
University of Kentucky
UKnowledge

Plant and Soil Sciences Faculty Publications Plant and Soil Sciences

5-2007

Soil Microbial Community Response to
Hexavalent Chromium in Planted and Unplanted
Soil
Ioannis Ipsilantis
University of Kentucky

Mark S. Coyne
University of Kentucky, mark.coyne@uky.edu

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Follow this and additional works at: https://uknowledge.uky.edu/pss_facpub

Part of the Environmental Microbiology and Microbial Ecology Commons, and the Plant
Sciences Commons

This Article is brought to you for free and open access by the Plant and Soil Sciences at UKnowledge. It has been accepted for inclusion in Plant and
Soil Sciences Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

Repository Citation
Ipsilantis, Ioannis and Coyne, Mark S., "Soil Microbial Community Response to Hexavalent Chromium in Planted and Unplanted
Soil" (2007). Plant and Soil Sciences Faculty Publications. 6.
https://uknowledge.uky.edu/pss_facpub/6

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Kentucky

https://core.ac.uk/display/232561121?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://uknowledge.uky.edu/?utm_source=uknowledge.uky.edu%2Fpss_facpub%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://uknowledge.uky.edu/?utm_source=uknowledge.uky.edu%2Fpss_facpub%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu?utm_source=uknowledge.uky.edu%2Fpss_facpub%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu/pss_facpub?utm_source=uknowledge.uky.edu%2Fpss_facpub%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu/pss?utm_source=uknowledge.uky.edu%2Fpss_facpub%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
https://uknowledge.uky.edu/pss_facpub?utm_source=uknowledge.uky.edu%2Fpss_facpub%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/50?utm_source=uknowledge.uky.edu%2Fpss_facpub%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/102?utm_source=uknowledge.uky.edu%2Fpss_facpub%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/102?utm_source=uknowledge.uky.edu%2Fpss_facpub%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu/pss_facpub/6?utm_source=uknowledge.uky.edu%2Fpss_facpub%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:UKnowledge@lsv.uky.edu


Soil Microbial Community Response to Hexavalent Chromium in Planted and Unplanted Soil

Notes/Citation Information
Published in Journal of Environmental Quality, v. 36, no. 3, p. 638-645.

The copyright holder has granted the permission for posting the article here.

Digital Object Identifier (DOI)
http://dx.doi.org/10.2134/jeq2005.0438

This article is available at UKnowledge: https://uknowledge.uky.edu/pss_facpub/6

https://uknowledge.uky.edu/pss_facpub/6?utm_source=uknowledge.uky.edu%2Fpss_facpub%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages


Soil Microbial Community Response to Hexavalent Chromium in Planted and
Unplanted Soil

Ioannis Ipsilantis and Mark S. Coyne*

ABSTRACT
Theories suggest that rapid microbial growth rates lead to quicker

development of metal resistance. We tested these theories by adding
hexavalent chromium [Cr(VI)] to soil, sowing Indian mustard
(Brassica juncea), and comparing rhizosphere and bulk soil microbial
community responses. Four weeks after the initial Cr(VI) application
we measured Cr concentration, microbial biomass by fumigation ex-
traction and soil extract ATP, tolerance to Cr and growth rates with
tritiated thymidine incorporation, and performed community sub-
strate use analysis with BIOLOG GN plates. Exchangeable Cr(VI)
levels were very low, and therefore we assumed the Cr(VI) impact was
transient. Microbial biomass was reduced by Cr(VI) addition. Micro-
bial tolerance to Cr(VI) tended to be higher in the Cr-treated rhizo-
sphere soil relative to the non-treated systems, while microorganisms
in the Cr-treated bulk soil were less sensitive to Cr(VI) than micro-
organisms in the non-treated bulk soil. Microbial diversity as measured
by population evenness increased with Cr(VI) addition based on a
Gini coefficient derived from BIOLOG substrate use patterns. Principal
component analysis revealed separation between Cr(VI) treatments,
and between rhizosphere and bulk soil treatments. We hypothesize
that because of Cr(VI) addition there was indirect selection for fast-
growing organisms, alleviation of competition among microbial com-
munities, and increase in Cr tolerance in the rhizosphere due to the
faster turnover rates in that environment.

CHROMIUM is widely used in industry and a known
toxic element (Nriagu and Nieboer, 1988). Trivalent

chromium [Cr(III)] and hexavalent chromium [Cr(VI)]
are the dominant forms in nature (Bartlett, 1991). Chro-
mium’s wide use has caused environmental contamination.
However, there are relatively few studies of Cr effects on
the soil microbial community (Viti and Giovanetti, 2001;
Shi et al., 2002a; Shi et al., 2002b).
Low molecular weight organic substances, such as root

exudates and citric acid have dual effects on Cr chemis-
try: reducing Cr(VI) to Cr(III), and complexing Cr(III)
andmaintaining it in solution (James and Bartlett, 1984).
Organic, complexed Cr(III) may subsequently sorb to
Mn oxides and undergo oxidation to Cr(VI) (James and
Bartlett, 1983). Hexavalent Cr is a bioavailable and solu-
ble Cr form that is toxic to microorganisms, plants, and
animals relative to Cr(III) (Nriagu and Nieboer, 1988).
Chromium is not regulated in biosolids by the USEPA
because it is typically in the Cr(III) form and is believed
to form stable complexes with organic matter that are
not bioavailable in this kind of waste (Chaney et al.,

1996). However, Gong et al. (2002) showed toxicity by
Cr(III) to soil microorganisms.

Experiments targeting the rhizosphere microbial
communities in metal-contaminated soils are few (Giller
et al., 1998). Kozdrój and van Elsas (2000) used artificial
root exudates to study the effects of organic compounds
on microbial diversity of heavy metal polluted soils.
Carlot et al. (2002) isolated Cd-tolerant, plant growth-
promoting rhizobacteria from Brassica roots to evaluate
potential use in phytoremediation. However, the effects
on the whole microbial community were not examined.

Soil microbial communities can be useful bioindica-
tors of soil pollution (Gong et al., 2002), and studying
the effects of metals on microbial communities is more
direct than measuring metal bioavailability and specia-
tion (Ellis et al., 2002). Soil microbial communities can
also indicate the capacity of soil to restore itself and per-
form certain functions (e.g., organic matter decomposi-
tion) after temporary or permanent disturbance (Giller
et al., 1998; Griffiths et al., 2000). Babich and Stotzky
(1985) indicated that heavy metals reduced microbial
biomass and species diversity in soil. In addition, Dı́az-
Raviña and Bååth (1996) showed that higher growth
rates can lead to faster metal tolerance development.
However, the rhizosphere, an environment with high
microbial growth rates (Soderberg and Bååth, 1998),
has not been examined in light of this hypothesis.

The objective of this experiment was to investigate
the effects of Cr(VI) on bulk and rhizosphere microbial
communities. Based on Babich and Stotzky (1985) and
Dı́az-Raviña and Bååth (1996) we expected Cr(VI) to
reduce soil microbial biomass and diversity in both bulk
and rhizosphere soil, and increase microbial community
tolerance to Cr(VI) in both soil types, but faster, and
therefore to a greater extent in the short-term study we
performed for the rhizosphere soil relative to the bulk soil.

MATERIALS AND METHODS

Treatment of Soil with Chromium(VI) and
Development of the Plant Rhizosphere

Woolper silt loam (fine, mixed, mesic, Typic Argiudoll, 7%
sand, 60% silt, and 33% clay, 120 g kg21 organic matter,
pH 6.7, 620 g kg21 water holding capacity) was used in this
study. The soil was collected from the surface 5 cm and sieved
moist through a 2-mm sieve. Treatments were: (i) bulk soil; (ii)
bulk soil amended with 447 mg kg21 Cr(VI); (iii) rhizosphere
soil; (iv) rhizosphere soil amended with 447 mg kg21 Cr(VI).
There were three replicates of each treatment, and all values
in this study are reported on a dry-weight soil basis unless
specifically noted. The desired Cr(VI) concentration for this
experiment was high, but one that would also allow the plants
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Abbreviations: TdR, tritiated thymidine; Bc, biomass C; Ec, extract-
able C; AWCD, average well color development.
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to grow. Each individual replication of 1 kg moist soil (694 g
dry weight basis) was treated with a K2Cr2O7 solution by thor-
ough mixing in a rotating shaker, and subsequently dispensed
into plastic pots. The control treatments received only water.

Fifteen seeds of Indian mustard were sown in pots intended
for rhizosphere soil, and the moisture water content was ad-
justed to field capacity. After germination, five plants per pot
were allowed to grow. All pots were kept in a greenhouse with
additional light up to 12 h per day. Deionized water was added
to each pot daily by sub-irrigation to minimize leaching and to
prevent the soil from drying. After 4 wk, plant shoots were
removed, roots with the adhering soil were removed and the
rest of the soil (hereafter called rhizosphere soil) was individ-
ually mixed for every replicate. In this study the operational
definition of the rhizosphere soil was all the soil in the planted
pots. This definition differs from the usual terminology, but is
supported by James and Bartlett (1984), who indicate that the
effect of the rhizosphere on Cr extends to the rest of soil in a
pot. Bulk and rhizosphere soil were stored at 4jC for several
weeks until further analysis.

pH, Chromium Analysis, and Biomass Measurements

The methods described by Bartlett and James (1996) were
used for Cr analysis. Duplicate samples were measured for each
replicate. Total extractable Cr was measured after extraction of
one g of soil by 50mL of 10mMmonobasic di-potassium citrate
buffer pH 7.2 for 72 h, and measured by atomic adsorption
spectroscopy. Exchangeable Cr(VI) was measured colorimet-
rically at 540 nm after an adjustment of the s-diphenylcarbazide
method for use with a microplate autoreader. Labile Cr(III) was
determined by difference. The pH of each pot was measured
in triplicate by glass electrode on air-dried soil in a 1:1 soil/
water paste.

The method of Vance et al. (1987), as modified by Wu et al.
(1990), was used for fumigation-extraction. Moist soil was
adjusted to 55% of water holding capacity and incubated in
darkness at room temperature for 7 d in air-tight plastic bags
to remove the effects of initial disturbance. Samples were
fumigated with CHCl3 vapor for 24 h and 20 g were extracted
with 0.5 M K2SO4. Organic C in the extracts was determined
with an automated total organic C analyzer (Shimadzu 5000A,
Kyoto, Japan). Soil biomass C (Bc) was calculated from the ex-
tractable C (Ec) by the equation: Bc5 2.22Ec (Wu et al., 1990).

For ATP analysis we extracted microorganisms from soil
by diluting 10 g of soil in 100 mL sterile distilled water in
sterile plastic bags, homogenizing for 5 min in a Stomacher lab
blender (Brinkman Instruments, Inc., Westbury NY), and cen-
trifuging for 10 min at 750 g at 5jC. Fifty mL of the extract were
placed into polypropylene cuvettes, along with 50 mL of ATP
releasing agent (Turner Designs, Sunnyvale CA), 50 mL
HEPES buffer pH 7.0, and 100 mL luciferine-luciferase
(Turner Designs). Standards and blanks were prepared in wa-
ter or in the extractant. A luminometer (Turner Designs 20/20)
was used to measure ATP. The basic concept of this approach
is similar to that of the tritiated thymidine procedure modified
for soil by Bååth (1992); instead of working with soil itself,
the methodmeasures part of the microbial community by work-
ing with soil extract and homogenization-centrifugation.

Tritiated Thymidine Incorporation Measurements

We used the method of Bååth (1992) for tritiated thymidine
incorporation (TdR). Tolerance measurements were made in
bulk and rhizosphere soil as defined by the working definitions
previously mentioned. Six g of soil were homogenized with
60 mL of sterile distilled water in a plastic bag for 5 min and

centrifuged for 10 min at 700 g and 5jC in sterile plastic cen-
trifugation tubes. The supernatant was poured through sterile
glass wool, and 1.8 mL was added to plastic vials. Cr(VI)
solutions of different concentrations were added (0.2 mL)
after filter sterilization through 0.22-mm polycarbonate filters
(Millipore, Bedford, MA). After 15 to 20 min at room tempera-
ture, 100 nM [methyl-3H] thymidine (1 mCi mL21, Amersham,
Little Chalfont, England) was added to each vial. Incorporation
was stopped after 2 h by adding 1 mL of 5% ice-cold formalin.
The formalin was added immediately before the thymidine for
zero-time controls. The suspensions were incubated for 15 min
in an ice bath, and filtered through 25-mm cellulose-acetate
filters (0.45-mm pore size; Osmonics, Minentonka, MN). The
filters were previously soaked in unlabeled thymidine solu-
tion for 1 h to reduce sequestration of radioactive thymidine on
the filters of the control with zero time incubation, which was
used to account for non-biotic sequestration of label on the
filters. The filters were washed three times with 5 mL of ice-cold
80% ethanol to remove thymidine bound to lipids, and three
times with 5 mL of ice-cold 5% trichloroacetic acid to precipi-
tate the macromolecules.

The labeled filters were placed in plastic scintillation vials
containing 0.5 mL of 0.1 M NaOH and incubated in a 90jC
water bath for 2 h to solubilize macromolecules. The vials were
allowed to cool, and 5 mL of Bio-safe II scintillation cocktail
was added. The radioactivity was quantified by counting in a
Packard 1900 TR liquid scintillation analyzer (Meridian, CT).
An external standards method was used to correct for quenching.

Higher TdR incorporation rates can result from higher
numbers of bacteria. Therefore, the data were expressed as
specific TdR incorporation (STdR), on the basis of TdR in-
corporation per unit of biomass carbon or ATP using the
fumigation-extraction and ATP data. We used only 10% of
the fumigation-extraction biomass carbon, assuming it to be the
percentage of soil microbes extracted with the homogenization-
centrifugation method (Bakken, 1985), and the TdR incorpo-
ration of the control Cr concentration.

Community Substrate Use Analysis
(BIOLOG GN Plates)

Six g of soil were diluted in 60 mL sterile deionized water in
a plastic bag and extracted in a laboratory blender for 5 min.
Ten mL of the extract were further diluted into 90 mL of
0.85% NaCl. The diluent was inoculated into BIOLOG GN
plates, which were incubated at 25jC. The color developed was
measured using a microplate autoreader (BIO-TEK instruments
EL 311) at 630 nm, every 4 h, up to 72 h. One plate for each pot
was inoculated.

The average well color development (AWCD) was calcu-
lated for each plate for each reading time as the arithmetic
average of absorbance values for all 95 wells, after subtracting
the value of the blank well from each substrate (Garland and
Mills, 1991). If the subtraction gave a negative value, zero was
used for that individual well. The AWCD for each treatment
and time was the average of the AWCD of the three corre-
sponding plates.

To normalize for different inoculum densities we calculated
the Gini coefficient and performed principal component (PC)
analysis at 0.75 AWCD (Garland, 1996; Harch et al., 1997), for
which the reading of each plate with a value closest to 0.75
AWCD was used. The Gini coefficient was calculated using
the formula:

G 5

o
N

i51
o
N

j51
_xi 2 xj_

2N22x
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where xi, xj refer to an absorbance value for each of the carbon
source wells (1 to 95), i and j are the wells,N is the total number
of carbon sources (95), and x is the AWCD (Harch et al., 1997).

Statistical Analysis

The logarithm of the inhibition concentration that caused
50% reduction in thymidine incorporation (IC50) was calcu-
lated by least squares fitting to a logistic model: A 5 100/[1 1
eb(S-a)] (Doelman and Haanstra, 1989; Dı́az-Raviña et al., 1994;
Shi et al., 2002a), where A is thymidine incorporation ex-
pressed as a percentage of the control, b is a slope parameter
indicating inhibition rate, S is the logarithm of Cr concentra-
tion, and a is IC50. Instead of zero, a very low Cr(VI) concen-
tration (1025M), that did not cause inhibition of incorporation,
was used as the control (Dı́az-Raviña et al., 1994). The IC50

and b values were estimated by using nonlinear regression
with the equation above using the SAS MODEL procedure
(SAS Institute, Inc., 1989). Principal component analysis was
performed using the SAS PRINCOMP procedure. A 2 3 2
ANOVA was performed for the major effects (metal and
plant) and their interaction, with multiple comparisons using
an experiment wise error rate of a 5 0.05 and least significant
means with the Tukey adjustment.

RESULTS
Effects of Chromium on Indian Mustard,

Chromium Analysis, and Biomass Measurements
Metal hydrolysis in soil is an acidifying reaction and

the Cr(VI) treatment stunted the plants, but there was no
significant effect on the pH by the end of the experi-
ment. After 4 wk the extractable Cr was low (Table 1),
12 mg Cr(VI) kg21 soil, and 91 mg Cr(III) kg21 soil.
In both rhizosphere treatments Cr (VI) levels were be-
low detection.
Fumigation-extraction and ATP (Table 2) measure-

ments were positively correlated (R2 5 0.55), and both
methods showed that Cr addition resulted in lower soil
microbial biomass, with no difference in this effect be-
tween bulk and rhizosphere soil, as the interaction of the
metal with the plant was not significant. The unfumi-
gated controls had significantly higher background
microbial carbon in the Cr treatments, compared with
non-Cr-treated soil (data not shown).
Biomass measurements with ATP by homogeniza-

tion-centrifugation showed the same trend as fumiga-
tion-extraction. In contrast to the fumigation-extraction
procedure, the effect of Cr on extractable ATP was more
pronounced for the rhizosphere soil, where there was an
approximately 10-fold decrease in ATP with Cr addition
(Table 2).

Tritiated Thymidine Incorporation
Overall TdR incorporation in the rhizosphere soil

tended to be higher than in the bulk soil, and higher for
the Cr treatments, but because of high variability there
were no significant differences (Fig. 1, Table 2). When
the data were expressed as a percent of the control to
measure tolerance, there was no difference in the rate at
which TdR incorporation declined as Cr concentration
increased (Fig. 1). The bulk soil IC50 was higher than
that of the Cr-treated bulk soil and the non-treated rhi-
zosphere. The Cr-treated rhizosphere soil IC50 tended to
be higher, but was not significantly different than that of
the non-treated rhizosphere (Table 2). The variability in
the rate of TdR incorporation was high overall.

The specific thymidine incorporation rate (STdR)mea-
sured in terms of fumigation-extraction C revealed that
there was a higher incorporation rate in the presence of
Cr for both rhizosphere and bulk soil (Table 2). Express-
ing STdR per unit fumigation-extraction-C gave incorpo-
ration rates four times higher in the Cr-treated rhizosphere
soil. Variability was very high for ATP, and although the
Cr treatments had much higher STdR, they were not sig-
nificantly different from the unamended treatments.

Community Substrate Use Analysis
(BIOLOG Plates)

The AWCD reflected the biomass results, because
inoculum density is known to affect color development
(Garland and Mills, 1991; Haack et al., 1995). The
AWCD was slower and lower in samples from Cr treat-
ments (Table 2, Fig. 2).L-pyroglutamic acid was the only
substrate in which there was faster and higher well color
development for the Cr treatments.

The Gini coefficient, an indicator of microbial even-
ness, for which higher values reflect less evenness (i.e.,
less diversity), showed that evenness was higher with Cr
addition, and that there were no differences in evenness
between bulk soil and rhizosphere soil (Table 2).

Principal component analysis showed a partitioning of
the treatments (Table 2, Fig. 3). The first principal com-
ponent accounted for 66% of the variability and was
strongly associated with Cr effects, while the interaction
with the plant was also significant (Table 2). TheCr treat-
ments were on the positive part of the PC1 axis, while
the non-Cr-treated bulk and rhizosphere soil were as-
sociated with the negative part of PC1 (Fig. 3). The plant
effect was stronger for PC2, where rhizosphere treat-
ments had a tendency to associate with positive values
relative to the PC2, and the bulk soil treatments with
negative values relative to PC2.

DISCUSSION
Chromium Toxicity

Brassica juncea (Indian mustard) was used, because
the Brassica family accumulates heavy metals and also
rhizofiltrates Cr(VI) (Dushenkov et al., 1995). Metal hy-
drolysis is an acidifying reaction but at the concentration
used, Cr had no permanent effect on lowering pH, which
has been previously observed (Gong et al., 2002).

Table 1. Citrate-extractable (labile) Cr(III) and phosphate-
exchangeableCr(VI) analysis, 1moafter theCr(VI) amendment.†

Parameter Cr amendment Cr(III) Cr(VI)

mg kg21soil mg kg21 soil
Rhizosphere 0 0.5 (0.07) ND‡

447 20.6 (2.5) ND
Bulk soil 0 2.0 (0.7) 1.9 (0.8)

447 91.1 (9.3) 12.2 (2.5)

†Values are the mean of three replications. Standard deviation given
in parentheses.

‡Below detection limit.
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The extractable Cr was considered the biologically
available Cr. One month after the Cr application the
level of Cr(VI), the highly toxic form, was low, and for
this reason it appears that the results represent an Fecho_
of the impact of the Cr application to the soil. The non-
treated soil Cr(III) and (VI) concentrations show
natural background Cr levels, while levels of Cr(VI) of
the treated bulk soil are close to natural levels (Katz and
Salem, 1994). The average total Cr concentration inKen-
tucky soils is 108 mg kg21 soil (Karathanasis and Seta,
1993). Adsorption and precipitation reactions mediated
by clay and organic matter were the most probable rea-
sons why Cr was no longer plant available, and the non-
alkaline soil pH did not favor the presence of Cr(VI)

(Bartlett and Kimble, 1976). The perturbation caused by
Cr was therefore considered transient, much like heat,
flood, or fumigation (Griffiths et al., 2000; Ranneklev
and Bååth, 2001), rather than persistent, as is the case
with other heavy metals (McGrath et al., 1995; Giller
et al., 1998). This would not have been the case if the
soil used had a capacity to re-oxidize Cr(III) to Cr(VI),
as did the vegetated tannery soil used by Viti and
Giovanetti (2001).

Microbial Biomass Measurements
Fumigation-extraction and ATP measurements indi-

cated that Cr significantly reduced microbial biomass.
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Fig. 1. Thymidine incorporation in a range of Cr concentrations of extracts of bulk soil, bulk soil treated with Cr, rhizosphere, and rhizosphere
soil treated with Cr, expressed as percent of the control-tolerance indicator (error bars represent standard error, n 5 3). The line at 50%
incorporation relative to the control is to assist in visualizing IC50.

Table 2. Summary of results of: biomass carbon measured by fumigation-extraction (FE), ATP, tritiated thymidine (TdR) incorporation at
control (1025 M) Cr(VI) concentration, logarithm of Cr(VI) concentration (M) that caused 50% reduction in TdR incorporation (IC50),
the slope-rate of inhibition of TdR incorporation with increasing Cr(VI) concentration, specific TdR incorporation (STdR) expressed
with FE and ATP data, average BIOLOGwell color development (AWCD), Gini coefficient at 0.75 AWCD, principal components 1 and
2 (PC-1, PC-2), and 2 3 2 ANOVAwith interaction table showing P values. Numbers in the same row followed by different letters are
significantly different at a 5 0.05, as determined by multiple pair-wise comparisons with the Tukey adjustment and experiment-wise
error of 0.05, n 5 3.

Parameter Rhizosphere Rhizosphere 1 Cr Bulk soil Bulk soil 1 Cr Metal Plant Metal 3 plant

FE biomass carbon (mg C kg21 soil dry wt.) 803a 278c 562b 90d ,0.0001 ,0.0001 0.13
ATP (ng ATP g21 soil dry wt.) 10.5a 1.1b 7.0ab 2.4ab 0.005 0.5 0.2
TdR (mol TDR ml21 h21) 3 (10214) 29.0a 42.1a 6.9a 22.0a 0.2 0.099 0.9
IC50 23.51b 23.27ab 23.15a 23.52b 0.5 0.4 0.0043
Slope 2.89a 3.25a 3.96a 2.91a 0.5 0.5 0.2
STdR-FE† 0.6b 2.4ab 0.2b 4.3a 0.005 0.3 0.18
STdR-ATP‡ 46.1a 2220a 16.1a 226.7a 0.2 0.3 0.3
AWCD at 48 h 1.21a 0.81b 1.06ab 0.45c 0.0001 0.009 0.19
Gini at 0.75 AWCD 0.41a 0.25b 0.42a 0.24b 0.001 0.9 0.7
PC-1 25.8bc 2.0b 27.0c 10.8a ,0.0001 0.067 0.024
PC-2 0.9a 3.7a 22.2a 22.4a 0.4 0.017 0.3

†With 10% of biomass C to reflect biomass of the soil solution, mol Tdr mL21 h21 mg21 biomass C 3 10218.
‡mol TdR 3 10214 mL21 h21 ng21 ATP.
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One of the explanations for lower biomass in metal-
contaminated soils is lower efficiency of conversion of
carbon into biomass (McGrath et al., 1995). However,
because Cr(VI) was no longer present at significant con-
centrations, lower biomass could probably be explained
by an initial killing impact. The higher background
carbon in the non-fumigated controls of biomass mea-

surements of the Cr-treated soil is evidence of such an
event. The rhizosphere apparently moderates Cr effects;
this can be due to greater substrate availability through
root exudates, as well as to reduction or complexation
of Cr(VI) by exudates. Rhizobia, for example, are pro-
tected by the host plant in metal-contaminated soils
(Giller et al., 1998), and root exudates increased counts
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Fig. 3. Principal component analysis of BIOLOG plates data. Each point represents one replicate. Symbols: open circles (>), rhizosphere, closed
circles (?), rhizosphere 1 Cr, open triangles (n), bulk soil, closed triangles (m), bulk soil 1 Cr. Values in parentheses show the variation
explained by the principal component.
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of culturable bacteria from metal-contaminated soils
(Kozdrój and van Elsas, 2000).

Tritiated Thymidine Incorporation
The TdR incorporation results (IC50) weakly indi-

cated that prior exposure to Cr increased tolerance in
the rhizosphere. However, the response in the bulk soil
was surprisingly the opposite. It may be that in bulk soil
the initial Cr application eliminated part of the microbial
community without selection for tolerance, rendering
the microbial community more sensitive to additional Cr
application. Another explanation may have to do with
the low levels of TdR incorporation in bulk soil.
Shi et al. (2002a), measuring 3H-leucine incorporation

in a series of Cr(VI) concentrations of a microbial com-
munity extract from a site with Cr, Pb, and hydrocarbon
pollution, found IC50 values of 2.5 mM Cr(VI) and no
differences in Cr tolerance regardless of exposure his-
tory. However, a non-vegetated Cr-contaminated soil
from a tannery gave an IC50 value of 3.68 mM (Shi et al.,
2002b). A possible explanation for non-development of
Cr tolerance is that tolerance is widespread among soil
microorganisms, and higher concentrations may be re-
quired to demonstrate such a difference (Giller et al.,
1998). Riemann and Lindgaard-Jørgensen (1990) ex-
posed natural seawater and fresh water samples to a
range of Cr(VI) concentrations and found IC50 values
ranging between 0.4 and 2.36 mM. Viti and Giovanetti
(2001), using vegetated tannery soil, found no difference
in viable counts between control and Cr-contaminated
soil when low (0.15 mM) Cr(VI) levels were added to the
medium, but increased counts for the Cr-contaminated
sites at 1.5 mM Cr(VI). However, their soil could oxidize
Cr(III) to (VI), thus longer term exposure might be
needed, as shown for ammonia-oxidizing bacteria (Gong
et al., 2002), although in that case copper and arsenate
were co-contaminants in addition to Cr.
In our case, the concentration of 447 mg kg21 Cr(VI)

used might not have been sufficiently high, or present
sufficiently long at high concentration to induce toler-
ance in the bulk soil. On the other hand, Dı́az-Raviña
and Bååth (2001) showed that microbial communities
pre-exposed to heavy metals lost tolerance within 8 d
when they were inoculated into sterilized unpolluted soil
and therefore, in this study, if there was some selection
for a Cr-tolerant microbial community in the Cr-treated
bulk soil near the time of impact, this may have disap-
peared as Cr concentration decreased. This would con-
cur with the hypotheses that decreased metal tolerance
and decreased metal toxicity occur with time (Dı́az-
Raviña and Bååth, 1996).
The specific TdR incorporation expressed on a per mg

C basis, shows that there was a higher rate of thymidine
incorporation rate in the Cr-treated rhizosphere and
bulk soil. Higher rates of thymidine incorporation are
associated with higher growth rates (Robarts and
Zohary, 1993). Chromium could select for fast growing
organisms indirectly. Dı́az-Raviña and Bååth (1996) hy-
pothesized that after applying heavy metals, the micro-
organisms that survive can thrive on the flash event

derived from the C and other nutrients released from
the metal-killed organisms. Indeed, this was evidenced
by the non-fumigated Cr-treated controls, which had
higher biomass C than the untreated soils. Thus, one
type of selection can be the ability of some microorgan-
isms to quickly utilize the C released after perturbation,
and by means of high growth rates out-compete slow-
growing species. This difference in growth rates suggests
a physiological difference of the Cr-treated microbial
communities, as was suggested for chloroform-fumigated
soil (Griffiths et al., 2000). Direct selection for fast-
growing organisms could also be possible if fast growth
rates are associated with Cr tolerance, which should also
be accompanied by an increase in metal tolerance. How-
ever, fast growth rates were not associated with an in-
crease in Cr tolerance for the Cr-treated bulk soil.

Community Substrate Use Analysis
(BIOLOG GN Plates)

The Cr treatment caused overall lower and slower
color development in plate wells, which can be attrib-
uted to lower microbial biomass, because AWCD is
known to be influenced by the initial inoculum density.
This limitation of the BIOLOG method can account for
the discrepancy between slower growth rates, as indi-
cated with BIOLOG plates, and faster growth rates, as
indicated with the STdR data. In other metal toxicity
studies in which BIOLOG was used without biomass
differences (Kelly and Tate, 1998), there was a lag pe-
riod for the metal treatments, caused by metal toxicity.
In the present study, although there was lower microbial
biomass with metal addition, overall there was no lag
period, which was another indication that Cr was no
longer toxic. However, increased lag time is not always a
characteristic of metal-stressed microorganisms (Giller
et al., 1998).

When different inoculum densities are involved, mul-
tiple plate readings and a set value of AWCD (Garland,
1996), or the area under the curve (Guckert et al., 1996;
Hackett and Griffiths, 1997), can be used for normali-
zation. The Gini coefficient at 0.75 AWCD indicates that
evenness, or functional diversity, was higher with Cr treat-
ment, showing that Cr application not only decreased
microbial biomass, but also had a qualitative impact by
increasing diversity (Harch et al., 1997). If Cr, directly
or indirectly, selected for fast-growing organisms (as
suggested by the STdR results) a decrease in diversity
would be expected. However, the initial killing impact of
Cr could release survivors from competition, at least
temporarily. Giller et al. (1998) proposed extending to
microorganisms and heavy metal stress a hump-backed
relationship between diversity and stress that applies to
plants and animals. In that model, moderate stress in-
creases diversity by limiting predominance of highly
competitive species, thus allowing more species to prolif-
erate. Therefore, the effects of Cr could decrease micro-
bial biomass, induce Cr tolerance or select for Cr-tolerant
microorganisms, select indirectly for fast-growing organ-
isms, and increase diversity by decreasing competition
(i.e., the evenness of the population would increase
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because one or more highly competitive and dominant
microbial species were eliminated by the treatment).
Other transient impacts, such as fumigation, have caused

a decrease in diversity by selecting for fast-growing
organisms (Griffiths et al., 2000). For example, heat caused
a switch in microbial community from mesophylic to
thermophylic, with the mesophylic activity not recover-
ing within the 20-d period measured (Ranneklev and
Bååth, 2001). In the current study, microbial biomass
was higher in the rhizosphere, and the bulk soil treat-
ments had the same evenness as their respective rhizo-
sphere treatments. The higher biomass in the rhizosphere
most likely was because of greater nutrient availability
than in the bulk soil.
Rhizosphere and bulk soil communities were distinc-

tively separated, because they had distinct character-
istics. We deduce that as an effect of the Cr addition,
communities differentiated even more, with increased
Cr tolerance (rhizosphere), selection for fast growing
organisms, and increased diversity. The two parameters,
Cr addition and the rhizosphere, resulted in a partition-
ing of the soil microbial communities almost on four
different quartiles in the principal component analysis.
It seems that Cr addition had a greater effect on the
bulk soil than on the rhizosphere microbial community.
The Cr-treated bulk soil microbial community was further
from the untreated soil population in the two-dimensional
principal component space than the Cr-treated rhizo-
sphere soil from the respective untreated soil. However,
this was not supported by differences in diversity be-
tween bulk and rhizosphere soil.

CONCLUSIONS
Our goal was to test current theories on the effects of

heavy metals on soil microorganisms in the rhizosphere
using Cr, a metal with rather complex chemistry. One of
the limitations of the study was the use of a single sample
point and Cr concentration. Had there been no treat-
ment differences we would have been unable to ade-
quately test the hypothesis. Population differences might
have developed early, then receded beyond detection,
which could not have been determined without more
frequent sampling. Population differences may have re-
quired more time than our sampling interval to manifest
themselves, or required higher or lower Cr concentra-
tions. However, there were observable and statistically
significant differences between samples based on the
types of analyses we conducted. When these differences
developed, and how long they persisted, would be sepa-
rate issues to investigate. We found that Cr(VI) was
rendered biologically unavailable, and therefore we be-
lieve that the results represent the echo of Cr toxicity
on the microbial community. We expected, and saw, a
reduction in soil microbial biomass with Cr treatment.
We also expected that Cr would decrease diversity, and
increase microbial community tolerance to Cr, especially
in the rhizosphere. Ultimately, Cr tolerance was mar-
ginally increased in the rhizosphere, but surprisingly
decreased in the bulk soil, and Cr application actually in-
creased diversity (as measured by evenness of the popu-

lation) and growth rates. This leads us to hypothesize
indirect selection for fast-growing organisms accompa-
nied with alleviation of competition among microbial
communities, at least temporarily. In turn, it is tempt-
ing to assume that the system was recovering from the
Cr application, possibly faster in the rhizosphere. But
for that hypothesis to be tested, more frequent sampling
of longer duration would be required than what we
employed in this study. Following a transient perturba-
tion, systems can regain their original level of function,
but recovery is impaired by loss of diversity (Griffiths
et al., 2000). Further studies should investigate the ability
of Cr-impacted rhizosphere microorganisms to function
(such as the ability to degrade organic matter), as well as
longer term effects of Cr application.
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Bååth, E. 1992. Measurement of heavy-metal tolerance of soil bac-

teria using thymidine incorporation into bacteria extracted after
homogenization centrifugation. Soil Biol. Biochem. 24:1167–1172.

Babich, H., and G. Stotzky. 1985. Heavy-metal toxicity to microbe-
mediated ecologic processes–A review and potential application to
regulatory policies. Environ. Res. 36:111–137.

Bakken, L.R. 1985. Separation and purification of bacteria from soil.
Appl. Environ. Microbiol. 49:1482–1487.

Bartlett, R.J. 1991. Chromium cycling in soils and water–Links, gaps,
and methods. Environ. Health Perspect. 92:17–24.

Bartlett, R.J., and B.R. James. 1996. Chromium. p. 683–701. In D.L.
Sparks et al. (ed.) Methods of soil analysis. Part 3. Chemical meth-
ods. SSSA, Madison, WI.

Bartlett, R.J., and J.M. Kimble. 1976. Behavior of chromium in soils:
I. Trivalent forms. J. Environ. Qual. 5:379–383.

Carlot,M., A.Giacomini, and S. Casella. 2002. Aspects of plant-microbe
interactions in heavy metal polluted soil. Acta Biotechnol. 22:13–20.

Chaney, R.L., J.A. Ryan, and S.L. Brown. 1996. Development of the
USEPA limits for chromium in land-applied biosolids and appli-
cability of these limits to tannery by-product derived fertilizers and
other Cr-rich soil amendments. p. 231–295. In S. Canali, F. Tittarelli,
and P. Sequi (ed.) Chromium environmental issues. FrancoAngeli,
Milan, Italy.

Dı́az-Raviña, M., and E. Bååth. 1996. Development of metal tolerance
in soil bacterial communities exposed to experimentally increased
metal levels. Appl. Environ. Microbiol. 62:2970–2977.
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Soderberg, K.H., and E. Bååth. 1998. Bacterial activity along a young
barley root measured by the thymidine and leucine incorporation
techniques. Soil Biol. Biochem. 30:1259–1268.

Vance, E.D., P.C. Brookes, and D.S. Jenkinson. 1987. An extraction
method for measuring soil microbial biomass C. Soil Biol. Biochem.
19:703–707.

Viti, C., and L. Giovanetti. 2001. The impact of chromium contami-
nation on soil heterotrophic and photosynthetic microorganisms.
Ann. Microbiol. 51:201–213.

Wu, J., R.G. Joergensen, B. Pommerening, R. Chaussod, and P.C.
Brookes. 1990. Measurement of soil microbial biomass C by fumi-
gation extraction–An automated procedure. Soil Biol. Biochem.
22:1167–1169.

R
e
p
ro
d
u
c
e
d
fr
o
m

J
o
u
rn
a
l
o
f
E
n
v
ir
o
n
m
e
n
ta
l
Q
u
a
lit
y
.
P
u
b
lis
h
e
d
b
y
A
S
A
,
C
S
S
A
,
a
n
d
S
S
S
A
.
A
ll
c
o
p
y
ri
g
h
ts

re
s
e
rv
e
d
.

645IPSILANTIS & COYNE: SOIL MICROBIAL COMMUNITY RESPONSE TO CR IN SOIL


	University of Kentucky
	UKnowledge
	5-2007

	Soil Microbial Community Response to Hexavalent Chromium in Planted and Unplanted Soil
	Ioannis Ipsilantis
	Mark S. Coyne
	Repository Citation
	Soil Microbial Community Response to Hexavalent Chromium in Planted and Unplanted Soil
	Notes/Citation Information
	Digital Object Identifier (DOI)


	jeq50438 638..645

