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ABSTRACT OF THESIS 

 

 

 

 

CHRONIC OROFACIAL PAIN INFLUENCES SELF-REGULATION IN A RODENT 

MODEL 

 

 

Self-regulation is the capacity to exert control over cognition, emotion, behavior, 

and physiology.  Since chronic pain interferes with the ability to self-regulate, the 

primary goal of this study was to examine, in rodents, the effects of chronic pain on self-

regulation processes.  Sixteen male Sprague-Dawley rats were divided into two groups: 

(1) chronic constriction injury of the infraorbital nerve (CCI-ION) and (2) naïve.  Testing 

confirmed that CCI-ION animals had significant mechanical allodynia compared to naïve 

animals (p<0.001).  A two-part self-regulation behavioral paradigm consisting of a cued 

go/no-go task and a subsequent persistence task was developed based on human 

paradigms.  In the cued task, both groups made fewer incorrect lever presses in post-

surgery trials (p<0.001); naive animals had a greater decrease in number of incorrect 

presses than CCI-ION animals (p=0.06). Similarly, both groups had a larger correct to 

total lever presses ratio in post-surgery trials (p<0.001); naïve animals had a greater 

increase than CCI-ION animals (p=0.06).  In the persistence task, naïve animals 

experienced a greater decrease in lever presses (p=0.08) than did CCI-ION animals 

(p=0.66).  These results suggest that animals experiencing chronic pain were not able to 

learn as well as naïve animals, and may have difficulty responding to novel 

environmental demands. 
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Chapter One: Introduction 

Chronic Pain 

 Chronic pain is a major health problem in the United States and throughout the 

world and is one of the primary reasons that people seek medical treatment (Gureje, Von 

Korff, Simon, & Gater, 1998; Schappert & Burt, 2006).  The International Association 

for the Study of Pain (IASP) defines chronic pain as “pain without apparent biological 

value that has persisted beyond the normal tissue healing time (usually taken to be 3 

months)” (Harstall & Ospina, 2003).   

Clinical Importance 

A meta-analysis of studies examining the prevalence of chronic pain found that 

those studies which used the IASP definition of chronic pain estimated a mean 

prevalence of 35.5% (Harstall & Ospina, 2003).  Additionally, a recent, large, cross-

sectional survey estimated the prevalence of chronic pain in the United States population 

at 30.7% (95% CI, 29.8–31.7) where chronic pain was defined as pain that is not fleeting 

or minor and lasts at least six months (Johannes, Le, Zhou, Johnston, & Dworkin, 2010).  

Johannes and colleagues found that the majority of individuals with chronic pain had 

experienced the pain for a year or more, most experienced pain frequently (two to three 

times per week), and about a third reported severe average pain intensity (2010).  Clearly, 

chronic pain is a disabling and costly condition that is prevalent among adults both in the 

United States and worldwide. 

One form of chronic pain that many individuals struggle with is neuropathic pain.  

Neuropathic pain is defined as “pain initiated or caused by a primary lesion or 

dysfunction in the nervous system;” and trigeminal neuropathic pain is a frequently 
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occurring condition in humans (Merskey, 1986).  Although some therapies such as 

antidepressants and anticonvulsants have been found to benefit individuals suffering from 

neuropathic pain, a large portion of patients become unresponsive to these drugs 

(Swerdlow, 1984).    Thus, there is a need for studies that explore the nature of 

neuropathic pain and potential treatment strategies. 

Animal Models 

A rat model of trigeminal neuropathic pain that involves a chronic constriction 

injury of the infraorbital nerve (CCI-ION) shares many characteristics with the clinical 

disorders seen in humans suffering from trigeminal neuralgia or trigeminal neuropathic 

pain (Vos, Strassman, & Maciewicz, 1994).  The infraorbital nerve forms almost the 

entire maxillary division of the trigeminal nerve in the rat (Greene, 1955).  It innervates 

the mystacial vibrissae, vibrassal pad, part of the rhinarium, the upper teeth, and part of 

the dorsal section of the oral cavity (Vincent, 1913; Greene, 1955; Fink, Aasheim, Kish, 

& Croley, 1975).  Behavioral studies have demonstrated that the CCI-ION model induces 

mechanical allodynia, as measured with von Frey fibers, of this area beginning two to 

three weeks post-surgery and lasting up to 11-12 weeks post-surgery (Ma, Zhang, & 

Westlund, in press; Vos, Strassman, & Maciewicz, 1994).   

This model of neuropathic pain is beneficial for several reasons.  First, similar to 

clinical findings, pain-related behaviors observed in rats with CCI-ION are difficult to 

treat with tricyclic antidepressants and single or repeated administrations of morphine 

(Idänpään-Heikkilä & Guilbaud, 1999).  Additionally, although other studies of chronic 

pain have used models which last only up to two weeks, most criteria associated with 

clinical diagnoses of chronic pain conditions require that the individual have experienced 
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at least three months of symptoms before a diagnosis can be made.  The CCI-ION model 

of neuropathic pain is particularly useful for this study since the effects of CCI-ION can 

be maintained for at least 12 weeks post-surgery.  Finally, unlike acute pain models, 

current, unpublished studies conducted in our lab have shown that CCI-ION does not 

change feeding behavior (Thut et al., 2007).  This is important to the current study since 

food pellets were used as a reward; and we wanted to ensure that the effects measured 

were not simply changes in feeding behavior caused by pain. 

Self-regulation 

 Self-regulation involves the capacity to exert control over cognition, emotion, 

behavior, and physiology (Baumeister, 1998; Carver & Scheier, 1998; Higgins, 1996).  

Baumeister, Schmeichel, and Vohs (2007) define self-regulation as the “self altering its 

own responses or inner states…this takes the form of overriding one response or behavior 

and replacing it with a less common but more desired response…self-regulation also 

includes the ability to delay gratification.”  The authors argue that choice and self-

regulation are intertwined and work together to create the novelty and diversity observed 

in behavior.  In fact, Baumeister, Schmeichel, and Vohs (2007) demonstrate that making 

choices and showing self-regulation draw on a common resource, such that making 

choices temporarily reduces one’s ability to self-regulate and vice versa. 

Many research articles on self-regulation describe this limited resource from 

which one must draw to self-regulate and which may become depleted after use.  For 

example, Baumeister and Alquist (2009) describe self-regulation as a muscle, after the 

muscle has been used it becomes fatigued and time must pass until its energy source has 

been replenished before using it to its full capacity again.  In sum, self-regulation requires 
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an individual to exert control over some physiological, behavioral, or cognitive capacity 

and draws on a limited energy resource. 

 Self-regulation is also intimately related to executive functions.  Solberg Nes, 

Roach, and Segerstrom (2009) reviewed this relationship and concluded that “self-

regulation appears to rely on executive functions” since a deficit in executive functioning 

may result in problems controlling and regulating behavior.  Furthermore, research 

indicates that performing an initial self-regulatory task may cause fatigue which results in 

poorer subsequent performance on executive tasks (Schmeichel, 2007; Schmeichel, Vohs, 

and Baumeister, 2003).  Thus, self-regulatory fatigue and executive capacity covary 

inversely in a way that can lead to a potential downward spiral where “self-regulatory 

demands cause self-regulatory fatigue, reduce executive cognitive resources for further 

self-regulation, and thereby increase difficulty in meeting further demands” (Solberg Nes, 

Roach, and Segerstrom, 2009). 

Importance in Chronic Pain Population 

Chronic pain conditions are challenging to live with and are often referred to as 

“stress-associated conditions or syndromes or as chronic multisymptom illnesses” 

(Solberg Nes, Roach, & Segerstrom, 2009).  These conditions are characterized by 

complex interactions between cognitive, emotional, and physiological disturbances and 

therefore their demands are wide-reaching.  Individuals with chronic pain must learn to 

manage the pain itself, to negotiate relationships affected by the limitations associated 

with chronic pain, to suppress ruminative thoughts, and to regulate moods such as 

depression and anxiety that are often found to be comorbid with chronic pain disorders.  
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As Solberg Nes, Roach, and Segerstrom point out in their 2009 review of the topic, all of 

these demands require self-control or self-regulation.   

Although self-regulation has been implicated as important in the management of 

chronic pain conditions, several studies show that chronic pain itself can interfere with 

the ability to self-regulate.  In 2010, Solberg Nes and colleagues found that patients with 

chronic pain conditions, including fibromyalgia and temporomandibular disorders, have 

less capacity to persist on a task following an initial self-regulation task than persons 

without chronic pain.  In this study, participants were asked to watch a movie while 

ignoring words flashing on the screen, and then asked to complete an unsolvable 

anagram.  The researchers recorded how long the two groups (pain and control) persisted 

in trying to solve the anagram.  As expected, the participants with chronic pain conditions 

persisted for a shorter amount of time.  These results suggest that chronic pain patients 

may suffer from chronic self-regulatory fatigue.  Thus, while self-regulatory ability can 

be fatigued in control groups, there is evidence showing that participants with chronic 

pain conditions have an even greater deficit in self-regulatory ability. 

It is not surprising to learn that deficits in self-regulatory capacity, or executive 

functioning, have also been linked to patients with chronic pain conditions.  Although the 

cause of these deficits is unclear, several researchers have hypothesized that pain operates 

as an additional processing burden or a constant cognitive distraction (Eccleston & 

Crombez, 1999; Sanchez, 2011).  Karp and colleagues (2006) found that pain severity is 

associated with decreased mental flexibility and that the cognitive difficulties 

experienced by chronic pain patients are usually worse during times of extreme pain (i.e. 

flare-ups).  Another example of these deficits is “fibrofog,” a controversial topic which 
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refers to a variety of cognitive and executive functioning problems that may accompany 

fibromyalgia (Katz, 2004; Landro, Stiles, and Sletvold, 1997; Park, Glass, Minear, & 

Crofford, 2001).     

 Other research on executive functioning in chronic pain patients has focused 

specifically on deficits in memory and attention.  Studies in human clinical populations 

have demonstrated that chronic pain patients usually suffer from memory deficits, and 

also that around two-thirds of these patients have disrupted working memory (Dick & 

Rashiq, 2007; Hart, Martelli, & Zasler, 2000; Legrain, Damme, Eccleston, Davis, 

Seminowicz, & Crombez, 2009).  Ren and colleagues further examined this effect in a 

rodent model, and found that peripheral nerve injury was associated with memory 

impairment and dysfunction of the hippocampus (2011).  Additionally, it has been 

observed that patients with fibromyalgia have reduced attentional resources for 

processing information other than pain and a diminished ability to inhibit the processing 

of irrelevant information (Grisart & Van der Linden, 2001; Leavitt & Katz, 2006). 

  Although chronic pain can be difficult to treat, several interventions have been 

successful in improving functioning; specifically cognitive-behavioral therapy (CBT) 

which aims to alter perception of and behavioral responses to the pain itself (Beck, 1976; 

Turk & Sherman, 2002).  Another intervention strategy which has been successful in the 

treatment of some chronic pain conditions is relaxation therapy.  Interestingly, both of 

these strategies require the individual to self-regulate, as well as requiring a certain 

degree of executive capacity.  Even if persons with chronic pain show a willingness to 

engage in these treatments, it may be very difficult for them to remain engaged and 
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persist due to lack of regulatory resources (Baumeister, Bratslavsky, Muraven, & Tice, 

1998; Muraven, Tice, & Baumeister, 1998; Solberg Nes et al., 2009).   

While self-regulation seems to act as a muscle whose energy can be depleted with 

use, it may also be possible to increase self-regulatory capacity through practice over 

time (Solberg Nes et al., 2009).  Thus it is reasonable to conclude that self-regulatory 

exercises completed during therapy may work to increase self-regulatory strength.  

However, this does not help with the problem of how to initiate therapy with a group of 

individuals suffering from chronic self-regulatory fatigue.  If we could find a way to 

increase ability to self-regulate, especially at the beginning of therapy for patients with 

chronic pain conditions, we may help to jump-start therapy for these individuals until 

they increased their self-regulatory ability through repeated practice. 

Physiological Factors 

 Although the causes and etiology of many chronic pain disorders are not fully 

understood, it appears that some sort of central nervous system (CNS) dysfunction is 

involved in the onset and progression of these conditions (Crofford & Demitrack, 1996; 

Giovengo, Russell, & Larson, 1999; Gur & Oktayoglu, 2008; Larson, Givengo, Russell, 

& Michalek, 2000).  It could be that self-regulatory deficits in physiological systems are 

also involved.  Studies have indicated that heart rate variability (HRV), an index of 

fluctuation in the time interval between normal heartbeats, is an index of self-regulation 

capacity (Thayer & Lane, 2000).  In several studies, chronic pain patients have shown 

lower HRV compared with controls (Cohen, Neumann, Shore, Amir, Cassuto, & Buskila, 

2000; Martinez-Lavin, Hermosillo, Rosas, & Soto, 1998; Schmidt & Carlson, 2009; 

Stewart, Weldon, Arlievsky, Li, & Munoz, 1998).  Although the cause of this difference 
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is not clear, it is possible that chronic pain patients, who are already experiencing self-

regulatory deficits, may have HRV that differs from healthy controls because of 

dysregulation of physiological systems (Martinez-Lavin et al., 1998).  

 Other abnormalities that can occur in chronic pain patients include dysregulation 

of the hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-gonadal axes 

(Crofford & Demitrack, 1996).  In some cases chronic pain conditions have also been 

linked to hypocortisolism (Korszun, Young, Engleberg, Masterson, Dawson, Spindler, 

McClure, Brown, & Crofford,, 2000; Korszun, Young, Singer, Carlson, Brown, & 

Crofford, 2002; Ehlert, Gaab, & Heinrichs, 2001).  Glucocorticoids are secreted by the 

adrenal cortex and are essential for the production and metabolism of blood glucose.  

Since the activities of the brain rely heavily on blood glucose for energy, a range of 

cognitive and behavioral deficits may occur if the flow of blood glucose to the brain 

becomes insufficient (Solberg Nes et al., 2009).  Interestingly, recent research indicates 

that self-regulation efforts might rely on glucose as a limited energy resource (Benton, 

Parker, & Donohoe, 1996; Galliot & Baumeister, 2007; Gailliot, Baumeister, DeWall, 

Maner, Plant, Tice, Brewer, & Schmeichel, 2007; Miller, et al., 2010).  It follows that 

self-regulatory deficits observed in chronic pain patients may be influenced by blood 

glucose levels. 

 Recent research has shown that self-regulation can be depleted and that self-

regulatory capacity is related to glucose level in the bloodstream.  For example, Galliot et 

al. (2007) conducted nine different studies looking at the effects of fatigue and glucose on 

self-regulation.  After examining the data collected, the authors came to three main 

conclusions.  First, initial exertion on a self-regulation task significantly dropped 
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participants’ blood glucose levels.  Second, low blood glucose levels after the first task 

were related to poor performance on a subsequent self-regulation task.  Finally, 

administration of glucose reduced or eliminated the effects of the initial self-regulation 

task on subsequent performances.  It seems that glucose plays a role in participants’ 

ability to self-regulate and that it may be possible to treat deficits in self-regulatory ability 

with glucose administration.  Currently, the literature demonstrates that administration of 

glucose can combat self-regulatory fatigue after an initial task; however, there have not 

been studies examining the effects of glucose on different types of self-regulatory deficits 

particularly those arising from chronic pain conditions.   

Animal Models 

 Although past research has focused on the study of self-regulation in human 

populations, it would be beneficial to study the effects of chronic pain on self-regulation 

in an animal model.  An animal model of chronic pain allows for greater experimental 

control and fewer threats to internal validity.  For example, in human populations with 

chronic pain, other diseases and disorders are commonly found to be comorbid to the 

presenting pain condition.  Studying chronic pain conditions in a controlled setting allows 

investigators to observe only the effects of chronic pain itself on self-regulation.  

Additionally, studying this phenomenon in an animal model allows the experimenter to 

explore the physiological pathways responsible for this self-regulatory deficit and to 

examine possible treatments such as glucose administration.  Although many researchers 

have argued that self-regulation only occurs in humans, a recent study with dogs has 

shown that it is possible to examine these effects in other species (Miller et al., 2010).   
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The study conducted by Miller et al. (2010) examined the effects of self-

regulatory fatigue and glucose administration in dogs.  In the first experiment, dogs 

participated in a primary self-regulation task that required them to sit and stay for a 

certain period of time.  After the initial task, the dogs were given a toy containing a piece 

of hot dog that they were not able to remove from the toy.  Persistence on this task was 

measured as the amount of time the animal continued to try to remove the food.  As 

expected, animals in the self-regulatory condition performed worse on the persistence 

task (i.e. persisted for a shorter amount of time) then animals that had not been cued to sit 

and to stay in one place.  In the second experiment, the experimenters demonstrated that 

administration of glucose after the initial self-regulatory task eliminated the negative 

effects of prior self-regulatory exertion.   These findings support previous studies 

showing that self-regulation draws on a limited resource and that glucose counteracts the 

effects of an initial self-regulation task. Additionally, this paper demonstrates that self-

regulation can be examined in species other than humans. 

The main goal of the proposed study was to explore whether self-regulation can 

be studied in a rodent model.  As mentioned previously, the establishment of a self-

regulation model in rodents would be beneficial in allowing greater experimental control 

as well as the ability to examine physiological mechanisms underlying self-regulatory 

processes.  Additionally, numerous pain models are well established in rodents and can 

be used to examine the effects of chronic pain conditions on self-regulation.  Specifically, 

in this study it was anticipated that animals experiencing pain would perform more 

poorly on a subsequent task after initial self-regulatory depletion than control animals 

This is based on the findings of numerous researchers who examine self-regulation in 
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human populations as well as the results of Miller and colleagues (2010) who were the 

first to examine these effects in a non-human population (i.e., dogs).  
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Chapter Two: Methods 

Animals 

Eighteen male Sprague-Dawley rats, weighing 200 – 300 grams (g) on arrival 

were used in the study.  Due to time and space limitations in the vivarium, animals were 

run in two groups (N = 8 and N = 10).  Animals were singly housed throughout the 

duration of the experiment.  Low soy content diet (Harlan Teklab 8626, Madison WI) 

was provided and the animals were maintained under a reverse 12:12 light:dark cycle 

(lights off at 7:00 am, lights on at 7:00 pm).  Adequate measures were taken to minimize 

pain or discomfort in this study.  Experiments were carried out in accordance with the 

Guidelines of the National Institute of Health regarding the care and use of animals for 

experimental procedures.  Experiments were approved by the Institutional Animal Care 

and Use Committee at the University of Kentucky, Lexington, Kentucky.  All animals 

were housed in AAALAC and USDA approved facilities. 

Surgical Model 

Rats were anesthetized with an intraperitoneal injection of sodium pentobarbital 

(50 mg/kg, i.p.) and the head of the rat was fixed in a stereotaxic frame.  The surgery was 

performed under direct visual control using a Zeiss operation microscope (6−40X).  

Surgical ligation of the infraorbital nerve was completed using procedures developed by 

Gregg (1973) and Jacquin and Zeigler (1983). First, lidocaine (2%) was injected at the 

site of surgical incision.  A midline scalp incision was then made, exposing the skull and 

nasal bone.  The infraorbital part of the left infraorbital nerve was exposed using a 

surgical procedure adapted from Gregg and Jacquin and Zeigler (1973; 1983).  The edge 

of the orbit, formed by the maxillary, frontal, lacrimal, and zygomatic bones, was 
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dissected free.  To provide access to the infraorbital nerve, the orbital contents were 

gently deflected.  The infraorbital nerve was separated from other structures at its most 

rostral extent on the orbital cavity, just caudal to the infraorbital foramen.   

In order to ligate the infraorbital nerve, a suture was looped over a small neural 

hook (2 mm) instrument with a blunt tip inserted under the nerve and gently pulled under 

the nerve. Two chromic gut (5−0) ligatures were loosely tied (with about 2 mm spacing) 

around the nerve.  To obtain the desired degree of constriction, a criterion formulated by 

Bennett and Xie (1988) was used; the ligations reduced the diameter of the nerve by a 

just noticeable amount, but did not interrupt the epineural circulation.  Blood circulation 

through epineural vessels was visually observed in each animal undergoing surgery.  The 

scalp incision was closed using PDSII absorbable suture and the wound treated with 

triple antibiotic ointment (polymycin B sulfate, bacitracin zinc, and neomycin-pramoxine 

HCl) and 2% lidocaine.   

All animals in the CCI-ION group underwent ligation of their left-side infraorbital 

nerve; the right-side nerve remained untouched.  The control group of rats remained 

naïve, and did not undergo surgical procedures.  Due to the possibility of damaging the 

nerve and surrounding tissue during sham surgery, and thus producing some degree of 

pain, it was decided that completely naïve animals should be used as the control group.  

Animals were allowed seven days to recover from surgery with food and water available 

ad libitum. 

Behavioral Measure 

 In order to ensure the effectiveness of the CCI-ION model of chronic pain, von 

Frey filaments (also referred to as Semmes-Weinstein (S-W) monofilaments) were used 
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to assess mechanical sensitivity on the whisker pad.  Although Randall and Selitto (1957) 

originally developed a method for evaluating mechanical sensitivity in inflamed rats, the 

major disadvantage of this method is that it requires the rat to be forcibly restrained.  This 

restraint of the animal results in a stress response that may significantly confound the 

measure of mechanical sensitivity (Ren, 1999).    To improve the Randall-Selitto method, 

increased handling of the animal can be introduced so that the animal becomes familiar 

with the testing situation and the stress response is reduced (Taiwo, Coderre, & Levine, 

1989). 

 In the current study, methods adapted from those developed by Ren (1999) were 

used to test mechanical sensitivity of the whisker pad under non- or minimal-restrained 

conditions.  Animals were habituated to stand against the experimenter’s hand wearing a 

regular leather work glove.  Additionally, instead of standing on a meshed metal surface, 

the rat stood on a soft pad.  Each animal was handled and habituated to the experimental 

procedure twice for 30 minutes each during the week prior to the first baseline trial.  

Additionally, animals were habituated on each trial day for a period of 15 minutes prior 

to testing.   

 The modified up-and-down method utilized in the study to determine the 50% 

withdrawal threshold is detailed in Ma, Zhang, and Westlund (in press).  Briefly, 

mechanical sensitivity was measured with eight von Frey fibers (0.4, 0.6, 1, 2, 4, 6, 8, 15 

g; Stoelting, Wood Dale, IL) by modified up-and-down method with a default maximal 

50% withdrawal threshold at a gram force of 18.72.  Mechanical stimuli were applied 

within the infraorbital nerve innervated region, near the whisker pad centers, both 

ipsilateral and contralateral to the surgery site.  Responses to von Frey filaments applied 
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to the rat whisker pad determined the threshold required for 50% head withdrawals.  Each 

filament was applied five times at intervals of a few seconds.  If head withdrawal was 

observed at least three times after probing with a filament, the rat was considered 

responsive to that filament.  Whenever a positive response to a stimulus occurred, the 

next smaller von Frey filament was applied.  Otherwise, the next higher filament was 

applied.  Behavioral changes to mechanical stimuli were tested once a week for two 

weeks prior to surgery and five weeks after surgery (i.e. days 7, 14, 21, 28, and 35 post-

surgery). 

Self-regulation Model 

 The self-regulation model utilized was based on the models used in previous 

human studies.  In the majority of human experiments, self-regulatory fatigue is studied 

by exposing participants to two tasks.  The first task requires participants to complete 

some activity which requires self-regulation.  For example, participants are asked to 

watch a video while ignoring words that are flashing on the bottom of the screen.  The 

second task exposes participants to an unsolvable or impossible activity and measures the 

amount of time they are willing to persist.  Many past self-regulation studies have utilized 

an unsolvable anagram task to measure persistence. 

 The current study modified this design to examine self-regulation in rats.  

Animals were exposed to two tasks, an initial activity requiring self-regulation and a 

subsequent impossible task to measure persistence.  The self-regulation portion of the 

experiment consisted of a cued go/no-go task.  During this task, animals were placed into 

a test chamber for 21 minutes and allowed to press a lever four times to obtain a food 

reward.  However, animals were only rewarded for pressing the lever when a cue light 
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was illuminated (the cue light cycled on and off every three minutes, beginning with a 

light on cycle).  The second portion of the experiment began immediately following the 

initial self-regulation task (i.e., immediately following a light off cycle).  During this 

persistence task, the cue light remained illuminated for ten minutes, but animals were not 

rewarded for any lever presses.  The time duration of these tasks were selected based on 

pilot data which determined animals would not become satiated during the total 21 or 31 

minute task and would continue pressing the lever to receive food rewards throughout the 

entire task. 

Data recorded included number of lever presses during the initial 21 minute task 

(differentiating between lever presses when the cue light was on and off), number of 

lever presses during the subsequent 10 minute persistence task, and the time of each 

animal’s last lever press during the 10 minute persistence task. Lever presses made while 

the cue light was illuminated are referred to as “correct presses” and lever presses made 

while this light was off are referred to as “incorrect presses.”  Thus, analyses were run on 

correct and incorrect lever presses made during the initial self-regulation task, the ratio of 

correct to total lever presses made during the initial task, total number of lever presses 

made during the subsequent persistence task, and total time (i.e. time of the last lever 

press) spent on the persistence task. 

Shaping and Training 

In order to train the rats to receive a food reward by pressing a lever on a 4:1 fixed 

ratio schedule only when a cue light was illuminated, training and shaping techniques 

adapted from Thut, Hermanstyne, Flake, and Gold (2007) were used.  These techniques 

required that animals be restricted to 10 g of food on days immediately preceding trial or 
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training tasks.  Animals were always allowed access to water ad libitum, and were 

allowed access to food a libitum on all days not preceding trials or training tasks. Animal 

body weights were annotated daily to ensure proper health during food restriction.  

Animals that experienced a 10% or greater decrease in body weight within any seven day 

period were to be seen by a staff veterinarian for evaluation; however, none of the 

animals needed to be seen for weight loss and all animals gained weight over the duration 

of the experiment.   

  All animals underwent two weeks of training and one week of baseline testing 

prior to surgery.  On Monday of week one, animals were restricted to 10 g of food pellets 

and water ad libitum in their home cages.  On Tuesday through Friday of week one, 

animals were shaped to press a lever for 45-mg food pellet rewards on a fixed ratio 

schedule of 4:1.  On Tuesday, the animals were placed into the testing chambers (MedPC 

Associates) and underwent magazine training, during which animals automatically 

received 20 pellets of food regardless of lever pressing behavior.  On Wednesday, the 

animals were placed in the testing chambers for 60 minutes and received food pellet 

rewards on a fixed ratio schedule of 1:1. The ratio of required lever presses was increased 

so that animals received food pellet rewards on a fixed ratio schedule of 4:1 on Friday of 

week one.  After the training session on Friday, rats were placed in their home cages with 

food and water available ad libitum until Monday morning.    

Food was again restricted to 10 g daily beginning the following Monday.  On 

Tuesday of week two, rats received another training session for 60 minutes at a fixed 

ratio of 4:1.  Beginning Wednesday of week two, animals were trained in the cued go/no-

go task.  This task required that animals learn to press the lever only when a cue light, 
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placed immediately above the lever in the testing chamber, was illuminated.  Cued go/no-

go task days consisted of 21 minute trials, split into eight phases of 3-minute intervals.  

The intervals alternated between light-on and light-off phases (4 intervals with the light 

off and 3 intervals with the light on) and began and ended with a light-off phase.  

Animals were rewarded on a 4:1 basis only during light-on phases, but when the cue light 

was off animals did not receive pellets regardless of number of lever presses.  Animals 

were placed in the test chambers for 21 minute training sessions for the cued go/no-go 

task on Wednesday - Friday of week two. After the training session on Friday, rats were 

placed in their home cages with food and water available ad libitum until Monday 

morning.  Following the two week training period all animals ate pellets as they were 

earned, and an average of only 0-2 pellets were not eaten by the end of the 21 minute 

task.   

Experimental Procedure 

During week three, animals received a cued go/no-go training session on Tuesday 

and Thursday, and baseline data was obtained on Wednesday and Friday.  During trial 

days, animals were placed into the test chamber for the 21 minutes cued go/no-go task 

followed immediately by the persistence task (during which the cue light remained 

illuminated for 10 minutes, but animals did not receive food rewards regardless of lever 

presses).  After the trial session on Friday, rats were placed into their home cages with 

food and water available ad libitum until Monday morning.  

On Monday of week four, half of the animals underwent CCI-ION surgery, and 

half of the animals remained naive.  Animals were allowed to recover with water and 

food ad libitum for seven days following this surgery.  During weeks 5 – 7 (i.e. week 1-3 
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post-surgery), animals were restricted to 10 g of food per day each Tuesday, and received 

a cued go/no-go training session each Wednesday.  After this session, rats were returned 

to their home cages with food and water available ad libitum until the following Tuesday 

morning.   

Post-surgery trial data were collected after the animals developed mechanical 

sensitivity, during week eight and week nine (i.e. week 4 – 5 post-surgery).  Animals 

were restricted to 10 g of food per day beginning each Tuesday on testing weeks.  On 

each Wednesday, animals received a cued go-no training session; and on each Thursday, 

animals received a full trial containing both tasks with the same procedures listed above.  

After the trial session on Thursday, rats were placed in their home cages with food and 

water available ad libitum until Tuesday morning.   A full schedule of the training and 

experimental techniques that were used in the current study can be seen in Table 2.1. 

Tissue Collection 

Upon completion of testing, rats were anesthetized by intraperitoneal injection of 

sodium pentobarbital (70 mg/kg) and perfused transcardially with heparinized saline 

followed by 4% ice-cold paraformaldehyde in 0.1 M phosphate buffer solution (pH 7.4).  

Infraorbital nerves were dissected out and placed in 4% paraformaldehyde in 0.1 M 

phosphate buffer solution (pH 7.4) at room temperature overnight.  Samples were then 

switched to 70% ethanol and stored at 4°C.  The pons, trigeminal nuclei, and trigeminal 

ganglion were dissected out and placed in 4% paraformaldehyde in 0.1 M phosphate 

buffer solution (pH 7.4) for an additional 4 hours at room temperature.  Samples were 

then switched to 30% sucrose in PBS at 4°C for 24 hours, following which standard 

paraffin embedding procedures were carried out to prepare the tissue blocks. These  
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Table 2.1 

 

Summary of Shaping and Experimental Methods 

 

 Monday Tuesday Wednesday Thursday Friday 

Week 1 Restrict Food Magazine, training 1:1, training 2:1, training 4:1, training 

Week 2 
Restrict Food,  

von Frey 
4:1, training 4:1 cued, training 4:1 cued, training 4:1 cued, training 

Week 3 
Restrict Food,  

von Frey 
4:1 cued, training Baseline 4:1 cued, training Baseline 

Week 4 Surgery OFF OFF OFF OFF 

Week 5 von Frey  Restrict Food 4:1 cued, training OFF OFF 

Week 6 von Frey  Restrict Food 4:1 cued, training OFF OFF 

Week 7 von Frey  Restrict Food 4:1 cued, training OFF OFF 

Week 8 von Frey  Restrict Food 4:1 cued, training Trial OFF 

Week 9 von Frey  Restrict Food 4:1 cued, training Trial OFF 
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tissues were stored for investigation of additional physiological, neuroanatomic and 

molecular issues that will be reported in a subsequent paper. 

Statistical Analyses 

An a priori power analysis was conducted using Faul, Erdfelder, Lang, and 

Buchner’s G*Power 3 (2007) software to compute the sample size needed to achieve a 

power of 0.80.  This analysis was conducted based on the results of the Miller et al 

(2010) experiment.  Using their effect size (d = 1.55) and a two-tailed, t-test to analyze 

the data, it was determined that a total sample size of 16 animals (8 animals per group) 

was needed (power = 0.80, α = 0.05).  Based on this analysis, a total of 18 animals were 

run through the experimental procedures.  The naïve group consisted of eight animals, 

while the pain group consisted of ten animals to compensate for a less than 100% surgical 

success rate. 

Statistical analyses were conducted on animal body weight, mechanical allodynia 

as measured by von Frey fibers, and performance in the initial self-regulation and 

subsequent persistence tasks.  Outliers, defined as animals having a score greater than or 

less than two standard deviations away from the mean, were identified separately in each 

analysis and were excluded.  Body weights were analyzed at arrival, baseline trials, 

surgery, and post-surgery trials using univariate analysis of variance (ANOVA) tests to 

check for differences between the two groups.  Analyses of mechanical allodynia and 

performance in the self-regulation and the persistence tasks were completed using 

repeated measures ANOVA tests where appropriate and followed up with specific 

contrasts.   
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Chapter Three: Results 

Outliers, Baseline Differences, and Normality 

 Animals were tested with von Frey fibers for evidence of mechanical allodynia 

following CCI-ION surgery.  The highest obtainable von Frey value for 50% withdrawal 

was 18.72 gram force; and all animals during baseline trials, as well as all animals in the 

naïve group during post-surgery trials, remained constant at this value. Two animals in 

the CCI-ION group were excluded from all analyses because their von Frey values 

remained equal to a gram force of 18.72 during post-surgery trials, indicating that these 

animals did not experience mechanical sensitivity.  Thus, a total of 16 animals (8 CCI-

ION, 8 naïve) were available for each analysis.   

Outliers, defined as animals having a score greater than or less than two standard 

deviations away from the mean, were identified separately in each analysis and were 

excluded.  For each analysis, a univariate ANOVA was used to check for differences 

between the two groups during baseline trials.  Significant differences were not observed 

between groups during baseline trials for any of the analyses conducted.  Normality was 

also tested for each analysis using the Shapiro-Wilk test.  This test was not significant for 

any of the analyses at the initial baseline. 

Body Weight 

Significant differences in body weight between the two groups were not observed 

at any time point throughout the study (arrival, F(1,14) = 1.06, p = 0.32; average baseline 

trial, F(1,14) = 0.49, p = 0.50; surgery, F(1,14) = 1.77, p = 0.21; average trial, F(1,14) = 

3.43, p = 0.09).  Characteristics of animal body weights are presented in Table 3.1  
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Table 3.1 

Means and Standard Deviations for Animal Body Weight 

Variable CCI-ION Naïve p Value 

Arrival Weight 248.43 (6.85) 252.74 (9.70) 0.32 

Average Baseline Weight 292.30 (8.27) 296.47 (14.73) 0.50 

Surgery Weight 318.60 (11.87) 330.99 (23.52) 0.21 

Average Trial Weight 366.76 (13.38) 385.84 (25.90) 0.09 
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 Mechanical Allodynia 

 Animals in the CCI-ION group experienced a statistically significant decrease in 

the gram force of von Frey fibers in post-surgery trials compared with baseline, whereas 

naïve animals did not experience a change in their response to the von Frey fibers.  

Means and standard deviations for von Frey testing can be seen in Table 3.2.  A repeated 

measures ANOVA indicated that there were significant effects of group, trial, and the 

interaction of trial by group at day 21, 28, and 35 post-surgery (day 21, F(1,14) = 25.29, p 

< .001; day 28, F(1,14) = 3,563.76, p < .001; day 35, F(1,14) = 14,679.70, p < .001; see 

Figure 3.1).  Analyses of mechanical allodynia on day 7 and 14 post-surgery were 

determined not to be significantly different (day 7, F(1,14) = 2.00, p = 0.18; day 14, 

F(1,14) = 1.00, p = 0.33). 

Self-regulation Task 

 Performance in the self-regulation task was analyzed with repeated measures 

ANOVA tests comparing the number of correct and incorrect lever presses and the ratio 

of correct to total lever presses made during the initial self-regulation task to check for 

effects of group (i.e. CCI-ION versus naïve), trial/time (pre- or post-surgery), and the 

interaction of group by time.  Mean and standard deviations for the self-regulation task 

can be seen in Table 3.3. 

 For correct lever presses, no outliers were identified and thus none were excluded 

from the analyses.  It was determined that there was no significant effect of group 

(F(1,14) = 0.30, p = 0.59), trial/time (F(1,14) = 0.01, p = 0.91), or the interaction of group 

by time (F(1,14) = 0.51, p = 0.49).  These results indicate that there was no significant 
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Table 3.2 

Means and Standard Deviations for von Frey Data 

Trial CCI-ION Naïve 

Average Baseline 18.72 (0) 18.72 (0) 

Day 7, post-surgery 15.94 (5.56) 18.72 (0) 

Day 14, post-surgery 18.58 (0.41) 18.72 (0) 

Day 21, post-surgery 9.92 (4.95) 18.72 (0) 

Day 28, post-surgery 2.73 (0.76) 18.72 (0) 

Day 35, post-surgery 1.87 (0.39) 18.72 (0) 



 

26 

 

 

Figure 3.1, von Frey 50% Mechanical Threshold 
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Table 3.3 

Means and Standard Deviations for Self-Regulation Task Analyses 

Statistical Analysis CCI-ION Naïve 

Correct Lever Presses – Baseline 174.00 (48.86) 178.06 (37.23) 

Correct Lever Presses – Trial 166.50 (43.70) 183.56 (40.25) 

Incorrect Lever Presses – 

Baseline 
41.07 (14.03) 51.21 (11.01) 

Incorrect Lever Presses – Trial 29.00 (13.41) 23.14 (8.86) 

Correct:Total Ratio - Baseline 0.81 (0.05) 0.76 (0.06) 

Correct:Total Ratio - Trial 0.85 (0.06) 0.87 (0.06) 
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difference between the two groups and no significant difference produced by trial/time 

(i.e. pre- to post-surgery trials) in number of correct lever presses. 

 For incorrect lever presses, two animals were identified as outliers and excluded 

from the analyses; therefore, the total N = 14 (7 animals in naïve group, 7 animals in 

CCI-ION group).  A significant effect of group was not observed (F(1,12) = 0.18, p 

=0.68).  However, there was a significant effect of trial/time, such that animals in both 

groups produced significantly fewer incorrect lever presses in post-surgery trials than 

they did in pre-surgery baseline trials (F(1,12) = 26.10, p < 0.001).  In addition, the 

interaction of group by time approached significance, indicating that animals in the naïve 

group experienced a greater decrease in number of incorrect lever presses from pre- to 

post-surgery trials than did animals in the CCI-ION group (F(1,12) = 4.15, p = 0.06; see 

Figure 3.2).   

 In the analysis of the ratio of correct to total lever presses in the self-regulation 

task, one animal was identified as an outlier and excluded; therefore, the total N = 15 (8 

animals in naïve group, 7 animals in CCI-ION group).  A significant effect of group was 

not observed (F(1,13) = 0.40, p = 0.54).  However, there was a significant effect of 

trial/time, such that animals in both groups had a significantly higher ratio of correct to 

total lever presses in post-surgery trials than they did in pre-surgery baseline trials 

(F(1,13) = 22.39, p < 0.001).  In addition, the interaction of group by time approached 

significance, indicating that animals in the naïve group experienced a greater increase in 

their ratio of correct to total lever presses from pre-to post-surgery trials than did animals 

in the CCI-ION group (F(1,13) = 4.32, p < 0.06; see Figure 3.3).  
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Figure 3.2, Incorrect Lever Presses during Self-Regulation Task 
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Figure 3.3, Ratio of Correct to Total Lever Presses during Self-Regulation Task  
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Persistence Task 

 In order to evaluate the a priori hypothesis, performance in the persistence task 

was analyzed with t-tests comparing total number of lever presses made and total time 

persisted (time of the last lever press) during the 10 minute persistence task.  Follow-up 

analysis were run using repeated measures ANOVA analyses to compare these two 

measures to check for effects of group (i.e. CCI-ION versus naïve), trial/time (pre- or 

post-surgery), and the interaction of group by time.  Mean and standard deviations for the 

persistence task can be seen in Table 3.4. 

 For total time persisted, one animal was identified as an outlier and excluded; 

therefore, the total N = 15 (8 animals in naïve group, 7 animals in CCI-ION group).  In 

order to test the hypothesis that animals in the CCI-ION group would persist for a shorter 

amount of time than animals in the naive group, two-tailed, paired-samples t-tests were 

run on the total time persisted during the persistence task.  Significant differences were 

not observed between pre- and post-surgery trials for either animals in the CCI-ION 

group (t(5) = -1.49, p = 0.18) or animals in the naïve group (t(6) = 0.86, p = 0.42). 

Follow-up analysis with a repeated measures ANOVA indicated that there was no 

significant effect of group (F(1,13) = 0.07, p = 0.80), trial/time (F(1,13) = 0.47, p = 0.55), 

or the interaction of group by time (F(1,13) = 3.02, p = 0.11).  These results indicate that 

there was no significant difference between the two groups and no significant difference 

produced by trial/time (i.e. pre- to post-surgery trials) in the total time animals persisted. 

 For total number of lever presses, one animal was identified as an outlier and 

excluded; therefore, the total N = 15 (7 animals in naïve group, 8 animals in CCI-ION 

group).  In order to test the hypothesis that animals in the CCI-ION group would 
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Table 3.4 

Means and Standard Deviations for Persistence Task Analyses 

Statistical Analysis CCI-ION Naïve 

Total Time – Baseline 378.86 (193.39) 477.56 (137.73) 

Total Time – Trial 498.57 (58.16) 425.63 (120.27) 

Total Lever Presses – Baseline 44.88 (12.28) 47.79 (23.73) 

Total Lever Presses – Trial 41.94 (14.82) 31.07 (7.60) 
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fewer lever presses during the persistence task than animals in the naive group, two-

tailed, paired-samples t-tests were run on the total number of lever presses made during 

the persistence task.  These analyses showed that there was no significant difference for 

animals in the CCI-ION group between the number of lever presses made during the pre-

surgery baseline trials and the post-surgery trials (t(6) = 0.47, p = 0.66).  There was a 

nearly significant difference for animals in the naive group  such that they pressed the 

lever fewer times in the post-surgery trials than they did in pre-surgery baseline trials 

(t(5) = 2.13, p = 0.08; see Figure 3.4).  

Follow-up analyses indicated that there was no significant effect of group (F(1,13) 

= 0.39, p = 0.54) or the interaction of group by time (F(1,13) = 1.91, p = 0.19).  However, 

the trial/time approached significance, indicating that animals in both groups made fewer 

lever presses in post-surgery trials than they did in pre-surgery baseline trials (F(1,13) = 

3.89, p = 0.07).   
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Figure 3.4, Total Number of Lever Presses During Persistence Task 
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Chapter Four: Discussion 

 The primary goals of the study were: (1) to demonstrate that self-regulation can 

be studied in a rodent model and (2) to study, in rodents, the effects of chronic pain on 

self-regulation.  As mentioned previously, the establishment of a self-regulation model in 

rodents would be beneficial in allowing a greater amount of experimental control, as well 

as the ability to examine physiological mechanisms underlying self-regulatory processes.  

This model would further allow for pre-clinical trials of different treatments both of 

chronic pain and of the self-regulatory fatigue associated with chronic pain. 

 The present study was successful in utilizing the CCI-ION model of chronic, 

neuropathic pain as a manipulation.  CCI-ION surgery had an 80% success rate of 

producing mechanical sensitivity of the whisker pad within five weeks post-surgery (i.e. 

eight of ten animals who underwent surgery developed mechanical sensitivity).  

Furthermore, statistical analyses of the eight animals that developed mechanical 

sensitivity demonstrate that animals in the CCI-ION group experienced significantly 

more mechanical sensitivity than animals in the naïve group. 

 It was expected that during the persistence task, animals in the CCI-ION group 

would persist for a shorter period of time and would press the lever fewer times than 

naïve animals.  Statistical analyses found no significant effect for time persisted.  In fact, 

the data obtained for total time persisted were highly variable with large standard 

deviations.  Interestingly, there was a nearly significant effect of surgery on the number 

of lever presses made during the persistence task; however, this effect was in the opposite 

direction of our hypothesis.  In other words, unlike CCI-ION animals, naïve animals had 
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a significant decrease in the number of lever presses made during the persistence task 

from pre- to post-surgery trials. 

 Although these findings were not anticipated, it seems that they may be related to 

the animals’ capacity to learn.  The persistence task utilized in the study is essentially an 

extinction trial, during which animals are no longer rewarded for previously rewarded 

behavior.  Typically, animals would learn that they were no longer being rewarded and 

they would adjust their behavior by ceasing to press the lever.  Our findings suggest that 

naïve animals behaved in this manner, and continued to improve from pre- to post-

surgery trials (i.e., made fewer lever presses each time they were exposed to the 

persistence task).  However, animals experiencing chronic pain did not show this 

improvement and continued to press the lever about the same number of times from pre- 

to post-surgery trials.  Thus, the animals experiencing chronic pain may have been less 

able to learn that they were no longer being rewarded. 

 Results from the self-regulation task further support this interpretation.  First, it 

was determined that animals in the naïve group experienced a greater decrease in number 

of incorrect lever presses from pre- to post-surgery trials than did animals in the CCI-ION 

group.  This may be because animals in pain did not learn that lever presses when the cue 

light was off would not be rewarded as well as animals that were not in pain.  Second, a 

difference was found in the ratio of correct to total lever presses such that animals in the 

naïve group experienced a greater increase from pre-to post-surgery trials than did 

animals in the CCI-ION group.  This may be explained by the results above (i.e. because 

animals in the naïve group made fewer errors, they also had a greater ratio of correct to 

total lever presses). 
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 In summary, the findings indicate that animals experiencing pain may be less 

capable of learning than animals in the naïve group, and thus slower or unable to figure 

out that they are no longer being rewarded for lever presses and to adjust their behavior 

accordingly.  What remains unclear is whether these findings are attributable simply to a 

deficit in learning, to a deficit in self-regulation, or to a combination of the two.  These 

two phenomena are closely related; and, as previously stated, a deficit in one domain can 

lead to further deficits in the other (Solberg Nes, Roach, and Segerstrom, 2009).  

Therefore, one explanation is that animals experiencing pain experienced a deficit in 

learning causing them to persist in pressing the lever even though no rewards were 

received.  An alternative explanation is that animals experiencing pain were able to learn, 

but not able to regulate their behavior to reflect this learning.  Finally, a third explanation 

is that animals experiencing pain experienced a deficit in self-regulation which in turn 

caused the deficit in learning.  Thus further research is necessary to tease apart the effects 

seen in this study. 

Limitations 

 First, the current study utilized a sample size of 16 animals (eight per group) 

based on an a priori power calculation.  However, this calculation was based on a study 

of self-regulation in dogs.  A new power analysis conducted using results from the 

current study and predicting the use of a repeated measures ANOVA, indicate that a total 

sample size of 24 animals (12 per group) is needed to achieve a power of 0.80 in the 

measure of total lever presses during the persistence task (f = 0.38, α = 0.05).  It is 

therefore reasonable to conclude that sample size utilized in the current study may have 

been too small to fully capture all of the significant effects. 
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Another limitation of this study is that it is currently unclear whether the effects 

observed in the current study are due to a deficit in learning, to a deficit in self-regulation, 

or to a combination of the two.  To address this issue, it would be beneficial to follow-up 

this study with experiments that look for a deficit in learning following CCI-ION in a 

different behavioral protocol.  One possibility for such research would be to examine the 

behavior of animals that underwent CCI-ION in a conditioned place preference task.  

Animals could be exposed to an aversive stimuli in one chamber of the apparatus, and 

then capacity for learning could be determined by observing how readily the animals 

learned to avoid that chamber in future trials.   

Future Directions 

 As stated above, it would be beneficial to replicate these findings with a larger 

sample size and with hypotheses based on the findings of this study to allow for focused 

comparisons.  It would also be beneficial to complete follow-up studies that use 

alternative learning paradigms to examine how chronic pain in animals influences their 

learning outcomes.   For example, it would be beneficial to examine whether a deficit in 

attention, memory, or other cognitive ability was responsible for hindering the animals’ 

ability to learn.  These studies may be further extended by examining anatomical, 

physiological, and molecular differences between the two groups as a way of identifying 

the underlying processes associated with learning deficits.  Finally, it is interesting to 

note that in previous human research relief of pain in chronic pain patients with opioid 

medications has failed to improve their cognitive functioning (Dick and Rashiq, 2007).  

The current behavioral model offers a unique opportunity to examine the effects of 
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medications on cognitive functioning (i.e., learning) in animals experiencing chronic 

pain.  
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