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ABSTRACT OF DISSERTATION 
 
 
 
 

IDENTIFICATION OF ACTIVITIES INVOLVED  
IN CAG/CTG REPEAT INSTABILITY 

 
  CAG/CTG repeat instability is associated with at least 14 neurological disorders, 
including Huntington’s disease and Myotonic dystrophy type 1. In vitro and in vivo 
studies have showed that CAG/CTG repeats form a stable hairpin that is believed to be 
the intermediate for repeat expansion and contraction. 

Addition of extra DNA is essential for repeat expansion, so DNA synthesis is one 
of the keys for repeat expansion. In vivo studies reveal that 3’ CTG slippage with 
subsequent hairpin formation (henceforth called the 3’ CTG slippage hairpin) occurs 
during DNA synthesis. It is proposed that hairpin tolerance machinery is activated 
because prolonged stalling of DNA polymerase triggers severe DNA damage. As a 
means toward studying the hairpin-mediated expansion, we created a special hairpin 
substrate, mimicking the 3’ CTG slippage hairpin, to determine which polymerase 
promotes hairpin bypass. Our studies reveal polymerase β (pol β) is involved in the initial 
hairpin synthesis while polymerase δ (pol δ) is responsible for the resumption of DNA 
synthesis beyond the hairpin (extension step). Surprisingly, we also found that the pol δ 
can remove the short CTG hairpin by excision of the hairpin with its 3’ to 5’ exonuclease 
activity.  

Besides repairing the hairpin directly, resolving the hairpin is an alternative 
pathway to maintain CAG/CTG repeat stability. With limited understanding of which 
human helicase is responsible for resolving CAG/CTG hairpins, we conducted a 
screening approach to identify the human helicase involved. Werner Syndrome Protein 
(WRN) induces the hairpin repair activity when (CTG)35 hairpin is formed on the 
template strand. Primer extension assay reveals that WRN stimulates pol δ synthesis on 
(CAG)35/(CTG)35 template and such induction was still found in the presence of 
accessory factors. Helicase assay confirms that WRN unwinds CTG hairpin structures. 

Our studies provide a better understanding of how polymerases and helicases play 
a role in CAG/CTG repeat instability. Considering CAG/CTG repeat instability 
associated disorders are still incurable, our studies can provide several potential 
therapeutic targets for treating and/or preventing CAG/CTG repeat associated disorders.
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CHAPTER 1 DNA Metabolism and CAG/CTG Repeat Instability 

 

1.1 Introduction  
 

Microsatellites are stretches of DNA in which a sequence of repeating units, 

typically of 1 to 5 nucleotides, appears several times, such as the dinucleotide (CA)n or 

the trinucleotide (CAG)n (1). Microsatellite repeats are polymorphic, meaning different 

individuals may have a different number of repeats in each particular satellite in their 

genome. The number of repeats in a satellite is typically stable in an individual if the 

number of repeats is below a certain level. However, when the repeat length increases 

over a particular threshold, it can become unstable and possibly trigger clinical 

manifestations due to gene malfunction or toxic protein accumulation. It is still not clear 

why repeat threshold is different for different diseases, but it is hypothesized that cis-

elements (DNA content, e.g repeat sequence, flanking sequence) (2)and trans-factors 

(protein expression) contribute to different threshold(3). More than 30 neurological 

diseases are associated with microsatellite instability (4), such as Huntington disease and 

Fragile X syndrome. Since the repeat will be transmitted and expanded when it is passed 

to the next generation, repeat instability diseases show what is termed anticipitation, 

meaning the severity of the disease increases with each subsequent generation. Repeat 

instability can happen in both coding and non-coding regions of DNA, but in coding 

regions trinucleotide repeats instability is more commonly found than other types of 

repeats. Since a single amino acid is specified by three nucleotides, di-, tetra- and 

pentanucleotide repeats in the coding region may result in different amino acid 

production, causing frameshift mutations (5). Much research has focused on trinucleotide 
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repeat instability because it contributes to many repeat-associated disorders (4). Different 

trinucleotide repeat sequences have been found to form different types of secondary 

structures. For example, Watson-Crick base pair mediated hairpins can be formed by 

CAG and CTG repeats, Hoogsteen base pair mediated G-quadruplexes can be formed by 

CGG repeats and triplexes can be formed by GAA repeats (6). These secondary 

structures interfere with the normal DNA metabolism, so it is proposed that repeat 

instability is caused by aberrant secondary structure formation in DNA (7).  

 

1.2 Repeat instability in dividing cells 

DNA slippage during replication was one of the first mechanisms proposed to 

explain repeat instability (8). Secondary structures formed by trinucleotide repeats can 

cause misalignment or DNA slippage during DNA synthesis. Repeat expansion or 

contraction is resulted when the DNA slippage occurs on the nascent strand or template 

strand respectively. Errors during DNA replication are proven to cause repeat instability 

in bacteria (9) and yeast (10). In vitro studies using the SV40 DNA replication system 

reveal that CAG repeat size and location of the SV40 replication origin relative to the 

location of the repeat sequence can affect repeat stability in primate (11) and human cells 

(12). Location of the repeat sequence relative to the replication origin was also found to 

affect repeat instability in bacteria. Bacterial studies reveal that higher repeat instability is 

observed when the repeat sequence is closer to the replication origin (13). It is also 

observed that small alterations of the distance from the replication origin to the 

CAG/CTG repeats may shift contraction to expansion (11). The location of the 
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replication origin determines the repetitive sequence and secondary structure of the 

initiation site for lagging strand synthesis. Therefore, this model proposes that affected 

individuals may have different locations of replication origin, leading to repeat instability 

(14). 

Repeat instability may show strand specific bias during DNA replication. Since 

A-A base pairing has weaker base stacking than that of T-T, CTG repeats form a more 

stable structure than secondary structure formed from CAG repeats (15). Therefore, the 

secondary structure formed by CAG/CTG repeats are different on leading and lagging 

strands (16). Indeed, higher repeat instability frequency is observed when CTG is used as 

the template for lagging strand synthesis in bacteria and yeast (9). Also, addition of 

emetine (a lagging strand synthesis inhibitor) to human cells promotes CAG/CTG 

instability (17). During lagging strand synthesis, RAD27/FEN1 is responsible for 

removing the 5’ flap. RAD27/FEN1 deletion results in CAG/CTG instability in yeast (18). 

In vitro studies reveal that RAD27/FEN1 fails to remove the 5’ flap formed by long CAG 

repeats and the subsequent ligation of the CAG hairpin on the nascent strand promotes 

expansion (19). Therefore, secondary structure formation due to prolonged single 

stranded DNA exposure (20) and/or aberrant lagging strand maturation (21) are proposed 

to explain higher repeat instability during lagging strand synthesis.  
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1.2.1 DNA polymerases 

DNA polymerase progression is impeded by the secondary structures formed by 

trinucleotide repeats (22,23). Since the prolonged exposure of single stranded DNA can 

trigger serious damage to the genome (24,25), it is proposed that cells may utilize a 

similar damage bypass system to restore DNA synthesis when they come across 

trinucleotide repeat secondary structures (26). In translesion DNA synthesis (TLS), a low 

fidelity polymerase is recruited, which inserts several bases past the lesion, after which 

the polymerase is replaced by the replicative polymerases to continue synthesis (26). 

Expansion occurs when the hairpin bypass occurs on the nascent strand (27). Since there 

are a number of TLS polymerases, it is still not clear which polymerase is responsible for 

the hairpin bypass. Yeast with deletions of polymerase ξ or η did not exhibit any change 

in repeat instability (26). Polymerase β (pol β) was shown to promote repeat instability 

during 8-oxo-7,8-dihydro-2’-deoxyguanosine (8-oxoG) repair. It was proposed that pol β 

promotes repeat expansion when a hairpin is formed at the 5’ end (19). However, it is still 

unknown whether pol β has similar activity to promote CAG/CTG repeat expansion 

when the hairpin is formed at the 3’ end. Identifying the polymerase involvement in 

hairpin-mediated expansion is another key factor to understand how CAG/CTG repeat 

instability is developed. 
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1.3 Repeat instability in non-dividing cells 

Patients with repeat instability associated disorders exhibit uncontrolled neuronal 

cell death due to repeat expansion, indicating that repeat instability can also occur in 

terminally differentiated cells (3). Therefore, DNA replication cannot be used to explain 

repeat instability in these non-diving cells (3,27). However, other DNA metabolic 

processes such as DNA repair and transcription are still active in non-diving cells (28-30), 

suggesting those processes can promote repeat instability.  

 

1.3.1 Errors generated from DNA repair 

In mammalian cells, mismatch repair (MMR), base excision repair (BER), 

nucleotide excision repair (NER) and double-strand break repair are responsible for 

correcting errors and maintaining genomic stability (21). However, these repair processes 

may trigger DNA strand breaks and single-stranded DNA exposure, allowing secondary 

structure formation of the repeat sequence. Therefore, these protective DNA repair 

pathways are proposed to cause repeat instability.  

 

1.3.1.1 Mismatch repair 

Misincorporation of nucleotides may occur during DNA synthesis. The mismatch 

repair (MMR) pathway can maintain genomic stability by repairing the misincorporated 

nucleotides. The MMR pathway relies on MutSα (MSH2-MSH6) and MutSβ (MSH2-

MSH3) for mismatch recognition. MutSα is responsible for repairing base-base 
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mismatches and 1-2 nucleotide insertion/deletion mispairs, while MutSβ is involved in 

correcting loops consisting of 1 to 12 nucleotides (31). Defects in MMR cause 

microsatellite instability and predispositions to colorectal and other cancers (31). 

However, the role of mismatch repair in maintaining CAG/CTG repeat stability is still 

unclear. 

There is considerable evidence that MMR, under certain circumstances, can be 

mutagenic and lead to CAG/CTG repeat instability. MMR-deficient E. coli shows higher 

CAG/CTG repeat stability than that of the MMR-proficient strain (32). In contrast, 

MSH2 (33) and MSH3 (34) deficiency can stabilize CAG repeats in transgenic HD 

(Huntington’s disease) mice, indicating that MSH2 or MSH3 triggers repeat instability. 

In vitro binding assays reveal that MutSβ can bind to CAG hairpins, but binding to 

hairpins inhibits ATP binding and hydrolysis by MutSβ (34). Since ATP hydrolysis by 

mismatch recognition proteins (e. g., MutSα) is essential for MMR (35), it was proposed 

that MutSβ may stabilize the CAG hairpin by inhibiting normal MMR and protect the 

hairpin from other hairpin repair machinery (34). This hypothesis is based on the 

assumption that MutSβ behaves similarly as MutSα when binding to a heteroduplex. 

However, a recent study demonstrated that these two mismatch recognition proteins 

display distinct biochemical and biophysical activities during mismatch recognition. For 

example, mismatch binding stimulates the ATP binding and hydrolysis activities of 

MutSα, but inhibits these activities of MutSβ (36).  

In contrast to the above, some studies suggest that MMR does not play any role in 

repeat instability. In one study, deletion of MSH2, MSH3 or PMS1 did not result in any 

large CAG/CTG deletions in yeast (37), while in a second study, there was no 
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endogenous CTG repeat instability observed in human MMR-deficient cells (38). 

Moreover, mismatch repair deficient extracts were found to be proficient in in vitro 

hairpin repair assays (39). Recently, Tian et al. showed that although binding to a 

CAG/CTG hairpin reduces MutSβ ATP binding and ATPase activities, there is no 

difference in MutSβ affinity for ATP and its ATPase activity when bound to a CAG 

hairpin compared to the typical insertion/deletion single-stranded loop substrate (36). 

Finally, an excess amount of MutSβ was found not to inhibit hairpin repair, eliminating 

the possibility of a MutSβ inhibitory role in the CAG/CTG hairpin repair machinery (36).  

Experiments conducted by Pearson’s group may explain the above contrasting 

findings regarding MMR and CAG/CTG repeat instability. They found that MMR can 

both promote and prevent CTG repeat instability, depending upon the hairpin type (40). 

MSH2-deficient extract from LoVo cells was proficient in repairing large CTG hairpins 

(>20 repeats) but not short CTG hairpins (<3 repeats), supporting the idea that MMR can 

repair small loop structures. However, in the same experiment, cell extract with MutSβ 

overexpression inhibits hairpin repair on short CTG hairpin, supporting the idea of an 

inhibitory role of MutSβ in short hairpin repair. Therefore, Pearson’s group concluded 

that the structural variation (size) of the hairpin and MutSβ concentration may explain the 

differences found by different research groups (40).  

Several weaknesses are found in the Pearson’s experiment. First, CTG with one 

repeat is used in most of the experiments. The size of the CTG repeat is too short for 

hairpin formation since two CTG repeats are the minimum requirement for a hairpin 

formation (41). It is proposed that MutSβ promotes repeat instability by inhibiting repair 

of multiple small CAG/CTG hairpins on a DNA. However, it is still not clear whether the 
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CAG/CTG expansion is caused by the multiple small hairpins formation or a big hairpin 

(40). Therefore, Pearson’s hypothesis will be consolidated when similar hairpin assays 

are conducted with various CAG/CTG hairpins.  

 

1.3.1.2 Nuclear Excision Repair (NER)  

 

Nucleotide excision repair (NER) recognizes DNA damage caused by helical 

distortion of DNA. Since a hairpin loop can also distort the normal helical DNA structure, 

it is hypothesized that mistakes during NER may result in trinucleotide instability (21). 

NER consists of global genome repair (GGR) and transcription-couple repair (TCR). 

TCR recognizes lesions by the stalling of the transcription complex and then recruits 

Cockayne syndrome proteins A and B (CSA and CSB) while GGR senses the lesion 

directly by Xeroderma pigmentosum complementation group C (XPC), a protein unique 

to GGR. Once the lesion is recognized, GGR and TCR share the same downstream 

pathway (42) for lesion repair. 

There is more data supporting a role for TCR than for GGR in promoting repeat 

instability. Studies reveal that bacterial strains with uvrA or uvrB mutations (NER 

proteins) exhibit CAG repeat instability only in the presence of transcription (43). Since 

TCR and GGR shares the same uvrA and uvrB proteins, instability occurs in the presence 

of transcription indicates TCR plays more important role in triggering repeat instability.  

Moreover, knocking out XPC (GGR protein) in HD mice did not result in CAG repeat 

instability (44), and siRNA knockdown of XPC in human cells did not affect CAG repeat 
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instability (45), suggesting that GGR is not involved in repeat instability. Conversely, 

siRNA knock down of CSB, a protein involved in TCR, can reduce CAG contraction in 

human cells (45).  

Since siRNA knockdown of CSB and NER downstream components ERCC1 and 

XPG can also reduce CAG contraction, it is proposed that normal TCR activity on the 

CAG/CTG hairpin results in repeat instability (45). During transcription, RNAPII induces 

CAG/CTG secondary structure formation. The stalled RNA polymerase II will recruit 

TCR repair proteins to remove the hairpin. Since CAG will form a less stable hairpin 

structure, it is likely that it will branch migrate. It may form a crucifix structure with 

unequal CAG and CTG number. This crucifix structure will hinder the second round of 

RNA polymerase II progression, triggering the TCNER. Depending on the unequal repeat 

number on the transcribed or untranscribed strand, CAG/CTG repeats may expand or 

contract after the TCR (28). It is more likely for long CAG/CTG repeats to form a hairpin, 

so the proposed TCR model can also be used to explain the threshold of repeat number in 

repeat instability associated diseases.  

 

1.3.1.3 Base Excision Repair (BER) induces repeat instability 

DNA nucleotides can be modified by chemicals, radiation and oxidative stress 

resulting in mutations to the genome. Base excision repair (BER) can repair the modified 

bases to help maintain genomic integrity (46). However, oxidative stress can induce CAG 

repeat instability in human HD fibroblasts (47), so it has been proposed that under certain 

circumstances BER can promote repeat instability. Errors generated from BER can 
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explain the age-dependent CAG expansion seen in HD patients (47). High oxidative 

stress is found in the human brain due to high content of polyunsaturated fatty acids, high 

rate of oxygen consumption and relatively low antioxidant capacity (48). 8-oxo-7,8-

dihydro-2’-deoxyguanosine (8-oxoG), a major DNA lesion produced by oxidative stress 

(49) can be repaired by BER. In vivo and in vitro assays reveal that BER of 8-oxoG can 

result in repeat instability. Transgenic HD mice with knockdown of 8-oxoguanine DNA 

glycosylase (OGG1), an enzyme involved in removing 8-oxoG, reduces CAG expansion 

(47). In addition, high amounts of pol β, a BER enzyme, was found to accumulate on the 

CAG repeat from striatum where CAG expansion is found to be most prevalent in HD 

mice (50). In vitro assays demonstrate CAG expansion after BER of 8-oxoG on CAG 

repeats. Since long patch BER is involved in strand displacement, it is hypothesized that 

in long patch BER, after 8-oxoG removal, strand displacement caused by either pol β or δ 

can promote the formation of a 5’flap at a CAG repeat. 5’ flap removal may not occur 

when the CAG repeat forms a hairpin. Expansion occurs when pol β fills the gap, 

followed by nick sealing by DNA Ligase I (Fig. 1.1) (19). Even though the size of the 

expansion caused by BER is usually not large, oxidative stress increases in the aging 

brain (51). Therefore, it is likely that multiple rounds of BER results in a progressive 

expansion in areas containing trinucleotide repeats (27). Accumulation of errors through 

BER during aging may help to explain the age dependent CAG expansion in HD patients. 
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1.3.1.4 Double-strand break repair 

Double-strand breaks in DNA can be generated by exogenous and endogenous 

factors. Ionizing radiation, chemicals and reactive oxygen species can induce double 

strand break formation. Double-strand breaks can also be formed during replication fork 

impediment or during DNA synthesis on template with a single strand break (52,53). 

Since yeast with long CAG/CTG repeats showed higher incidence of double-strand break 

formation, it was hypothesized that the strand break was either caused by DNA synthesis 

impediment or by specific CAG/CTG hairpin nucleases (54,55). Double strand breaks in 

a CAG/CTG repeat region can trigger contraction in bacteria (56) and in yeast (57). 

Double-strand breaks can be repaired by homologous recombination and non-

homologous end-joining (58). HD mice with a deficiency in DNA-PKcs (DNA protein 

kinase, catalytic subunit), a kinase required for the non-homologous end-joining pathway 

of DNA repair, do not affect the rate of CAG repeat instability, suggesting the non-

homologous end-joining pathway does not contribute repeat instability (59).  

Nonetheless, mutations of homologous recombination repair proteins can result in 

CAG/CTG repeat instability. Specially engineered zinc finger nucleases can introduce 

double-strand breaks in CAG/CTG repeats, causing CAG repeat contraction in vivo (60). 

However, repeat instability was not observed when cells are coexpressing the zinc finger 

nucleases and the dominant-negative form of RAD51 (a protein involved in homologous 

repair), suggesting that homologous recombination repair can be responsible for repeat 

instability (60). Also, mutation of recA and recB (E. coli recombination proteins), can 

reduce CAG/CTG repeat contractions in E. coli (61). Replication slippage during the 
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strand invasion, gene conversion and single-stranded DNA annealing are proposed 

models for explaining repeat instability during homologous recombination repair (62). 

 

1.3.2 Transcription induces repeat instability 

Transgenic HD mice harboring an unexpressed transgene containing a CAG 

repeat sequence did not exhibit any repeat instability. This contrasted with the repeat 

instability seen in mice containing expressed transgenes with CAG repeats. These results 

suggest that in some cases transcription may be responsible for repeat instability (63). By 

using model systems in which the transcription levels of CAG/CTG repeats can be 

controlled in bacterial and human cells, it is possible to study the role of transcription in 

repeat instability. Using an IPTG inducible system in bacteria to control transcription 

levels, it was demonstrated that active transcription can destabilize a long CAG/CTG 

repeat (64). A similar type study using human cells with a Tet-On doxycycline inducible 

system also showed that high transcription level can promote CAG repeat instability (45). 

Furthermore, it is known that RNA polymerase II stalling during transcription can act as 

a primary signal to initiate transcription coupled nucleotide excision repair (TC-NER) 

(65). Thus, it was proposed that CAG/CTG hairpins can block RNA polymerase II 

progression, triggering TC-NER, leading to repeat instability (66).  
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1.4 Mechanism of hairpin repair  

CAG/CTG hairpin formation is believed to be a mutagenic intermediate that if left 

unrepaired will lead to repeat instability, Nonetheless, the hairpin repair mechanism is not 

fully understood. With the use of in vitro assays, some characteristics of the hairpin repair 

mechanism have been identified. Human nuclear extracts are capable of repairing hairpin 

substrates in a nick-directed manner, with the hairpin being removed by excision (39) 

and/or incision (67). The DNA polymerase inhibitor, aphidicolin, can abolish hairpin 

repair, indicating that one or more of polymerases α, δ and ε, are required for the DNA 

re-synthesis after hairpin removal. In addition, mismatch repair and nucleotide excision 

repair deficient extracts are still proficient in the hairpin repair, suggesting that the 

hairpin repair pathway is different from that of mismatch repair and nucleotide excision 

repair (39). Proteins involved in the incision during hairpin removal are not known yet, 

but the PCNA inhibitor (p21c) can abrogate the incision activity, indicating that PCNA 

may play some role with the endonuclease in the hairpin removal step. Since a low repair 

activity was found when CTG was used as the template for the DNA-resynthesis, it was 

hypothesized that a helicase may be involved in unwinding the CTG hairpin, promoting 

DNA synthesis on the CTG template (67).  
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1.5 Helicases 

It is believed that a common feature of all the known metabolic pathways 

resulting in CAG/CTG repeat instability is CAG/CTG hairpin formation (20). Therefore, 

factors that can disrupt hairpin formation will help maintain CAG/CTG repeat stability 

(37). DNA helicases utilize energy to unwind double-stranded DNA and mutations in 

DNA helicases can result in genomic instability (68). Based on a number of studies, it has 

been proposed that DNA helicases can promote repeat stability by disrupting CAG/CTG 

hairpin formation (37).  

Suppressor of RAD Six Screen Mutant 2 (SRS2), a yeast 3’to 5’ DNA helicase, 

was shown to be involved in maintaining trinucleotide repeat (TNR) stability using an 

unbiased yeast mutant screening assay. Yeast containing a point mutant in SRS2 that 

destroys helicase activity had increased expansion rates of CAG, CTG and CGG repeats, 

confirming the role of SRS2’s helicase activity in maintaining TNR stability (69). In vitro 

helicase assays revealed that SRS2 demonstrates a higher activity and specificity in 

unwinding CAG and CTG hairpins when compared to several other helicases, indicating 

that SRS2 may be the preferred helicase involved in preventing repeat expansions (37,70). 

Pol δ is known to interact with SRS2 through its pol 32 subunit (71). A mutant lacking 

pol 32 demonstrated an increased rate of CAG/CTG repeat instability compared to the 

wild type strain and such instability could not be rescued by SRS2 overexpression. From 

these results, it was proposed that SRS2 prevents CAG/CTG repeat instability by 

interacting with pol δ to resolve CAG/CTG hairpins during DNA synthesis (69).  

No human homolog of SRS2 has been identified, but F-Box helicase 1 (FBH1) is 

proposed to be the functional human orthologue of yeast SRS2 (72). Nonetheless, no 
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biochemical or genetic assays have been conducted to prove a role for FBH1 in 

CAG/CTG repeat stability.  

Werner Syndrome Protein (WRN), a human 3’to 5’ DNA helicase, was identified 

to prevent repeat instability. WRN unwinds (CGG) hairpins or tetraplexes, and it can 

enhance polymerase δ synthesis on the CGG repeats (73,74). Cells deficient in WRN 

showed large DNA deletions (75) and telomere loss (76), suggesting that WRN can 

somehow play a role in maintaining genomic stability. A mutation in SGS1, the WRN 

yeast homolog, triggers CTG repeat contraction, especially when CTG repeats are on the 

lagging-strand template (77). Therefore, it was proposed that SGS1 prevents CTG repeat 

contraction by resolving CTG hairpins during lagging strand synthesis. However, no data 

is available about whether or not the human homolog of SGS1, WRN, is also involved in 

CAG/CTG repeat instability.
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1.6 Research Objectives 

The complexity of the mechanisms involved in TNR repeat instability is evident 

by the number of different hairpin repair pathways and the crosstalk among the DNA 

repair pathways (3,27,28,67). The common points of repeat expansion are the addition of 

DNA (DNA synthesis) and the hairpin formation. Therefore, we proposed two specific 

aims to identify what polymerases and helicases are involved in repeat instability and 

how they act in these pathways.  

Specific aim one is to identify DNA polymerase(s) involved in promoting 

CAG/CTG expansion. Repeat expansion requires the addition of DNA and hairpin 

formation is associated with hairpin repair and DNA synthesis. Since CAG/CTG hairpins 

hinder polymerase progression, we hypothesize that cells may treat these hairpins in a 

manner similar to other types of lesions that trigger translesion synthesis (26). To test this 

hypothesis, we established assay to screen for different error-prone DNA polymerases to 

promote repeat expansion. With low processivity of the error-prone polymerases, it is 

likely that cells may adopt the polymerase switching system to promote repeat expansion. 

Therefore, once the error-prone polymerase is identified, the assay will be conducted in a 

purified system containing the replicative polymerase and the target polymerase.  

Specific aim two is to identify helicases responsible for unwinding the CAG/CTG 

hairpins. Our previous research showed that low hairpin repair activity was observed 

when CTG hairpin was formed in the template strand (CTG slip-in). A-A base pairing 

has weaker stacking than that of T-T base pairing, CTG forms a more stable hairpin than 

that of CAG (3,15). In addition, the formation of a stable hairpin on the template strand 

hinders polymerase progression, so we hypothesize that a helicase activity is involved 



17 
 

during the resynthesis step of CTG slip-in repair (67). To test this hypothesis, different 

HeLa nuclear extract fractions were added in the CTG slip-in hairpin repair assay to 

screen for potential helicase leading to higher repair activity. After identifying the 

helicase, biochemical assays like helicase assay and primer extension assay will be 

carried out to characterize how the helicase contributes to enhanced DNA repair activity 
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CHAPTER 2 Materials and Methods 

2.1 Basic techniques 

2.1.1 Chemicals and reagents 

Affymetrix (Formerly USB): Agarose, Ammonium Sulfate, Ammonium Persulfate, 

Cesium Chloride (CsCl), EDTA, Ethidium Bromide, Exonuclease V, Heparin Salt, 

Imidazole, Phenol, Sodium Dodecyl Sulfate (SDS), T4 polynucleotide kinase. 

Fisher Scientific: 1- Butanol, Acetic acid, Formamide, Isopropanol, Polyethylene Glycol 

8000 (PEG 8000), Potassium Acetate, Potassium Phosphate Dibasic (K2HPO4), 

Potassium Hydroxide (KOH), Potassium Phosphate Monobasic (KH2PO4), Sodium 

Hydroxide (NaOH), Sodium Phosphate Dibasic (Na2HPO4), Sodium Phosphate 

Monobasic (NaH2PO4), Tween-20. 

Millipore: Amicon Ultra-4 Centrifugal Filter Devices 

Nalgene:  0.22μm filters 

Perkin Elmer: [γ-32P]-ATP.  

Research Products International Corp (RPI): 2XYT Broth, Ampicillin, HEPES, LB 

Broth, Acrylamide, N,N´-Methylenebisacrylamide, Tetracycline Hydrochloride, Urea, X-

ray Film.  

Roche: Adenosine Triphosphate (ATP), Deoxynucleotide Triphosphate (dNTP), 

Dithiothreitol (DTT), Noniodent P-40 (NP-40), Quick Spin Column (TE). 



19 
 

Sigma Aldrich: 2-Mercaptoethanol, Boric Acid, Bromophenol Blue, GenElute™ Gel 

Extraction Kit, Glycerol, Sodium Chloride (NaCl), Polyvinylpyrrolidone, Sodium Citrate, 

Sucrose, Tris,  Xylene Cyanol. 

GE Healthcare: ECL Detection Reagent, Hybond-NX, 5 mL Histrap column, 1 mL 

Mono-Q column, 1 mL Mono-S column, Phenyl-Sepharose beads, Sephacry S-300 beads, 

1 mL SP-Sepharose column, S-Sepharose beads. 

Stratagene: E.coli BL21 (DE3) pLysS cells, XL1 Blue competent cells.  

VWR: Spectra/Por 1 Dialysis Membrane (Dialysis Bag), Ethanol, Methanol. 

Integrated DNA Technologies: All the DNA oligonucleotides. 

New England Biolab: Restriction enzymes, T4 DNA ligase. 

Santa Cruz Biotechnology: WRN antibody, polymerase δ, polymerase ε antibodies.
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2.1.2 Primers used in the experiment  

 

Primer Name 

(Original name)  

Sequence Application  

M13GC V6109 CGG ATA ACA ATT TCA CAC AGG Probe for Southern blot 

6135 M13MP18F CTATGACCATGATTACGAATTC Probe for Southern blot 

mCTG15 A*mC*mG*mACGGCCAGTGCCAAGCTT(CTG)1

5 

Hairpin(oligo- based) 

and helicase assay 

mCTG15+2 A*mC*mG*mACGGCCAGTGCCAAGCTT(CTG)1

5GA 

Hairpin (oligo- based) 

2 extra bp 

mCTG15+2MM A*mC*mG*mACGGCCAGTGCCAAGCTT(CTG)1

5GG 

Hairpin (oligo- based) 

2 extra bp with mismatch 

mCTG15PE+5 A*mC*mG*mACGGCCAGTGCCAAGCTT(CTG)1

5GAATT 

Hairpin (oligo- based) 

5 extra bp  

mCTG15PE+5MM A*mC*mG*mACGGCCAGTGCCAAGCTT(CTG)1

5GAATG 

Hairpin (oligo- based) 

5 extra bp with mismatch 

MP18C 

mCTG15PE3m 

A*mC*mG*mACGGCCAGTGCCAAGCTT(CTG)1

4*mC*mU*mG 

Hairpin (oligo- based) 

3’ exo resistant 

mCTG25PE A*mC*mG*mACGGCCAGTGCCAAGCTT(CTG)2

5 

 

Hairpin (oligo- based) 

25 repeats 

pBstNI 

(C BstNI Cut) 

GGGTAACGCCAGGGTTTTC Digestion primer for primer 

extension  

pBsrBI 
(MP18C6115  BsrBI) 

TTA TCC GCT CAC AAT TCC ACA 

 

Digestion primer for primer 

extension 

Synthesis primer 

(Mp18 mCtl-19) 

A*mG*mU*mCACGACGTTGTAAAAC Synthesis primer for primer 

extension 

MP18C CAG15 A*mC*mG*mACGGCCAGTGCCAAGCTT(CAG)1

5 

Helicase assay 

MP18C CAG35PE A*mC*mG*mACGGCCAGTGCCAAGCTT(CAG)3

5 

Helicase assay 

MP18C CTG35PE ACGACGGCCAGTGCCAAGCTT(CTG)35 Helicase assay 

 

Table 2.2 Primers used in the experiment. KEY * phosphothiolate bond, m: 2’ methyl base 
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2.1.3 Preparation of buffers 

De-ionized distilled water was used to prepare all solutions for the assay. 

Sterilization was done either by filtration through a 0.22μm filter or autoclaving for 15 

min at 121 oC.  

 

2.1.4 Agarose gel electrophoresis 

For every 5 μL of sample volume containing DNA, 1 μL of 6X DNA loading 

buffer (10 mM Tris, pH 7.6, 0.03% bromophenol blue, 0.03% xylene cyanol, 60% 

glycerol, 60 mM EDTA) was added. Agarose gel electrophoresis was conducted in TAE 

running buffer (40 mM Tris-Acetate, pH 8.0, 2 mM EDTA). DNA staining was 

conducted by gentle shaking of the agarose gel in the presence of 100 mL of sterile 

distilled water containing 0.5 μg/mL ethidium bromide for 5 min. Destaining was 

conducted by replacing the solution with fresh water with gentle shaking for 10 min. 

DNA was visualized by a UV transilluminator (Gel logic 112, Kodak).  

 

2.1.5 Urea Denaturing PAGE and Southern blot analysis 

For every 1 μL of sample volume containing DNA, 1 μL of 2X SSCP loading 

buffer (95% formamide, 0.075% xylene cyanol, 0.07, 5% bromophenol blue, 20 mM 

EDTA) was added. After heating for 5 min at 95 oC, the DNA was kept on ice before 

loading. Denaturing gels (6%) were prepared by mixing polyacrylamide solution (19:1 

(acr:bis)) with 8 M urea in the presence of 1X TBE buffer (40 mM Tris, pH 8.0, 89 mM 
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boric acid and 2 mM EDTA). Denaturing gel electrophoresis was conducted in 1X TBE 

buffer at 8 W at room temperature. After electrophoresis, the gel was electrotransferred to 

a nylon membrane (Hybond-NX) in 1X TBE for 1 hr at 1 mA at 4 oC in Hoefer TE 42. 

The membrane was dried and cross-linked using a UV transilluminator box (Fisher 

Scientific) for 7 min. The membrane was then pre-hybridized with hybridization buffer 

(50 mM Tris-HCl, pH 7.5, 1 mM EDTA, 1 M NaCl, 2% SDS, 0.5% polyvinylpyrrolidone, 

0.2% heparin) for 15 min at 37 oC in a roller bottle using a Techne-Hybridiser HB-2D. 

The membrane was then incubated with 32P-labeled oligonucleotide overnight at 37 oC. 

The membrane was washed two times with 2X washing buffer (0.03 M sodium citrate, 

pH 7.0, 0.3 M NaCl, 0.1% SDS) and two times with 1X washing buffer (0.015 M sodium 

citrate, pH 7.0, 0.15 M NaCl, 0.1% SDS) for 10 min each. The membrane was then dried 

and exposed to X-ray film. 

 

2.1.6 Native polyacrylamide gel electrophoresis 

Native polyacrylamide gel (6%) was prepared by mixing polyacrylamide solution 

(19:1 (acr:bis)) with 0.5X TBE buffer (20 mM Tris, pH 8.0, 0.445 mM boric acid and 1 

mM EDTA) and 2.5 % glycerol. Native polyacrylamide gel electrophoresis was 

conducted in 0.5X TBE buffer at 120 V at room temperature.  
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2.1.7 SDS-PAGE and Western blot analysis 

One third volume of protein loading buffer (120 mM Tris-HCl, pH 6.8, 3% SDS, 

15%, 2-mercaptoethanol, 10% glycerol and 0.075% bromophenol blue) was added to the 

protein and heated for 5 min at 95 oC. The heated samples were then resolved in an 8-

12% SDS-PAGE gel in running buffer (25 mM Tris-HCl, pH 7.5, 0.2 M glycine, 0.1% 

SDS) at 160 V  at room temperature. 

After SDS-PAGE, proteins were electrotransferred onto a nitrocellulose 

membrane at 400 mA for 1 hr in transfer buffer (25 mM Tris, pH 7.5, and 191 mM 

glycine, 20% methanol). The membrane was then blocked using 5% non-fat dry milk 

(NFDM) in TBST (10 mM Tris-HCl, pH 7.5, 0.8% NaCl, 0.1% Tween-20) for 15 min at 

room temperature. The membrane was then incubated with primary antibody against the 

target protein in the presence of 5% NFDM in TBST overnight at 4 oC with gentle 

rocking. The next day the membrane was washed with TBST with gentle rocking in at 

room temperature for 10 min each (3 times in total). Secondary antibody was added to the 

membrane in the presence of 5% NFDM in TBST with gentle rocking for 1.5 hr at room 

temperature. The membrane was washed with TBST for 3 times (10 min each). Proteins 

of interest were visualized by using ECL Detection Reagent and the signal was captured 

on an X-ray film. 

 

2.1.8 32P T4 polynucleotide kinase (T4PNK) 5’ end labeling 

Oligonucleotide (10 pmole) was incubated with 20 pmol of [γ-32P] ATP at 6000 

Ci/mmol in 50 μL reaction volume containing 0.5 M Tris-HCl, pH 7.6, 100 mM MgCl2, 
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100 mM 2-mercaptoethanol and 3 units of T4PNK at 37 oC for 30 min. The reaction was 

terminated by heating at 65 oC for 10 min. The labeled DNA (50 μL) was then applied to 

a dried Quick Spin Column and centrifuged for 4 min at 1100 x g at room temperature. 5’ 

end labeled DNA was collected in the eluate.  

2.2 Preparation of nuclear extracts and proteins 

2.2.1 Nuclear extracts preparation 

2.2.1.1 Cell culture  

HeLa S3 cells (National Cell Culture Center) were cultured in Eagle's minimal 

essential medium (Mediatech), supplemented with 10% FBS (HyClone Laboratories), 

and kept at 37 oC. High Five insect cells (Invitrogen) were cultured in TNM-FH 

(Invitrogen) with 10% FBS and kept at 27 oC. 

 

2.2.1.2 Nuclear extract preparation  

One liter of human cells was collected by centrifugation in a RC-3B centrifuge at 

3,200 rpm for 8 min. After that, 20 mL washing buffer (20mM HEPES-KOH, pH 7.5, 5 

mM KCl, 0.5 mM MgCl2, 0.2 % Sucrose, 0.5 mM DTT, 1X protease inhibitor containing 

100 mM PMSF, 191.5 mM benzamidine, 0.05 g/L pepstatin A, 0.05 g/L leupeptin) was 

added to resuspend the cells, followed by 5 min centrifugation at 4,500 rpm. The cells 

were then lysed using a Dounce homogenizer in the presence of 8 mL Hypotonic buffer 

(20 mM HEPES-KOH, pH 7.5, 0.5 mM MgCl2, 5 mM KCl, 0.5 mM DTT, 1X protease 

inhibitor). The nuclear pellet was resuspended in 12 mL Extraction buffer (50 mM 

HEPES-KOH, pH7.5, 10% sucrose, 0.5 mM DTT, 1X protease inhibitor). NaCl (5 M) 
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was added to make the final salt concentration 155 mM. Nuclear proteins were extracted 

by gentle rocking at 4 oC. After centrifugation at 11,000 rpm for 20 min, ammonium 

sulfate (0.42 g/mL) was slowly added to the supernatant with gentle stirring.  The 

precipitated nuclear proteins were collected by centrifugation at 11,500 rpm for 20 min. 

The pellet was resuspended in 1 mL dialysis buffer (25 mM HEPES-KOH, pH7.9, 50 

mM KCl, 0.1 mM EDTA, 2 mM DTT, 1X protease inhibitor) and transferred into a 

dialysis bag for dialysis against 1 liter dialysis buffer at 4 oC. Dialysis stopped when KCl 

concentration reached between 100 mM to 200 mM. After dialysis, the nuclear extracts 

were centrifuged at 14,000 rpm for 15 min at 4 oC. The supernatant was aliquoted, frozen 

in liquid nitrogen and stored in -80 oC.  

 

2.2.2 Phosphocellulose chromatography of HeLa nuclear extract  

Phosphocellulose chromatography (P-11) fraction preparation was described 

previously (78). Briefly, 300 mg HeLa nuclear extract was diluted to 5 mg/mL with 

buffer p-11A (25 mM HEPE-KOH, pH 7.5, 0.1 mM EDTA, 1X protease inhibitor). 

Diluted extract was loaded onto a phosphocellulose column (Whatman P-11, 6 cm by 10 

cm2) equilibrated with buffer p-11A containing with 50 mM KCl. After washing with 200 

mL of buffer p-11A, the column was eluted with 0.8 liter linear gradient of 0.05 to 1.3 M 

KCl in buffer p-11A and eluted samples collected by a fraction collector (6 mL/tube). 

Each tube was dialyzed against 1 liter buffer  p-11A containing 100 mM KCl. Finally, 120 

P-11 fractions were then aliquoted, frozen in liquid nitrogen and stored at -80 oC.  
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2.2.3 Purification of polymerase δ and exonuclease mutants 

Baculovirus stocks for expressing polymerase δ subunits p12, p50, p66 and 

p125WT were obtained from Ellen Fanning (Vanderbilt University) and the cDNA for 

p125D402A was obtained from Yoshihiro Matsumoto (Fox Chase Medical Center). The 

p125D402A cDNA was  modified and cloned into the pFastBac vector for baculovirus 

stock preparation. The four polymerase δ subunits were co-expressed in High Five insect 

cells and purified as described (79). Briefly, the insect cells were lysed by Dounce 

homogenizer in the presence of buffer Pol δlysis (20 mM Tris-HCl, pH 7.8, 100 mM NaCl, 

0.2% NP-40, 20 mM imidazole and 1X proteinase inhibitors). The cell lysate was then 

centrifuged at 18,000 rpm for 45 min. The supernatant was then loaded onto a 5 mL 

HisTrap column and eluted with 30 mL linear gradient from 20 mM to 400 mM 

imidazole of buffer Pol δA (20 mM Tris, pH 7.8, 100 mM NaCl, 0.02% NP-40 and 1X 

proteinase inhibitor). Polymerase δ was eluted in 300 mM imidazole. Fractions 

containing polymerase δ was then diluted 5 times with buffer Pol δB (20 mM Tris pH 7.8, 

0.02% NP-40, 10 % glycerol, 1 mM DTT and 1X proteinase inhibitor) and loaded onto a 

1 mL Mono Q column. Proteins were eluted in a 30 mL linear gradient of 20 mM to 400 

mM NaCl in buffer Pol δB and polymerase δ was eluted at 300 mM NaCl. Fractions 

containing polymerase δ were then diluted 5 times with buffer Pol δB and loaded onto a 1 

mL Mono S column. Proteins were eluted in a 30 mL linear gradient of 20 mM to 500 

mM NaCl and polymerase δ was eluted at 400 mM NaCl. Polymease δ was then 

aliquoted, frozen in liquid nitrogen and stored in -80 oC. Purification of polymerase δ 

exonuclease mutant δD402A was performed using the same method as used for the wild-

type. 
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2.2.4 Purification of pol β  

Baculovirus stocks for pol β were obtained from Yanbin Zhang (University of 

Miami). Pol β was expressed in High Five insect cells. After virus inoculation, the insect 

cells were lysed using a Dounce homogenizer in the presence of buffer PolβA (25 mM 

HEPES-KOH, pH 8.0, 20 mM imidazole, 300 mM NaCl, , 10% glycerol, 4 mM 2-

mercaptoethanol and 1X proteinase inhibitor containing 100 mM PMSF, 191.5 mM 

benzamidine, 0.05 g/L pepstatin A, 0.05 g/L leupeptin). The cell lysate was centrifuged at 

18,000 rpm for 45 min. The supernatant was then loaded onto a 5 mL  HisTrap column 

and eluted with a 50 mL linear gradient from 20 mM to 240 mM imidazole in buffer 

PolβA. Pol β fractions were pooled and diluted with PolβB (25 mM HEPES-KOH, pH 8.0, 

10% glycerol, 4 mM 2-mercaptoethanol and 1X proteinase inhibitor) to a final 

concentration of 120 mM NaCl and loaded onto a 1 mL Mono S column. Proteins were 

eluted using a 30 mL linear gradient of 120 mM to 500 mM NaCl in buffer PolβB and pol 

β was then eluted using 300 mM NaCl. Fractions containing pol β were concentrated into 

250 μL with an Amicon Ultra-4 Centrifugal Filter Device and loaded onto a 24 mL 

Superdex 200 gel filtration column. Buffer PolβC (25 mM HEPES-KOH, pH 8.0, 10% 

glycerol, 300 mM NaCl, 4 mM 2-mercaptoethanol) was then used to elute pol β with 

flow rate of 0.5 mL/min. Pol β was eluted in about 26 mL to 28 mL. Pol β was then 

aliquoted, frozen in liquid nitrogen and stored at -80 oC. 

 

2.2.5 RFC purification 

Baculovirus stocks for replication factor C (RFC) subunits p36 and p40 and 

cDNA for p37, p38 and p140 were obtained from Dr. Bruce Stillman (Cold Spring 
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Harbor Laboratory). A hexahistidine tag was added to p38 and p140 previously in our lab. 

The five subunits of RFC were co-expressed in High Five insect cells and purified as 

described (80). Briefly, the insect cells were lysed using a Dounce homogenizer in the 

presence of 30 mL buffer RFCA (50 mM Na2HPO4, pH8.0, 0.5 M NaCl, 10 mM 

imidazole, 10% glycerol, 5 mM 2-mercaptoethanol, 0.5% NP-40 and 1X proteinase 

inhibitor. The cell lysate was then centrifuged at 18,000 rpm for 45 min. The supernatant 

was then loaded onto a 5 mL HisTrap column and eluted with 30 mL linear gradient from 

10 mM to 400 mM imidazole in buffer RFCA. RFC was eluted at about 300 mM 

imidazole. RFC fractions were then concentrated to 250 μL with an Amicon Ultra-4 

Centrifugal Filter Device and loaded onto a 24 mL Superdex 200 gel filtration column. 

Buffer RFCB (25 mM HEPES-NaOH, pH 8.0, 150 mM NaCl, 1 mM EDTA, 2 mM DTT) 

was then used to elute RFC with flow rate of 0.5 mL/min. RFC was eluted in about 22 

mL to 24 mL.  RFC was then aliquoted, frozen in liquid nitrogen and stored at -80 oC. 

 

2.2.6 PCNA purification 

The profilerating cell nuclear antigen (PCNA) expression plasmid was a gift from 

Dr. Bruce Stillman (Cold Spring Harbor Laboratory). PCNA was overexpressed in E.coli 

BL21 (DE3) pLysS cells and purified as described (81). Briefly, 2 liters of the E.coli 

overexpressing PCNA was lysed with sonication in the presence of 30 mL buffer PCNAA 

(25mM Tris-HCl, pH 7.4, 1mM EDTA, 25 mM NaCl, 0.01% NP-40, 1mM DTT, 1X 

protease inhibitor containing 100 mM PMSF, 191.5 mM benzamidine, 0.05 g/L pepstatin 

A, 0.05 g/L leupeptin). The cell lysate was then centrifuged at 18,000 rpm for 45 min. 

The supernatant was then loaded onto a 10 mL Q-Sepharose column and eluted with a 
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200 mL gradient from 0.2 to 0.7 M NaCl in buffer PCNAA. PCNA was eluted at 0.4 M 

NaCl. PCNA containing fractions were pooled and dialyzed in HAP buffer (25 mM 

KPO4, pH 7.0, 0.01 NP-40, 10% glycerol, 5 mM DTT, 1X protease inhibitor containing 

100 mM PMSF, 191.5 mM benzamidine, 0.05 g/L pepstatin A, 0.05 g/L leupeptin). After 

dialysis, the protein was loaded onto a 10 mL S-Sepharose column . The flow through 

fraction containing PCNA was then loaded onto a 20 mL hydroxylapatite column and 

eluted with a 500 mL gradient of 25 mM to 500 mM KPO4 in HAP buffer. PCNA was 

eluted at about 300 mM KPO4. PCNA fractions were then pooled and dialyzed against 

one liter of 1.2 M NaCl in buffer PCNAB (25 mM KPO4, pH 7.0, 0.01 NP-40, 5 mM DTT, 

1X protease inhibitor). The dialysate was then loaded onto a 25 mL Phenyl-Sepharose 

column and eluted with a reverse linear gradient from 1.2 M to 0 M NaCl in buffer 

PCNAB. Fractions containing PCNA were pooled and dialyzed agains buffer PCNAC (25 

mM KPO4, pH 7.0, 0.01 NP-40, 20% sucrose, 5 mM DTT, 1X protease inhibitor). PCNA 

was then aliquoted, frozen in liquid nitrogen and stored at -80 oC.  

 

2.2.7 WRN purification 

WRN baculovirus was obtained from Dr. Lawrence Loeb (University of 

Washington). WRN was expressed in High Five insect cells. After virus inoculation, the 

insect cells were lysed using a Dounce homogenizer in the presence of 30 mL buffer 

WRNA (150 mM Tri,s pH 8.0, 20 mM imidazole, 10% glycerol, and 50 mM NaCl and 

1X proteinase inhibitor containing 100 mM PMSF, 191.5 mM benzamidine, 0.05 g/L 

pepstatin A, 0.05 g/L leupeptin). The cell lysate was then centrifuged at 18,000 rpm for 

45 min. The supernatant was then loaded onto a 5 mL HisTrap column and eluted with a 



30 
 

30 mL linear gradient from 20 mM to 300 mM imidazole in buffer WRNA. WRN 

fractions were pooled and loaded onto a 1 mL SP-Sepharose column equilibrated with 

buffer WRNB (150 mM Tris, pH 8.0, 10% glycerol, and 50 mM NaCl and 1X proteinase 

inhibitor). WRN was eluted with a 30 mL linear gradient from 20 mM to 500 mM NaCl 

in buffer WRNB. WRN was eluted from the columnat about 400 mM NaCl. WRN 

containing fractions were concentrated to 250 μL with an Amicon Ultra-4 Centrifugal 

Filter Device and loaded onto a 24 mL Superdex 200 gel filtration column. Buffer WRNC 

(150 mM Tris, pH 8.0, 10% glycerol, and 160 mM NaCl and 1X proteinase inhibitor 

containing 100 mM PMSF, 191.5 mM benzamidine, 0.05 g/L pepstatin A, 0.05 g/L 

leupeptin) was used to elute WRN with flow rate of 0.5 mL/min. WRN was eluted in 

about 23 mL to 26 mL. WRN was then aliquoted, frozen in liquid nitrogen and stored at -

80 oC. 

 

2.3 DNA substrate preparation 

2.3.1 Single-stranded and double-stranded DNA preparation 

2.3.1.1 Phage stock preparation 

M13MP18 plasmid containing CAG/CTG repeats were prepared by former 

colleague. They were transformed into the compentent E.coli XL-1 Blue1 cells 

(Stratagene). Positive colonies were confirmed by sequencing. The positive colonies were 

cultured in 50 mL of 2XYT media overnight. The phage stocks were collected by 

centrifugation at 18,000 rpm for 20 min and stored at 4 oC.  

 

2.3.1.2 Single-stranded DNA preparation 
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XL1-Blue overnight culture (30 mL) was used to inoculate 3 liters of 2XYT and 

shaken at 220 rpm at 37 oC. When the OD595 reached 0.3, phage stock (3 mL) was added 

into the culture and the culture incubated for 8 hours at 220 rpm at 37 oC. For harvesting, 

the culture was kept on ice for 30 min, followed by 30 min centrifugation at 4,500 rpm at 

4 oC. Single-stranded DNA (ssDNA) was extracted from the supernatant while double-

stranded DNA was extracted from the cell pellet. 

For single-stranded DNA extraction, NaCl (36 g/L) and polyethylene glycol 8,000 

(50 g/L) were added to the supernatant of the culture. After 60 min stirring at room 

temperature, the supernatant was centrifuged for 30 min at 18,000 rpm at 4 oC.  The 

phage pellet was resuspended in 30 mL 10 mM Tris-HCl, pH 8.0. CsCl (0.4348 g for 

every 1 g of phage solution) was added to the resuspended phage pellet. After 16 hours of 

centrifugation at 45,000 rpm at 25 oC, phage particles appeared as a viscous layer. The 

phage layer was then extracted with a syringe and dialyzed against 1 liter of TE buffer 

(10mM Tris-HCl, pH 8.0, 1 mM EDTA) three times (buffer changed every 4 hr).  An 

equal amount of phenol solution was added to the phage solution with vigorous mixing, 

followed by 5 min centrifugation at 8,000 rpm at room temperature. The upper layer was 

removed to a clean tube and the phenol extraction repeated three more times. After 

phenol extraction, the single-stranded DNA was dialyzed against  1 liter TE buffer, pH 

8.0, three times at 4 oC (buffer changed every 4 hr). Single-stranded DNA was stored at 4 

oC.
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2.3.1.3 Double-stranded DNA preparation  

Double-stranded DNA was extracted from the cells pellet mentioned in 2.3.1.2. 

The pellet was resuspended in 60 mL cold Solution I (25 mM Tris-HCl, pH 8.0, 10 mM 

EDTA, 0.9% glucose) and kept on ice for 10 min. Then, 120 mL of Solution II (0.2 N 

NaOH and 1 % SDS) was added to the mixture with gentle stirring, followed by 90 mL of 

Solution III (3 M KOAc, 2 M CH3COOH) addition with gentle stirring. The cell lysate 

was then centrifuged for 30 min at 4,500 rpm at 4 oC. The supernatant filtered through 4 

layers of cheesecloth was and then mixed with 0.6 volume of isopropanol on ice. The 

mixture was then centrifuged for 30 min at 4,500 rpm at 4 oC. DNA appeared in the form 

of a white pellet. The pellet was washed with 50 mL of 70% ethanol followed by 15 min 

centrifugation at 4,500 rpm at room temperature. The DNA pellet was air-dried for 10 

min and resuspended in 20 mL TE buffer (10mM Tris-HCl, pH 8.0, 1 mM EDTA). The 

resuspended solution was weighed and mixed with CsCl (1.05 g/g) and ethidium bromide 

(50 μLμL/g). Gradient centrifugation was performed for 18 hr at 45,000 rpm at 25 oC. 

After centrifugation, supercoiled double-stranded DNA appeared as a red band in the 

centrifuge tube. The double-stranded DNA was then extracted from the tube using a 

syringe. An equal volume of butanol was added to the solution containing the double 

stranded DNA with gentle mixing. After 5 min centrifugation at 1,000 rpm at room 

temperature, the clear upper layer was transferred to a clean tube and the butanol 

extraction repeated three more times. After four rounds of butanol extraction, the double-

stranded DNA was dialyzed against 1 liter TE buffer, pH 8.0, at 4 oC (buffer changed 

every 4 hr, three times in total). Double-stranded DNA was stored at 4 oC. 
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2.3.2 Hairpin substrate preparation (double-stranded hairpin substrate) 

Circular hairpin substrate with a 5’ nick was constructed based on the differences 

in repeat number between the circular single-stranded DNA and the linearized double-

stranded DNA (summarized in Table 4.1). Linearized double-stranded DNA was 

generated by BglI digestion for three hours at 37 oC. DNA purification was conducted by 

phenol extraction and TE dialysis as described in 2.3.1.2. 

Double-stranded DNA denaturation was performed by adding 1 mg of linearized 

double-stranded DNA and 0.25 μg of circular single-stranded DNA into a 30 mL reaction 

mixture containing 50 mM Tris-HCl, pH 7.6, 100 mM NaCl, 1 mM EDTA and 0.3 N 

NaOH for 5 min at room temperature. The solution was then neutralized by adding 3 mL 

2.9 N CH3COOH to the reaction mixture. The salt concentration was adjusted by adding 

1.35 mL 3 M KCl and 3.7 mL 1.0 M potassium phosphate buffer (K2HPO4/KH2PO4), pH 

7.5. The DNA annealing reaction was initiated by heating the reaction mixture for 30 min 

at 65 oC, followed by slowly cooling down to 37 oC. The annealed DNA was stored at 4 

oC. Annealing efficiency was determined by 1% agarose gel electrophoresis.  

Hydroxylapatite (HAP) column chromatography was used to remove the single stranded 

DNA. Two g of hydroxylapatite resin was added into a column (2.5 cm diameter) and 

was equilibrated in 30 mM K2HPO4/KH2PO4,pH 6.9. The annealing reaction product was 

loaded onto the column with a flow rate of 10 mL/ h. Single-stranded DNA was removed 

by washing the column with 6 column volumes of 30 mM K2HPO4/KH2PO4, pH 6.9, 

followed by 2 column volumes of 160 mM K2HPO4/KH2PO4, pH 6.9. Hairpin substrates 

and the linearized double-stranded DNA were eluted by 3 column volumes of 420 mM 
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K2HPO4/KH2PO4, pH 6.9, and collected by a fraction collector (1 mL/ tube). The 

separation efficiency was monitored by 1% agarose gel electrophoresis.   

Fractions from the HAP column containing the double-stranded DNA were 

combined. Butanol extraction (mentioned in 2.3.1.3) was used to concentrate the DNA to 

about 2 mL, and then the DNA was dialyzed against 1 liter TE buffer as described in 

section 2.3.1.3. Exonuclease V digestion was conducted in the reaction buffer (66.7 mM 

Glycine, 5 mM MgCl2, 8.3 mM 2-mercaptoethanol, 0.5 mM ATP, and exonuclease V 

(0.2 U/μg DNA)) for 2 hr at 37 oC. Exonuclease V digestion efficiency was monitored by 

the disappearance of the linearized double-stranded DNA by agarose gel electrophoresis. 

One time of phenol extraction (mentioned in 2.3.1.2) and butanol extraction (mentioned 

in 2.3.1.3) were used to purify and concentrate the DNA to 200 μL. 

Size exclusion column chromatography was conducted to purify the hairpin 

substrate from the free nucleotides. An S-300 column was made by slowly pouring 50 

mL sephacryl S-300 beads into a glass column (45 cm long and 1.2 cm diameter). The S-

300 column was then equilibrated with 3 column volumes of TES buffer (10 mM Tris-

HC,l pH 7.6, 1 mM EDTA, and 0.3 mM NaCl). The concentrated DNA was loaded onto 

the column, followed by TES buffer elution (10 mL/hr). Fractions were collected with a 

fraction collector with 1 mL per tube. Separation efficiency was monitored by 1% 

agarose gel electrophoresis. Fractions containing the pure hairpin substrate were 

combined and dialysis against 1 liter TE buffer for 3 times (buffer change every 4 hr). 

Hairpin substrate concentration was determined by the OD260 absorbance at room 

temperature. The whole process of substrate preparation was described in Fig. 2.1A and 

B. 
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2.3.3 Hairpin substrate preparation (oligo-based) 

The 5’ exonuclease resistant oligonucleotide containing 15 CTG repeats 

(described in Fig. 2.1) was annealed with the circular single stranded DNA containing 10 

CAG repeats in a 100 μL reaction containing 1.67 M NaCl. Based on the repeat number 

difference, a substrate with 5 CTG hairpin was formed (Fig. 2.1C). BbvI and T7 

endonuclease I as described previously (16) confirmed that our substrates contained a 3’ 

CTG hairpin slippage structure.
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Figure 2.1 Different DNA substrates preparation. A) 5’ hairpin substrate was formed 
by annealing a single-stranded DNA to linearized longer repeat double-stranded DNA. 
Based on the repeat size difference, a CAG/CTG hairpin was formed. B) Hairpin 
substrate purification. With the use of column chromatography and enzyme digestion, the 
hairpin substrate can be purified. C) Oligo-based hairpin substrate preparation. The 
5’exonuclease resistant oligonucleotide with 15 CTG repeats was annealed with the 
single-stranded DNA with 10 CAG repeats to form a hairpin substrate with a CTG 
hairpin formed at the 3’end.  

C 
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2.4 In vitro hairpin repair assay (or hairpin primer extension assay) 

The hairpin repair assay was performed as described in (67). Hairpin substrate 

(100 ng) was incubated with 130 μg of nuclear extract or proteins in a 40 μL reaction 

(110 mM KCl, 20 mM Tris-HCl, pH 7.6, 5 mM MgCl2, 1 mM glutathione, 1.5 mM ATP, 

0.1 mM of each dNTP, 0.05 mg/mL BSA) at 37 oC for 30 min. After that, 60 μL 

proteinase K solution (0.67% SDS, 2.5 mM EDTA, 20 mg/mL proteinase K) was then 

added to digest the proteins and stop the reaction. An equal amount of phenol solution 

was added to the reaction mixture with vigorous mixing. After 5 min centrifugation at 

13,200 rpm, 80 μL of the aqueous upper layer was extracted. 120 μL of TE buffer was 

added into the original tube containing phenol solution for back extraction. After phenol 

extraction, 1/10 volume of 3 M sodium acetate and 10 fold of 100% ethanol were added 

to the extracted aqueous solution with vigorous mixing. After that, the reaction mixture 

was kept at -80 oC for 15 min. The solution was then centrifuged at 14000 rpm for 15 min 

at 4 oC. DNA was precipitated at the bottom and the solution was removed followed by 

addition of 500 μL 70% ethanol. After 5 min centrifugation at 13,200 rpm at room 

temperature, the solution was removed and the tube containing DNA was dried in 

vacuum centrifuge for 5 min. The dried DNA was resuspended in 10 μL ddH2O and 

digested with 0.3 unit of BglI and BsrBI (New England Biolabs) in a 20 μL reaction for 

two hr. The hairpin repair efficiency was scored by the Southern blot mentioned in 

section 2.1.5. Quantification was done by Kodak MI SE. 

The hairpin extension reaction was basically the same except the hairpin substrate 

described in section 2.3.3 was used. 
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2.5 Primer extension assay 

2.5.1 Linearized single-stranded DNA preparation for primer extension  

Single-stranded DNA preparation was described in section 2.3.1.2. Circular 

single-stranded DNA (10 μg) was mixed with two digestion primers (pBsrBI and pBstNI, 

10 pmole each, see primer list) in a 100 μL reaction containing 1.67M NaCl. The reaction 

mixture was heated at 95 oC for 30 min followed by slowly cooling down to room 

temperature. The annealed DNA was then digested with 10 units of BsrBI at 37 oC and 

BstNI at 55 oC for two hours, respectively. The linearized single-stranded DNA was 

recovered by phenol extraction, followed by ethanol precipitation (described in section 

2.4, Fig. 2.1). The linearized DNA was then dried in a vacuum centrifuge. DNA was 

dissolved in 100 μL of ddH2O and the concentration was estimated by OD260. 

 

2.5.2 Primer extension assay 

The synthesis primer (see primer list) was 5’ end-labeled with 32P γ-ATP 

(described in 2.1.7). The annealing reaction was conducted by heating 1 pmole of the 

labeled primer and 1 μg of linearized template (described in 2.3.4) at 95 oC for 30 min, 

followed by slowly cooling the reaction to room temperature in the presence of 167 mM 

NaCl. The primer-template substrate was then incubated with 60 fmol pol δ in the 

presence or absence of 0.35 pmole WRN,  in a 10 μL reaction buffer containing 20 mM 

Tris, 7.6, 50 μg/mL BSA, 1 mM glutathione, 5 mM MgCl2, 1.5 mM ATP, 110 mM KCl 

and 0.2 mM each of the four dNTPs at 37 oC for 20 min. For the reaction with AMP-PNP, 

ATP was replaced by 2 mM AMP-PNP. The reaction was terminated by addition of 10 
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μL 2XSSCP (described in 2.1.4). Reaction products were separated on a 6% sequencing 

gel and visualized using a phosphorimager (Molecular Dynamics, Inc).  

 

2.6 Helicase assay 

Intrastrand CTG hairpin formation was conducted by heating 0.8 pmol of 5’32P 

end labeled (as described in 2.1.7)  pCTG15 or pCTG35 (Table 1) at 95 oC for 15 min in 

an 80 μL reaction containing 167 mM NaCl, followed by slowly cooling the reaction to 

room temperature. The helicase reaction was performed by incubating 1 μL (0.08 pmole) 

of labeled hairpin with 0.06 pmole cold pCAG15 (Table 1) in the presence or absence of 

WRN in 20 μL reactions containing 20 mM Tris, 7.6, 50 μg/mL BSA, 1 mM glutathione, 

5 mM MgCl2, 110 mM KCl and in the presence or absence of 1.5 mM ATP at 37 oC. The 

reaction was terminated by addition of 20 μL of 16% sucrose. The reaction products were 

resolved using 6% native polyacrylamide gel electrophoresis and visualized using a 

phosphorimager. 

 

2.7 Hairpin removal assay (oligo-based) 

The substrate for oligo-based hairpin removal was basically the same as described 

in section 2.3.3, except the radiolabeled oligonucleotide was used for annealing. HeLa 

nuclear extract (50 μg) or purified proteins in the hairpin removal buffer (110 mM KCl, 

20 mM Tris-HCl, pH 7.6, 5 mM MgCl2, 1 mM glutathione, 1.5 mM ATP, 0.05 mg/mL 

BSA) and 37.5 μM aphicodicolin were incubated at 37 oC for 30 min. The reaction 

products were resolved in a 15% urea denaturing polyacrylamide gel, followed by 

phosphorimager detection.  
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2.8 Nucleotide incorporation assay 

32P radiolabeled hairpin substrate mentioned in section 2.7 was incubated with pol 

β or δ exonuclease mutant in a 40 μL reaction (110 mM KCl, 20 mM Tris-HCl, pH 7.6, 5 

mM MgCl2, 1 mM glutathione, 1.5 mM ATP, 0.1 mM of various combinations of dNTP, 

0.05 mg/mL BSA) at 37oC for 15 min. After proteinase K digestion, the reaction products 

were recovered by phenol extraction, followed by ethanol precipitation. The DNA was 

then dried and dissolved in 4 μL 1XSSCP. The reaction products were resolved using an 

8% sequencing gel, followed by phosphorimager detection.   
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CHAPTER 3 (CAG)n/(CTG)n hairpin removal and escape by DNA polymerases 

during DNA Synthesis 
 

3.1 Introduction 

Expansion of CAG/CTG trinucleotide repeat (TNR) causes at least 14 

neurological and neurodegenerative disorders, including Huntington disease and 

myotonic dystrophy (20,82). These diseases have different thresholds for the number of 

repeats at which the TNR stretch becomes unstable. Once the repeat threshold is passed, 

the repeats can, in some cases, expand by up to several thousand units (83), which leads 

to cell dysfunction and degeneration by altering the expression of the affected genes or 

the function of the affected gene products (84). Patients with longer repeats usually 

exhibit a decrease in the age of onset of the disease and an increase in its severity (3). 

However, the mechanisms that promote TNR expansion are poorly understood.  

Hairpin formation within CAG/CTG repeats is associated with repeat instability. 

TNR expansion can occur when a hairpin is formed in the nascent strand during DNA 

synthesis, while repeat contraction occurs when the hairpin is formed in the template 

strand (85). In vitro studies have revealed that CAG and CTG repeats (as long as more 

than two) can form very stable hairpin structures (41,86-88). Liu et al. (17) recently 

demonstrated that the CAG/CTG hairpin formation also occurs in vivo, in a manner 

dependent on DNA replication. Recent biochemical studies have revealed that human 

cells possess a DNA hairpin repair system that catalyzes error-free removal of CAG/CTG 

hairpins in a nick-dependent manner (39,67). Regardless of the CAG/CTG hairpin 

location, the hairpin repair system always targets the nicked (i.e., newly synthesized) 

DNA strand for incisions, mainly using structure-specific endonucleases, followed by 
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DNA synthesis using the continuous (parental) strand as a template. However, no DNA 

removal intermediate was observed in the continuous strand (39,67,89). 

CAG/CTG hairpin formation is believed to occur via DNA strand slippage during 

DNA metabolic processes that introduce single-stranded DNA formation within or near 

the repeat region (90). These processes include DNA replication (17,23,91), repair (27), 

and recombination (77,92). The expansion nature of the repeats supports hairpin 

formations in the nicked nascent strand, e.g., in the case of DNA replication, a CAG/CTG 

hairpin can easily be formed within a repeat-containing Okazaki fragment, where strand 

slippage can occur in a 5’to 3’ or 3’to 5’ orientation. A common feature of these DNA 

metabolic processes is that they all involve DNA synthesis, a reaction catalyzed by DNA 

polymerases. However, little is known about the role of DNA polymerases in TNR 

expansions. 

At least 15 mammalian DNA polymerases have been identified (93). These 

polymerases play distinct roles in genome maintenance, with a few of them functioning 

in the replication of the genome and the majority of them participating in DNA repair and 

translesion DNA synthesis (TLS). Replicative DNA polymerases, e.g., polymerase (pol) 

 and pol , possess a 3’to 5’ proofreading exonuclease activity and are essentially error-

free. In contrast, DNA polymerases involved in TLS contain no proofreading activity and 

are highly mutagenic (93). Despite their distinct roles in DNA metabolic processes, 

recent evidence suggests that these polymerases collaborate to deal with bulky DNA 

lesions during DNA synthesis in a reaction called polymerase switching (94). When 

DNA synthesis by replicative DNA polymerases is blocked by a bulky DNA lesion, the 

low fidelity polymerase will replace the replicative DNA polymerase to bypass the lesion. 
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After that, the low fidelity polymerase will be switched back to the replicative 

polymerase to resume the high-fidelity DNA synthesis. Since CAG/CTG hairpin results 

in abnormal DNA structure formation, it is likely that the CAG/CTG hairpin on the 

nascent strand is treated as a huge DNA lesion for DNA synthesis. Nonetheless, how 

DNA polymerases handle DNA hairpins is still unknown. 

In this study, we constructed a series of CTG hairpin substrates that simulate the 

hairpin structures in the nascent strand during DNA synthesis, and examined HeLa 

nuclear extracts and several DNA polymerases for their ability to process these hairpin 

structures. Subthreshold repeat length was used so as to study whether there is factor 

promoting the subthreshold-mediated expansion. We demonstrate here that depending on 

whether the hairpin contains a 3’ tail, pol δ can either remove or retain the hairpin. 

However, pol β promote repeat expansion with limited DNA synthesis after the hairpin. 

Surprisingly, in the presence of both pol β and pol δ, the hairpin-retained product is ten 

times more than that generated by pol β or pol δ alone. This synergistic stimulation 

suggests that polymerase switches between pol β or pol δ occur, which promote the 

hairpin retention, i.e., TNR expansion.
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3.2 Results 

3.2.1 Characterization of hairpin substrate 

To explore how human cells process a 3’ slipped CAG or CTG hairpin during 

DNA synthesis, DNA hairpin Substrate I (oligo-based substrate, Fig. 3.1A and B) was 

designed. We employed the T7 endonuclease I and BbvI cutting system as demonstrated 

by Dr. Pearson’s group to determine the structure of our hairpin substrate (16). T7 

endonuclease I is specific for cleaving of the hairpin junction (16). Our result showed a 

single cutting indicating only one hairpin is formed (Fig. 3.2A, lane 1). BbvI is a 

restriction enzyme recognizing “GCAGC”, cutting of a distance of 12 nt away from the 

restriction site. Since it can recognize “CAG” sequence repeatedly on the double-stranded 

CAG/CTG repeat, a ladder pattern will be generated in the 5’-32P radiolabeled double 

stranded DNA with (CAG/CTG) repeat (Fig. 3.2B, lane 1). Theoretically, it will generate 

a ladder from 11bp to 32bp on a 5’ end-labeled (CAG/CTG)10 double stranded DNA. 

However, we just observed a ladder pattern from 11 to 29 on the double-stranded 

(CAG/CTG)10. The double-stranded (CAG/CTG)10 was formed by annealing the oligo 

with the single stranded DNA. It is possible that BbvI will not recognize the very first 

recognition site because the restriction site was just too close to the single stranded DNA 

region.  

When compared with the double-stranded (CAG/CTG)10 BbvI cutting pattern, if 

there is any hairpin in the doubled strand (CAG/CTG)10 region, it will generate different 

pattern than that of the double-stranded DNA with (CAG/CTG)10. Our hairpin substrate 

showed similar ladder pattern from 11bp to 26bp, indicating the hairpin did not formed at 

the (CAG)10 region. Since the 29bp band is missing, it is suggested that the hairpin is 

formed at the 3’ end (Fig. 3.2B, lane 2). 
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Figure 3.1 Hairpin repair assay. A) The hairpin substrate is modified to be resistant to 5’ exonuclease activity (the underlined 

nucleotides are 2' O-methyl bases linked by phosphothioate bonds). The hairpin substrate was formed by annealing the oligonucleotide 

containing a (CTG)15 repeat to circular single stranded DNA containing a (CAG)10 repeat. B) Two different substrates were used in the 

hairpin repair assay. Substrate I is the hairpin substrate resistant to the 5’ exonuclease degradation, while Substrate II is resistant to 

both 5’ and 3’ exonuclease degradation. 
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Figure 3.2 Characterization of the (CTG)5 hairpin. A) T7 endonuclease I digestion confirms our substrate contains a single hairpin. 

B) BbvI cutting confirms our hairpin substrate form a hairpin at the 3’ end. 5’ radiolabeled double-stranded DNA or hairpin substrate 

was incubated with T7 endonuclease I or BbvI at 37 oC for two hr. Results were resolved in a 15 % 8 M urea denaturing gel.
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3.2.2 Polymerase β promotes CTG repeat expansion in nuclear extract-catalyzed DNA 

synthesis. 

Unlabeled substrate I was incubated with HeLa nuclear extract under conditions 

supporting DNA synthesis. The reaction products were detected by Southern blot analysis 

using a labeled probe specifically recognizing the downstream sequence of the newly 

synthesized strand (see Fig. 3.3A). When the hairpin is removed, the product will be 15 

bp shorter than if it is not. Thus, the hairpin removal efficiency can be monitored by their 

relative mobility in gel electrophoresis. Incubation of DNA Substrate I with HeLa nuclear 

extracts yielded a major product and a minor product (Fig. 3.3B, lanes 5 and 6). Because 

the minor and major products migrated in the positions corresponding to the molecular 

markers with and without the CTG hairpin (Fig. 3.3B, lanes 7 and 8), respectively, it is 

determined that the vast majority of the DNA substrate underwent hairpin removal, while 

a small fraction of the substrate escaped the hairpin removal. Given the fact that the 

hairpin is located right at the 3’ end of the primer and that repeat expansions require 

DNA synthesis, the observed hairpin escape (retention) is likely due to direct 

incorporations of nucleotides to the 3’ end of the hairpin. To test this possibility, DNA 

polymerase δ, β, µ, or η was added to HeLa extracts in the hairpin-primer extension 

reactions. The results show that in comparison with HeLa extract alone, addition of the 

individual DNA polymerases, except pol η, stimulated the production of the hairpin 

escaped species. Interestingly, the strongest stimulation occurred in the reaction with pol 

β (Fig. 3.3C, lane 3), and less with error-prone TLS polymerases. These results suggest 

that pol β promotes CAG/CTG expansion during DNA synthesis. 
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Figure 3.3 Pol β enhance hairpin escaped in the presence of HeLa nuclear extracts. A) Hairpin primer extension assay. Hairpin 

substrate was incubated with HeLa nuclear extract or purified proteins at 37 oC for 30 min. After BsrBI digestion, repair efficiency 

was scored by Southern blotting using the probe targeting the downstream region of the newly synthesized strand. Products from 

which the hairpin was removed (Removed) are shorter than products which retained the hairpin sequence (Escaped).(Detailed method 

mentioned in 2.3.3) B) High concentration of HeLa nuclear extract promotes escaped repair. Hairpin primer extension reaction was 

carried out in the increasing amount of HeLa nuclear extract. Markers were generated using the hairpin repair assay procedure using 

30 μg of HeLa nuclear extract except the primer did not contain any (CTG) repeats. (CAG)10 and (CAG)15 represent single-stranded 

template containing 10 and 15 CAG repeats respectively. C) Pol β stimulates escaped repair in the presence of HeLa nuclear extract. 

The hairpin repair assay was conducted with the addition of different polymerases to 30 μg of HeLa nuclear extract. Used in the assays 

were 600 fmol pol δ, 130 fmol pol β, 100 fmol pol κ, 180 fmol pol μ, or 60 fmol pol η each with 150 ng of Substrate I.
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3.2.3 Repeat expansion involves concerted actions of pol β and pol δ.  

To determine if pol β is responsible for CAG/CTG expansion during DNA 

synthesis, the hairpin-primer extension reactions were conducted in a purified protein 

system containing Substrate I, pol β, replication factor C (RFC), and proliferating cellular 

nuclear antigen (PCNA). As a control, we performed the assay with the high-fidelity pol 

δ in the presence of RFC and PCNA. Surprisingly, pol δ produced two products that are 

similar to those found in HeLa extracts, i.e., a major product representing the hairpin 

removal and a minor product corresponding to the hairpin retention (Fig. 3.4A, lane 1). 

This result suggests that pol δ is capable of both removing and “tolerating” the (CTG)5 

hairpin. When the reaction was carried out in the pol β-containing system, we observed 

trace amount of the hairpin-escaped product, instead, we saw a major band, which is 

smaller than the hairpin-removed product (Fig. 3.4A, lane 2). This result appears to be 

different from what was observed in HeLa extracts supplemented with pol β (see Fig. 

3.3C, lane 3). 
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Figure 3.4 Repeat expansion involves concerted actions of pol β and pol δ. A) Pol β and pol δ showed synergetic effect on 

promoting hairpin escaped while pol δ exonuclease activity is involved in hairpin removal. Pol δ exonuclease mutant (D402A) could 

only generate the escaped repair product but not the hairpin removed product while pol δ wild-type generated hairpin removal 

products. B) Pol δ initiates the hairpin repair from the 3’ end.  Substrate I is resistant to the 5’ exonuclease activity while Substrate II 

is resistant to both 5’ and 3’ exonuclease activity (Fig. 3.1A). HeLa nuclear extract can remove the hairpin from both 5’ and 3’ 

exonuclease resistant substrates, while pol δ could not repair the hairpin substrate with 3’ resistant to exonuclease activity. C) Pol δ 

exonuclease activity can only remove small CTG hairpin. (CTG)10 hairpin was generated by annealing the oligonucleotide with 25 

CTG repeats against single stranded DNA with 15 CAG repeats. Hairpin primer extension reaction was conducted in the presence of 

either 30 μg of HeLa nuclear extract or purified proteins (110 fmol RFC, 2 pmol PCNA, 600 fmol pol δ (or pol δ (D402A)) at 37 oC for 

30 min. Southern blotting was used to detect the products. 
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The surprising results prompted us to hypothesize that the observed hairpin 

escape/retention in HeLa extract supplemented with pol β is likely derived from joint 

efforts by pol β and a highly processive polymerase such as pol δ, where the weakly 

processive pol β incorporates a few nucleotides to the 3’ end of the hairpin and the highly 

processive polymerase takes over the remaining DNA synthesis, leading to the hairpin 

escape. This hypothesis was tested in the defined system that contained both pol β and 

pol δ (Fig. 3.4A, lane 3). Under these conditions, we indeed observed the hairpin-escaped 

product, which accounts for 75% of the three products detected in the reaction.  The other 

two products appear to be the hairpin-removed one (5%) and the shorter product (20%) 

specifically generated by pol β alone (see below for description of this product). These 

observations suggest that pol β and δ together synergistically promote hairpin retention, 

i.e., repeat expansion during DNA synthesis.  

 

3.2.4 Pol δ removes small hairpin via its proofreading exonuclease activity. 

Since pol δ possesses an intrinsic 3’to 5’ proofreading nuclease activity (95), we 

believe that the proofreading activity is responsible for the (CTG)5 hairpin removal. This 

idea was first tested using a pol δ mutant that contains a D to A substitution at residue 

402 (D402A). The substitution inactivates the exonuclease activity but not the 

polymerase activity of pol δ (95). Unlike the reaction with pol δ, which produced both the 

hairpin-removed and hairpin-escaped products, the reaction with pol δ D402A generated 

only the hairpin-escaped species (Fig. 3.4A, lane 4), confirming that the 3’to 5’ 

proofreading activity of pol δ is indeed responsible for the hairpin removal.  
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To further test the involvement of the pol δ proofreading activity in hairpin 

removal and to rule out the possibility that the removal is due to an contaminated 

endonuclease in the pol δ preparation, we incubated wild type pol δ with Substrate II (see 

Fig. 3.1A and B), which is similar to Substrate I but it contains four 2' O-methyl bases 

linked with phosphothiolate bonds at 3’ end of the hairpin, thereby preventing the 

substrate from 3’to 5’ exonuclease digestion (96). As expected, HeLa nuclear extract can 

efficiently remove the hairpin structure in Substrate II (Fig. 3.4B, lane 2), possibly by 

endonuclease involvment. However, incubation of Substrate II with the purified system 

containing wild type pol δ generated no products (Fig. 3.4B, lane 4), indicating hairpin 

cannot be removed by pol δ. Taken together, our data shown here support the idea that 

the pol δ 3’ to 5’ proofreading exonuclease activity is responsible for the hairpin removal 

in purified system.  

We then examined pol δ for its ability to remove CTG hairpins formed with 

different number of repeats. Among reactions containing different hairpin substrates, the 

hairpin-removed product was only observed in the reaction with the (CTG)5 hairpin (Fig. 

3.4C, lane 1), suggesting that pol δ cannot remove a larger (or more stable) hairpin. A 

simple explanation is that CAG/CTG hairpins formed with 10 or more repeats adapt a 

stable ternary structure that prevents nuclease attacks. It is also noted that in the reactions 

containing larger hairpin substrates, we did not observe any the hairpin-removed products, 

and there was no increased production of the hairpin-escaped species (Fig. 3.4C, lanes 1 

and 2). This is different from the reaction jointly catalyzed by pol δ and pol , where 

reduced hairpin-removal is associated with increased hairpin-escape (Fig. 3.4A, lane 3). 

These observations strongly suggest that pol δ has a very limited ability to initiate DNA 



 

 53   
  

synthesis using a hairpin as a primer, which could be the role that pol β plays in this 

reaction.  

 

3.2.5 Pol β initiates DNA synthesis regardless of hairpin and bubble structures in the primer 

and template strands.  

To determine if pol β is capable of initiating DNA synthesis using a hairpin 

primer, the hairpin synthesis reaction was conducted by incubating 32P-labeled Substrate I, 

(CTG)5, (at the 5’ end of the primer strand) with the pol β synthesis system in the 

presence of different combinations of dNTPs. The resulting products were analyzed in 

polyacrylamide gel electrophoresis. The results show that pol β could effectively 

incorporate correct or sometimes incorrect bases at the 3’ end of the hairpin, depending 

on the availability of nucleotides (Fig. 3.6A). Relatively extensive incorporations by pol 

β were also seen when 3 or all 4 dNTPs were provided (Fig. 3.6A, lanes 12 to 16). These 

data strongly indicate that pol β can initiate DNA synthesis using the CTG hairpin as a 

primer.  

The observation of the exclusive hairpin-escaped product in the pol -(D402A)-

catalyzed system indicates that the pol  mutant can utilize the hairpin structure as a 

primer. Indeed, we observed active incorporations of bases at the 3’ end of the hairpin by 

the mutant polymerase (Fig. 3.6B). As expected, pol -(D402A) is more processive than 

pol β, as judged by the fact that more slowly migrating molecules are seen in the pol -

(D402A) reaction (compare Fig. 3.6A with 4B). Surprisingly, we show that pol -

(D402A) is less faithful than pol β because the former enzyme incorporates more 

incorrect nucleotides into the elongation chain (Fig. 3.6B). Under the normal 
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circumstances, the mis-incorporation triggers its removal by the 3’to 5’ proofreading 

activity of wild type pol , which may concomitantly remove its associated 5’ sequence 

(i.e., the hairpin) upon activation, explaining why the majority of the products in the pol 

-catalyzed reaction is the hairpin-removed species. 

A product smaller than the hairpin-removed band was seen in the pol β-catalyzed 

reaction (Fig. 3.4A, lanes 2 and 3). After a series of analyses, we figured out that the 

product still contained the hairpin structure, but is lacking around 20 nucleotides 

immediately downstream of the hairpin, as the product could not be detected by a probe 

targeting the region immediately after the hairpin (Fig. 3.5B). The cause for the 

shortening is likely due to the fact that a CAG sequence downstream of the CAG repeats 

in the template strand pairs with the 3’ end CTG sequence in the primer (hairpin) strand, 

leading to the formation of a bubble structure in the template strand (Fig. 3.5A). Since 

this shorter product was not observed when HeLa nuclear extract (Fig. 3.3C, lane 3), pol 

 or pol  (D402A) (Fig. 3.4A, lanes 1 and 4) was used, it is likely that a bubble structure 

in the immediate template sequence is highly inhibitory to pol  mediated extension. 

Thus, the observation of the shorter product in the pol β-catalyzed reaction suggests that 

pol β is tolerant to the template bubble structure. 
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Figure 3.5 Postulated “bubble” structure of the shortened product generated by pol β . A) Prostulated bubble structure. Since 

there are two downstream CAG sequences in the template which can anneal with the CTG of the hairpin there are two potential 

structures (II and III) which can form in this manner. Based on the endonuclase cutting  and the repair assay results produced by pol β 

(Fig 3.4A), we can deduce that the majority of the substrate formed the hairpin at the 3’ end (Structure I) while less than 20 % of 

substrate will form a bubble structure (Structure II and III).  B) Identification of the shortened band with different probes. Hairpin 

primer extension was conducted as described in section 2.4. 5’-32P probe targeting the underline bold sequence was used. Our result 

showed that the shortened band cannot be detected by the probe, suggesting some of the underlined region is missing. Detailed method 

was described in 2.3.3. 
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Figure 3.6 Pol β initiates DNA synthesis regardless of hairpin and bubble structures in the primer and template strands. Pol β 

has a higher fidelity of filling in the correct bases during hairpin-mediated expansion than the pol δ exonuclease mutant. 32P end 

labeled hairpin substrate was incubated with pol β or pol δ mutant in the presence of different combinations of nucleotides at 37 oC for 

15 min. The hairpin extension assay was conducted using A) 130 fmol pol β, or B) 600 fmol pol δ exonuclease mutant D402A. 

Products were resolved on a 10% 8M urea polyacrylamide denaturing gels, followed by phosphorimager detection. 
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 3.2.6 Hairpin removal or retention activity of pol  depends on the immediate 3’ sequence 

of the hairpin.  

To determine the mechanism by which pol  promotes hairpin escape during 

DNA synthesis, we tested pol  ability to process hairpin substrates that carry a different 

number of bases (2 and 5) with or without a mismatch at the 3’ end of the hairpin (see Fig. 

3.7A). These substrates mimic the hairpin products generated by pol β as described above 

or hairpins formed within TNR sequences via strand slippage during DNA synthesis. As 

expected, processing of Substrate I (i.e., no 3’ tail after the hairpin) by pol  generated the 

hairpin-removed major product and the hairpin-escaped minor product (Fig. 3.7B, lane 1). 

Incubation of the same substrate containing a perfectly paired tail of 2 nucleotides at the 

3’ end of the hairpin rendered the system to switch the ratio of these two products (Fig. 

3.7B, lane 2), i.e., the major and minor products are now the hairpin-escaped and hairpin-

removed species, respectively. However, when there was a mismatch at the last place of 

the 2-nucleotide tail (Fig. 3.7B, lane 3),  pol δ produced less hairpin-escaped product and 

more hairpin-removed product as compared with the same substrate without a mismatch 

at the 3’ end (Fig. 3.7B, compare lane 2 with lane 3). These results suggest that the 3’ 

mismatch near the hairpin triggers the hairpin removal by the 3’ to 5’ proofreading 

nuclease of pol . Interestingly, when the 3’ tail reaches 5 nucleotides or more, pol δ 

could only promote hairpin-escape, regardless of the presence or absence of a mismatch 

at the 3’ end (Fig. 3.7B, lanes 4 and 5), indicating the mismatch location can determine 

whether pol δ carries out the hairpin removal or hairpin escape.



 

 
 

5
8
 

 

Figure 3.7 Hairpin removal or retention activity of pol  depends on the immediate 3’ sequence of the hairpin. A) Different 
numbers of perfectly matched sequence were added to the 3’ end of (CTG)5 hairpin. B) Two extra bases with no mismatch can induce 
hairpin escaped by pol δ. C) HeLa has higher ability to promote repair escape when the 3’ extra sequence is longer. The hairpin primer 
extension assay was conducted at 37 oC for 30 min with B) 600 fmol pol δ, 110 fmol RFC, 2 pmol PCNA or C) 30 μg HeLa nuclear 
extract. Southern blotting was used to visualize the results.
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Similar analyses were performed using HeLa nuclear extracts (Fig. 3.7C). 

Compared with products generated from the pol  system, a striking difference is that 

HeLa extracts generated more hairpin-removed products. This is likely due to the 

endonucleolytic removal of the hairpin by the DNA hairpin repair system in HeLa 

extracts as described previously (67). In reactions with five perfectly matched nucleotides 

after the hairpin, no hairpin-removed products were detected in the pol  system. 

However, it is noted that not all hairpins were removed by the repair system, as there is 

still significant amount of hairpin-escaped products in each reaction (Fig. 3.7C).
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3.3 Discussion 

As a major contributor to CAG/CTG repeat expansion, hairpin formation within 

the repeats is associated with DNA replication (97) and repair (47). Because DNA 

expansion requires DNA synthesis, DNA polymerases must play a major role in this 

process. However, little is known about the mechanism by which DNA polymerases 

promote CAG/CTG expansion.  In this study, we provide strong evidence that DNA 

polymerases can remove or retain a CAG/CTG hairpin formed in the nascent DNA strand 

during DNA synthesis, depending on the hairpin structure and the DNA polymerases 

involved in the synthesis reaction.  

Several surprising findings were made in this study. First, we show that the 3’- 5’ 

exonuclease activity of  pol  is capable of removing the hairpin primer if it contains no 

complementary 3’ sequences (Fig. 3.4). Second, among DNA polymerases tested, the 

polymerase involved in base excision repair, pol , is the most active enzyme to promote 

hairpin retained when added to nuclear extracts (Fig. 3.3C). However, we failed to detect 

the full-length hairpin-escaped product in the purified system catalyzed by pol  alone 

(Fig. 3.4A), suggesting involvement of additional factor(s) in promoting the hairpin 

expansion. This additional factor was found to be pol , as the hairpin-escaped species is 

the dominant product when purified pol  was included in the pol  system (Fig. 3.4A), 

indicating that the hairpin escape is catalyzed by a collaborative effort of these two 

polymerases.  

Although the mechanism by which pol  and pol  collaborate to promote TNR 

expansion requires further investigatios, it is possible that the hairpin escape by pol β and 
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pol δ involves polymerase switching, a concept originally established for the template 

strand lesion bypass by TLS polymerases (94), and recently adapted to propose possible 

TNR expansion (27,97). A model describing the switch between pol  and pol  is 

depicted in Fig. 3.8. We hypothesized that a hairpin formation through 3’ slippage in the 

nascent strand blocks pol  polymerization activity, which leads to the recruitment of pol 

 to the site for translesion synthesis that adds several nucleotides to the 3’ end of the 

hairpin, followed by re-recruitment of pol  to DNA synthesis with high fidelity and 

efficiency. We believe that it is the polymerase switch that leads to the hairpin escape and 

repeat expansion. This model requires that (i) pol  is capable of adding nucleotides to 

the hairpin primer; and (ii) pol  can use pol -generated products for DNA synthesis, but 

not excision. Our experiments shown in Figs. 3.6 and 3.7 confirm these are indeed the 

cases.  

Pol β, a key enzyme in base excision repair, exhibits a very high overall mutation 

rate in vitro (98,99). The high error rate of pol β has been attributed to its lack of an 

intrinsic proofreading exonuclease activity (100). Previous studies have shown that pol β 

can bypass a number of different types of lesions in the template strand, including 

cisplatin adducts, cyclobutane pyrimidine dimers and 6-4 photoproducts (101). Our data 

shown here reveals that pol β can also “extend” a (CAG)n/(CTG)n hairpin lesion, and that 

the “hairpin tolerance” occurs in the primer strand and leads to expansion of the repeats. 

We also show that pol β can catalyze hairpin extension even though the template strand 

contains a bubble near the site of the synthesis (Fig. 3.5). These observations suggest that 

pol β can tolerate a variety of unusual DNA lesions/structures in both the template and 

primer strands during DNA synthesis. However, it appears that the pol β promotes 
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CAG/CTG repeat instability by cooperating with a highly processive polymerase, such as 

pol . 

We demonstrate that pol  can be either error-free or error-prone when using a 

(CAG)n/(CTG)n hairpin primer for DNA synthesis. The error-free processing relies on the 

pol δ 3’to 5’ proofreading activity for the hairpin removal, as a pol δ mutant defective in 

the proofreading activity fails to remove the hairpin (Fig. 3.4A). For pol δ to conduct the 

error-free processing, the hairpin primer must contain no additional 3’ sequence or a 3’ 

sequence with 1 or 2 mispaired nucleotides. However, when pol δ encounters a hairpin 

primer carrying a complementary 3’ sequence with 2 or more correct nucleotides, the 

polymerase no longer uses its proofreading activity to remove the hairpin, but 

incorporates nucleotides to the 3’ ends, leading to an error-prone processing and potential 

CAG/CTG repeat expansion if the escaped hairpin is not removed by the hairpin repair 

system (Fig. 3.8). These 3’ tail-containing hairpin primers can be derived either directly 

from 3’ strand slippage within CAG/CTG repeats that carry several complementary 

nucleotides at the 3’ end or from pol β-processed hairpins after polymerase switching 

(see Fig. 3.8). Therefore, whether or not pol δ conducts error-free or error-prone synthesis 

to a CAG/CTG hairpin primer is dependent on the hairpin structure. 
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Figure 3.8 Proposed model for polymerase switching in hairpin repair and expansion. When pol δ binds to the 3’ slippage 

hairpin, it can remove the hairpin using its 3’to 5’ exonuclease activity.Expansion is promoted by pol incorporating at least 2 correct 

bases after the 3’ slippage hairpin, followed by the extension step by pol δ. The CAG/CTG hairpin repair pathway can act as a 

secondary system to maintain repeat stability by removing the extended hairpin caused by pol β. Failure of repairing the hairpin on the 

nascent strand results in repeat expansion.
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Although pol β exhibits the most potent hairpin-escape activity among 

polymerases examined, several TLS polymerases also show more or less hairpin-escape 

activity (Fig. 3.3C). In addition, we have not tested many other low fidelity TLS 

polymerases, which may also facilitate CAG/CTG expansions by participating in 

polymerase switching and incorporating nucleotides to the hairpin primer. Given the fact 

that mammalian cells possess a number of low fidelity DNA polymerases, including pol 

β and at least 15 different TLS polymerases, the propensity for a 3’ slipped hairpin to 

escape during DNA synthesis is very high, especially when one or more such low fidelity 

polymerases are overexpressed. Therefore, the 3’ slippage-formed hairpin and its 

subsequent processing by pol β (or a TLS polymerase) and pol δ may represent a major 

source for CAG/CTG repeat expansion. 

In summary, we have identified a novel mechanism for CAG/CTG repeat 

expansion, which likely involves a hairpin formation within the repeat units via 3’ 

slippage in the nascent DNA strand, DNA polymerase switching from pol δ to pol β, 

translesion synthesis by pol β, and polymerase re-switching from pol β to δ for high-

fidelity synthesis. This process allows the hairpin to be retained, leading to CAG/CTG 

expansion. However, further studies are required to confirm the mechanism in vivo, 

particularly in diseases caused by CAG/CTG repeat expansions. 
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CHAPTER 4 Werner Syndrome Protein (WRN) resolves CAG/CTG hairpins 

4.1 Introduction 

CAG/CTG repeat instability is associated with many neurological diseases, 

including Huntington’s disease, Spinocerebellar ataxia type 7 (SCA7) and Myotonic 

dystrophy type 1 (3,102). CAG/CTG repeats are polymorphic (103,104), meaning that in 

the genome of different individuals the number of trinucleotide repeats (repeat number) 

present in a particular stretch of DNA varies. Healthy individuals have a relatively stable 

CAG/CTG repeat number which changes little during their lifetime. However, in 

instances where the repeat number increases to a certain threshold, which varies 

depending on the disease involved, an increase in the number of trinucleotide repeats 

(repeat expansion) present in a stretch of DNA occurs over time, triggering the 

development of disease symptoms (3). The expanded repeat may result in cell death due 

to DNA metabolism interference, toxic protein accumulations or gene malfunction (105). 

Once the symptoms have developed, nothing can stop the disease progression. Therefore, 

preventing the repeat regions from expanding is the key to tackling repeat instability 

associated disorders.  

Hairpin formation during DNA replication is one of the favored mechanisms for 

triggering CAG/CTG repeat instability (8). CAG/CTG repeat regions can hinder DNA 

polymerase progression during replication if an intra-strand hairpin structure in the repeat 

region forms (106). Depending on which strand the hairpin forms, DNA replication on 

CAG/CTG repeat can lead to repeat expansion or contraction. Bacterial (9) and yeast (10) 

studies reveal that DNA replication of CAG/CTG repeat regions can be error prone 

resulting in repeat instability. It is also shown that a high frequency of repeat contraction 
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occurs when the CTG repeat-formed hairpin is used as a template for DNA synthesis 

during DNA repair and/or replication (21). Since DNA repair is still active in non-

dividing cells (30), errors from DNA repair can explain repeat instability in non-dividing 

cells.  

The common point of all the DNA metabolic processes triggering CAG/CTG 

repeat instability is the hairpin formation, therefore, hairpin removal/resolution can 

prevent repeat instability. Recent studies have revealed that human cells possess a hairpin 

repair (HPR) system that catalyzes error-free removal of CAG/CTG hairpins in a nick-

dependent manner (67). Interestingly, regardless of the strand location of the CAG/CTG 

hairpins, the HPR system always targets the nicked (i.e., nascent) DNA strand for 

incisions, mainly using structure-specific endonucleases (67). If the hairpin is located in 

the nicked strand, the repair system removes the hairpin either by making dual incisions 

flanking the heterology or by a combination of nick-directed excision and flap 

endonucleolytic cleavage, which leaves a small single-strand gap. If the hairpin is located 

in the template strand, incisions occur opposite the hairpin, followed by hairpin 

unwinding, which generates a relatively large single-strand gap. In either case, the gap is 

filled by replicative DNA polymerases using the continuous strand as a template (67).As 

a result, the HPR system ensures TNR stability (See Fig. 4.1). 
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Figure 4.1 Proposed model for hairpin repair. Hairpin repair can be divided into DNA 
removal and synthesis. DNA removal can be done by excision and incision on the nicked 
strand. DNA synthesis occurs using the continuous strand as a template. Published data 
from Hou C, Chan NL, Gu L, & Li GM (2009) Incision-dependent and error-free repair of 
(CAG)(n)/(CTG)(n) hairpins in human cell extracts Nat Struct Mol Biol 16(8):869-875. 
 

 

Interestingly, low repair efficiency was observed when a CTG hairpin was used as 

a template for re-synthesis during hairpin repair (Fig. 4.2) (67). Since CTG repeats form a 

more stable hairpin than CAG repeats because of the stacking energy (15,16), it is 

hypothesized that the low repair efficiency of the CTG hairpin is due to polymerase 

impediment by the CTG repeat-formed secondary structure. Therefore, a CAG/CTG 

hairpin-unwinding helicase should enhance the hairpin repair activity (67).
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Substrate ssDNA 
Linearized 

dsDNA 
Hairpin description 

C-(CTG) 

(Slip-out) 
(CAG) 10 (CTG) 35 25 CTG hairpin on nicked strand 

C-(CAG) 

(Slip-out) 
(CTG) 10 (CAG) 35 25 CAG hairpin on nicked strand 

V-(CAG) 

(Slip-in) 
(CAG) 35 (CTG) 10 25 CAG hairpin on continuous strand 

V-(CTG) 

(Slip-in) 
(CTG) 35 (CAG) 10 25 CTG hairpin on continuous strand 

Table 4.1 Hairpin substrate description. The repeat difference of the single- and 
double-stranded DNA results in different CAG/CTG hairpin formation. 
 

 

Figure 4.2 Low hairpin repair activity was observed in CTG slip-in substrate. Low 
hairpin repair activity was observed when CTG hairpin was formed at the continuous 
strand (CTG slip-in). The repaired bands are shown as bracket. Aph: Aphilidocolin, a 
DNA polymerase inhibitor. Detailed methods mentioned in 2.3.2. Published data from 
Hou C, Chan NL, Gu L, & Li GM (2009) Incision-dependent and error-free repair of 
(CAG)(n)/(CTG)(n) hairpins in human cell extracts Nat Struct Mol Biol 16(8):869-875.
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Indeed, previous studies have implicated DNA helicases in maintaining TNR 

stability, presumably by resolving hairpins. Deletion of the SRS2 helicase from a yeast 

strain resulted in CAG/CTG repeat instability. In vitro studies reveal that SRS2 has high 

activity and specificity for unwinding CAG/CTG repeats (69,70). In addition, deletion of 

SGS1 can cause repeat contraction when CTG is used as the template for lagging strand 

synthesis, suggesting SGS1 can also unwind CTG hairpins in the template strand during 

DNA synthesis (77). However, no human homolog of SRS2 has been identified (107), 

while WRN and BLM are the human homologs of SGS1 (108). Identifying human DNA 

helicases that can resolve CAG/CTG hairpins will provide molecular basis to elucidate 

the HPR pathway, as well as the etiology of diseases caused by CAG/CTG repeat 

instability.  

To test the hypothesis that a DNA helicase is involved in HPR, we conducted the 

in vitro HPR assay to screen for factors from HeLa nuclear extract that stimulate the 

repair of a CTG hairpin formed in the template strand (CTG slip-in). This analysis 

identified the WRN helicase as one of such factors. A primer extension assay confirmed 

that WRN stimulated polymerase δ (pol δ) synthesis on a CAG/CTG repeat template, 

while a helicase assay demonstrated that WRN resolved CTG hairpins. Our results 

suggest that WRN helps maintain CAG/CTG repeat stability by promoting DNA 

synthesis by resolving CAG/CTG repeat hairpins in the template DNA strand.  
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4.2 Results  

4.2.1 A partially purified HeLa activity stimulates CTG hairpin repair  

 

To identify factors that stimulate the repair of CTG slip-in hairpin substrate (CTG 

hairpins formed in the template strand), we screened HeLa nuclear activities on a 

phosphocellulose p-11 column as previously described (78,89). Results showed that p-11 

fractions 39 to 47 stimulated the CTG hairpin repair (Fig. 4.3A, lanes 3 to 5). Western 

blotting was conducted to determine the presence of several known DNA repair activities, 

including DNA helicases and DNA polymerases, in these fractions. Interestingly, we 

found that the distribution of WRN correlated very well as the stimulation activity in 

these fractions (Fig. 4.3B, lanes 3 to 6). To confirm WRN’s role in stimulating the 

hairpin repair, recombinant 0.35 pmol WRN was added into the reaction containing 50 μg 

of HeLa nuclear extract. Indeed, addition of recombinant WRN could stimulate the 

hairpin repair assay (Fig. 4.3C, lanes 2 and 3). Since fraction 47 also showed stimulation, 

it is possible that other stimulatory factors are also involved in stimulating the CTG 

hairpin repair. 
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Figure 4.3 Identification of WRN in stimulating hairpin repair on CTG slip-in 
substrate. A) Repair of the (CTG)35 slip-in substrate could be stimulated by some p-11 
fractions. Hairpin repair reaction (double-stranded hairpin substrate, described in 2.3.2) 
was conducted in the presence of 50 µg HeLa nuclear extract and p-11 fractions. Since 
the repaired product is longer than that of the substrate, the repaired product appeared in 
the higher position than that of the substrate. B) Distribution of WRN in p-11 column 
fractions. WRN has peak distribution from fractions 39 to 43 in the p-11 column. 
Western blot was conducted using antibody against WRN. C) Purified WRN protein (0.4 
pmol) can stimulate repair of the (CTG)35 slip-in substrate. Hairpin repair was conducted 
at 37 oC for 30 min. Southern blot was used for scoring the hairpin repair efficiency
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4.2.2 WRN promotes pol δ-catalyzed DNA synthesis on different CAG/ CTG templates 

It has been previously shown that WRN interacts with pol δ (74). Based on this 

known interaction, we hypothesize that WRN stimulates the CTG slip-in hairpin repair 

by promoting DNA synthesis. To test this hypothesis, we conducted a primer extension 

assay using a single stranded DNA containing 35 CTG repeats as a template ((CTG)35) 

(Fig. 4.4A). Our results show that WRN stimulates DNA synthesis on (CTG)35 templates 

(Fig. 4.4B, lanes 1 to 4). Since WRN belongs to the RecQ helicase family (109), two 

other members of this family, RecQ1 and BLM, were also tested in the primer extension 

assay. Unlike WRN, RecQ1 and BLM could not stimulate DNA synthesis on (CTG)35 

template (Fig. 4.4B, lanes 5 to 12, Fig. 4.4C). In addition, we showed that WRN also 

stimulated pol δ-catalyzed DNA synthesis in the presence of PCNA and RFC, two 

important accessory factors of DNA polymerases (Fig. 4.6B, lanes 3 and 6).  

In order to see whether WRN can stimulate various length of CAG/CTG repeat, 

we conducted the primer extension with different repeat length of CAG/CTG. Our results 

showed that WRN indeed can enhance all the CAG/CTG repeat synthesis (Fig. 4.6A). 

These observations suggest that WRN has higher substrate specificity for CTG hairpin 

than other RecQ helicases.
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Figure 4.4 WRN stimulated (CTG)35 synthesis. A) Primer extension assay. Detailed 
method is mentioned in Section 2.5. Briefly, 5’-32P labeled primed substrate was 
incubated with pol δ (12 ng), with or without DNA helicases, at 37 oC for 20 min. 
Reaction products were resolved on a 6% 8 M urea denaturing polyacrylamide gel 
followed by phosphorimager detection. B) Only WRN can enhance DNA synthesis on 
(CTG)35 templates. Full length products are indicated by arrows. Faint bands longer than 
the full length products (labeled with an asterisk) also appeared in the synthesis. The 
longer DNA products were confirmed to be non-specific products (refer to Fig. 4.5). C) 
Quantification of the (CTG)35 synthesis results. Quantification was done with Kodak MI 
SE. 
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Initially, we conducted the primer extension on a circular DNA as previously 

described (110,111). Since WRN translocates on single-stranded DNA in a 3’to 5’ 

direction (112), WRN can bind to the upstream single-stranded region on the template 

and dissociate the primer:template complex. Therefore, removing the upstream single-

stranded region can allow us to have more accurate evaluation of the helicase activity. 

With the limited restriction sites available, BstNI, a restriction enzyme with low 

specificity was used to remove the upstream single-stranded DNA region. It is noted that 

a DNA product longer than the template appeared in all the reactions (labeled with an 

asterisk in the figures). Southern blotting using a (CTG)10 probe was conducted to 

confirm that the longer DNA did not contain any CAG repeats (Fig. 4.5). The longer 

DNA product only appeared in the presence of BstNI (5’cutting). It is still unclear how 

the upper band was formed. It may be due to the non-specific BstNI cutting generates a 

double-stranded primer and template complex.  
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Figure 4.5 Identification of the longer product in the primer extension assay. Left 
panel: The primer extension assay was conducted with 5’-32P end labeled primer. The 
longer products (upper bands) are indicated by arrows and an asterisk. Right panel, same 
primer extension was conducted using unlabeled primer. Results were visualized by 
Southern blotting using a radiolabeled (CTG)10 probe. The longer product visualized in 
the reaction using the labeled primer cannot be detected in the Southern blot, indicating it 
does not contain any CAG repeats.  
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Figure 4.6 WRN stimulates DNA synthesis on different CAG/CTG repeats even in the presence of accessory factors. A) WRN 
stimulates DNA synthesis on templates containing different repeat length of CAG and CTG. B) WRN stimulate (CAG)35 and (CTG)35 
synthesis even in the presence of accessory factors. Reaction was conducted in the presence of 2 pmol PCNA and 110 fmol RFC 
without 0.35 pmol WRN on both (CAG)35 and (CTG)35 templates. Addition of WRN to the reactions containing PCNA and RFC 
further enhanced the synthesis of DNA on both templates. 
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4.2.3 WRN helicase activity is responsible for stimulating CAG/CTG repeat synthesis  

WRN possesses both a 3’to 5’ helicase activity and a 3’to 5’ exonuclease activity 

(113). To determine if one or both activities are required for stimulating CAG/CTG 

repeat synthesis, we conducted the primer extension assay in the presence of non-

hydrolysable ATP (adenylyl-imidodiphosphate, AMP-PNP). WRN is capable of utilizing 

ATP, dATP, CTP and dCTP as an energy source for helicase activity (112), so it is 

impossible to conduct the primer extension assay in the absence of an energy source for 

WRN. Therefore, a tenfold excess of AMP-PNP was added in the primer extension assay 

to outcompete dATP and dCTP binding to WRN. In the presence of a high AMP-PNP 

concentration, WRN is incapable of stimulating DNA synthesis on (CAG)35 or (CTG)35 

templates (Fig. 4.7A, lanes 3 and 6), implying the helicase activity is responsible for the 

induction of CAG/CTG synthesis.  

To further confirm the role of the helicase activity in the stimulation of synthesis, 

WRN helicase mutant (K577M) was used in the assay. Previous studies have shown that 

a point mutation in the ATPase domain of WRN (K577M) abrogates the helicase but not 

the exonuclease activity (113,114). Similar to the AMP-PNP result, the WRN helicase 

mutant K577M could not stimulate the synthesis on (CAG)35 or (CTG)35 templates (Fig. 

4.7B, lanes 3 and 6), suggesting WRN stimulates pol δ-catalyzed DNA synthesis on 

(CAG)35 and (CTG)35 templates by disrupting CAG/CTG hairpins. 
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Figure 4.7 WRN helicase activity is responsible for stimulating CAG/CTG synthesis. A) The non-hydrolyzable ATP analog, 
AMP-PNP, inhibits the stimulatory effect of WRN on synthesis of (CAG)35 and (CTG)35 templates. B) WRN helicase mutant K577M 
failed to stimulate DNA synthesis of (CAG)35 and (CTG)35 templates. 
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4.2.4 WRN unwinds CTG hairpins with its helicase activity 

To determine whether WRN is capable of unwinding CTG hairpins, we designed 

a helicase assay for detecting CTG hairpin unwinding (Fig. 4.8A). In our assay, the 

labeled (CTG)35 was heated and slowly cooled to room temperature to allow intra-strand 

hairpin formation. When CTG forms an intra-strand hairpin, it cannot pair up with a 

complementary unlabeled CAG oligonucleotide. However, when the CTG hairpin is 

unwound, it can anneal with the unlabeled CAG oligonucleotide to form a double-

stranded DNA. Since single-stranded DNA migrates differently than double-stranded 

DNA on native polyacrylamide gel electrophoresis, hairpin unwinding activity can be 

measured by the mobility difference. In the absence of WRN, a small amount of double 

stranded product was seen at 30 min. Since addition of high concentration of cold CAG 

could also result in the mobility shift even in the absence of any protein, this product may 

be formed by base pairing of CAG disruption of CTG hairpin formation. In the presence 

of wild-type WRN, unwinding of the hairpin was evident by 5 min (Fig. 4.8B, lane 6) and 

higher amount of hairpin was unwound in 30 min (Fig. 4.8B, lane 8). However, this 

unwinding was not observed in the absence of ATP, which is required for WRN helicase 

activity (Fig. 4.8B, lanes 9-12). In addition, the WRN helicase mutant K577M failed to 

unwind the CTG hairpin, further confirming that WRN unwinds CTG hairpins using its 

helicase activity. Therefore, our data suggests that WRN helicase promotes DNA hairpin 

repair by unwinding the hairpin structure so that it can be effectively used as a template 

for DNA synthesis. 

Our helicase assay revealed WRN cannot 100% unwind (CTG)35 (Fig. 4.8B, lane 

8). With the fact that WRN has limited unwinding activity (on average unwinding less 
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than 40 base pairs) in the absence of replication protein A (RPA) (115), it is possible that 

WRN showed weaker hairpin unwinding activity on long CTG hairpin. In order to prove 

that the low helicase activity is not caused by the artifact of the assay, we repeated the 

helicase assay with a shorter CTG repeats (15 repeats). As expected, WRN could unwind 

almost all of the (CTG)15  hairpins, confirming the assay’s specificity (Fig. 4.8C). 
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Figure 4.8 WRN unwinds CTG hairpins in a helicase activity. A) Experimental design 
of the helicase assay. 5’-32P end labeled oligonucleotide containing (CTG)35 was heated 
and slowly cooled down to room temperature to allow the intra-strand hairpin formation. 
When the CTG hairpin is unwound by helicase, it can hybridize with the unlabeled 
(CAG)35 containing oligonucleotide causing a mobility shift. Native polyacrylamide gel 
(6%) electrophoresis was conducted to separate the single and double stranded DNA 
(indicated by arrows in B). A phosphorimager was used to detect the signal. B) Wild type 
WRN requires ATP to unwind the (CTG)35 hairpin (lanes 5-8). Mutant WRN (K577M), 
which lacks helicase activity was unable to unwind the hairpin. The CAG/ CTG repeat 
region is indicated as dotted line. C) WRN is able to completely unwind (CTG)15 hairpin. 
M: marker for double-stranded DNA, ss: single-stranded DNA, ds: double-stranded DNA. 
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4.3 Discussion  

RecQ helicases are involved in many DNA metabolic pathways, such as DNA 

replication, recombination and repair (109). Five RecQ helicases have been found in 

humans, Werner Syndrome Protein (WRN), Bloom Syndrome Protein (BLM), RecQ1, 

RecQ4 and RecQ5. RecQ helicases migrate in a 3’to 5’ direction on single-stranded DNA, 

using ATP as an energy source (68). When RecQ helicases migrate to the DNA duplex 

region, they dissociate the double-stranded DNA.  Therefore, RecQ helicases are defined 

as 3’to 5’ helicases because of the direction they travel relative to the DNA strand on 

which they are bound. RecQ helicases help maintaining genomic stability during DNA 

replication, recombination, transcription and repair. They can prevent the replication fork 

collapse by resolving the non-B DNA structures during DNA synthesis or and inhibiting 

recombination (116). Mutation of RecQ helicases can result in extensive DNA deletions, 

predisposition to cancer and pre-mature aging (117).  

It is reported that CAG/CTG repeats form a stable hairpin in vitro and in vivo 

(16,118). Since CAG/CTG hairpins can hinder polymerase progression, it may trigger 

DNA damage and error prone repair or synthesis, leading to CAG/CTG repeat instability 

(60). If the hairpin is not resolved on the template strand, it induces repeat contraction. 

We show here that WRN plays an important role in CTG hairpin repair by unwinding the 

hairpins and preventing the repeat contraction. This finding is consistent with previous 

studies showing that depletion of the SGS1 helicase activity in yeast results in CTG 

repeat contraction (77). 

In our primer extension assay, there is no strong pausing site in the absence of 

WRN. This could occur if the (CTG)35 repeat does not form a uniform structure. It is still 
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unclear whether long CTG repeats can form multiple small hairpin structures or a single 

large hairpin (40). RecQ1 and BLM could not stimulate DNA synthesis on the (CTG)35 

substrate, suggesting (CTG)35 repeats may cause greater hindrance to DNA 

synthesis.WRN has been reported to have a similar substrate specificity as BLM (116), 

but our results showed that only WRN could enhance pol δ synthesis on (CTG)35, 

suggesting WRN has a higher substrate specificity and/or ability to resolve CAG/CTG 

hairpins.  

Our helicase assay is based on the annealing of two single-stranded DNA. Since 

WRN also processes strand pairing activity of the single-stranded DNA (119), one may 

argue that the results shown in the helicase assay were caused by the strand pairing 

activity instead of helicase activity. As mentioned in Machwe et al. (119), strand pairing 

can still occur in the absence of ATP. In our case, the final product (double-strand DNA) 

that results when the hairpin is unwound was only seen in the presence of ATP, which 

eliminates the possibility of strand pairing activity. Furthermore, WRN helicase mutant 

(K577M), which cannot hydrolyze ATP and therefore lacks helicase activity, was unable 

to generate any double stranded products, indicating that our helicase assay is specific for 

assessing the unwinding activity of helicases for CAG/CTG hairpins. The final double-

stranded product from the helicase assay contains a 5’ overhang, so it cannot be unwound 

by the 3’ to 5’ helicase activity of WRN.  

Previous studies pointed out that that WRN unwinding capacity is enhanced if the 

unwound product is prevented from reannealing (120). As for the primer synthesis assay, 

the pol δ polymerization can prevent reannealing of the unwound hairpin. Therefore, 

even though WRN did not show high (CTG)35 unwinding activity in the helicase assay, it 
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is still possible that WRN can have higher unwinding activity when it cooperates with pol 

δ on (CTG)35 synthesis by its helicase activity. In addition, with the fact that pol δ 

physically interacts with WRN (121), we cannot eliminate the possibility that pol δ 

binding enhances the unwinding capacity of WRN. Based on our results, we propose that 

when it comes to the replication/resynthesis blockage due to the CAG/CTG hairpin, 

WRN is recruited via interacting physically with pol δ, and unwinds the hairpin structure, 

allowing pol δ to resume polymerization reaction (Fig. 4.9)
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Figure 4.9 Proposed model for WRN stimulate CAG/CTG hairpin synthesis. Proposed model of WRN in maintaining CAG/CTG 
repeat stability. CAG/CTG hairpins hinder the pol δ progression. WRN is then recruited to the CAG/CTG hairpin through protein-
protein interaction with pol δ. WRN resolves the CAG/CTG hairpin while pol δ is responsible for polymerization. 
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There is no clinical report linking WRN deficiency and CAG/CTG instability. 

However, one study found that the WRN knockout mice exhibited a deletion of telomere 

due to a deficiency of lagging strand synthesis (76). Since the telomere deletion may 

cause more serious problem than CAG/CTG repeat deletion, it is likely that WRN 

knockout mice do not live long enough to develop CAG/CTG repeat instability.  

Our in vitro hairpin repair assay reveals that WRN stimulated hairpin repair when 

the hairpin was formed in the template strand (CTG slip-in). Therefore, inhibiting the 

CTG slip-in hairpin repair, repeat contraction will be resulted. It is hypothesized such 

contraction can be applied to the therapeutic treatment of repeat expansion associated 

diseases by reducing the expanded repeat to the sub-threshold level (4). With the limited 

knowledge of the proteins involved in the hairpin repair, our discovery of WRN in CTG 

unwinding can allow us to screen for the interacting proteins specifically responsible for 

promoting repeat contraction. 
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CHAPTER 5 Summary and Future Directions 

 

5.1 Summary of findings 

CAG/CTG hairpin formation and DNA synthesis are two key factors for repeat instability, 

suggesting both DNA polymerases and helicases play important roles in repeat instability. 

However, little is known regarding the proteins involved in tolerating or resolving 

CAG/CTG hairpins. Therefore, by screening some known polymerases and helicases, we 

identified pol β as a contributor to promote limited DNA synthesis after the hairpin, while 

its interaction with pol δ can have synergetic response to repeat expansion in vitro. 

Surprisingly, we discovered that pol δ can employ its proofreading activity to repair the 

CTG hairpin.  

From the in vitro hairpin repair assay using the circular hairpin substrate, we 

identified WRN could stimulate the hairpin repair by resolving the hairpin. With the fact 

that CAG/CTG repeat instability associated disorders are still incurable, our studies can 

provide several potential therapeutic targets for treating and/or preventing CAG/CTG 

repeat associated disorders.  

 

5.1.1 Pol β promotes hairpin retained 

Hairpins caused by 3’ slippage of DNA are hypothesized to be one of the 

intermediates triggering CAG/CTG expansion in cells (97). DNA synthesis without 

removing the hairpin is believed to convert the hairpin intermediate into the expanded 

product in the newly synthesized strand (27,97). Nonetheless, how 3’ slipped hairpin 
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promotes repeat expansion is unknown. Our data reveal that pol β performs the limited 

DNA synthesis at the hairpin tip, followed by the extension step by pol δ. In addition, 

since pol δ can perform the extension step when there are two perfectly matched 

nucleotides after the hairpin, it is suggested that pol β has to fill in some extra nucleotides 

after the hairpin in order to promote repeat expansion. However, pol δ fails to perform the 

extension step when there is a mismatch 5 bases away from after the hairpin, suggesting 

the location of the mismatch can determine whether or not pol δ can repair the CTG 

hairpin. As pol β is an error-prone enzyme and on occasion will misincorporate a 

nucleotide after the hairpin, not all the hairpin substrate synthesized by pol β can be 

converted to the extension product. Hence, this may act as another mechanism to prevent 

CAG/CTG repeat expansion.  

5.1.2 Pol δ removes hairpins by its exonuclease activity 

Pol δ 3’to 5’ exonuclease activity is important for maintaining genomic stability. 

Our present studies demonstrate that pol δ proofreading activity can remove CTG 

hairpins. Defects in pol δ proofreading activity contribute to elevated mutation 

frequencies in yeast (122) and mice (123). Since there are no studies reporting that HD 

patients have a higher mutation susceptibility, this suggests that pol δ’s proofreading 

activity should be proficient in these patients. If this is true, then how can the DNA of 

HD patients undergo repeat expansion even though they possess pol δ with proficient 

proofreading activity? 

Limitations on the hairpin removal by pol δ may explain the repeat expansion 

seen in HD patient cells.  Our studies reveal that pol δ can only remove short CTG 

hairpins (less than 5 CTG repeats) and this activity only works at the hairpin tip. 
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Therefore, CAG/CTG repeat expansion can still occur when the hairpin cannot be 

removed by pol δ. In short, our data suggests that pol δ may not play a significant role in 

hairpin removal due to these limitations. 

  

5.1.3 WRN promotes CAG/CTG hairpin synthesis by its helicase activity 

Disruption of the CAG/CTG hairpin structure is an alternative way to prevent 

repeat instability. Our studies reveal that WRN can enhance the (CTG)35 hairpin repair by 

unwinding the hairpin and making it available for DNA synthesis. Since WRN is the 

homolog of yeast SGS1, our results support the findings in yeast that the depletion of 

SGS1 results in CTG repeat deletion during lagging strand synthesis (77).  
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5.2 Further Studies 

5.2.1 Identifying proteins or inhibitors involved in hairpin removal 

Our novel in vitro hairpin repair assay not only confirms the role of 

endonucleases in hairpin repair, but also reveals several characteristics of the hairpin 

removal. First, the incision and excision mechanisms for DNA removal are not 

overlapping. By screening for different nuclear extracts for deficiency in hairpin repair, 

we identified one of the HD cell lines is deficient in incision (Fig. 5.1). Second, cells may 

rely more on incision when there are perfectly base paired nucleotides at the 3’ end of the 

hairpin. Third, incision is more dominant when the hairpin is large. Since incision is more 

structure-specific and responsible for repairing a larger hairpin, identifying the 

endonuclease involved in the CAG/CTG DNA removal may allow us to understand how 

the large hairpin is repaired. Several cell lines are defective in endonuclease activity. 

Therefore, by using protein fractionation and complementation assays, it is likely that the 

endonuclease or inhibitors can be identified. 
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Figure 5.1 A cell line that is deficient in incision while it is proficient in excision. 5’-
32P labeled Substrate II (mentioned in Fig. 3.1) was incubated with HeLa nuclear extract 
and HD patient nuclear extract. HD nuclear extract showed deficient in incision. The 
smaller band showed in HeLa nuclear extracts is believed to be the hairpin removal 
intermediate, suggestion incision occurs in HeLa nuclear extract. Addition of Q-
sepharose fraction could not restore the incision intermediate, suggesting inhibitor may 
be present in the HD patient cells. Reaction was conducted as the hairpin primer 
extension assay except in the presence of aphidicolin but absence of dNTP. Detailed 
method was mentioned in section 2.7.  
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5.2.2 Are other polymerases involved in CAG/CTG repeat instability? 

 

Our results indicate that pol β is involved in promoting CTG expansion (and 

possibility contraction). In our experiments, we screened a number of different 

polymerases that were available to us. We cannot rule out the possibility that other error-

prone polymerases that we did not test could be involved in the hairpin mediated 

expansion. In addition, by modifying our substrate as shown in Fig. 5.2, we can also 

screen polymerases to see if they can specifically promote repeat contraction when 

CAG/CTG hairpins are present. 

 

 

Figure 5.2 Proposed hairpin substrate for screening polymerase promoting repeat 
contraction.  The hairpin gap substrate is created by annealing with 4 different 
oligonucleotides so as to simulate hairpin formation on the template during lagging strand 
synthesis. Template I and Template II contains 22 bp random sequence with 15 CTG 
repeats. Synthesis primer (Syn. Primer) is non-labeled with 20 bp complementary with 
Template I. Oligo is the 5-32P oligonucleotide complementary to random sequence to 
Template II. After annealing, a hairpin substrate with 2 bp gap will be formed. After 
incubating with different polymerases and DNA ligase, if there is a hairpin bypass on the 
template strand, it will generate more than 46 bp radiolabeled DNA. However, if there is 
no bypass synthesis, radiolabeled substrate with 22 bp is expected to be found. 
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5.2.3 Are other helicases involved in CAG/CTG repeat instability? 

There are numerous DNA helicases with different substrate specificities and 

activities. It has been shown that a yeast helicase, SRS2, demonstrates exceptionally high 

specificity and activity for unwinding CAG/CTG hairpins (37). Our results clearly 

demonstrate that WRN can indeed enhance synthesis through unwinding a CTG hairpin. 

However, patients with WRN deficiency do not demonstrate CAG/CTG repeat instability. 

It is likely that other helicases or proteins can be the backup to WRN and resolve 

CAG/CTG hairpins. Since human FBH1 is proposed to be the human orthologue of SRS2, 

functional assays using CAG/CTG repeats can be carried out to test a possible role of 

FBH-1 in repeat instability (72). 
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APPENDIX 

Abbreviation  

8-oxo-G    8-oxo-7,8-dihydro-2’-deoxyguanosine  

A    Adenine 

ATP    Adenosine Triphosphate  

BER    Base excision repair 

BLM    Bloom syndrome protein 

C    Cytosine 

CSA, CSB   Cockayne syndrome proteins A and B  

DNA-PKcs    DNA protein kinase, catalytic subunit 

DTT    Dithiothreitol  

dNTP     Deoxynucleotide Triphosphate 

dsDNS    Double strand DNA 

EDTA    Ethylenediamine tretracetic acid  

FBH1    F-Box helicase 1  

G    Guanine 

GGR    Global genome repair 

HAP    Hydroxylapatite  

HD    Huntington’s disease 

HPR    Hairpin repair 

MMR    Mismatch repair 

MutSα    Complex of MSH2 and MSH 6 

MutSβ    Complex of MSH2 and MSH 3 

NER    Nucleotide excision repair 

NFDM    Non-fat dry milk  



 

96 
 

NP-40    Noniodent P-40  

OGG1    8-oxoguanine DNA glycosylase  

Pol    Polymerase  

PAGE    Polyacrylamide gel electrophoresis 

PCNA    Proliferating cell number antigen 

RFC    Replication factor C 

RPA    Replication protein A 

SCA7     Spinocerebellar ataxia type 7  

SDSA    Synthesis dependent strand annealing  

SDS    Sodium Dodecyl Sulfate  

ssDNA    Single-stranded DNA  

SRS2    Suppressor of RAD Six Screen Mutant 2  

T4PNK    T4 polynucleotide kinase 

T    Thymine 

TCR     transcription-couple repair 

TNR    trinucleotide repeat  

TLS    Translesion DNA synthesis 

UV    Ultraviolet 

WRN    Werner Syndrome Protein 

XPC    Xeroderma pigmentosum complementation group C
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