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ABSTRACT OF THESIS 

 

 
 

CONTROL AND PASSIVE TREATMENT OF RUNOFF FROM HORSE MUCK 
STORAGE STRUCTURES USING RAIN GARDENS 

 

Runoff from livestock operations may contain a variety of pathogens and high 
levels of nutrients and other harmful contaminants, and is of particular concern in central 
Kentucky as watersheds are threatened by waste generated from a high concentration of 
equine activity.  Rain gardens are a type of stormwater management tool used to capture 
and passively treat runoff.  This project aimed to incorporate rain gardens into the horse 
muck storage structures at a thoroughbred facility in the Cane Run watershed in 
Lexington, Kentucky.  Water quality data from soil water within two rain garden muck 
pads and two control pads, and grab samples from the stream were compared.  No 
significant differences were observed, but trends revealed higher levels of nitrate and 
phosphate in rain gardens compared to controls, while total organic carbon and E. coli 
levels were lower in the rain gardens, suggesting that the rain gardens are trapping 
nutrients while reducing organic matter and killing bacteria.  E. coli populations were 
lower in stream sample locations near rain garden muck pads compared to further 
downstream near controls.  Management recommendations include further improvement 
of muck storage structures, replacing old muck pads, and changing management and 
housekeeping habits and attitudes towards environmental responsibility. 

KEYWORDS: stormwater runoff, rain garden, horse muck, muck pad, E. coli 
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Chapter 1: INTRODUCTION 

In 2011, the world’s human population reached and surpassed 7 billion 

individuals, and as a result, is continuing to outgrow methods traditionally used to sustain 

it.  One of the most important resources under stress is the world’s water supply (The 

Economist, 2010).  Overpopulation, increasing area of impervious surfaces, agricultural 

needs, and inappropriate waste disposal all contribute to water resource issues.  

Increasing concern is being directed towards the agricultural industry, particularly the 

livestock sector.  As farms continue to become larger and house more animals in a single 

location, many operations have struggled to keep up with the amount of waste they 

produce.  Improperly managed animal waste can create a wide array of health and 

environmental problems, especially when it contaminates surface and groundwater.  

Increasing support for environment health has inspired an initiative to develop practices 

that lessen these negative environmental impacts.   

Wetlands are natural filtration and flood control systems and are increasingly 

being built specifically to be incorporated into treatment of wastewater from a variety of 

sources.  Wetland function has inspired the development of a specific type of constructed 

wetland called a rain garden.  Rain gardens utilize wetland principles through a passive, 

slow release system to offer a solution to mitigate stormwater pollution in urban and 

residential areas where space is a limiting factor, or to accommodate smaller amounts of 

runoff.  Both of these methods may be an attractive option for livestock waste 

management.  This project aims to use fundamental elements of both constructed 

wetlands and rain gardens, including plant uptake and passive infiltration, to create a 

manure and muck storage system which aims to improve the quality of stormwater runoff 
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and reduce stream contamination at a central Kentucky horse boarding and training 

facility. 

 

EVOLUTION OF THE LIVESTOCK INDUSTRY 

For most of human history, agricultural operations have been small, closed-loop 

systems that may have only supported one or a few families.  Crops provided fodder to 

feed the livestock; in return, animals provided products and services to run and support 

the farm.  Animals were machinery, precursors to cars and tractors.  They provided 

clothing and food with their skins, wool, milk, eggs, and meat, and they fertilized crops 

with their manure.  This time-tested system generated little to no waste, as everything 

produced within the farm had a specific use.   

In the mid-1900s, the world population experienced a marked increase in growth.  

This population explosion, coupled with a global migration toward Western diet 

standards of daily meat consumption, sometimes at every meal, sparked an increase in 

meat and dairy demand.  Developing countries have as much as tripled their meat 

consumption in the past two decades, and per capita milk consumption has increased by 

over fifty percent (The World Bank, 2005).  Based on population growth data, it has been 

predicted that annual production of livestock products will have to grow by another 200 

billion liters of milk and 100 million tons of meat in order to keep up (Martinez, et al., 

2009).  Because of this demand, traditional agriculture systems have become inefficient, 

and ultimately, obsolete.  Crops and livestock are separated from one another and reared 

in specialized, intensive operations, focused on one crop or one type of animal.  This shift 

continues, as small farms cannot compete with large commercial productions (USEPA, 



3 
 

2000).  According to the most recent US Census of Agriculture, there are 2.2 million 

farms in the United States; only 125,000 of these produce 75% of the value of US 

agriculture production (USDA, 2009).  

These large operations are classified into two categories based on the number of 

animals present, confinement strategies, vegetative cover, and waste disposal methods.  

An animal feeding operation, or AFO, is defined by the EPA as: a lot or facility where 

animals have been, are, or will be stabled or confined and fed or maintained for a total of 

45 days or more in any 12-month period; and where crops, vegetation, forage growth, or 

post-harvest residues are not sustained over any portion of the lot or facility in the normal 

growing season.  AFOs may house beef or dairy cattle, swine, sheep, horses, or poultry 

(USEPA, 2000).  Depending on the characteristics of an AFO, it may be designated as a 

confined animal feeding operation, or a CAFO.  CAFOs are determined on a case by case 

basis by assessing animal type and number, and waste disposal practices.  It is estimated 

that approximately 20% of the farms in the United States are AFOs (USEPA, 2008).  

This figure is most likely more than that for worldwide animal operations, as developing 

countries in East Asia and Latin America are experiencing the fastest growth rates in 

livestock production and consumption (The World Bank, 2005).    

This period of rapid development that has been taking place since the mid-1900’s, 

widely known as the Livestock Revolution, eventually gave way to questions about its 

effects on the environment.  The Environmental Movement, beginning in the 1960s, shed 

light on the detrimental consequences of unchecked agricultural growth and natural 

resource use and concern continues to grow as farming and livestock operations become 

larger and more concentrated.  Due to the demise of the closed-loop farm and separation 
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of crop and livestock, one of the many issues raised was the topic of livestock waste 

management.  AFOs produce over 500 million tons of manure annually (USEPA, 2008); 

however, due to the fact that not all farm operations qualify as AFOs, this number 

underestimates the amount of manure produced on an annual basis.  Manure is still a 

popular choice in fertilization, although this method must compete with chemical 

fertilizers, concerns with sanitation and pathogen outbreaks, and logistic issues 

concerning the distance between crop and livestock operations. 

 

MANURE POLLUTION 

Manure does not go straight from the animal to the crop; it must be stored, at least 

temporarily, until it can be applied.  Storage of manure poses some concerns, because 

untreated manure can harbor several contaminants that have the potential to pollute soil, 

groundwater, and surface water.  Livestock manure is rich in organic matter and has a 

high biochemical oxygen demand (BOD) (Burkholder, et al., 2007).  On a BOD scale, 

one dairy or beef cow is equal to 18-25 people; one hog, 2-3 people; and 10-15 chickens 

are equivalent to one person (Loehr, 1967).  Since the rising concern for pollution 

associated with the Livestock Revolution, there have been extensive studies undertaken 

regarding the makeup of wastes from livestock operations, including manure.  Manure 

can contribute to high levels of nitrogen and phosphorus compounds, turbidity, and 

pathogenic organisms (Loehr, 1967; Cole, et al., 2000; Hooda, et al., 2000; Raloff, 2000; 

Hutchison, et al., 2004; The World Bank, 2005; Burkholder, et al., 2007; Kato, et al., 

2009).  Each of these contaminants causes its own lists of problems arising from their 

presence in the environment.   
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NUTRIENTS 

The nutrient content of manure will vary depending on the species, breed, 

sex, and size of the animal, as well as what it is fed.  Manure from a 1,000 lb. 

(approximately 454 kg) beef cow is generally composed of 0.5-0.6% nitrogen and 

0.2% phosphorus.  A 200 lb. (approximately 91 kg) adult pig will produce manure 

with approximately 0.6-0.7% nitrogen and 0.2-0.3% phosphorus.  Manure from a 

1,000 lb. (approximately 454 kg) horse can contain 0.5-0.6% nitrogen and 0.1% 

phosphorus (Gillespie, 2002).  High levels of nitrate and nitrite in drinking water 

is accepted to be a direct cause of methemoglobinemia, or blue baby syndrome 

(Burkholder, et al., 2007; WHO, 2011).  Nitrite may react in the body and form 

compounds that are carcinogenic to humans, and high levels of nitrate may 

completely inhibit iodine uptake (WHO, 2011).  The current accepted standards 

for drinking water are no more than 45 mg L-1 for nitrate and no more than 3 mg 

L-1 for nitrite and are based on thresholds for methemoglobinemia (WHO, 2011).  

At low pH, ammonia compounds occur in very low levels in drinking water and 

there is currently no guideline value (WHO, 2011); however, at a higher pH, it 

only takes a concentration of 0.02 mg L-1 to be toxic to fish and other aquatic 

wildlife (Hooda, et al., 2000).  Phosphorus has high soil retention in comparison 

to nitrogen, and most large-scale phosphorus losses occur because of application 

of manure applied to saturated, poorly drained, or frozen soils (Hooda, et al., 

2000).  Both excess nitrogen and excess phosphorus, combined with the high 

BOD of livestock manure, can stimulate extreme algal and cyanobacterial growth, 

contributing to intensive eutrophication and depleted oxygen availability (Hooda, 
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et al., 2000; The World Bank, 2005).  Algal and cyanobacteria blooms are 

associated with red tide phenomena around the world, especially in Asia, and the 

release of cyanotoxins that may lead to widespread fish and other aquatic life die-

offs (The World Bank, 2005; Burkholder, et al., 2007; WHO, 2011). 

 

PATHOGENS 

Animal excrement is a known source of pathogenic organisms, many of 

which are asymptomatic in livestock species, but cause fatal infections in humans 

(The World Bank, 2005).  If these agents are able to contaminate water supplies, 

effects can be widespread and devastating to those exposed.  It is estimated that 

water-borne diarrhea causes approximately 6,000 deaths every day, mostly in 

children (The World Bank, 2005).  Pathogens found to originate from manure 

include Escherichia coli and Salmonella (Hooda, et al., 2000; The World Bank, 

2005; WHO, 2011).  Escherichia coli are a diverse group of bacteria that inhabit 

the intestines of warm-blooded animals.  When in their native environment, E. 

coli are harmless and essential to digestive health; however, elsewhere in the 

body, an E. coli infection can cause urinary tract infections, bacteremia, and 

meningitis.  If consumed and introduced to a foreign digestive system, several 

strains are enteropathogenic and can result in severe vomiting and diarrhea 

(WHO, 2011).  E. coli is used as an indicator organism to determine water quality, 

possible fecal contamination, and suggest the presence of other pathogens (WHO, 

2011).  Salmonella spp. is another diverse group of bacteria that may originate 

from livestock manure.  Salmonella has an array of serotypes, infection by which 
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can result in any of four conditions:  gastroenteritis, bacteremia or septicemia, 

typhoid/enteric fever, or an asymptomatic carrier state (WHO, 2011).  Other 

pathogens that have been found in livestock manure include Cryptosporidium and 

Giardia, which also introduce health risks with their contamination (Hooda, et al., 

2000; Burkholder, et al., 2007).  These and other organisms can persist in the 

environment long after a leak or spill by finding refuge and thriving within settled 

sediments (Burkholder, et al., 2007). 

 

OTHER POLLUTION INDICATORS 

There are other measureable inorganic and organic parameters that are 

indicators of water quality and may be harmful at high or low levels.  Electrical 

conductivity is a measure of dissolved salts and ions in water and may include 

chloride, nitrate, sulfate, phosphate, sodium, potassium, and magnesium, among 

other elements and compounds.  High electrical conductivity may be an indicator 

of septic or other forms of organic pollution (USEPA, 2012).  Elevated levels of 

chloride may corrode metals in distribution systems, increasing concentrations of 

heavy metals in water (WHO, 2011).  A pH of a stream outside the range of 6.5-8 

greatly reduces biological diversity.  A low pH may allow certain toxic elements 

and compounds, especially heavy metals, to become more mobile and available 

for uptake by various organisms (USEPA, 2012.)  The alkalinity of a stream 

determines its ability to neutralize acidic pollution and may be influenced by 

geology, salts, and certain industrial wastewater discharges (USEPA, 2012).  

Water hardness is due to high concentrations of cations, most commonly Ca+2 and 
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Mg+2.  There are no apparent biological or human health concerns with water 

hardness.  Most issues are aesthetic regarding taste, lather, and deposits left in 

plumbing and other surfaces (WHO, 2011).   

 Dissolved oxygen is the amount of oxygen in the water and is influenced 

by both physical and biological factors.  Dissolved oxygen varies with 

temperature, with cold water holding higher levels of oxygen than warm water.  

Dissolved oxygen is also influenced by water movement.  The churning action of 

running water introduces more oxygen, while still water usually has much lower 

dissolved oxygen.  It is also affected by biological activity.  Respiration by 

aquatic animals and decomposition of organic matter can lower dissolved oxygen 

levels.  The amount of oxygen consumed by these processes is the biochemical 

oxygen demand.  Large amounts of organic pollution increases BOD and lowers 

dissolved oxygen levels and may indicate the presence of animal waste, decaying 

vegetative matter, and pesticides (USEPA, 2012).   

 

REGULATIONS 

Due to the many threats that pollution sources pose to the environment, and 

because water is often the main vector of contaminant transport, many countries have 

regulations that aim to protect the quality of their surface waters and to police potential 

polluters.  Most of these regulations in the United States are overseen by the United 

States Environmental Protection Agency (USEPA) via the Federal Water Pollution 

Control Act, or the Clean Water Act (CWA), herein referred to as the CWA, with the 

goal of “restoring and maintaining the chemical, physical, and biological integrity of the 
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nation’s waters” (Federal Water Pollution Control Act, 2011).  The CWA includes 

monitoring, compliance, and enforcement protocol and periodically releases a National 

Water Quality Inventory, The 305(b) Report, to report which waters are healthy, 

threatened, or impaired, and how or why.  These reports are used to form the Threatened 

and Impaired Waters List, The 303(d) List, and thus manipulate future regulations and 

determine operations of environmental concern.  The USEPA has used the CWA to 

develop various permitting and implementation strategies that cover point- and nonpoint-

sources of pollution.  Section 319 of the CWA approves grants for efforts made to 

mitigate non-point sources of pollution including livestock associated runoff, unless it 

originates from an operation large enough to qualify as a CAFO (Federal Water Pollution 

Control Act, 2011). The National Pollutant Discharge Elimination System (NPDES) 

applies to point-sources, or direct discharges to surface waters.  Under the NPDES, 

CAFOs qualify as point-sources (i.e. direct discharge from a single, identifiable, fixed 

source) and are required to comply with stringent permitting elements including effluent 

limits, best management practices (BMPs), compliance schedules, and monitoring and 

reporting requirements (Federal Water Pollution Control Act, 2011).   

 

COMPLIANCE AND MANAGEMENT OPTIONS 

These stringent rules have inspired many livestock owners to seek out practical 

uses for excess manure and develop effective, but affordable ways to manage waste 

onsite.  Because of the high amounts of organic matter and nutrients in livestock manure, 

it is popular as a natural fertilizer option and is often spread or sprayed over fields, or 

injected into the soil.  However, due to the separation of livestock and crop operations, 
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transportation costs, and pretreatment of the manure to help remove pathogens and other 

potentially harmful contaminants, this option is viewed as expensive and relatively 

inconvenient when compared to using synthetic chemical fertilizers.  Even without the 

constraints of competition, sanitation, and cost, the application rates required to 

accommodate the amount of manure produced far exceed crop demands.  This excess 

overwhelms the nutrient recycling ability of the environment and leads to nutrient losses 

as most of the applied fertilizer either washes away via stormwater runoff or leaches 

through the soil into groundwater; thus resulting in a surplus of nutrients in the water 

supply and the associated complications (Hooda, et al., 2000; Burkholder, et al., 2007)   

Even if rates or volumes are not excessive, application to saturated soils or terrain with a 

high slope may generate large amounts of contaminated runoff.   

Composting is another popular option for manure management because it 

produces a useful product that can be used by small or large scale operations.  

Unfortunately, as with field spreading, composting has obstacles:  transportation costs 

can outweigh the environmental benefits of compost, and commercially sold soil 

conditioners are often cheaper options (Martinez, et al., 2009). 

Regardless whether or not field spreading or composting is an option, temporary 

to long-term onsite storage is still necessary until the manure can reach its final 

destination.  Because of requirements by the Clean Water Act, storage methods must 

effectively contain manure and other waste products and prevent spillage, leaking, or any 

other exposure to the water supply.  Certain storage methods are preferred based on type, 

amount, and storage time of the waste.  The Natural Resources Conservation Service 



11 
 

(NRCS) uses these criteria to provide guidelines for constructing animal waste storage 

facilities to comply with federal, state, and local regulations.   

Anaerobic lagoons are one of the oldest methods of waste confinement and are 

most often used for slurries and wetter material (Loehr, 1967).  Lagoons are common but 

they offer no treatment besides what is achieved through the settling of sediments and 

minor destruction and stabilization of organic matter (Loehr, 1967; Robbins, et al., 1972); 

additional treatment is required in order to remove pathogenic organisms and nitrogen 

(Loehr, 1967).  Anaerobic lagoons are the norm, but systems may incorporate aerobic 

treatment as well.  Aerobic systems use either a rotor or aeration system to provide 

oxygen to the sludge, but are less popular because they require a constant power source 

and a greater land area to operate effectively (Loehr, 1971).  Either type of lagoon is also 

prone to spills and blowouts if not designed properly.  As lagoon effluent may still be 

rich in pathogens, nitrogen, oxygen-demanding materials, and other harmful 

contaminants, these spills can be devastating to receiving ecosystems (Horrigan, et al., 

2002).  Other methods for manure management may utilize both aerobic and anaerobic 

lagoons or holding tanks, or in-house treatment units for confined animal housing (Loehr, 

1971).   

While lagoons are the preferred method for liquid wastes (most often washout 

from confined swine and poultry production), they are not optimal for materials with a 

more solid composition.  Animals like cattle and horses produce waste with high dry 

matter content and may include soiled bedding and other dry materials.  These types of 

materials are often best for compost, but still require temporary storage, often in an 

aboveground holding structure.  Ideally, these structures sit on an impermeable surface to 
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prevent leaching, and are surrounded by walls of a sturdy and solid enough material to 

prevent leakage and to support the weight of the manure.  Usually only three walls are 

incorporated to allow for easy loading and unloading of contents.  These structures are 

traditionally designed purely for storage.  They offer no treatment and their one open side 

makes them susceptible to contaminated runoff in heavy precipitation.  Overloading and 

spillage can occur if the pads are not emptied on a regular basis and can introduce 

contaminants to the environment and cause degradation of the structure itself.  Regardless 

of the management option chosen, many do not offer any benefits other than compliance, 

if maintained properly, and rarely provide returns equal to the cost and effort of operation 

(Martinez, et al., 2009).   

 

WETLAND MECHANISMS FOR WASTEWATER TREATMENT 

Because of the potential problems associated with undertreated stormwater runoff 

and the expense of current treatment options, there has been an effort to develop an 

affordable, yet effective system for removing contaminants from effluent polluted by 

livestock waste.  Research has begun to look to nature for inspiration.  Wetlands occur in 

a variety of ecosystems, bordering water features such as springs, streams, rivers, lakes, 

and estuarine areas and perform valuable and irreplaceable functions.  Wetlands trap and 

slow down fast-flowing stormwater runoff and floodwaters, allowing for filtration 

through plants, roots, and soil, and removing sediments and other substances that may be 

potentially harmful.  Due to their pollutant-removal capabilities, wetlands are becoming 

popular mechanisms for wastewater treatment.  Some natural wetlands have been 

successfully managed to remove excess nitrogen from municipal and agricultural 
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wastewater (Gale, et al., 1993; Elder and Goddard, 1996), but most other treatment 

applications use manmade wetlands.  These systems, often referred to as constructed or 

artificial wetlands, receive and treat heavily polluted wastewater from a variety of 

sources through complex interactions between chemical, physical, and biological means.  

Constructed wetlands may be specifically designed to receive high concentrations of 

particular pollutants, and are successfully used to treat municipal wastewater (Gale, et al., 

1993; Green, et al., 1998), runoff from agricultural fields (Elder and Goddard, 1996; 

Moore, et al., 2000), oil sands industry effluent (Bendell-Young, et al., 2000), mine 

drainage (Sobolewski, 1996), aquaculture wastewater (Lin, et al., 2002), and landfill 

leachate (Yalcuk and Ugurlu, 2009).  Most treatment mechanisms are performed by the 

host of microorganisms that thrive in wetland water, substrate, and rhizosphere, and 

facilitate nutrient-breakdown pathways, predate harmful pathogens, and contribute to 

overall wetland functions.  Contaminants not intercepted by microbiological activity can 

chemically decompose or become bound in soil and sediments.   

Nitrogen compounds can be broken down in several ways, mostly by microbial 

methods.  In anaerobic zones, organic nitrogen is converted to ammonium nitrogen, 

which can then take multiple pathways: ammonium can be taken up by plants or bacteria 

and converted back into organic nitrogen, or it can be oxidized into NO₂- by nitrification.  

Once NO₂- is formed, it can be denitrified into N₂ and fixed by bacteria or released into 

the atmosphere, or nitrification can continue and convert it into NO₃-.  NO₃- is either 

utilized by plants or denitrified to N₂.  Because of the complexity of wetlands, coexisting 

aerobic and anaerobic zones support simultaneous nitrification and denitrification.  
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Studies have shown that wetland treatment can achieve upwards of 94% nitrogen removal 

(Conley, et al., 1991; Carleton, et al., 2000; Harrington and McInnes, 2009). 

Wetlands are also effective at trapping other nutrients, particularly sulfur and 

phosphorus.  Most sulfur is held stable in organic forms, but if it is mineralized and 

released into the environment it may precipitate as metal sulfides and stored in sediment, 

or volatilize as hydrogen sulfide.  Trapping sulfur is important in the treatment of acid 

mine drainage (Sobolewski, 1996).  Phosphorus is a relatively stable element and does 

not readily go through reactions.  If phosphorus is able to be released into a soluble state, 

it is lost in effluent, used by plants, or accreted within the substrate.  Wetlands have been 

shown to remove as much as 90% of influent phosphorus from aquaculture and livestock 

wastewater (Adler, et al., 1996; Harrington and McInnes, 2009).  Microorganisms are not 

the only contributor in breaking down nutrient compounds; plants are integral, with up to 

90% of nutrient uptake accomplished by plants (Rogers, Bet al., 1991).  Pitcairn, et  al. 

(1998) found that plants closest to livestock barns contained the highest concentrations of 

nitrogen when compared to plants found further from the barns, and suggests planting 

nitrophilous species to encourage uptake from runoff.  Pitcairn’s study took place in 

Scotland, but appropriate species could be identified for North America.  A dense cover 

of plants is what slows down runoff enough for it to infiltrate and be treated, but plants 

are important mostly because of the environment created by their roots.  The rhizosphere 

is home to a large diversity of microorganisms and their interactions with each other and 

with the plant roots produces a variety of conditions conducive to nutrient trapping and 

the removal of other contaminants (Conley, et al., 1991; Cheng, et al, 2009).  The 
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addition of plants may significantly improve the function of wastewater treatment 

systems (Harvey and Fox, 1973; Wolverton and McDonald, 1979).   

Most aquatic ecosystems have multi-dimensional structures that consist of 

complex relationships between many trophic levels.  The characteristics of a wetland 

makes it an ideal habitat for microorganisms: the wet environment allows biofilms to 

form on the surfaces of plants and substrate media; soil pores provide shelter; and the 

occurrence of oxidized and anoxic zones within the rhizosphere provides conditions for 

both aerobic and anaerobic bacteria.  While wetland food webs are still complex, they are 

limited to shallow water or saturated soils, leaving little or no room for larger animals.  

The majority of trophic activity within the water and substrate is confined to 

microorganisms and small macroinvertebrates.  Because of this, wetlands are perfect 

environments for capturing and reducing pathogens in wastewater.  According to 

wastewater treatment research, wetlands are capable of removing up to 99% of fecal 

coliforms, as well as salmonella, giardia, and cryptosporidium cysts and oocysts 

(Pundsack, et al., 2001; Quiñónez-Diaz, et al., 2001; Nokes, et al., 2003; Tunçsiper, 

2007).  Constructed wetlands are also effective at breaking down and removing 

pesticides, and reducing suspended solids and biochemical oxygen demand (Conley, et 

al., 1991; Green, et al., 1998; Moore, et al., 2000; Lin, et al., 2002). 

 

RAIN GARDENS 

A treatment system that exhibits some traits of a constructed wetland is receiving 

notable attention and becoming a trend in small-scale stormwater runoff treatment.  

Commonly called rain gardens, they are used mostly in urban and residential landscapes 
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with large areas of pavement and other impervious surfaces where more complex, large-

scale constructed wetlands are not an option.  They may be installed on rooftops, along 

sidewalks and streets, and in yards.  Rain gardens use passive treatment and collect and 

hold water for only up to a few days after a rain event, as opposed to constructed 

wetlands that require a constant source of water.  Rain gardens are also designed to 

remain dry for extended periods of time in between precipitation events.  Excess 

stormwater runoff that is not absorbed by soil or falls on impermeable surfaces is diverted 

into rain gardens, and while technically rain gardens do not qualify as wetlands, they do 

employ some of the basic principles to treat water (Hunt, 2001) .  As water is trapped and 

slowly infiltrated into and through the substrate, sediments settle and are held, and 

nutrients and other particles adhere to mulch and soil.  Organic matter may be broken 

down and pathogens may be killed by microbial processes, especially in the rhizosphere.  

There is a growing movement to develop wastewater treatment systems that are effective 

and environmentally friendly but also easily managed for small areas and operations, and 

rain gardens seem to offer a promising alternative.   

Research involving passive treatment of livestock-associated runoff is emerging 

as traditional lagoon systems are deemed inadequate and new and more stringent 

pollution regulations are placed on the livestock industry (Loehr, 1967; Robbins, et al., 

1972; Hooda, et al., 2000; The World Bank, 2005; Burkholder, et al., 2007; Kato, et al., 

2009).  In 1991, the Natural Resources Conservation Service issued technical guidelines 

for designing constructed wetlands and other similar systems specifically used to manage 

livestock waste (USDA, 2002).  In general, these guidelines are intended to provide 

blueprints for structures that will prevent, collect, or dispose of seepage that may pollute 
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surface or groundwater (USDA, 2002).  There is little knowledge about the feasibility of 

installing and managing a rain garden to receive large amounts of livestock waste and 

successfully remove a significant amount of contaminants.  The ease of changing an 

establishment’s infrastructure depends heavily on the size of the operation; smaller farms 

generally have more options for efficient waste management, and can alter their methods 

more easily.  Rain gardens are small, require relatively little maintenance, and would be 

an easy transition for those looking to renovate a waste management system. 

 

EQUINE WASTE IN KENTUCKY 

Most of the publicity given to livestock waste management revolves around large-

scale production of animals for food.  Feedlots and CAFOs receive the most attention, but 

the scope of impact extends to other forms of animal agriculture.  Kentucky has a 

thriving, world-renowned horse industry.  Racing alone makes up 46% of the Total 

Economic Impact for Kentucky, and when combined with other equine business is 

responsible for over half of the state’s economy (American Horse Council, 2005).  The 

Kentucky horse community is comprised of approximately 190,000 residents and 

provides over 140,000 jobs.  Kentucky is home to over 300,000 horses, mostly in the 

central region of the state (American Horse Council, 2005).  As these estimates are 

outdated, the University of Kentucky’s Equine Initiative is partnering with the University 

of Louisville’s Equine Business Program and the National Agricultural Statistics Service 

to conduct a comprehensive survey of Kentucky’s equine industry.  Results are expected 

by early 2013 and will hopefully offer a more accurate depiction of the equine industry’s 

impact on Kentucky (UK Equine Initiative, 2012).  One 1,000 lbs. (454 kg) horse can 
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produce 50 lbs. (23 kg) of manure per day and, if housed, 20 lbs. (9 kg) of soiled 

bedding.  Considering the estimated number of horses in the state, this can equal as much 

as 21 million lbs. (over 9,500 metric tons) of waste, statewide, on a daily basis (Higgins, 

et al., 2008).   

Composting is a popular option for horse manure and muck primarily due to its 

low moisture content, but requires large amounts of land for implementation.  

Considering the high demand for and value of land in Central Kentucky, composting is 

not a priority for most landowners.   

 

CANE RUN WATERSHED 

Central Kentucky’s watersheds are bearing the burden of the heavy equine 

activity in the area.  Of particular concern is the Cane Run Watershed.  Cane Run is a 

third order stream that flows into North Elkhorn Creek and eventually to the Kentucky 

River.  The main stem of Cane Run is 16.95 miles (27 km) with a 28,562 acre (115.6 

square km) watershed (Cane Run and Royal Spring Watershed Restoration Plan, 2006).  

Cane Run lies within Fayette and Scott counties; and while it contains urban areas in 

Lexington and Georgetown, it is approximately 75% rural (CRRSWRP, 2006).  The area 

is underlain with the phosphatic, shaly, Ordovician-aged Lexington Limestone formation 

(CRRSWRP, 2006).  The limestone-shale geology encourages karst features; large 

sinkholes and swallets are common, but difficult to identify, and allow pollution to be 

spread rapidly between surface and groundwater.  This karst system is responsible for the 

direct link between Cane Run and the Royal Spring Aquifer, which underlies much of the 

surface water basin and supplies drinking water for Georgetown, Kentucky.  Cane Run is 
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listed on the Kentucky Department of Water’s 2010 Integrated Report to Congress on the 

Condition of Water Resources in Kentucky 303(d) List of Impaired Waters for impaired 

uses: warm water aquatic habitat (nonsupport), primary contact recreation water 

(nonsupport), and secondary contact recreation water (partial support) (KDOW, 2011).  

Listed pollutants are fecal coliform, nutrient/eutrophication biological indicators, organic 

enrichment (sewage) biological indicators, specific conductance, and 

sedimentation/siltation (KDOW, 2011).  Suspected sources are livestock, urban 

stormwater, roads and highways, construction, and agriculture (KDOW, 2011).   

Cane Run has been set aside in central Kentucky as an example and educational 

opportunity for watershed health and restoration.  The Cane Run and Royal Spring 

Watershed Restoration Plan was adopted in 2006 and contains project proposals aimed at 

identifying and reducing potential sources of contamination, and ultimately removing 

Cane Run from the 303(d) List.  One of the initiatives in the plan addresses proper 

management of livestock waste within the watershed.  There are an estimated 2,000 cattle 

and 1,300 horses within Cane Run and the manure and muck from these animals are 

likely contributors to watershed impairments (CRRSWRP, 2006; KDOW, 2011).   

 

SITE DESCRIPTION 

Victory Haven Training Center is a thoroughbred training facility located on 

Russell Cave Road in northern Lexington, KY.  The property has the capacity to house 

over 300 horses and is mapped by The Cane Run and Royal Spring Watershed 

Restoration Plan as a confined feeding operation.  A Cane Run tributary flows through 

the property and is labeled as an intermittent stream on the United States Geological 
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Survey topographic map (KGS, 2012).  The stream flows roughly southeast to northwest 

through the property, dropping approximately twenty feet in elevation.  Like most of 

central Kentucky, Victory Haven is underlain with the Lexington Limestone formation, 

while the onsite stream is flanked with Quaternary Alluvium deposits (KGS, 2012).  This 

type of geology is known for karst features which may directly connect surface and 

groundwater.  The Cane Run tributary that flows through Victory Haven is partly fed by 

several seeps in the stream banks and many streams in the area contribute to underground 

water features such as the Royal Spring Aquifer.  The Victory Haven facility is watered 

by onsite wells; five unlabeled wells appear on the area map by Kentucky Geological 

Survey, as well as a domestic well immediately downstream of Victory Haven on the 

adjacent property (KGS, 2012).  Victory haven can be found on the FEMA Flood 

Insurance Rate Map for Lexington-Fayette Urban County Government, Kentucky, No. 

2100670126D, effective date 9/17/2008 (FEMA, 2008).  

Victory Haven sells their composted horse muck after it spends up to twelve 

months in on-site windrows; however, before the muck is applied to the windrows, it is 

stockpiled in a storage structure, designed per the NRCS Technical Guidelines for 

Kentucky (NRCS, 2003).  These structures are placed directly outside of most of the 

barns at the facility, and muck is stored for several weeks to over a month until it is 

transferred to the windrows.  These structures consist of an impermeable concrete pad 

approximately six inches (15 cm) thick surrounded by three concrete or wooden walls, 

approximately 6 feet (2m)  tall, and are accessed at the open side by trucks, tractors, and 

other manure handling equipment (Figure 1.1).  Spillage from the approach side of the 

storage pads is common and has been documented (Figure 1.2), as is overflow over and 
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through gaps in the walls (Figure 1.3).  As several of the muck pads are close to the 

onsite stream (some within 50 ft), pollution from spillage and runoff is a legitimate 

concern (Figure 1.4).  The stream on the Victory Haven property displays visible 

evidence of sedimentation and eutrophication, most likely a result of manure 

contamination (Figure 1.5). 
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Figure 1.1: Typical muck storage pad at Victory Haven, with concrete pad, walls, and approach. 

 

 
Figure 1.2: Spillage from approach end of muck storage pad at Victory Haven. 
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Figure 1.3: Muck storage pad at Victory Haven showing flimsy wooden walls with gaps, allowing for 

excess spillage and seepage of liquid waste. 
 

 
Figure 1.4: Overflowing wooden muck storage pad at Victory Haven, showing drainage and close 

proximity to onsite stream (photograph taken from stream bank). 
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Figure 1.5: Extreme algal growth in stream at Victory Haven. 
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PURPOSE 

This project was designed to expand past and current research in livestock waste 

treatment to include Kentucky’s prosperous horse industry and potentially alleviate some 

of the environmental issues that it faces.  The purpose of this project was to design and 

construct a temporary muck storage structure that will utilize rain gardens and 

wetland/phytotechnologies to control and treat contaminated runoff from stockpiled horse 

manure and bedding at a horse boarding and training facility within the Cane Run 

watershed.  The objectives are: 1) Design and build two temporary muck storage pads 

that will divert stormwater runoff into a rain garden basin for passive treatment, 2) 

Determine the effect of new muck storage methods on the onsite stream at Victory Haven 

using analysis of bacterial indicator populations and water chemistry parameters, and 3) 

Determine the rain garden’s ability to trap and/or break down excess nutrients and 

pathogens introduced by contaminated runoff.  This project was initiated July 2010 and 

concluded July 2012. 
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Chapter 2: METHODS 

NEW MUCK STORAGE PAD DESIGN 

 Two new muck storage structures were designed and built to replace two existing 

pads at Victory Haven that used wooden walls, as they were in poor shape and exhibited 

the most spillage and seepage.  The new structures were built using the same basic 

guidelines suggested by NRCS to build the original structures (NRCS 2003).  However, 

the new design would force runoff coming from the pads into a rain garden basin and 

provide passive treatment of infiltrated water through an engineered substrate and 

potentially through uptake from vegetation planted in the basin (Figure 2.1 and Figure 

2.2).  One of these new structures kept the original pad and was retrofitted with the new 

rain garden design (herein called experimental pad 1, or pad X1), and the other was torn 

down and moved to a new location (experimental pad 2, or pad X2).  The new design 

replaced the wooden walls with three concrete walls 6 ft (1.8 m) high and 5.5 inches (14 

cm) thick (Figure 2.1, Figure 2.2, Figure 2.3, and Figure 2.4). The new concrete pad on 

X2 was 21ft (6.4 m) by 24ft (7.3 m) and 6 inches (15.2 cm) thick.  Three-inch (7.6 cm) 

diameter holes were drilled throughout the base to allow runoff to escape into the 

surrounding rain garden (Figure 2.5).  Following installation of the containment walls, a 

ditch 2 ft (0.6 m) deep and 6 ft (1.8 m) wide was excavated surrounding the walled sides 

of the pads to serve as the rain garden basin (Figure 2.6 and Figure 2.7).  The bottom and 

sides of the basin were lined with geotextile fabric and filled with 6 inches (15 cm) of 

sand, 6 inches (15 cm) of #57 (3/4”) stone, and approximately 12 inches (30.5 cm) of #3 

(1 ½”) stone (Figure 2.1 and Figure 2.2).  This substrate configuration was chosen with 

the intent of facilitating rapid filtration through the larger rock, and slowing water 
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movement as it moved through the sand and approached native soil.  The design was 

calculated to hold all water entering the basin from a 50-year 24-hour rain event 

(Hershfield, 1961), allowing little opportunity for surface runoff and overland flow 

originating from the muck pad. 
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Figure 2.1: Side-view cross-section diagram of experimental muck pad design. 
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Figure 2.2: Front-view cross-section diagram of experimental muck pad design. 
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Figure 2.3: Beginning construction of concrete walls surrounding existing muck pad X1. 

 
 

 
Figure 2.4: Completed walls at X2, before installation of new concrete pad. 
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Figure 2.5: Hole in wall of X1, showing drainage from inside of pad. 

 

 
Figure 2.6: Excavation of rain garden basin at X1. 
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Figure 2.7: Excavation of rain garden basin at X1. 
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The surface of the rain gardens were covered with a thin layer of cypress mulch to 

support a variety of facultative wetland species that were planted in the rain garden basins 

of the new pads (X1 and X2) (Figure 2.8).  Seeds were planted in pots and grown in the 

University of Kentucky Department of Forestry on-campus greenhouse until plants were 

mature enough and onsite conditions were appropriate for planting.  Plants were grown 

and planted in both spring/summer of 2011 and spring/summer of 2012.  A hole, 

approximately twice the size of the potted plant, was excavated in the rock and filled with 

the containerized plant and potting soil backfill.  The plant species used are all native to 

Central Kentucky and include fox sedge (Carex vulpinoidea), frank’s sedge (Carex 

Frankii),mist flower (Eupatorium coelestinum), Illinois bundleflower (Desmanthus 

illinoensis), bur marigold (Bidens cernua), river oat (Chasmanthium latifolium), and 

slender mountain mint (Pycnanthemum tenuifolium).  All seeds were purchased from 

Dropseed Nursery in Louisville, Kentucky. 
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Figure 2.8: Planting of vegetation in rain garden basin at pad X1.  Cypress mulch (approximately 4 inches 

(10 cm) thick) was subsequently placed on top of rock and between plants. 
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Some of the existing pads at Victory Haven already had concrete walls in place 

instead of wooden walls.  Two of these, located downstream of the new pads, were 

chosen as control structures (pad C1 and pad C2) in order to obtain an idea of Victory 

Haven’s original muck storage pads’ effect on groundwater and surface water quality 

(Figure 2.9 and Figure 2.10).  The controls were built on and surrounded by native soil 

and had no passive treatment system.  Any runoff from control pads flowed over highly 

compacted gravel driveways and mowed grassed areas to the onsite stream. 

 

 

 

 

 

 

 



36 
 

 
Figure 2.9: Control pad C1. 

 

 
Figure 2.10: Control pad C2 with drainage leading to stream. 
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LYSIMETERS AND TENSIOMETERS 

Suction lysimeters (Model 1900 Soil Water Samplers, SoilMoisture Equipment 

Corp.) were used to collect water from the surrounding substrate of experimental and 

control pads for analysis.  Each lysimeter consisted of a porous ceramic cup attached to 

the bottom of a 24-inch (61 cm) PVC tube and sealed with a Santoprene stopper.  A 

vacuum was applied, causing water from the substrate to enter through the porous 

ceramic cup and collect at the bottom of the lysimeter until extracted for analysis.  Each 

lysimeter was paired with a tensiometer (Model 2630AL24K, SoilMoisture Equipment 

Corp.) to measure soil matric potential.  Each tensiometer consisted of a porous ceramic 

cup attached to a water column in a sealed tube.  The pressure head in the water column 

changes as water enters and exits the ceramic cup with varying soil saturation and is 

measured with a SW-010 tensimeter (Soil Measurement Systems, Tucson, AZ).  Four 

sets of paired lysimeters and tensiometers were installed within the rain garden basin at 

each experimental pad (Figure 2.11, Figure 2.12, and Figure 2.13).  Pad X1’s basin 

contained lysimeter and tensiometer sample locations X1A, X1B, X1C, and X1D; pad 

X2’s basin contained lysimeter and tensiometer sample locations X2A, X2B, X2C, and 

X2D (Figure 2.11).  After the sand layer was poured into the excavated basin, the porous 

cups for both instruments were installed in the sand layer within the basins and the 

remaining rock layers were filled in around the equipment.  Paired lysimeters and 

tensiometers were also installed at the control pads.  Each control pad was outfitted with 

two sets of paired suction lysimeters and tensiometers, installed immediately down 

gradient of the structure (Figure 2.14).  Each tensiometer and lysimeter pair was installed 

to a depth of 2 ft (61 cm) into the native soil.  The annulus of each hole was filled with 
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silica powder to the tops of the ceramic cups, and in-situ native soil to the ground level.  

Each pair was then sealed with a bentonite plug and an Orbit® WaterMaster® Extension 

Valve Box (Model 53213, Orbit Irrigation Products, Inc. North Salt Lake, UT) was 

anchored above with cement to protect the equipment from mowers (Figure 2.15 and 

Figure 2.16).  Pad C1 contained lysimeter and tensiometer sample locations C1A and 

C1B, and pad C2 contained lysimeter and tensiometer sample locations C2A and C2B 

(Figure 2.14).  Construction of the new muck storage structures, installation of sampling 

equipment, and planting of first year wetland species was completed in July 2011. 
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Figure 2.11: Top-view diagram of experimental muck pad design, showing locations of lysimeters and 

tensiometers in the rain garden basin. 
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Figure 2.12:  Diagram of lysimeter and tensiometer placement within the rain garden basin at X pads. 

 
 

 
Figure 2.13: Picture of lysimeter and tensiometer in the rain garden at X1. 
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Figure 2.14: Top-view diagram of control muck pad design, showing locations of lysimeters and 

tensiometers in native soil behind the pad. 
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Figure 2.15: Diagram of lysimeter and tensiometer placement within the native soil at control 

pads. 
 

 
Figure 2.16: Picture of lysimeter and tensiometer in valve box behind pad C1. 



43 
 

SAMPLING AND ANALYSIS 

Immediately following rain events, or when soil tension was suitable as dictated 

by tensiometer readings (<-50 centibars), a vacuum pressure of approximately -50 kPa 

was applied to each lysimeter with a Nalgene® mityvac® pump.  It was the original goal 

of the project that lysimeters were sampled at least twice a month.  Weather patterns did 

not always permit bi-monthly sampling; however, the lysimeters were sampled at least 

once a month.  Water samples for bacterial analysis were extracted from all twelve 

lysimeters with sterile BD 10mL Syringes (Becton Dickinson and Company, Franklin 

Lakes, NJ) and sterile Nalgene® tubing, and dispensed into sterile Corning® 15mL 

Centrifuge Tubes (Corning® Inc., Corning, NY) for transport.  All sampling equipment 

used for bacterial analysis was autoclaved a day prior to sampling and stored and 

transported in sterile plastic sample bags until used.  Water samples for water chemistry 

analysis were also extracted with a Nalgene® mityvac® pump and Nalgene tubing and 

dispensed into clean 250mL Nalgene® bottles for transport.  Lysimeter samples were 

collected from the time of installation in July 2011 until May 2012.  Tensiometer 

readings were also taken on dates of sampling. 

Ten grab-sample locations were chosen along the onsite stream starting at the 

point where surface flow enters the property and ending where it exits (Figure 2.17).  

Sample sites were selected based on proximity to muck storage pads and inflows from 

other areas of the property.  Samples for bacterial analysis were placed in sterile 

Corning® 15mL Centrifuge Tubes (Corning® Inc. Corning, NY) for transport.  Samples 

for water chemistry analysis were placed in clean 250mL Nalgene® bottles.  Grab 

samples were taken from the stream at each site at least twice a month for the first year, 
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from July 2010 to July 2011.  These samples served as preliminary data to evaluate the 

state of the onsite stream prior to installation of the new structures and to attempt to 

identify specific points of contamination.  Sampling continued following installation of 

the new muck storage structures from July 2011 through May 2012.  In situ water 

chemistry (dissolved oxygen, pH, temperature, electrical conductivity) was also measured 

at each site with a YSI® environmental monitor (556 Model) (YSI, Inc. Yellow Springs, 

OH). 
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Figure 2.17: Aerial Photograph of Victory Haven, showing stream, sample locations, and muck pads on the 
property. 
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All water samples from Victory Haven were placed on ice and transported to the 

University of Kentucky for analysis.  All samples were tested for water chemistry and for 

total coliforms and E. coli following methods outlined in Standard Methods for 

Examination of Water and Wastewater (Greenberg, et al., 1992). Water chemistry 

parameters included chloride, magnesium, potassium, calcium, sodium, sulfate, nitrates, 

ammonium nitrogen, phosphate, total organic carbon, alkalinity, and pH.  Total organic 

carbon (TOC) was analyzed with a Shimadzu TOC 5000A Analyzer (Shimadzu 

Corporation, Maryland).  Calcium (Ca+2), magnesium (Mg+2), sodium (Na+) and 

potassium (K +) were measured using a GBC SDS 270 Atomic Adsorption 

Spectrophometer (AAS) (GBC Scientific Equipment, Illinois). A Dionex Ion 

Chromatograph (IC) 2000 (Dionex Corporation, California) was used to determine the 

concentrations of sulfate (SO4
-2) and chloride (Cl-). Alkalinity was found using an auto 

titrater with a tritrant endpoint pH of 4.6, and an Orion pH meter. Nitrate (NO3
-) and 

ammonium (NH4
+) were analyzed using colorimetric analysis and a Bran+Luebbe 

Autoanalyzer (Bran+Luebbe, Analyser Division, Germany). 

The bacterial indicators quantified and used to evaluate water quality were total 

coliforms and E. coli.  Microbial populations in water are traditionally tested using the 

Standard Methods Most Probable Number (MPN) method.  The products Colilert® and 

Quanti-Tray®/2000, developed by IDEXX Laboratories, Inc., offer the same accuracy of 

traditional MPN tests but are less labor-intensive.  Colilert® uses the patented Defined 

Substrate Technology® which simultaneously detects coliforms and E. coli.  Two 

nutrient-indicators, ONPG (o-nitrophenyl and β-D-galactopyranoside) and MUG (4-

methyl-umbelliferyl and β-D-glucuronide), are metabolized by coliform enzyme β-
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galactosidase and E. coli enzyme β-glucuronidase.  As coliforms grow in Colilert® 

solution, they will use β-galactosidase to metabolize ONPG and change the solution from 

colorless to yellow.  E. coli will use β-glucuronidase to metabolize MUG and create a 

fluorescent solution.  Most non-coliforms do not have the appropriate enzymes to process 

ONPG and MUG, and those that do are suppressed by Colilert®’s matrix.  When 

performed correctly, this procedure eliminates false positives and false negatives often 

associated with traditional MPN media.  When used with Colilert® media, the Quanti-

Tray®/2000 operates on the same statistical model as a traditional 15-tube serial dilution.  

The Quanti-Tray®/2000 has a counting range from 1 to 2,419 per 100mL sample and a 

95% confidence limit.  These methods are approved by the USEPA, Standard Methods 

for Examination of Water and Wastewater, and the Association of Analytical 

Communities (IDEXX, 2012).  Colilert® and the Quanti-Tray®/2000 will be used to 

determine coliform and E. coli populations in water samples taken from Victory Haven.  

10mL samples were collected and tested from each stream location and each lysimeter. 

 In June 2012, plant tissue samples were collected and analyzed for total nitrogen 

and total phosphorus content.  Samples were taken from each species planted in year 1 

(July 2011), year 2 (June 2012), and control plants grown in the University of Kentucky 

Forestry greenhouse in April-June 2012.  For nitrogen analysis, the samples were ground 

into a coarse powder in a ball grinder (SPEX 8000M Mixer/Mill), approximately 0.250 g 

of which was weighed and placed into a volumetric test tube.  Each sample was mixed on 

a vortexer with three or four selenized boiling chips and 7 mL of concentrated sulfuric 

acid.  After mixing, 3 mL of 30% hydrogen peroxide was added to each tube, and sample 

was again spun again on the vortexer.  The tubes were placed into the block digestor at 
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approximately 630° C for about an hour and then cooled.  Once cool, deionized water 

was added to each tube to a total volume of 75 mL, mixed well and placed into a labeled 

storage container.  The total nitrogen was analyzed colorimetrically using the Bran + 

Luebbe autoanalyzer II.  The sample data was collected comparing peaks to a standard 

curve.  Samples for total phosphorus analysis were ground using the same methods as for 

total nitrogen.  Approximately 0.250 g was weighed and placed into a Coors crucible.  

The crucibles were placed in a 500° C muffle oven at overnight.  After cooling the 

crucibles to room temperature, a small amount of deionized water was added to each 

crucible to stabilize ash while moving the crucibles.  10 mL of 6 M nitric acid was added 

to each crucible and contents are brought to a ‘boil’ on a hot plate for about 15 minutes, 

agitating the contents of the crucibles occasionally.  The contents of the crucibles were 

then filtered through Whatman 42 filter paper into a 50 mL volumetric flask, and filters 

were rinsed with deionized water at least three times still collecting the contents in the 

volumetric flasks.  Samples were brought to a total volume of 50 mL using deionized 

water and the flasks were mixed and the contents were poured into a labeled storage 

container.  The total phosphorus was analyzed colorimetrically using the Bran + Luebbe 

autoanalyzer II and the sample peaks were compared to a standard curve to determine 

concentration. 
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STATISTICAL ANALYSIS 

 STATISTICAL PACKAGE AND METHODS 

 Raw data was recorded and manipulated in Microsoft Excel 2010.  All statistical 

analysis was performed with JMP 9 statistical software from SAS.  Statistical analysis 

methods included box and whisker plots and Wilcoxon two-group tests to measure 

significance at α=0.05.  A box and whisker plots is a statistical method used to visually 

display the distribution of a data set by depicting the five-number summary (minimum, 

first quartile, median, third quartile and maximum).  The box and whisker plots used in 

this analysis also identify the mean and potential outliers.  The Wilcoxon two-group test 

was chosen due to the highly variable nature of the data and of the sampling sets. 

 STREAM WATER QUALITY 

 Raw data includes detected levels of each water quality parameter (In situ 

dissolved oxygen, in situ temperature, in situ electrical conductivity, in situ pH, total 

coliforms, E. coli, EC, Cl-, SO4
-2, Mg+2, Ca+2, K+, Na+, ALK, pH, NO3

-, NH4
+, TOC, and 

PO4
-3) for each stream sample location on each sample date beginning July 15, 2010 and 

ending January 24, 2012.  Dissolved oxygen, temperature, total and E. coli were each 

plotted over the series of stream sample locations (1-10, excluding 5) for each sample 

date to evaluate contamination behavior in the stream.  

Total coliforms, E. coli, and all water chemistry parameters (EC, Cl-, SO4
-2, Mg+2, 

Ca+2, K+, Na+, ALK, pH, NO3
-, NH4

+, TOC, and PO4
-3) for each stream sample location 

were graphed on time series of each sample date and examined for patterns.  In order to 

determine the effects of the new muck storage pad design, all data in these time series 
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were split into before June 2011 and after June 2011, when use of first two traditional 

muck pads at Victory Haven ceased and construction began to replace them with new 

experimental pads X1 and X2.  Because stream sample locations 3 and 4 are in closest 

proximity (3 immediately upstream, 4 immediately downstream) to pad X1, differences 

between stream water quality data from the sampling period before June 2011 and data 

from the sampling period after June 2011 for sample locations 3 and 4 were tested for 

statistical significance.   

Total coliform and E. coli population data for stream water samples before and 

after June 2011, for sample locations 2-10, were converted into Box and Whisker plots to 

compare possible patterns or differences in distribution.   

 

MUCK STORAGE PADS 

Raw data includes tensiometer readings and detected levels of each water quality 

parameter (total coliforms, E. coli, EC, Cl-, SO4
-2, Mg+2, Ca+2, K+, Na+, ALK, pH, NO3

-, 

NH4
+, TOC, and PO4

-3) in water samples taken from each of the twelve total lysimeters at 

both X pads and C pads for each sample date beginning July 26, 2011 and ending May 

15, 2012.  Tensiometer readings for each pad were averaged for each sample date to 

determine comparisons of soil moisture between pads C1, C2, X1, and X2.   

Box and Whisker plots of each parameter were constructed for each of the four 

monitored muck storage pads to determine any visible differences between the data.  

Differences in each parameter were also tested for statistical significance.  Values for 

each water quality parameter from each lysimeter were combined into two groups, one 

for the C pads and one for the X pads.  For each sampling event, values corresponding to 
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either C or X pads were averaged to obtain a single value representing the C pads and a 

single value representing the X pads.  These values were plotted in a time series for the 

entire sampling period to reveal trends within and between C and X pads.  Differences in 

each water quality parameter between the X pads and the C pads were tested for 

statistical significance. 

 

PLANTS 

Because samples of plant tissue were composites of several specimens within 

each rain garden basin and there was only one sample per species collected for each 

sample period, statistical tests could not be performed on that data.  Raw laboratory data 

was observed for patterns and differences in phosphorous and nitrogen content for each 

sample period. 
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Chapter 3: RESULTS AND DISCUSSION 

WEATHER 

Because this project focused on stormwater runoff, its efficacy and the 

interpretation of results were heavily dependent on weather and precipitation patterns, 

and any prolonged unusual or extreme weather may have skewed the results.  Weather 

data for Lexington, KY was monitored and downloaded from the Kentucky Mesonet 

Fayette County Spindletop location (Kentucky Mesonet, 2012).  Central Kentucky 

averages approximately 40-50 inches (101-127 cm) of precipitation annually.  Monthly 

averages are spread fairly evenly, usually falling between 3-5 inches (7-13 cm); spring 

months (March-June) are the wettest and late summer through early autumn months 

(August-early October) are most often the driest.  This project saw several weather 

anomalies over the course of its two year timeframe.  Preliminary sampling began in a 

very wet July in 2010, over 3 inches (7.6 cm) above average, followed by a drought, with 

just over 3 inches (7.6 cm) of rainfall for August, September, and October combined.  

This dry period was followed by an extremely wet spring, with over 13 inches (33 cm) of 

rainfall in April alone.  Most of 2011 was unusually wet, totaling 65.2 inches (165 cm) of 

precipitation for the year.  Winter 2011-2012 was the fourth warmest winter on record for 

the United States, with Kentucky’s lowest monthly average at only 47˚F (8.3˚C).  The 

warm winter and spring were followed by extreme summer heat, with fourteen highs 

above 95˚F (35˚C), six of which reached over 100˚F (37.8˚C), making for the hottest July 

and the third hottest summer on record. 
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STREAM WATER QUALITY 

 Preliminary sampling of the stream water at Victory Haven, beginning in July of 

2010, confirmed the presence of high populations of E. coli within the stream, with 

counts regularly exceeding 20,000 bacteria 100 mL-1.  The Surface Water Standards 

Administrative Regulations for Kentucky (KDOW, 2012) limit E. coli populations in 

primary contact recreation waters to no more than 130 colonies 100 mL-1 as a geometric 

mean based on not less than five samples taken during a thirty day period, and no more 

than twenty percent of those samples may exceed 240 colonies 100 mL-1.  There are no E. 

coli limits for secondary contact recreation waters, but fecal coliforms may not exceed an 

average 1,000 colonies 100 mL-1 over a thirty day period, and 2,000 colonies 100 mL-1 in 

twenty percent or more of samples.  Stream water samples were not collected five times 

per month, but even if they were, and all other E. coli counts were 0 colonies, the 30-day 

average would still be above the set limits for both primary and secondary recreation 

waters.  The Kentucky Administrative Regulations also list criteria for concentrations of 

common chemical water pollutants.  The substances of concern for this project that are 

listed are nitrate and sulfate.  Limits for domestic water supplies are 10 mg L-1 for nitrate 

and 250 mg L-1 for sulfate (KDOW, 2012).  Measured concentrations of nitrate and 

sulfate never exceeded these limits in the stream water samples; however, nitrate levels 

periodically measured above 8 mg L-1.  The Kentucky Administrative Regulations also 

state that surface waters supporting warm water aquatic habitats shall maintain a 

dissolved oxygen instantaneous minimum of no less than 4.0 mg L-1.  Dissolved oxygen 

in the Victory Haven stream regularly fell below this limit, occasionally measuring less 

than 2.0 mg L-1.  As confirmed by the data, this stream carries heavy loads of bacterial 
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pollution and experiences low oxygen levels, and although nutrient concentrations are not 

in excess of established limits, it is clear that the current amounts are having an 

observable effect on algal growth within the stream. 

 E. coli counts were graphed over the sequence of stream sample locations (1-10, 

excluding 5) for each sampling event (Appendix 1).  One would expect E. coli levels to 

steadily increase over the course of the onsite stream; this did not occur, but the stream 

does regularly experience spikes in E. coli populations at several points along the 

stream’s path, most notably at sample location 6.  Figure 3.1 shows E. coli populations 

representative of the trends in the stream at Victory Haven.  Sample location 6 is located 

at the confluence of the stream with a swale originating from a pipe that drains the horse 

washing stations (sample location 5) (Figure 2.17).  The spikes in sample location 6 

reflect high E. coli levels in water samples taken directly from the drain pipe.  Sample 

location 5 also consistently displays alarmingly higher concentrations of the measured 

water chemistry parameters than all other stream sample locations.  This trend suggests 

that wash stations may be heavily contributing to stream pollution at horse facilities, a 

possibility which was not predicted, or even considered, at the beginning of the project. 
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Figure 3.1:  Measured E. coli populations over the sequence of stream sample locations on July 29, 2010, 
showing a large increase at sample location 6.  Note that concentration of E. coli is expressed in colonies 

per 10mL. 

 

 

 

 

 

 

 

 

 

 

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 3 4 6 7 8 9 10

E.
 c
o
li
1
0
m
L‐
1

Stream Sample Location

Stream E. coli for 7/29/10



56 
 

In-situ dissolved oxygen and temperature were also graphed over the sequence of 

stream sample locations for each sampling date (Appendix 2 and Appendix 3).  On most 

sampling events, there is a dip in dissolved oxygen around sample locations 3 and 4, 

followed by a gradual increase downstream (Figure 3.2).  This may have more to do with 

streamflow dynamics than with contaminant levels within the stream.  This vicinity of the 

stream, between sample locations 2 and 4, regularly experiences low flow in comparison 

to downstream.  This increase in flow downstream is most likely due to several seeps in 

the streambank that introduce additional water.  Also, inputs of water from horse washing 

and other activities at the facility could be partially responsible.  This increase in flow 

would improve aeration and introduce more oxygen to the water.  Groundwater is also 

usually cooler than surface water, and the ability of colder water to hold more oxygen 

could also increase dissolved oxygen levels (Figure 3.3). 
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Figure 3.2: Dissolved oxygen levels over the sequence of stream sample locations on August 8, 
2011, showing decrease at sample locations 3 and 4, followed by a gradual increase downstream. 

 

Figure 3.3: Groundwater seep in stream bank at Victory Haven. 
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  The stream temperature data also displayed trends when graphed over the course 

of the stream.  Generally speaking, stream temperature increased over the stream’s course 

during the winter, and decreased during the warmer months (Figures 3.4 and 3.5).  

Decreasing temperatures during warm weather may be related to the same phenomenon 

controlling dissolved oxygen, where groundwater may be increasing streamflow and 

cooling the stream via seeps in the bank.  Cooler temperatures downstream may also be 

influenced by increased vegetation and shading of the streambed.  Warming of the stream 

during cold weather may be influenced by several factors.  Microbial activity keeps the 

muck piles much warmer compared to ambient temperature, and it is likely that runoff 

from the storage pads is at a higher temperature than the stream and is contributing to its 

warming.  Groundwater would have a similar controlling effect in winter as in summer, 

seeping warmer water from underground into the stream.  Warm water may also be 

introduced via wash stations and other on-site maintenance activities and would alter the 

stream temperature most dramatically. 
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Figure 3.4: Water temperature over the sequence of stream sample locations on January 19, 2012, 
showing a gradual increase in temperature during winter. 

 

 

 

Figures 3.5: Water temperature over the sequence of stream sample locations on July 14, 2012, 
showing a gradual decrease in temperature during warm weather. 
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For each stream sample location, E. coli and water chemistry parameters were 

plotted over a time series of the entire length of sampling, but few patterns of interest 

were observed in the raw data.  This raw data was further manipulated to compare water 

quality before and after June 2011, when use of the first two traditional muck pads on the 

property ceased and they were replaced with the new design.  Table 3.1 displays average 

levels for water quality parameters before and after June 2011.  Box and Whisker plots 

were made for each sample location showing E. coli data before and after June 2011 for 

stream sample locations 2-10 (Appendix 4).  At sample locations 2, 3, and 4, the means 

after June 2011 are lower than the means before.  Maximum E. coli counts and 

interquartile ranges were also less in sample locations 2-4.  Sample locations 6-10, where 

traditional muck storage methods remained in use and where the majority of the horse 

washing and boarding occur, did not show the same consistency and distributions were 

sometimes higher after installation of the new pads.  This difference in the data could be 

due to the new muck pads capturing runoff, but it is also likely that declining E. coli 

populations in this part of the stream are affected by a weep berm system that now 

surrounds the composting field.  This weep-berm was installed as a part of another 

project with University of Kentucky to mitigate the effect of runoff from the compost 

operation at Victory Haven.  The berms were successfully able to contain all storm events 

from the time they were installed in June of 2011.  Because of these differences in the 

stream data between sample locations 2-4 and sample locations 6-10, differences in data 

from before and after June 2011 were tested for statistical significance using a Wilcoxon 

two group test.  Each water chemistry parameter was tested, as well as E. coli; none were 

significantly different. 
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Table 3.1:  Average levels of water quality parameters in stream before and after June 2011 

(Electrical Conductivity, chloride, sulfate, magnesium, calcium, potassium, sodium, alkalinity, pH, nitrate, 
ammonium, total organic carbon, phosphate, and E. coli) at each sample location for before and after June 

2011.  All water chemistry measurements are mg L-1, and E. coli is colonies 10 mL-1. 

Sample 
Location 

EC Cl SO4 Mg Ca K Na ALK pH NO3 NH4 TOC PO4 E. coli 

Before June 2011 

2 355 18 19 4.6 48 2.2 5.7 593 7.3 2.7 0.4 50 5.7 178 

3 363 19 22 4.1 56 2.3 4.7 547 7.1 4.2 0.15 61 3.8 84 

4 362 20 21 4.2 56 1.9 5.9 619 7.2 2.7 0.15 61 2.8 229 

6 383 18 22 4.3 51 2.4 6.5 694 7.2 2.2 0.39 60 3.2 644 

7 384 16 21 4.3 54 2.8 6.4 689 7.3 2.2 0.13 54 2.6 213 

8 390 17 21 4.3 56 2.1 9.1 723 7.2 2.1 0.09 53 2.7 242 

9 395 19 22 4.3 56 2.3 6.7 647 7.5 2.4 0.09 67 2.3 424 

10 394 18 22 4.3 56 2.3 6.4 708 7.5 2.3 0.09 47 2.6 137 

mean 378 18 21 4.3 54 2.2 6.4 652 7.3 2.6 0.19 57 3.2 269 

After June 2011 

2 326 18 18 5.1 39 2.1 5.2 450 7.1 2.5 0.24 32 12 24 

3 349 20 19 6.3 40 2.3 5.2 463 7 2.9 0.21 31 13 34 

4 352 19 19 4.8 44 1.9 5.5 461 7.1 2.8 0.18 32 12 37 

6 356 18 19 4.8 42 1.9 5.7 532 7.1 2.4 0.12 33 9.8 311 

7 356 18 19 4.7 42 1.9 5.4 501 7.2 2.4 0.12 34 9.9 254 

8 367 16 20 6.1 43 2.4 5.2 535 7.2 2.4 0.09 33 9.6 259 

9 384 16 22 5.9 44 2.4 6.2 600 7.3 2.6 0.07 32 11 259 

10 380 16 22 5.7 44 2.5 5.7 565 6.3 2.5 0.06 30 11 159 

mean 359 18 20 5.4 42 2.2 5.5 514 7 2.6 0.14 32 11 167 
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 It is speculated that dry weather in late summer influenced transport of 

contaminants to and within the stream by the notion that if there is no rain, then there is 

no runoff to carry pollution to the stream or to leach into groundwater.  For each 

sampling date, E. coli levels were plotted against the sequence of stream sample locations 

(Appendix 1).  On numerous occasions, there are apparent spikes in E. coli levels at 

certain sample locations, but many of these spikes are followed by large drops, 

suggesting that the bacteria are not making it further downstream in high numbers during 

dry weather.  Because this trend is most dramatic in the dry months of July-October, 

especially in 2010, and is less apparent during wetter weather, it may be attributed to low 

or no-flow stream levels due to lack of precipitation. Several stream sample locations, 

most notably locations 3 and 4, were dry on multiple occasions in late summer.  These 

trends are still observed during other time periods but are less pronounced, suggesting 

that downstream decreases in E. coli populations may also be influenced by a dilution 

effect.   

E. coli levels for each sample location were plotted over a time series of each 

sampling event from the beginning of stream sampling to conclusion (Appendix 5).  

These graphs were highly variable, but a few trends were observed and may be due to 

precipitation and/or temperature.  One trend that was consistent throughout most sample 

locations were discernible declines in viable coliforms during the colder months of the 

year, while most peaks were in the warm months of late spring, summer, and early 

autumn (Figure 3.6).  These trends are consistent with the findings of studies concerning 

the thermal niche of E. coli where populations experience increased fitness and survival 

in warmer temperatures and are decreased in cold environments.  Because E. coli bacteria 
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inhabit the intestinal tracts of warm-blooded animals, their populations thrive most in 

warmer temperatures (Gallagher, et al., 2012; Bennet, et al., 1992).  It is typical for E. 

coli populations in water and soil to be high in warm months and low in winter, 

increasing from January-July, and decreasing from July onward (Koirala, et al., 2008; 

Byappanahalli, et al., 2006).   

Even with little runoff and population declines during winter, there is still 

contamination risk.  Studies have shown that natural water and soil environments can 

process low concentrations of E. coli, mainly through predation by other microorganisms, 

but high loads may overwhelm the system and allow E. coli populations to survive and 

even grow (Henis, et al., 1989; Byappanahalli, et al., 2003).  E. coli has a thermal niche 

of about 19-42°C, and can persist in temperate soils after introduction (Bennet and 

Lenski, 1993; Byappanahalli, et al., 2006).  Although unable to grow and reproduce in 

extreme cold temperatures, E. coli may survive even across seasons and regrow following 

spring thaw (Byappanahalli, et al., 2006; Adhikari, et al. 2007).  Because of this 

persistence, E. coli residing in soil may be released into a stream or groundwater system 

long after the contamination source is gone.  Any contaminants that do reach the stream 

may survive in pools and sediment along the stream bed and banks that remain within the 

stream bed during no-flow periods as long as the sediments remain moist.  

Byappanahalli, et al. (2003) discovered that the highest concentrations of E. coli in 

streams exist in sediments.  Sediments and pools provide a safe haven for bacteria in low-

flow periods and then allow them to be carried downstream as sediments are disturbed or 

when flow increases during subsequent rain events.  
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Figures 3.6: Time series of E. coli populations at stream sample locations 6, showing lowest populations 
during winter months. 
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Unusual weather does not just threaten the results of an experiment, but also 

complicates the logistics of the entire project.  Originally, construction of the new muck 

storage pads was set to begin in the spring of 2011, when the ground had thawed and was 

dry enough to support excavation.  Due to the extremely wet weather during early 2011, 

coupled with issues regarding the reliability of the hired contractors, construction was not 

completed until July 2011, and the project lost a full four months of sampling opportunity 

for the new pads.  Because of this delay, the intended full year of sampling following was 

not accomplished and was reduced to nine months.  This setback also caused problems 

regarding the plants planted in the new rain garden basins.  Seeds were sown in early 

spring 2011, with intention of installation soon after the completion of construction.  The 

four month construction delay forced the plants to remain in the Department of Forestry’s 

greenhouse for some of the hottest months of the year, resulting in the mortality of many 

specimens and the reduced health of the plants that did make it to the rain garden basins. 

 

MUCK STORAGE PADS 

 Construction of the new muck storage pads with rain garden basins was 

completed in July 2011 and monitoring began immediately.  Tensiometers were read at 

every sampling event and results showed that the basins do hold a considerable amount of 

soil moisture after a rain event, although it was observed that long periods between rain 

resulted in dry substrate conditions (Table 3.2).  The data also showed that the average 

moisture for tensiometers at the control pads was higher than the averages for the 

tensiometers in the rain garden basins.  The increased moisture at the control pads could 

be due to several factors: increased compaction due to mowing, close proximity to 
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shallow water table, higher soil clay content, and lower infiltration rate that the rain 

garden substrate.  As the compacted soil adjacent to the control pads was often observed 

to be saturated, the rain garden basins would provide a greater, less compacted area for 

runoff to disperse. 
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Table 3.2:  Tensiometer readings from experimental and control pads. 

Readings are in centibars.  Blank cells represent occasions where faulty equipment prevented readings. 

Date X1A X1B X1C X1D X2A X2B X2C X2D C1A C1B C2A C2B 

7/26/2011 -51 -50 -49 -52 -80 -74 -79 -80 -5 -20 -25 -24 

8/11/2011 -77 -77 -71 -75 -94 -90 -94 -96 -22 -32 -59 -53 

8/24/2011 -77 -79 -76 -83 -88 -85 -87 -89 -32 -42 -98 -84 

9/29/2011 -62 -58 -50 -54 -85 -83 -85 -85 -11 -22 -33 -23 

10/20/2011 -43 -42 -10 -38 -72 -69 -71 -91 0 15 2 2 

12/7/2011 -- -16 -11 -16 -40 0 -52 0 0 -35 0 0 

1/24/2012 -44 -50 -49 -54 -84 -74 -77 -74 -7 -22 -25 -26 

2/2/2012 -51 -50 -45 -51 -84 -79 -81 -47 -12 -14 -26 -25 

3/1/2012 -14 -45 11 -15 -65 -35 -28 9 -14 -33 -27 -32 

3/27/2012 -65 -76 -65 -87 -91 -79 -- -96 -30 -37 -54 -61 

4/3/2012 -83 -87 -84 -84 -95 -89 -88 -90 -15 -43 -73 -63 

4/17/2012 -51 -73 -86 -106 -92 -87 -51 -80 -13 -38 -83 -67 

4/26/2012 -42 -66 -84 -90 -92 -81 -- -71 -1 -49 -99 -134 

5/8/2012 4 6 2 -2 -1 -4 1 4 -3 -3 -21 0 

mean -50 -54 -48 -58 -76 -66 -66 -63 -12 -27 -44 -42 
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Samples from each lysimeter were analyzed to determine differences between soil 

water at the control pads and soil water in the rain garden basins at the experimental pads.  

Concentrations of each water chemistry parameter for each lysimeter were averaged to 

obtain a single value representing the control pads and the experimental pads for each 

sampling event.  These values were plotted on a time series for the entire sampling period 

(Appendix 6).  The most notable trend in the data showed increases in PO4
-3 and NO₃‐ 

concentrations for the experimental pads, while the control pads stayed fairly constant 

(Figure 3.7 and Figure 3.8).  This was not surprising, as nutrient-heavy runoff is being 

forced directly from the storage pads into the basins, and nutrients may accumulate as the 

basin environment develops and stabilizes.  As long as these nutrients will eventually be 

utilized by the biota within the basin and not leach into the groundwater or be carried to 

the stream via surface runoff, the basins are functioning as desired.  Total organic carbon 

increased over time in both the experimental pads and the control pads.  It makes sense 

that TOC would increase in the rain garden basins, as more manure-laden runoff is 

introduced and the biological communities in the substrate continue to develop, but there 

are no definite conclusions as to why TOC is also increasing at the control pads.  It could 

be due to increasingly poor maintenance, which seems to have gotten worse over the 

course of the project.  Greater accumulations of muck with a longer time period to break 

down could be adding organic carbon to the soil.  The sampling period may also be 

having an effect on soil TOC.  Lysimeter sampling began in July, when the most 

decomposition occurs.  Sampling continued through fall, winter, and spring until the 

beginning of the following summer.  During the colder months, there were still additions 

of manure and runoff, but less decomposition, allowing organic carbon to accumulate.  
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Most other water chemistry patterns (Na+, Mg+2, SO4
-2, Cl-, EC) at the experimental pads 

varied greatly, while their concentrations at the control pads remained stable.  This high 

variability at the experimental pads may be due to sediments washing off of the 

unweathered rocks that were installed in the basins or simply because these environments 

within the basins are relatively young and have not been able to mature and stabilize yet.   
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Figure 3.7: PO4
-3 concentrations in C pads (red) and X pads (blue), showing increases in X pads while C 

pads remain constant. 

 

 

 

Figures 3.8: NO3
- concentrations in C pads (red) and X pads (blue), showing increases in X pads while C 

pads remain constant. 
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Box and whisker plots were made for each water quality parameter to examine 

treatment differences between control and experimental pads (Appendix 7).  The box and 

whisker plots give a visual representation of the data distribution.  The horizontal line 

within the box represents the median.  The diamond within the box is the 95% confidence 

diamond, and a horizontal line drawn through the middle of the diamond identifies the 

mean.  The bracket outside of the box represents the shortest half, or the most dense 50% 

of the data.  The entire length of the box contains the interquartile range (IQR), with the 

bottom of the box at the lower quartile, or Q1 (25th percentile) and the top of the box at 

the upper quartile, or Q3 (75th percentile).  The whiskers extend to include the values that 

fall within the range or Q1 – 1.5IQR or Q3+1.5IQR.  Any values outside of this range are 

represented by point values on the graph.   

Box and whisker plots for nitrate, phosphate, total organic carbon, and E. coli are 

displayed in Figures 3.9-3.12.  Both nitrate and phosphate showed wider ranges, higher 

means, and higher maximums in the experimental pad rain gardens that the controls 

(Figure 3.9 and Figure 3.10).  This trend was likely observed because the experimental 

muck pads were designed to force nutrient-laden runoff directly into the rain gardens.  

Total organic carbon in the experimental pads had a lower distribution, with a lower 

mean and maximum than in the control pads (Figure 3.11).  This may be explained by 

organic carbon being utilized and broken down in the highly oxidized substrate of the 

rain garden, while organic carbon is being retained in the anaerobic soil environment 

surrounding the control pads.  Observed distributions, mean, and maximum of E. coli 

population were lower in the experimental pads than the control pads (Figure 3.12).  The 

large pore size and quick infiltration rate of the rain gardens allow the substrate to get 
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fairly dry during long periods between rain events and may be encouraging die-off of E. 

coli populations.  In a study by Gallagher, et al. (2012), E. coli populations in a low 

moisture environment (4%) experienced the quickest rate of decay, showing only 5% of 

their initial concentration in as little as 3-4 hours.  Tensiometers were typically read 

following precipitation events, but still displayed pressures anywhere between 0-100 

centibars (Table 3.2).  This indicates that the rain garden basins hold moisture after rain 

events but also experience dry conditions.  The low observed concentrations of E. coli in 

the rain garden basins may mean that the new muck storage pads are effective and are 

functioning by desiccating E. coli populations during dry periods.  The differences in 

each water chemistry parameter between the experimental pads and control pads were 

tested for significance using Wilcoxon two group tests; while some did display large 

differences, none were statistically significant.  Differences in total coliform and E. coli 

data between experimental and control pads were also tested for statistical significance 

using Wilcoxon two group tests, and also showed no significant differences.  
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Figure 3.9: Box and Whisker plot of nitrate levels (mg L-1) in C pads vs. nitrate levels (mg L-1) in X pads, 
showing a higher distribution in X pads. 

 

 

 

 

Figure 3.10: Box and Whisker plot of phosphate levels (mg L-1) in C pads vs. phosphate levels (mg L-1) in 
X pads, showing a higher distribution in X pads. 
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Figure 3.11: Box and Whisker plot of total organic carbon (mg L-1) in C pads vs. total organic carbon (mg 
L-1) in X pads, showing a lower distribution in X pads. 

 

 

 

 

Figure 12: Box and Whisker plot of E. coli populations (colonies 10mL-1) in C pads vs. E. coli populations 
(colonies 10mL-1) in X pads, showing a greater concentration of E. coli in C pads. 
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PLANTS 

Raw data for total nitrogen and total phosphorus from plant tissue samples was 

analyzed for trends.  Content of samples taken from plants grown in the greenhouse was 

compared to content of plants in their second growing season in the rain garden basins at 

Victory Haven.  Tissue samples from plants in their first growing season at Victory 

Haven were not considered because these specimens were not planted at the same time, 

and thus did not have the same amount of exposure to contamination.  Total nitrogen 

content increased in every species in their second year of growth compared to greenhouse 

control samples (Figure 3.14).  Total phosphorus content was highly variable and did not 

show any trends; content increased in some species and decreased in others (Figure 3.15).  

There are several possible explanations for the variability of the total phosphorus data.  

Spillage and overflow of the muck pads caused an unequal distribution of manure and 

soiled bedding within the rain gardens, resulting in some plants having more exposure 

than others.  Other plants are much closer to the nutrient leaden runoff coming from the 

wall drains.  This discrepancy in location may have an effect on nutrient uptake, 

especially phosphorus.  Phosphorus is not as readily available as nitrogen in soil systems, 

with only a small fraction able to be absorbed by plants; uptake may also be inhibited by 

the high alkalinity of the rain garden environment (Busman, et al., 2002).  However, 

considering the total nitrogen data, it is believed that plant uptake could have a profound 

effect on decreasing nutrient levels.  In the future, it will be important to increase and 

develop vegetation within the rain gardens, allow the rain garden alkalinity to decrease 

and stabilize, and continue to monitor nutrient uptake. 
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Figure 3.13:  Total nitrogen concentrations for rain garden plants from greenhouse control (GH) 
and second year growth (Y2).  For species Bur Marigold (BM), River Oat (RO) Slender Mountain Mint 

(SM), Frank’s Sedge (FS), Fox Sedge (FXS), Mist Flower (MF), and Illinois Bundleflower (IB). 

 

 

 

Figure 3.14:  Total phosphorus concentrations for rain garden plants from greenhouse control 
(GH) and second year growth (Y2).  For species Bur Marigold (BM), River Oat (RO) Slender Mountain 
Mint (SM), Frank’s Sedge (FS), Fox Sedge (FXS), Mist Flower (MF), and Illinois Bundleflower (IB). 
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Chapter 4: CONCLUSIONS 

THE CASE FOR PROPER LIVESTOCK WASTE MANGEMENT 

Overall, the new muck storage pads did not make any significant difference on 

contamination levels in the stream at Victory Haven.  No significant differences between 

soil water taken from the control pads and water taken from the rain garden basins at the 

experimental pads were observed either.  However, this lack of significance does not 

suggest that the methods were ineffective, or that the results were not conclusive.  

Contamination risks at Victory Haven are obvious and exist as the result of a combination 

of poor choices regarding location and design of manure storage structures and 

inadequate waste management operations at the facility.  These issues are likely 

influencing the effectiveness of the new muck storage pads built for this project.  Careful 

management of these types of facilities is important and necessary for them to work 

properly.  Many wastewater treatment systems fail because they are not adequately 

maintained.  A surface flow wetland constructed in Mississippi to treat water for the 

Mississippi Gulf Coast Regional Wastewater Authority failed to adequately reduce NH4-

N, and fecal coliforms were higher in the outflow compared to the inflow (Kadlec and 

Knight, 1996).  A natural treatment wetland in Florid receiving wastewater from Walt 

Disney World had to cease operation on one of its wetland systems in 1989 because of its 

inability to accomplish reductions.  In fact, that site exhibited increases in BOD, TOC, 

NH4
+, total nitrogen, and total phosphorus concentration as water moved through the 

treatment system (Kadlec and Knight, 1996). 

From an environmental standpoint, waste storage facilities should be situated to 

minimize impacts to surface and groundwater features, especially at a facility such as 
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Victory Haven, which is located on a flood plain and lies within the boundaries of 

recognized FEMA Flood Zones (FEMA, 2008).  From an economic standpoint, waste 

storage facilities should also be located as close to the source as possible to reduce 

transport risk, cost, and effort.  Unfortunately, the barns at Victory Haven were built in 

very close proximity (less than 50 ft (15 m) in some instances) to the onsite tributary of 

Cane Run, which led to construction of temporary muck storage pads in environmentally 

undesirable locations.  The close proximity of these pads to the stream channel not only 

enhances the possibility of surface water contaminations via runoff, but the physical 

setting (within a flood plain in an active, karst geologic setting) provides many 

opportunities for contamination through below surface transport processes (interflow 

and/or groundwater recharge).  These risks regarding location are amplified by a poor 

design of the muck pads themselves and lack of maintenance.   

When this project began, two of the muck pads at Victory Haven had wooden 

walls, which were flimsy, full of gaps, and allowed for a large amount of spillage and 

seepage (Figure 4.1).  Although the wooden walls were removed as part of this project, 

retrofitted concrete-walled pads provided little improvement due to mismanagement.  It is 

the assumption that each muck pad handles the waste from one barn, as there are seven 

barns and seven muck pads at Victory Haven.  Stalls per barn vary from 13-74.  If one 

muck pad holds waste from barn 4, which has 48 stalls, that muck pad could be receiving 

well over 3,000 lbs. (1,300 kg) of manure and soiled bedding per day.  Manure is fairly 

dense, and one horse may only produce 0.04-0.05m3 per day, totaling approximately 2m3 

for a full 48-stall barn, but the bulk of the muck comes from the soiled straw bedding.  If 

each horse required only 1m3 of loose bedding per day, a muck pad servicing 48 horses 
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would receive as much as 50m3 of manure and bedding each day.  The amount of muck 

being placed in each 25ft x 25ft x 6ft (7.6m x 7.6m x 1.8m) (115m3)  muck pad should 

dictate that they be emptied every few days to avoid overflow, but muck pads at Victory 

Haven are consistently left for weeks at a time without emptying (Figure 4.2).  

Inadequate maintenance, combined with no runoff abatement or treatment in the control 

pads resulted in visible runoff to surface water (Figure 4.3) and explains at least a portion 

of the water contamination issues at Victory Haven.   

 

 

 

 

 



80 
 

 

Figure 4.1: Old wooden-walled muck pad at Victory Haven. 

 

Figure 4.2: Spillage and overflow at pad C2 due to infrequent emptying. 
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Figure 4.3: Drainage ditch leading runoff from C2 to nearby Cane Run tributary. 
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This project also helped identify contamination sources other than the muck 

storage pads.  Victory Haven eventually uses the muck generated by their horses to run a 

composting operation in several of the onsite fields (Figure 2.17).  The weep berm system 

surrounding the compost windrows was installed in 2011 and is functioning as desired, 

but until then, runoff from the compost fields went unchecked and was most likely a 

considerable contributor to water contamination and may be in the future if not 

maintained.  This project also revealed that horse wash stations may be a significant 

source of contamination at horse facilities.  Sample location 5 was a pipe that drained 

runoff from horse washing stations at Victory Haven, and there are several other wash 

stations that are not piped.  Water samples from this location consistently displayed the 

highest levels in all measured water chemistry parameters and E. coli populations 

compared to other stream sample locations.  Decreased water quality, specifically spikes 

in E. coli populations, was also observed immediately downstream at sample location 6.   

 

FUTURE WORK 

 While this project was a valuable learning experience, it addressed only some 

options for mitigating contamination at Victory Haven and offers many opportunities for 

future work.  Extended and more thorough experimentation will give a more complete 

idea of the types of contamination that equine facilities may encounter, their possible 

travel pathways, and their effects on the environment. 

 The water quality parameters investigated in the project were relatively limited 

when compared to the wide variety of contaminants that may originate from livestock 

waste.  There are several other methods that would give a more accurate characterization 
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of the contamination at Victory Haven.  The only pathogens tested for this project were 

coliform bacteria, but livestock manure may spawn a variety of pathogens including 

giardia, cryptosporidium, and salmonella (Hooda, et al., 2000; The World Bank, 2005; 

Burkholder, et al., 2007; WHO Guidelines, 2011).  E.coli is used as an indicator species 

of pathogenic pollution, but does not confirm or refute the existence of other harmful 

pathogens.  A study of the bacterial population of the water and soils at Victory Haven 

could add valuable information to the literature on the risks of pathogens originating from 

livestock waste.  Benthic macroinvertebrates are often used as indicators of water quality 

and ecological function.  An initial survey and continued monitoring of the benthic 

macroinvertebrate population over time would help classify the current state of the stream 

and the effects of any future work done on or in the vicinity of Victory Haven.   

 Specific pollution pathways were not investigated in this project, but doing so 

would further aid in developing a solution to runoff contamination.  It was assumed that 

contamination originated at the muck pads and flowed in a straight path to the stream, but 

in reality it may be much more complicated.  Dye and nitrogen isotope tracers added to 

the muck piles, accompanied by widespread groundwater and stream sampling, could 

provide a considerably more intricate understanding of hydrologic movement throughout 

the site.  Well nests and piezometer fields could provide a better understanding of 

shallow groundwater flow and its influence on contaminant transport.  Based on years, if 

not decades, of waste mismanagement, it is suspected that contamination is an extensive 

problem at Victory Haven and may not be confined only to current muck storage areas.  

Combined with tracer studies, analyzing soil samples would help establish the scale and 

magnitude of groundwater and soil contamination.   
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 This project at Victory Haven is part of a larger effort to mitigate pollution and 

degradation of Cane Run watershed.  Cane Run encompasses a wide variety of land uses, 

but as it is 75% rural, Victory Haven is an ideal setting for a study of agricultural streams 

and their stressors.   A large area of concern regarding agricultural streams is the effect of 

the presence or absence of an adequate riparian zone.  As most landowners want to 

maximize the land use potential of their property, riparian areas are often made as small 

as possible, and are sometimes eliminated completely.  In the case of Victory Haven and 

many other livestock operations, streams are excluded from pasture enclosures, allowing 

plenty of room for riparian areas.  Unfortunately, this opportunity was not capitalized at 

Victory Haven.  Vegetated riparian zones are a popular bioengineering solution to 

prevent water pollution, and it is widely accepted that a combination of varying plant size 

and structure both above and below ground contributes to stream bank stabilization, 

slowing of runoff, temperature moderation, and filtration of contaminants (Higgins, et al., 

2011).  Victory Haven currently does not maintain riparian areas and periodic mowing 

extends as close to the edge of the stream bed as possible.  This site is located within a 

heavily agricultural area, and would be ideal for project inquiring into and possibly 

adding to the literature regarding the ideal structure and species diversity for a riparian 

area handling agricultural waste, particularly originating from livestock.   

 Because this project is the first of its kind in central Kentucky, it can serve as an 

educational opportunity for other owners of small livestock operations in the area.  With 

cooperation from the owners, upkeep, and future development of the muck storage 

system, Victory Haven could set an example for proper muck and manure management.  
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However, significant changes to current waste management practices would first need to 

be employed. 

 

RECOMMENDATIONS AND IMPROVEMENTS FOR BEST MANAGEMENT 

PRACTICES 

 Regardless of any future studies or experimentation, there are many 

improvements that can be made to the waste storage system and management practices at 

Victory Haven to alleviate stream and groundwater contamination.  There is a wide array 

of options for best management practices that could be employed at Victory Haven to 

reduce the risk of contamination.   

There may be opportunities to improve on the design and functionality of the new 

muck storage structures themselves that could further reduce runoff contamination.  

Plants within the basin remained relatively sparse, and few volunteers germinated in 

following growing seasons.  The addition of more plants may encourage greater plant 

uptake of water and nutrients and thus, greater detention of runoff.  Aside from the holes 

drilled into the base of the walls, the muck pads have no other drainage system.  As the 

pads are still exhibiting some runoff escaping from the approach end (Figure 4.4), they 

would benefit from a more structured drainage system.  Re-grading the slope of the pad at 

a greater angle towards the back wall of the structure would force runoff to the back of 

the pad and through the drainage holes rather than flowing from the front end.  If re-

grading is not an option, the approach portion of the pad may be outfitted with a grated 

drain that would catch runoff and divert it towards the rain garden basin where it would 

be contained and treated.  Green roofing may also be an advantageous addition to the 
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muck storage system at Victory Haven.  By allowing precipitation to fall directly onto a 

vegetated roof instead of onto the stored muck, a well-designed and executed green roof 

could potentially eliminate all chance of contaminated runoff. 

 

 

 

 

 

 

 

 

 

 



87 
 

 
Figure 4.4:  Runoff escaping from the approach end of pad X2. 
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Victory Haven’s stormwater runoff control system is virtually nonexistent, aside 

from swales and ditches naturally established where runoff flow concentrates.  Because 

there is no controlled drainage system at the site, tire dredging, mud accumulation, and 

ponding of water is common in high traffic areas of driveways and parking areas.  This 

excess mud and water is of special concern around the muck storage pads because there 

is a considerable increase in contamination risk (Figure 4.5).  In order to eliminate these 

issues, the soil and gravel in traffic areas should be reinforced or replaced with a more 

resilient material.  Soil cement is an inexpensive option made of soil, cement, and water 

that forms a durable surface that won’t sustain mud and dredging but will still allow for 

some permeability.  As there are many opportunities for runoff to become contaminated 

throughout Victory Haven, water quality at the facility would greatly benefit from a site-

wide runoff diversion system.  A series of diversion ditches surrounding barns, muck 

pads, parking and driveways would collect runoff and transport it efficiently while 

preventing contact with hazardous areas.  Riprap lining, check dams, and vegetation 

would slow runoff, allowing for settling of sediments and contaminants before they reach 

the stream.  And even more effective treatment option would be to direct all of the runoff 

diversion ditches to a large on-site constructed wetland or other type of small wastewater 

treatment facility. 
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Figure 4.5: Spillage, mud, and tire dredging surrounding pad C2. 
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It is known and accepted that wash stations may be significant contributors to 

water pollution at horse facilities (Higgins, et al., 2007).  As confirmed by data gathered 

for this project, the wash stations at Victory Haven are introducing large amounts of E. 

coli, nutrients, and other chemical contaminants directly into the stream.  Wash stations 

are usually floored by soil or concrete.  Since compacted soil saturates quickly and 

traditional concrete is impermeable, both encourage large volumes of runoff during 

washing.  Pervious concrete has been developed as a solution to problems surrounding 

wash station runoff (Higgins, et al., 2007).  A pervious concrete wash station consists of a 

dry, sandless concrete mixture placed over a rock-lined drainage.  This structure would 

operate on the same principles as the rain garden basins surrounding the muck pads.  

Water infiltrates directly into and through highly porous concrete which provides habitat 

for communities of microorganisms that may be beneficial in removing pathogens and 

contaminants.  Any water that makes it through enters a drain and may be diverted to a 

vegetated filter strip or lined drainage ditch before reaching surface water.  However, 

given the housekeeping habits at Victory Haven and that pervious concrete does require 

regular maintenance to function properly, this option may also be a challenge.  There are 

currently no regulations addressing this type of runoff, but because they have been 

proven to be contributors to water contamination, it is in the interest of environmental 

stewardship to alleviate the risk of contamination associated with horse washing stations. 

 Many of these suggested best management options involve installation or 

modification of structures, but the easiest and most affordable solution to contamination 

may simply be changing onsite housekeeping habits.  Muck storage pads may go for 

weeks or months without being emptied, but ideally they should be cleaned daily in order 



91 
 

to prevent overflow.  Cleaning of muck pads in anticipation of heavy rain events would 

also reduce the contamination risk.  Regardless of which options are chosen, alleviation 

of contamination at Victory Haven will require effort and commitment from both 

management and staff.  Unfortunately, support in that respect has been one of the biggest 

obstacles to the success of this project, and it seems that even the simplest solutions are 

not of interest to the property managers.  Many boarders at Victory Haven commented on 

the appeal of the new muck storage pads, but requests for cooperation from management 

and staff were met with disregard, and even disrespect.  Following installation, the new 

muck pads were still not emptied frequently enough to prevent overflow, and the rain 

garden basins were somehow perceived as a dump area for unwanted items and garbage 

(Figures 4.6, Figure 4.7, and Figure 4.8).  Unfortunately, because there is such a lack of 

motivation to make changes at Victory Haven, the most effective solution may be 

regulatory action by the appropriate authorities.  Victory Haven does not maintain best 

management practices, does not have a visible runoff control or water quality protection 

plan, and has several point sources on the property. They are in violation of the Clean 

Water Act and the Kentucky Agriculture Water Quality Act, and it is surprising that they 

have avoided fines and enforcement thus far.   
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Figure 4.6: Spillage and overflow at pad X2. 

 

 
Figure 4.7: Overflow and trash in the rain garden basin at pad X2. 
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Figure 4.8: Overflow and wooden pallets stacked in the rain garden basin at pad X1. 
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With proper dedication and further development, this project has potential to be a 

valuable educational tool and example of proper waste management to owners of small to 

medium sized livestock operations.  This project began as a proposal for the first steps 

toward a technical solution to runoff contamination, and while the significance of the 

results were important to the conclusions drawn about preventing water contamination, 

this project also evolved into a lesson in environmental ethics.  Even if not used for 

public education purposes or further scientific study, a properly managed muck storage 

system at Victory Haven could at least evoke a sense respect for and pride in the 

individual property, the Kentucky horse industry, and maintaining a clean, safe, and 

environmentally responsible operation.   
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APPENDIX 1.   Stream E. coli Populations for Each Sample Date. 

Appendix 1.A.  Stream E. coli populations over sequence of stream sample   

   locations for 7/15/2010. 

 

 

Appendix 1.B.   Stream E. coli populations over sequence of stream sample   
   locations for 7/20/2010. 
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Appendix 1.C.  Stream E. coli populations over sequence of stream sample   
   locations for 7/29/2010 

 

 

 

Appendix 1.D.  Stream E. coli populations over sequence of stream sample   
   locations for 8/25/2010 
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Appendix 1.E.  Stream E. coli populations over sequence of stream sample   
   locations for 9/15/2010 

 

 

 

Appendix 1.F.  Stream E. coli populations over sequence of stream sample   
   locations for 10/6/2010 
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Appendix 1.G.  Stream E. coli populations over sequence of stream sample   
   locations for 10/20/2010 

 

 

 

Appendix 1.H.  Stream E. coli populations over sequence of stream sample   
   locations for 11/4/2010 
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Appendix 1.I.  Stream E. coli populations over sequence of stream sample   
   locations for 11/17/2010 

 

 

 

Appendix 1.J.  Stream E. coli populations over sequence of stream sample   
   locations for 1/25/2011 
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Appendix 1.K.  Stream E. coli populations over sequence of stream sample   
   locations for 2/17/2011 

 

 

 

Appendix 1.L.  Stream E. coli populations over sequence of stream sample   
   locations for 3/3/2011 
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Appendix 1.M.  Stream E. coli populations over sequence of stream sample   
   locations for 3/24/2011 

 

 

 

Appendix 1.N.  Stream E. coli populations over sequence of stream sample   
   locations for 4/7/2011 
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Appendix 1.O.  Stream E. coli populations over sequence of stream sample   
   locations for 4/18/2011 

 

 

 

Appendix 1.P.  Stream E. coli populations over sequence of stream sample   
   locations for 6/2/2011 
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Appendix 1.Q.  Stream E. coli populations over sequence of stream sample   
   locations for 6/16/2011 

 

 

 

Appendix 1.R.  Stream E. coli populations over sequence of stream sample   
   locations for 6/30/2011 
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Appendix 1.S.  Stream E. coli populations over sequence of stream sample   
   locations for 7/14/2011 

 

 

 

Appendix 1.T.  Stream E. coli populations over sequence of stream sample   
   locations for 7/26/2011 
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Appendix 1.U.  Stream E. coli populations over sequence of stream sample   
   locations for 8/11/2011 

 

 

 

Appendix 1.V.  Stream E. coli populations over sequence of stream sample   
   locations for 8/24/2011 
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Appendix 1.W.  Stream E. coli populations over sequence of stream sample   
   locations for 9/29/2011 

 

 

 

Appendix 1.X.  Stream E. coli populations over sequence of stream sample   
   locations for 10/20/2011 
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Appendix 1.Y.  Stream E. coli populations over sequence of stream sample   
   locations for 11/17/2011 

 

 

 

Appendix 1.Z.  Stream E. coli populations over sequence of stream sample   
   locations for 12/7/2011 
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Appendix 1.AA.  Stream E. coli populations over sequence of stream sample   
   locations for 1/19/2012 

 

 

 

Appendix 1.BB.  Stream E. coli populations over sequence of stream sample   
   locations for 1/24/2012 
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Appendix 1.CC. Stream E. coli populations over sequence of stream sample   
   locations for 2/2/2012 
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APPENDIX 2.  Stream Dissolved Oxygen for Each Sample Date. 

Appendix 2.A.  Stream dissolved oxygen levels over sequence of stream sample  

   locations for 11/17/2011 

 

 

 

Appendix 2.B.  Stream dissolved oxygen levels over sequence of stream sample  
   locations for 2/17/2011 
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Appendix 2.C.  Stream dissolved oxygen levels over sequence of stream sample  
   locations for 3/3/2011 

 

 

 

Appendix 2.D.  Stream dissolved oxygen levels over sequence of stream sample  
   locations for 3/24/2011 
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Appendix 2.E.  Stream dissolved oxygen levels over sequence of stream sample  
   locations for 4/7/2011 

 

 

 

Appendix 2.F.  Stream dissolved oxygen levels over sequence of stream sample  
   locations for 4/28/2011 
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Appendix 2.G.  Stream dissolved oxygen levels over sequence of stream sample  
   locations for 6/2/2011 

 

 

 

Appendix 2.H.  Stream dissolved oxygen levels over sequence of stream sample  
   locations for 6/16/2011 
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Appendix 2.I.   Stream dissolved oxygen levels over sequence of stream sample  
   locations for 7/14/2011 

 

 

 

Appendix 2.J.   Stream dissolved oxygen levels over sequence of stream sample  
   locations for 7/26/2011 
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Appendix 2.K.  Stream dissolved oxygen levels over sequence of stream sample  
   locations for 8/11/2011 

 

 

 

Appendix 2.L.  Stream dissolved oxygen levels over sequence of stream sample  
   locations for 8/24/2011 
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Appendix 2.M.  Stream dissolved oxygen levels over sequence of stream sample  
   locations for 9/29/2011 

 

 

 

Appendix 2.N.  Stream dissolved oxygen levels over sequence of stream sample  
   locations for 10/20/2011 
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Appendix 2.O.  Stream dissolved oxygen levels over sequence of stream sample  
   locations for 11/17/2011 

 

 

 

Appendix 2.P.  Stream dissolved oxygen levels over sequence of stream sample  
   locations for 12/7/2011 
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Appendix 2.Q.  Stream dissolved oxygen levels over sequence of stream sample  
   locations for 1/19/2012 

 

 

 

Appendix 2.R.  Stream dissolved oxygen levels over sequence of stream sample  
   locations for 1/24/2012 
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Appendix 2.S.  Stream dissolved oxygen levels over sequence of stream sample  
   locations for 2/2/2012 
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APPENDIX 3.   Stream Temperature for Each Sample Date 

Appendix 3.A.  Stream temperature over sequence of stream sample   

   locations for 11/17/2010 

 

 

Appendix 3.B.  Stream temperature over sequence of stream sample   
   locations for 2/17/2011 
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Appendix 3.C.  Stream temperature over sequence of stream sample   
   locations for 3/3/2011 

 

 

 

Appendix 3.D.  Stream temperature over sequence of stream sample   
   locations for 3/24/2011 
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Appendix 3.E.  Stream temperature over sequence of stream sample   
   locations for 4/7/2011 

 

 

 

Appendix 3.F.  Stream temperature over sequence of stream sample   
   locations for 4/28/2011 
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Appendix 3.G.  Stream temperature over sequence of stream sample   
   locations for 6/2/2011 

 

 

 

Appendix 3.H.  Stream temperature over sequence of stream sample   
   locations for 6/16/2011 
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Appendix 3.I.   Stream temperature over sequence of stream sample   
   locations for 7/14/2011 

 

 

 

Appendix 3.J.   Stream temperature over sequence of stream sample   
   locations for 7/26/2011 
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Appendix 3.K.  Stream temperature over sequence of stream sample   
   locations for 8/11/2011 

 

 

 

Appendix 3.L.  Stream temperature over sequence of stream sample   
   locations for 8/24/2011 
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Appendix 3.M.  Stream temperature over sequence of stream sample   
   locations for 9/29/2011 

 

 

 

Appendix 3.N.  Stream temperature over sequence of stream sample   
   locations for 10/20/2011 

 

 

 

17.85

17.9

17.95

18

18.05

18.1

18.15

18.2

18.25

18.3

2 3 4 6 7 8 9 10

C
°

Stream Sample Location

Stream Temperature for 9/29/11

11.2

11.4

11.6

11.8

12

12.2

12.4

12.6

12.8

13

13.2

2 3 4 6 7 8 9 10

C
°

Stream Sample Location

Stream Temperature for 10/20/11



127 
 

Appendix 3.O.  Stream temperature over sequence of stream sample   
   locations for 11/17/2011 

 

 

 

Appendix 3.P.  Stream temperature over sequence of stream sample   
   locations for 12/7/2011 
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Appendix 3.Q.  Stream temperature over sequence of stream sample   
   locations for 1/19/2012 

 

 

 

Appendix 3.R.  Stream temperature over sequence of stream sample   
   locations for 1/24/2012 
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Appendix 3.S.  Stream temperature over sequence of stream sample   
   locations for 2/2/2012 
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APPENDIX 4.   Box and Whisker Plots for E. coli Before and After June 2011 for 

Each Stream Sample Location. 

Appendix 4.A.   Sample Location 2 E. coli Before (left) and After (right) June 2011 
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Appendix 4.B.   Sample Location 3 E. coli Before (left) and After (right) June 2011 
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Appendix 4.C.   Sample Location 4 E. coli Before (left) and After (right) June 2011 
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Appendix 4.D.   Sample Location 6 E. coli Before (left) and  After (right) June 

2011 
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Appendix 4.E.   Sample Location 7 E. coli Before (left) and After (right) June 2011 
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Appendix 4.F.   Sample Location 8 E. coli Before (left) and After (right) June 2011 
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Appendix 4.G.   Sample Location 9 E. coli Before (left) and After (right) June 2011 
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Appendix 4.H.   Sample Location 10 E. coli Before (left) and After (right) June 

2011 

          

 

 



138 
 

APPENDIX 5.   E. coli Time Series for Each Stream Sample Location     

Appendix 5.A.   E. coli populations for each sample date at sample location 1 

 

 

Appendix 5.B.   E. coli populations for each sample date at sample location 2 
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Appendix 5.C.   E. coli populations for each sample date at sample location 3 

 

 

 

Appendix 5.D.   E. coli populations for each sample date at sample location 4 
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Appendix 5.E.   E. coli populations for each sample date at sample location 5 

 

 

 

 

Appendix 5.F.   E. coli populations for each sample date at sample location 6 
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Appendix 5.G.   E. coli populations for each sample date at sample location 7 

 

 

 

Appendix 5.H.   E. coli populations for each sample date at sample location 8 
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Appendix 5.I.    E. coli populations for each sample date at sample location 9 

 

 

 

Appendix 5.J.   E. coli populations for each sample date at sample location 10 

 

 

 

 

0

500

1000

1500

2000

2500

3000

2
0
1
0

2
0
1
0

2
0
1
0

2
0
1
0

2
0
1
0

2
0
1
0

2
0
1
0

2
0
1
0

2
0
1
1

2
0
1
1

2
0
1
1

2
0
1
1

2
0
1
1

2
0
1
1

2
0
1
1

2
0
1
1

2
0
1
1

2
0
1
1

2
0
1
1

2
0
1
1

2
0
1
1

2
0
1
1

2
0
1
1

2
0
1
1

2
0
1
1

2
0
1
2

2
0
1
2

2
0
1
2

15 20 29 25 15 6 4 17 25 17 3 24 7 28 2 16 30 14 26 11 24 29 20 17 7 19 24 2

7 7 7 8 9 10 11 11 1 2 3 3 4 4 6 6 6 7 7 8 8 9 10 11 12 1 1 2

E.
 c
o
li 
1
0
m
L‐
1

Sample Date

E. coli at Stream Sample Location 9

0
200
400
600
800

1000
1200

2
0
1
0

2
0
1
0

2
0
1
0

2
0
1
0

2
0
1
0

2
0
1
0

2
0
1
0

2
0
1
0

2
0
1
1

2
0
1
1

2
0
1
1

2
0
1
1

2
0
1
1

2
0
1
1

2
0
1
1

2
0
1
1

2
0
1
1

2
0
1
1

2
0
1
1

2
0
1
1

2
0
1
1

2
0
1
1

2
0
1
1

2
0
1
1

2
0
1
2

2
0
1
2

2
0
1
2

15 20 29 25 15 6 4 17 25 17 3 24 7 28 2 16 30 14 26 11 24 29 17 7 19 24 2

7 7 7 8 9 10 11 11 1 2 3 3 4 4 6 6 6 7 7 8 8 9 11 12 1 1 2

E.
 c
o
li
1
0
m
L‐
1

Sample Date

E. coli at Stream Sample Location 10



143 
 

APPENDIX 6.   Time Series of Water Chemistry Parameters:  X Pads vs. C Pads. 

Appendix 6.A.   PO4
-3 levels for X pads (blue) vs. C pads (red) on each sample date 

 

 

Appendix 6.B.   Total Organic Carbon levels for X pads (blue) vs. C pads (red) on  

   each sample date 
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Appendix 6.C.   NH4
+ levels for X pads (blue) vs. C pads (red) on each sample date 

 

 

 

Appendix 6.D.   NO3
- levels for X pads (blue) vs. C pads (red) on each sample date
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Appendix 6.E.   pH levels for X pads (blue) vs. C pads (red) on each sample date 

 

 

Appendix 6.F.   Alkalinity levels for X pads (blue) vs. C pads (red) on each sample  

   date 
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Appendix 6.G.   Na+ levels for X pads (blue) vs. C pads (red) on each sample date 

 

 

Appendix 6.H.   K+ levels for X pads (blue) vs. C pads (red) on each sample date 
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Appendix 6.I.   Ca+2 levels for X pads (blue) vs. C pads (red) on each sample date 

 

 

Appendix 6.J.   Mg+2 levels for X pads (blue) vs. C pads (red) on each sample date 
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Appendix 6.K.   SO4
-2 levels for X pads (blue) vs. C pads (red) on each sample date 

 

 

Appendix 6.L.   Cl- levels for X pads (blue) vs. C pads (red) on each sample date 
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Appendix 6.M.   Electrical Conductivity for X pads (blue) vs. C pads (red) on each  

   sample date 
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APPENDIX 7.   Box and Whisker Plots.  X pads vs. C pads for E. coli and Water 

Chemistry 

Note: E. coli measured per 10m.  All water chemsitry parameters measured in mg L-1, 

except for pH. 

Appendix 7.A.   E. coli X pads vs. C pads 
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Appendix 7.B.   Electrical Conductivity X pads vs. C pads 
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Appendix 7.C.   Cl- X pads vs. C pads 
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Appendix 7.D.   SO4
-2 X pads vs. C pads 

 

 

 

 



154 
 

Appendix 7.E.   Mg+2 X pads vs. C pads 
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Appendix 7.F.   Ca+2 X pads vs. C pads. 
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Appendix 7.G.   K+ X pads vs. C pads 
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Appendix 7.H.   Na+ X pads vs. C pads 
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Appendix 7.I.   Alkalinity X pads vs. C pads 
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Appendix 7.J.   pH X pads vs. C pads 
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Appendix 7.K.   NO3
- X pads vs. C pads 
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Appendix 7.L.   NH4
+ X pads vs. C pads 
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Appendix 7.M.   Total Organic Carbon X pads vs. C pads 

 

 

 

 



163 
 

Appendix 7.N.   PO4
-3 X pads vs. C pads 
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