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ABSTRACT OF THESIS 

 
 

 
EFFECT OF FEEDING A BLEND OF NATURALLY-CONTAMINATED CORN ON 

NUTRIENT DIGESTIBILITY AND FEED PREFERENCE IN WEANLING PIGS 
 

Two experiments were conducted to determine the effect of feeding diets with a 
2009 and 2010 naturally-contaminated corn to weaning pigs. For both experiments three 
diets were blended to contain 100% 2010 naturally-contaminated corn (control), 50-50% 
blend of the 2009 naturally-contaminated corn and 2010 corn (Diet 2), and 100% 2009 
naturally-contaminated corn (Diet 3). In Exp. 1, 24 c rossbred pigs with an average body 
weight of 7.64 ± 0.70 kg were allotted to 4 replicates of 3 treatments with 2 pigs per pen, 
on the basis of gender, litter mate, and BW in a randomized complete block design. Fecal 
and urine samples were collected and dry matter, energy, and nitrogen apparent 
digestibility were determined. Dry matter, energy, and nitrogen digestibility were not 
affected by either Diet 3 or Diet 2 compared to the control diet. In Exp. 2, 30 c rossbred 
pigs with an average body weight of 7.98 ±  1.15 kg w ere allotted to 3 replicates of 2 
comparisons with 5 pigs per pen. Comparisons consisted of: 1) Control vs Diet 3, and 2) 
Control vs Diet 2. Two feeders were located in each pen containing one of the two diets. 
Feed preference and growth performance were determined. A preference for the feed 
containing 2010 c orn feed was observed; pigs showed the ability to discriminate 
mycotoxin-contaminated feed (95.34 vs. 4.66%; P< 0.01). Nutrient digestibility was not 
affected by these diets, but a clear decrease in feed intake was observed in the pigs.  
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CHAPTER 1. Introduction 

In human history necessity inspires ingenious solutions. Different challenges have 

been appearing in terms of food acquisition by the human, from being nomads, to hunter-

gatherer, until the beginning of a simple agricultural system when humans became 

sedentary. The population started increasing as did agricultural production; increasing 

crop products and this products storage was imminent. This way different mechanisms 

and technologies were developed to fight against bacteria, yeast, fungi and other 

microorganisms in order to preserve food through time. Processes such as drying, 

freezing, salting, sugaring, irradiation, burial in the ground, until current techniques such 

as artificial food additives, pulsed electric field processing, vacuum packing, high 

pressure food preservation and many others, are utilized on a regular basis. 

Even with all these food preserving technologies it is difficult to mitigate the impact 

of harmful microorganisms on food/feed quality. There is not a single solution to the 

problem, and it is necessary to find small contributions in all the production segments in 

order to dissipate the problem. One of the challenges that modern agriculture industry 

faces is the appearance of fungi in a wide variety of substrates, including feed and foods. 

These fungi produce toxic metabolites called “mycotoxins”. 

Mycotoxins were first mentioned in the early 1960s when the discovery of the 

aflatoxins was made (Richard, 2007). These metabolites are produced from mycotoxin-

producing fungi such as Aspergillus, Penicillium, and Fusarium, and of which thousands 

are known to be toxic to animals and humans (Yiannikouris and Jouany, 2002). The most 

common classes of mycotoxins appear to be aflatoxins, trichothecenes, fumonisins, 

vomitoxin, zearalenone, ochratoxin A, and the ergot alkaloids that is known since  the 
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middle ages (Hussein and Brasel, 2001).  T he implication of mycotoxins lies on the 

appearance of several toxicosis and diseases in both humans and animals, especially in 

monogastrics (Hussein and Brasel, 2001). Mycotoxins also affects prior, during, and post 

harvesting, transportation and storage of a wide variety of agricultural products, which is 

reflected in condemned agricultural products and important agro-economic losses (Zain, 

2011). 

The swine industry has experienced significant economic losses over the years due 

to feed containing mycotoxins (Vesonder and Hesseltine, 1981). The detrimental effects 

of mycotoxins in swine include chronic effects such us poor feed conversions, lower 

productivity, and immune suppression which decreases the resistance to infections 

(Grove et al., 1969). The severity of these affects are dependant on the type of 

mycotoxins consumed, the time of exposure, the way of inclusion, and the animal 

physiology stage. Young pigs are more susceptible than older pigs to damage from 

mycotoxins. 

Finding solutions to this problem requires knowledge of the interactions of 

mycotoxins with animals. A considerable number of studies mention the effects of 

mycotoxins on feed intake, growth and reproductive performance, of which these are all 

types of clinical cases. But there is a lack of information in terms of how nutrient 

digestibility is affected by mycotoxins. Therefore, the objective of our study was to 

evaluate how nitrogen, energy, and dry matter digestibility was affected by a naturally-

contaminated corn with vomitoxin, zearalenone, 15- acetyl DON a nd fumonisin B₁ in 

weaning pigs. 
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CHAPTER  2. Literature Review 

2.1. Background 

2.1.1. Mycotoxins and human health 

Human exposure to mycotoxins can occur by ingestion, contact, and inhalation of 

food containing products with fungal growth. The effect of these toxins in human 

metabolism can be as si mple as a non-detectable toxicosis to a p otent acute and/or 

chronic intoxication case.  Acute occurrences are not likely to occur in the United States, 

where the mitigation plans and controls for human consumption products are strict. But 

the greatest potential problem lies in a long-term exposure to low levels since where there 

are possible adverse effects.  

Since aflatoxins were first found to be carcinogenic in the 1960s, there has been the 

isolation and characterization of thousands of fungal compounds (Jarvis and Miller, 

2005), but few of them are known to be natural contaminants that impact to human 

health. Aflatoxins, ochratoxins, trichothecenes, zearalenone, and fumonisins are likely the 

mycotoxins with more implication in human health, and therefore, they are the most 

studied mycotoxins.  

 

Aflatoxins 

Aflatoxins and their effects on humans are well documented  (Krishnamachari et 

al., 1975). The most common symptoms of aflatoxin ingestion are headache, nausea, 

vomiting, anorexia, gastrointestinal bleeding, abdominal pain, pulmonary and leg edema, 

fatty infiltration, necrosis in the liver, and in some cases death (Peraica et al., 1999).   
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Aflatoxin B₁ type is the most mentioned mycotoxin. This toxic metabolite has been 

associated with hepatocellular carcinoma (Linsell, 1980; Linsell and Peers, 1977; Shank, 

1976; Shank and Wogan, 1964). In 1977 it was determined that aflatoxin B₁ was capable 

of binding to DNA, forming aflatoxin B₁-guanine attachments (Essigmann et al., 1977). 

More recent data provided strong evidence that aflatoxins are linked to mutations in the 

p53 gene, which is a tumor suppressor gene commonly mutated in people with cancer, 

implying that there is a G-T transversion in the gene. This discovery provided important 

information into the cause and development of carcinogenic tumors (Groopman et al., 

1996). 

 

Ochratoxin 

When ochratoxin was discovered in the swine industry, pigs were presenting pain 

around the kidneys, drinking excessive water, urinating almost continuously, appearing 

depressed, and displaying a considerable decrease in feed intake (Hope and Hope, 2012) . 

In 1956 the first clinical case in humans was reported, with similar symptoms to swine, 

but its etiology was unknown. At that time the disease was called “Balkan endemic 

nephropathy” (Tanchev and Dorossiev, 1991). After the recognition of the toxic 

metabolite ochratoxin in food consumed in the Balkan countries, several investigations 

were conducted. These studies found the appearance of cancer in rats and mice, and also 

kidney tumors in patients with the “Balkan endemic nephropathy”, providing important 

evidence that it was due to ochratoxin (Macgeorge and Mantle, 1990). 

Ochratoxin is airborne in nature making its exposure a potential risk.  A case of 

acute renal failure had been found in a woman that was exposed to a granary and grain 
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dust from contaminated wheat. Another case where analysis showed levels of ochratoxin 

above 1500 ppm in household dust collected from a house which residents experienced 

symptoms reminiscent of ochratoxin toxicosis in animals (Richard et al., 1999). 

 
The most common symptoms of ochratoxin contamination in humans are anorexia, 

anemia, apoptosis, copper colored skin, fatigue, increased clotting time, increased 

eosinophils, increased leukocytes, increased reactive oxygen species and others 

symptoms (Chernozemsky et al., 1977; Müller et al., 1999; Schwerdt et al., 1999). And, 

as was mentioned before, it can be carcinogenic and can result in death. 

 

Trichothecenes 

Alimentary toxic aleukia (ATA), which occurred in Russia during 1944, is a disease 

characterized by the total atrophy of the bone marrow, agranulocytosis, necrotic angina, 

sepsis, hemorrhagic diathesis, and mortality reaching 80% (Joffe, 1986). Patients 

experienced vomiting, diarrhea, abdominal pain, and burning in the upper GI tract, 

followed by pe techial hemorrhages that developed on s kin, often accompanied by 

hemorrhages in the oral cavity, development of necrotic lesions, and enlargement of the 

local lymph node (Joffe, 1986). It was determined that this disease occurred when people 

ate overwintered cereal grains products. From a 20 year-storage grain, two fungi from the 

Fusarium specie were isolated and shown as r esponsible in producing trichothecenes 

such as T-2 toxin, neosolaniol, HT-2 toxin, and T-2 tetraol (Joffe, 1974; Schoental et al., 

1979).  

There is evidence that trichothecenes might cause Stachybotryotoxicoses disease in 

humans, but its most known to occur in horses and cattle. Dearborn et al. (1999) reported 
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some illness in people occupying buildings contaminated with Stachybotrys. These 

include pulmonary irritation, headaches, fatigue, malaise, and diarrhea (Croft et al., 

1986). Dermatitis, inflammation of the nose, fever, chest pain, and leukemia are some 

other reported symptoms in humans handling contaminated hay (Robbins et al., 2000). 

Deoxynivalenol, or DON, is one of the most common isolated mycotoxins from the 

trichothecenes group. Studies done in mice show an increase in immunoglobin A (IgA) 

levels in sera, with a similar diagnosis to the Glomerulonephritis disease in humans 

(Pestka et al., 1989).  The common symptoms produced in humans include nausea, GI 

distress or pain, vomiting, diarrhea, headaches and throat irritation, and some patients had 

blood in their stools or developed a rash (Ueno, 1984). 

 

Zearalenone 

In Puerto Rico an uncommon case occurred in 7 and 8 year old children who were 

showing premature puberty with signs of premature thelarche, premature pubarche, 

prepubertal breast enlargement in boys and pseudopuberty in girls (Sáenz de Rodriguez et 

al., 1985). Investigators started to examine the local food, and found a high concentration 

of an estradiol-equivalent in some of the meat, leading them to consider all the estrogen-

like substances used in cattle. They then found Ralgro®, a processed anabolic product 

made from zearalenone and approved for use in cattle and sheep in Puerto Rico. There 

have been suggestions that zearalenone can cause cervical cancer and premature 

thelarche, and it has also been shown that this mycotoxin binds to estrogen receptors of 

human myometrial tissue and can have lasting effects in the endocrine system (Szuets et 

al., 1997). 
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Fumonisins 

In 1988, fumonisins, a class of mycotoxin produced by F. verticillioides, F. 

proliferatum, and at least one strain of F. nygamai, were discovered (Gelderblom et al., 

1988). Fumonisin B₁ was the most studied and was shown to be responsible for 

leukoencephalomalacia in horses (Colvin and Harrison, 1992; Kellerman et al., 1990), 

pulmonary edema in swine, and liver cancer promoter and hepato- and nephrotoxicity in 

rats (Gelderblom et al., 1988). In humans there is not enough evidence to link the 

consumption of fumonisin, principally type B₁, to diseases such as esophageal cancer. It 

was found in southern Africa (Marasas, 1993), at the Linxian area of China (Li and 

Cheng, 1984) and more recently in northeastern Italy that the consumption of corn-

containing fumonisins and esophageal cancer increased simultaneously (Franceschi et al., 

1990), even though,  fumonisin-exposed animals show that high doses after long periods 

of exposure triggers apoptosis mechanisms. Apoptosis is a key promoter in cancer and 

carcinogenesis induced by alterations in cellular sphingoid bases or sphingolipids (Voss 

et al., 1999). Also, it was found that fumonisin B₁ inhibited growth and induced 

morphological features consistent with apoptosis in human esophageal epithelial cell line 

and other human cells in-vitro (Tolleson et al., 1996). Sphingolipids are thought to play 

an important role in signal transmission and cell recognition, but sphinganine 

biosynthesis can be inhibited by fumonisin due to their close structural similarity (Wang 

et al., 1991). 
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2.1.2. Economic impacts of mycotoxins 

 

The notable impact of mycotoxins in the feed and food production chain is that it 

affects each and every segment of it. Adverse economic effects can be due to differences 

in harvesting procedures, insecticide and fungicide use (which differs for various farm 

commodities), and also other factors that translate into low crops yields. The 

consequences are also found in the animal industry, generating immune suppression, 

decreasing growth rates and feed efficiency, ultimately resulting in low production and 

costly contingency programs. The appearance of fungus- toxic metabolites are known to 

be found pre, post, and during harvesting, storage, processing, transportation and even in 

animals’ sub-products such as eggs, meat, and milk (Council for Agricultural Science and 

Technology, 2003). In addition, the implementation of technologies, research, strategies 

and programs to reduce mycotoxin appearance and risk, regulatory enforcement, 

mitigation, lawsuits, testing and quality control produce considerable costs for livestock 

and crop producers, and every entity involved.  

Crops can be drastically battered by the influence of mycotoxins. The Food and 

Agriculture Organization (FAO) estimates that 25% to 50% of the world’s food crops are 

affected by mycotoxins, resulting in the loss of over 1000 million tons per year of 

feedstuffs (Miller, 1995). The most affected crops in the Unites States are cottonseed, 

peanuts, and corn (Dorner, 2008; Snijders, 1990; Thiel et al., 1992), but economic losses 

have also been reported in wheat, sorghum, and other oilseeds (Park and Pohland, 1986). 

The import “refusal” of grains and grain products (ready to eat products) are a part of the 

economic impact, but in a small portion. The Food and Drug Administration (FDA) in 
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2001 only reported 4 cases from 1,781 refusals, with aflatoxin contamination, but, the 

high percentages of the economic impact lie on crop losses. A study done in the United 

States cites that there is a loss of $932,000,000 due to mycotoxin contamination, and 

$466,000,000 for regulatory enforcement, testing and other quality control measures 

annually (Council for Agricultural Science and Technology, 2003).  
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Table. 2.1. Adverse economic effects attributable to mycotoxins 
 
Producer costs 

Crops 
Yield losses 
Restricted markets 
Nonmarketable product 
Price discounts 
Increased production costs 

Pest control 
Irrigation 

Increased postharvest costs 
On-farm drying 
On-farm testing and sampling 
On-farm detoxification 

Increased transportation costs 
Inability to obtain loans on stored grain 
Disposal of useless crops (buried, burning) 

 
Livestock (beef, swine, poultry) 
producers 
Higher mortality rates 
Reproductive failures 
Reduced feed efficiency 

Higher feed costs 
Lower live weight 
Infertility syndrome 
Increased susceptibility to disease 

Overall quality loss 
Monitoring and testing 

 
Dairy 
Higher mortality rates 
Reproductive failures (abortions) 
Reduced feed efficiency (as above) 
Lower milk production 
Nonmarketable milk 
Monitoring and testing 

 

 
Handler/Distributor costs 

Extra drying costs 
Excess storage capacity 
Losses In transit 
Loss of markets 

 
Processor costs 

Milled corn products 
Restricted markets 
Product loss 

Peanut products 
Insurance premiums 
Restricted markets 
Product loss 

Fermentation products 
 
Consumer costs 

Less nutritious food 
Higher product prices 
Reduced Income due to lost work days from 

acute aflatoxicosis 
Long-term chronic effects from low-level 

contamination 
 
Social costs 

Regulatory costs 
Establishing standards and tolerances 
Surveillance and assay 
Enforcement 

Research and extension 
Education 
Lower foreign exchange earnings 
Increased costs of imports 

 

Taken from CAST-  Mycotoxins: Economic and Health Risks (1989) 

 

Corn is the most widely produced grain in the United States, constituting more than 

90 percent of the total production of feed grains (U.S. Department of Agriculture, 2010). 

Most corn  is utilized as an ingredient in livestock feed, and the rest as starch, sweeteners, 

corn oil, industrial alcohol, fuel ethanol, and many other industrial products (U.S. 
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Department of Agriculture, 2010). Since 1970, economic impacts of mycotoxins in corn 

have been reported, but from 1970 until 1988, the incidence of mycotoxins was minimal. 

In 1973 a report showed low levels of contaminated corn with aflatoxins (1.7 to 2.3 ppb). 

Also it was reported that Midwestern corn had low levels of aflatoxins in the years 1964, 

1965, and 1967 (Shotwell et al., 1973). In 1988, 9 states reported the presence of 

aflatoxins (Wall Street Journal, 1988). Also, more than 30% of the corn samples taken 

from Iowa and Illinois in this same year appeared to have concentrations of aflatoxins 

above 20 ppb, a nd 7.2% and 11.6 %, respectively, above 100 ppb (Hurburgh, 1989). In 

Mississippi, Louisiana, and Texas, the corn losses due to aflatoxins in 1998 were 

significantly high. Specifically in Mississippi, 20% of the 50 million bushel corn crop 

had aflatoxin levels of 20 to 150 ppb, and was sold at a d iscounted price. Another 4% 

was abandoned because its aflatoxin concentration was above 150 ppb (Robens and 

Cardwell, 2003).  

Corn, like other grains, is often intended for animal feeding, and corn containing 

mycotoxins lead to economic losses due to higher mortality rates, reproductive failures, 

overall quality loss, monitoring, testing, and reduced feed efficiency. These effects 

ultimately lead to higher feed costs, lower live weight, infertility syndrome, and 

susceptibility to diseases (Placinta et al., 1999).  

The impact of mycotoxins in ruminants is not as drastic as in monogastric animals, 

as their sensitivity for negative effects is lower. However, the production of milk, beef or 

wool, and their reproduction and growth can be altered, mainly when the consumption of 

contaminated feed is sustained for a prolonged period of time (Hussein and Brasel, 2001). 

The economic losses information of dairy producers in the United States is not available, 
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but there is an economic impact. Nevertheless, research has shown that aflatoxicosis 

results in low milk production, liver damage, weight loss, and reduced immune system 

function, (Bodine and Mertens, 1983) which translates into high production costs and 

lower income.  

Poultry producers are also affected economically, with the most severe effects being 

seen in young birds. Although it takes high levels to cause mortality, feeding low levels 

of mycotoxins for prolonged periods of time can be detrimental. The first reported case of 

mycotoxins in poultry occurred in England in 1960, when 100,000 young turkeys died in 

the course of a few months, leading to an important economic impact for producers. They 

called this event the “Turkey X disease”. Investigations were conducted to look for the 

cause and they found that a Brazilian peanut meal was highly toxic for turkeys, as well as 

for poultry and ducklings. Furthermore, they determined that this toxin was fungus-

produced by Aspergillus flavus, and that is where the name for Aflatoxins came from: 

“A” from Aspergillus and “fla” from flavus (Heathcote and Hibbert, 1978). In 1983, 

Nichols reported that in the early 1970s, the losses due to aflatoxins were in excess of 

$100 million per year. Then, in 1984, Hesseltine et al. estimated losses of $143 million to 

the U.S. broiler industry. 

Unlike in the cattle and poultry industries, the mycotoxin known as DON has a 

greater effect on swine. In 1981, Vesonder and Hesseltine mentioned some occurrences 

of this toxin in cereal grains, and also the financial disaster for many producers. As well, 

aflatoxins also generate an impact on hog p roducers where $100 million were the 

estimated losses in the southeastern United States in 1980, or on a verage, 10% of the 

value per hog in this area (Nichols, 1983). North Carolina and Georgia suffered losses of 
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$28 million and $22 million, respectively, with mortality rates of 23% (Nichols, 1983). 

According to findings in the 3 year experiment done by Wilson et al. (1984) on 54 herds 

in Georgia the most affected producers were the small ones (20 to 50 pi gs), with 

mortality rates of 28% compared to 10% in herds with 200 or more animals. In the past 

several years the use of distillers dried grains with solubles (DDGS) have been increasing 

significantly and animals that are the consumers can be fed with higher levels of 

mycotoxins because the concentration in DDGS can be up to three times more when 

compared to grains (Wu and Munkvold, 2008). A study was performed by Wu et al. 

(2008) in order to develop livestock models and estimate current losses in the swine 

industry. The results of this study estimated losses from $2-$18 million annually in 

weight gain reduction due to fumonisins in feed containing DDGS in 2006. 

It is obvious that mycotoxins in crops and livestock, as well as the mitigation plan 

costs which are very high, clearly impose a significant economic problem in the United 

States and the worldwide economy. Table 2.2 shows an estimate of the money these three 

sectors can lose annually due to the major mycotoxin contaminants (aflatoxins, 

fumonisins and deoxynivalenol) in the United States. There are some suggestions of how 

to reduce mycotoxin impacts, but still, there is a lot of work that needs to be done. 

Mycotoxins are a tough enemy and perhaps we will have to deal with them always, but 

the need for more solutions remains if we are to avoid future crises.  
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Table 2.2 Potential total economic costs of Mycotoxins (in millions of dollars).1 

Item 5th percentile Median Mean 95th 
percentile 

Crop costs 418 882 932 1,656 
Mitigation costs2 209 441 466 828 
Livestock costs 2 6 6 12 
Total 629 1,329 1,404 2,496 
1 Taken from CAST (2003). 
2 Mitigation costs include: Developing fungus-resistant grains, altered farming practices, applying additional 
insecticides, fungicides and fertilizer, improved handling after the harvest, improved storage and transportation 
conditions, more efficient drying, additional quality control procedures to monitor moisture and toxins, and 
amelioration of contaminated grains through physical and chemical treatments. 

 

2.2. Mycotoxins overview 

2.2.1. Major mycotoxins 

During the period from 1800 to 1900 a concept called “secondary metabolite” was 

becoming popular among researchers worldwide. This concept affirmed that organisms 

such as fungi and microbes produce compounds that are not utilized by their metabolism, 

but are often, and usually, incorporated into the medium that surrounds them. Later on 

some of these secondary metabolites were known to have benefits in humans and were 

called “antibiotics” when used them in treating diseases and entered into the market. At 

the same time it was seen that not all of them were beneficial, but that some can be 

harmful and toxic to animal species. Therefore, in 1955 the term “mycotoxicoses” was 

introduced (Forgacs et al., 1955). 

The function of producing mycotoxins by t he fungus has not been conclusively 

established, but it is believed that they might play a role in eliminating competition from 

their environment, by creating a non-reliable medium for other microorganisms (Brase et 

al., 2009). The number of mycotoxins that exist is extremely hard to determine. Some 

estimates have been done over the years and in 1978 researchers catalogued as potential 

mycotoxins 500 fungus species which produced around 1,200 secondary fungal 
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metabolites (Turner, 1978). By 1983, 2,000 more metabolites with potential mycotoxin 

characteristics were catalogued, which were produced by 1,100 s pecies (Turner and 

Alderidge, 1983). And in 2006 a more conservative result was affirmed saying that more 

than 300 mycotoxins were known by t his time (Akande et al., 2006). Nevertheless, 

researchers have focused on five groups of known mycotoxins because of their toxicity in 

humans and animals (aflatoxins, ochratoxin, trichothecenes, zearalenone and fumonisin), 

and because of the significant health and economic impacts these generates. 

Both fungal growth and mycotoxin production are dependent on environmental 

factors, with the limits for mycotoxin production usually being narrower than those for 

growth only (Bennett and Klich, 2003). There are different factors and their interactions 

play important roles in either increasing and decreasing growth or mycotoxin production. 

Table 2.3 presents the most relevant factors known to influence mycotoxin production. 

Table 2.3. Environmental factors influencing mycotoxin production.1 
Physical factors Chemical factors Biological factors 
Temperature Atmosphere Fungal plant pathogens 
Water content Substrate composition Microbial competition 
Mechanical damage pH  
Time/season Fungicides  
1 Adapted from Silva et al. (1998). 

 

Temperature: Mycotoxin production is very dependent on temperature and water 

activity. Mycotoxin production usually occurs at the same temperatures needed for 

optimal growth. As examples, Penicillium produces mycotoxins at lower temperatures 

than Aspergillus, and at 5° C  Aspergillus cannot produce aflatoxins and ochratoxin, 

whereas Penicillium and Fusarium are able to produce mycotoxins (Bullerman et al., 

1984; Silva et al., 1998). 
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Water content: The term used to describe water content is water activity (aw), 

because this does not include the bound water which is not available for the fungi. Most 

food borne fungi grow at minimal aw of 0.8, which is lower than the aw needed for 

bacterial growth (0.9). The optimal aw for molds are usually close to 1 (Silva et al., 1998). 

Mycotoxins occur at higher water contents than needed for growth. 

pH: Mycotoxin production usually takes place at a different pH optimum than 

fungal growth. Most food borne fungi can grow from pH 2.5 to pH 9.5, with an optimal 

pH from 4.5 to 6.5. 

Substrate composition: Fungi can be very specific to a certain composition of the 

substrate. For example, Penicillium crustosum, P. commune and P. echinulatum are 

common only on nuts and other lipid- and protein-rich substrates like meat and cheese. 

Since fungi are heterotroph organisms, they need an organic source like glucose, maltose, 

saccharose and other water-soluble carbohydrates (Samson and Reenen-Hoekstra, 1988).  

Table 2.4 shows the most common fungi species which metabolize these 5 groups 

of mycotoxins. Depending on t heir chemical structure, the biological effect in the 

affected organism is different, and it can be carcinogenic, teratogenic, mutagenic, 

estrogenic, neurotoxic or immunotoxic (Yiannikouris and Jouany, 2002a).  
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Table 2.4. Fungi and their associated mycotoxins.1 
Fungi Mycotoxins 

Aspergillus flavus, A. parasiticus, 
A. nomius 

Aflatoxins ( B1): (B2, G1, G2, M1, and M2) 

 

Penicillium verrucosum, 
Aspergillus clavatus 

Ochratoxin A: 

 

Fusarium graminearum, F. culmorum, 
F. crookwellense 

Zearalenone: 

 
 

Fusarium sporotrichioides, F. 
graminearum, 
F. culmorum, F. poae, F. roseum, 
F. tricinctum, F. acuminatum 

Trichothecenes (Deoxynivalenol): 

 

Fusarium moniliforme, F. proliferatum 

Fumonisins B1: 
 (B2, B3) 

 
1 Adapted from Yiannikouris and Jouany (2002). 

 

To combat against the harmful actions mycotoxins cause to animal welfare, it is 

necessary to understand the diversity of biochemical and cellular mechanisms of toxicity 

and, in that way, comprehend how toxic compounds alter the normal behavior of the 
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molecules in living organisms. Table 2.5 shows a summary of how some mycotoxins of 

interest interact with cells and initiate the toxicity cascade of events.  

Table 2.5. Summary of the probable primary biochemical lesions and cascade of events 
of some important mycotoxins1 

Mycotoxin Cascade of events 
Aflatoxin (Eaton 
and Gallagher, 
1994) 

Metabolic activation → DNA modification → cell deregulation → 
cell death/transformation 

Deoxynivalenol 
(Rotter et al., 
1996a) 

Inhibition of protein synthesis → disruption of cytokine regulation 
→ altered cell proliferation → cell death/apoptosis 

Fumonisins (Riley 
et al., 1996) 

Sphinganine N-acetyl →disrupted lipid metabolism → cell 
deregulation → cell death/apoptosis 

Zearalenone 
(McLachlan, 1993) 

Cytosolic estrogen receptor → estrogenic response → disruption of 
hormonal control → ?2 

1 Adapted from (Riley, 1998) 
2 Not enough evidence to conclude posterior events. 
 

Aflatoxins 

Aflatoxins are not only well known for their capability of producing important 

biological impacts on human and animal health but also for their economic impact. This 

group of mycotoxins is highly toxic and they belong to a group of difuranocumarinic 

derivatives that are structurally related (Mejía et al., 2011). A total of 18 types have been 

identified at the present, with the most frequent being B₁, B₂, G₁, G₂, M₁, and M₂, 

produced by fungus of genus Aspergillus spp. (Figure 2.2.). Aflatoxins B₂ and G₂ are 

relatively non-toxic unless they are metabolically oxidized into B₁ and G₁ in vivo 

(Kensler et al., 2011). The designation of the letter B resulted from the exhibition by 

these compounds of blue (B) fluorescence under UV-light and they are characterized by a 

cyclopentenone ring to the lactone of the coumarin moiety ring. The designation G came 

from yellow-green fluorescence which contains a fused lactone ring. And the M 
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designation, which are hydroxylated derivates from B₁ and B₂, come from their 

appearance in milk (M) and meat (Kensler et al., 2011). 

 

Figure 2.1 Common aflatoxin structures (Zain, 2011). 

 

Aflatoxin B₁ is the most toxic of all the known types, and it is associated with 

immune suppression and liver cancer. When the exposure to B1 is in high quantities (> 

6000 mg/day), it can cause acute toxicity with lethal effects but when the exposure is in 

small doses for prolonged periods, it is carcinogenic (Groopman and Kensler, 1999). It 

has been classified as Group I carcinogenic in humans by the International Agency for 

Research on Cancer (IARC). Aflatoxin B1 has been found in many crops including 

cotton, maize, nuts, peanuts, wheat, rice barley, and others. Its incidence depends on 

environmental factors like the substrate, temperature, pH, humidity, and other fungi in 

order to grow. The medium has to be adequate for their normal development (Bhatnagar 

et al., 2002). When the conidia (spores) encounter a nutrient source with favorable 

conditions, the fungus colonizes and produces aflatoxins (Payne, 1992). It can be found 

in its conjugated form, as a so luble or “masked mycotoxins”, or incorporated/associated 
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with macromolecules called “bound mycotoxins”. Masked or bound mycotoxins can 

appear after being metabolized by living plants, fungi and mammals, or also after food 

processing (Mejía et al., 2011). 

Aflatoxin B₁ is metabolized by the liver into 8, 9-epoxide, which is a highly 

reactive chemical compound due to its unsaturated bond at the 8, 9 position of the 

terminal furan ring (Groopman and Kensler, 2005). Following its formation, this 8, 9 -

epoxide compound can bind to proteins, DNA, and other important cellular compounds, 

forming adducts which interrupts the normal function of the cell. In the case of the DNA, 

it can lead to a loss of control over cellular growth and division (Groopman and Kensler, 

2005). Nevertheless, humans and animals have mechanisms to correct DNA damage 

caused by the 8, 9-epoxide. For example, glutathione S-transferase mediates the reaction 

of 8, 9-epoxide to the endogenous compound glutathione that is not toxic. It was shown 

by Johnson et al. in 1997 that animals which are less susceptible to carcinogenic effects 

of aflatoxins, such as mice, show three to five times more glutathione S-transferase 

activity compared to more susceptible animals like rats. Humans have less glutathione S-

transferase activity than mice and rats, suggesting that humans are less capable of 

detoxifying this metabolite (Johnson et al., 1997).  

The biosynthesis of aflatoxins B₁ and B₂ has been well studied, and it consists of at 

least 16 steps before the first stable intermediate, norsolorinic acid (NA) (Figure 2.3). As 

with many other economically important fungi, the sexual stage of A. flavus and A. 

parasiticus is unknown, but they can undergo genetic recombination parasexually (Papa, 

1973). It is known that the production of the secondary metabolites (idiophase) occurs 

right after the growth phase of the culture (trophophase) has slowed.  
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Figure 2.2. Aflatoxin biosynthesis pathway (Do and Choi, 2007). Abbreviations: NOR, 
norsolorinic acid; AVN, averantin; HAVN, 5- hydroxyaverantin; OAVN, oxoaverantin; 
AVR, averufin; VHA, versiconal hemiacetal acetate; VAL, versiconal; VERB, 
versicolorin B; VERA, versicolorin A; DMST, demethylsterigmatocystin; DHDMST, 
dihdrodemethylsterigmatocystin; ST, sterigmatocystin; DHST, dihydrosterigmatocystin; 
OMST, l-methylsterigmatocystin; DHOMST, dihydro-l methylsterigmatocystin. 
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Trichothecenes 

Interest in trichothecenes was generated due to their constant contamination of 

human food and animal feed resulting in a worldwide problem. It has been well 

documented that they are nonspecific in their host, and that they inhibit protein synthesis 

in a wide range of eukaryotic organisms including animals, fungi, and plants (Cundliff et 

al., 1974), thereby impairing human and animal health. Like other fungal secondary 

metabolites, the production of this mycotoxin is not essential for fungi performance and 

reproduction (McCormick et al., 2011).   

 

Figure 2.3. Structure of T-2 toxin, diacetoxyscirpenol, and deoxynivalenol (DON) 
(Mohamed, 2011). 
 

Nowadays the total number of natural-occurring trichothecenes exceeds 60. All of 

them share a tricyclic nucleus name trichothecene (Figure 2.4) and contain an epoxide at 

C-12 and C-13, which gives it its toxic characteristics. The chemical differences between 

the trichothecenes metabolites vary in both the position and number of hydroxylations, as 

well in the position number and complexity of esterification (Bamburg, 1976). The 

Fusarium-produced trichothecenes are the most studied. Six of them have been well 

documented including F. sporotrichioides and F. poae that produce mainly T-2 toxin and 
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F.crookwellense, F. culmorum, F. graminearum, and F. sambucinum, which produce 

mainly diacetoxyscirpenol and deoxynivalenol (Figure 2.4)  (Lauren et al., 1987). 

Trichothecenes biosynthesis proceed from Trichodiene, a natural product first 

isolated from F. roseum, and involves  a  sequence of oxygenations, isomerizations, 

cyclizations and esterifications, requiring 10 steps for deoxynivalenol formation, 12 steps 

for diacetoxyscirpenol, and 14 steps for T-2 toxin, which is the most complex metabolite 

(Figure 2.5).   

 

Figure 2.4. Trichothecene biosynthesis pathway in fusarium species (Desjardins et al., 1993). 
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Zearalenone  

Zearalenone is a 1 4-membered orsellinic acid type macrolide, biosynthesized 

through a polyketide pathway in various Fusarium fungi, such as graminearum, 

culmorum, equiseti and crookwellense which colonize corn, barley, oats, wheat, and other 

grains (Bennett and Klich, 2003). It was first isolated from the mycelium of the fungus 

Gibberella zeae (Fusarium graminearum) and is now considered the progenitor of the 

family “resorcylic acid lactones” (RALs) found in nature: for example, hypothemycin, 

monorden and monocillin (Winssinger and Barluenga, 2007). Other important related 

metabolites such as α–zearalenol and β–zearalenol, can be produced by these fungi in 

small amounts, (Richardson et al., 1985). All zearalenones are non-steroidal estrogenic 

compounds, but their similarities with the estrogen chemical structure (Figure 2.6) makes 

them mimic natural reactions in animal and human metabolism. This is true despite the 

fact that α–zearalenol has a h igher estrogenic potential than both zearalenone and β–

zearalenol (Hagler et al., 1979; Peters, 1972), probably due to its binding affinity to 

estrogen receptors (receptors for estradiol-17β) located in the uterus, liver, mammary 

gland, and hypothalamus (Fitzpatrick et al., 1989). 

  
Zearalenone      Estrogen 

Figure 2.5. Chemical structures of zearalenone and estrogen (Gray et al., 2004). 
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Zearalenone is biotransformed mainly in the liver to α – and β –zearalenol in ratios 

varying between animals species (Zinedine et al., 2007). In the case of pigs, they mainly 

transform zearalenone to the more potent α –zearalenol, explaining their sensitivity to this 

secondary metabolite (Malekinejad et al., 2006).  

 

Fumonisins 

Fumonisins are primarily produced by s ome members of the fungi Gibberella 

fujikuroi species complex with F. proliferatum and F. verticillioides as the chief producer 

(Leslie et al., 1992). Fumonisins are a group of polyketide-derived mycotoxin, known to 

contain an 18-carbon backbone with varying side-groups, and classified into five series 

A, B, C, P (Bartok et al., 2006), and a new series recently identified, partially hydrolyzed 

B (PHFB) (Bartok et al., 2008). B-series fumonisin are the most abundant, and fumonisin 

B₁ is the most toxic analogue and is the most commonly found in naturally-contaminated 

corn (Marasas, 2001; Nelson et al., 1993). 

Fumonisins are known to be structurally similar to the sphingoid base backbone of 

the sphingolipids, and that is why there are suggestions that both may be biosynthetically 

related (Figure 2.7); (Plattner and Shackelford, 1992). An understanding of the complete 

biosynthesis of fumonisins can be very helpful in understanding how to prevent their 

toxicity. Fumonisin inhibits ceramide synthase, causing accumulation of bioactive 

intermediates of sphingolipid metabolism including sphinganine, other sphingoid bases, 

and derivatives, but also reducing complex sphingolipids, which interfere with the normal 

function of some membrane proteins (Marasas et al., 2004). The accumulation of these 

sphingoid bases is the primary cause of the toxicity of fumonisin B1 (Merrill et al., 2001). 
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Figure 2.6. Structure of fumonisin B1, sphinganine and sphingosine (Wang et al., 1991)  

 

2.2.2. Mycotoxin interactions 

 

Often times in raw materials and animal feeds more than one mycotoxin-producing 

mold appears. It is common for animals to present symptoms that cannot be explained by 

the levels of an individual mycotoxin, indicating that there are interactions between 

different mycotoxins. Depending on t he environmental conditions, there are several 

combinations of mycotoxins that frequently occur (Speijers and Speijers, 2004), and their 

interaction can result in synergistic, additive, and/or antagonistic effects (Figure 2.8). 

Livestock are exposed to a complex mixture of mycotoxins. Sometimes the 

evaluation of each mycotoxin in the feed does not explain the consequences seen in the 

field. When the combined effect of two mycotoxins is much greater than the individual 

effect of each toxin by itself, it is called a synergistic effect (example: 2 + 2 = > 4). When 

the effect produced by two or more mycotoxins is equal to the sum of their separate toxic 

potential, it is called an additive effect (example: 2 + 2 = 4). A more rare effect is when 
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the predicted response is less from each toxin individually, called antagonistic effect 

(example: 2 + 2 = < 4) (Speijers and Speijers, 2004). 

 

 

Figure 2.7. Mycotoxin interactions in swine (Borutova and Pedrosa, 2011). 
Abbreviations: AFB1, Aflatoxin B1; FB1, Fumonisin B1; DON, Deoxynivalenol; OTA, 
Ochratoxin A; ZON, Zearalenone; FA, Fusaric acid; DAS, Diacetoxyscirpenol; CPA, 
Cyclopiazonic acid; MON, Moniliformin. 
 

The major concern in pigs is focused on the interaction between deoxynivalenol and 

fusaric acid (DON-FA) (D'Mello et al., 1999; Raymond et al., 2005), deoxynivalenol and 

fumonisin B₁ (DON-FB₁), aflatoxin and ochratoxin (AF-OTA) as well as af latoxin and 

T-2 (AF-T-2) (D'Mello et al., 1999; Huff et al., 1988). Several studies have shown the 

synergistic reaction between mycotoxins. A 2004 study showed sudden death in piglets 

fed  diets for several days with concentrations ranging from 10 to 40 ppm of fumonisin 

B₁ and 20 to 39 ppm of ochratoxin. The pigs presented pathological signs of both toxins 

such as pulmonary edema, kidney lesion, and liver lesion (Creppy et al., 2004). The same 

year another experiment showed suppression of both radical and antibody formation only 

Synergistic 

 Additive 
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after the combination of ochratoxin and FB₁ or deoxynivalenol, which did not occur 

when ochratoxin was administered alone (Speijers and Speijers, 2004). Later on in 2009, 

Zielonka et al. reported the difficult examination of histopathological lesions caused by 

deoxynivalenol intoxication because of the common, often synergistic reaction of this 

mycotoxin with other toxins such as zearalenone. As is shown in Table 2.6, more studies 

have been conducted, but not enough to have a clear understanding of both additive and 

synergistic effects of mycotoxins.  

Table 2.6. Mycotoxin interactions in swine1,2 

Mycotoxin Species tested Effect Reference 
AFB₁ + OTA Pigs Synergistic (D'Mello et al., 1999; Huff et al., 1988) 
AFB₁ + FB₁ Growing pigs Synergistic (Harvey et al., 1995) 
AFB₁ + FB₁ Pigs Synergistic (Liu et al., 2002) 
AFB₁ + T₂ Pigs Synergistic (D'Mello et al., 1999) 
DON + FA Pigs Synergistic (D'Mello et al., 1999; Raymond et al., 

2005) 
MON + FB₁ Pigs Additive (D'Mello et al., 1999) 
MON + DON Pigs Additive (D'Mello et al., 1999) 
OTA + DON Weaned piglets Synergistic (Speijers and Speijers, 2004) 
OTA + FB₁ Weaned piglets, 

piglets 
Synergistic (Creppy et al., 2004; Speijers and 

Speijers, 2004) 
OTA + T₂ Weaned piglets Additive (Speijers and Speijers, 2004) 
DON + ZON Pigs Synergistic (Zielonka et al., 2009) 
FB₁ + DAS Pigs Additive (D'Mello et al., 1999) 
FB₁ + DON Pigs Synergistic (D'Mello et al., 1999; Huff et al., 1988; 

Speijers and Speijers, 2004) 
1 Adapted from Borutova and Pedrosa, 2011 
2 Abbreviations: AFB₁ – Aflatoxin B₁; FB₁ – Fumonisin B₁; DON – Deoxynivalenol; OTA – Ochratoxin 
A; ZON – Zearalenone; FA – Fusaric acid; DAS – Diacetoxyscirpenol; MON – Moniliformin 

 

There is a lack of information about mycotoxin interactions, and definitely it is a 

topic that needs to be taken into account and given the attention it deserves. The fact that 

fungus from the same species can produce several mycotoxins, the fact that more than 

one fungus is usually infecting multiple grains and commodities, and the fact that all of 

these are mixed together and used in animal feeds; reiterates the importance of mycotoxin 

interactions in animal production.   
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2.2.3 Mycotoxins and feed intake 

Many studies have shown that the consumption of diets containing mycotoxins by 

pigs have a drastic effect in feed intake and growth performance. In the case of DON, 

reduced feed intake is the principal effect seen in pigs (Dorner, 2008; Friend et al., 1992). 

Table 2.7 presents several studies showing the effects of different concentrations of DON 

on feed intake, where concentrations from 1 ppm start showing a d ecrease in feed 

consumption in growing pigs, followed by complete refusal when it reaches 12 ppm in 

the diet (Young et al., 1983).  

Early studies indicate that DON is a potent feed intake inhibitor. In quantitative 

terms, marked effects of DON on f eed intake have been observed particularly in the 

range from 6 - 15 ppm in the diet, as is shown in Figure 2.9 where feed intake was only 

38% of the control diet in diets containing 15 ppm (Trenholm et al., 1994). Nevertheless, 

a particular feature observed with DON i s that appetite depression effect can be 

immediate, and some recovery can occur over time without withdrawal of DON from the 

feed. Thus, it was noted in one study that partial, dose-dependent, adaptation to DON-

contaminated diets occurs, with the effects being reflected in proportionate reductions in 

weight gain (Trenholm et al., 1994). Another study observed a reduction in feed intake 

for two days of feeding the contaminated diet followed by s ufficient compensation 

thereafter to permit feed intakes and growth rates equivalent to those in control pigs 

(Prelusky et al., 1994). 
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Table 2.7. Summary of selected references on deoxynivalenol (DON) and feed intake (FI) in 
swine.1 
Source of 
DON2 

DON, 
ppm 

ZEA, 
ppm Sex Age or 

BW Effect3 Reference 

Purified 

3.6 1 
Not 

stated 20-24 Kg 

↓FI 20% 
(Forsyth et al., 
1977) 

7.2 1 ↓FI 44% 

40 1 ↓FI 90% 
Vomiting 

Natural 
contamination 

1.3 0 
Not 

stated 
 

3 wk 
 

↓ADG 
↓FE 

(Young et al., 
1983) 12 0.2 

Almost 
100% feed 
refusal 

20 0.9 Vomiting 
Natural 
contamination 0.75-2 0.03-

0.28 
Barrows, 

gilts 3-7 wk ↓FI (Trenholm et al., 
1984) 

Naturally-
contaminated 
wheat 

6.8 0 Barrows, 
gilts 3 wk ↓FI (Pollmann et al., 

1985) 

Naturally-
contaminated 
wheat 

3.7 0.4 Boars, 
gilts 23-53 kg ↓FI 25% (Friend et al., 

1986) 

Naturally-
contaminated 
corn 

4.2 0.2 Boars, 
gilts 23-53 kg ↓FI 25% (Friend et al., 

1986) 
1 Adapted from (Diekman and Green, 1992). 
2 Unless otherwise stated, diets consisted of naturally contaminated field corn, or crystalline DON was 
added to achieve desired concentrations. 
³ADG, average daily gain; FE, feed efficiency. 
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Figure 2.8. Effects of dietary deoxynivalenol (DON) levels on voluntary feed intake in 
pigs (D'Mello et al., 1999). Data selected from Bergsjo et al., 1993; Bergsjo et al., 1992; 
Friend et al., 1992; Prelusky et al., 1994; Rotter et al., 1995; Trenholm., 1994.

The effect of fumonisin on feed intake is summarized in Table 2.8. Several studies 

were conducted by us ing naturally contaminated feed, cultured material, or pure FB₁. 

Most of the studies presented fumonisin concentrations as FB₁. In the studies conducted, 

dietary concentrations of fumonisin varied from 0 to 200 ppm. However, with only one 

exception, only low (0 vs. 0.5-10 ppm) and high (0 vs. 100 or 200 ppm) concentrations 

were tested.  

There is sufficient evidence that FB₁ concentrations of 175-200 ppm can have 

detrimental effects on pig performance (Colvin et al., 1993; Motelin et al., 1994). But the 

effects with lower concentrations are not consistent between studies, suggesting that in 

some studies there might be the appearance of some other mycotoxin in the diet. The 

effects of reduced growth rate at high dietary fumonisin concentrations are clearly related 
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to both feed intake (Colvin et al., 1993; Motelin et al., 1994) and an increase in feed:gain 

(Motelin et al., 1994). Consuming diets with pure FB₁ concentrations of 0, 0.11, 0.33, 

and 1 ppm, did not affect feed intake of barrows from 25 kg initial weight to 101 kg final 

weight (Rotter et al., 1997). However, the variation of feed intake increased when dietary 

FB₁ increased from 0 to 1 ppm. Another study found a linear decrease in feed intake in 

male pigs fed FB₁ up to 10 ppm, but not in females, though an apparent decrease was 

observed (Table 2.2.6)(Rotter et al., 1996b). In contrast, a different pattern was observed 

in another experiment where they examined dietary FB₁ concentrations of 10, 20 and 40 

ppm on the performance of weaned pigs for 4 weeks. They reported no effects on feed 

consumption, though mild and severe pulmonary edema was found in pigs fed FB₁ diets 

(Kovacs et al., 2000). Curiously, in two studies an increase in feed intake was observed 

when pigs consumed low FB₁ concentrations at the initial stage compared to a toxin-free 

control diet (Prelusky et al., 1996; Rotter et al., 1996b). 
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Table 2.8. Summary of selected references on Fumonisin B1 (FB1) and feed intake (FI) 
in swine.1 
FB₁ 
range 
(ppm) 

No. of 
concentrations 

Initial 
BW 
(Kg) 

ADFI2 

(g/d) R2 
Duration 
of study 
(weeks) 

Reference 

FB₁ from naturally contaminated material 

<1-136 6 6-13 -7.3 0.20 2 (Motelin et al., 1994) 

FB₁ from cultured material 

0-100 2 17.7 -5.2  5 (Harvey et al., 1995) 

0-200 2 13.2 -  3 (Colvin et al., 1993) 

0-2.53 2 ±12 96.0  3.4 (Prelusky et al., 1996) 

Purified FB₁ 

0-10 4 16.3 -18.0 0.65 8 (Rotter et al., 1996b), 
males 

0-10 4 14.4 -5.0 0.18 8 (Rotter et al., 1996b), 
females 

0-1.0 4 25.6 9.8 0.09 11 (Rotter et al., 1997) 
1 Adapted from Dersjant-Li et al., 2003. 
2 Change per ppm increase in FB1 concentration. 
3 Pigs in this group received 3mg ¹⁴C-labelled FB1/kg feed from day 1 to 12, and 2mg ¹⁴C-labelled 
FB1/kg feed from day 13 to 24. 
 

Zearalenone effects on feed intake have not yet been well studied and few papers 

report feed intake changes when zearalenone is applied to the diet.  A study conducted on 

boars fed diets containing 0, 3, 6, or 9 ppm of zearalenone from 32 days of age up to 145 

or 312 days of age showed no significant differences between treatment in feed intake 

(Young and King, 1986). Another trial was conducted to test the effect of dietary protein 

concentration in diets containing either 0 or 50 ppm of zearalenone in 5 week old gilts, 

and no significant differences were found in terms of feed intake between treatments 

(Smith, 1980). In 1990, Young et al. conducted another experiment that supports the 

concept that zearalenone does not affect feed intake in pigs. In this study 48 parity 1 

lactating sows were used to compare the effects of three dietary concentrations of 
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purified zearalenone (0, 5, and 10 ppm) with or without added dehydrated alfalfa. Feed 

intake in sows from day 7 of  lactation until weaning at day 28 was 3.93, 3.80, and 

3.69kg, for 0, 5, and 10 ppm, respectively.  

In conclusion, feed containing deoxynivalenol concentrations of 1 pp m or higher 

results in significant reduction of feed intake from weaning to finisher pigs. More studies 

need to be conducted to determine the minimum concentration of fumonisin that can start 

affecting feed consumption. Nevertheless, results between studies are consistent when 

concentrations in feed are higher than 100 pp m, indicating that there is a reduction on 

feed intake. With regard to zearalenone, more investigation has to be done, but the few 

studies found do not show effects on feed intake. 

 

2.2.4 Mycotoxins and nutrient digestibility 

Some dose response studies have been conducted to determine the effects of 

deoxynivalenol on nut rient digestibility. Results has shown that feed with DON-

concentrations of 1, 2 .3, and 4.6 pp m during the starter period (14 days) and 

concentrations of DON 0/0, 1.2/1.4, 2.3/3.7 ppm in the starter/grower diets (from 15 to 56 

days) using naturally-contaminated wheat did not have a significant effect on nutrient 

digestibility (Danicke et al., 2004b). Another experiment testing DON-concentrations of 

0.2 and 3.7 ppm with artificially-inoculated wheat observed the same result with no 

differences being found in nutrient digestibility in pigs with a live weight of 104 kg  

(Danicke et al., 2004a). A higher concentration of DON (18.53 ppm) and a non-

contaminated feed were used for evaluating nutrient digestibility in pigs fed under ad 

libitum or restrictive feeding during 11 weeks with a live weight ranging between 26 to 
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100kg. A balance trial was conducted at the end of the experiment. A significant increase 

of metabolizable energy, digestibility of organic matter, crude protein, crude fat and N-

retention by 4, 3, 6,  11 and 10% respectively was observed in the DON group of the 

restrictively fed pigs (Goyarts and Dänicke, 2005).  

In 2007, Gbore and Egbunike, investigated the effect of fumonisin B₁ on nutrient 

digestibility in pigs of 8-9 weeks of age. Pigs were fed diets containing 0.2, 5.0, 10.0, and 

15.0 ppm of FB₁ for 6 months, three physiological phases were determined, and a 

balance trial was conducted the last 7 da ys of each phase. In the first phase (weanling 

phase) there was a s ignificant influence of the dietary FB1 levels on the apparent 

digestibility of ether extract (EE). Animals on the control diet had higher apparent 

digestibility than those on the other three diets containing higher levels of FB₁, (67.91, 

63.93, 62.83, 61.14% respectively). In phase two (peri-pubertal phase) the digestibility of 

the EE and crude protein (CP) were significantly (P<0.05) lower with increased dietary 

FB1. Also, the apparent digestibility values observed during the last phase (pubertal 

phase) for animals on the control diet were generally higher (except for ash) than those 

on diets with FB₁.  

Two studies have been conducted to determine the effect of the intake of 

zearalenone on nut rient digestibility. The first study showed the effect of feeding a 

concentration of 1 ppm of zearalenone for 36 days to pigs of 8.84 kg weaned at 21 days, 

and they did not observe any effect on nutrient digestibility (Jiang et al., 2012). On the 

contrary, another study showed effects of zearalenone stating that there is a s ignificant 

diminution on dr y matter, energy (85.9, 84.0, 83.4, 83.1% ,), and crude protein (85.6, 
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83.4, 81.8, and 81.2%,) digestibility in growing pigs, when different levels (0, 1, 2, and 3 

ppm, respectively) of zearalenone were added to the diet  (Chi and Yang, 2010). 

 

There is a limited amount of clear and consistent information on the effects that 

different mycotoxins have on nutrient digestibility, and it is unclear for zearalenone and 

fumonisin what concentrations begin to affect nutrient digestibility. In terms of 

deoxynivalenol, there is also limited evidence about which concentrations affect pigs. 

Additional research with low levels of naturally-contaminated grains would be useful for 

swine.
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CHAPTER 3. Effect of feeding a blend of naturally-contaminated corn on 

nutrient digestibility and feed preference in weanling pigs 

 

3.1. Introduction 

Mycotoxins are low molecular weight secondary metabolites produced by c ertain 

filamentous strains of fungi such as Aspergillum, Penicillium, and Fusarium which can 

invade crops and can grow during crop growth and grain storage if the appropriate 

environmental conditions (such as temperature and humidity) are present. Mycotoxins are 

estimated to affect 25% of the world crops each year (Lawlor and Lynch, 2005; Okoli et 

al., 2005) and every region of the world is susceptible to them. The economic losses due 

to the adverse effects on animal health and production have been recognized in different 

species such as swine, poultry, and cattle  as a co nsequence of the consumption of high 

levels of mycotoxins in the diets (Smith et al., 1995). Susceptibility to mycotoxins varies 

depending on the species, physiological stage, genetic, and environmental factors, as well 

as the chemical structure of the mycotoxin. The biological effect can vary from 

carcinogenic, teratogenic, mutagenic, estrogenic, neurotoxic, or immunotoxic 

(Yiannikouris and Jouany, 2002a).  

It is well documented that the appearance of different mycotoxins in feed can lead to 

a decrease of feed intake in pigs. Studies show that there are synergistic interactions 

between DON and fusaric acid leading to low feed intake and growth performance in 

growing pigs (Smith et al., 1997; Swamy et al., 2002). In 2010 a study mentioned that 

corn with DON is unpalatable to pigs, feed intake is reduced, and results in poor weight 

gain or even weight loss and an increase in digestive disorders (Gutzwiller, 2010). Also 
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inclusion of fumonisins and zearalenone induces a decrease in feed consumption (Jiang et 

al., 2011). Rats have been reported to discriminate between non-contaminated grains and 

grains contaminated with Fusarium sp., F. roseum graminearum, and F. culmoru. 

(Forsyth, 1974; Kotsonis et al., 1975; Roine et al., 1971). It was also found that pigs have 

a preference for non-contaminated corn rather than one containing trichothecenes 

(Vesonder et al., 1979). There is plenty of information on t he effect of different 

mycotoxins in growth performance and feed intake in pigs, but there are little data about 

pigs’ ability to discriminate mycotoxin-contaminated feed. Also, the effect on nut rient 

digestibility in pigs is not yet well studied. In 2010, a study of Chi and Yang, showed the 

effects of zearalenone on dry matter, energy, and crude protein digestibility in growing 

pigs, stating that there is a significant diminution in these nutrient digestibilities when 

different levels (0, 1, 2, and 3 ppm) of zearalenone are added to the diet. Another study 

suggested that low concentrations of deoxynivalenol (1 to 4.6 ppm) do not affect nutrient 

digestibility in pigs, while concentrations greater than 18 ppm showed a significant 

increase of metabolizable energy, and crude protein (Dänicke et al., 2004a). 

 

Therefore, the purpose of the current research was to evaluate the effect of feeding a 

naturally-contaminated corn produced in 2009 to a better quality corn produced in 2010 

on diet preference and digestibility of dry matter, energy, and nitrogen in young pigs.    
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Two experiments were conducted to determine the effect of feeding diets with a 

2009 and 2010 naturally-contaminated corn containing deoxynivalenol, zearalenone, 15-

acetyl DON and fumonisin B₁ to weaning pigs. The 2009 c orn contained more of the 

mycotoxins than the 2010 corn. For both experiments a total of three diets were mixed. 

Diets were blended to contain 100% 2010 naturally-contaminated corn (control), 50-50% 

blend of the 2009 naturally-contaminated corn and 2010 corn (Diet 2), and 100% 2009 

naturally-contaminated corn (Diet 3). In Exp. 1, 24 c rossbred pigs with an average body 

weight of 7.64 ± 0.70 kg were allotted to 4 replicates of 3 treatments with 2 pigs per pen, 

on the basis of gender, litter mate, and BW in a randomized complete block design for an 

experimental period of 20 d. Fecal and urine samples were collected daily and dry matter, 

energy, and nitrogen apparent digestibility were determined. Dry matter, energy, and 

nitrogen digestibility were not affected by either the 100% 2009 corn diet (Diet 3) or the 

50% 2009 corn (Diet 2) compared to the 100% 2010 c orn (Control). In Exp. 2, 30 

crossbred pigs with an average body weight of 7.98 ± 1.15 kg were allotted to 3 replicates 

of 2 c omparisons with 5 pi gs per pen for 3 experimental periods of 1 w eek each. 

Comparisons consisted of: 1) Control vs Diet 3, and 2) Control vs Diet 2. Two feeders 

were located in each pen, each containing one of the two diets in order to make the 

mentioned comparisons; animal and feeder weights were recorded weekly to determine 

feed preference and growth performance. A preference for the feed containing 2010 corn 

feed was observed; when pigs were given the choice between feed containing the more 

highly contaminated 2009 corn vs feed containing the 2010 corn, they showed the ability 

to discriminate mycotoxin-contaminated feed (95.34 vs. 4.66%; P< 0.01) over the 3 week 

period. The discrimination was evident in each weekly period. Nutrient digestibility was 
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not affected by these mycotoxins in these levels, but a clear decrease in feed intake was 

observed in the pigs. 

 

3.2 Materials and methods 

The experiment was conducted under protocols approved by The University of 

Kentucky’s Institutional Animal Care and Use Committee. Pigs were brought into the 

University of Kentucky nursery facility and placed in an environmentally-controlled 

room at approximately 3 weeks of age (weaning). The pigs were immediately placed on a 

complex nursery diet adequate in all nutrients.  

 

3.2.1 Animals and dietary treatments 

Experiment 1: This experiment (experiment ID: UK1103a) was carried out in 

February of 2011 and utilized a total of 24 crossbred pigs [12 barrows, 12 gilts; Yorkshire 

x Duroc; (Yorkshire x Landrance) x D uroc; (Yorkshire x Duroc) x Chester White; 

(Yorkshire x Landrance x Duroc) x Chester White], with an initial body weight (BW) of 

7.64 ± 0.70 kg. The pigs were blocked by gender, BW, and breed of sire and randomly 

allotted to one of the three dietary treatments in a randomized complete block design. 

Pigs were fed in a nursery room for 5 da ys, and then moved to a room containing 

stainless steel metabolic pens (49 x 37cm), with each pen containing 2 pi gs (either 

barrows or gilts) for 20 days (5 periods of 4 d ays each). Pigs were provided with ad 

libitum access to feed and water (nipple waterers) in the first 3 periods; in Periods 4 and 5 

feed allowance was restricted and determined based on mean pen BW% (5% for 

Replicate 2, and 6% for Replicates 1, 3 a nd 4). Pigs were fed a co mplex nursery diet 
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based on NRC (1998) nutrient requirements for pigs with initial weight from 5 to 10 kg. 

Diets utilized 100% 2010 na turally-contaminated corn (control), 50-50% blend of the 

2009 naturally-contaminated corn and 2010 c orn (Diet 2), or 100% 2009 naturally-

contaminated corn (Diet 3) (Table 3.2). The 2009 c orn was more highly contaminated 

with mycotoxins as compared with the 2010 corn. 

 

Experiment 2:  This experiment (experiment ID: UK1103) was carried out in February of 

2011 and utilized a total of 30 crossbred pigs [15 barrows, 15 gilts; Yorkshire x Duroc; 

(Yorkshire x Landrance) x D uroc; (Yorkshire x Duroc) x C hester White; (Yorkshire x 

Landrance x Duroc) x Chester White], with an initial body weight (BW%) 7.98 ± 1.15 

kg. The pigs were allotted to one of the two dietary comparisons, Control vs Diet 3 

(Comparison 1), and Control vs Diet 2 (Comparison 2) on the basis of BW in a 

randomized complete block design. Each comparison involved 3 pens, each one with 5 

pigs (barrows and gilts combined). Pigs were fed in a nursery room for 5 days, and then 

allotted to each comparison. Pigs were provided with ad libitum access to feed and water 

for each of the three week periods. The diets were the same as in Exp 1 and pigs were fed 

a complex nursery diet based on NRC (1998) standards for pigs with initial weights from 

5 to 10 k g. Diets determined to contain 100% 2010 naturally-contaminated corn 

(Control), 50-50% blend of the 2009 naturally-contaminated corn and 2010 corn (Diet 2), 

or 100% 2009 na turally-contaminated corn (Diet 3). Two comparisons were made: 

Control vs Diet 3 (Comparison 1), and Control vs Diet 2 (Comparison 2). The two diets 

were supplied in two different feeders in order to determine feed preference. Feeder 
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location was switched 3 times a week in order to eliminate the potential behavioral 

feeding pattern on pig preference. 
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Table 3.1. Composition of experimental diets for nursery pigs (%, as-fed 
basis) 
  Diet 
Ingredients 1 21 32 

Ground corn (2010, good quality) 57.13 28.56 - 
Ground corn (2009, contaminated) - 28.56 57.13 
Soybean meal, 48% CP 19.35 19.35 19.35 
Fish meal, menhaden 4.00 4.00 4.00 
Animal plasma AP-920 2.50 2.50 2.50 
Dried whey 12.50 12.50 12.50 
Choice white grease 1.95 1.95 1.95 
Dicalcium phosphate 0.90 0.90 0.90 
Limestone 0.60 0.60 0.60 
Salt 0.21 0.21 0.21 
Trace mineral premix3 0.05 0.05 0.05 
Vitamin premix4 0.08 0.08 0.08 
Choline chloride 60% 0.05 0.05 0.05 
Santoquin⁵ 0.02 0.02 0.02 
Mecadox-10⁶ 0.25 0.25 0.25 
L-Lysine.HCl 0.19 0.19 0.19 
L-Threonine 0.09 0.09 0.09 
DL-Methionine 0.14 0.14 0.14 
Total:  100.00 100.00 100.00 
Calculated nutrient composition       
ME, kcal/kg 3,394 3,394 3,394 
Crude protein, % 20.24 20.24 20.24 
Lysine, % 1.23 1.23 1.23 
Calcium, % 0.80 0.80 0.80 
Phosphorus, % 0.70 0.70 0.70 
Available phosphorus, % 0.45 0.45 0.45 
Analyzed nutrient composition       
Dry matter, % 88.77 88.10 86.75 
Gross energy kcal/kg 4,030.29 3,990.06 3,942.89 
Crude protein, % 21.01 20.71 21.23 
1 Diet 2 is a 50:50 blend of Diets 1 and 3, respectively. 
2 Mycotoxins natural-contaminated corn (see Table 3.2). 
3 Supplied per kg of diet: Zn, 150 mg as ZnO; Fe, 120 mg as FeSO₄·H₂O; Mn, 45 mg as 
MnO; Cu, 12 mg as CuSO₄·5H₂O; I, 1.5 mg as CaI₂O₆; Se, 0.30 mg as NaSeO₃. 
4 Supplied per kg of diet: vitamin A, 6,600 IU; vitamin D3, 880 IU; vitamin E, 44 IU; 
vitamin K (as menadione sodium bisulfate complex), 6.6 mg; riboflavin, 8.8 mg; 
pyridoxine, 4.4 mg; vitamin B₁₂, 33 μg; folic acid, 1.3 mg; niacin, 44 mg; pantothenic 
acid, 22 mg; D-biotin, 0.22 mg. 
5 Provided 130 mg ethoxyquin per kilogram of diet. 
6 Mecadox-10, (Phibro Animal Health, Fairfield, NJ).Supplied 50 g of Carbadox/ton of 
diet.  
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Table 3.2. Mycotoxin concentration in 2009 and 2010 corn12 

Mycotoxin  

2009 
corn, 
ppm 

2010 
corn, 
ppm 

Diet 1 
with 

100% of 
2010 corn, 

ppm 

Diet 2 
with 50% 
of 2009  
and 50% 

2010 corn, 
ppm 

Diet 3 with 
100% of 

2009 corn, 
ppm 

Critical 
levels for 

young 
growing 

pigs, ppm3 

 
     

 Aflatoxin B1 <0.02 <0.02 - - - <0.1 
DON 5.6 0.5 0.29 1.73 3.19 <1 
15-Acetyl  DON 0.5 - - 0.14 0.28 No reports 
Fumonisin B1 5.5 2.0 1.14 2.14 3.14 <10 
Zearalenone 2.45 - - 0.7 1.40 <14 

1Corn was analyzed by the Veterinary diagnostic laboratory of the North Dakota State university. 
2Mycotoxin values are calculated from the corn inclusion rates. 
3Values taken from the FDA, updated 08-30-2011. No FDA action, advisory or guidance levels established 
for zearalenone in US feed. The critical levels are concentration in finished feed. 
4Taken from Pork Industry Handbook, 2005. 

 

3.2.2 Housing conditions 

Experiment 1: A total of 12 metabolism pens, with two pigs each, were used to 

conduct this balance trial. Pens were made of stainless steel and had plastic-coated 

expanded-metal flooring and plastic feeders. Metabolism pens also had a window in each 

side panel, near the feeder, to allow visual contact between pigs in adjacent pens. 

Underneath the floor of the pens a sliding aluminum screen was placed to allow 

separation of feces/urine, along with a stainless steel funneled-pan used to direct the urine 

into a 10 L plastic bucket. The interior space of the pens was set up at its maximum, so 

pigs were able to move around. 

 

Experiment 2: A total of 6 pens, with 5 pigs each, were used to conduct this trial. Pigs 

were housed in elevated nursery pens with plastic coated, welded wire flooring (1.22 m x 

1.22 m). Each was equipped with a nipple waterer and a single sided, three–hole plastic 

and metal feeder.  
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3.2.3 Adaptation and collection procedures 

Experiment 1: Pigs were housed in a nursery room for a period of 5 days in order to 

get used to the complex nursery diet and standardize the GI tract. Then pigs were 

weighed, blocked by sex and weight, and randomly allotted to the metabolism pens and 

to one of the three diets. 

The collection phase involved five periods of four days each. At the beginning and 

end of each period, pigs were weighed and 0.5% chromic oxide (Cr₂O₃) was added to the 

diet as a marker of the starting point of each collection period. Pigs were provided with 

ad libitum access to feed and water in the first 3 p eriods. In Periods 4 a nd 5 f eed 

allowance was restricted and determined depending on their BW% (5% for Replicate 2, 

and 6% for Replicates 1, 3 and 4) and feed was provided in two meals per day. Rejected 

feed was dried in a f orced-air oven at 55ºC, air-equilibrated, weighed, and discounted 

from the amount initially offered. All the feces produced during the period between 

excretion of the initial and final marker were collected daily and kept frozen in labeled 

plastic bags. Care was taken to include in the collected material all marked feces at the 

beginning of the collection period, as well as to exclude any marked feces at the end of 

the period. Urine was also collected on a daily basis in 10 L plastic buckets containing 50 

mL of 3N HCl to limit microbial growth and reduce loss of ammonia. The total amount 

of daily urine was recorded and 100 mL subsamples were kept frozen in labeled, capped, 

plastic containers, while the rest of the urine was discarded. 
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Nutrient digestibility and retention (DM basis) by total collection were calculated using 

the formula:  

Apparent digestibility, % =  

 

 

Apparent retention, g/d = Nutrient intake, g/d – Total nutrient excretion (fecal + urinary; 

g/d) 

 

Retention as a percent of intake, % =  

 

Retention as a percent of absorption, % =   

 

Experiment 2: Pigs were housed in a nursery room for a period of 5 days in order to 

get used to the complex nursery diet and standardize the GI tract. Pigs were weighed and 

allotted to the nursery pens and to one of the two comparisons. The experiment length 

was three periods of 1 week each, at the beginning of each period animals and feeders 

were weighed. Also, the feeder location was switched 3 times a w eek in order to 

eliminate the potential behavioral feeding pattern on p igs’ preference. The change of 

feeder location was video-recorded for an hour to observe animal behavior. The feeders 

were checked twice daily to remove waste in the feeder trough and to make sure the feed 

had not become blocked preventing normal flow. Water nipple heights were adjusted on 

an as-needed basis based on the growth of the pigs in each pen to ensure easy access. 
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3.2.4 Laboratory analysis 

Experiment 1: Feed, feces, and urine were analyzed for dry matter, energy, and 

nitrogen content; the total contents of nutrients in feed, feces and urine, were calculated 

as the product of nutrient concentration by the total amount of material. Samples were 

analyzed in duplicate, and analysis was repeated when abnormal variation was observed.  

All frozen feces were dried in a forced-air oven (Tru-Temp, Hotpack Corp., 

Philadelphia, PA) at 55oC for 7 days, then air-equilibrated, weighed, and ground through 

a 1 mm screen using a Wiley Laboratory Mill (Model 3, Arthur H. Thomas Co., 

Philadelphia, PA). After grinding, feces from each collection period were thoroughly 

mixed in a single bag for each pen. To obtain representative samples of urine for nutrient 

analysis, the daily samples were thawed at room temperature and proportionally pooled 

by weight for each pen according to the daily excretion recorded. Composited samples 

were kept frozen at all times until analyzed. 

Samples were analyzed in duplicate, and analysis was repeated when a coefficient 

of variation higher than 5% was observed. Dry matter in feed and feces was assessed 

according to an adaptation of the AOAC (1995) method, involving overnight drying 

(105ºC) of the samples in a convection oven (Precision Scientific Co., Chicago, IL) and 

then calculating moisture contents as the difference between weighing. Apparent 

digestibility coefficients were calculated on a DM basis by using the equations detailed 

previously. 

Gross energy content was assessed by bomb calorimetry, consisting of the ignition 

of samples in a pressurized-oxygen environment, and measuring the heat of combustion 

as the amount of energy transferred to a k nown mass of water contained in the 
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calorimeter, using benzoic acid as a standard (Model 1261 Isoperibol Bomb Calorimeter, 

Parr Instruments Company, Moline, IL). 

To measure urine energy, samples were oven dried for 2 days at 55ºC into 

polyethylene flat bags prior to combustion. The known heat of combustion per gram of 

bag material was subtracted from the total heat observed to obtain the sample energy 

contents. 

The nitrogen content of the diets, feces, and urine was determined using a gas 

combustion method, using glutamic acid as a st andard (AOAC, 1998; FP-2000, Leco 

Corp., St. Joseph, MI). 

 

3.2.5 Statistical analysis 

Experiment 1: The experimental data was analyzed using GLM procedures of SAS 

(SAS Inst. Inc., Cary, NC). Each metabolism pen was considered as an experimental unit 

for growth performance and digestibility measures. The statistical model included terms 

for diet, sex (replicate), and diet x sex (replicate). The linear and quadratic effects of diet 

were calculated. The alpha level used for determination of statistical significance was 

0.05. 

Experiment 2: The data was analyzed by unpaired T-tests using the GraphPad Prism 

program (GraphPad Software, Inc., San Diego, CA). The experimental unit was the pen. 

The statistical model included treatment and differences were considered significant at α 

= 0.05. 
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3.3 Results 

3.3.1 Experiment 1 

In Period 1 as shown in Table 3.3, the average daily gain and feed intake were 

affected by the different diets (P = 0.01). The feed intake in pigs consuming the 2010 

corn diet was greater (754.89 g/d) than the 50-50% blend with 2010 and 2009 corn, and 

the all 2009 corn diets (618.52 and 449.63 g/d, respectively). Average daily gain showed 

the same pattern as feed intake for the different diets (248.06, 186.40, and 62.37 g/d). 

Apparent dry matter digestibility was not affected (P > 0.10), although the 2010 

corn diet had the greatest numerical digestibility (90.45%). Apparent energy digestibility 

was also not affected (P > 0.10) despite an apparent stepwise reduction from the 2010 

corn diet (90.09%) to the 50-50% blend and the all 2009 corn diets (89.20% and 88.89%, 

respectively). 

Metabolizable energy percentage from digestible energy was linearly reduced (P > 

0.057) with the 2010 corn diet having greater digestibility (97.56%) than the 50-50% 

blend with 2010 and 2009 c orn, and the all 2009 corn diets (96.78% and 96.28%, 

respectively). 

Apparent nitrogen digestibility was not affected by t he diets (87.76, 87.27 and 

87.84%; P > 0.10). The percentage of nitrogen retained from feed intake and absorbed 

was not affected by the diets (P > 0.10), but both showed a stepwise decrease from the 

2010 corn diet than the 50-50% blend with 2010 and 2009 corn, and the all 2009 corn 

diets, respectively. 
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Table 3.3. Effect of naturally-contaminated corn on nutrient digestibility measures 
during Period 11. 
Item  Diets PSEM² P-values 

Control 2 3 Diet Diet*Sex Linear  
Performance 

         Initial weight, kg 7.65 7.64 7.64 0.04 0.946 0.094 0.803 
  Final weight, kg 8.65 8.38 7.89 0.12 0.025 0.212 0.011 
  ADG, g/d 248.06 186.40 62.37 22.52 0.010 0.318 0.004 
Feed intake 

         ADF, g/d 754.89 618.52 449.63 36.75 0.011 0.881 0.004 
  DMI, g/d 670.12 544.92 390.04 32.12 0.009 0.881 0.725 
  Wet fecal mass, g/d 131.88 119.74 75.80 12.70 0.073 0.659 0.036 
  Fecal DM, %³ 49.63 48.19 51.90 1.44 0.294 0.104 0.328 
  Urine weight, g/d 1514.79 2005.82 1599.52 417.72 0.697 0.419 0.893 
  Urine DM, % 1.83 1.16 1.80 0.45 0.542 0.240 0.965 
  Urine DM, g/d 22.34 21.54 16.40 1.34 0.066 0.017 0.035 
  Apparent DM digestibility, % 90.45 89.61 89.81 1.33 0.900 0.997 0.752 
Energy 

         Intake, kcal/d 3042.40 2467.93 1719.57 163.74 0.012 0.982 0.005 
  Fecal energy, kcal/d 303.05 265.64 184.50 27.16 0.082 0.977 0.037 
  Apparent digestibility, kcal/d 2739.35 2202.29 1535.07 168.13 0.018 0.988 0.007 
  Apparent digestibility, % 90.09 89.20 88.89 1.68 0.876 0.984 0.641 
  DE, kcal/d 3630.96 3559.13 3394.38 130.04 0.486 0.750 0.268 
  Urine energy, kcal/d 66.72 71.10 54.94 3.37 0.060 0.035 0.069 
  ME, kcal/d 3542.36 3444.58 3270.00 135.08 0.432 0.793 0.227 
  Retained energy, kcal/d 2672.64 2131.19 1480.13 166.90 0.018 0.977 0.007 
  ME from DE, % 97.56 96.78 96.28 0.34 0.129 0.404 0.057 
Nitrogen 

         Intake, g/d 25.37 20.91 15.29 1.25 0.012 0.882 0.005 
  Fecal nitrogen, g/d 3.13 2.66 1.83 0.30 0.091 0.929 0.040 
  Apparent digestibility, % 87.76 87.27 87.84 1.68 0.967 0.978 0.975 
  Urine nitrogen, g/d 3.29 2.75 2.39 0.27 0.180 0.448 0.082 
  Retained nitrogen, g/d 18.96 15.50 11.06 1.38 0.038 0.925 0.016 
  Retained, % of intake 74.81 73.99 72.32 3.26 0.864 0.853 0.617 
  Retained, % of absorbed 85.23 84.72 82.27 2.44 0.682 0.762 0.439 
¹ Each mean represent the average of 4 pens/treatment with 2 pigs/pen. Pigs were fed a complex nursery diet made 
with 2010 corn (Control), the same diet formulation as the control replacing 100% of  the corn with a 2009 
mycotoxin naturally-contaminated corn (Diet 3), and a blend of 50% of the Control diet and 50% of Diet 3 (Diet 2). 
The experimental period length was 4 days and feed was provided ad libitum. 
² PSEM- Pooled standard error of the mean. 
³ Quadratic effect (P < 0.10). 
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Figure 3.1. Effect of naturally-contaminated corn on DM, energy, and nitrogen apparent 
digestibility during Period 1. Each mean represents the average of 4 pens/treatment with 
2 pigs/pen. The experimental period length was 4 days and feed was provided ad libitum. 
No diet effects were observed (P > 0.10).  
 

In Period 2, as shown in Table 3.4, the average daily gain and feed intake was 

affected by the different diets (P < 0.01). The feed intake in pigs consuming the all 2010 

corn diet was greater (820.49 g/d) than the 50-50% blend with 2010 and 2009 corn, and 

the all 2009 corn diets (719.68 and 575.76 g/d, respectively).  Average daily gain showed 

the same pattern as feed intake for the different diets (463.52, 428.79, and 284.20 g/d). 

Apparent dry matter digestibility was not affected (P > 0.10) but the pattern is 

reversed from Period 1 with the 2010 corn diet having lower digestibility (88.67%) than 

the 50-50% blend with 2010 and 2009 corn and the all 2009 corn diets (88.88% and 

89.92%, respectively). 
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Apparent energy digestibility was not affected (P > 0.10) despite an apparent 

stepwise increase from the 2010 corn diet (88.11%) to the 50-50% blend and the all 2009 

corn diets (88.33% and 88.72%, respectively). 

Metabolizable energy percentage from digestible energy was not affected (P > 

0.10); the 2010 corn diet and the 50-50% blend with 2010 a nd 2009 c orn had similar 

percentages (96.72% and 96.95%, respectively) comparing to the diet with all 2009 corn 

that was lower in number (94.65%). 

Apparent nitrogen digestibility was not affected by t he diets (85.73, 87.00 and 

87.53%; P > 0.10), despite an apparent stepwise increase from the 2010 corn diet to the 

50-50% blend with 2010 and 2009 corn and the all 2009 corn diets respectively. 

Table 3.5 presents the interactions that were found between diet by sex (P < 0.05); 

barrows showed greater daily feed intake than gilts in the all 2010 corn diet and the 50-

50% blend with 2010 a nd 2009 c orn diet (barrows: 910.37, gilts: 730.62g; barrows: 

840.78, gilts: 598.58g, respectively); in the all 2009 corn diet the opposite occurs, but the 

feed intake was slightly higher for gilts (gilts: 594.58g, barrows: 556.95g). The rest of the 

variables shown in Table 3.5 show the same type of response, since all of these measures 

are related to the feed intake. 
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Table 3.4. Effect of naturally-contaminated corn on nutrient digestibility measures 
during Period 2.1 
Item  Diets PSEM² P-values 

Control 2 3 Diet Diet*Sex Linear  
Performance 

         Initial weight, kg 8.65 8.38 7.89 0.12 0.025 0.212 0.011 
  Final weight, kg 10.50 10.10 9.03 0.16 0.007 0.443 0.003 
  ADG, g/d 463.52 428.79 284.20 24.59 0.014 0.628 0.007 
Feed intake        
  ADF, g/d 820.49 719.68 575.76 21.26 0.003 0.021 0.001 
  DMI, g/d 728.36 634.05 499.46 18.65 0.003 0.020 0.001 
  Wet fecal mass, g/d 171.52 157.19 111.75 16.13 0.121 0.292 0.059 
  Fecal DM, %³ 47.69 44.25 48.12 0.83 0.054 0.023 0.730 
  Urine weight, g/d 1821.15 2257.78 1748.08 256.33 0.402 0.967 0.850 
  Urine DM, % 1.89 1.06 2.35 0.36 0.141 0.277 0.414 
  Urine DM, g/d 30.36 21.36 38.12 7.76 0.398 0.509 0.518 
  Apparent DM digestibility, % 88.67 88.88 89.21 1.07 0.938 0.741 0.739 
Energy        
  Intake, kcal/d 3306.82 2871.56 2270.16 84.34 0.003 0.020 0.001 
  Fecal energy, kcal/d 384.83 326.87 253.77 28.36 0.074 0.305 0.031 
  Apparent digestibility, kcal/d 2921.99 2544.69 2016.40 87.79 0.005 0.033 0.002 
  Apparent digestibility, % 88.11 88.33 88.72 1.07 0.921 0.737 0.707 
  DE, kcal/d 3551.08 3524.52 3498.07 42.45 0.700 0.733 0.427 
  Urine energy, kcal/d 95.21 75.59 111.19 17.08 0.419 0.772 0.545 
  ME, kcal/d 3434.80 3417.08 3310.63 62.60 0.403 0.804 0.233 
  Retained energy, kcal/d 2826.78 2469.11 1905.21 97.24 0.007 0.042 0.003 
  ME from DE, % 96.72 96.95 94.65 0.80 0.197 0.520 0.141 
Nitrogen        
  Intake, g/d 27.57 24.33 19.58 0.72 0.004 0.021 0.001 
  Fecal nitrogen, g/d 3.85 3.09 2.42 0.34 0.098 0.439 0.042 
  Apparent digestibility, % 85.73 87.00 87.53 1.38 0.666 0.809 0.408 
  Urine nitrogen, g/d 3.84 3.10 5.05 1.19 0.556 0.502 0.512 
  Retained nitrogen, g/d 19.89 18.15 12.11 1.66 0.062 0.120 0.030 
  Retained, % of intake 71.75 74.17 62.60 6.27 0.461 0.437 0.361 
  Retained, % of absorbed 83.68 85.23 71.72 6.20 0.341 0.348 0.244 
¹ Each mean represent the average of 4 pens/treatment with 2 pigs/pen. Pigs were fed a complex nursery diet made 
with 2010 corn (Control), the same diet formulation as the control replacing 100% of  the corn with a 2009 
mycotoxin naturally-contaminated corn (Diet 3), and a blend of 50% of the Control diet and 50% of Diet 3 (Diet 2). 
The experimental period length was 4 days and feed was provided ad libitum. 
² PSEM- Pooled standard error of the mean. 
³ Quadratic effect (P < 0.05). 
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Table 3.5. Effect of naturally-contaminated corn and sex in digestibility measures during 
Period 2¹. 

 
Control Diet 2 Diet 3   P-value   

  Gilts Barrows Gilts Barrows Gilts Barrows PSEM² 

Diet 
* 

Sex 
ADF, g/d 730.62 910.37 598.58 840.78 594.58 556.95 30.06 0.021 
DMI, g/d 648.58 808.14 527.36 740.74 515.78 483.13 26.37 0.020 
Fecal DM, % 45.97 49.41 46.08 42.43 51.89 44.35 1.17 0.023 
Energy intake, kcal/d 2944.60 3669.04 2388.37 3354.76 2344.35 2195.97 119.28 0.020 
Apparent energy 
digestibility, kcal/d 

2547.21 3296.76 2098.52 2990.87 2057.26 1975.54 124.15 0.033 

Retained energy, 
kcal/d 

2457.06 3196.50 2026.78 2911.44 1966.02 1844.40 137.52 0.042 

Retained nitrogen, 
g/d 

24.55 30.59 20.24 28.42 20.22 18.94 1.02 0.021 

¹Each mean represent 4 pens with 2 pigs/pen, diets were a complex nursery diet made with 2010 corn (control), the 
same diet formulation as the control replacing 100% of the corn with a 2009 mycotoxin naturally-contaminated corn 
(Diet 3), and a blend of 50% of the Control diet and 50% of Diet 3 (Diet 2). Experimental period length was 4 days. Fed 
ad libitum 
²PSEM- Pooled standard error of the mean  
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Figure 3.2. Period 2: Effect of naturally-contaminated corn on DM, energy, and nitrogen 
apparent digestibility. Each mean represents 4 pens with 2 pigs/pen. The experimental 
period length was 4 days and feed was provided ad libitum. No diet effects were observed 
(P > 0.10).  
 

In Period 3, as shown in Table 3.6, feed intake was linearly affected (P = 0.025). 

The feed intake in pigs consuming the 2010 corn was greater (1696.75 g/d) than the 50-

50% blend with 2010 and 2009 corn, and the all 2009 corn (1553.75 and 1334.51 g/d, 

respectively). Average daily gain showed the same pattern as feed intake for the different 

diets, but no difference was found (P > 0.10; 643.53, 574.78, a nd 521.63 g/ d, 

respectively). 

Apparent dry matter digestibility was not affected (P > 0.10), although the 2010 

corn diet had a greater numerical digestibility (90.30%) than the 50-50% blend and the all 

2009 corn diets (89.27% and 89.45%, respectively). However, data in Table 3.7 shows 

that differences were found in the interaction between diet by sex, (P < 0.05). Barrows 

showed greater apparent dry matter digestibility than gilts in the control diet and the all 
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2009 corn diet (barrows: 90.60, gi lts: 90.00%; barrows: 91.33, gi lts: 87.58%, 

respectively). Conversely, the 50-50% blend corn diet showed the opposite pattern, with 

gilts having a greater dry matter digestibility (barrows: 88.85, gilts: 89.69%). 

Apparent energy digestibility was not affected (P > 0.10) and no pa tterns were 

observed, even though the  2010 corn diet showed a grater digestibility (90.12%) than the 

50-50% blend and the all 2009 corn diet (89.17% and 89.46%, respectively). Table 3.7 

shows significant differences in the interaction between diet by sex, (P < 0.05); barrows 

showed greater apparent energy digestibility than gilts in the control diet and the all 2009 

corn diet (barrows: 90.45, gilts: 89.79%; barrows: 91.30, gilts: 87.62%, respectively). 

The 50-50% blend diet showed an opposite pattern: gilts showed greater apparent dry 

matter digestibility than barrows (barrows: 88.67, gilts: 89.68%, respectively). 

Metabolizable energy percentage from digestible energy was not affected by diet (P 

> 0.10), and all diets were similar in percentage (97.85, 97.55 and 97.80% for control, 50-

50% blend, and all 2009 corn diet, respectively). Apparent nitrogen digestibility was not 

affected by the diets (88.25, 87.47 and 88.14%; P > 0.10), although the 2010 corn had the 

greatest numerical digestibility. Nevertheless, Table 3.7 shows that differences were 

found in the interaction between diet by s ex, (P < 0.05). Barrows showed a greater 

apparent nitrogen digestibility compared to gilts in the all 2010 corn diet and the all 2009 

corn diet (barrows: 88.80, gilts: 87.69%; barrows: 90.55, gilts: 85.74%, respectively). 

The 50-50 % blend diet showed a different pattern, gilts showed slightly greater apparent 

nitrogen digestibility than barrows (gilts: 87.55, barrows: 87.40%, respectevely). 
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Table 3.6. Effect of naturally-contaminated corn on nutrient digestibility measures 
during Period 3.1 
Item  Diets PSEM² P-values 

Control 2 3 Diet Diet*Sex Linear  
Performance 

         Initial weight, kg 10.50 10.10 9.03 0.16 0.007 0.443 0.003 
  Final weight, kg 13.08 12.40 11.11 0.24 0.011 0.407 0.004 
  ADG, g/d 643.53 574.79 521.63 62.14 0.454 0.380 0.238 
Feed intake 

         ADF, g/d 1696.75 1553.75 1334.51 73.05 0.059 0.613 0.025 
  DMI, g/d 1506.22 1368.87 1157.65 64.22 0.045 0.610 0.019 
  Wet fecal mass, g/d 289.23 322.41 250.21 18.63 0.121 0.176 0.213 
  Fecal DM, %³ 50.84 45.19 49.26 1.75 0.175 0.389 0.559 
  Urine weight, g/d4 2512.43 3404.01 2203.90 137.91 0.008 0.025 0.188 
  Urine DM, % 2.01 1.19 2.47 0.24 0.050 0.026 0.257 
  Urine DM, g/d 46.25 40.75 36.49 3.12 0.201 0.057 0.092 
  Apparent DM digestibility, % 90.30 89.27 89.45 0.31 0.148 0.015 0.123 
Energy 

         Intake, kcal/d 6838.38 6199.54 5261.83 291.02 0.045 0.609 0.019 
  Fecal energy, kcal/d 674.64 664.05 548.79 36.44 0.125 0.256 0.071 
  Apparent digestibility, kcal/d 6163.74 5535.49 4713.04 260.01 0.041 0.498 0.017 
  Apparent digestibility, % 90.12 89.17 89.46 0.33 0.237 0.018 0.234 
  DE, kcal/d 3631.88 3558.07 3526.98 13.35 0.012 0.019 0.005 
  Urine energy, kcal/d 135.06 137.59 104.69 11.48 0.194 0.277 0.135 
  ME, kcal/d 3553.49 3470.71 3449.26 12.10 0.008 0.014 0.004 
  Retained energy, kcal/d 6028.68 5397.90 4608.34 253.36 0.041 0.512 0.017 
  ME from DE, % 97.85 97.55 97.80 0.16 0.423 0.368 0.841 
Nitrogen 

         Intake, g/d 57.01 52.52 45.37 2.47 0.069 0.616 0.029 
  Fecal nitrogen, g/d 6.68 6.51 5.30 0.39 0.129 0.333 0.070 
  Apparent digestibility, % 88.25 87.47 88.14 0.38 0.384 0.022 0.854 
  Urine nitrogen, g/d 5.34 4.58 4.17 0.31 0.134 0.081 0.061 
  Retained nitrogen, g/d 44.99 41.43 35.90 2.12 0.091 0.728 0.039 
  Retained, % of intake 78.96 78.80 78.99 0.53 0.967 0.166 0.965 
  Retained, % of absorbed 89.49 90.10 89.66 0.79 0.858 0.264 0.891 
¹Each mean represent 4 pens with 2 pigs/pen, diets were a complex nursery diet made with 2010 corn (control), the 
same diet formulation as the control replacing 100% of the corn with a 2009 mycotoxin naturally-contaminated 
corn (Diet 3), and a blend of 50% of the Control diet and 50% of Diet 3 (Diet 2). Experimental period length was 4 
days. Fed ad libitum 
²PSEM- Pooled standard error of the mean 
³Quadratic effect (P < 0.10). 
⁴Quadratic effect (P < 0.01). 
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Table 3.7. Effect of naturally-contaminated corn and sex in digestibility measures¹.  

 
Control Diet 2 Diet 3 

 
P-value 

  Gilts Barrows Gilts Barrows Gilts Barrows PSEM² 
Diet* 
Sex 

         Urine weight, g/d 2938.98 2085.88 3560.53 3247.49 3242.62 1165.19 195.04 0.025 
Apparent DM 
digestibility, % 

90.00 90.60 89.69 88.85 87.58 91.33 0.44 0.015 

Apparent  energy 
digestibility, kcal/kg 

3618.63 3645.14 3578.32 3537.83 3454.46 3599.51 18.88 0.019 

Apparent  energy 
digestibility, % 

89.79 90.45 89.68 88.67 87.62 91.30 0.47 0.018 

ME, kcal/kg 3557.90 3549.09 3495.87 3445.55 3385.06 3513.46 17.11 0.014 
Apparent nitrogen 
digestibility, % 

87.69 88.80 87.55 87.40 85.74 90.55 0.54 0.022 

¹Each mean represent 4 pens with 2 pigs/pen, were a complex nursery diet made with 2010 corn (control), the same diet 
formulation as the control replacing 100% of the corn with a 2009 mycotoxin naturally-contaminated corn (Diet 3), and 
a blend of 50% of the Control diet and 50% of Diet 3 (Diet 2). Experimental period length was 4 days. Fed ad libitum 
²PSEM- Pooled standard error of the mean   

 

 

Figure 3.3. Period 3: Effect of naturally-contaminated corn on DM, energy, and nitrogen 
apparent digestibility. Each mean represent 4 pens with 2 pigs/pen. Experimental period 
length was 4 days and feed was provided ad libitum. No diet effects were observed (P > 
0.10).  
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The results for Period 4 a re shown in Table 3.8. T he method of feeding was 

changed from ad libitum provision to scale feeding based on pig BW. Average daily gain 

was not affected by the different diets (P > 0.10; 514.54, 4 40.13, and 444.52g for the 

Control, 50-50% blend corn and the all 2009 corn respectively). Feed intake in pigs 

consuming the 2010 corn was greater (1380.84 g/d) than the 50-50% blend corn and the 

all 2009 c orn (1307.74 and 1021.85 g/d, respectively), and a l inear response was 

observed (P < 0.05).   

Apparent dry matter and energy digestibility was not affected by the diets (P > 

0.10), although the 2010 corn diet had the greatest numerical digestibilities in both cases 

(88.91%, and 88.67%, respectively). Also, metabolizable energy percentage from 

digestible energy was not affected (P > 0.10), despite an apparent stepwise reduction 

from the 2010 corn diet (96.55, 97.31 and 96.84%, respectively). 

Apparent nitrogen digestibility was not affected by t he diets (86.53, 84.07 and 

85.98%; P > 0.10), although the all 2010 corn diet had the greatest numerical digestibility 

comparing to the other two diets. 

The percentage of nitrogen retained from feed intake and absorbed was not affected 

by the diets (P > 0.10), despite an apparent stepwise reduction from the all 2010 corn diet 

to the 50-50% blend and the all 2009 corn diet (retained from intake: 74.85, 71.70 and 

69.92%; retained from absorbed: 86.52, 85.35 and 81.30%, respectively). 
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Table 3.8. Effect of naturally-contaminated corn on nutrient digestibility measures 
during Period 4.1 
Item  Diets PSEM² P-values 

Control 2 3 Diet Diet*Sex Linear  
Performance 

         Initial weight, kg 13.08 12.40 11.11 0.24 0.011 0.407 0.004 
  Final weight, kg 15.13 14.16 12.89 0.25 0.008 0.288 0.003 
  ADG, g/d 514.54 440.13 444.52 61.69 0.662 0.780 0.467 
Feed intake 

         ADF, g/d 1380.84 1307.74 1021.85 78.41 0.065 0.603 0.032 
  DMI, g/d 1225.79 1152.14 886.42 68.89 0.053 0.608 0.025 
  Wet fecal mass, g/d 260.59 351.67 251.80 43.73 0.309 0.847 0.894 
  Fecal DM, %³ 53.88 45.78 45.35 3.65 0.286 0.919 0.173 
  Urine weight, g/d 3278.12 3588.23 2817.88 289.65 0.278 0.122 0.324 
  Urine DM, % 1.41 1.14 2.06 0.41 0.353 0.300 0.318 
  Urine DM, g/d 41.83 39.57 38.31 3.30 0.761 0.920 0.492 
  Apparent DM digestibility, % 88.91 86.37 87.30 0.61 0.097 0.976 0.137 
Energy 

         Intake, kcal/d 5565.17 5217.98 4029.04 312.59 0.054 0.607 0.026 
  Fecal energy, kcal/d 629.44 727.86 519.41 49.55 0.097 0.791 0.192 
  Apparent digestibility, kcal/d 4935.73 4490.11 3509.63 277.06 0.050 0.602 0.022 
  Apparent digestibility, % 88.67 86.13 87.14 0.61 0.099 0.997 0.152 
  DE, kcal/d 3573.62 3436.76 3435.70 24.35 0.025 0.997 0.016 
  Urine energy, kcal/d 121.71 119.75 108.79 5.95 0.353 0.355 0.200 
  ME, kcal/d 3485.89 3344.10 3327.21 28.67 0.032 0.977 0.017 
  Retained energy, kcal/d 4814.03 4370.37 3400.84 278.83 0.053 0.613 0.023 
  ME from DE, % 97.55 97.31 96.84 0.31 0.354 0.802 0.180 
Nitrogen 

         Intake, g/d 46.40 44.21 34.74 2.65 0.072 0.601 0.036 
  Fecal nitrogen, g/d 6.24 7.09 4.86 0.55 0.106 0.902 0.152 
  Apparent digestibility, % 86.53 84.07 85.98 0.83 0.205 0.920 0.664 
  Urine nitrogen, g/d 5.43 5.37 5.42 0.35 0.994 0.344 0.985 
  Retained nitrogen, g/d 34.73 31.74 24.47 2.52 0.098 0.740 0.045 
  Retained, % of intake 74.85 71.70 69.92 1.81 0.264 0.980 0.127 
  Retained, % of absorbed 86.52 85.35 81.30 1.95 0.253 0.989 0.131 
¹Each mean represent 4 pens with 2 pigs/pen. Diets were a complex nursery diet made with 2010 corn (control), the 
same diet formulation as the control replacing 100% of the corn with a 2009 mycotoxin naturally-contaminated 
corn (Diet 3), and a blend of 50% of the Control diet and 50% of Diet 3 (Diet 2). Experimental period length was 4 
days. Fed by BW% (5% for rep 2, and 6% for replicates 1, 3 and 4). 
²PSEM- Pooled standard error of the mean. 
³Quadratic effect (P < 0.10). 
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Figure 3.4. Period 4: Effect of naturally-contaminated corn in DM, energy, and nitrogen 
apparent digestibility. Each mean represent 4 pens with 2 pigs/pen. Experimental period 
length was 4 days and feed was provided depending on BW% (5% for Replicate 2, and 
6% for Replicates 1, 3 and 4). No diet effects were observed (P > 0.10). 
 

In Period 5, as shown in Table 3.9, average daily gain was not affected by the 

different diets (P > 0.10; 579.04, 633.61 and 461.25g, for the Control, 50-50% corn and 

the all 2009 corn, respectively). Feed intake in pigs consuming the 2010 corn was greater 

(1471.66 g/d) than in pigs consuming the 50-50% blend and the all 2009 c orn diet, 

respectively (1402.18 and 1162.12 g/d) but no difference was found (P > 0.10).   

Dry matter, energy and nitrogen apparent digestibility was not affected (P > 0.10) 

despite an apparent stepwise reduction from the 2010 c orn (89.80, 89.55 a nd, 88.13%, 

respectively), to the 50-50% blend and the all 2009 corn. 

Metabolizable energy percentage from digestible energy was not affected (P > 

0.10), and no pattern was observed (96.66, 96.67 and 96.57% respectively). Also, the 

percentage of nitrogen retained from feed intake and absorbed, was not affected by diets 
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(P > 0.10). However the 50-50% blend corn diet was numerically higher (retained from 

intake: 75.04%; retained from absorbed: 85.29%) than the all 2009 corn diet, and the all 

2010 corn diet respectively. 
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Table 3.9. Effect of naturally-contaminated corn on nutrient digestibility measures 
during Period 5.1 

Item  Diets PSEM² P-values 
Control 2 3 Diet Diet*Sex Linear  

Performance 
         Initial weight, kg 15.13 14.16 12.89 0.25 0.008 0.288 0.003 

  Final weight, kg 17.45 16.69 14.74 0.30 0.008 0.228 0.003 
  ADG, g/d 579.04 633.61 461.25 45.51 0.121 0.229 0.141 
Feed intake 

         ADF, g/d 1471.66 1402.18 1162.12 91.02 0.149 0.720 0.074 
  DMI, g/d 1306.41 1235.34 1008.10 80.75 0.122 0.727 0.059 
  Wet fecal mass, g/d 230.89 256.55 237.81 38.08 0.888 0.770 0.904 
  Fecal DM, %³ 57.55 51.57 50.06 2.67 0.227 0.426 0.119 
  Urine weight, g/d 4244.11 4550.46 3567.70 725.95 0.651 0.582 0.546 
  Urine DM, % 1.52 1.07 2.08 0.61 0.558 0.440 0.554 
  Urine DM, g/d 54.32 47.66 43.12 2.06 0.044 0.095 0.018 
  Apparent DM digestibility, % 89.80 89.02 88.26 1.30 0.723 0.511 0.449 
Energy 

         Intake, kcal/d 5931.21 5594.77 4582.10 366.23 0.124 0.727 0.060 
  Fecal energy, kcal/d 593.24 606.11 549.25 63.93 0.814 0.548 0.652 
  Apparent digestibility, kcal/d 5337.97 4988.67 4032.85 385.76 0.156 0.692 0.075 
  Apparent digestibility, % 89.55 88.85 88.10 1.35 0.762 0.491 0.488 
  DE, kcal/d 3608.90 3544.97 3473.48 54.10 0.314 0.494 0.152 
  Urine energy, kcal/d 173.82 160.69 136.89 10.71 0.157 0.654 0.071 
  ME, kcal/d 3488.58 3427.10 3354.50 54.34 0.322 0.523 0.156 
  Retained energy, kcal/d 5164.15 4827.98 3895.96 380.77 0.162 0.698 0.078 
  ME from DE, % 96.66 96.67 96.57 0.26 0.965 0.928 0.845 
Nitrogen 

         Intake, g/d 49.45 47.39 39.51 3.06 0.164 0.716 0.083 
  Fecal nitrogen, g/d 5.61 5.59 5.11 0.66 0.838 0.620 0.619 
  Apparent digestibility, % 88.13 87.87 87.09 1.73 0.909 0.562 0.692 
  Urine nitrogen, g/d 9.16 5.67 5.54 1.52 0.272 0.667 0.166 
  Retained nitrogen, g/d 34.68 36.13 28.86 3.47 0.383 0.486 0.301 
  Retained, % of intake 69.86 75.04 72.83 3.41 0.601 0.375 0.572 
  Retained, % of absorbed 79.32 85.29 83.60 3.85 0.575 0.547 0.475 
¹Each mean represents 4 pens with 2 pigs/pen. Diets were a complex nursery diet made with 2010 corn 
(control), the same diet formulation as the control replacing 100% of the corn with a 2009 mycotoxin 
naturally-contaminated corn (Diet 3), and a blend of 50% of the Control diet and 50% of Diet 3 (Diet 
2). Experimental period length was 4 days. Fed by BW% (5% for rep 2, and 6% for replicates 1, 3 and 
4). 
²PSEM- Pooled standard error of the mean. 
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Figure 3.5. Period 5: Effect of naturally-contaminated corn on DM, energy, and nitrogen 
apparent digestibility. Each mean represent 4 pens with 2 pigs/pen. Experimental period 
length was 4 days and feed was provided depending on BW% (5% for Replicate 2, and 
6% for Replicates 1, 3 and 4). No diet effects were observed (P > 0.10). 
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Figure 3.6.  Periods 1-5: Effect of naturally-contaminated corn on apparent DM 
digestibility. Experimental period length was 4 days. Periods 4 and 5 were fed depending 
on BW% (5% for Replicate 2, and 6% for Replicates 1, 3 a nd 4). No diet effects were 
observed (P > 0.10). 
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Figure 3.7. Periods 1-5: Effect of naturally-contaminated corn on apparent energy 
digestibility. Experimental period length was 4 days. Periods 4 and 5 were fed depending 
on BW% (5% for Replicate 2, and 6% for Replicates 1, 3 a nd 4). No diet effects were 
observed (P > 0.10). 
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Figure 3.8. Periods 1-5: Effect of naturally-contaminated corn on a pparent nitrogen 
digestibility. Experimental period length was 4 days. Periods 4 and 5 were fed depending 
on BW% (5% for Replicate 2, and 6% for Replicates 1, 3 a nd 4). No diet effects were 
observed (P > 0.10). 
 

3.3.2 Experiment 2 

A preference (or an increase in feed intake) was shown for the naturally-

contaminated 2010 corn diet over both the 50-50 % blend with 2010 and 2009, corn and 

the all 2009 corn diet (Table 3.10 and Table 3.11). The preference was exhibited in week 

1 for both comparisons (Comparison 1: 88.55% vs. 11.45%; Comparison 2: 85.34% vs 

14.66%; P < 0.001) and continued throughout the entire 3 wk period (Comparison 1: 

96.61% vs. 3.39%; Comparison 2: 89.81% vs 10.19%; P < 0.001). Also, the accumulative 

preference for all periods showed the same pattern (Comparison 1: 95.34% vs. 4.66%; 

Comparison 2: 91.29% vs. 8.71%; P < 0.001).  
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Table 3.10. Effect of naturally-contaminated corn on feed preference .1 
   Comparison (Control vs Diet 3)  

Period Initial wt, kg Final wt, kg Control Diet 3 P-value 
1 8.15 10.66 88.55 11.45 < 0.01 
2 10.66 14.51 97.60 2.40 < 0.01 
3 14.51 19.23 96.61 3.39 < 0.01 
1 - 3 8.15 19.23 95.34 4.66 < 0.01 
1Each mean represent 3 pens with 5 pigs/pen. Diets were a complex nursery diet made with 2010 corn 
(control), the same diet formulation as the control replacing 100% of the corn with a 2009 mycotoxin 
naturally-contaminated corn (Diet 3), and a blend of 50% of the Control diet and 50% of Diet 3 (Diet 2). 
Experimental period length was 7 days. Fed ad libitum 
 
Table 3.11. Effect of naturally-contaminated corn on feed preference.1 
   Comparison (Control vs Diet 2)  

Period Initial wt, kg Final wt, kg Control Diet 3 P-value 
1 7.82 10.49 85.34 14.66 < 0.01 
2 10.49 14.05 96.54 3.46 < 0.01 
3 14.05 18.64 89.81 10.19 < 0.01 
1 - 3 7.82 18.64 91.29 8.71 < 0.01 
1Each mean represent 3 pens with 5 pigs/pen. Diets were a complex nursery diet made with 2010 corn 
(control), the same diet formulation as the control replacing 100% of the corn with a 2009 mycotoxin 
naturally-contaminated corn (Diet 3), and a blend of 50% of the Control diet and 50% of Diet 3 (Diet 2). 
Experimental period length was 7 days. Fed ad libitum 
 

3.4 Conclusions 

3.4.1 Experiment 1 

In this study it was shown that the exposure of naturally-contaminated corn in diets 

with levels ranging from 1.73 to 3.19 ppm of DON, 2.14 to 3.14 ppm of FB₁, and 0.7 to 

1.40 ppm of ZEA, resulted in a dramatic decrease of feed intake, leading to low growth 

performance. Dry matter, energy, and nitrogen digestibility was not affected by either the 

100% 2009 corn diet (Diet 3) or the 50% 2009 corn diet (Diet 2) compared to the 100% 

2010 corn diet (Control), suggesting that these levels of DON, FB₁ and ZEA, and their 

possible synergistic interaction, are not affecting the digestibility performance of the 

weaning pig. This response is consistent with results from Danicke’ et al. (2004) using 
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DON and Jiang’ et al. (2010) using ZEA. Nevertheless, pigs consuming the 100% 2009 

corn diet (Diet 3) showed a slight increase in digestibility compared to a l ess 

contaminated diet such as the 50% 2009 corn diet (Diet 2). This is probably a metabolic 

mechanism to help the reduced intake of nutrients due to the low feed intake. 

 

3.4.2 Experiment 2    

This experiment demonstrates the capability of weaning pigs to detect and choose a 

low naturally-contaminated corn (2010) over a more contaminated one (2009). If further 

demonstrates that exposure to naturally-contaminated corn in diet with levels ranging 

from 1.73 to 3.19 ppm of DON, 2.14 to 3.14 ppm of FB₁, and 0.7 to 1.40 ppm of ZEA is 

enough to create a p reference in the pig. This responses are likely the result of either  

palatability or smell characteristics.  
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