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ABSTRACT OF THESIS

GENETIC ALGORITHM CONTROLLED COMMON SUBEXPRESSION
ELIMINATION FOR SPILL-FREE REGISTER ALLOCATION

As code complexity increases, maxlive increases. This is especially true in
the case of the Kentucky If-Then-Else architecture proposed for Nanocontrollers.
To achieve low circuit complexity, computations are decomposed to bit-level
operations, thus generating large blocks of code with complex dependence
structures. Additionally, the Nanocontroller architecture allows for only a small
number of single bit registers and no extra memory.

The assumption of an infinite number of registers made during code
generation becomes a huge problem during register allocation because the small
number of registers and no additional memory. The large basic blocks mean that
maxlive almost always exceeds the number of registers and the traditional
methods of register allocation such as instruction re-ordering and register
spill/reload cannot be applied trivially. This thesis deals with finding a solution to
reduce maxlive for successful register allocation using Genetic Algorithms.

KEYWORDS: Nanocontrollers, Register Allocation, Sethi-Ullman Numbering,
Genetic Algorithms, Maxlive Reduction
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1 Introduction

Register Allocation is a crucial step in the compilation process. In

conventional computer architecture, the total number of registers is limited

whereas data memory is relatively large. Typical instruction sets and compilation

techniques commonly produce basic blocks containing a small number of

instructions – generally, fewer than 20 – so the number of registers needed to

hold all the values referenced within a block is relatively small. Where the

number of available registers is insufficient, an exhaustive search for an

instruction reordering may be applied to reduce the number of registers needed.

When that search is impractical or fails, register spill/reload can be used.

Larger basic blocks usually require more registers and also make

instruction scheduling by exhaustive search computationally infeasible. Larger

blocks can result from specific compiler optimizations, such as loop unrolling, or it

can be a natural consequence of having a very simple instruction set. For

example, without a spill-free register allocation, unrolling might actually yield a

slowdown rather than a speedup. If the larger block size was caused by a simpler

instruction set, there is also a possibility that the instruction set was not the only

thing simplified: the data memory may be of very limited size or completely

absent. The absence of an external data memory is one of the main features of a

simple architecture called the Kentucky If-Then-Else (or KITE) architecture that

was proposed to reduce hardware complexity [Die03]. The KITE architecture has

a limited number of single bit registers and no external data memory. The unique

hardware architecture and the specialized compiler that is required for generating

executable code result in large and complex basic blocks. With no external data

memory, the process of register spill/reload is not an option. Failure to find a spill-

free allocation results in user programs not being executed and thus makes

register allocation the most critical part of the KITE architecture.

Previous work on the KITE architecture and the associated compilation

techniques reduced the hardware complexity and successfully generated code –
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but maxlive was often orders of magnitude larger than the register file could

support. No existing technique was able to directly solve the problem of register

allocation with a large maxlive that resulted from code generation. This research

is aimed at finding a solution to the problem of register allocation for very

complex instruction blocks with extreme register pressure and a lack of external

data memory. Specifically, the current thesis has focused on the fundamental

problem of trying to reduce maxlive enough to fit the KITE architecture’s very

modest register file.

Our approach is grounded in earlier work. A popular technique developed

in 1970 called Sethi-Ullman Numbering (SUN) is used to find the minimum

number of registers required and the instruction order for a tree. Modern

compilers apply Common Subexpression Elimination to generate code in the

form of a Directed Acyclic Graph (DAG), thus minimizing instruction count with

the side effect of often increasing maxlive. In this research we converted

compiler generated DAGs to trees by replicating the common subexpressions

(CSE) whenever the common subexpressions are referenced, thus reducing

maxlive. We extended SUN technique and applied it to the trees generated from

the DAGs to calculate the minimum number of registers and instruction count

required to evaluate a tree. The conversion from DAGs to trees to reduce

maxlive resulted in many registers of the register file being unused and also

increased the instruction count. We then selectively enabled re-factoring of

common subexpressions to minimize the instruction count while keeping maxlive

less than or equal to the number of available registers. A Genetic Algorithm (GA)

is used to find a solution that contains a set of enabled common subexpressions

that would keep the maxlive within the register limit as well as reduce the

instruction count. A genetic algorithm is a search technique used to find an

acceptable solution to problems that have complex and large search space. The

sheer number of common subexpressions generated for the complex basic

blocks of the KITE architecture makes the problem of finding the best possible

set of the common subexpression to be enabled non-trivial and therefore a GA is



3

best suited to find a set of enabled common subexpressions. In addition, another

Genetic Algorithm is applied to reorder the trees to find a tree execution order

that may result in a better maxlive and instruction count.

1.1 Motivation and Preliminary Work

Nanotechnology makes it possible to assemble nanostructures into a wide

range of devices, such as chemical/biological sensors, and also to place millions

of these devices on a single chip. Intelligent control of these devices requires

independent programmability of a controller for each device. Conventional micro-

controllers are not small enough to be paired on-chip with each of the devices.

The obvious alternative, routing the signals from these devices to off-chip

controllers, is often impractical for reasons of speed, signal quality, or wiring

complexity. A nanocontroller architecture proposed as a solution to overcome the

existing micro scale hardware limitations is called KITE: Kentucky If-Then-Else

architecture [Die03]. This approach uses a new compiler technology to

dramatically simplify the target architecture, yielding circuit complexity on the

order of 100 transistors per nanocontroller. Such a simple architecture requires

special code that operates at single bit levels. BitC, a subset of C programming

language, was developed for real-time, intelligent device control. BitC uses

advanced compiler technologies such as Meta State Conversion [DiK93] and

Common Subexpression Induction [Die92] to generate large blocks of code.

This section describes the KITE Nanocontroller architecture and the

compiler technology associated with it. The user level programming interface is

first described followed by the compiler technology and the underlying hardware

model.

1.1.1 Programming Language: BitC

BitC, a sequential programming language and a subset of C programming

language, is developed for KITE Nanocontroller architecture. BitC allows explicit

declaration and/or typecasting of bit precisions. For example,
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int: 3, a;

declares a as a 3-bit signed integer value. All the C operators are supported with

the standard precedence. Additional operators like minimum, maximum and

population count are also provided. The bit level manipulation of word level

objects, which is the main feature of the KITE Nanocontroller architecture, is

hidden from the programmer. Input/Output operations can be done using

application-specific reserved registers. Reservation of such special registers is

done before allocation of any ordinary variables. Inter-processor communication

is also implemented using reserved registers.

1.1.2 Compiler Technology

The compilation of BitC for KITE is a complicated process that involves a

large number of transformations. The first step is transformation of word-level

operations into simple single bit operations. The bit-slice operations are

optimized and simplified using a variety of techniques such as conventional

compiler optimization and hardware logic minimization. The optimized bit slice

versions of all the programs are merged logically to produce guarded SIMD

(Single Instruction, Multiple Data) code using Meta State Conversion (MSC).

After Common Subexpression Induction (CSI), the instructions are ordered and

allocated to registers as the final step.

All the single bit operations are implemented as an if-then-else tuple or ite,

a 1-of-2 multiplexor function similar to that of a hardware logic minimization

technique. As an example, consider the following BitC code:

unsigned int: 2 a, b, c;

c = a + b;

The BitC code shows a simple addition operation of two 2-bit operands. A bit-

level 2’s complement addition of operands a and b generates a 2-bit result c, the

two bits computed as:

c0 <- (a0 xor b0)

c1 <- ((a1 xor b1) xor (a0 and b0))
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This bit-level representation uses 2 operators: XOR and AND. The XOR and

AND operations can be represented as if-then-else tuples, referred to as ites in

the BitC and KITE architecture. An ite is shown using C’s ternary operator syntax

(x1 ? x2 : x3). Table 1.1 shows the ite equivalents for most commonly used logic

operations.

The 2-bit addition example can be written using ites as:

c0 <- (a0 ? (b0 ? 0 :1) : b0)
c0 <- ((a1 ? (b1 ? 0 : 1) : b1)

? ((a0 ? b0 : 0) ? 0 : 1) : (a0 ? b0 : 0))

The 2-operand, 2-bit addition example generated 8 ites. Common ites such as a0

? b0 : 0 are equivalent to common subexpressions and are reduced by Common

Subexpression Elimination (CSE) process. The total number of instructions is

further reduced by combining explicit store (into variable) instructions and ites,

thus creating a new structure called store-if then-else tuple (site). The conversion

from ites to sites is an important step because sites can be converted from DAGs

to trees, and a tree structure is required to extend SUN and apply it for the

register allocation of the ternary operators generated by the BitC compiler for the

KITE architecture.

As the complexity of the operations and the operand sizes increased, the

number of sites (instructions) generated per block also increased. With the

limited hardware that is proposed by the KITE architecture, the large block sizes

and block complexities pose a significant problem during the register allocation

phase. The focus of this research is to solve the problem of register allocation for

the complex code blocks generated by the bit-level operations. The BitC

compilation can be summarized as:

1. Word to bit level transformation and logic minimization

2. Generation of ites and sites

3. Register Allocation and Code Scheduling
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Steps 1 and 2 have been implemented earlier [Die03] and Step 3 is the topic of

current discussion.

Table 1.1 Logic Operations and ite structure

Logic Operation Equivalent ITE structure

(x AND y) (x ? y : 0)

(x OR y) (x ? 1: 0)

(NOT x) (x: 0 : 1)

(x XOR y) (x ? (y : 0 : 1) : y)

( (NOT x) ? y : z) (x: ? z : y)

1.1.3 Kentucky If-Then-Else (KITE) Architecture

The main goal of the KITE project is to reduce the hardware complexity

and achieve MIMD (Multiple Instruction, Multiple Data) programmability. This can

be achieved by the specialized compiler developed for KITE architecture that is

described in section 1.1.2. The target architecture is a very simple hardware

model. There are 3 main components to the hardware: Control Unit, Sequencer

and a Nanoprocessor. A detailed description of the hardware model can be found

in [Die03]

The Control Unit: The control unit in KITE architecture controls the program

memory interface and not the processors as in traditional SIMD architectures.

Implementation of MIMD programs across all the processors is done using MSC

which results in a very large meta-state automaton consisting of large basic

blocks of ites that end in k-way branches rather than binary branches. State

transitions from the current state to the next meta state are decided by a Global

OR (GOR) of votes from all the processors. The large meta state programs

generated by the compiler are loaded into off-chip memory that is interfaced by

conventional address (A) and data (D) buses. The controller would perform

decompression, branch prediction, and instruction cache management treating

each basic block as a single unit. This allows the control unit to pre-fetch code
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chunks using a relatively slow clock (C0) determined by the external memory

system, while internally broadcasting partially decoded instructions (sites) from

cache at a significantly faster rate (C1).

Figure 1.1 KITE Architecture

The Sequencers: The purpose of the sequencers is to make a slow broadcast of

sites to the nanoprocessor. Thus, there would be many sequencers, each

hosting a moderate number of nanoprocessors. The site representation of an

instruction actually is a compact form that generates four consecutive clock

cycles worth of control information for the nanoprocessors. Thus, the input clock

(C1) to a sequencer can be as much as four times slower than the

nanoprocessor clock. More precisely, a particular sequencer’s control line

outputs imply a “clock” for the nanoprocessors, but nanoprocessors are only

loosely synchronized across sequencers. Incorporating additional

nanoprocessors and sequencers could also provide a means for fault tolerance

by disabling the sequencer above each faulty component.
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The Nanoprocessor: The nanoprocessor consists of 1-bit registers, a single

register-number decoder and a 1-of-2 multiplexor. The operation of a multiplexor

is analogous to the software concept of an if-then-else; if the value in i is true,

return t, else return e. The value returned by the multiplexor can be stored in any

register selected. The site representation of an instruction is literally four register

numbers: the register to store into, one to load i, one to load t, and one to load e.

The sequencer simply converts that into a four-cycle sequence using RN

to specify the register number for the decoder and using the other lines to latch a

value into the corresponding register. Registers 0 and 1 are not registers, but

respectively generate the read-only constants 0 and 1. Similarly, for each

application, a KITE Nanocontroller will require specific network connections and

local input and output registers; these are addressed like registers starting with

register number 2. The minimum number of bits in a KITE register file is thus the

sum of 2 constant registers, the number of additional registers needed for

network and local input and output, the ceiling of log2 of the total number of

nanoprocessors in the system (for the control state), and the maximum number

of ordinary data bits required in any nanoprocessor. Given the above, a slightly

smarter sequencer could be used to opportunistically reduce the total number of

clock cycles required from 4 per site to as few as one — the result store cycle.

For example, if the same register number is used to load both i and t, the loading

of both can be accomplished in a single clock cycle. Further, if the current site

duplicates fields from the previous one, and those fields do not correspond to

network or local input or output accesses, the sequencer can skip loading of any

of i, t, or e. Such a sequencer would need to buffer incoming sites to compensate

for variability in the rate at which it processes sites, but execution time would still

be predictable because the optimization opportunities depend only on the site

sequence coming from the control unit.

The proposed KITE Nanocontroller architecture consists of a 64-bit

register file. Hence the first 64 ite index values represent the registers. ITE0 and
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ITE1 are used to represent constants 0 and 1 respectively at registers 0 and 1.

Network registers, input/output registers and the user-defines variables are

represented beginning from ite index 2. The ite operations are represented from

index 64.
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2 Background

This chapter describes the more traditional approaches to register

allocation and the early attempts at register allocation for KITE nanocontroller

architecture. With fewer than 64 single-bit registers available to hold the variables

and temporary intermediate values in addition to the complex basic blocks with

thousands of sites (instructions) per basic block, the traditional register allocation

methods proved to be inadequate.

2.1 Register Allocation Methods

The problem of register allocation involves finding an optimal assignment

of available registers within the hardware and/or software constraints. Numerous

approaches have been proposed to solve this problem. In the following sections

a few of the popular register allocation methods that were explored to solve the

register allocation problem of KITE architecture are explained.

2.1.1 Graph Coloring and its extensions

Register allocation via graph coloring was implemented by Chaitin et al

and is still a popular approach to register allocation. Chaitin’s register allocation

algorithm consists of live range construction, interference graph construction,

coalescing, spill cost estimation and graph coloring.

The live range of each virtual register is first determined followed by

generating an interference graph. The interference graph consists of one node

for each live range created. The graph also consists of arcs representing

interferences between two different live ranges. Once a stable interference

graph has been generated, a spill weight is calculated for each live range.

Chaitin's register allocator assigns a weight to each live range that represents the

cost of spilling it, which is the cost of executing the loads and stores that must be

inserted if the live range were to be spilled. When it is necessary to spill a node if

a register is unavailable, these estimates are used to select the live range to be

spilled.
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The actual coloring process in Chaitin's allocator is relatively simple. If

there exists a node v, such that the deg(v) < n, assuming a target processor with

n registers, then the node and all of its interferences are removed from the graph

and placed on a stack. If there are no nodes with deg(v) < n, then a node is

chosen to be spilled.

Optimal graph coloring is not simple and several enhancements have

been proposed to improve the allocation results. The main goal of most proposed

heuristics for graph coloring based register allocation is to minimize the number

of spilled nodes and the resulting spill code. Chaitin’s node-removal algorithm

[Cha82] is one such example that attempts to minimize the spill instructions

inserted and maximize the number of interferences removed from the graph to

select the spill nodes. This method of graph coloring does not necessarily

produce the best allocation in all situations. The actual number of spill/reload

events depends on the precise reference sequence, not just (potential) overlap of

lifetimes. Thus, costs are approximate. Many such variations to the graph

coloring method exist that use Genetic Algorithms [FIL97].

2.1.2 Heuristics for Directed Acyclic Graphs

Typically, basic blocks that are generated can be represented by Directed

Acyclic Graphs (DAGs). If the DAG is a tree, then a well-known algorithm by Ravi

Sethi and Jeffrey Ullman (described in detail in Chapter 3) is used to generate an

optimal evaluation in linear time. The problem of generating an optimal

evaluation for a given DAG is NP-complete. To generate a good evaluation order

for a DAG that is not a tree, this heuristic uses a mix of several simple evaluation

strategies that also include a randomized evaluation selection. These simple

evaluation strategies are applied concurrently and the best evaluation generated

is selected. The idea behind this approach is that there exists no uniform

heuristic that generates good evaluations for every possible DAG, but most of the

DAGs encountered in real programs belong to one of a few simple classes. For

each of these classes, there exists a simple algorithm that generates good, often

optimal evaluations. By running these simple algorithms "in parallel" and
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choosing the best result, this method aims to obtain a heuristic that copes with

most of the DAGs encountered in real programs.

2.1.3 Generalizations of the Sethi-Ullman Numbering algorithm

The Sethi-Ullman Numbering algorithm [SeU70] determines an order of

computation of the nodes of the tree that uses the fewest possible registers,

subject to following assumptions:

1. The properties of the arithmetic operators are not considered; that is, no

arithmetic identities are used.

2. All registers are equivalent; there are no operations that can produce results

only in certain registers.

3. The tree is a binary tree: each internal node has exactly two children.

4. The value of each node will fit in one register.

The four conditions listed above can be overly restrictive in real compilers.

Several extensions to Sethi-Ullman Numbering have been suggested such as

Generalizations of the Sethi-Ullman algorithm for register allocation [ApS86]. In

the paper two generalizations are proposed. The first generalization is to remove

the restriction on the degree of the nodes. The second generalization is to

remove the restriction on the size of the computed result.

Each subtree is evaluated first. The number of registers required to

compute the parent is the larger of the results of the first subtree evaluation and

the specified sum of the results of the rest of the subtrees. The result for the tree

is the minimum of results over all permutations of the tree orders since the trees

are not just binary. The paper claims that an optimal permutation turns out to be

no more difficult than sorting k numbers. The problem of finding an optimal

permutation is not trivial as size of the basic blocks increases. This method also

relies on register spill-reload as did the original Sethi-Ullman numbering.

Most of the existing register allocation methods assume spill-reload and

provide solutions for reducing the cost of spill-reload. Spill-reload solutions are
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not applicable to KITE architecture because of the absence of external memory.

Others assume simple basic blocks and hence propose algorithms where it is

relatively easier to find a schedule. With basic blocks containing instruction count

in the order of thousands, such algorithms could not be used for KITE

architecture.

2.2 Initial Register Allocation Attempts for KITE Architecture

In the early stages, a few simple approaches were used to test for

successful register allocation and get an idea of the size and scope of register

allocation for KITE architecture. A simple straight-forward register allocation

method and a Genetic Algorithm based reordering of the ites were used to get an

estimate of the complexity of the problem.

2.2.1 Register Allocation without Reordering

The very first attempt made at register allocation for BitC compiler-

generated code was a simple optimal basic block register allocation scheme

without reordering. It used no special techniques and was principally used to get

an estimate of the size of the problem. No instruction scheduling was done for

the ites that were generated; the instructions were scheduled in the order in

which the compiler naturally generated them.

The algorithm was a simple 2 pass scan. In the first scan, a schedule was

built for the ites and in the second scan register allocation was performed. This

method proved to be impractical, mainly because of the sheer size of a single

block of instructions and the extreme register pressure associated with the KITE

architecture. For example, a simple 2-operand, 8-bit multiplication operation

generated a basic block consisting of about 3000 instructions that were DAGs

and a large maxlive. While the basis of KITE architecture and the BitC compiler is

the reduction of all operations to single bit level, which resulted in the large basic

blocks, no amount of further optimization of code would reduce the basic blocks

to sizes where simple register allocation methods would be applicable. Ruling out

such a tremendous reduction of block sizes pointed to the other obvious problem
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– maxlive. The next step was to reorder the instructions so that the maxlive could

be reduced. While a number of valid schedules can be found, a simple reordering

to generate a valid schedule resulted in the maxlive of about 700, which is still a

very large number. The large block sizes made the process of finding the best

schedule from a very large number of search space very difficult.

2.2.2 Genetic Algorithm Based Reordering

To solve the problem of selecting a best schedule from a large set of

permutations, a Genetic Algorithm based ite reordering was used. A Genetic

Algorithm consists of generating random solutions for a given problem and

evaluating each solution to select the best. Genetic Algorithms are explained in

detail in section 3.2.

To eliminate the cost of generating a random schedule and checking for

its validity, only valid schedules were generated. The genome for such a GA is

an integer priority that was assigned to each instruction. A schedule was

generated by inserting a schedulable instruction with the highest priority at each

instruction slot. A population of valid permuted schedules was created. The

metric for each population member is evaluated. A metric represents a measure

of the validity of each schedule. For example, the metric may be a combination of

whether the schedule can be successfully allocated and how far off it is from

being successfully allocated. Or, the metric could represent maxlive – a larger

maxlive representing a poorer schedule. After the metric evaluation, a number of

methods may be used, such as a sorted order or tournament selection etc., to

select members for mutation and crossover operations (mutation and cross over

operations are explained in section 3.2). These operations reassign the priorities

or mix the priorities of the parents to generate new population members. The

schedule with the best metric at the end of the Genetic Algorithm was the chosen

solution.

A Genetic Algorithm based instruction reordering did not actually reduce

the number of instructions. Although, such a reordering found a schedule with
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lower maxlive, the maxlive was still around 250. Such a number is still too high

for the KITE architecture. Additionally, there is a possibility that the Genetic

Algorithm may not converge to a valid solution.
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3 Max Live Reduction

Chapter 1 described the hardware profile for which this research is

specifically targeted. As mentioned earlier, the total number of registers allowed

in the architecture is limited to 64. Registers 0 and 1 are hard-coded to represent

ITE0 and ITE1 and hence cannot be used for data storage or register allocation.

Of the remaining, some registers are used for input/output operations and for

holding variables. Some additional registers are also used to hold state

information. Using the registers for various purposes leaves fewer than 64

registers for temporaries during register allocation. As mentioned in Chapter 1,

KITE architecture and its compiler technology generate very large basic blocks.

With no external data memory, implementing instruction re-ordering or register

spill-reload is not practical or trivial. In this chapter we look at the previously

mentioned Sethi-Ullman numbering and the modification that this research

applied for successful register allocation.

3.1 Sethi-Ullman Numbering

Chapter 2 described the initial attempts that were made for register

allocation of ites. These attempts made it clear that the biggest obstacle that was

the large maxlive and any solution for successful register allocation should aim to

reduce maxlive. The Genetic Algorithm based instruction reordering described in

section 2.2.2 also established the fact that mere instruction reordering does not

reduce the maxlive down to a number where the available registers can be used

without the need for register spilling. Sethi-Ullman Numbering provides an

algorithm to find the minimum number of registers required for evaluation of

binary trees. This section explains the Sethi-Ullman numbering in detail.

Ravi Sethi and Jeffrey Ullman developed an algorithm called the Sethi-

Ullman Numbering (SUN) that can be used to generate optimal code for

arithmetic expressions [SeU70] in 1970. The assumptions made by SUN are

straight forward and can be met even today by most computer designs. The

algorithm assumes that there are N ≥ 1 general-purpose registers available, each
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of which may be interchangeably used as source or destination in an operation.

The algorithm for register allocation deals with single arithmetic expression

involving binary operations. Each arithmetic operation can be expressed as a

binary tree that links each binary operation to two operations that provide its

operand values. Leaf nodes in a tree represent initial values and constants.

The SUN algorithm proceeds in distinct phases. In the initial phase, each

node is labeled with a number, according to a set of rules (described below). The

label of each node represents the minimal number of registers required to

evaluate the subtree rooted at that node without requiring any stores (i.e., without

register spill/reload). The labels are then used to order node evaluation and

register allocation.

 A bottom-up walk of the tree is done to assign each node η with a label 

L(η).  Table 3.1 shows the rules that are used to determine the label for each 

node of a binary tree. Rule 1 implies an additional assumption that the binary

instructions have a register-memory model in which the right descendant can be

accessed directly from memory, provided that the left descendant has been

loaded into a register. In other words, an instruction can be of the form reg <- reg

+ mem, absorbing the fetch of the right operand into the parent instruction.

However, rule 1 can be adjusted to accommodate architectures without register-

memory instructions by simply assigning any leaf node with a label of L(η) = 1. 

Rule 2 reflects use of register- register operations for nodes that are not leaves.

After the tree is generated and the nodes are labeled, the algorithm

proceeds to the second phase of evaluating the tree for register allocation. The

evaluation is done as a recursive walk, starting at the root node and then

selecting an evaluation order for the descendants of each node such that the one

with higher label is executed first. The actual register allocation and output of the

instruction schedule is done as the recursion unwinds from the leaf nodes of the

tree. Since the label on each node is the maximum of live values in the subtree
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rooted at that node, provided that the label does not exceed the number of

registers available in the architecture, it is trivial to assign a register to each

node. If the label on any node exceeds the number of registers in the

architecture, SUN provides a simple solution in which values can be selected to

be spilled from registers to memory and reloaded when necessary.

Table 3.1 SUN Labeling Rules

Node Condition Rule

1. η is a leaf 1. If η is left descendant, L(η) = 1.  

2. If η is a right descendant, L(η) = 0; 

2. η is a not a leaf If η has descendants with labels l1 and l2,

1. If l1 ≠ l2, L(η) = max(l1, l2);

2. If l1 = l2, L(η) = l1 + 1;

The entire procedure visits each node at most a constant number of times

resulting in an O(n) complexity for instruction scheduling and register allocation

for n operations. Given the assumptions that were made for SUN, the algorithm

results in an optimal solution for the instruction count and the register count

needed for the evaluation of an arithmetic expression. Figure 3.1 shows an

example binary tree for the arithmetic expression:

(a % (b + c)) – (d * (e + f)).
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Figure 3.1 SUN Example

Unfortunately, the assumption that registers can be spilled does not hold

true for register allocation for KITE architecture because of the absence of

external data memory. In addition, SUN cannot be directly applied to the basic

block generated by BitC compilation because SUN assumes that the trees to be

evaluated are binary trees where as BitC generated ternary operations in the

form of DAGs. So, even the node labeling rules, as described in Table 3.1 cannot

be applied to BitC generated code without some extensions.

3.2 Genetic Algorithms

Genetic search algorithms follow the Darwinian principle of Natural

Selection to evaluate potentially good designs using computer simulation so as to

find a good solution to solve complex engineering problems. A set of solutions to

a problem constitutes the population. The term genotype is used to refer to the

internal representation of the relevant characteristics of the population. The term

phenotype refers to the external characteristics of each individual of the

population. A fitness or metric is calculated for each individual. The metric usually

refers to how close an individual of the population is to the desired final solution.

It is used for assigning a rank to all the individuals of the population. The ranking

is used to determine which individuals should survive and propagate to the next

generation and which individuals should be discarded or modified. Newer
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individuals are produced by methods such as crossover and mutation operations

to replace the bad solutions and create a new generation. Crossover operation

combines the characteristics of two or more existing individuals to create a new

individual. Mutation operation creates a new individual by modifying the genotype

of an individual.

In a Genetic Algorithm, a random initial population is created and a metric

is assigned to each individual of the population. The individual with the best

metric is the best solution of the population of the current generation. Newer

generations of populations are created from existing individuals using crossover

and mutation operations and each individual is evaluated and assigned a metric.

A best solution from the population of the latest generation is selected. The

process of creating generations of population, evaluating them and selecting a

best solution continues for a preset number of generations or until any other

terminating condition is reached.

For the register allocation problem of the KITE architecture, a set of CSEs

is treated as a phenotype. A vector that consists of single bits, with each bit

corresponding to one CSE, is the genotype. The bits in the vector are randomly

turned on or off (that is, set to 1 or 0 respectively). A CSE with its corresponding

bit turned on in the vector will be stored in a temporary register so that it can be

accessed until its reference count is zero. A CSE whose bit in the vector is turned

off is recomputed every time it is referenced. The population of the genetic

algorithm is made up of a number of CSE vectors with the CSE bits randomly

turned on or off. A metric assigned to each individual is a combination of the

maxlive and the instruction count required to evaluate the basic block. The metric

is evaluated by doing register allocation of the sites and storing those CSEs

whose bit in the vector is turned on. The individuals with lower maxlive and

instruction count are assigned a lower metric. The individuals that fail the register

allocation, because the set of CSEs turned on in the vector resulted in a higher
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maxlive than the available number of registers, get the highest metric. For

register allocation in the KITE architecture, the smaller the metric, the better.

3.3 Sethi-Ullman Numbering Extension

The nanocontrollers defined by the KITE architecture have N ≥ 1 general

purpose registers, which are required by SUN algorithm. However, the

nanocontrollers :

1. Do not support register-memory instructions, because there is no external

memory. There are only 64 single-bit registers.

2. Use single-bit operations to implement all functions, thus requiring logic

optimization techniques which naturally yield Directed Acyclic Graphs (DAGs)

rather than trees.

3. Implement ternary, not binary operations.

4. Have issues that require considering the evaluation of multiple expressions as

a single, integrated problem; even if the DAGs were trees, the ordering of the

trees must be considered because the results from earlier computations are

stored in registers.

The lack of register-memory instructions requires only a minor adjustment

to the node labeling of SUN algorithm. However, the three other issues that are

specified above are more difficult to resolve. There have been many attempts to

extend SUN to handle optimal register allocation and instruction scheduling for

DAGS [ApS86]. The fact that DAGs for nanocontroller programs are

exceptionally large and complex makes the algorithm’s execution time significant

and yields a very small fraction of the DAGs for which special-case extensions of

SUN can be applied. This research first tackles the problem of DAGs trees by

converting the DAGs to trees. This is done by recomputing (or replicating) every

CSE at every node where the CSE is referenced. Coincidentally, this process

also reduces maxlive because it is not required to store any CSEs. This solution

may seem extreme, but DAGs generally have an inherently higher maxlive than a

tree. Given the extreme register pressure in the KITE architecture, it became

necessary to focus first on reducing maxlive and only then to attempt to use



22

some of the benefits of CSE elimination. After tree generation, the next step is to

find the optimum number of registers required to evaluate a node. This is done

by using Sethi-Ullman Numbering and extending it to the ternary trees of

nanocontroller blocks.

3.3.1 Tree Generation

BitC compiler for KITE Nanocontroller architecture generates basic blocks

that contain large and complex DAGs with many CSEs. The BitC compiler-

generated DAGs contain nodes which represent ites. To extend the SUN

algorithm for nanocontroller generated basic blocks it is necessary to convert the

ite-DAGs to a tree representation. All the ites are first converted to sites by

combining the ite operation with a store into a register operation. Each site

corresponds to a node in the ite-DAG. The root node of every DAG corresponds

to a site that represents the final store into a variable. All the interior nodes

correspond to the temporary sites. The KITE hardware was originally designed to

have 64 single bit registers. These 64 registers (numbered 0 – 63) are used for

ites 0 and 1 (ITE0 and ITE1) and the user variables. Hence the temporary sites

are numbered starting from 64. After the ite to site conversion, a site-tree is

generated by re-computing the CSE nodes. The leaf nodes of the site-tree

correspond to either the ites 0 and 1 or the initially defined user-variables.

Figure 3.2 shows sample code for the ites generated by the BitC compiler

and their corresponding site representation. Figure 3.3 shows the DAG

representation of the sites of the sample code in Figure 3.2.
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Figure 3.2 ite to site conversion

Figure 3.3 DAG Representation of sites

A site-tree is generated from a DAG by replicating each common site at

every node that references the common site. The DAG tree shown in Figure 3.3

consists of a node 64 that is referenced by node 65 and node 67. To convert the

DAG to a tree representation, node 64 is replicated at each reference. Figure 3.4

shows the tree generated from the DAG in Figure 3.3.



24

Figure 3.4 Tree representation of sites

3.3.2 Extended Sethi-Ullman Numbering

The first step in tackling the register allocation problem is to reduce the

high maxlive caused by the large and complex basic blocks which are in the form

of DAGs. This is done by converting DAGs to trees by eliminating the common

subexpressions of the DAG. The next step is to compute the optimum number of

registers required for the trees. The three operand ite operation which is the main

feature of KITE hardware and software results in ternary trees and hence the

SUN algorithm, which focuses on the binary trees, has to be extended to ternary

trees. The presence of three child nodes for all non-leaf nodes requires a more

complex set of labeling rules than in SUN. Table 3.2 shows the labeling rules

developed for BitC compiler generated basic blocks. Constant values 0 and 1,

user-defined variables and any other input/output values are assumed to be

already stored in registers and hence do not require any register allocation. The

nodes corresponding to such pre-allocated values are represented as leaves of

the tree. Hence, rule 1 of the extended SUN shown in Table 3.2 implies that the

label (or the number of registers required during register allocation) for leaf nodes

is always zero. Rule 2 of the extended SUN defines node labeling for

intermediate nodes.
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Table 3.2 Extended SUN Labeling Rules

Node Condition Rule

1. η is a leaf L(η) = 0; 

2. η is a not a 

leaf

If η had descendants with labels l1, l2 and l3 such that ,

l1 ≥ l2 ≥ l3

a. l1 > l2 > l3, L(η) = l1;

b. l1 > l2 = l3 = 0, L(η) = l1;

c. l1 > l2 = l3 ≠ 0, l1 - l2 = 1,  L(η) = l1 + 1;

d. l1 > l2 = l3 ≠ 0, l1 - l2 > 1,  L(η) = l1;

e. l1 = l2 > l3,  L(η) = l1 + 1;

f. l1 = l2 = l3 ≠ 0, L(η) = l1 + 2;

g. l1 = l2 = l3 = 0, L(η) = 1;

The two rules in Table 3.2 are defined for ternary trees and not DAGs that

are produced by the BitC compiler. Although the rules for labeling the ternary

trees of the KITE architecture are based on the labeling of binary trees of SUN,

the rules of the extended SUN require more checks of the child node labels than

in SUN. A generalization of extended SUN to label an n-ary tree (a tree with n

child nodes) is discussed later in the chapter.

Figure 3.5 shows the node labeling of the ternary trees using the labeling

rules of extended SUN that are defined Table 3.2. All the leaf nodes, indicated by

node values less than 64 (nodes 0, 1, 2, 3 and 4) require no extra registers.

Therefore, the figure shows no labels for the leaf nodes. The labels for all the

intermediate nodes are calculated using the labeling rules.
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Figure 3.5 Tree labeling using extended SUN

3.3.3 Register Allocation using SUN

Algorithm 1 discussed in section 3.3.3.1 evaluates the number of registers

and instructions required for each store into a variable in a basic block. The root

node of every tree represents a final store into a user-defined variable. Therefore

the root node (or the store node) of every tree has a node number less than 64.

Starting from node 64 are all the intermediate sites that actually require register

allocation. Tree evaluation proceeds from the top, starting from the root node, to

the leaf nodes. Each node’s descendants are evaluated recursively. Label for

each node, which represents the number of registers required at the time of

evaluation of that node, is generated as the tree is traversed from top to bottom.

________________________________________________________________
3.3.3.1 Algorithm 1

For every node,

1. If the node is not a store, skip to next node.

2. If the node is a store, examine its sub-tree as follows:

a. For each child node of the current node:

i. Evaluate the number of registers required for the node by applying the

labeling rules defined in extended SUN to the node’s sub-tree.

ii. Track the node’s reference count and increment it each time the node is

referenced.

iii. Evaluate the number of instructions required (called depth) for the node.

The depth of any node is the sum of the depths of the descendants.
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b. Calculate the number of registers and depth for the store node, again

using the labeling rules of extended SUN.

Algorithm 1 evaluates a single basic block. Registers for each

intermediate node are allocated during the evaluation of the node. Instruction

count is also evaluated by adding all the nodes evaluated during the tree

traversal. A reference count for each node is maintained to keep track of the

number of times each node is referenced by any other node. Any node that has a

reference count greater than 1 is a common subexpression. As mentioned in

section 3.3.1, a tree is generated by replicating the common subexpressions.

Every node that is a common subexpression is expanded to form a complete

sub-tree rather than storing the node’s value. Algorithm 1 merely updates the

reference count of each node of the basic block. Common subexpressions are

not stored temporarily to be readily accessed when referenced again. Instead,

each common subexpression node is entirely re-evaluated every time it is

referenced. The advantage with this approach is that once a node has been

evaluated, all the temporary registers used to evaluate it, that is the registers for

the node’s sub-tree, are freed and the risk of running out of registers is extremely

reduced. The disadvantage is that evaluation of the nodes, including the re-

evaluation of the common subexpressions each time they are referenced, results

in instruction count increasing exponentially. A simple 8-bit square (a2) operation

typically required less than 20 registers whereas the instruction count is in the

order of thousands.

Algorithm 1 results in the register usage being much lower than the total

number of registers available, whereas the instruction count is exceptionally high.

The high instruction count could be potentially reduced by using the unused

registers to store the common subexpressions. All the common subexpressions

of a basic block cannot be stored as that would increase the maxlive and defeat

the purpose of this research. However, selectively storing only a few common

subexpressions such that maxlive does not exceed the register limit would
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certainly reduce the instruction count. The problem of selecting a few common

subexpressions to store is not trivial. Exhaustive search of all the combinations

may be a viable option for smaller sets, but the search space grows exponentially

as the number of common subexpressions grows. For example, an 8-bit, two-

operand multiplication generated 939 common subexpressions; this yields 2939

different combinations to search. An alternative approach that uses a genetic

algorithm to tackle this problem is described in the next section.

3.4 Extended Sethi - Ullman Numbering with Genetic Algorithm

Although Algorithm 1 solves the problem of large maxlive of KITE

architecture’s nanocontroller code by eliminating temporary storage of common

subexpressions, the number of instructions executed per block increases

significantly because of the conversion of DAGs to trees. It is possible to reduce

the total number of instructions executed per block by storing a subset of the total

number of common subexpressions generated per block temporarily. This

section describes methods that are used to select a set of common

subexpressions that can be stored for multiple references while remaining within

the register limit, thus reducing the instruction count.

3.4.1 Extended SUN using Genetic Algorithm

Algorithm 1 helps identify the common subexpressions of a basic block by

tracking the reference count of all the nodes. Common subexpressions are the

nodes with a reference count greater than 1. To reduce the total instruction count

per block, it is necessary to selectively store a subset of common subexpressions

during register allocation, or possibly all of them, and stay with in the register

limit. With very large basic blocks generated by the KITE architecture’s BitC

compiler, the probability of large sets of common subexpressions is very high.

Algorithm 2 extends the maxlive reduction developed in Algorithm 1 to generate

a set of common subexpressions that can be stored by using a genetic algorithm.

The genetic algorithm may not produce the most optimal result for reducing

maxlive and instruction count. However, any good result that is produced by a
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genetic algorithm results in an instruction count that is smaller than that of

Algorithm 1.

________________________________________________________________
3.4.1.1 Algorithm 2

1. Apply rules 1 and 2 of Algorithm 1 to calculate the reference counts of all the

nodes and determine the set of common subexpressions.

2. Create a vector of single bits, each bit corresponding to a common

subexpression. The vector size is equal to the total number of common

subexpressions. The vector represents the genotype of the population of the

genetic algorithm.

3. Create an initial population of common subexpression vectors. This is done

by randomly turning the bits in the genotype vector on or off for each member

of the population.

4. If the node is a store, for each child node:

a. Compute the registers required:

i. Node is a CSE with its vector bit turned and is referenced for the very

first time - compute the number of registers required for the node by

applying the labeling rules defined in extended SUN and allocate a

register for the node.

ii. Node is a CSE with its vector bit turned one and the current reference is

greater than 1 – this indicates that this node has already been evaluated

and the result stored in a register. Therefore, no extra evaluation is

required and the number of registers required is zero.

iii. Node is a CSE with its vector bit turned off - the node is not stored in a

register and has to be re-evaluated. The total number of registers

required will be computed using extended SUN.

b. If number of registers required for the node is greater than the register

limit of the system go to step 5.a.

c. Evaluate the number of instructions required (or the depth) for the node.

i. Node is a CSE with its vector bit turned off and the current reference to

the node is 1 – this indicates that this node has not been previously
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evaluated. Compute the depth of the node, which is the sum of the

depths of the descendants.

ii. Node is a CSE with its vector bit turned on and the current reference

count is greater than 1 – this indicates that the node has been evaluated

and the result is stored in a register. Therefore, the depth for the node

for all references greater than one is 1.

iii. Node is a CSE with its vector bit turned off - this node has to be re-

valuated. There for the total number of instructions required to evaluate

the node is the sum of the all the descendants of the node.

d. Go to step 5.b.

5. Evaluate the metric of each individual of the population.

a. Assign a large metric to the current population such that it is proportional

to the number by which the register limit is exceeded.

b. Calculate the metric such that it is a function of the number of register and

number of instructions required to evaluate each basic block.

6. Repeat steps (4) – (5) for the entire population.

7. Sort the population based on the metric of each individual and select the best

result. In this case, it is the one with the lowest value of the metric.

8. Create newer population members by applying crossover and mutation

operations.

9. Repeat steps (4) – (8) for a predetermined set of generations. The final

solution is the one with a lower metric among the best results of all

generations.

Algorithm 2 is a two pass scan of a basic block. Step 1 is the first pass in

which the number of registers and instructions required for each store in a basic

block are calculated conservatively. The first pass, which is Algorithm 1, is done

to compute the reference counts of all the nodes and identify the common

subexpressions (that is, nodes with reference count greater than 1). The rest of

Algorithm 2 constitutes the second pass in which register allocation is done by

using a genetic algorithm. A bit vector corresponds to a list of all the common
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subexpression nodes in the basic block. If a bit is turned on, the corresponding

common subexpression node is evaluated the first time and stored in a register.

If a bit is turned off, the common subexpression node is evaluated every time it is

referenced and is not stored in a register temporarily. An initial population of bit

vectors is created by turning the bits on or off for every individual vector. Step 4

reflects a big change from Algorithm 1, where the common subexpressions are

selectively stored after they are evaluated the first time, to be used for all

subsequent references. Even though storing the common subexpressions

increases maxlive, in some cases it may possible that the number of registers

required decreases. The reduction can be attributed to the fact that in the case of

a common sub-expression with a large tree, storing the CSE in a register may

reduce the number of registers required to evaluate its large sub-tree, thus

reducing the maxlive. The total number of instructions required for each node

that accesses a stored common subexpression is also reduced. The fitness value

or the metric of each individual of the population is a function of the number of

registers and the number of instructions required for each basic block. Step 4b

implies that if the number of registers required to evaluate a node exceeds the

register limit, the current population member cannot be used and is regarded as

a bad solution. Therefore, a large constant metric value, which is proportional to

the number of registers by which it exceeds the register limit, is assigned to a

bad solution.

After the metric is assigned to all individuals, the population is

approximately sorted. A subset of the population that will survive and propagate

to the next generation is determined by the sorted order. Therefore, the sort is

deliberately made approximate and stochastic to ensure that the population

maintains an acceptable level of genetic variety. It is necessary to have a

population with genetic variety so that the results are not skewed towards one

direction because of similar population members. The members of the population

that are not selected to survive are replaced by newer members created using

crossover and mutation operations. For the register allocation of nanocontrollers,
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two-parent crossover is implemented, in which a new common subexpression bit

vector is created by combining the bit vectors of two existing individuals.

Mutation is implemented by randomly changing some bit values of an existing

individual.

3.4.2 Extended SUN: Tree Re-Ordering

The large basic blocks with large maxlive that are generated by the BitC

compiler made it essential to find a register allocation solution by reducing

maxlive. Algorithm 1 converted DAGs generated by the BitC compiler to trees in

order to minimize maxlive. Algorithm 1 also resulted in many unused registered

and increased instruction count because of re-evaluation of all common

subexpression at each reference. Algorithm 2 selectively stored common

subexpressions to reduce the instruction count. Algorithms 1 and 2 perform a

straight-line tree evaluation, which means each tree is evaluated in the order of

its appearance in the basic block. The next step is to find a tree evaluation order

that may result in a solution that is better than the one generated by Algorithm 2.

The process of finding a tree evaluation order is not trivial because of the large

code blocks generated by BitC compiler. Therefore a genetic algorithm is used

for finding a tree-evaluation order as in Algorithm 2.

The basic rules for register allocation and instruction count are the same

as in Algorithm 2. Algorithm 3 extends Algorithm 2 to select a tree evaluation

order using a genetic algorithm. Two Genetic Algorithms must be applied

simultaneously to two different structures namely – (1) the set of common

subexpressions and (2) the set of trees. The root node of each tree is a final

store into a register. The final stores are indicated by node numbers that are less

than 64.
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________________________________________________________________
3.4.2.1 Algorithm 3

1. Apply rules 1 and 2 of Algorithm 1 to calculate the reference counts of all the

nodes and determine the set of common subexpressions.

2. Create an initial population for the final stores. This is done by randomly

assigning priority to each store and sorting the stores in decreasing order of

the priority, which means that each tree, now called a priority tree, is

evaluated in the order of its priority.

3. Create an initial population for the common subexpressions. This is done by

randomly turning the bits of the genotype on or off for each member of the

population.

4. For every child node of every store node in the priority tree

a. Compute the registers required:

i. Node is a CSE with its vector bit turned and is referenced for the very

first time - compute the number of registers required for the node by

applying the labeling rules defined in extended SUN and allocate a

register for the node.

ii. Node is a CSE with its vector bit turned one and the current reference is

greater than 1 – this indicates that this node has already been evaluated

and the result stored in a register. Therefore, no extra evaluation is

required and the number of registers required is zero.

iii. Node is a CSE with its vector bit turned off - the node is not stored in a

register and has to be re-evaluated. Therefore, the total number of

registers required will be computed using extended SUN.

b. If number of registers required for the node is greater than the register

limit of the system go to step 5.a.

c. Evaluate the number of instructions required (or the depth) for the node.

i. Node is a CSE with its vector bit turned off and the current reference to

the node is 1 – this indicates that this node has not been previously

evaluated. Compute the depth of the node, which is the sum of the

depths of the descendants.
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ii. Node is a CSE with its vector bit turned on and the current reference

count is greater than 1 – this indicates that the node has been evaluated

and the result is stored in a register. Therefore, the depth for the node

for all references greater than one is 1.

iii. Node is a CSE with its vector bit turned off - this node has to be re-

valuated. There for the total number of instructions required to evaluate

the node is the sum of the all the descendants of the node.

d. Go to step 5.b.

5. Evaluate the metric of each individual of the population.

a. Assign a large metric that is proportional to the number of registers

exceeded to this member.

b. The metric is a function of the number of register and instructions

required to evaluate each basic block.

6. Repeat steps (4) – (7) for the entire population.

7. Sort the population based on the metric value of each individual.

8. Apply crossover and mutation operations to create new individuals in the

populations of trees and the common subexpression bit vectors.

9. Repeat steps (4) – (10) for a preset number of generations.

3.5 Generalization of Extended SUN for of n-tuples

The Sethi-Ullman Numbering method described in section 3.1 specifies

labeling rules for arithmetic expressions represented by binary trees. An

extended set of labeling rules is described in section 3.3.2 for ternary trees

generated by the BitC compiler of KITE Nanocontroller architecture. A

comparison of the labeling rules of SUN and extended SUN shows an increase in

the number of rules as the order of the trees increases from binary to ternary. As

the order of the trees increases further, it becomes difficult to develop a set of

labeling rules that is comprehensive. Section 3.5.1 describes a generic node

labeling method for an n-ary tree (a tree with n child nodes).
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3.5.1 Labeling Rules for an n-ary tree

Table 3.3 contains the labeling rules an n-ary tree. Rule 1 of Table 3.3 is

the same as that of SUN in Table 3.1 and of extended SUN in Table 3.2, that is,

the leaf nodes do not require any extra registers because they are pre-stored in

registers as user defined variables or constants. Therefore, the label of leaf

nodes is zero. Rule 2.a implies that the label of a node is 1 if all the children of

the node have a label of 0. Rule 2.b implies that the label of a node whose

descendants have unique labels is equal to the largest label of all its

descendants. Rules 2.c and 2.d do not assign a label to any node and are used

to determine a label that is used as an intermediate value. When any 2

descendants are compared, if the two nodes have the same label, the number of

registers required for the evaluation of the two nodes is one more than either

label. If the two nodes have different labels, the number of registers required for

the evaluation of the two nodes is the larger of the two labels. Intermediate labels

are generated by comparing iteratively all the child nodes of the current node.

The iterative comparison generates a set of unique labels that is sorted. Rule 2.b

is applied to the sorted set of descendant labels to assign a label to the parent

node.

Table 3.3 Labeling rules for a generic tree

Node Condition Rule

1. η is a leaf L(η) = 0; 

2. η is a not a leaf If η had n descendants with labels l1, l2, l3 … ln

a. l1= l2= l3…= ln = 0, L(η) = 1 

b. l1 > l2 > l3…> ln, L(η) = l1

For any 2 descendants with labels lr and lr+1

c. lr = lr+1, L(l) = lr + 1

d. lr > lr+1, L(l) = lr,

where L(l) is the number of registers required for the 2

descendants only
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3.5.2 Register Allocation Algorithm for an n-ary tree

The register allocation for an n-ary tree uses the labeling rules described

in Table 3.3. The register allocation algorithm is applicable to trees. Therefore, all

the DAGs must be converted to trees by replicating all the common

subexpression nodes at every point of reference.

3.5.2.1 Algorithm 4

For every node

1. If the node is a final store go to step 2, else skip to the next node.

2. Evaluate the number of registers required for the node by applying the

labeling rules:

a. If the node is a leaf return zero.

b. If the node has descendants, for each child node, go to step 2.

c. If all the descendants are evaluated, generate a sorted set of descendant

labels. Temporary values are generated by comparing every descendant

label to its adjacent label recursively by applying rules 2.c and 2.d.

d. The number of registers required for the node is the largest of the sorted

descendant labels.

As in Algorithm 1, common subexpressions are not stored temporarily

using Algorithm 4. All the common subexpression nodes are re-evaluated at

every reference. Algorithm 4 reduces maxlive and results in fewer registers being

used for register allocation but increases the number of instructions. The number

of instructions can be reduced by selectively storing the common nodes

temporarily while staying within the register limit. This can be done by using a

genetic algorithm similar to that used in Algorithm 2.

Although the labeling rules for a generic n-ary tree defined in Table 3.3

have been developed, the register allocation algorithm for an n-ary tree has not

been implemented because the main goal of this research was register allocation
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for the ternary trees generated by the BitC compiler of the KITE architecture as

described in Algorithms 1, 2 and 3.
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4 Results

Algorithms 1, 2 and 3 were analyzed by executing three trials. Each trial

consisted of executing a BitC program three times using 2-bit, 4-bit and 6-bit

operands (thus, a total of 9 different tests). Each program was a mix of simple

addition, subtraction, multiplication and division operations. For algorithms 2 and

3 that used genetic algorithms, the total number of generations in each was 10

and the maximum population count was 1000. Each genetic algorithm performed

crossover operation on 300 individuals and mutation operation on 200

individuals.

Algorithm 1, which converts DAGs to trees, was used to calculate the total

number of CSEs in every trial. The root node of each tree represents a final store

of the result of an arithmetic operation in every trial. The CSEs identified in

Algorithm 1 are used in Algorithm2 to generate a genome represented by a bit-

vector. Each bit in the vector corresponds to a CSE. Therefore the size of the bit

vector is equal to the number of CSEs in each trial. In Algorithm 3, the genome

consists of an array of trees. Each element of the array corresponds to a tree. A

random priority assigned to each tree element in the array determines the order

of tree evaluation. In each test run, maxlive was computed by performing actual

register allocation, in addition to determining the number of registers required for

tree evaluation by node labeling using extended SUN. Additionally, sites (or the

instructions executed) for each tree are also calculated.

4.1 Results

The following sections plot bar graphs for the 27 test runs (that is, nine

BitC programs executed three times each using extended SUN, extended SUN

using Genetic Algorithm and extended SUN using Tree Re-Ordering algorithms).

Two sets of graphs are plotted per sample program – one for maxlive and the

other for the sites per block. Each graph shows a comparison of the three

algorithms. In each graph, the Y-Axis consists of 3 groups of bars. Each group

represents the execution of the three algorithms for one set of operand sizes.
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Group 1 corresponds to a BitC program with 2-bit operands. Group 2

corresponds to the same BitC program with 4-bit operand and Group 3

corresponds to the same BitC program with 6-bit operands. The X-axis

represents maxlive or sites. Algorithm 1 is represented as ‘SUN’ series,

Algorithm 2 is represented as ‘SUN-GA’ series and Algorithm 3 is represented as

‘SUN-GA-TREE-REORDER’ series.

4.1.1 Trial 1

Trial 1 consists of the following BitC program:

int: x a, b, c;

c = a * c;

a = a + c;

In the program, x may be for 2, 4 or 6 indicating 2-bit, 4-bit or 6-bit

operands respectively for a, b and c. In the 2-bit run, the total number of CSEs

generated was 2. In the 4-bit run, the total number of CSEs generated was 34. In

the 6-bit run, the total number of CSEs was 324.

Figure 4.1 and Figure 4.2 show the bar graphs for the maxlive and sites

respectively generated for the BitC program of trial 1. Group 1 shows the results

of the three algorithms, Algorithm 1, Algorithm 2 and Algorithm3, for 2-bit

operands. Group 2 shows the results of the three algorithms for 4-bit operands.

Group 3 shows the results of the three algorithms for 6-bit operands. For Trial 1,

as the CSEs were turned on selectively in the SUN-GA and SUN-GA-TREE-

REORDER series, maxlive increased whereas sites decreased when compared

to the SUN series where no CSEs were stored.

In Group 1, the maxlive for SUN is 33.3% less than that of SUN-GA and

SUN-GA-TREE-REORDER series whereas the sites for SUN-GA and SUN-GA-

TREE-REORDER were 25% less than in the SUN series. The difference in the

results is not as pronounced because the number of CSEs for Group 1 is only 2.

In Group 2, the maxlive for SUN is 85% less than in SUN-GA and 79% less than
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in SUN-GA-TREE-REORDER series. The sites in SUN-GA and SUN-GA-TREE-

REORDER series are 71% and 69% less respectively than in the SUN series. In

Group 3, the maxlive in SUN series is 81% less than in SUN-GA and SUN-GA-

TREE-REORDER series whereas sites in SUN-GA and SUN-GA-TREE-

REORDER series are only 49% less than the SUN case.

Figure 4.1 Trial 1 - maxlive
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Figure 4.2 Trial 1 - sites

4.1.2 Trial 2

Trial 1 consists of the following BitC program:

int: x a, b, c;

a = a * c;

b = b * c;

In the program, x may be for 2, 4 or 6 indicating 2-bit, 4-bit or 6-bit

operands respectively for a, b and c. In the 2-bit run, the total number of CSEs

generated was 0. In the 4-bit run, the total number of CSEs generated was 22. In

the 6-bit run, the total number of CSEs generated increased significantly to 322.

Figure 4.3 and Figure 4.4 show the bar graphs for the maxlive and sites

generated. Group 1 shows the results of the three algorithms for 2-bit operands.

Group 2 shows the results of the three algorithms for 4-bit operands. Group 3

shows the results of the three algorithms for 6-bit operands. As in Trial 1, when



42

the CSEs were turned on selectively in the SUN-GA and SUN-GA-TREE-

REORDER series, maxlive increased whereas sites decreased again when

compared to the SUN series where no CSEs were stored.

Figure 4.3 Trial 2 - maxlive
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Figure 4.4 Trial 2 -sites

In Group 1 with zero CSEs, the results for maxlive and sites results are

identical in the SUN, SUN-GA and the SUN-GA-TREE-REORDER series. In

Group 2, the maxlive for SUN is 64% less than the SUN-GA and SUN-GA-TREE-

REORDER series whereas the sites for SUN-GA and SUN-GA-TREE-

REORDER are approximately 45% less than in the SUN series. Group 2 shows

almost identical results in the SUN-GA and the SUN-GA-TREE-REORDER

cases for maxlive and the sites. This is not unexpected because re-ordering of

the tree evaluation does not always yield a better result as the results depend on

the quality of the genetic algorithms. In Group 3, the maxlive for the SUN series

is 80% less than in SUN-GA series and 81% less than in SUN-GA-TREE-

REORDER series. The sites for SUN-GA and SUN-GA-TREE-REORDER are

only 50% and 46% less than the SUN series. It is interesting to note that in

Group 3 both maxlive and sites are higher in the SUN-GA-TREE-REORDER

series when compared to the SUN-GA case which is not surprising. The tree

reordering increases the search space significantly and makes the genetic

algorithm converge slowly, so a superior result may not be produced in the time
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allotted. It should also be noted that when the CSEs increase greatly, a larger

percentage increase in maxlive does not necessarily decrease the sites by a

similar margin.

4.1.3 Trial 3

Trial 1 consists of the following BitC program:

int : x a, b, c, d;

c = a / b + d;

In the program, x indicates the bit size of the operands a, b, c and d. The

value of x was chosen to be 2, 4 and 6 in three different runs of the program,

each run executing modified SUN, modified SUN with GA and modified SUN with

tree reorder. Figure 4.5 and Figure 4.6 show the bar graphs for the maxlive and

sites generated. Each bar represents the program execution for a specific

operand size and a specific algorithm.

In the 2-bit run, the total number of CSEs generated was 8. In the 4-bit

run, the total number of CSEs was 132. In the 6-bit run, the total number of CSEs

generated was 1158. The CSEs generated in each case are greater in number

when compared with the corresponding runs in Trial 1 and Trial 2 because a

division operation, like that in Trial 3, increases the total number of ites, sites and

hence the CSEs. Figure 4.5 and Figure 4.6 shows yet again that larger the

number of CSEs, higher is the maxlive and sites. The plots show mixed results

for the 3 groups. The total sites for the modified SUN case in Group 3, the 6-bit

run, is nearly 20,000 whereas in the Group 1, the 2-bit run with modified SUN

applied, the total sites is 40. This variation makes the plots in Group1 nearly

invisible.
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Figure 4.5 Trial 3 - maxlive

Figure 4.6 Trial 3 - sites
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In Group 1 with 8 CSEs, the maxlive for the SUN case is 33.3% less than

that of SUN-GA and SUN-GA-TREE-REORDER cases. The sites in the SUN-GA

and SUN-GA-TREE-REORDER cases are 55% of the SUN case. This result for

maxlive in Group 1 of Trial 2 is similar to the result for Group 1 in Trial 1. In

Group 2, the maxlive in the SUN case is 86% less than the SUN-GA and SUN-

GA-TREE-REORDER cases. The total sites in the SUN-GA and SUN-GA-TREE-

REORDER are around 45% less than in the SUN case. The results for maxlive

and sites in Group 2, with 4-bit operands, are almost identical in the SUN-GA and

SUN-GA-TREE-REORDER cases. This is not unexpected because the result of

tree re-ordering will not always yield a better result and depends greatly on the

quality of the genetic algorithm. In Group 3, the maxlive in the SUN case is 80%

less than in SUN-GA case and 81% less than in SUN-GA-TREE-REORDER

case. The total sites in SUN-GA case and SUN-GA-TREE-REORDER case are

only about 50% and 46% less than in the SUN case. It is interesting to note that

in Group 3 both maxlive and the total sites are higher for the SUN-GA-TREE-

REORDER case than the SUN-GA case. This is also not unexpected because

the genetic algorithms used in the two algorithms will not always converge to the

best possible solution. Also, as the CSEs increase, an increase in maxlive will

not necessarily result in a large decrease of the total sites.

4.2 Effect of increasing available registers on CSEs and SITES

The number of registers available for KITE architecture was 64. By

increasing the available registers it is possible to increase the number of CSEs

turned on thereby decreasing the number of instructions executed per basic

block. This section explores the effect of increasing the number of registers on

the CSEs and total sites in the SUN-GA and SUN-GA-TREE-REORDER cases.

Figure 4.7 shows the graph for the number of CSEs that can be turned on

as the register limit increases. After the initial rise, it is seen that the number of

CSEs that can be turned on (or stored temporarily) remains constant. The results

of Figure 4.7 are obtained for the modified SUN algorithm with a GA.
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Figure 4.7 Effect on register limit on CSEs - SUN-GA

Figure 4.8 shows the graph for the number of CSEs that can be turned on

as the available registers increase. As Figure 4.7, after the initial rise, the number

of CSEs that can be turned on (or stored temporarily) remains constant. The

results in Figure 4.8 are obtained by applying the for the modified SUN algorithm

after applying the GA with reordered tree execution.
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Figure 4.8 Effect of register limit on CSEs – SUN-GA-TREEREORDER
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Figure 4.9 and Figure 4.10 show the graphs for the total sites executed as

the register limit increases for the modified SUN algorithm after applying the GA

and the reordered tree execution algorithms respectively. Both graphs show that

as the number of registers available increases, the total number of sites that

have to be executed per basic block decreases. The decrease in the total sites is

a result of an increase in the number of registers available for storing CSEs

temporarily. In the instances where the CSE count is low, as in the 2-bit runs of

trials 1, 2 and 3, an increase in register limit has limited or almost no effect.
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Figure 4.9 Effect of register limit on sites - SUN-GA
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Figure 4.10 Effect of register limit on sites - SUN-GA-TREEREORDER
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5 Conclusions

The KITE architecture achieved low controller hardware complexity by

eliminating data memory and a severely limited register file. The bit level

operations that have to be executed on the hardware required bit-level code

generated by the BitC compiler. The code generation resulted in large and

complex basic blocks. Existing methods for register allocation proved insufficient

because of the severe hardware limitation and the large maxlive that resulted

from the large basic blocks. This project realized the goal of finding a register

allocation method for the KITE Nanocontroller architecture without which the

KITE architecture’s hardware minimization could not be achieved

Sethi-Ullman numbering, a popular register allocation method developed

in 1970, generated optimal code for arithmetic expressions expressed in the form

of binary trees. Sethi-Ullman numbering could not be used for DAGs that are

primarily generated by many code generation methods. Many heuristics that

were proposed to apply Sethi-Ullam numbering to DAGs concentrated on

minimizing the register spill-cost. KITE architecture has no external data memory.

Therefore, such heuristics could not be applied to the KITE architecture because

of the lack of register-memory operations. Applying Sethi-Ullman numbering to

DAGs achieved in this project by converting DAGs to trees. The conversion of

DAGs to trees also reduced the maxlive of a basic block, thus reducing the

probability of a register-spill. This project developed labeling rules for ternary

trees generated by the BitC compiler by extending the labeling rules of Sethi-

Ullman numbering for binary trees. Genetic algorithms were used to further

optimize the results of register allocation using the extended Sethi-Ullman

numbering. The register allocation algorithms assume no spill and do not require

any external data memory. The solutions that require a register spill are

discarded. Node labeling rules were also developed for a generic n-ary tree.
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5.1 Application to other architectures

This project concentrated on maxlive reduction for basic blocks consisting

of ternary operations generated by the BitC compiler of the KITE architecture.

Conventional architectures do not execute instructions at single bit-levels and

also deal with binary operations. However, the algorithms developed in this

research can be used by existing architectures. The algorithms developed in this

research were also generalized to be applied to n-ary trees; therefore, any

special applications that implement a non-binary approach may use the node

labeling rules for n-ary trees.

5.2 Future Work

The algorithms developed in this project are applicable for a single basic

block. Future work may extend register allocation method across multiple blocks.

The register allocation method may be applied to the KITE architecture hardware

which was not yet developed during the compiler development. It should also be

noted that the genetic algorithms used in this project for selecting the CSEs to be

enabled and for selecting a tree evaluation order were simplistic because of time

considerations. Therefore, the tree reordering did not always produce better

results than those generated without tree reordering. The genetic algorithms may

be improved by applying better crossover and mutation operations. A longer run

time for the genetic algorithms may also produce better results. The algorithms

may be refined to maintain better adjacency properties or may be modified

depending on an application’s properties.
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