 3 Set # 4
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Observations 

• The SAPT-II algorithm performs better than SAPT in minimizing the average 

lead time. 

• For the other monitored performance measures, SAPT-II performs similar to 

SAPT except for minimizing the total processing time. This is because the SAPT 

algorithm gives priority only to APT, while the SAPT-II also gives consideration 

to load balancing across families; so more often, jobs are scheduled on families 

that do have the minimal APT when compared to the other families. 

• The experimentation also used to validate the scheduling software. A copy was 

delivered and installed at the company mentioned in the case study. 

After observing the results, it was concluded that the SAPT-II is more efficient than the 

SAPT algorithm in scheduling the APMS problem. 

6.3 Automated Scheduling Tool 

After the three phases of experimentation, it was concluded that the SAPT-II algorithm 

will be used to solve the APMS problem. The tool was developed and validated using the 

buckets presented in Phase III of the scheduling algorithms experimentation. The features 

of the automated scheduling tool are explained in the following sections. 
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6.3.1 Main Interface Window 

 

Figure  6-12 Scheduling software main window 

6.3.2 Data Input 

The scheduling software was developed to interface with the output of a program 

currently used by the company in the case study to analyze the information in the 

production bucket and calculate loads and capacities. That program accesses the company 

data-base, gives full details about the orders within a bucket and outputs that data to a 

text file. The program accesses the company’s data base, opens the text file, and stores all 

the details in an array that is used to generate APT and sequence dependent setup time 

matrices. 
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An example to the format of the information in the text file is shown in below. The file 

has one line for each order that contains all the specifications and theoretical processing 

times. The information is comma-delimited. 

464204,07/11,  3,EC 107600N865    , 10.0,1777750210, AL, 

17.0, 1,R,AL, 0.015, 5.00,1,12.94,KOLD,6 Stn     ,Sm Pole   

, 0.87 , 0.99 , 0.67 , 0.56 , 0.51 , 0.48 , 0.46 

 

6.3.3 Resources 

The default resources – or machines – available are user-defined. The time factor used to 

adjust theoretical processing times is also user-defined. The assumption is that the 

available production time is 5 days/week and 2 shifts/day. When the program starts, it 

loads the default resources which are stored in a master file edited and updated by the 

user. The user can access the resources menu to change any of the machine resources and 

click on ‘Update’ to save the adjustment, or to return to the default resources defined in 

the program by clicking on ‘Default Res.’. To notify the user that the scheduling 

software is using the default resources, a tab in the main window that says ‘Default 

Resources Defined’ is visible. Once the user changes one or more of the resources, the 

text in the tab becomes transparent. 
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Figure  6-13 Summary information about the available resources 

 

Figure  6-14 Resources menu allows user to redefine the machine information 
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6.3.4 Output 

The output of the scheduling software is a summary of the important measures of the 

schedule (including # of jobs scheduled, make-span and average lead time), and a Gantt 

chart showing the machine assignment and sequence of each order scheduled to run. In 

the Gantt chart the user can click on ‘Show/Hide End Time’ to toggle the view of the 

end time for each order. 

 

 

Figure  6-15 Summary of the schedule performance measures 
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Figure  6-16 Schedule Gantt chart with end times shown 
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7 CONCLUSIONS AND FUTURE RESEARCH 

The experimentation work, results and observations for the tested problem sets were 

presented in chapters 5 and 6. This chapter states the conclusions and future research 

opportunities. 

7.1 Conclusions 

In this research, the unique APMS problem with the objective of minimizing the average 

flow time was solved. The constraints in this problem included machine availability 

constraints, sequence-dependent setup times, and eligibility constraints. A mathematical 

model for the APMS problem was developed to check the feasibility of finding an 

optimal solution for the NP-hard scheduling problem. The SAPT-II algorithm was 

introduced to solve the APMS problem. 

 The research was motivated by a real scheduling problem at a make-to-order industrial 

product manufacturer. The first objective was to remove the bottleneck in their operations 

by improving production scheduling. The second objective was to develop an automated 

scheduling tool to allow better shop floor management and improved coordination 

between different production departments. 

The first approach was to check the feasibility to apply mathematical modeling to solve 

the APMS problem. As expected, the processing times for the MIP model developed 

increased exponentially with the increase in the size of the APMS problem. It was 

confirmed that it was not feasible to solve the APMS problem optimally using 

mathematical modeling. The SAPT algorithm was introduced as an alternative, and its 

performance was compared to the optimum solution generated by the MIP. 

The second approach to solve the APMS problem was to use scheduling algorithms. 

Initially, the SAPT algorithm was introduced. After comparing its performance to several 

other scheduling algorithms in two phases of experimentation, the algorithm was tuned 
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and improved to produce the SAPT-II algorithm. In the third phase of experimentation, 

the SAPT-II algorithm was applied and compared to the SAPT algorithm, and it was 

concluded that the SAPT-II produced the lowest average lead times. 

The SAPT-II algorithm was selected, and an automated scheduling tool was developed. 

The tool is user friendly, and produces the production schedules in the form of Gantt 

charts. The resources and job sets can be fully customized by the user. The tool provides 

a critical visual management tool, and it can also be used in forecasting and capacity 

planning operations. 

Overall, the outcome of the research demonstrates that the SAPT-II algorithm is able to 

solve the heavily constrained, unique APMS problem and produce acceptable results at 

very low computation times. The data presented was inspired by a specific case study, but 

the outcome can be applied to any APMS problem; typically single-pass production with 

several groups of identical machines. An example is in packaging operations with 

multiple machines dedicated to each package size, where the bulk is produced upstream 

and packed into different package sizes on different machine families. The AMPS 

problem can also extend past production operations. An example is yard and docking 

management, where docks can be classified into families depending on the type or size of 

loads and unloading or discharge times are dependent on the load and the dock. 

7.2 Future Research 

The performance of the SAPT-II algorithm is a single-pass algorithm; the schedule 

produced by the algorithm is considered the final output, and no improvement activities 

are performed. Its performance could be improved by applying an improvement heuristic 

to the output of the algorithm. Another approach would be to allow job splitting; which 

could improve the performance of the algorithm, but complicate the scheduling problem 

at the same time. 
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Also, the APMS problem presented in this research had a specific set of constraints and 

objective function. Other manufacturing environments might have different constraints 

and objective. This presents a great opportunity to explore APMS problems with different 

constraint sets and objective functions. 
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APPENDIX A: RESOURCES 

Phase I 

Family # of Machines Machines 

Family 1 1 A 

Family 2 3 21, 22, 24 

Family 3 2 23, 37 

Family 4 4 26, 29, 36, 38 

Family 5 9 
25, 27, 28, 30, 

31, 32, 33, 34, 35 

 

Phases II & III 

In these phases, the availability constraint was introduced. The number of machines in 

each family and the number of shifts each machine was crewed to operate reflected the 

staffing during the actual execution of the data set. At this point, the problem set 

represented the actual APMS problem presented in this research in terms of production 

environment. The resources and staffing are presented in each period in the schedule 

represents an 8-hour shift. 
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Machine Family Stations 
Monday Tuesday Wednesday Thursday Friday 
1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd

A 1 1 x   x   x   x   x   
21 

2 3 
x x x x x x x x x   

22 x   x   x   x   x   
24 x x x x x x x x x   
23 3 5 x   x x x x x x x   
26 

4 5 
x x x x x x x   x   

29 x x x x x   x   x   
37 x   x   x   x   x   
25 

5 6 

x   x   x   x   x   
27 x   x   x   x   x   
28 x x x x x x   x x   
30 x   x   x   x   x   
31 x x x x x x x x x   
32 x   x   x   x   x   
33 x   x   x   x   x   
34 x   x   x   x   x   
35 x x x x x x x x x   

  



 

 
 

65 

APPENDIX B: PERFORMANCE MEASURES 

Phase I 

Family M/C 
SPT LPT 

 
# of 
jobs 

running 
time 

CO 
time CO % Utilization # of 

jobs 
running 

time
CO 
time CO % Utilization 

1 A 3 24.09 1.17 5% 100% 100% 2 21.32 0.17 1% 100% 100%

2 
21 2 9.21 1 11% 38% 39%

57% 58%
3 11.58 2 17% 54% 69%

49% 62%22 2 23.89 1 4% 99% 100% 3 11.58 2 17% 54% 69%
24 1 8.16 0% 34% 34% 1 8.16 0% 38% 49%

3 23 2 6.66 1 15% 28% 28% 28% 28% 3 9.19 1.25 14% 43% 55% 43% 55%

4 

37 2 12.68 1 8% 53% 53%

40% 40%

1 16.25 0% 76% 97%

48% 61%
26 1 8.8 0% 37% 37% 1 8.8 0% 41% 52%
29 1 8.8 0% 37% 37% 1 8.8 0% 41% 52%
36 1 8.8 0% 37% 37% 1 8.8 0% 41% 52%
38 1 8.8 0% 37% 37% 1 8.8 0% 41% 52%

5 

25 2 11.16 1 9% 46% 47%

40% 41%

1 10.98 0% 52% 65%

47% 60%

27 2 13.39 1 7% 56% 56% 1 10.8 0% 51% 64%
28 2 13.54 1 7% 56% 57% 1 10.8 0% 51% 64%
30 2 14.98 1 7% 62% 63% 1 8.94 0% 42% 53%
31 1 4.5 0% 19% 19% 1 8.94 0% 42% 53%
32 1 4.68 0% 19% 20% 1 8.94 0% 42% 53%
33 1 7.32 0% 30% 31% 1 7.32 0% 34% 44%
34 1 8.94 0% 37% 37% 3 16.78 2 12% 79% 100%
35 1 8.94 0% 37% 37% 2 6.99 0.7 10% 33% 42%

Total 29 207.34 9.17 4.42% 45.30%42.61% 29 203.77 8.12 3.98% 50.30%60.41%
Family M/C Min CO SAPT 
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# of 
jobs 

running 
time 

CO 
time CO % Utilization  

# of 
jobs 

running 
time 

CO 
time CO % Utilization 

1 A 2 21.32 0.17 1% 100% 100% 2 21.32 0.17 1% 100% 100%

2 
21 2 10 1 10% 47% 62% 

46% 60%
2 9.21 1 11% 43% 56% 

34% 44%22 3 10.37 1.25 12% 49% 64% 1 4.5 0% 21% 27% 
24 2 8.99 1 11% 42% 55% 1 8.16 0% 38% 50% 

3 23 3 11.6 1.75 15% 54% 71% 54% 71% 2 6.66 1 15% 31% 40% 31% 40%

4 

37 1 16.25 0% 76% 100%

52% 68%

2 14.68 1 7% 69% 89% 

60% 78%
26  1 8.8  0% 41% 54%  1 16.25  0% 76% 99% 

29 1 8.8 0% 41% 54% 2 10.46 1 10% 49% 63% 
36 2 11.9 1 8% 56% 73% 2 11.22 1 9% 53% 68% 
38 3 9.79 1.25 13% 46% 60% 2 11.34 0.75 7% 53% 69% 

5 

25 1 10.98 0% 52% 68% 

45% 59%

2 11.68 1 9% 55% 71% 

47% 61%

27 1 10.8 0% 51% 66% 2 14.71 1 7% 69% 89% 
28 1 10.8 0% 51% 66% 2 16.48 1 6% 77% 100%
30 1 8.94 0% 42% 55% 1 7.32 0% 34% 44% 
31 1 8.94 0% 42% 55% 1 4.68 0% 22% 28% 
32 1 8.94 0% 42% 55% 1 8.88 0% 42% 54% 
33 1 8.88 0% 42% 55% 1 8.88 0% 42% 54% 
34 1 8.88 0% 42% 55% 1 8.88 0% 42% 54% 
35 1 8.88 0% 42% 55% 1 8.88 0% 42% 54% 

Total 29 203.86 7.42 3.64% 50.33%62.41% 29 204.19 8.92 4.37% 50.41%61.65%
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Family M/C
Current 

# of 
jobs

running 
time

CO 
time CO % Utilization 

1 A  2.5 36  0% 169%  64%  

2 
21 1 20 0% 94% 121%

26% 26%22 2 24 0% 113% 146%
24 0 0 - 0% 0% 

3 23 3 56 0% 263% 340% 100% 100%

4 

37 1.5 5 0% 23% 30% 

28% 28%
26 2 49 0% 230% 297%
29 1 14 0% 66% 85% 
36 0.5 11.5 0% 54% 70% 
38 0 0 - 0% 0% 

5 

25 1 16 0% 75% 97% 

46% 46%

27 1 32 0% 150% 194%
28 3 40 0% 188% 243%
30 3 27.6 0% 129% 167%
31 1 29.5 0% 138% 179%
32 1 32 0% 150% 194%
33 1 2 0% 9% 12% 
34 3 24 0% 113% 146%
35 1.5 27.5 0% 129% 167%

Total 29 446.1 0.00% 41.93% 40.68%
  



 

68 

Phase II 

LPT 

Family M/C 
# of 

jobs 
# of 

shifts

Available 

time 
Running 

time 
# of 

CO's

CO 

time 
Utilization Utilization

1 A 5 5 37.5 38.88 4 3.25 100% 104%

2 

21 8 9 67.5 71.95 7 7 100% 

109% 22 5 5 37.5 44.41 4 3.25 100% 

24 10 9 67.5 72.31 9 8.75 100% 

3 23 9 8 60 63.87 8 4.92 100% 106%

4 

37 2 5 37.5 39.29 1 1 100% 

106% 26 4 8 60 64.24 3 3 100% 

29 3 7 52.5 55.66 2 1.75 100% 

5 

25 1 5 37.5 20.9 0 0 56% 

52% 

27 1 5 37.5 20.9 0 0 56% 

28 4 8 60 30.36 3 3 51% 

30 2 5 37.5 15.39 1 1 41% 

31 4 9 67.5 30.71 3 3 45% 

32 3 5 37.5 17.21 2 1.75 46% 

33 3 5 37.5 22.85 2 2 61% 

34 3 5 37.5 27.77 2 1.25 74% 

35 6 9 67.5 32.68 5 3.5 48% 
Total 73 112 840 669.38 56 48.42 80% 
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LPT-F 

Family M/C 
# of 

jobs 
# of 

shifts

Available 

time 
Running 

time 
# of 

CO's 
CO 

time 
Utilization Utilization

1 A 4 5 37.5 36.3 3 2.25 97% 97%

2 

21 10 9 67.5 67.48 9 6.25 100% 

100% 22 5 5 37.5 37.17 4 3.25 99% 

24 10 9 67.5 67.41 9 7.92 100% 

3 23 6 8 60 60.59 5 4 100% 101%

4 

37 2 5 37.5 37.25 1 1 99% 

99% 26 4 8 60 59.56 3 2.17 99% 

29 4 7 52.5 51.31 3 2.17 98% 

5 

25 2 5 37.5 31.31 1 1 83% 

78% 

27 1 5 37.5 28.4 0 76% 

28 4 8 60 46.15 3 3 77% 

30 3 5 37.5 30.5 2 2 81% 

31 5 9 67.5 51.35 4 3.25 76% 

32 3 5 37.5 28.41 2 1.25 76% 

33 3 5 37.5 30.22 2 2 81% 

34 3 5 37.5 29 2 1.25 77% 

35 5 9 67.5 51.16 4 3.25 76% 
Total 74 112 840 743.57 57 46.01 89% 
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SAPT

Family M/C 
# of 

jobs 
# of 

shifts

Available 

time 
Running 

time 
# of 

CO's

CO 

time 
Utilization Utilization

1 A 4 5 37.5 36.34 3 2.25 97% 97%

2 

21 8 9 67.5 66.54 7 3.25 99% 

98% 22 4 5 37.5 34.88 3 1.5 93% 

24 8 9 67.5 67.41 7 6.25 100% 

3 23 7 8 60 58.55 6 3.59 98% 98%

4 

37 5 5 37.5 35.97 4 3 96% 

97% 26 7 8 60 59.56 6 5.25 99% 

29 6 7 52.5 50.46 5 5 96% 

5 

25 3 5 37.5 24.52 2 2 65% 

78% 

27 3 5 37.5 26.18 2 1.17 70% 

28 4 8 60 42.98 3 1.5 72% 

30 3 5 37.5 30.5 2 2 81% 

31 4 9 67.5 56.45 3 2.25 84% 

32 3 5 37.5 31.38 2 1.25 84% 

33 3 5 37.5 32.24 2 2 86% 

34 3 5 37.5 32.35 2 2 86% 

35 4 9 67.5 49.39 3 3 73% 
Total 79 112 840 735.7 62 47.26 88% 
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APPENDIX C: SCHEDULE CHARTS, MIP MODEL 

MIP Model Schedule Charts 

Case 1, Trial 1 

 

Case 1, Trial 2 
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Case 1, Trial 3 

 

Case 2, Trial 1 
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Case 2, Trial 2 

 

Case 2, Trial 3 
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SAPT Schedule Charts 

Case 1, Trial 1 

 

Case 1, Trial 2 
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Case 1, Trial 3 

 

Case 2, Trial 1 
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Case 2, Trial 2 

 

Case 2, Trial 3 
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APPENDIX D: SCHEDULE CHARTS, EXPERIMENTATION PHASE III 

SAPT Algorithm 

Bucket Set # 2 

 

Bucket Set # 3 
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Bucket Set # 4 

 

Bucket Set # 5 
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Bucket Set # 6 

 

Bucket Set # 7 
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SAPT-II Algorithm 

Bucket Set # 2 

 

Bucket Set # 3 
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Bucket Set # 4 

 

Bucket Set # 5 
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Bucket Set # 6 

 

Bucket Set # 7 
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