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ABSTRACT OF DISSERTATION 

 

 

 

CLINICAL EVALUATION OF NOVEL METHODS FOR EXTENDING MICRONEEDLE 
PORE LIFETIME 

 

Microneedles are a minimally invasive method for delivering drugs through the 
impermeable skin layers, and have been used to deliver a variety of compounds 
including macromolecules, vaccines, and naltrexone.  Microneedles can be applied to 
the skin once, creating micropores that allow for drug delivery into the underlying 
circulation from a drug formulation.  The utility of this technique, however, is blunted by 
rapid micropore closure.  This research project sought to: 1) characterize micropore 
lifetime and re-sealing kinetics, and 2) prolong micropore lifetime via inhibition of the 
skin’s barrier restoration processes.  Impedance spectroscopy was used as a surrogate 
technique in animals and humans to measure micropore formation and lifetime.  A proof 
of concept study in humans, using impedance spectroscopy, demonstrated that 
diclofenac (a topical anti-inflammatory) applied to microporated skin resulted in slower 
re-sealing kinetics compared to placebo, in agreement with previous animal studies.  
The clinical feasibility of prolonging micropore lifetime with diclofenac was confirmed via 
7-day delivery of naltrexone through microneedle treated skin in humans (compared to 
72 hour delivery with placebo). Lastly, naltrexone gels with calcium salts were applied to 
microneedle treated skin (hairless guinea pigs) to restore the altered epidermal calcium 
gradient; this method did not significantly extend micropore lifetime.    
 

KEYWORDS: diclofenac, impedance, microneedles, naltrexone, transdermal  

 

 

Nicole K. Brogden 
Student’s signature 

July 17, 2012 
        Date 

 

 

 

 



 

 

 

 

 
 
 
 
 
 

CLINICAL EVALUATION OF NOVEL METHODS FOR EXTENDING MICRONEEDLE 
PORE LIFETIME 

 
 

 
 

By 

Nicole K. Brogden 

 

 

 

 

 

 

 
 
 
Dr. Audra L. Stinchcomb 
Director of Dissertation 

Dr. Jim Pauly 
Director of Graduate Studies 

July 17, 2012 
Date 

 

 

 

  



 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

DEDICATION 

 

This entire body of work is dedicated to my parents, 

who have provided immense support, encouragement, and guidance throughout all of 

my academic endeavors. 

 

 

 

 

 

 



iii 
 

ACKNOWLEDGEMENTS 

 

Listen to the MUSTN’TS, child, 

Listen to the DON’TS, 

Listen to the SHOULDN’TS 

The IMPOSSIBLES, the WON’TS 

Listen to the NEVER HAVES 

Then listen close to me – 

Anything can happen, child, 

ANYTHING can be. 

– Shel Silverstein 

 

It is not an overstatement that this work could not have been completed without 

the expertise and support of a large number of people.  I extend my sincerest thanks to 

Dr. Audra Stinchcomb for the opportunity to be involved in a clinically relevant and 

human-focused research project.  I have grown as both a pharmacist and research 

investigator through completion of this work.  Additionally, Dr. Stinchcomb was extremely 

generous to support me in completing my studies at University of Kentucky after she 

relocated for a new faculty position at University of Maryland, Baltimore.  Next, I wish to 

thank the complete dissertation committee, and outside examiner, respectively: Dr. E. 

Penni Black, Dr. Charles Loftin, Dr. Susan S. Smyth, and Dr. Kimberly Anderson.  My 

committee was extremely supportive throughout my training, particularly after Dr. 

Stinchcomb began her new position in Baltimore.  Dr. Leslie Crofford, as my clinical 

mentor and study physician on all of the human studies, has been generous beyond 

words in the support she provided me.  She selflessly agreed to mentor me through all of 

my clinical work, and I am deeply grateful for her continued encouragement and 

mentoring.  The love and support of my parents, Kim and Katherine Brogden, has been 

unwavering during my long academic training (from pharmacy school through residency 



iv 
 

and graduate school), and helped me maintain the continued drive to complete this 

research project.  Ken Clinkenbeard has provided consistent love, understanding, and 

good coffee during my training, despite long hours and late nights.  I would like to thank 

all my labmates: Dr. Kalpana Paudel, Dr. Caroline Strasinger, Dr. Mikolaj Milewski, Dr. 

Courtney Swadley, Priyanka Ghosh, Jessica Wehle and Dana Hammell  - their help with 

experiments and day to day lab activities was critical in finishing this project.  Dr. Stan 

Banks has been unbelievably helpful and supportive of my growth as a bench scientist 

and his contributions to my training cannot be overstated.  Several funding sources have 

supported this work, including NIH and the Center for Clinical and Translational Science; 

I appreciate their support and the help of everyone at OSPA for administering the grants.  

The IRB and staff in the ORI have been extremely helpful as I’ve learned to 

appropriately conduct human clinical studies.  Thank you to the staff and veterinarians in 

the animal facilities who assisted with animal studies and took excellent care of our 

animals.  All of the nurses and staff at the Center for Clinical and Translational Science 

were extremely generous and patient as I learned the processes of clinical research, and 

they were fantastic in their clinical skills.  I would like to acknowledge Dr. Vladimir 

Zarnitsyn and Dr. Mark Prausnitz (Georgia Institute of Technology) for their expertise 

with the MN arrays and fabrication process, and for providing expert opinions on my 

research efforts.  Catina Rossoll, Tammi Young, Betsy Davis, Tammy Kamer, Barbara 

Hurst, Rodney Armstrong, Janice Butner, and Lou Dunn have all helped me immensely 

with administrative activities.  I would like to extend a heartfelt thanks to my research 

subjects, without whom this body of work would not have had much meaning.  To all of 

my friends who have provided study breaks, good laughs, and a sense of home for me 

here in Kentucky – you’ll never understand how much that helped me towards achieving 

my goals.  Without all of these people, all from different facets of my life, this work would 

have remained solely an idea, and would not have ever come to completion. 



v 
 

TABLE OF CONTENTS 

 

Acknowledgements ........................................................................................................... iii 

List of tables ..................................................................................................................... xi 

List of figures ................................................................................................................... xiii 

List of abbreviations ........................................................................................................ xv 

Chapter 1: Statement of the problem ................................................................................ 1 

Chapter 2: Research hypotheses ...................................................................................... 4 

Chapter 3: Research plan ................................................................................................. 7 

3.1 Develop an impedance spectroscopy technique as a surrogate marker to 

monitor micropore formation and lifetime .............................................................. 7 

3.2 Characterize the kinetics of micropore closure following topical application of 

diclofenac to microneedle-treated skin in healthy human volunteers .................... 8 

3.3 Quantify in vitro diclofenac skin concentrations in Yucatan miniature pig  

skin following one-time microneedle treatment and application of diclofenac ± 

naltrexone .............................................................................................................. 8 

3.4 Determine in vitro microneedle-enhanced transdermal flux of naltrexone 

across Yucatan miniature pig skin in the presence of diclofenac  ......................... 9 

3.5 Establish the tolerability of a combination of a 3% diclofenac gel  

and an 11% naltrexone gel on microneedle-treated skin in hairless guinea  

pigs ........................................................................................................................ 9 

3.6 Pharmacokinetic evaluation of microneedle/COX inhibitor-enhanced 

transdermal 7-day delivery of naltrexone in healthy human volunteers .............. 10 

3.7 Pharmacokinetic evaluation of microneedle-enhanced transdermal 7-day 

delivery of naltrexone following restoration of the Ca2+ epidermal gradient in 

hairless guinea pigs ............................................................................................. 11 

Chapter 4: Background and literature review .................................................................. 12 

4.1 Introduction .................................................................................................... 12 

4.2 Structure and function of the skin .................................................................. 12 

4.2.1 Stratum corneum ............................................................................ 13 

4.2.2 Viable epidermis ............................................................................. 14 

4.2.3 Dermis and microvasculature ......................................................... 15 

4.3 Transdermal drug delivery ............................................................................. 16 

4.3.1 Optimal properties of transdermally delivered drugs ...................... 17 



vi 
 

4.3.2 Routes of skin penetration .............................................................. 18 

4.3.2.1 Intercellular ...................................................................... 18 

4.3.2.2 Transcellular .................................................................... 18 

4.3.2.3 Appendageal .................................................................... 18 

4.3.3 Mathematical models of passive diffusion through the skin ............ 19 

4.4 Enhancement methods in transdermal drug delivery .................................... 21 

4.4.1 Chemical permeation enhancers .................................................... 21 

4.4.2 Physical methods............................................................................ 22 

4.4.2.1 Thermal ablation .............................................................. 22 

4.4.2.2 Laser ablation .................................................................. 22 

4.4.2.3 Jet injections .................................................................... 22 

4.4.2.4 Dermabrasion .................................................................. 23 

4.4.2.5 Sonophoresis ................................................................... 23 

4.4.2.6 Iontophoresis ................................................................... 23 

4.4.2.7 Electroporation ................................................................. 24 

4.4.2.8 Microneedles .................................................................... 25 

4.5 Tolerability and safety of microneedles ......................................................... 28 

4.6 Micropore lifetime after microneedle treatment ............................................. 28 

4.6.1 Effects of occlusion ......................................................................... 29 

4.6.2 Geometry and physical properties of the microneedles .................. 30 

4.6.3 Drug delivery window following microneedle treatment .................. 31 

4.7 Extending micropore lifetime ......................................................................... 33 

4.7.1 Processes involved in wound healing and barrier restoration ........ 33 

4.7.1.1 Lipid synthesis pathway ................................................... 34 

4.7.1.2 Catioinic ion gradients ...................................................... 35 

4.7.1.3 Arachidonic acid pathway ................................................ 36 

4.8 Naltrexone as an ideal model compound for exploring the kinetics of 

micropore closure ................................................................................................ 38 

4.8.1 Challenges with current naltrexone formulations ............................ 38 

4.8.2 Physicochemical properties of naltrexone favoring microneedle-

enhanced delivery.................................................................................... 39 

Chapter 5: Development of impedance spectroscopy techniques for measurement of 

micropore formation ........................................................................................................ 40 

5.1 Introduction .................................................................................................... 40 



vii 
 

5.2 Methods and materials .................................................................................. 42 

5.2.1 Microneedle arrays ......................................................................... 42 

5.2.2 Microneedle application .................................................................. 42 

5.2.3 Impedance spectroscopy techniques ............................................. 42 

5.2.4 Animal study procedures ................................................................ 43 

5.2.5 Clinical (human) study procedures ................................................. 43 

5.2.6 Calculation of micropore impedance .............................................. 44 

5.2.7 Transepidermal water loss (TEWL) measurements ....................... 45 

5.2.8 Staining techniques ........................................................................ 45 

5.2.9 Data analysis .................................................................................. 45 

5.3 Results .......................................................................................................... 45 

5.3.1 Animal studies ................................................................................ 45 

5.3.1.1 Hairless guinea pigs ......................................................... 45 

5.3.1.2 Yucatan miniature pig ...................................................... 46 

5.3.2 Human studies ................................................................................ 47 

5.4 Discussion ..................................................................................................... 48 

5.4.1 Differences between skin conditions and measurement  

techniques ............................................................................................... 48 

5.4.2 Skin hydration ................................................................................. 49 

5.4.3 Impedance measurements for assessing micropore closure  

kinetics ..................................................................................................... 50 

5.5 Conclusions ................................................................................................... 52 

Chapter 6: Prolonging micropore lifetime in vivo via application of topical diclofenac in 

healthy human subjects .................................................................................................. 62 

6.1 Introduction .................................................................................................... 62 

6.2 Methods and materials .................................................................................. 65 

6.2.1 Preparation of drug formulations .................................................... 65 

6.2.2 Preparation of microneedle arrays and occlusive patches ............. 65 

6.2.3 Electrodes and impedance measurements .................................... 65 

6.2.4 Clinical study procedures ................................................................ 66 

6.2.5 Microneedle treatments .................................................................. 67 

6.2.6 Micropore closure kinetics .............................................................. 67 

6.2.7 Skin irritation assessments ............................................................. 68 

6.3 Results .......................................................................................................... 68 



viii 
 

6.3.1 Subjects .......................................................................................... 68 

6.3.2 Formation of micropores in the stratum corneum ........................... 69 

6.3.3 Micropore closure kinetics .............................................................. 70 

6.3.4 Effects of diclofenac on human skin ............................................... 72 

6.3.5 Benefits of examining multiple treatment schedules ....................... 72 

6.4 Discussion ..................................................................................................... 73 

6.4.1 Effect of formulation pH on micropore closure kinetics ................... 74 

6.4.2 Potential factors contributing to inter-subject variability .................. 75 

6.4.3 Drug delivery window in relation to micropore lifetime and   

transdermal systems ................................................................................ 76 

6.4.4 Tolerability of microneedles and topical treatments ........................ 77 

6.4.5 Limitations....................................................................................... 78 

6.5 Conclusions ................................................................................................... 79 

Chapter 7: In vitro determination of naltrexone flux and quantification of diclofenac in 

microneedle-treated skin and in vivo assessment of skin irritation ................................. 92 

7.1 Introduction .................................................................................................... 92 

7.2 Methods and materials .................................................................................. 93 

7.2.1 Preparation of drug formulations .................................................... 93 

7.2.2 In vitro diffusion studies .................................................................. 94 

7.2.2.1 HPLC conditions .............................................................. 94 

7.2.3 Quantification of diclofenac in the skin ........................................... 95 

7.2.4 Determination of naltrexone flux ..................................................... 95 

7.2.5 In vivo assessment of skin irritation ................................................ 96 

7.2.5.1 Microneedle treatment and gel application ...................... 96 

7.2.5.2 Assessment of local erythema ......................................... 96 

7.2.6 Data analysis .................................................................................. 97 

7.3 Results .......................................................................................................... 97 

7.3.1 Diclofenac skin concentration, in the absence of naltrexone .......... 97 

7.3.2 Diclofenac skin concentration, in the presence of naltrexone ......... 97 

7.3.3 In vitro flux of naltrexone through microporated skin ...................... 97 

7.3.4 Tolerability of microneedle treatments and gels ............................. 98 

7.4 Discussion ..................................................................................................... 98 

7.4.1 Local diclofenac concentrations under various treatment  

paradigms ................................................................................................ 99 



ix 
 

7.4.2 In vitro naltrexone flux in the presence of diclofenac .................... 100 

7.4.3 Local erythema and tolerability of the treatments ......................... 101 

7.5 Conclusions ................................................................................................. 102 

Chapter 8: Pharmacokinetic evaluation of microneedle/diclofenac sodium enhanced 

transdermal 7-day delivery of naltrexone in healthy human volunteers ........................ 108  

8.1 Introduction .................................................................................................. 108 

8.2 Methods and materials ................................................................................ 109 

8.2.1 Preparation of drug formulations .................................................. 109 

8.2.2 Preparation of microneedle arrays and occlusive patches ........... 110 

8.2.3 Microneedle application technique ............................................... 110 

8.2.4 Clinical study procedures .............................................................. 111 

8.2.5 Calculation of naltrexone patch number per treatment group ....... 112 

8.2.6 Sampling schedule for pharmacokinetic analysis ......................... 112 

8.2.7 Plasma extraction procedure and analysis, naltrexone and 6-β-

naltrexol ................................................................................................. 113 

8.2.8 Impedance spectroscopy and micropore closure kinetics ............ 114 

8.2.9 Data analysis ................................................................................ 115 

8.3 Results ........................................................................................................ 116 

8.3.1 Micropore impedance and permeable area .................................. 116 

8.3.2 Pharmacokinetic parameters ........................................................ 116 

8.3.3 Tolerability of treatments .............................................................. 117 

8.4 Discussion ................................................................................................... 118 

8.4.1 Impedance spectroscopy for predicting drug delivery  

timeframes ............................................................................................. 119 

8.4.2 In vitro naltrexone flux and in vivo delivery considerations ........... 120 

8.5 Conclusions ................................................................................................. 123 

Chapter 9: Pharmacokinetic evaluation of microneedle-enhanced 7-day transdermal 

delivery of naltrexone via restoration of the epidermal Ca2+ gradient in hairless guinea 

pigs ................................................................................................................................ 132 

9.1 Introduction .................................................................................................. 132 

9.2 Methods and materials ................................................................................ 133 

9.2.1 Preparation of gel formulations ..................................................... 133 

9.2.2 Preparation of microneedle arrays and occlusive patches ........... 134 

9.2.3 Study procedures .......................................................................... 134 



x 
 

9.2.4 Pharmacokinetic sampling ............................................................ 135 

9.2.5 Plasma extraction procedure ........................................................ 135 

9.2.6 Analysis of plasma pharmacokinetic parameters ......................... 136 

9.2.7 Data analysis ................................................................................ 136 

9.3 Results ........................................................................................................ 136 

9.3.1 Calcium acetate ............................................................................ 136 

9.3.2 Calcium chloride ........................................................................... 137 

9.3.3 Calcium gluconate ........................................................................ 137 

9.4 Discussion ................................................................................................... 137 

9.5 Conclusions ................................................................................................. 140 

Chapter 10: Conclusions and future directions ............................................................. 145 

References .................................................................................................................... 149 

Vita ................................................................................................................................ 157 

 

 

 



xi 
 

LIST OF TABLES 

 

Table 4.1  Timeframes of micropore re-sealing, as measured by various research 

groups .......................................................................................................... 32 

Table 5.1  Description of repeated measurements made at a total of 6 treatment sites 

on the upper arms of healthy human volunteers .......................................... 53 

Table 5.2  Subject demographics across 10 healthy human volunteers. ...................... 54 

Table 5.3 All %RSD values for the conditions that generated the least variability in 2 

animal models and 10 human subjects. ....................................................... 55 

Table 6.1 Description of the treatments applied to each subject to examine the effect 

of diclofenac and placebo gels on micropore closure kinetics ..................... 80 

Table 6.2  Description of the different treatment schedules to determine the effect of 

varying timeframes of pre-hydration on micropore closure kinetics  ............ 81 

Table 6.3  Human subject demographics (n = 13) ........................................................ 82 

Table 6.4  Description of the combinations of treatment paradigms, schedules, and 

treatment sites for all subjects ...................................................................... 83 

Table 7.1  Quantification of diclofenac sodium in MN-treated Yucatan miniature pig skin 

under various schedules of application, in the presence or absence of 11% 

NTX gel ...................................................................................................... 103 

Table 7.2  Comparison of in vitro flux from 2 formulations of NTX through 100 

micropores in the presence of diclofenac sodium. ..................................... 104 

Table 7.3 Assessment of skin irritation ...................................................................... 105 

Table 8.1  Description of the number of micropores created for each treatment group 

and the gels applied to the skin .................................................................. 124 

Table 8.2  Subject demographics across 9 healthy human volunteers. ...................... 125 

Table 8.3 Radii of the individual micropores in Groups 1 and 2 (subjects in  

 Group 3 did not receive MN treatment). ..................................................... 126 

Table 8.4  Pharmacokinetic parameters for NTX and its active metabolite, NTXol, in 

human plasma............................................................................................ 127 

Table 8.5  Incidence of subject-reported adverse events during 7 days of NTX delivery 

in 9 healthy human subjects ....................................................................... 128 

Table 9.1  Description of the various calcium salts and concentrations in the  

 NTX gels. ................................................................................................... 141 



xii 
 

Table 9.2  Pharmacokinetic parameters in hairless guinea pigs treated once with MN 

arrays (200 micropores total) followed by application of an 8.4% NTX gel 

containing various calcium salts.. ............................................................... 142 



xiii 
 

LIST OF FIGURES 

 

Figure 4.1  Structure of the skin. .................................................................................... 12 

Figure 4.2  Cross-section of the skin depicting the various layers of the epidermis and 

dermis and the intercellular pathway of penetration for a xenobiotic. .......... 14 

Figure 4.3  Depiction of the intercellular and transcellular routes of penetration through 

the skin ......................................................................................................... 19 

Figure 4.4  Representation of a typical in vitro drug permeation profile from a saturated 

donor solution following topical application. ................................................. 20 

Figure 4.5.  Effects of combined physical enhancement methods on the barrier of the 

stratum corneum.  ........................................................................................ 25 

Figure 4.6  Four methods of microneedle-enhanced drug delivery to the skin. ............. 27 

Figure 4.7  Timeframes required for complete return to baseline barrier function under 

occluded conditions following application of MNs of varying geometries, 

determined by impedance spectroscopy. ..................................................... 30 

Figure 4.8  Diagram of the conversion of arachidonic acid into downstream 

prostaglandins and eicosanoids via the cyclooxygenase enzymes. ............ 37 

Figure 5.1  Impedance setup used for all human and animal studies ............................ 56 

Figure 5.2  Representative impedance and TEWL measurements made pre- and post-

MN on non pre-hydrated skin in one hairless guinea pig ............................. 57 

Figure 5.3  A micropore grid on the dorsal surface of a hairless guinea pig (top) and a 

Yucatan miniature pig (bottom) treated once with a 50 MN array ................ 59 

Figure 5.4  Representative impedance profiles in six treatment sites on one human 

subject; all measurements were made on the hairless upper arm following 

an overnight pre-hydration period. ............................................................... 60 

Figure 6.1 Image of a microneedle array ...................................................................... 84 

Figure 6.2 Treatment patches and electrodes on a subject’s upper arm ...................... 85 

Figure 6.3  Impedance of the micropores immediately following MN treatment ............. 86 

Figure 6.4 Comparison of AUC values at diclofenac vs. placebo treatment sites. ........ 87 

Figure 6.5  Representative profiles of micropore admittance from two subjects. ........... 88 

Figure 6.6  Comparison of admittance profiles in two subjects who completed a 

crossover design .......................................................................................... 89 

Figure 6.7  Ratios of diclofenac to placebo AUC. ........................................................... 90 



xiv 
 

Figure 6.8  Assessment of skin irritation. ....................................................................... 91 

Figure 7.1  In vitro flux of NTX through microporated skin in the presence of diclofenac 

sodium or 2.5% HA placebo gel ................................................................. 106 

Figure 7.2  Trends of erythema in hairless guinea pigs following application of NTX and 

diclofenac gels to MN-treated skin every 48 hours. ................................... 107 

Figure 8.1  Representative impedance profiles from one subject in Group 1 (MN + 

diclofenac + NTX) and one subject in Group 2 (MN + placebo + NTX). .... 129 

Figure 8.2  NTX plasma profiles following one-time MN treatment and application of 

diclofenac and NTX gel every 48 hours for 7 days post-MN  

 (n = 6 subjects). ......................................................................................... 130 

Figure 8.3  NTXol plasma profiles following one time MN treatment and application of 

diclofenac and NTX gel every 48 hours for 7 days post-MN treatment (n = 6 

subjects). .................................................................................................... 131 

Figure 9.1  Visual depiction of the change in the SC barrier as the calcium gradient is 

restored after insult. ................................................................................... 143 

Figure 9.2  Plasma concentrations of NTX following one time treatment with a MN array 

and application of various calcium-containing NTX•HCl gels ..................... 144 

 

 



xv 
 

LIST OF ABBREVIATIONS 

w/w  weight per weight  

w/v  weight per volume 

°C  degrees Celsius  

μm  micrometer  

ACN   acetonitrile  

ANOVA   analysis of variance  

APCI  atmospheric pressure chemical ionization 

AUC   area under the curve 

Cl  clearance  

cm   centimeter  

Cmax  Maximum plasma concentration 

Css  Plasma concentration at steady state 

COX   cyclooxygenase  

FDA   Food and Drug Administration  

J  flux 

hr   hour  

HCl   hydrochloride  

HEC   hydroxyethylcellulose  

HEPES   4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid  

HPLC   high performance liquid chromatography  

IACUC   Institutional Animal Care and Use Committee 

IS  Impedance spectroscopy 

IV   intravenous  

kHz  kilohertz 

kg   kilogram  

LC-MS/MS  liquid chromatography-tandem mass spectroscopy  

log Ko/w  logarithm of octanol-water partition coefficient 

logP  logarithm of permeability coefficient 

MeOH  methanol  

mg   milligram  

mHz   millihertz  

min   minute 

ml   milliliter  



xvi 
 

mm   millimeter  

mM   millimolar  

MN(s)   microneedle(s)  

MW  molecular weight 

n   number  

ng   nanogram  

NSAID  non-steroidal anti-inflammatory drugs 

NTX•HCl   naltrexone hydrochloride salt  

NTXol   6-β-naltrexol free base  

NTXol•HCl  6-β-naltrexol hydrochloride salt  

pH   negative logarithm of hydronium ion concentration 

pKa   acid ionization constant  

PGs  prostaglandins 

r2   coefficient of determination  

SC   stratum corneum  

SD   standard deviation  

SDS  sodium dodecyl sulfate 

TEWL   transepidermal water loss  

Tlag  Time until appearance of drug in the plasma 

Tmax  Time of maximum plasma concentration 

UV   ultraviolet 

 

 

 

 



1 
 

Chapter 1 

Statement of the problem 

Two of the most common routes for drug delivery include oral and injectable 

formulations.  Oral drug delivery is not optimal in many situations for reasons that 

include gastrointestinal side effects, extensive first-pass metabolism, enzymatic 

degradation, and poor bioavailability.  A common alternative is to deliver the drug via 

injection with a hypodermic needle, which is painful, invasive, and less convenient for 

the patient. Transdermal drug delivery is a unique technique that avoids many of the 

problematic adverse events common to other drug delivery methods. Transdermal 

systems, by way of patches that adhere to the skin, offer several key advantages over 

oral and parenteral delivery.  Drug patches applied to the skin are convenient and 

painless for patients to self-administer, allowing for prolonged zero-order drug delivery 

and avoidance of first pass metabolism.  Despite its clear advantages, passive 

transdermal delivery is restricted to a very small number of drugs (approximately 20 drug 

compounds) because of the strict physicochemical properties required for a drug to 

diffuse through the skin [1-3].  The stratum corneum (SC) is the outermost layer of the 

skin and serves as the primary barrier to passive transdermal drug delivery because of 

its unique structure.  Due to its composition of rigid keratinocytes embedded in a lipid 

matrix, the SC greatly limits the number of drug compounds that can be transdermally 

delivered.  Favorable candidates for percutaneous delivery are traditionally small in size 

(molecular weight <500 Daltons), have a logKo/w of ~2, low melting point, and are 

effective at low doses [1].  In an effort to increase the number of molecules that can be 

transdermally delivered, a number of physical enhancement techniques have been 

explored to disrupt the barrier function of the SC; these include such methods as 

iontophoresis, electroporation, sonophoresis, and microneedles [2-5]. 

 Microneedles (MNs) by definition are small needles of approximately 100 – 1000 

μm in length; the MNs assist with the transport of drug molecules across the skin by 

piercing and creating microchannels (also called micropores) in the SC, thereby 

increasing its permeability [6]. This physical enhancement technique is minimally 

invasive, painless, and well tolerated by most patients [7].  In fact, the first MN product 

was recently introduced to the US market with the Fluzone® intradermal vaccine (Sanofi 

Pasteur), released for the 2011 – 2012 influenza season [8].  There are several ways 

that MNs can assist in the transdermal delivery of drug molecules, though arguably the 

simplest method is known as the “poke (press) and patch” method.  This method 
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involves one-time application of solid MNs to painlessly pierce the skin and create 

micron-scale channels or pores in the SC.  These channels enhance the permeability of 

various molecules from a drug patch, gel, or solution, by providing a new pathway by 

which a drug compound can passively diffuse through the SC and into the underlying 

circulation. 

Newer advances using the “poke (press) and patch” method have shown 

promising results towards the clinical utility of this method of MN application, including 

the delivery of naltrexone (NTX), an opioid antagonist used as a treatment for alcohol 

and opioid addiction [9].  Several problems exist with currently available formulations of 

NTX, including extensive first-pass metabolism and hepatotoxicity associated with the 

oral formulation (ReVia®), and the high cost and inconvenience of the monthly injectable 

formulation (Vivitrol®).  NTX serves as an excellent compound for development of a MN-

assisted delivery system for a variety of reasons.  First, a transdermal formulation would 

be optimal for increasing the clinical usefulness of NTX for opioid and alcohol addiction 

by avoiding some of the downfalls of the currently available oral and injectable 

preparations.  In that regard, NTX is an ideal candidate for delivery via percutaneous 

methods.  From a practical perspective, however, the physiochemical properties of the 

molecule, specifically its hydrophilicity, do not allow it to pass through the skin barrier 

and achieve therapeutic concentrations, rendering NTX an excellent compound for 

development of physical enhancement techniques.  Due to the unique structure of the 

SC, increasing hydrophobicity generally contributes to better permeability through the 

skin, and many studies have already been completed in an attempt to increase the 

hydrophobicity of naltrexone via prodrug methods.  One problem that arises, however, is 

that the aqueous solubility of NTX is desirable to allow the drug to partition into interstitial 

fluid once it has passed through the skin. This creates a significant challenge for 

delivering NTX via traditional transdermal delivery approaches. Conversely, these 

properties make NTX an excellent candidate for studying MN-enhanced delivery, as the 

newly created micropores allow NTX to pass through the SC, regardless of its 

hydrophilic nature, where it can readily be measured in the plasma.  A recent study 

described the transdermal delivery of NTX in healthy human subjects following 

pretreatment with solid MNs [9]. In those subjects pretreated with MNs, application of a 

NTX patch yielded therapeutic blood levels, while application of the NTX patch without 

MN pretreatment did not lead to the detection of therapeutic levels.  This further confirms 

that NTX alone does not appreciably permeate the SC, but a MN treatment approach 
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can help to bypass this problem in a painless and well-tolerated approach. 

One of the greatest challenges associated with the poke and patch method is the 

skin’s ability to heal the micropores in a very short period of time following MN 

placement.  If the skin remains exposed to air immediately after MN application, the 

micropores can heal in as little as 15 minutes; this timeframe can be extended to 

approximately 2 – 3 days when the skin is occluded with an impermeable membrane or 

patch [9-14].  The short lifetime of the micropores would severely limit the utility of MN 

application in a clinical setting, and therefore it is important to develop effective means of 

extending the lifetime of micropores created by MN insertion (ideal dosing of a 

transdermal patch is once weekly).  For all the reasons mentioned above, NTX is an 

excellent pharmacokinetic model compound for assessing micropore lifetime under 

various conditions.  Previous work has demonstrated that topical application of 

diclofenac sodium to MN-treated skin results in transdermal delivery of NTX for 7 days in 

hairless guinea pigs, as compared to only 2.5 days in the absence of diclofenac sodium 

[11].  These results suggest that mild, subclinical inflammation may be contributing to the 

micropore closure process in vivo, which can be attenuated via simple application of a 

non-specific cyclooxygenase inhibitor.   

The overall aim of this work was to extend micropore lifetime after one 

application of a MN array in order to allow for transdermal delivery of a model compound 

for a 7 day period in human subjects.  These methods will be carried out with NTX as an 

ideal model compound, but the methods developed herein could ultimately be 

extrapolated to other compounds as well.  The underlying hypothesis of this research is 

that the lifetime of the micropores in the SC can be prolonged by inhibiting early stages 

of the wound healing process, focusing most specifically on local subclinical 

inflammation.  Achievement of the aims in this work will not only be advantageous for 

delivering NTX, but may also permit the development of once-weekly MN-assisted 

transdermal systems that are patient friendly and clinically advantageous for a variety of 

drug compounds. 
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Chapter 2 

Research hypotheses 

The objective of this research project was twofold:  

1) Characterize the lifetime of micropores and kinetics of re-sealing, using 

impedance spectroscopy as an in vivo surrogate technique and pharmacokinetic 

analysis to define drug delivery parameters; and  

2) Prolong the lifetime of the micropores via inhibition of various components of 

the skin’s normal wound healing and barrier restoration processes.  

 

Under these primary objectives, the research was driven by the following hypotheses. 

 

Hypothesis 1: MN treatment of healthy skin disrupts the permeability barrier of the 

stratum corneum, resulting in significantly lower impedance to the flow of 

electrical current between the body and external environment. 

It is important to develop an appropriate in vivo model for studying the kinetics of 

micropore closure following MN treatment in animal models and human subjects.  One 

means of measuring skin permeability barrier function is impedance spectroscopy, which 

can be used as a complementary or alternative technique to transepidermal water loss 

(TEWL, a commonly used technique for evaluating permeability barrier function).  The 

SC serves as the skin’s barrier to movement of ions (i.e. flow of electrical current), such 

that the impedance spectrum of the skin changes with disruption of the SC.  The 

impedance decreases if the skin is damaged, and this has been demonstrated as a 

reliable method of evaluating barrier function.  Accurate measurements can be collected 

in a clinical environment without any computers, software, or need for a highly controlled 

environment, making this a valuable tool for various environments. Impedance 

measurements of the SC using various methods and techniques have been described 

previously, but there are limited publications describing the use of this technique to 

evaluate micropore lifetime following MN treatment (in animal models or human 

subjects).  A methods development study is necessary to optimize the techniques and 

electrode types required to minimize variability and optimize reproducibility.    
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Hypothesis 2: The processes involved in the skin’s normal healing and barrier 

restoration following injury also govern micropore re-sealing, and inhibition of 

these normal paradigms will result in a clinically relevant extension of micropore 

lifetime following one-time application of a MN array.  

The physiological processes underlying micropore closure following MN 

treatment are not currently understood, and elucidation of the specific pathways involved 

would provide therapeutic targets for prolonging the lifetime of the micropores.  The skin 

follows a well-defined sequence of events following injury, and local inflammation 

(through activation of the arachidonic acid pathway) is one of the first steps.  It is 

possible that subclinical inflammation at a microscopic level may also contribute to the 

micropore closure process, which could be inhibited via topical application of diclofenac 

sodium (a non-specific inhibitor of the cyclooxygenase enzymes involved in the 

arachidonic acid pathway).  Additionally, a calcium gradient exists in the unperturbed 

epidermis, such that high concentrations of extracellular Ca2+ are found in the upper 

epidermis. Following barrier disruption, increased water movement within the SC 

dissipates the gradient, and this change appears to be one of the primary signals for 

restoring barrier function.  Following disruption via MN application, the Ca2+ gradient 

would likely be disrupted and thus may serve as an additional target to investigate for 

prolonging micropore lifetime. 

 

Hypothesis 3: Local concentrations of diclofenac in MN-treated skin will not be 

significantly different in the presence or absence of naltrexone, allowing for co-

application of a locally delivered anti-inflammatory and a systemically delivered 

model compound. 

 The diclofenac sodium formulation in these studies is delivered from a 

commercially available preparation called Solaraze®, which consists of 3% diclofenac in 

a 2.5% hyaluronate sodium vehicle.  Following topical application, this unique vehicle 

creates a depot of diclofenac in the epidermis, providing an ideal situation for locally 

inhibiting any inflammation that may be involved in micropore closure.  A 

pharmacokinetic study in humans will be completed to characterize the delivery of 

naltrexone HCl in the presence or absence of diclofenac sodium, but it is important to 

confirm that the local concentrations of diclofenac are maintained despite the flux of 

naltrexone HCl through the skin into the systemic circulation in the dermis.  These 
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studies will allow for calculation of an appropriate dose and schedule for co-applying 

diclofenac and naltrexone HCl for a human pharmacokinetic study.   

 

Hypothesis 4: Inhibition of subclinical inflammatory processes involved in 

micropore re-sealing will allow a therapeutically relevant dose of naltrexone to be 

delivered through the skin for up to 7 days in healthy human subjects. 

 While the overall intent of this research is to prolong the dosing interval following 

one application of a MN array, extending micropore closure kinetics is only clinically 

significant if a drug can be delivered to a therapeutically relevant concentration for the 

duration of the micropore lifetime.  A pharmacokinetic study is the best way to 

characterize the drug diffusion window for the micropores.  Naltrexone HCl is an 

excellent model compound to study because previous work allows for comparison of a 

drug delivery window under conditions of occlusion without co-application of any active 

moiety to prolong micropore lifetime.  In contrast, inhibition of the skin’s inflammatory 

responses should prolong the drug delivery window by allowing the micropores to 

remain viable for up to 7 days. 

 

Hypothesis 5: A good correlation exists between in vitro flux data and in vivo 

plasma concentrations of naltrexone in human subjects 

 The plasma concentrations of naltrexone HCl obtained from a pharmacokinetic 

study in human subjects with MNs should have a strong correlation with the in vitro flux 

data that is used to calculate the patch number and estimate the plasma concentrations 

over 7 days.  This will validate the in vitro diffusion studies and provide parameter 

estimates for future pharmacokinetic studies. 
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Chapter 3 

Research plan 

 

3.1  Develop an impedance spectroscopy technique as a surrogate marker to 

monitor micropore formation and lifetime 

 Several methods exist for monitoring barrier disruption in the SC, though many of 

these techniques are highly sensitive to environmental humidity and skin hydration, or 

require sophisticated instrumentation and software that makes use in a clinical 

environment cumbersome.  Impedance spectroscopy avoids these pitfalls, and is a 

reliable method for monitoring the skin’s barrier function.  The SC is relatively non-

conductive and does not permit the movement of electrical current.  As such, the 

impedance of intact skin is very high (indicating an intact barrier) but perturbation of the 

barrier results in a decrease in the impedance.  Impedance has been described to 

monitor the lifetime of micropores in the skin of human volunteers under occluded and 

non-occluded conditions, demonstrating its usefulness in this type of physical 

enhancement [14].  Several types of electrodes and impedance setups exist, and it is 

necessary to develop an experimental setup that introduces the least amount of error 

and variability to measure micropore formation.  The objective of this study is to develop 

an impedance spectroscopy setup that can monitor SC barrier function and micropore 

re-sealing with the least amount of variability.  Healthy human volunteers will be treated 

with 100 MN insertions per site (50 MN array applied twice) at 6 sites on the upper arm 

following an overnight pre-hydration period.  Impedance measurements will be made 

pre- and post-MN using an impedance meter (EIM-105 Prep-Check Electrode 

Impedance Meter; General Devices, Ridgefield, NJ) connected by lead wires to 

reference and measurement electrodes and modified by a 200 kΩ resistor in parallel 

(IET labs, Inc., Westbury, NY).  Three sites will be evaluated with dry Ag/AgCl electrodes 

(10 mm active electrode diameter; 25 mm x 25 mm total area; Thought Technology T-

3404; Stens Corporation, San Rafael, CA), and the other sites will be evaluated with gel 

Ag/AgCl electrodes (10 mm active electrode diameter; 50 mm diameter; S&W 

Healthcare Corporation, Brooksville, FA).  Measurements will be made in triplicate at 

each site, and two application pressures will be examined: light pressure (to simply hold 

the electrode o the surface of the skin) or direct pressure applied by the thumb of the 

investigator (to create greater contract between the skin and the electrode surface). 
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3.2  Characterize the kinetics of micropore closure following topical application of 

diclofenac to microneedle-treated skin in healthy human volunteers 

 While the specific physiologic processes contributing to micropore closure are 

not well defined, one of the underlying hypotheses of this project is that local subclinical 

inflammation at the micropores may contribute to the rapid re-sealing time.  Thus, the 

objective of this study is to demonstrate prolonged micropore lifetime in the presence of 

diclofenac sodium (a non-specific COX inhibitor) vs. placebo conditions.  Ten volunteers 

will be treated on the arm with a MN array ± diclofenac sodium or placebo gel; control 

sites will also be included.  The kinetics of micropore lifetime under various timeframes 

of skin pre-hydration (0, 24, or 72 hours) will be measured with impedance spectroscopy 

as a surrogate in vivo technique.  Measurements will be taken at baseline, post-MN, and 

daily thereafter for a total of 5 days (2 subjects will be treated for a full 7 day period and 

will only have one measurement at 96 hours into the study, rather than daily).  

Impedance of the micropores will be calculated assuming 3 parallel and independent 

pathways in the impedance setup (Zskin, Zbox, and Zpores), and the micropore impedance 

will be converted to admittance (1/Zpores), to more closely mimic the trends observed with 

transepidermal water loss (another commonly utilized technique for monitoring skin 

barrier function).  Area under the admittance-time curve will be calculated and the 

kinetics of micropore closure between diclofenac sodium and placebo treatment sites will 

be compared (paired t-test).  In 6 subjects, skin irritation potential of the treatments will 

also be assessed via tristimulus colorimetry readings, taken in triplicate at each time 

point.  The Δa* value will be calculated from baseline (representing a change in the red-

green axis) to quantify any local erythema.     

 

3.3  Quantify in vitro diclofenac skin concentrations in Yucatan miniature pig skin 

following one-time microneedle treatment and application of diclofenac ± 

naltrexone 

 It is important to determine the local concentration of diclofenac sodium in MN-

treated skin in conditions similar to those conditions described above in Research Plan 

3.2, as this helps to estimate the amount needed to inhibit micropore closure.  

Additionally, diclofenac skin concentrations in other situations in which diclofenac 

sodium and naltrexone HCl gels are both applied to the skin should be examined, as this 

will mimic the setting for the in vivo pharmacokinetic study (described below in Research 

Plan 3.4).  Yucatan miniature pig skin will be treated 20 times with a 5 MN array 
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(dimensions: 750 μm long, 200 μm wide, and 75 μm thick), to create a grid of 100 non-

overlapping micropores. A PermeGear In-Line flow-through diffusion system (Hellertown, 

PA, USA) will be used.  The receiver solution will consist of nanopure water with 20% 

EtOH, adjusted to a pH of 7.4. The experiments will be started by charging the cells with 

100 – 200 μl of Solaraze®, ± 500 μl of an 11% naltrexone HCl gel.  Samples will be 

collected at 6 hour intervals over a 7 day period, and stored at 4°C until analysis on 

HPLC.  Skin will be taken down at 24 to 48 hour intervals for determination of skin 

diclofenac concentration.  The skin will be rinsed 3 times with deionized water and 

blotted gently with Kimwipes® to remove excess drug from the skin surface.  Skin 

samples will be tape stripped twice and the skin weight recorded. The skin will be 

suspended in acetonitrile and shaken in a 32°C water bath overnight.  Diclofenac 

concentration will be analyzed by HPLC. 

   

3.4  Determine in vitro microneedle-enhanced transdermal flux of naltrexone 

across Yucatan miniature pig skin in the presence of diclofenac 

In order to calculate an appropriate number of patches suitable for a human 

pharmacokinetic study, it is necessary to determine the transdermal flux of naltrexone 

hydrochloride across MN-treated Yucatan miniature pig skin in the presence of 

diclofenac sodium delivered from Solaraze® (3% diclofenac sodium and 2.5% 

hyaluronate sodium).  A PermeGear In-Line flow-through diffusion system (Hellertown, 

PA, USA) will be used for skin diffusion studies. The physiological receiver solution will 

consist of HEPES-buffered Hank’s balanced salts with gentamicin, maintained at a flow 

rate of 1.5 ml/min and a temperature of 37° C.  Yucatan miniature pig skin will be treated 

20 times with a 5 MN array to create a grid of 100 non-overlapping micropores. The 

experiments will be started by charging the cells with 100 – 200 μl of Solaraze® and 500 

μl of 11% naltrexone HCl gel.  Samples will be collected at 6 hour intervals over a 7 day 

period, and stored at 4°C until analysis on HPLC.  The cumulative quantity of NTX 

collected in the receiver solution will be plotted as a function of time and the flux 

determined from the slope of the line at steady state.   

 

3.5  Establish the tolerability of a combination of a 3% diclofenac gel and an 11% 

naltrexone gel on microneedle-treated skin in hairless guinea pigs 

 In order to advance the optimal in vitro treatment conditions (determined in 

Research Plans 3.4 and 3.5) to human subjects, the skin irritation potential and 
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tolerability of the combination of diclofenac sodium and naltrexone HCl must be 

assessed.  Hairless guinea pigs will be utilized for these studies, as these animals are 

typically more sensitive than humans to topical xenobiotics, providing a conservative 

model for assessing irritation potential to human skin.  The hairless guinea pigs will be 

treated on the dorsal surface with arrays of 50 MNs applied twice to create 100 non-

overlapping micropores.  The microporated skin will be treated with 100 μl of Solaraze® 

and 500 μl of a 11% naltrexone HCl gel and covered by an occlusive, air-impermeable 

patch that is secured to the skin with Bioclusive medical tape.  Tristimulus colorimetry 

will be used to assess local erythema at MN-treatment sites; non-MN sites will be used 

as controls.  Measurements will be taken in triplicate at baseline and every 48 hours 

after application of the gels; fresh gels will be re-applied at each time point.  The Δa* 

value will be calculated from baseline (representing a change in the red-green axis) to 

quantify local erythema.   

 

3.6  Pharmacokinetic evaluation of microneedle/COX inhibitor-enhanced 

transdermal 7-day delivery of naltrexone in healthy human volunteers 

The first pharmacokinetic study in humans with MN-assisted transdermal delivery 

demonstrated therapeutic plasma concentrations of naltrexone hydrochloride for 48 – 72 

hours after one MN treatment [9].  This study, while confirming the ability of the “poke 

and patch” method to allow delivery to therapeutic drug concentrations, also 

demonstrated the relatively short period of drug delivery (2 – 3 days) after one 

application of MN arrays.  Conversely, another study showed enhanced permeation of 

naltrexone for 7 days in hairless guinea pigs treated with MNs and diclofenac sodium, 

confirming that topical application of a non-specific COX inhibitor to microporated skin 

can extend the drug delivery window to a therapeutically relevant timeframe [11].  The 

objective of the current study is to characterize the clinical utility of extending micropore 

lifetime (with diclofenac sodium) by measuring plasma naltrexone concentrations in 

healthy human subjects over 7 days.  Subjects will be treated with 50 MN arrays at 8 

sites (to create a total of 800 micropores), followed by application of 100 μl of 3% 

diclofenac sodium gel and 500 μl of a 11% naltrexone hydrochloride gel (gels will be 

replaced every 48 hours).  To confirm the formation (and monitor lifetime) of micropores 

in the SC, impedance spectroscopy measurements will be taken at baseline, 

immediately post-MN treatment, and 7 days post-MN.  Blood samples will be taken at 9 

time points on Day 0 (day of MN treatment), and daily thereafter, up to 7 days.  Two 
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groups of control subjects will also be evaluated: a non-MN group (gels applied to intact 

skin), and a placebo group (diclofenac sodium gel replaced with a placebo gel 

formulation containing no anti-inflammatory moiety).  All plasma samples will be 

analyzed for naltrexone and 6-β-naltrexol with LC-MS/MS (positive mode atmospheric 

pressure chemical ionization [APCI+]).  All plasma samples and standards (200 µl 

volume) will be extracted with 1 ml of ethyl acetate:acetonitrile (1:1, v/v), resulting in 

protein precipitation.  The samples in ethyl acetate:acetonitrile mixture will be vortexed 

for 15 seconds and centrifuged for 20 minutes at 12000xg. The supernatant will be 

transferred to a glass tube and evaporated under nitrogen. The resulting residue will be 

reconstituted in 200 µl acetonitrile, vortexed for 15 seconds, and sonicated for 10 

minutes. Samples will be transferred into low volume inserts in HPLC vials and injected 

onto the LC-MS/MS system.  

 

3.7 Pharmacokinetic evaluation of microneedle-enhanced transdermal 7-day 

delivery of naltrexone following restoration of the Ca2+ epidermal gradient in 

hairless guinea pigs 

 Dissipation of the epidermal Ca2+ gradient is one of the skin’s primary signals for 

restoring barrier function after disruption via chemical or physical means.  Restoration of 

the gradient would prevent the skin from re-sealing the micropores after one-time 

application of a MN array. The objective of these studies is to characterize the 

percutaneous delivery of naltrexone HCl through MN-treated skin in hairless guinea pigs, 

from gels containing various calcium salts (chloride, citrate, gluconate).  The guinea pigs 

will be treated at 2 sites on the dorsal surface with a 50 MN array applied twice at each 

site (to create a total of 200 micropores), followed by application of a 11% naltrexone 

HCl gel containing a calcium salt.  Plasma samples will be taken over a 7 day period and 

assessed via LC-MS/MS with the methods described above in Research Plan 3.6. 
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Figure 4.1 Structure of the skin, adapted 

from: http://www.natural-skin-

health.com/skinstructure.html. 

Chapter 4 

Background and literature review 

4.1  Introduction 

The skin could be mistakenly viewed as a simple cover to contain the body and 

internal organs.  Conversely, skin is a metabolically active, complex tissue that serves as 

a 2-way barrier between the body and the external hostile environment.  As the largest 

organ in the body, the skin is an excellent target for drug delivery purposes.  

Transdermal drug delivery has several distinct advantages over other common drug 

delivery routes (oral and intravenous), including avoidance of first-pass metabolism, 

allowing for a constant zero-order delivery profile for up to 7 days from one dose, and 

ease of application that enhances patient compliance.  Despite these advantages, the 

unique structure and barrier of the skin presents significant challenges for the passive 

diffusion of most drug molecules, except for those drug molecules that possess a very  

specific combination of physicochemical characteristics that permit penetration through 

the outer layers of the skin.  

 

4.2  Structure and function of the skin 

The skin is the largest organ in 

the human body, and serves a 

multitude of functions.  It represents 

the body’s first defense against a 

hostile external environment, and as 

such it provides defenses against 

noxious chemical and microbial 

external insults and UV radiation.  In 

addition, it provides critical 

homeostatic functions through the 

regulation of body temperature, blood 

pressure, and preventing excessive 

water loss [15, 16].  The skin is 

composed of multiple layers, each with distinct characteristics that contribute to the 

overall function of this intricate organ.  From the outside in, the layers of the skin include 

the stratum corneum (the outermost layer of the epidermis), viable epidermis, and the 

dermis.    
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4.2.1  Stratum corneum 

The true interface between the body and the hostile external environment is the 

outermost layer of the skin, known as the stratum corneum (SC), or horny layer [15, 16].  

It was believed to be a metabolically inactive tissue, similar to a plastic film, until the mid-

1970s [15].  It is now known to be a biosensor with limited metabolic activities that can 

respond to external cues and insults.  The SC is a multicellular layer that is 

approximately 10 to 15 μm thick over most of the body, though it is much thicker on the 

friction surfaces of the skin (palms and soles).  This outermost layer of the skin serves 

many critical functions, as it prevents excessive water loss to the outside environment 

while protecting the body from external xenobiotics and microbes. Structurally, the SC 

has been described as a “brick and mortal” model, composed of fully differentiated 

keratinocytes (“bricks”) embedded in a continuous lipid matrix (“mortar”).  Mechanical 

strength of the barrier is provided by the keratinocytes, while the lipids serve as the 

barrier to water and electrolyte movement [15, 17].  This layer of the skin is structurally 

distinct from all other layers, imparting its unique barrier properties to the skin as a 

whole. 

The mechanical strength of the SC is provided by the keratinocytes 

(corneocytes).  Over most parts of the body, the SC is composed of approximately 10 – 

15 layers of flattened keratinocytes (each with a mean thickness of about 1 μm) [15].  

The individual keratinocytes are composed of keratin that fills up the cell, and a 

substance known as natural moisturizing factor, a mixture of amino acids and their 

derivatives, that helps to maintain the normal hydration of the SC (approximately 20% 

water under normal conditions) [18].  Natural moisturizing factor acts as a humectant by 

absorbing atmospheric water, thus allowing the SC to remain hydrated and not lose its 

moisture to the outside environment; maintaining this free water helps facilitate 

biochemical events within the SC [18].  The keratinocytes in the SC are encapsulated by 

a cornified envelope (CE) that is composed of insoluble proline-rich proteins (loricrin and 

involucrin) [15].  The CEs of neighboring keratinocytes are linked together by 

intercellular protein structures called corneodesmosomes [19].  These structures must 

be enzymatically degraded in order for the outermost layer of cells to be shed, in a 

process known as desquamation [19].  The entire SC is replaced and turned over every 

2 weeks in healthy adults [15, 16].  

The intercellular lipid matrix makes up approximately 15 - 20% of the SC volume, 

and provides the barrier to water and electrolyte movement [15-17].  These lipids are 
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notably different from other biological membranes, in that there is very little phospholipid 

present [15, 17]. The composition of the lipid species found in the SC is always in an 

equimolar ratio as follows: ceramides (50% by mass), cholesterol (25% by mass), and 

free fatty acids (10 - 20% by mass) [15, 17, 19].  These lipids are secreted as lamellar 

bodies from the keratinocytes.  Lamellar bodies are unique to the epidermis (first seen in 

the stratum spinosum layer), and are membrane bilayer-encircled secretory organelles 

[17].  These lamellar bodies contain the lipids that serve as precursors to the SC 

extracellular lipids, and after secretion, these lipids are metabolized by enzymes that are 

also secreted in the lamellar bodies [17].  This sequence of events is known as “lipid 

processing” and is a critical step for the formation of a normal permeability barrier [17].   

The extracellular processing of lipids has important effects with regard to the 

barrier function of the SC (in fact, many of the key functions of the SC are somewhat 

derived from the extracellular processing of lipids) [17].  For example, maintenance of 

the SC hydration is partly maintained by the glycerol formed by the breakdown of 

phospholipids [17].  Free fatty acids contribute to the acidic pH of the SC (the pH of the 

skin surface ranges from ~5 to 5.5 in humans and animals), and this acidity is very 

important for regulating activity of many of the SC enzymes [17].  If the pH is increased, 

the lipid processing is impaired, thereby decreasing the permeability barrier function [17]. 

 

4.2.2  Viable epidermis 

The viable epidermis (often simply referred to as the ‘epidermis’, which includes 

the SC) is contained between the SC and the underlying dermis (it deserves note that 

the epidermis is often described as two distinct layers: the viable epidermis and the SC).  

The epidermis is approximately 50 – 100 μm thick and is completely avascular.  From 

the perspective of drug delivery this section of the skin is viewed as one single 

diffusional field, though under microscopic evaluation it can be seen that multiple strata 

make up the epidermis (representing progressive differentiation of the cells towards the 

external skin surface).  From outward in, the layers of the epidermis consist of the 

stratum corneum, stratum granulosum, stratum spinosum, and stratum basale [16, 19] 

The cells of the basement layer of the epidermis (stratum basale) give rise to the 

cells that eventually comprise the SC; for this reason the stratum basale is often referred 

to as the germinative layer.  The cells flatten and begin to internally synthesize lipids and 

proteins that will ultimately characterize a fully differentiated SC layer.  Several distinct 

cell types are found within the epidermis, though the primary cells are keratinocytes.  
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Langerhans cells serve as the primary antigen presenting cells; melanocytes synthesize 

the pigment that gives unique colorations across different human races and these cells 

also produce the suntanning effect in response to ultraviolet radiation [16].  Additional 

cell types include lymphocytes and migrant macrophages, which are especially evident 

following skin trauma.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2  Cross-section of the skin depicting the various layers of the epidermis 

and dermis and the intercellular pathway of penetration for a xenobiotics.  

Bouwstra et al, 2003.  The epidermis is composed of several layers, including (from 

outside in): the stratum corneum, stratum granulosum, stratum spinosum, and stratum 

basale. The skin vasculature can be observed at the junction of the dermis and 

epidermis. Reprinted from Progress in Lipid Research with permission from Elsevier.   

 

 

4.2.3  Dermis and microvasculature 

 The dermis lies sandwiched between the epidermis and the underlying 

subcutaneous tissue and is approximately 1 – 2 mm thick.  This layer of the skin is quite 

complex and it provides the mechanical support of the skin structure [16, 19].  The 

structure of the epidermis is comprised of multiple components including collagen (75%), 

elastin (4%), reticulin (0.4%), and ground substance (20%, made of mucopolysaccharide 

gel), all woven into a mesh with structural fibers [16].  Various cell types are found in the 



16 
 

dermis, including: nerve cells and endings (sensors of the skin); endothelial cells that 

form the vessels of the vasculature; blood cells; fibroblasts that produce the structure 

fiber network; and mast cells responsible for production of ground substance and 

release of histamine following aggravation.  The appendages of the skin arise in the 

dermis, including sebaceous glands, hair follicles, eccrine and apocrine sweat glands.  

Of particular importance, the dermis is highly vascularized, providing the circulation that 

serves all of the skin.  The first point of entry for a drug into the systemic circulation 

occurs within the papillary plexus (a delicate capillary structure in the upper dermis).  A 

rich lymphatic system is also present, in addition to a network of sensory nerves for pain, 

pressure, and temperature.   

 

4.3  Transdermal drug delivery 

 Transdermal (percutaneous) drug delivery, by definition, is the delivery of drugs 

through the skin in order to elicit systemic effects [16, 20].  Transdermal delivery offers 

several unique advantages over oral and non-oral drug delivery. The skin provides a 

large surface area (1 – 2 m2) that is readily available for drug absorption [1].  

Transdermal systems can provide the option for a sustained release system, which is 

particularly beneficial for drugs with short elimination half-lives and frequent dosing 

requirements.  Controlled kinetics for drug input can be achieved, while avoiding the 

peak and valley effects seen with oral and IV administration, and removal of the patch 

allows for easy termination of drug input.  These are especially attractive qualities for 

delivering drugs possessing narrow therapeutic indices [1].  Applying a patch to the skin 

for drug delivery purposes is non-invasive, allowing for better patient acceptance and 

ease of application without need for a healthcare professional.  The combination of all 

these factors would likely contribute to an increase in patient compliance, which would 

be the ultimate goal of any drug delivery system. 

In spite of its clear and unique advantages, transdermal delivery is not suitable 

for all drugs and therapeutic indications.  For example, a drug that already exhibits high 

bioavailability following oral administration, especially with infrequent dosing 

requirements would not necessarily warrant the use of percutaneous delivery.  

Additionally, any therapeutics that require a rapid bolus dosing or need to achieve high 

concentrations quickly would not be appropriate, as transdermal delivery generally 

provides a slower and sustained release profile over longer timeframes [1] . As such, 

there still remains a large number of drugs and biologics that would benefit from delivery 
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through the skin, but as of yet it has not been entirely feasible to commercially develop 

such systems. 

 

4.3.1  Optimal properties of transdermally delivered drugs 

One of the challenges associated with transdermal delivery is that only a small 

number of drugs can be delivered via this route, as there are several physicochemical 

properties that a molecule must possess in order to be a reasonable candidate (with 

currently available passive delivery methods).  To be a viable contender for delivery via 

the transdermal route, the drug molecule should be relatively small in size (generally not 

more than a few hundred Daltons), have a low melting point (good solubility properties), 

and be highly skin permeable (octanol-water partition coefficients that favor lipids, 

(logKoct of ~2)).  The structure should not contain a large number of pendant H groups, 

as the number of H groups reflects the ability of the drug moiety to interact with the polar 

head groups of the lipids in the SC.  Additionally these types of molecules tend to be 

quite hydrophilic and therefore have a Koct that is lower than optimal.   

Generally unionized species will partition better into the skin (relating to the pKa, 

or ionization potential) [1, 21].  In order to be systemically delivered, a molecule must 

also be able to cross the viable epidermis and dermis to reach the blood vessels below.  

These regions of skin beneath the SC are a more hydrophilic environment than the lipid 

milieu of the SC.  Thus, the drug compound must be hydrophilic enough to interact with 

this environment, but must be lipophilic enough to diffuse through the lipids of the SC.  

Models now exist to predict the maximum flux (Jmax) of a compound based on three 

factors: 1) logarithm of the octanol-water partition coefficient, melting point, and 

molecular weight [22]. 

The drug should be potent in its effects (requiring doses of milligrams/day or 

less), and the drug compound itself should not pose any unwanted cutaneous actions [2, 

16].  Other miscellaneous criteria (not related to the physicochemical properties of the 

molecule) that would make a drug an ideal candidate for development of a transdermal 

delivery system would include drugs that are subject to extensive first-pass hepatic 

metabolism, have an undesirable oral or intravenous dosage schedule, or drugs for 

which the currently available delivery systems have problems associated with 

compliance or adverse reactions.  
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4.3.2  Routes of skin penetration  

 With passive delivery techniques, there are 3 steps that must occur for a drug to 

be successfully delivered from the vehicle and through the skin.  First, the drug must 

diffuse out of the vehicle and reach the vehicle-SC interface.  Following this, the drug 

must partition into and diffuse through the SC to reach the viable epidermis below.  The 

final step is the diffusion of the drug through the dermis and then into the 

microcirculation [20].  Based on the general structure of the skin, there are 3 major 

diffusion pathways that a drug molecule can take through the skin: 1) through the 

continuous lipid matrix in the SC (intercellular route); 2) directly through the 

keratinocytes (transcellular route); or 3) appendageal route (hair follicles and sweat 

glands) [16, 23, 24].  The various routes of skin penetration are displayed in Figure 4.3.   

4.3.2.1  Intercellular: The lipid matrix of the SC in which the keratinocytes are 

embedded provides the only continuous phase throughout the SC, and this is thought to 

be the primary pathway of percutaneous delivery for most compounds.  This creates a 

very tortuous route through the skin, and as such, generally only low molecular weight 

and moderately lipophilic drug compounds can transverse this environment successfully.   

 4.3.2.2  Transcellular: The transcellular path of delivery would include delivery 

through the keratinocytes, requiring that a drug compound transverse through the 

keratin-filled corneocytes as well as the intercellular lipid matrix, with several transfers 

between the corneocytes and the lipid matrix between them [24].  As such, it is thought 

that this pathway would be generally unfavorable and would not likely contribute 

substantially to the overall delivery of most drug compounds through the SC. 

 4.3.2.3  Appendageal: The appendageal route of transport simply refers to the 

pathway of hair follicles and sweat ducts, which can be seen as a mean of bypassing the 

permeability barrier of the SC.  For this reason, appendageal transport is often known as 

a “shunt pathway”, as it provides a pathway of lesser resistance as compared to the 

tortuous lipid pathway of the SC.  However, the area available for appendageal transport 

is very small (about 0.1%), and thus this route typically can be considered negligible in 

its contribution to drug flux at steady state [25].   
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Figure 4.3  Depiction of the intercellular and transcellular routes of penetration 

through the skin. (Barry 2001)  The appendageal route is not displayed. Reprinted from 

European Journal of Pharmaceutical Sciences with permission from Elsevier.    

   

 

4.3.3  Mathematical models of passive diffusion through the skin 

Despite the complex structure of the skin, passive percutaneous delivery can be 

relatively well described with simple mathematical models of passive diffusion.  To use a 

model of passive diffusion, several assumptions are intrinsically present.  It is assumed 

that steady state conditions have been achieved, and that the compound is permeating 

via simple diffusion; it is also inherently assumed that the SC is a homogenous layer.   

As such, Fick’s first law of diffusion can be employed: 

 

          Equation 4.1 

 

where Jss is the steady state flux, ∆C is the concentration gradient across the skin, and P 

is a constant that describes a compound’s ability to transverse through the barrier of the 

SC.  P can be further broken down into components of the diffusional path length (h), a 

dimensionless drug partition coefficient and a diffusion coefficient of the drug. 

 Permeation at steady-state conditions can also be analyzed in terms of the 

cumulative amount that permeates through the skin into the receiver solution as a 
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function of time.  Thus, the amount of drug appearing in the receiver can be described 

as: 

 

          Equation 4.2 

 

Here, M represents the cumulative amount of drug permeated, P is the permeability 

coefficient, A is the diffusional area, C is the concentration of drug in the vehicle, t is  

time and tlag is the lag time.  For a homogenous membrane (one of the assumptions 

about the SC in this mathematical model of diffusion), the lag time can be estimated 

based on the thickness of the membrane (h) and the diffusivity of the drug in that 

membrane (D), according to the relationship: 

 

          Equation 4.3 

 

As shown in Figure 4.4, the cumulative amount permeated (M) can be plotted against 

time, and the slope of the line at steady state corresponds to the steady state flux in 

units of mass/distance2/time.  Back extrapolation of the steady state line to the X axis 

(time) can provide an estimate of the lag time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4  Representation of a typical in vitro drug permeation profile from a 

saturated donor solution following topical application. 
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For situations in which the time dependence of flux of cumulative amount of solute 

permeated must be solved, Fick’s 2nd law of diffusion can be utilized: 

 

          Equation 4.4 

 

where C is the concentration of drug in the barrier, t is time, and x is a spatial coordinate. 

Thus, at a point in a diffusional field, the change in concentration over time is 

proportional to the rate of change in the concentration gradient at that point. 

 

4.4  Enhancement methods in transdermal drug delivery 

Due to the effective barrier that the SC presents to the permeation of xenobiotics 

and most drug moieties, multiple methods of permeation enhancement have been 

studied, in attempt to extend the benefits of transdermal delivery to a wider variety of 

compounds.  These methods can be broken down into chemical and physical methods 

for disrupting the barrier of the SC. 

 

4.4.1  Chemical permeation enhancers 

Chemical enhancement can be described as a means of facilitating or enhancing 

absorption of a penetrant across the skin barrier by temporarily diminishing the skin 

barrier.  Several classes of chemical permeation enhancers (CPEs) exist, including fatty 

esters, fatty acids, terpenes, alcohols, amides, sulfoxides, pyrrolidones, and surfactants 

[23, 26].  Some CPEs can be obtained naturally (i.e. fatty acids, menthol), while others 

are synthesized artificially (DMSO, Azone®).  CPEs can enhance the permeation of 

drugs through a variety of mechanisms.  Some CPEs disrupt the lipid organization of the 

SC, resulting in increased permeability [2, 23, 26].  The enhancer inserts into the lipid 

bilayers, forming microcavities that increase available free volume for drug diffusion [23].  

Examples of such CPEs include azone, alcohols, terpenes, fatty acids, and DMSO.  

Protein modifying CPEs interact closely with the keratin found in the corneocytes 

(keratinocytes), thus loosening the tight protein structure and allowing for an alternative 

intracellular pathway of delivery; DMSO and ionic surfactants possess these 

characteristics.  Finally, some CPEs are able to enter the SC and change the chemical 

environment, which ultimately increases a second molecule’s partitioning [23]. Both 

ethanol and propylene glycol are utilized for these properties. Finally, many of the CPEs 

possess some combination of these 3 mechanisms.   Despite the potential advantage 
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gained in terms of increasing the permeability of drugs across the SC, the biggest 

challenge that CPEs have faced is skin irritancy and toxicity, as they affect underlying 

viable cells beneath the SC. 

 

4.4.2  Physical methods 

A wide variety of physical methods have been explored to temporarily disrupt the 

SC, designed to make a physical breach of the barrier without harming the underlying 

tissues, ultimately to provide a temporary permeation enhancement.  In addition to 

investigation of the individual methods, much research has also been devoted recently 

to trying to achieve additive effects from combining multiple techniques (Figure 4.5).  

4.4.2.1  Thermal ablation: Thermal ablation selectively heats the skin surface for 

a short period of time to generate micron-scale perforations in the SC, thus increasing 

skin permeability [5, 6].  This method localizes heat transfer to the skin surface without 

allowing heat to propagate to and damage the viable tissue below.  The heating period is 

very brief (<< 1 second), generating local temperatures reaching hundreds of degrees 

Celsius [2, 6].  The short pulses are typically on the time scale of milliseconds or shorter, 

allowing for limitation of the heat to the SC; longer heating times results in damage to 

deeper underlying tissue.  Several drugs (for example, testosterone, granisetron HCl, 

and diclofenac) and vaccines have been delivered via this route, while interstitial fluid 

has also been extracted from human subjects [3].  The PassPort™ system (Altea 

Therapeutics) has been tested in clinical trials for delivery of insulin using this type of 

physical enhancement.  

4.4.2.2  Laser ablation:  Lasers can be used to thermally ablate, and thereby 

create pores, in the SC.  Similar to other poration techniques, this allows a drug to 

bypass the SC and transverse through the aqueous pathway of the pores and into the 

underlying epidermis and dermis.  It can also be used to increase delivery of both 

hydrophilic and lipophilic compounds, and can also allow for extraction of interstitial 

fluids.  This method does carry with it a high cost and complicated equipment. 

4.4.2.3  Jet injections:  Jet injectors can be broken down into two types: liquid 

and powder.  The same principle of delivery applies to both types, in which a high-speed 

jet is used to puncture the skin and deliver drugs (in either liquid or powder formulations) 

without using a needle [6].  Acceptance of jet injectors has been somewhat variable, 

mostly due to the wide variety of reactions that have been observed at the administration 

sites.  Varying levels of pain, bleeding and hematomas have been reported with the 
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liquid injectors, while powder injectors have seen reports of hyperpigmentation, flaky 

skin, and erythema at treatment sites.    

4.4.2.4  Dermabrasion: Microdermabrasion is a common technique for cosmetic 

purposes (to treat scars, acne, and dermatologic conditions), primarily to remove or alter 

the skin tissue.  Increased permeability to small drugs like 5-flurouracil has been 

demonstrated following abrasion of the skin [27]. 

4.4.2.5  Sonophoresis: Sonophoresis is the term used to describe ultrasound 

methods that are used to enhance skin permeability.  High frequency ultrasound 

(therapeutic ultrasound, f > 1 MHz) was originally a popular choice for sonophoresis, but 

it is now known that low frequency ultrasound (f <100 kHz) is much more effective for 

enhancing transdermal delivery [3].  While there are several possibilities that have been 

explored as to the exact mechanism of sonophoresis for enhancing skin permeability, 

perhaps now the most accepted mechanism is acoustic cavitation.  This refers to the 

formation, oscillation, and collapse of “microbubbles” in the tissue.  The violent collapse 

of the bubbles is thought to create aqueous pathways (water channels) within the lipid 

bilayers of the SC, thus disrupting the structure and allowing for enhanced drug delivery 

[3, 28, 29].   

An interesting feature of sonophoresis delivery systems is that the skin remains 

in a state of high permeability for hours after a short application of ultrasound, which 

allows for a pretreatment scenario in which the patient does not need to wear the device 

for the duration of the drug delivery window [28].  Sonophoresis has been used to 

successfully deliver a large range of molecules, including macromolecules (insulin and 

erythropoietin) and smaller molecules such as lidocaine and calcein [30].  In 2004 the 

FDA approved SonoPrep®, a commercially available tool to accelerate local anesthesia 

with lidocaine; it has since been proven effective for enhancing anesthesia from 

application of EMLA® cream prior to intravenous cannulation in children [31].   

4.4.2.6  Iontophoresis: The underlying principle of iontophoresis is to provide an 

electrical driving force to assist the transport of molecules across the SC [1-3, 23].  

Iontophoretic delivery has already been well described for clinical applications, including 

pilocarpine sweat tests for diagnosing cystic fibrosis, lidocaine delivery for local 

anesthesia, and tap water to treat hyperhidrosis [2].  This method involves the passage 

of a small current through a drug-containing electrode that is in contact with the skin [23]. 

The efficiency of transport depends on the polarity, valency, and mobility of the species 

of interest [1, 23].  Three primary mechanisms of drug transport have been described, 
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including electroosmosis, electrophoresis, and increased skin permeability resulting from 

the flow of electric current [1, 4].  Drugs that carry a charge will be moved across the 

skin via electrophoresis, which drives the compound across the skin via direct interaction 

with the electric field [2, 3].  Species with smaller molecular mass and greater charge are 

generally favored and delivered more rapidly with iontophoresis techniques [3].  As such, 

drug delivery in clinical studies has been limited to smaller molecules including fentanyl 

and lidocaine [32-34].   

Commercial products have been previously marketed in the United States 

(Iontocaine® and Lidosite®) and IONSYS™ (never marketed in the US).  The products 

marketed in the US were subsequently removed due to safety concerns and corrosion of 

a component of the device, in the case of the IONSYS™ system.  These market 

withdrawals illustrate perhaps the biggest drawback of iontophoresis, in that it requires a 

relatively complex and expensive delivery device to be effective. 

4.4.2.7  Electroporation:  Electroporation (also known as electropermeabilization) 

involves the application of transient high-voltage electrical pulse to the skin, resulting in a 

rapid and reversible disruption of the stratum corneum.  Lipid bilayer structures are 

disrupted and a reversible polar pathway is created in the skin (it is generally accepted 

that rearrangements in the lipid structure creates temporary aqueous pores/pathways) 

[2, 3, 23, 35].  The main mechanisms of molecular transport derived from this method 

are enhanced diffusion via skin poration (both during and after the pulses), electrically 

driven transport that occurs during the pulses, and electroosmosis [4, 23, 35].  

Electroporation acts directly on the skin and induces a change in the tissue permeability 

[36].  The properties of drugs that can be delivered via electroporation are vast, including 

small and large molecules, hydrophilic or lipophilic, and charged or neutral molecules.  

Molecules that have been successfully delivered via electroporation include ions, 

calcein, metoprolol, fentanyl, sulforhodamine, peptides, and macromolecules [37-39].  
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Figure 4.5  Effects of combined physical enhancement methods on the barrier of 

the stratum corneum. Mitragotri et al, 2000.  Reprinted from Pharmaceutical Research 

with permission from Springer.   

 

 

4.4.2.8  Microneedles: As suggested by the name, microneedles (MNs) are 

needles or projections of micron-scale, designed to aid in drug and vaccine delivery 

through the skin.  The first realization that MNs could be employed to bypass the barrier 

of the SC (thereby allowing for drug delivery through the skin) occurred in the 1970s but 

progress in the field was limited by the lack of suitable technology to producing 

structures of such small dimensions.  The use of MNs offers a great deal of advantages 

over other physical enhancement techniques, as several options are available for 

tailoring the delivery method to meet specific therapeutic needs.  

One of the greatest advantages of MN technologies is removal of restrictions on 

the size of drug molecules that can be delivered through the skin.  Traditional 

transdermal delivery is limited to small compounds, but this is not the case with 
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microporated skin.  The newly created micropores are micron in scale but are still 

notably larger than drug molecules.  As such, it is feasible to deliver proteins, 

macromolecules, and DNA through microporated skin.  MN treatment also allows for 

hydrophilic compounds to be delivered into the skin, whereas traditional passive 

transdermal delivery is restricted to hydrophobic compounds [40].  There is a wide range 

of flexibility with the geometry and composition of the needles and the arrays.  MNs have 

been made from a variety of materials, including stainless steel, titanium, polymers, 

silicon, glass, sugars, and palladium [3, 5].  The length of the needles can range from 

100 up to 1500 μm, and the number of needles applied can range anywhere from a 

single needle (in the case of vaccines) all the way up to a roller possessing 192 needles 

(DermaRoller®).  

Four primary methods of drug delivery with MNs have been described (depicted 

in Figure 4.6): 1) pretreatment of the skin with solid MNs, 2) drug-coated MNs, 3) MNs 

that dissolve upon insertion into the skin, and 4) hollow MNs [5, 41].  The varying 

methods all have different mechanisms to allow for drug delivery, each with specific 

advantages and disadvantages. 

The use of solid MNs is typically viewed as a pretreatment paradigm, in which 

MNs are inserted into the skin and immediately removed, leaving behind micron-scaled 

pores (micropores) [5, 6, 41].  The creation of such micropores in the SC can increase 

skin permeability by up to 4 orders of magnitude [42-44], and application of a drug or 

vaccine over the newly permeable skin allows for delivery into or through the skin [6].  

This treatment process is often referred to as the “poke (press) and patch” approach.  

Solid MNs can be made from a variety of materials, including metals (stainless steel, 

titanium or nickel), silicon, ceramics, maltose, and polymers (both degradable and non-

degradable) [6, 41].   The solid MNs are typically designed as flat substrates such that 

the needles are all pressed into the skin at the same time.  However, a rollers of MNs 

are now commercially available that can treat larger areas of the skin.  Some examples 

of drug molecules that have been successfully delivered with solid MN technologies 

include naltrexone [9], calcein [44], docetaxel [45], phenylephrine [46], and insulin [47]. 

In addition to simply piercing the skin to create aqueous micropores to aid in drug 

delivery, solid MNs can be coated with drug formulations that can be delivered quickly 

into the tissue upon insertion of the MNs into the skin (the “coat and poke” approach).  

Multiple methods exist for coating the MNs, including dipping and spraying techniques 

[41].  While this technique does limit the amount of drug that can be delivered (due to the 
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small volume that can be coated onto the needle surfaces), this mode of MN application 

has proven to be versatile in its applications and the drugs that can be successfully 

delivered.  Peptides [48], vaccines [49-51], and antigens [52] have all been successfully 

coated onto MNs. 

Dissolving MNs are quite different from the 2 MN techniques already discussed, 

in that these needles are composed of degradable, water-soluble materials (often 

polymers and sugars) that completely dissolve within the skin following insertion.  These 

needles do offer the possibility of being used as a pretreatment, but often a drug is 

encapsulated within the polymer, allowing for slow release into the skin.  Dissolvable 

MNs often require up to 5 minutes of insertion time to completely dissolve; in contrast, 

biodegradable polymers remain in the skin for several days to provide controlled-release 

degradation. Human growth hormone [53], erythropoietin [54], and influenza vaccine [55] 

have all been successfully delivered with this approach. 

Finally, hollow MNs provide a defined pathway for drug delivery through the 

needles into the skin.  This allows for a liquid drug formulation to be delivered via 

pressure-driven flow (similar to a hypodermic needle), which creates a system in which 

the flow rate can be adjusted to meet a specific therapeutic need.  The greatest 

advancement with hollow MNs has been the successful delivery of insulin to both 

animals and humans [56, 57]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6  Four methods of microneedle-enhanced drug delivery to the skin. Kim 

et al, 2012.  Reprinted from Advanced Drug Delivery Reviews with permission from 

Elsevier.   
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4.5  Tolerability and safety of microneedles 

In order to be clinically feasible as a drug delivery technique, it is important that 

MN treatment is both well tolerated by patients and safe with regards to infection 

potential/risk. It has been demonstrated through multiple studies that application of MNs 

to the skin is painless and well tolerated.  Using visual analog scales (VAS), MN 

application is reported to be significantly less painful than a hypodermic needle [7, 58, 

59], while other reports have not specifically used VAS methods, but have still reported 

lack of pain with MN insertion [60, 61].  Subjects perceive MN insertion as a “pressure” 

or “heavy” sensation, but not painful [7].  The perception of pain increases with two 

factors: 1) MN length and 2) number of MNs.  The MN tip angle, width, and thickness do 

not significantly affect pain [58].  

One of the first criticisms mentioned with regard to MN treatments is the potential 

for increased risk of local infection once the micropores have been created.  In fact, it 

has been demonstrated that in vitro microbial penetration is less after MN application 

(when compared to a hypodermic needle) for Gram negative, Gram positive, and Yeast 

species [62].  Additionally, there have been no reports of infection following MN 

application, despite the increasing numbers of human trials in this area. 

  

4.6  Micropore lifetime after microneedle treatment 

The utility of MN treatments for enhancing drug delivery through the SC is 

dependent on 2 primary factors: the efficiency of micropore formation, and the lifetime 

during which a drug compound can diffuse through the micropores (in other words, the 

effective lifetime of the micropores).  This has become a topic of great recent interest in 

the MN delivery field, and several studies in animals and human have been published 

addressing the topic of micropore closure kinetics and determination of a viable drug 

delivery window after one-time MN application [10-14].  A variety of experimental 

techniques are available for assessing both formation and the lifetime of the micropores, 

including methylene blue staining [7, 63, 64], india ink staining [12], calcein imaging [63, 

65], histology techniques [63, 65], optical coherence tomography [13], confocal laser 

microscopy [10, 63, 65], transepidermal water loss [7, 11, 63, 65], impedance 

spectroscopy [9, 14], and drug diffusion (pharmacokinetic) studies [9, 11, 12].  Through 

these various techniques of evaluating micropore formation it is now understood that 

multiple factors contribute to the degree of perturbation that MNs create in the skin and 

how long the micropores will remain viable, including: local skin occlusion, geometry and 
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physical properties of the MNs, and physiological processes involved in barrier 

restoration.  A summary of the studies that have examined the effect of these 

parameters on micropore re-sealing kinetics is found in Table 4.1, below. 

 

4.6.1  Effects of occlusion 

 Occlusion of the skin with an impermeable membrane blocks the insensible loss 

of water from the skin’s surface, thereby resulting in a local increase in skin hydration.  In 

typical transdermal delivery systems, the skin remains occluded under a patch for a 

period of hours to days.  This would also be the situation with a “poke (press) and patch” 

MN application, when the micropores are occluded with a drug formulation.  The steep 

water gradient that results from damage to the skin (in this case, from the creation of 

micropores) is one of the first signals for the skin to initiate the cascades of events 

contributing to barrier restoration, as this affects ion gradients in the skin that ultimately 

trigger repair mechanisms [66-68].  Blocking the formation of the water gradient thus 

blocks initiation of repair mechanisms.  This could also be considered an advantageous 

attribute of the occlusion of the “poke (press) and patch” system, as the micropores 

would be expected to heal more slowly under conditions of limited (or absent) airflow to 

the external environment.  This concept has been demonstrated by several groups who 

have examined the effect of occlusion on micropore re-sealing kinetics.   

When unoccluded, the micropores heal quickly: TEWL measurements 

demonstrated a return to baseline within a range of 2 hours [14, 69], 4 hours [63, 65], or 

by 24 hours [7]. Other techniques demonstrate similar timeframes.  Bal et al viewed the 

micropores with confocal laser scanning microscopy and reported that no dye was 

present on the skin surface at 15 minutes, suggesting rapid re-sealing of the micropores 

at the SC [10]; using optical coherence tomography, Enfield and colleagues described 

that micropores were still visible at 85 minutes post-treatment, though the micropore size 

had decreased [13].  Methylene blue binding studies have displayed evidence of repair 

at 8 and 24 hours post-MN [7], while calcein imaging techniques have exhibited closure 

over a range of 12 to 18 hours [63, 65].     

Under occluded conditions, the timeframe of micropore re-sealing is extended to 

a notable degree.  TEWL measurements demonstrate that baseline barrier function is 

not achieved by 72 hours under occlusion with a blank patch or buffers of pH 4 or 7, 

confirming that the pH of the local environment does not affect micropore closure rates 

this was confirmed with calcein imaging in which the micropore could be visualized at 72 
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hours [65].  Gupta et al described impedance measurements of micropores under 

occluded conditions and a range of re-sealing times was observed, from 3 to 40 hours 

[14].  

  

4.6.2  Geometry and physical properties of the microneedles 

 A wide range of geometries are available for MN arrays, and several reports 

have demonstrated that MN length and number significantly affect the amount of barrier 

perturbation and the rates at which the micropores heal.  A positive correlation between 

TEWL and MN length has been observed in vitro when Dermarollers® of varying MN 

lengths were applied (150 – 1500 μm length) [69].  Additionally, MN geometry was found 

to significantly affect the permeation of a fluorescent dye in vivo into human skin [70].   

Under the hypothesis that increasing MN length causes more perturbation to the 

skin, it has been postulated that treatment with longer needles would result in prolonged 

liftime of the micropores; in fact, this has been demonstrated via evaluation of micropore 

lifetime with a variety of techniques.  A difference in re-sealing time of 12 hours vs. 18 

hours has been demonstrated with TEWL measurements following treatment with MNs 

lengths of 370 μm and 770 μm, respectively [63].  Gupta et al examined the lifetime of 

micropores (using impedance spectroscopy) under occluded vs. non-occluded 

conditions [14].  When unoccluded, the micropores all returned to baseline impedance 

values by 2 hours after treatment, demonstrating re-sealing of the micropores.  In 

contrast, the differing geometries resulted in significantly different re-sealing times under 

occlusion.  An array of 50 MNs, 500 μm length results in a recovery time of ~20 hours, 

whereas an array of 50 MNs of 750 μm takes up to 40 hours to heal.   

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7  Timeframes required for 

complete return to baseline barrier 

function under occluded conditions 

following application of MNs of 

varying geometries, determined by 

impedance spectroscopy. Gupta et al, 

2011.  Reprinted from Journal of 

Controlled Release with permission from 

Elsevier.  
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4.6.3  Drug delivery window following microneedle treatment 

 All of the aforementioned studies examining micropore formation and closure 

kinetics utilized “surrogate” markers to assess the re-sealing time of micropores under 

various conditions.  However, the ultimate goal of characterizing micropore lifetime is to 

determine the window during which drug can be delivered through the micropores to a 

therapeutic level.  The first study to examine this concept in human subjects described 

the delivery of naltrexone (NTX), an opioid antagonist, using the “poke (press) and 

patch” method in healthy human volunteers.  Subjects were treated once with MN arrays 

at 4 patch sites, for a total of 400 micropores (arrays of 50 MNs each, 620 μm in length).  

A 16% NTX•HCl patch was applied to each MN-treated skin site, and remained on the 

skin for the full 72 hours of the study.  NTX was delivered to a therapeutic plasma 

concentration (2.5 ± 1.0 ng/ml) for 48 hours; 2 subjects demonstrated delivery up to 72 

hours [9].  This delivery window is in very good agreement with impedance, TEWL, and 

calcein imaging data that demonstrated viability of micropores in a window ranging from 

40 hours to 72 hours under occlusion, following treatment with MNs of similar 

geometries (500 or 750 μm length) [14, 63].  A very similar drug delivery window was 

observed when hairless guinea pigs were treated on the dorsal surface with MNs (50 

MN arrays, 750 μm in length) followed by application of a 21.7% gel patch of 6-β NTXol 

(the active metabolite of NTX) that remained in place for the duration of the study.  

Concentrations of NTXol in the plasma were consistent (21.3 ± 6.9 ng/ml) up to 48 

hours, after which the plasma levels began to vary.  TEWL was employed as a 

concurrent surrogate technique, which confirmed that the micropores were no longer 

viable after 48 hours [12]. Furthermore, in a study by Banks et al studying the effect of 

diclofenac sodium on micropore closure, control animals were treated once with MN 

arrays (50 MN arrays, 750 μm in length) followed by application of a 16% NTX•HCl gel 

patch.  Consistent with the other studies, NTX was detected in the plasma up to 

approximately 60 hours post-MN (3.4 ± 1.3 ng/ml), after which the plasma levels were 

undetectable [11].  All of these studies confirm 2 important concepts: first, under 

occluded conditions drug delivery can be achieved through micropores for a timeframe 

of approximately 48 – 72 hours (assuming a MN length of ≥ 500 μM); second, the 

lifetime of micropores predicted by surrogate techniques (e.g. calcein imaging, TEWL, 

impedance) correlates closely with plasma concentrations of drugs delivered under 

similar conditions.  
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Table 4.1  Timeframes of micropore re-sealing, as measured by various research 

groups.  Multiple methods of evaluation and varying MN geometries have been 

examined. 

Reference Model Length 
of MN 
(μm) 

Method of 
evaluation 

Kinetics of micropore closure 

[10] Humans 
(n = 6) 

300 Confocal laser 
scanning 
microscopy 

No dye present on skin surface 
at 15 minutes 

[13] Humans 
(n = 1) 

280 Optical 
coherence 
tomography 

Micropores still visible at 85 
minutes 

[7] Humans 
(n = 13) 

180 
280 

TEWL, 
methylene blue 
staining 

TEWL: returned to baseline by 
24 hours 
 
Staining: showed evidence of 
repair at 8 and 24 hours 

[65] Hairless 
rats 

500 TEWL, calcein 
imaging 

TEWL: returned to baseline by 4 
hours (unoccluded), but still not 
achieved by 72 hours under 
occlusion. 
 
Imaging: closure by 15 hours 
(unoccluded); channels still 
visible at 72 hours but not 120 
hours (occluded). 

[63] Hairless 
rats 

370 
770 

TEWL, calcein 
imaging 

TEWL: Returned to baseline by 
4 to 5 hours (irrespective of MN 
length) 
 
Imaging: Closure by 12 hours 
(370 μm) or 18 hours (770 μm) 

[69] Ex vivo / 
in vitro 

150 
500 

1500 

TEWL Returned to baseline by 2 hours 
(irrespective of MN length) 

[14] Humans 
(n = 10) 

500 
750 

1500 

Impedance 
spectroscopy 

Unoccluded: All sites returned to 
baseline by 2 hours 
Occluded: recovery to baseline 
dependent upon MN length and 
number: 
500 μm, 50 MNs: 22 hours 
750 μm, 10 MNs: 3 hours 
750 μm, 50 MNs: 30 hours 
750 μm, 50 MNs: 40 hours* 
1500 μm, 10 MNs: 18 hours 
 
     * needles were thicker than 
the other 750 μm arrays 
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Table 4.1, cont. 

[9] Humans 
(n = 9) 

620 Pharmacokinetic 
analysis of 
naltrexone 
plasma 
concentrations 

Therapeutic plasma 
concentrations of naltrexone 
delivered for 48 to 72 hours 

[12] Hairless 
guinea 

pigs 

750 TEWL, India ink 
staining, 
pharmacokinetic 
analysis of 6-β-
naltrexol plasma 
concentrations 

TEWL: Returned to baseline by 
48 hours (occluded) 
 
Staining: Apparent staining 
present at 48 hours, but only 
slightly at 72 hours (occluded) 
 
Plasma concentrations: delivery 
achieved for 48 to 72 hours 

[11] Hairless 
guinea 

pigs 

620 Pharmacokinetic 
analysis of 
naltrexone 
plasma 
concentrations 

Therapeutic concentrations of 
naltrexone delivered for 48 hours 
in control animals 

 

4.7  Extending micropore lifetime 

 While it is now established that micropores can remain viable for up to 48 to 72 

hours following one-time treatment, it would be ideal to extend this timeframe up to 7 

days total.  Once weekly dosing of a transdermal patch is ideal and would help increase 

patient compliance and satisfaction with therapy.  It becomes necessary, then, to explore 

means of trying to extend the viable window of drug delivery by prohibiting micropore 

closure during the period in-between the normal timeframe of closure (48 to 72 hours) 

and the target dosing interval (7 days).  A logical place to start for developing such a 

system is to target the physiologic events that contribute to the skin’s ability to restore its 

barrier following acute insult.  

 

4.7.1  Processes involved in wound healing and barrier restoration 

The SC barrier function can be acutely disrupted by a variety of experimental 

means (physical, chemical, or physiological), including solvents (i.e. acetone), 

mechanical forces (i.e. tape stripping), or detergents such as sodium dodecyl sulfate 

(SDS) [17, 71].  Following the disruption, the skin initiates a homeostatic repair response 

in order to recover the barrier function.  There are several known pathways involved in 

wound healing and barrier restoration following insult to the skin, and it could be 

proposed that these processes would also be involved in restoring the barrier following 
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MN treatment, including 1) lipid synthesis; 2) cationic ion gradients in the skin; and 3) the 

arachidonic acid pathway. 

4.7.1.1  Lipid synthesis pathway: The lipids of the SC are the primary 

determinant of the permeability barrier, affecting water transport, movement of 

electrolytes, and drug penetration [17, 72].  This has been demonstrated by an inverse 

correlation that has been noted between penetration of solutes and the weight of SC 

lipids [72].  In addition to the extreme hydrophobicity of the extracellular lipids, the critical 

molar ratio (1:1:1) of the 3 key species also contributes to the barrier function [73].  

Under basal conditions, epidermal lipid synthesis is highly active and generally 

independent of systemic influences, though it can be modified by external influences that 

alter the SC barrier function [73].  Acute disruption of the barrier function stimulates a 

characteristic sequence of recovery events that contributes to restoration of normal 

function within approximately 48 – 72 hours [17, 73].  Within minutes of the insult, 

contents of the lamellar bodies in the stratum granulosum cells are secreted, and this 

leads to a notable decrease in the number of lamellar bodies that are found in the 

stratum granulosum [17].  Newly formed lamellar bodies will begin to appear shortly in 

the stratum granulosum cells, and this accelerated rate of secretion will continue until the 

barrier function is returned to normal [17].  Of note, this process can be inhibited via 

application of an impermeable membrane that artificially restores the barrier function 

[17].   

The sequence of events that is initiated to repair barrier function includes 

accelerated synthesis of epidermal cholesterol, sphingolipids, and fatty acids [17, 72].  

The timeframe of these events differs slightly in that the increase in cholesterol and fatty 

acid synthesis occurs shortly after the barrier disruption (within 1 – 2 hours), whereas the 

increase in sphingolipid synthesis is slightly delayed (6 – 9 hours) [17, 72].  These 

events provide the basis for metabolic inhibitors as a potential means to inhibit barrier 

recovery, thereby increasing SC permeability and improving transdermal delivery of drug 

molecules [17, 21, 72].  In fact, it has been demonstrated that repair response can be 

modulated via the use of pharmacological agents aimed specifically at inhibiting some 

component of epidermal lipid synthesis [17, 21, 72].  In support of this concept, topical 

HMG CoA reductase inhibitors (specifically lovastatin and fluvastatin) have been shown 

to cause a delay in barrier recovery when applied to adult hairless mice.  In these 

studies, the kinetics of barrier recovery were delayed, while a barrier defect was also 

noticed after several days of repeated daily application [17, 21, 72, 74, 75].  Co-
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application of mevolanate (rate limiting step in the cholesterol synthesis pathway) or 

cholesterol (distal product of the pathway) reverses the inhibition of barrier restoration, 

thus suggesting that the delay is not related to nonspecific toxicity effects of the 

inhibitors themselves [21, 73, 74].  When combined with the assessment of transdermal 

delivery of the model compound lidocaine, the barrier disruption associated with the 

topical application of fluvastatin correlated linearly with the extent of lidocaine disruption, 

further supporting the notion of utilizing these pharmacologic agents to enhance 

transdermal delivery techniques [72].  

 4.7.1.2  Cationic ion gradients: Calcium (Ca2+) is known to have several roles in 

the skin.  High concentrations of Ca2+ regulate differentiation of cultured keratinocytes, 

and are involved with late epidermal differentiation events including conversion of 

profilaggrin to filaggrin and activation of serine proteases and transglutaminase.  Under 

normal conditions, a steep gradient of Ca2+ ions exists in the epidermis, with 

concentrations of ~180 mg/kg in the basal layer, and increasing to a peak of ~460 mg/kg 

in the outer layers of the stratum granulosum.  This gradient falls off steeply at the SC, 

where the lowest levels of Ca2+ are present in the skin [76].   

 Following disruption of the permeability barrier (acetone treatment, tape stripping, 

application of 2% SDS), the steep gradient of Ca2+ is dissipated, resulting in lower Ca2+ 

concentrations in the outermost layers of the skin.  The peak of Ca2+ normally found in 

the stratum granulosum layer falls by almost 4 fold, to ~128 mg/kg [76].  Concurrently, 

the amount of Ca2+ in the epidermis actually increases slightly, suggesting that the skin 

restores the gradient from below by moving Ca2+ up from deeper layers in the skin.  The 

decreased Ca2+ in the upper layers of the skin results in a characteristic sequence of 

responses to repair the permeability barrier.  These responses include: 1) secretion of 

preformed lamellar bodies from the stratum granulosum cells; 2) increased assembly 

and further secretion of lamellar bodies from stratum granulosum cells; 3) increased 

synthesis of epidermal cholesterol, fatty acids, and sphingolipids; and 4) and increase 

epidermal DNA synthesis.   

 Several bodies of evidence support the involvement of Ca2+ in maintaining or 

repairing skin homeostasis.  Following barrier disruption (via acetone treatment or tape 

stripping), submersion of the skin in an isomolar sucrose or isotonic NaCl solution with 

mM concentrations of calcium chloride (CaCl2) delays barrier recovery (measured with 

TEWL).  When submersion is performed with phosphate buffered saline solution with 

added Ca2+, no increase in HMG CoA reductase activity is observed.  Application of 1 
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μM ionomycin (a Ca2+ iontophore) to barrier disputed skin also delays barrier recovery 

[77].  There was also no secretion of lamellar bodies, no localization of neutral lipids, and 

a very thin stratum corneum/stratum granulosum domain. 

 In addition to the above mentioned studies demonstrating the role of extracellular 

Ca2+ concentrations towards initiating barrier restoration processes, many of these 

studies also suggest that high intracellular Ca2+, or at least high flux of Ca2+ into cells, 

prevents lamellar body secretion.  When verapamil or nifedipine (L-type, voltage 

sensitive Ca2+ channel blockers) are added to the Ca2+- containing submersion solutions, 

barrier recovery occurs at normal rates.  Furthermore, addition of TMB-8 (to inhibit 

translocation of Ca2+ from membrane bound vesicles into the cytosol) results in normal 

recovery rates; addition of calmodulin inhibitor (trifluoperazine) generates the same 

effect [67]. 

4.7.1.3  Arachidonic acid pathway: General skin wound healing follows 3 distinct 

phases, the first phase involving inflammation at the site of injury [78].  This pathway 

involves the conversion of arachidonic acid into downstream prostaglandins (belonging 

to the family of eicosanoids), many of which are pro-inflammatory. The eicosanoids are a 

class of lipid mediators that are oxygenated, hydrophobic derivatives of C20 fatty acids 

[79].  This family is integrally involved in the body’s natural inflammation response, for 

which arachidonic acid (20:4ω6) serves as the premier precursor [79].  The chemistry 

involved in the biosynthetic pathway(s) of arachidonic acid metabolism is well known 

[80].  Arachidonic acid can undergo oxygenation in a process regulated by the 

cyclooxygenase (COX) enzymes [80, 81].  This leads to the formation of PGH2, a central 

intermediate that is further metabolized to other downstream products, including both 

pro- and anti-inflammatory prostaglandins (PGs) [80, 81].  There are currently 3 

recognized isoforms of the COX enzymes [82].  COX-1 is a constitutively expressed 

form that is considered to be a “housekeeping” enzyme, and under basal conditions is 

found in almost all tissues.  COX-1 is generally thought to be involved more in 

homeostatic regulation at sites such as the platelets, kidney, and gastric mucosa [80, 

83].  Conversely, COX-2 is considered an inducible form and an immediate early 

response gene product involved primarily with the inflammatory response [80, 83].  

COX-3 is a splice variant of COX-1, and its function is currently not well defined [82].  

The conversion of arachidonic acid to downstream PGs via the action of the COX 

pathway has been extensively researched since the 1970s when it was discovered that 

the nonsteroidal anti-inflammatory drugs (NSAIDs) exhibit their anti-inflammatory effects 
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through inhibition of this step in the cascade [80, 84].  The most widely accepted 

mechanism of action of the NSAIDs is their ability to inhibit the conversion of arachidonic 

acid into downstream PGs, many of which are pro-inflammatory.  Figure 4.8 depicts the 

arachidonic acid cascade. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8  Diagram of the conversion of arachidonic acid into downstream 

prostaglandins and eicosanoids via the cyclooxygenase enzymes. Dubois et al, 

1998.  The NSAIDs exhibit their anti-inflammatory effects by inhibiting COX-1 and COX-

2 to varying degrees, resulting in decreased biosynthesis of prostaglandins.  Reprinted 

from FASEB with permission from the Federation of American Societies for Experimental 

Biology. 

 

 

The skin demonstrates very active metabolism of arachidonic acid, primarily in 

the epidermal layer.  More specifically, COX-1 is found throughout the epidermis, 

whereas COX-2 is more localized in suprabasal keratinocytes [85].  The downstream 

products of the COX pathways are important for several processes involved in wound 

healing, including inflammation, fibroblast proliferation, and angiogenesis [86].  The main 
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PG products formed via the COX pathway in the skin of many species (including 

humans) are PGD2 and PGE2, both of which are pro-inflammatory [81].  PGE2 has also 

been shown to regulate cytokine secretions and epidermal cell proliferation, and is 

important for the pathophysiology of the skin [85, 87].   

 

4.8  Naltrexone as an ideal model compound for exploring the kinetics of 

micropore closure 

In examining micropore closure kinetics specifically from a pharmacokinetic/drug 

delivery standpoint, it is necessary to have a model compound that can be easily 

detected in the plasma and has appropriate physicochemical characteristics for MN-

enhanced delivery.  Naltrexone (NTX) is a mu opioid receptor antagonist that is FDA 

approved for the treatment of opioid and alcohol abuse.  As a receptor antagonist, the 

therapeutic effects of NTX relate directly to its ability to block alcohol-induced “highs” 

and intoxication, ultimately resulting in decreased craving and eventual relapse [88].  

Multiple studies have demonstrated the efficacy of NTX in the treatment of alcohol 

abuse, and it is significantly improved over placebo conditions with or without behavioral 

therapies [89].   

 

4.8.1  Challenges with current naltrexone formulations 

NTX is currently available in oral tablet forms (Revia®, as naltrexone HCl) and an 

injectable depot form (Vivitrol®, as naltrexone base, 380 mg extended release form 

delivered as an intramuscular injection every 4 weeks).  Despite the proven efficacy of 

NTX in the treatment of alcohol and opioid abuse, there are multiple downfalls of both of 

these dosage forms that create problems for chronic dosing scenarios.  The oral 

formulation exhibits unpredictable bioavailability (5 – 40%), due to its extensive first-pass 

metabolism through the liver [90].  This creates challenges when trying to predict plasma 

concentrations and response to therapy, and presents a therapeutic safety concern 

when administered to alcoholics with pre-existing liver complications.  The depot 

injection, on the other hand, possesses a different array of adverse events and 

therapeutic concerns.  The FDA has received reports of injection site reactions with NTX 

with this formulation, including hematomas, cellulitis, and necrosis.  In a report issued in 

August 2008, there had been 196 reports of injection site reactions, many of which 

required serious medical attention (in 16 cases, surgery was required).  Another serious 

concern with the use of a depot formulation would arise in emergency situations when a 



39 
 

patient would have an acute requirement for pain control.  High (and potentially unsafe) 

doses of opioids would be required to overcome the narcotic blockade from the NTX, 

resulting in the need for surgical removal of the depot. 

In light of the downfalls of current NTX formulations, transdermal delivery would 

provide several key advantages, specifically: 1) decreased potential for hepatotoxicity, 

via avoidance of the first-pass effect; 2) simplicity of application and likely enhanced 

patient compliance; and 3) ease of removal in the event of an acute need for emergency 

pain relief. 

 

4.8.2  Physicochemical properties of naltrexone favoring microneedle-enhanced delivery 

Despite the clear benefits of transdermal delivery, NTX does not possess ideal 

physicochemical characteristics to allow it to passive deliver through the SC.  Most 

specifically, it is not hydrophobic enough to passively transverse through the lipophilic 

milieu of the SC (logP 1.8).  Conversely, it does possess sufficient hydrophilicity to 

partition into the interstitial fluid and aqueous environment in the deeper layers of the 

skin.  For these reasons, NTX is a poor candidate for traditional transdermal delivery, but 

it is an ideal candidate for MN-enhanced delivery.  The creation of aqueous channels 

from MN insertion would provide a pathway for NTX to diffuse through the SC and into 

the underlying circulation.  Multiple studies in animals and humans have demonstrated 

the feasibility of this technique for delivering NTX (and its metabolite, 6-β-NTXol) to 

animals and humans [9, 11, 12, 91, 92].  Furthermore, validated methods exist for its 

detection in plasma [93].  For these reasons, NTX is an excellent model compound for 

studying MN-enhanced drug delivery and micropore closure kinetics. 
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Chapter 5 

Development of in vivo impedance spectroscopy techniques for measurement of 

micropore formation 

 

5.1  Introduction 

Microneedle (MN) – assisted transdermal delivery represents a minimally 

invasive physical enhancement technique that increases the permeability of the stratum 

corneum (SC), the outermost layer of the skin [2, 5].  This allows for various types of 

molecules to cross the otherwise impermeable outer layers of skin, including 

macromolecules, proteins, and hydrophilic compounds.  Several types of MN delivery 

systems have been described, including hollow, coated, and dissolving MN systems [5].  

In one of the simplest MN techniques, a solid MN array is applied to the skin to create 

micron-scale pores (also called micropores) in the SC; application of a drug solution or 

patch to the MN-treated area allows a drug to cross the skin into the systemic circulation 

(a treatment paradigm known as the “poke (press) and patch” method) [5].   

The “poke/press and patch” approach for MN insertion is particularly appealing 

for a variety of reasons.  The creation of micropores in the SC is a very simple process, 

achieved by placing a MN array on the skin and applying gentle pressure for 10 – 15 

seconds, followed by immediate removal of the MNs.  This creates a grid of micropores 

in the SC that can be utilized for drug delivery.  The number of micropores can be 

tailored for the requirements of the condition being treated, the amount of drug needed, 

and the properties of the drug to be delivered.  Second, a drug moiety can be delivered 

from a variety of sources, including a patch, gel, or solution, providing flexibility in 

application sites, drug volumes, and patch types.  Lastly, the lifetime of the micropores in 

the skin can be manipulated to allow for a variety of dosing schedules.  When 

unoccluded, the micropores reseal rapidly (approximately 15 minutes to 2 hours), but 

this can be extended to 48 – 72 hours when the microporated skin is covered by an 

occlusive patch [9, 10, 13, 14].  The micropore lifetime can be further extended via 

topical application of a non-specific anti-inflammatory compound, diclofenac sodium, 

allowing for drug delivery for up to 7 days [11].   

The primary factors that influence drug delivery with the “poke/press and patch” 

MN technique are 1) adequate formation of micropores in the skin, and 2) the lifetime of 

the micropores in the SC.  In order to continue expanding the utilization of this novel 

drug delivery technique, it is important to develop appropriate in vivo models for 
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evaluating micropore formation and lifetime following MN treatment in animal models 

and human subjects.  Two commonly utilized methods to investigate the barrier function 

of the skin include transepidermal water loss (TEWL) and impedance spectroscopy.  The 

SC is the skin’s primary means of preventing water loss from the body into the external 

environment, and it also serves as the skin’s barrier to movement of ions (i.e. flow of 

electrical current) [14, 94-97].  TEWL estimates water loss through the skin, derived from 

the difference in vapor pressure between the skin and the area 4 mm above the skin 

(REF).  TEWL increases when the skin is damaged, while impedance decreases, thus 

rendering these as complementary techniques for assessing the integrity of the skin’s 

barrier; both have been demonstrated to be reliable techniques for such evaluations [94-

96].  The nature of transdermal patches is such that the skin remains occluded 

underneath the patch for a timeframe of hours to days, resulting in a local increase in 

skin hydration. This can create a substantial problem with TEWL readings when the 

micropores in the SC begin to heal and subtle changes are difficult to discern from the 

effects of the hydration alone.  While impedance measurements are also somewhat 

affected by hydration status, the technique is sensitive enough to detect changes in the 

micropores under both hydrated and non-hydrated conditions, as the technique is less 

sensitive overall to hydration effects [14].   Additionally, an impedance setup can be 

devised that is cost effective, portable, and does not require any software to make 

measurements – making this an ideal measurement technique for clinical settings.   

Impedance measurements of the SC using various methods and techniques 

have been described previously [94, 98], but there are limited publications describing the 

use of this technique to evaluate micropore formation following MN treatment in animal 

models or human subjects.  Two animal models commonly used in percutaneous and 

topical drug delivery studies include Yucatan miniature pigs (large animal model) and 

hairless guinea pigs (small animal model). Porcine skin is the most similar to human skin 

with regard to histological and biochemical properties including hair density, epidermal 

thickness, and composition of intercellular SC lipids [99-101].  Hairless guinea pigs are 

an excellent small model for permeability studies due to the ease of handling, smooth 

skin devoid of hair, and histological characteristics similar to human skin [99, 102].  

While these are well accepted models for studying permeation properties of xenobiotics 

in vitro, these also serve as excellent in vivo models for method development studies.  

The aim of this work was to develop sensitive and reproducible impedance 

measurement techniques in two animal models (Yucatan miniature pig and hairless 
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guinea pigs) and human subjects, in order to monitor micropore formation in the SC.  

The studies herein satisfy Research Plan 3.1. 

 

5.2  Methods and materials 

5.2.1  Microneedle arrays   

Briefly, fixed MN geometries were cut into 50 μm thick stainless steel sheets 

using chemical etching and were then manually bent perpendicular to the plane of their 

metal substrate.  MNs arrays contained 50 MNs arranged in a 5 x 10 array configuration; 

each MN measured 800 µm in length and 200 µm in width at the base; the geometry and 

configuration of the MN arrays were designed and provided by the Prausnitz lab at the 

Georgia Institute of Technology.  For better insertion and adhesion of patches to the 

skin, microneedle arrays were assembled into adhesive patches with Arclad (Adhesives 

Research, Inc., Glen Rock, PA).  The adhesive serves to hold the MNs firmly against the 

skin by compensating for the mechanical mismatch between the flexible skin tissue and 

the rigid MN array. The MN patches were ethylene oxide sterilized before use.  

 

5.2.2  Microneedle application   

The same MN application technique was used for animal and human studies.  

MN insertion is a simple procedure, achieved by placing the 50 MN array on the skin and 

pressing gently for approximately 10 – 15 seconds and then immediately removed.  The 

array was rotated 45 degrees for a second insertion, in order to create 100 non-

overlapping micropores.  The same investigator performed all MN insertions in order to 

eliminate any inter-investigator variability.  

 

5.2.3  Impedance spectroscopy techniques   

Impedance measurements were made using Ag/AgCl measurement electrodes 

and a large electrode with a conductive gel surface, which serves as the reference 

electrode (Superior Silver Electrode with PermaGel, 70 mm total and active electrode 

diameter [human and Yucatan pig studies] and 30 mm [hairless guinea pig studies]; 

Tyco Healthcare Uni-Patch, Wabasha, MN).  Two different types of Ag/AgCl 

measurement electrodes were evaluated: one has a dry active electrode measurement 

surface (10 mm active electrode diameter; 25 mm x 25 mm total area; Thought 

Technology T-3404; Stens Corporation, San Rafael, CA), while the other has foam, wet-

gel active electrode measurement surface (50 mm diameter, S&W Healthcare Corp, 
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Brooksville, FA).  These types of measurement electrodes are often used for ECG 

monitoring in a clinical setting, applied to clean dry skin. The reference electrode was 

placed in the middle of the treatment area, equidistant from all treatment sites.  

Measurements were made by connecting lead wires to the measurement and reference 

electrodes, the opposite ends of the wires being connected to an impedance meter. This 

applies a low frequency alternating current modified with a 200 kΩ resistor in parallel.  

Figure 5.1 displays the impedance setup.  

 

5.2.4  Animal study procedures   

These studies were carried out in two animal models (Yucatan miniature pig and 

hairless guinea pigs); all studies were approved by the University of Kentucky IACUC.  

Six sites (Yucatan pig) or 4 sites (guinea pigs) on the dorsal surface were treated with 

MN arrays.  Half of the sites were evaluated with Ag/AgCl dry electrodes, while gel 

Ag/AgCl electrodes were used at the remaining sites.  Repeated baseline (pre-MN) 

measurements were made at each site: 3 measurements using very light pressure to 

hold the electrode to the skin, and 3 measurements using more direct pressure, applied 

by the thumb of the investigator.  The same procedure was followed immediately post-

MN treatment. 

Two different treatment paradigms were investigated, to evaluate impedance 

measurements made on normal (non-hydrated) vs. hydrated skin.  For the hydrated 

condition, the treatment sites were covered overnight with blank occlusive patches with 

3M double-sided medical tape on one side to allow for the patches to adhere closely to 

the skin; the patches were further secured in place with Bioclusive® waterproof tape.  

The blank patches thus allowed the skin to locally hydrate under the overnight.  Under 

these conditions, the patches were removed one at a time and all measurements were 

made at one site before moving to the next. 

 

5.2.5  Clinical (human) study procedures   

 Healthy human volunteers between 18 – 45 years of age were interviewed and 

examined to determine appropriateness for the study.  Subjects were in general good 

health (determined by the study physician) with no history of dermatologic disease.  All 

study procedures were approved by the University of Kentucky Institutional Review 

Board and were completed according to the principles defined in the World Medical 
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Association Declaration of Helsinki.  All subjects provided written, informed consent prior 

to beginning any study procedures.   

All measurements in human subjects were made on hydrated skin (pre-hydration 

process was the same as that described above for the animals).  Six sites on the upper 

arms of the subjects were treated with MN arrays; 3 sites were evaluated with Ag/AgCl 

dry electrodes; the other 3 with gel electrodes.  Similar to the animal studies, the sites 

were unoccluded one at a time, and 6 measurements were made at each site: 3 

measurements using light pressure and 3 measurements using more direct pressure 

(similar to the pressure used for a typical doorbell).  Following baseline measurements 

the skin was re-occluded and allowed to re-hydrate for one hour, after being un-occluded 

for several minutes.  Following the re-hydration period, MN arrays were applied to all 

sites, followed by 6 additional repeated measurements (3 with light pressure, 3 with 

direct pressure).  All measurements took 30 seconds to obtain.  Table 5.1 demonstrates 

the distribution of electrode types and pressure applications amongst the treatment sites.   

 

5.2.6  Calculation of micropore impedance   

In the presence of the microporated skin, 3 parallel and independent pathways 

for electrical current can be distinguished: resistor box (Zbox), intact skin (Zskin, pre-MN 

baseline), and micropores (Zpores). Therefore the measurements yield a total impedance 

value (Ztotal) that is a function of the 3 pathways. The Ztotal, Zbox and Zskin are known; 

therefore, micropore impedance can be calculated according to the following equation 

(employing the assumption that the micropores occupy approximately 2% of the total 

measurement area): 

 

          Equation 5.1 

 

 

According to this equation, the Zpores can be calculated, and the “upper limit” of 

impedance at the 2% area occupied by the micropores can also be estimated, allowing 

for comparison of the impedance difference pre- and post-MN treatment at the same 

small skin area affected by the MN treatment.  This method of calculation completely 

removes the effect of the relatively large area of intact skin surrounding the micropores 

that is also measured under the electrode surface. 
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5.2.7  Transepidermal water loss (TEWL) measurements   

 In the hairless guinea pigs, TEWL was measured as a complementary technique 

to impedance.  TEWL measurements were made at baseline and post-MN treatment, 

using an evaporimeter (cyberDERM, INC., Broomall, PA).  Measurements were made by 

simply placing the probe on the surface of the skin until the reading stabilized (the TEWL 

is calculated by the device in units of g•m-2•h-1); each measurement took approximately 

30 – 60 seconds to obtain. 

 

5.2.8  Staining techniques    

Skin staining was utilized in both animal models to visually confirm the presence 

of micropores in the SC.  Gentian violet stains microporated skin sites, making this a 

quick and effective means of visualizing the sites where microneedles were inserted into 

the skin [103]; in the presence of micropores, a grid can be clearly visualized.  Following 

MN treatment the dye was applied to the skin for approximately one minute, followed by 

removal of excess dye with isopropanol alcohol wipes.  A non-treated site was also 

stained as a control. 

 

5.2.9  Data analysis   

Student’s t tests were used to compare the calculated impedance of the 

micropores (Zpores, calculations described above) to pre-MN baseline impedance values 

at that same site; the same statistical tests were used to compare pre and post-MN 

TEWL values.  p < 0.05 was considered statistically significant (GraphPad Prism® 

software, version 5.04). 

 

5.3  Results 

5.3.1  Animal studies 

5.3.1.1  Hairless guinea pigs:  Male and female hairless guinea pigs (n = 3, mean 

(± SD) weight of 785 ± 51 g) were treated with MNs at 4 independent sites on the dorsal 

surface.  Due to the smaller surface area of the animals, only 4 sites were treated rather 

than 6 sites as in humans and the Yucatan pig.  All studies were performed on both non 

pre-hydrated and pre-hydrated skin, to confirm that similar trends would be observed 

irrespective of skin hydration status.  Impedance measurements were made at each site 

pre- and post-MN, and a TEWL measurement was taken immediately following the 

impedance measurement at all sites.  Impedance measurements dropped significantly 
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baseline to post-MN (p < 0.05, Student’s t-test) at all sites, irrespective of skin hydration 

status, electrode type, or pressure applied.  The conditions that resulted in the lowest 

amount of variability in the guinea pigs were dry electrodes, applied with direct pressure. 

On non pre-hydrated skin, mean (± SD) %RSD on pre-MN and post-MN skin were 22.4 

± 11.1% (range 3.2 – 35.4%) and 5.9 ± 2.5% (3.9 – 9.8%), respectively, compared to 

pre-MN values of 10.8 ± 7.1% (3.4 – 23.5%) and post-MN 19.9 ± 10.0% (6.0 – 29.5%) 

for gel electrodes under the same conditions.  All %RSD values for hydrated and non 

pre-hydrated skin made with dry electrodes, direct pressure can be seen in Table 5.3, 

and representative impedance measurements can be seen in Figure 5.1. 

TEWL values were low at baseline regardless of skin hydration, confirming an 

intact barrier function.  Mean (± SD) baseline TEWL values were 2.0 ± 0.69 g•m-2•h-1 

(non pre-hydrated) and 20.2 ± 2.3 g•m-2•h-1 (pre-hydrated).  A significant rise in TEWL 

was observed after MN treatment at all sites (p < 0.05, Student’s t-test), with post-MN 

measurements on non pre-hydrated and pre-hydrated skin of 27.4 ± 7.6 g•m-2•h-1 and 

47.4 ± 17.7 g•m-2•h-1, respectively.  Representative TEWL measurements are displayed 

in Figure 5.2. 

In order to visualize the micropores using a third independent means of 

evaluating MN insertion, one guinea pig was treated on non pre-hydrated skin at an 

additional site with one application of a 50 MN array, followed by staining with gentian 

violet.  As seen in Figure 5.2, a grid in the SC can clearly be visualized, demonstrating 

the presence of 50 non-overlapping micropores. No staining was observed at the control 

site when gentian violet was applied to intact skin. 

5.3.1.2  Yucatan miniature pig:  One male Yucatan miniature pig (weighing 

approximately 60 kg) was treated with MN arrays at 6 independent sites on the dorsal 

surface and repeated impedance measurements were made pre- and post-MN 

treatment on pre-hydrated vs. non pre-hydrated skin.  A total of 72 measurements were 

made on pre-hydrated skin; the same number of measurements were made on non pre-

hydrated skin; one measurement was thrown out as an outlier from the pre-MN 

measurements under pre-hydrated conditions.  Similar to the guinea pigs, a significant 

drop in impedance was seen following MN treatment at all sites (p < 0.05, Student’s t-

test), irrespective of skin hydration status, electrode type, or pressure applied In the pig, 

the lowest overall variability under both hydration conditions was observed with gel 

electrode measurements applied with direct pressure, as demonstrated by lower %RSD 

values.  For non pre-hydrated skin, mean (± SD) %RSD on pre-MN and post-MN skin 
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were 13.9 ± 2.6 (range 10.8 – 15.3%) and 4.1 ± 1.8% (2.3 – 5.5%), respectively, 

compared to pre-MN values of 15.1 ± 9.0% (7.0 – 24.8%) and post-MN 4.7 ± 5.3% (1.0 – 

10.8%) for dry electrodes under the same conditions.  Table 5.3 displays all %RSD 

values from measurements made with gel electrodes applied with direct pressure.  

In the same manner as applied to the guinea pig, one additional (non pre-

hydrated) site was treated with a MN array to create 50 micropores (rather than the 100 

micropores used for the impedance measurements) and stained with gentian violet dye.  

All 50 micropores could be clearly seen in the skin, confirming the breach in the SC and 

the formation of 50 independent micropores (image not shown).  Additionally, the non-

MN treated control site did not display any staining patterns following removal of the dye. 

 

5.3.2  Human studies 

Four males and six females completed the protocol; mean (± SD) age was 27 ± 

4.1 years.  General demographics are described in Table 5.2.  Six sites were treated on 

the upper arm of each subject; impedance measurements were made pre- and post-MN 

treatment with dry Ag/AgCl electrodes (3 sites) and gel Ag/AgCl electrodes (3 sites) 

applied with light or direct pressure (applied by the thumb of the investigator (the applied 

pressure was similar to the force used to ring a doorbell).  Based on this study design, a 

total of 360 measurements were made for each electrode type, further divided into 180 

baseline pre-MN measurements (90 measurements with light pressure; 90 

measurements with direct pressure) and 180 post-MN measurements, also divided 

equally between light and direct pressure techniques.  A total of 331 measurements 

were analyzed across the 10 subjects.  All MN applications were well tolerated and no 

infection or irritation was seen at any MN treatment sites.  Some subjects experience 

mild irritation from the Bioclusive® tape that was used to secure the occlusive patches to 

the skin for the overnight hydration period.  The irritation resolved completely following a 

short course of topical steroid treatment. 

Mean impedance values dropped significantly from baseline to post-MN for all 

treatment sites, irrespective of pressure or electrode type (p <0.05, Student’s t test).  The 

overall variability was lowest with gel electrodes, particularly for the calculated 

impedance of the micropores.  In several subjects there was no variation at all between 

the 3 measurements made post-MN.  The mean ± SD pre-MN and post-MN %RSD was 

9.7 ± 6.1% (0.8 – 24.1%) and 2.4 ± 3.0% (0.00 – 11.8%) respectively, across all 10 

subjects.  A representative profile from one subject is shown in Figure 5.3. 
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5.4  Discussion  

 MN technologies offer a wide range of flexibility as a drug delivery technique in 

that several parameters can be modified to meet specific therapeutic needs; such 

parameters include the delivery method, geometry of the needles, drug formulation, re-

sealing kinetics of the micropores, and type of drug moiety.  In the realm of a 

“poke/press and patch” MN technique, adequate formation of micropores is critical to the 

success of the delivery approach.  A variety of methods are available for evaluating 

micropore formation in the SC, including optical coherence tomography, confocal 

microscopy, infrared spectroscopy, impedance spectroscopy, and TEWL.  Most of these 

techniques, while effective for visualizing and evaluating micropore formation, require 

equipment and software that are less convenient and user-friendly than what is desired 

in a clinical research environment.  The impedance setup described in these studies is 

portable, requires very little training to use, and has no need for software to obtain 

measurements, making it ideal for a range of clinical environments as well as animal 

studies.   

 

5.4.1  Differences between skin conditions and measurement techniques 

In both animal models and in human subjects, measurements were noisy and 

somewhat erratic on pre-MN, intact skin (regardless of hydration status).  This is not 

unexpected, as it represents the skin’s effective barrier in preventing the movement of 

current between the internal and external environments; similar results have been 

observed previously when impedance methods were used to monitor micropore closure 

kinetics in human subjects [14].  The post-MN measurements were less variable and 

noisy, likely due to creation of an un-impeded and consistent pathway for movement of 

the current.  An overall trend was observed that the measurements were generally lower 

when more direct pressure was applied to the electrode during the measurement, 

regardless of dry vs. gel electrode, or pre- vs. post-MN.  This is likely due to enhanced 

contact between the electrode surface and the skin, providing a more consistent (and 

hence less tortuous) pathway for the current to travel.  Additionally, the measurements 

using gel electrodes were generally more stable and did not fluctuate during the 

measurements, as compared to the dry electrodes (both light and direct pressure).  This 

was observed for intact and post-MN treated skin, but was most notable on MN-treated 

skin.  This could be the case for a variety of reasons.  First, the gel provides a pathway 

of lesser resistance compared to the dry electrodes, as the gel provides an aqueous 
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pathway for the current to move across.  Second, the gel surface likely creates 

enhanced contact between the electrode and the micropores, which would result in a 

lower impedance measurement due to the higher number of micropores present in a 

small measurement area.  This would also help explain why measurements are 

consistently lower with direct pressure measurements when compared to light pressure 

techniques with the same electrode type.  The direct pressure would allow for better 

contact with the whole grid of 100 micropores, whereas lighter pressure might not 

provide complete contact between all of the micropores under the small electrode 

surface.  Thus, the optimal situation would be to make measurements with the gel 

electrodes while applying direct pressure to maintain close contact between the 

electrode and the skin.  In fact, this is consistent with our observation that the lowest 

variability was observed in human subjects and the Yucatan pig when this technique 

was used. 

Due to typical inter-subject variation, some subjects have naturally lower baseline 

impedance measurements in general (regardless of electrode type).  In these situations 

it can make the difference between baseline and post-MN treatment somewhat more 

difficult to interpret from the raw impedance values (Ztotal).  Despite this potential 

challenge it is not likely be clinically significant, as 1) it is not a uniform concern across 

all subjects, and 2) the calculation of Zpores clearly distinguishes that the SC has been 

sufficiently breached, despite a seemingly small difference in the raw values pre-and 

post-MN. 

 

5.4.2  Skin hydration 

In half of the animal experiments and all of the human studies, measurements 

were made on skin that had been pre-hydrated during an overnight occlusion period.  

The hydration status represents the truest clinical scenario for transdermal delivery 

systems, in which the skin remains occluded for hour to days under a patch, resulting in 

an increase in local skin hydration.  Anytime the skin is occluded after MN treatment (the 

typical situation for the “poke/press and patch method”), impedance measurements for 

the resulting treatment period would be made on hydrated skin.  While MNs would not 

likely be applied to pre-hydrated skin in clinical practice, in a controlled research setting 

the pre-hydration removes an additional variable in the impedance setup (dry vs. 

hydrated skin, a discrepancy that would arise if the baseline measurements were made 

on dry skin but all other measurements were made on skin that had been occluded). For 



50 
 

these reasons, we explored the impedance techniques on non pre-hydrated AND pre-

hydrated skin in the animal models.  As demonstrated by the results (in both animal 

models), the skin’s hydration status does not affect the efficiency of MN insertion into the 

skin, nor does it affect the ability of the impedance setup to determine that the barrier 

has been breached.  The primary difference observed between the hydration states was 

that the baseline measurements were somewhat more erratic on non pre-hydrated skin, 

as demonstrated by greater %RSD values.  However, the absolute values of the 

baseline measurements are not as critical because the MN treatment produces such a 

clear effect on the impedance measurements.  Furthermore, in a situation when 

micropore impedance would be followed over time (during which time the skin would 

hydrate under a patch), a non-MN treated control site under the same conditions would 

be used in the equation for calculating Zpores, thus removing the need for the initial 

baseline value after the first measurement.  For these reasons, it would be suitable to 

use impedance methods for measuring micropore formation in a typical clinical scenario, 

when human subjects would be treated on dry baseline skin.    

 

5.4.3  Impedance measurements for assessing micropore closure kinetics 

One novel application that impedance measurements are well suited for is 

monitoring micropore lifetime under various conditions after one application of a MN 

array, by following the Zpores value over time.  To be used in this setting, however, it was 

necessary to develop a measurement setup that minimizes variability between 

measurements, in order to accurately characterize the kinetics of micropore closure.  As 

the micropores begin to heal the measurements would be expected to become more 

erratic as the biological processes in the skin begin to restore the intact barrier baseline.  

In fact, this trend is consistent with previous reports in human subjects treated with MNs 

of varying geometries, using an identical setup with dry Ag/AgCl electrodes [14].  

Investigators in this study found that a significant amount of experimental noise was 

present when measurements were made on intact skin, but this was not the case on 

microporated skin, irrespective of the geometry of the MN array applied (varied number 

or length of the MNs).  For this reason it is imperative to have a measurement technique 

that introduces the least amount of variability, such that the variations observed are 

directly reflective of the skin re-sealing, rather than the measurement technique itself.   

In the current study, the Zpores value was calculated apart from the total 

impedance measurement that was comprised of 3 parallel pathways.  By calculating the 
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upper limit of the impedance values expected at the 2% area occupied by the 

micropores, the Zpores can be followed over time until it reaches the upper limit, at which 

times the micropores would be considered “closed” or “re-sealed”.   While this method 

has the advantage of providing a clear numerical target for evaluating when the 

micropores have completely healed, it could be perceived to falsely exaggerate the 

difference between pre- and post-MN impedance values.  Thus, it is important to 

evaluate the formation of the micropores with an alternative method to ensure the 

applicability of the current methods.  An additional method that would be suitable for 

monitoring micropore formation and closure kinetics over time would be to calculate the 

permeable area (Apermeable) of all micropores created by the application of a MN array, 

according to the following equation, as described by Gupta et al [14]:  

 

          Equation 5.2 

 

where ρ represents the electrical resistivity of interstitial fluid present in the skin (~78 Ω-

cm), L is an estimate of the thickness of the SC (approximately 15 μm over most parts of 

the body), and Z is the absolute impedance measured.  Under the technique that 

generated the least amount of variability in human subjects (gel electrodes applied with 

direct pressure), this equation results in a range of total permeable area spanning from 

4.65 x 10-4 mm2 to 2.81 x 10-3 mm2; these values are less than the cross-section of a 

human hair.  Furthermore, the radii of each individual micropore can be calculated 

(assuming a circular cross section and that each micropore contributes 1/100 of the total 

Apermeable).  According to these assumptions, the mean (± SD) radii of the individual 

micropores was 1.97 ± 0.51 μm, which is remarkably consistent with previous estimates 

of an effective radius of ~2 μm [14, 42].  In a similar manner, a limit of the Apermeable can 

be estimated based on pre-MN measurements, which would also provide a numerical 

target for reaching the conclusion that the micropores have been re-sealed. Thus, our 

method demonstrated adequate formation of micropores in the SC based on the Zpores, 

and the suitability of this method is confirmed by the similarity of our data with previous 

reports, based on the alternative calculation of the Apermeable.   

 The use of impedance spectroscopy is particularly appealing in that it can be 

used to evaluate MN treatment parameters and micropore closure kinetics, but that it 

could also be expanded to evaluate other physical enhancement techniques that also 

create pores in the skin (i.e. thermal ablation, electroporation, etc.).  For that reason, this 
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method of measurement is well suited for a variety of scenarios in clinical and research 

environments .   

 

5.5 Conclusions 

In summary, this is the first methods development study to explore various 

impedance spectroscopy conditions to minimize experimental variability when monitoring 

micropore formation in animal models and human subjects.  The impedance setup 

allows for great flexibility that can be tailored to the conditions of MN treatment (varying 

hydration status, different animal models, different electrode types and pressure 

applications) and is highly appropriate for clinical research setting.  Additionally, the 

impedance of the micropores can be specifically calculated, or the permeable area of the 

microporated skin can be determined, allowing for various means for comparing the 

effectiveness of treatment and monitoring the closure of the micropores over time. 
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Table 5.1 

 Dry Ag/AgCl electrodes Gel Ag/AgCl electrodes 

 Light pressure 

(n = 3 sites) 

Direct pressure 

(n = 3 sites) 

Light pressure 

(n = 3 sites) 

Direct pressure 

(n = 3 sites) 

Pre-MN  9 measurements 9 measurements 9 measurements 9 measurements 

 One-time MN treatment 

(50 MN array applied twice) 

One-time MN treatment 

(50 MN array applied twice) 

Post-

MN 

9 measurements 9 measurements  9 measurements 9 measurements 

Total 36 total measurements per subject 

(18 measurements of intact skin 

baseline; 18 measurements of MN-

treated skin) 

36 total measurements per subject 

(18 measurements of intact skin 

baseline; 18 measurements of MN-

treated skin) 

 

Table 5.1  Description of repeated measurements made at a total of 6 treatment 

sites on the upper arms of healthy human volunteers.  All measurements were made 

on skin sites that had been pre-hydrated under blank occlusive patches overnight.  The 

same measurement techniques were used in the Yucatan pig and the hairless guinea 

pigs, with additional measurements made on non pre-hydrated skin in the animal 

models.  
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Table 5.2 

Sex 4 male 

6 female 

Mean age, years (SD) 27.4 (4.1) 

(range 23 – 37) 

Mean body mass index, kg/m2 (SD) 27.2 (5.7) 

(range 20.4 – 40.6) 

Race 7 Caucasian 

3 Asian 

 

Table 5.2  Subject demographics across 10 healthy human volunteers. 
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Table 5.3 

 Non pre-hydrated  Pre-hydrated 

Yucatan pig 

(gel electrodes,  

direct pressure) 

Pre-MN 13.9 ± 2.63  

(10.8 – 15.3) 

8.01 ± 2.99  

(5.09 – 11.06) 

Post-MN 4.14 ± 1.68  

(2.27 – 5.52) 

8.77 ± 2.87  

(6.74 – 10.80) 

Guinea pigs 

(dry electrodes,  

direct pressure) 

Pre-MN 22.4 ± 11.1 

(3.2 – 35.4) 

5.99 ± 1.61 

(3.11 – 7.41) 

Post-MN 5.9 ± 2.5 

(3.9 – 9.8) 

16.29 ± 9.92 

(5.95 – 33.23) 

Human subjects 

(gel electrodes,  

direct pressure) 

Pre-MN NA 

 

9.69 ± 6.13  

(0.84 – 24.07) 

Post-MN NA 

 

2.36 ± 3.01 

(0 – 11.80) 

 

Table 5.3  All %RSD values for the conditions that generated the least variability in 

2 animal models and 10 human subjects.  In the animal models, measurements were 

taken on dry, non pre-hydrated skin and also on skin that had been pre-hydrated with 

blank occlusive patches overnight.  Human measurements were only taken on skin that 

had been hydrated overnight.  In the Yucatan pig, values were calculated from 

measurements made at 3 sites; for the guinea pigs the %RSD values were calculated 

from measurements made at 9 sites in 3 guinea pigs.  For the human subjects, the 

%RSD was calculated across 30 treatment sites in 10 subjects. 
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Figure 5.1  Impedance setup used for all human and animal studies. 

A: Prep-Check impedance meter; B: 200 kΩ resistor in parallel; C: dry Ag/AgCl 

measurement electrodes; D: gel Ag/AgCl measurement electrodes; E: Reference 

electrode for Yucatan miniature pig and human studies; F: reference electrode used for 

hairless guinea pig studies.   
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Figure 5.2  Representative impedance and TEWL measurements made pre- and 

post-MN on non pre-hydrated skin in one hairless guinea pig.  A: Representative 

impedance measurements made pre- and post-MN using dry electrodes.  Across all 

guinea pigs, the dry electrodes applied with direct pressure resulted in the least amount 

of variability, demonstrated by lower %RSD.  For this animal, mean ± SD %RSD pre- 

and post-MN were 31.0 ± 15.3% and 17.1 ± 8.3% (respectively) when dry electrodes 

were applied with light pressure, compared to 31.8 ± 5.2% and 7.3 ± 3.6% for the same 

electrodes applied with direct pressure.  B: Representative TEWL measurements made 

pre- and post-MN, demonstrating an alternative approach for monitoring micropore 
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formation in the SC (TEWL measurements were not made in triplicate like the 

impedance measurements; this figure represents single measurements).  Baseline 

TEWL measurements were 1.6 and 1.1 g•m-2•h-1 at Sites 1 and 2, respectively, 

compared to post-MN measurements of 32.8 and 37.2 g•m-2•h-1at the same sites. 
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Figure 5.3  A micropore grid on the dorsal surface of a hairless guinea pig (top) 

and a Yucatan miniature pig (bottom) treated once with a 50 MN array.  The 50 

individual micropores can be clearly visualized in the skin in both animals, demonstrating 

adequate penetration of the SC with the MN array.  
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Figure 5.4  Representative impedance profiles in six treatment sites on one human 

subject; all measurements were made on the hairless upper arm following an 

overnight pre-hydration period.  Each bar represents the mean ± SD (error bars) of 3 

measurements.  A: measurements made at 3 independent with dry Ag/AgCl electrodes.   

B: measurements made at 3 independent with gel Ag/AgCl electrodes.   

Under all conditions, irrespective of electrode type or pressure applied during the 

measurements, the variability between measurements was lowest with gel electrodes 
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applied with direct pressure.  For this subject, mean (± SD) %RSD with gel electrodes 

under direct application for pre-MN was 7.86 ± 2.09% (range 5.59 – 9.70%), and 0.58 ± 

0.54% (range 0.00 – 1.07%) for post-MN.  Under the same conditions (direct pressure) 

for the dry electrodes, the mean %RSD pre-MN was 8.59 ± 3.82% (range 4.71 – 

12.35%) and 18.0 ± 10.1% (range 9.68 – 29.29%) for post-MN. 
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Chapter 6 

Prolonging micropore lifetime in vivo via application of topical diclofenac in 

healthy human subjects 

 

6.1 Introduction 

Transdermal drug delivery provides significant advantages over other traditional 

delivery routes by decreasing systemic side effects, avoiding first-pass hepatic 

metabolism, and increasing ease of application for patients. Despite these advantages, 

very specific physicochemical properties are required for a drug molecule to passively 

cross the stratum corneum (SC, the outermost layer of skin), thus limiting this delivery 

method to a very small number of molecules [1]. Much work has been done towards 

developing physical methods of disrupting the barrier function of the skin in order to 

expand the transdermal field to a wider variety of drugs; such methods include 

iontophoresis, microdermabrasion, and microneedles [2]. 

Microneedles (MNs) are a minimally invasive means of increasing the 

permeability of the skin by piercing the SC and creating transient micropores through 

which a drug can passively diffuse [5]. This novel delivery method allows for a wider 

variety of molecules to pass the skin’s barrier, thus allowing the advantages of 

transdermal delivery to be applied to a large range of clinical applications including 

diabetes, severe osteoporosis, and influenza vaccination [5]. MN application generally 

removes the limitations on the molecular size of the drug moiety, which provides an 

avenue for the delivery of much larger molecules than what has been previously 

feasible, including peptides and macromolecules. Perhaps most importantly however, is 

that treatment with MN arrays is relatively painless and generally well tolerated by most 

patients, making this a very realistic technique for clinical implementation [5, 7, 43, 59, 

104]. In fact, the first commercial MN product in the United States was approved in 2011 

for influenza vaccination in adults aged 18 – 64 (Fluzone® Intradermal, Sanofi Pasteur) 

[8]. 

New advances using MNs have shown promising results towards achievement of 

therapeutic clinical outcomes, including systemic delivery of naltrexone (an opioid 

antagonist approved for treatment of alcohol and opioid addiction). A recent study 

described transdermal delivery of naltrexone in healthy human subjects following 

pretreatment with solid MNs (a treatment process known as the “poke (press) and patch” 

method) [9]. In subjects pretreated with MNs, application of a naltrexone patch yielded 
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therapeutic blood levels, while application of the naltrexone patch without MN 

pretreatment failed to achieve therapeutic levels of naltrexone. This is the only human 

pharmacokinetic study in the literature describing MN-assisted delivery in humans, and it 

supports the feasibility of this novel transdermal technique. Other human studies have 

been completed using MNs to deliver recombinant human parathyroid hormone 1-34, 

teriparatide (PTH), and positive gains in bone mineral density were seen at the hip and 

lumbar spine, confirming use of MN delivery techniques for achieving clinical benefit 

[105]. 

Several factors affect the efficiency of drug transport following MN treatment, 

including physical parameters of the MNs, properties of the drug compounds to be 

delivered, and the lifetime of the micropores created in the skin [106]. There has been a 

great deal of work examining the MN parameters and properties of drug compounds, but 

very little is known about the kinetics of micropore closure following MN treatment. This 

factor is critical to the success of MN-assisted delivery for the “poke (press) and patch” 

MN technique in which MNs are applied to the skin to create micropores followed by 

application of a drug patch over the top of the treated area [5, 107], and therefore the 

rates of micropore closure must be optimized for continued forward progress towards 

clinical implementation. Bal et al demonstrated that micropores may close as quickly as 

15 minutes following MN treatment in healthy human subjects when the treatment sites 

remain exposed to air, while another study concluded that the micropores may close in a 

timeframe of hours [10, 13]. The pharmacokinetic study previously described suggests 

that the micropores may close by 48 – 72 hours following MN treatment under occluded 

conditions, preventing any further transdermal delivery [9]. This severely limits the 

clinical utility of MN application, and thus it is imperative to develop effective means of 

extending micropore lifetime to achieve a once weekly dosing schedule (the ideal for 

transdermal delivery).  

The physiological processes underlying micropore closure in humans are not 

known. One possibility is that there may be mild subclinical local inflammation (at a 

microscopic level), which would serve as a potential therapeutic target for extending the 

lifetime of the micropores via topical application of anti-inflammatory agents. Non-

steroidal anti-inflammatory drugs (NSAIDs) exert their effects by inhibiting the 

cyclooxygenase (COX) enzymes that are integral to the body’s inflammatory response 

via the arachidonic acid pathway and prostaglandin production, and several topical 

NSAID formulations are commercially available. A recent study demonstrated that daily 
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application of 3% diclofenac sodium (a non-specific inhibitor of COX-1 and COX-2) 

extends micropore lifetime in hairless guinea pigs, allowing transdermal delivery of 

naltrexone for up to 7 days [11]. This was the first study to demonstrate the feasibility 

and applicability of extending micropore lifetime with topical NSAIDs.  

There are many techniques that can be employed to monitor micropore formation 

in the skin, both qualitatively and quantitatively. The SC serves as the primary barrier to 

movement of water and ions, and these properties can be used as a means to evaluate 

the state of the skin’s barrier [16]. Transepidermal water loss (TEWL) measures the 

movement of water between the skin and the external environment, and an increase in 

TEWL reflects that the skin’s barrier has been compromised [108]. Despite being a 

widely used technique, however, TEWL measurements are exquisitely sensitive to the 

hydration status of the skin, presenting a significant challenge for evaluating small 

changes in SC that has been occluded for hours to days (the typical scenario for a 

transdermal patch). Impedance spectroscopy is another useful technique that reflects 

disruption of the SC by measuring the movement of ions. It is well known that human 

skin presents a large impedance to the movement of electrical current, thus displaying a 

high electrical resistance that is primarily due to the SC [97, 109, 110]. Accordingly, the 

electrical impedance of the SC provides important information regarding the state of the 

skin’s barrier function (notably, the impedance of intact, healthy skin is quite high, but 

decreases in response to injury or insult) [95, 97, 109, 111, 112], and this has been 

shown to be a reliable method of evaluating barrier function [94-96, 113]. Impedance 

measurements can detect small changes in skin that has been hydrated, and this 

technique has very recently been described for specifically studying the kinetics of 

micropore closure under the effects of occlusion, making this an excellent technique for 

clinical applications and evaluating “real world” transdermal scenarios with microneedle 

application [14, 110]. The inverse of the electrical impedance (admittance) can also be 

used as a measure of the skin barrier integrity as high admittance values signify 

compromised barrier integrity, while low baseline values are typical under normal 

physiological conditions (similar trends to those observed with TEWL). 

The objective of the present study was to extend the lifetime of the micropores 

created from MN insertion in healthy human subjects by targeting the COX enzymes via 

topical application of diclofenac. Impedance spectroscopy was utilized to monitor 

micropore closure following one-time MN treatment, and tristimulus colorimetry was 

employed to assess local erythema and skin irritation. These are the first data to 
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demonstrate that application of small bioactive drugs can effectively delay micropore 

closure in human subjects.  These studies fulfill Research Goal 3.2, and have been 

submitted for publication to the Journal of Controlled Release. 

 

6.2  Methods and materials 

6.2.1  Preparation of drug formulations 

Solaraze® gel (3% diclofenac sodium, 2.5% hyaluronic acid, PharmaDerm, 

Melville, NY) and 0.2% sodium hyaluronate gel (Cypress Pharmaceutical, Inc., Madison, 

MS) were purchased through the University of Kentucky. Sodium hyaluronate powder 

(Macronan-P) was a gift from American International Chemical, Inc. (Framingham, MA). 

A 2.5% hyaluronic acid gel served as the placebo vehicle control, and was prepared 

from the 0.2% sodium hyaluronate gel and the Macronan-P powder. 

 

6.2.2  Preparation of microneedle arrays and occlusive patches 

Briefly, fixed MN geometries are cut into 50 μm thick stainless steel sheets and 

are manually bent perpendicular to the plane of their metal substrate. The arrays contain 

50 MNs arranged in a 5 x 10 configuration. The arrays are further assembled into 

adhesive patches with Arclad (Adhesives Research, Inc., Glen Rock, PA), which allows 

for close contact between the MNs and the skin during treatment (methods described 

previously) [9]. This close contact compensates for the mismatch between the flexible 

skin tissue and the rigid MN substrate. Each MN measures 800 µm in length and 200 

µm in width at the base. The MN patches were ethylene oxide sterilized before use. 

Figure 6.1 displays one of the MN arrays. 

Blank occlusive patches were made by fabricating a rubber-ringed barrier with a 

drug-impermeable backing membrane on one side (Scotchpak 1109 SPAK 1.34 MIL 

heat-sealable polyester film; 3M, St. Paul, MN) that was secured to the rubber ring with 

3M double-sided medical tape. The patches were held closely to the skin with Bioclusive 

dressing (Systagenix Wound Management, Quincy, MA). The patches on a subject’s 

arm can be seen in Figure 6.2. 

 

6.2.3  Electrodes and impedance measurements  

Ag/AgCl measurement electrodes (Thought Technology T-3404; 25 mm x 25 mm 

total area; 10 mm active electrode diameter; Stens Corporation, San Rafael, CA) were 

used to measure the impedance at treatment sites. A large electrode with a conductive 
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gel was placed in the middle of the treatment sites and served as the reference 

electrode (Superior Silver Electrode with PermaGel, 70 mm total and active electrode 

diameter; Tyco Healthcare Unit-Patch, Wabasha, MN). Lead wires were connected to 

the measurement and reference electrodes, and the opposite ends of the wires were 

connected to an impedance meter (EIM-105 Prep-Check Electrode Impedance Meter; 

General Devices, Ridgefield, NJ). The meter applied a low frequency (30 Hz) alternating 

current that was modified with a 200 kΩ resistor in parallel (IET labs, Inc., Westbury, 

NY). 

 

6.2.4  Clinical study procedures 

All study procedures were approved by the University of Kentucky Institutional 

Review Board and were carried out in accordance with the principles governing clinical 

research as defined in the World Medical Association Declaration of Helsinki; all subjects 

provided informed consent prior to beginning any study procedures. Healthy volunteers 

were examined and interviewed to determine appropriateness for the study. Volunteers 

were between 18 – 45 years of age and in general good health with no history of 

dermatological disease. Subjects were excluded if they had any of the following 

conditions: severe general allergies (indoor, outdoor, or seasonal); allergy to diclofenac 

sodium, Solaraze® gel, or hyaluronic acid; previous adverse reaction to MN insertion; 

known allergy or adverse reaction to medical tape or adhesive. Subjects were also 

excluded if they were pregnant/nursing or had HIV/AIDS. Immediately prior to and during 

the study, subjects were asked to refrain from taking any oral anti-inflammatory drugs. At 

each visit, the subjects sat in the clinic room for 30 minutes prior to any study activities in 

order to acclimate to normal room temperature of ~25°C. At the first visit, 6 sites were 

marked on the arm of each subject; each site received a different treatment (Table 6.1). 

The treatments were applied to either the volar forearm or upper arm, and three 

different treatment schedules were examined (Table 6.2). Sites were randomly 

numbered for the subjects treated on the volar forearm. The observed trends in closure 

kinetics were similar irrespective of the site; thus for the remaining subjects the sites 

were not randomized, but were kept consistent.  Site 1 was marked at the 12 o’clock 

position (nearest to the shoulder) and Sites 2 – 6 were number consecutively in a 

clockwise fashion.  After the first three subjects, the treatment sites were moved to the 

upper arm in order to more accurately represent a possible site of patch placement in 

clinical practice, and the sites were kept consistent to further eliminate any source of 
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inter-subject variability. All gel treatments consisted of 200 µl of total gel, rubbed gently 

into the skin. Fresh gels and new occlusive patches were re-applied at each study visit. 

 

6.2.5  Microneedle treatments 

At each MN-treated site, subjects were treated with 100 MN insertions (50 MN 

array applied twice). MN insertion was achieved by placing the MN array on the skin and 

pressing gently for approximately 10 – 15 seconds; the array was rotated 45 degrees for 

the second insertion so as not to overlap the same micropores created by the first 

insertion. All MN applications were performed by the same investigator to eliminate inter-

investigator variability. 

 

6.2.6  Micropore closure kinetics 

Micropore closure was assessed via impedance spectroscopy. Prior to any 

measurements, all excess gel or moisture was gently blotted from the skin with sterile 

gauze. Each measurement took 30 seconds to obtain. Baseline measurements were 

obtained, repeated immediately following MN treatment, and then obtained at each clinic 

visit. Assuming three parallel and independent pathways for electrical current (resistor 

box (Zbox), intact skin (Zskin) and micropores (Zpores)), the impedance measurements yield 

a total impedance value (Ztotal) that is a function of the three pathways: 

 

          Equation 6.1 

 

The Zskin was independently estimated from the control sites, and thus the impedance of 

the micropores could be calculated (employing the assumption that the micropores 

occupy approximately 2% of the total measurement area) [114]. This approach allows for 

elimination of confounding variables (influence of the resistor box and hydration state of 

the skin). The hydration state was further controlled for in schedules 2 and 3 by the fact 

that MN treatments were applied to pre-hydrated skin. 

The inverse of the impedance (admittance, Y) was calculated from the Zpores. 

Admittance is also a measure of skin barrier integrity and behaves similarly to 

transepidermal water loss measurements (e.g. high admittance values signify 

compromised barrier integrity, while low baseline values are typical under normal 

physiological conditions). Admittance was normalized to the highest post-MN 

admittance, and any contribution from the control site was subtracted out (i.e. any effect 
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attributed to the gels or hydration status). For diclofenac and placebo sites, the area 

under the admittance-time curve (AUC) was calculated (GraphPad Prism® software, 

version 5.04) to allow for comparison between treatments. At placebo sites it was 

assumed that the change in admittance values follows approximately first-order kinetics, 

thus providing an additional means of estimating the kinetics of micropore closure 

without any active treatment. Micropore closure rate constants (k’s) were determined 

according to the simple model: 

 

          Equation 6.2 

 

Admittance values were logarithmically transformed to fit a log-linear form of the model 

and obtain apparent first-order rate constants. Each subject served as their own control, 

and a paired t-test was performed to compare the effects of diclofenac vs. placebo 

treatment. p < 0.05 was considered statistically significant. 

 

6.2.7  Skin irritation assessments 

Tristimulus colorimetry readings were made on the upper arms of six subjects in 

order to assess the skin irritation potential of the treatments. Erythema was quantified 

with a Konica Minolta meter (ChromaMeter CR-400, Konica Minolta, Japan) according to 

previously published guidelines [115]. This technique is non-invasive, measurements are 

very quick (less than 5 seconds each), and the device is handheld and portable, making 

it suitable for a clinical environment. The colorimeter was calibrated daily against a white 

plate provided by Konica Minolta. Measurements were made by placing the head of the 

instrument gently on the skin area to record the color reflectance. Readings were taken 

in triplicate at every site at each study visit and the mean a* value was calculated. The 

change in erythema was reported as a change from the baseline, Δa*, calculated as Δa* 

= a*t (at time t days after starting the study) –a*0 (at time 0, prior to application of 

treatment). Statistical analysis was performed using a one-way ANOVA with post-hoc 

Tukey's analysis (GraphPad Prism®, version 5.04). 

 

6.3  Results 

6.3.1  Subjects 

Thirteen healthy volunteers completed this study: 7 males and 6 females 

(general demographics described in Table 3); treatment paradigms and schedules are 
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described in Table 4. The various paradigms and schedules allowed for the investigation 

of different scenarios, including:  1) the effects of pre-hydration on micropore closure; 2) 

evaluation of micropore closure kinetics under different frequencies of diclofenac 

application; and 3) comparison of admittance profiles following identical treatment at two 

independent sites. MN treatments were well tolerated by all of the subjects and no 

irritation or infection was noted at any of the treatment sites. Some subjects had mild to 

moderate irritation/allergic reactions to the Bioclusive adhesive tape that was used to 

secure the blank occlusive patches to the skin (to cover the treatment sites). These local 

reactions were isolated to the areas of skin covered by the Bioclusive and were 

determined by the study physicians to be unrelated to the MN or gel treatments 

themselves. All reactions were treated with brief courses of topical steroids, and all 

resolved quickly. 

 

6.3.2  Formation of micropores in the stratum corneum 

A total of 50 MN treatments were applied in 13 subjects at diclofenac and 

placebo treated sites (one MN treatment consists of two applications of a 50 MN array, 

in order to create 100 micropores). Zpores (impedance of the micropores) was calculated 

as described above in the Methods section. Impedance dropped significantly from 

baseline immediately following MN treatment in all subjects (p = 0.002, paired t-test) 

indicating formation of micropores in the SC and significant disruption of the skin’s 

barrier function (one subject’s measurements were excluded as outliers, n = 2). 

The most relevant clinical scenario for transdermal patches is such that the skin 

remains occluded beneath a patch for a timeframe of hours to days. Impedance 

measurements can be made on skin with varied levels of hydration [112], but this does 

impose an additional factor that could create variability in the measurements. In some 

subjects the skin was pre-hydrated before MN treatment in order to completely remove 

any possible effects of hydration on the impedance measurements (n = 20 MN 

treatments). However, the employed basic research method of calculating the Zpores 

described in the Methods section (using the measurements at corresponding control 

sites to estimate the value of hydrated intact skin) also allows for removal of hydration 

effects. Therefore, to more accurately depict the truest clinical scenario, the pre-

hydration period was removed from the treatment schedule (n = 28 MN treatments). Two 

subjects completed the study in a crossover design, once with pre-hydration and once 

without pre-hydration. There was no significant difference (p > 0.5, Student’s t-test) in 
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the post-MN impedance measurements at diclofenac vs. placebo sites, regardless of 

hydration status at the time of treatment (Figure 6.3); therefore, the hydration of the skin 

did not appear to introduce additional variability in the measurements. As expected, in all 

subjects the baseline impedance of intact skin was quite high (always greater than 1500 

kΩ, data not shown), which is required for the skin to maintain its effective barrier 

function. MN treatment breaches this barrier, leading to a substantial decrease in 

impedance. At pre-hydrated sites (n = 20 total; 10 diclofenac sites and 10 placebo sites), 

micropore impedance (average ± SD) immediately post-MN treatment was 0.87 ± 0.42 

kΩ at diclofenac sites vs. 0.90 ± 0.47 kΩ at placebo sites (p = 0.9, Student’s t-test). At 

non pre-hydrated sites (n = 28 total; 14 diclofenac sites and 14 placebo sites), micropore 

impedance immediately following MN treatment at diclofenac and placebo sites was 0.45 

± 0.49 kΩ vs. 0.43 ± 0.52 kΩ, respectively (p = 0.9, Student’s t-test). All initial post-MN 

measurements can be seen in Figure 3. Thus, while there is some variation between 

subjects in the impedance measurements immediately following MN treatment, in each 

individual subject the formation of micropores can be easily detected when compared to 

that subject’s high intact skin baseline. 

 

6.3.3  Micropore closure kinetics  

Micropore closure was assessed via impedance spectroscopy, a method well 

described for monitoring skin integrity and barrier function under various conditions [110-

112, 116, 117]. Admittance values (inverse of the impedance measurements) were 

calculated and %-normalized to the highest post-MN admittance value (in some subjects 

the admittance increased slightly at 24 hours following MN treatment) and plotted vs. 

time such that the area under the admittance-time curve (AUC, %·days) was calculated. 

In the first five subjects, additional control sites were applied including occlusion of intact 

skin, MN-treated skin under occluded conditions (no gels applied), and MN-treated skin 

exposed to air. In all subjects, measurements at unoccluded MN-treated sites had 

returned to baseline by the time of the next clinic visit, and the AUC at MN-treated sites 

under occlusion were not significantly different from placebo (p = 0.6, paired t-test). 

Therefore, the remaining subjects were not treated with these controls, but rather had 

replicates of MN + diclofenac and MN + placebo treatment sites. 

As expected with a biological system, a wide range in the AUC values was 

observed at both diclofenac and placebo treatment sites (87.3 – 426.0 %·days vs. 53.5 – 

309.6 %·days, respectively); the overall difference between treatments was significant (p 
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< 0.0001, paired t-test). Figure 6.4 displays the AUC at diclofenac and placebo sites for 

each subject. Two subjects had notably higher AUC for both diclofenac and placebo 

sites, while two subjects did not display any difference between active and placebo AUC. 

The subjects who received the fewest applications of diclofenac had the highest AUC 

compared to the other subjects (AUC  of 309.6 %·days and 380.2 %·days, vs. values of 

<300 %·days for all other subjects); the AUC for these subjects was also calculated over 

a total of 7 days post-MN treatment, which could contribute to the higher values. 

However, the difference between active and placebo AUC is still significant if these 

values are removed from the analysis (p < 0.0005, paired t-test). Despite these 

variations, the results are neither surprising nor discouraging, as differences in 

therapeutic response, outliers, and non-responders are all typical with human clinical 

data. Representative admittance profiles are seen in Figure 6.5.  For the subjects who 

completed the crossover design (Subjects 6 and 9), the overall effect of the pre-

hydration period was somewhat inconsistent between the two subjects, although the 

shapes of the profiles within each subject were consistent (irrespective of the skin’s 

hydration status at the time of MN treatment). The average ± SD AUC values at the pre-

hydrated diclofenac treatment sites were 240.5 ± 88.5 %·days and 145.8 ± 17.0 %·days 

(Subjects 6 and 9, respectively), vs. the AUC at non-prehydrated diclofenac sites of 

271.4 ± 55.6 %·days and 131.9 ± 25.4 %·days. Pre-hydrated placebo site AUC values 

were 74.6 ± 6.2 %·days (Subject 6) vs. 59.8 ± 8.9 %·days (Subject 9), compared to the 

non pre-hydrated values of 170.1 ± 3.8 %·days and 81.1 ± 3.4 %·days. Therefore, a 

positive treatment effect (i.e. higher AUC at diclofenac sites) was seen in both subjects 

under both treatment schedules (Figure 6). 

For the majority of subjects, admittance of the micropores exhibited 

approximately exponential decay at the MN + placebo treatment sites, and 

logarithmically transforming this data allowed for determination of apparent first-order 

rate constants (k’s). The average ± SD rate constant was 0.92 ± 0.32 days-1 (range 0.41 

– 1.60 days-1). Based on the rate constants, the average first-order t1/2 of micropore 

closure (without any active drug moiety to prolong micropore lifetime) was approximately 

0.76 ± 0.35 days (range 0.43 – 1.67 days). In contrast, the kinetics at sites treated with 

MN + diclofenac did not generally follow an exponential decay process, and there was 

more inter-subject variability in the shape of the profiles. In subjects who had duplicate 

treatments (i.e. the same treatment applied to two independent sites), the shapes of the 

profiles were markedly similar, for both diclofenac and placebo treated sites, 
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demonstrating the reproducibility of this surrogate marker technique for monitoring 

micropore closure (Figure 6.5). 

To more consistently compare treatment effects between subjects, the ratio of 

diclofenac to placebo AUC was calculated (Figure 7). By comparing the active to placebo 

treatment sites within the same subject, a better comparison of the magnitude of 

treatment effect can be made between subjects. All ratios were >1.0 (range 1.01 – 3.23), 

demonstrating a positive treatment effect (slower micropore closure) attributed to 

diclofenac. The hydration status of the skin did not appear to have any consistent effect 

on the magnitude of the treatment effect, which was especially notable in subjects 6 and 

9, who completed the crossover design (Figure 6.6). 

 

6.3.4  Effects of diclofenac on human skin 

Colorimetry measurements in six subjects (treatment paradigm 2, schedule 1) 

were taken to confirm that the observed differences between diclofenac and placebo 

sites were in fact a result of the diclofenac sodium and were not due to nonspecific 

irritation. In all subjects, a* and Δa* values over the entire treatment course were lower 

than values expected for positive controls following treatment with mild skin irritants in 

humans or guinea pigs [118, 119] (Figure 6.8). There was no significant difference in 

erythema between any of the treatment sites (p = 0.2, one-way ANOVA) and no redness 

or irritation was observable by the naked eye. These combined factors indicate that no 

clinically significant skin irritation contributed to the enhanced admittance observed at 

the diclofenac treatment sites, and also confirms other findings that microneedle 

treatment in humans is not irritating [7, 9, 59, 104]. 

 

6.3.5  Benefits of examining multiple treatment schedules  

Examining the effects of diclofenac under the 3 different treatment schedules 

provides some unique insight about the measurement techniques and treatment effects.  

In the crossover subjects, completing Schedules 1 and 2 helped confirm that the 

impedance measurements were reproducible regardless of the skin’s hydration status, 

demonstrating the consistency of this measurement technique under various clinical 

conditions.  Second, a positive treatment effect from the diclofenac was seen in both 

subjects for both schedules, confirming that the skin’s restoration response after MN 

treatment (and attenuation of that response with an anti-inflammatory) is not altered 

based on the skin’s hydration status.  For all subjects who completed either Schedule 1 
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or 2, it was valuable from a safety perspective for the investigators to remove the gels 

and patches daily to visually inspect the skin to ensure that no infection or irritation was 

present.  This also provided an opportunity to measure subclinical erythema with the 

colorimetry methods.  Finally, Schedule 3 demonstrated that daily application of the 

diclofenac gel was not necessary in order to observe a positive effect from the 

diclofenac. This suggests that the unique gel base (containing hyaluronate sodium) 

created a depot in the skin providing a local anti-inflammatory effect, rather than a 

systemic effect.  Lastly, this schedule further confirmed that the skin follows the same 

restoration response with or without anti-inflammatory treatment under short (24 hour) 

vs. longer (72 hour) pre-hydration periods, suggesting that the hydration under a 

transdermal patch applied for a full week would not negatively affect the treatment 

response from diclofenac. 

 

6.4  Discussion 

The benefits of transdermal drug delivery are well established, but the strict 

physicochemical parameters required for a drug to cross the skin barrier limits the 

number of molecules that can be passively delivered. Physical enhancement methods 

have greatly expanded the potential number of drug molecules that can be transdermally 

delivered, but despite these advances none of the methods are yet suitable for delivering 

a drug over a week-long time frame, (the ideal for transdermal patches). This is the first 

human study to demonstrate that the lifetime of micropores following one-time 

application of MN arrays can be enhanced via simple topical application of a nonspecific 

COX inhibitor. The commercial development of this technology would allow for 

transdermal treatment of a variety of indications with less frequent patch application, 

which would likely increase patient compliance and satisfaction with therapy. 

Previous studies have demonstrated that daily application of diclofenac prolongs 

micropore lifetime in hairless guinea pigs [11], and the present work demonstrates that 

micropore closure kinetics are also prolonged in human subjects via evaluation of the 

AUC over several days following MN treatment. The AUC is typically reported for drug 

concentration-time data to demonstrate total drug exposure, allowing for a comparison of 

exposure between different treatments. In this case, we used AUC to compare the 

change in the admittance values between diclofenac and placebo treatment sites. While 

this does not explicitly describe the kinetics of micropore closure, per se, it can be 

extrapolated that a higher AUC would correlate with slower rates of closure, as a higher 
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AUC would be a result of higher admittance values over the entire treatment period. 

Therefore, this model incorporates the general assumption that slower kinetics of 

micropore closure are described by higher AUC values. 

The diclofenac formulation used in these studies is unique in that the vehicle 

contains 2.5% hyaluronic acid, a naturally occurring polysaccharide found in the skin. 

Studies have demonstrated that hyaluronic acid aids the partitioning of diclofenac into 

the skin and promotes its retention within the epidermis, ultimately creating a local depot 

of drug [120]. For the purposes of enhancing micropore lifetime this property is 

particularly appealing, as it ensures that the effects of the diclofenac are a result of local 

concentrations at the micropores, rather than any effects from systemic delivery. The 

subjects with the highest AUC were those that completed the treatment schedule with 

the fewest applications of diclofenac, suggesting that daily application of the diclofenac 

is not necessary (which is likely partly attributable to the depot of diclofenac formed in 

the skin). The AUC values for the subjects in Schedule 3 were calculated over a total of 

7 days post-MN treatment, which could also contribute to the higher values. It was not 

feasible to accurately determine the AUC over a 4 day post-MN period in these subjects 

because this would have generated an AUC from a much smaller number of data points, 

which is likely to greatly overestimate the values and produce the appearance of a more 

pronounced treatment effect. It is also possible that the increased exposure to air 

(created by daily impedance measurements) at the MN-treated sites in the other 

subjects may have contributed to faster micropore closure, as MN-treated skin heals 

markedly faster when unoccluded. Any systemic absorption of diclofenac from the 

topical dose (200 μl of a 3% w/w gel, 6 mg total) would be considered negligible, as this 

is far below the lowest oral dose of diclofenac given for systemic indications (100 mg/day 

with 50% oral bioavailability equating to a 50 mg systemic dose) [121]. 

 

6.4.1  Effect of formulation pH on micropore closure kinetics  

The experimentally measured pH values of the diclofenac and placebo gels were 

7.3 and 4.7, respectively. The effect of pH on skin wound healing has been investigated 

in the literature and it has been shown that pH does not play a role in wound healing for 

lesser insults [122]. However, in the case of acetone disruption when the ‘’acid mantle” 

of the skin is disturbed, the rate of healing is slower at pH 7.4 compared to pH 5.5. This 

can be attributed to the acidic pH optimum of β-glucocerebrosidase, an enzyme 

responsible for the post-secretion modifications of polar to non-polar ceramides [122]. 
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Since the pH of the diclofenac gel was higher compared to the placebo in this study, we 

examined the role of formulation pH in the re-sealing of the micropores. Micropore 

closure kinetics were evaluated in vivo under 3 different pH conditions in a Yucatan 

miniature pig: pH 5.5, 6.5 and 7.4 (gels made in 100 mM citrate buffer and gelled with 

3% hydroxyethylcellulose). Three MN treated sites and 1 untreated control site were 

used for each pH condition; all sites were under occlusion after one time MN application. 

There was no significant difference in admittance values among the 3 conditions after 

the first 24 hours (p>0.05). The difference in admittance up to 24 hours is consistent with 

previous reports demonstrating significant differences in TEWL (following acetone 

treatment) between pH 5.5 and pH 7.4 at 2h and 4h (p<0.01) and 24h (p<0.05) [122]. 

After the early time points, however, the rates of recovery normalize in spite of the pH 

difference. Thus, as the skin begins to heal itself over time, the effect of formulation pH 

becomes less evident in the repair mechanism. Hence it can be concluded that the effect 

of diclofenac seen in this study is independent of the formulation pH of the gels, beyond 

the 24h time point. Based on the pH data and all of the above mentioned factors it can 

be concluded that the differences in micropore closure (between diclofenac and placebo) 

that were observed in this study are related to the local concentration of diclofenac, not 

from a systemic anti-inflammatory effect, or from the effects of the gel vehicles. 

 

6.4.2  Potential factors contributing to inter-subject variability 

The ability of drugs to permeate intact human skin is related both to the individual 

characteristics of the subject’s skin as well as the structural and physicochemical 

properties of the drug compound (molecular weight, octanol/water partition coefficient, 

and hydrogen bonding) [123]. For in vitro human skin experimental permeability data 

alone, it is not unusual to observe as much as 30% variation [24, 124]. Responses to 

topical treatments can sometimes be quite unpredictable, and there are currently no 

methods to accurately predict whether or not a subject will be an outlier in the typical 

response to a topically applied drug. In the present study there are various reasons why 

some subjects had higher or lower levels of response. First, previous work has 

demonstrated that drug-metabolizing enzymes (DMEs) are expressed in human skin 

[125], and inter-subject differences in the expression of these enzymes could be related 

to the magnitude of treatment effect observed from a variety of topical treatments. 

Diclofenac metabolism in the skin is thought to be similar to the metabolism seen 

following oral administration (conversion to glucuronide conjugates) [126], and varied 
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expression of the enzymes involved in this metabolism could impact the treatment effect 

observed following topical diclofenac application. It is noteworthy here, however, that the 

amount of drug applied per unit area for typical topical drug applications would likely 

saturate the enzyme systems, and therefore differences in metabolism of diclofenac in 

the skin would likely have a minimal effect in this regard. Second, expression of the COX 

enzymes in normal skin can vary [127], and it is possible that a subject with lower COX 

enzyme expression may not display as pronounced an effect to the diclofenac treatment 

(the opposite would be true for subjects with greater COX expression in the skin). Third, 

expression of DMEs in the skin can be increased or decreased to varying degrees in 

response to topical treatments used in clinical practice, which could further contribute to 

the observed variation [125]. Despite these possible inter-subject variations, the overall 

trend demonstrated a significant difference between active and placebo treatments in a 

relatively small sample size. 

 

6.4.3  Drug delivery window in relation to micropore lifetime and transdermal systems  

It is important to note that extending micropore lifetime is not the only factor that 

will contribute to enhanced delivery of a drug molecule to therapeutically relevant 

systemic concentrations. The nature of transdermal patches dictates that a treatment 

site is occluded for the duration of patch application, which leads to a local increase in 

skin hydration. This natural byproduct of the treatment system can lead to enhanced 

drug delivery for many compounds [128] and helps the micropores to remain open for 

days (as seen by the drug delivery window observed in the human pharmacokinetic 

study) vs. approximately 15 minutes (observed when the micropores remain 

unoccluded) [9, 10]. The enhanced micropore lifetime seen in this study combined with 

the increased drug delivery related to the local hydration represents the truest clinical 

scenario and would be expected to produce an additive effect on drug delivery. 

In MN-assisted drug delivery, the concept of micropore lifetime is only useful in 

the context of a window during which a drug can be transdermally delivered to a 

therapeutic plasma concentration. The first MN-assisted pharmacokinetic study 

demonstrated that naltrexone can be transdermally delivered through micropores for 2-3 

days under occluded conditions in the absence of any active drug moiety to prolong 

micropore lifetime [9]. An average micropore closure half-life of 0.76 days was observed 

in the current study, corresponding with the pharmacokinetic drug delivery window of 

approximately 2-3 days (or 3-5 half-lives) when ~87.5 - 97% of the micropores would be 
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closed (according to the impedance measurements). While the notion of first-order rate 

constants cannot be extrapolated directly to the diclofenac sites because of the non-

exponential decay of the admittance profiles, it does illustrate that the true drug delivery 

window is significantly longer than what is predicted based on the kinetics of micropore 

closure alone. It is probable that the impedance measurements overestimate the 

micropore closure rate, and this method is not as sensitive as evaluating drug diffusion 

in a pharmacokinetic study. A proof-of-concept pharmacokinetic study will be necessary, 

but impedance is a useful surrogate marker to conduct micropore closure formulation 

study screening. 

In addition to providing a better understanding of the drug delivery window, the 

consistency of rate constants at the placebo treatment sites also provides a novel 

method of evaluating other treatments for enhancing the lifetime of micropores. The ratio 

of active treatment to placebo treatment effects (in this case, AUC) offers a means to 

understand the magnitude of a treatment effect, allowing for more direct comparison 

between subjects. Without drug plasma concentrations to measure the amount of drug 

delivery through the micropores, this ratio solely describes the difference between AUC 

values; thus, a ratio of 2.0 would correlate to 2-fold slower rates of micropore closure at 

diclofenac sites vs. placebo sites (based on the assumption that higher AUC indirectly 

describes slower kinetics of micropore closure). This ratio of 2.0 would then also loosely 

predict that the maximum amount of drug that could be delivered through the micropores 

at diclofenac treatment sites would be approximately twice that seen at placebo sites. 

This analysis was not only useful in the current work, but will likely also prove to be 

beneficial for screening additional compounds for similar effects. This ratio allows for a 

direct comparison of the utility of various treatments within the same subject by allowing 

the subject to serve as their own control, while also allowing for comparison between 

subjects. Furthermore, these techniques could be expanded to measure pore closure in 

other physical enhancement techniques that create pores in the skin (e.g. 

microdermabrasion or electroporation). 

 

6.4.4  Tolerability of microneedles and topical treatments  

Skin erythema after MN treatment and topical gel applications was quantified 

using a tristimulus colorimeter. This technique allows for analysis of blue, red, and green 

light reflected from the skin, providing a quantitative means of assessing skin color that 

mimics the perception of the human eye. The a* measurement represents the red-green 
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axis, and this value becomes more positive as erythema appears on the skin (i.e. less 

green light is reflected) [115]. The a* values obtained with a colorimeter correlate well 

with erythema and can be used to quantify skin irritation; the Δa* demonstrates change 

in local erythema from a pre-treatment baseline at that site [115]. It has been reported 

that Δa* values can reach up to 4.73 in humans following treatment with sodium lauryl 

sulfate (a known skin irritant) and as high as 8.9 in hairless guinea pigs [119, 129]. 

Hairless guinea pigs are a well accepted model for studying skin irritation as they are 

more sensitive than humans to mild irritation, allowing for a more conservative 

estimation of skin irritation potential [130]. In this study, Δa* values were well below 

those of typical positive controls, confirming the lack of erythema and providing 

additional support that the observed changes in micropore lifetime are not related to 

nonspecific local irritation. 

The concern often arises that prolonging micropore lifetime may increase the risk 

of local infection at MN treated sites. From a practical point of view, however, this is not 

a prominent concern. Prior to application of MN arrays, the skin is treated with 70% 

isopropyl alcohol and the arrays are sterile and only used once (similar precautions to 

those used in routine clinical care for inserting a hypodermic needle into the skin). All 

topical treatments applied to the MN treated skin would be in a preparation suitable for 

human use, i.e. the formulation would contain bacteriostatic/cidal preservatives designed 

to prevent local bacterial infection [9]. Finally, despite all of the research performed on 

MN-assisted delivery, no reports have described any kind of infection (local or systemic), 

and in vitro work has demonstrated that microbial penetration is significantly less 

following treatment with a MN array vs. a 21G hypodermic needle [62]. 

 

6.4.5  Limitations  

  There are some limitations to this work. Due to the rapid closure of the 

micropores in unoccluded conditions, repeated impedance measurements could not be 

made at each time point because of the prolonged exposure to air that this would allow. 

Despite this limitation, the profiles were similar in shape in those subjects who had 

multiple sites for identical treatments, and placebo rate constants were similar between 

subjects, demonstrating the reliability and reproducibility of the results. Secondly, MN 

insertion is a somewhat imprecise process and there are currently no non-proprietary 

standardized means of applying MN arrays to the skin. This was controlled for as much 

as possible by having the same investigator apply all of the MN treatments, to avoid 
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inter-investigator variability. There was no significant difference in the post-MN 

measurements between diclofenac and placebo treatment sites, and therefore the 

imprecise nature of MN application would not be expected to substantially affect the 

results. Finally, in this study diclofenac was applied daily to the skin for the majority of 

subjects. This does not represent the ideal clinical situation, as it would be cumbersome 

for a patient to apply the gel daily. Additionally, in a regulatory sense the concept of 

using diclofenac to enhance micropore lifetime might seem impractical because of the 

frequent applications and off-label use of a commercial product. However, the 

application schedule was a necessary component of this work given the proof-of-concept 

nature of the study and the need to remove the gels in order to make impedance 

measurements; furthermore, the diclofenac gel represented the safest formulation due to 

the lack of systemic delivery from the gel vehicle. Current work in our lab is focused on 

developing codrugs for integrating diclofenac into a patch system that would allow for 

continued local delivery of the diclofenac. A codrug consists of two drug moieties joined 

by a chemical linker (in this case diclofenac sodium linked to another drug), in order to 

improve the delivery of one or both drugs. Our efforts are aimed at developing a codrug 

system with diclofenac that will dissociate within the skin, thus separating the two 

independent drugs and allowing for local delivery of diclofenac sodium while allowing the 

other drug moiety to passively diffuse through the micropores into the systemic 

circulation. This would thereby eliminate the need for daily application of the diclofenac 

moiety and would be a product designed specifically for enhancing micropore lifetime to 

allow for a longer drug delivery window [131]. 

 

6.5  Conclusions 

In summary, this is the first study in human volunteers to demonstrate that topical 

application of a nonspecific COX inhibitor can prolong micropore lifetime. Future 

directions of this work will include a pharmacokinetic proof-of-concept study to 

demonstrate the clinical utility of extending micropore lifetime, as well as continued 

development of diclofenac codrugs. This work indicates that MN-assisted transdermal 

delivery has immense potential to continue expanding to allow for delivery of a vast array 

of drug compounds for a variety of clinical uses. 
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Table 6.1 

Site Treatment paradigm 1 

(n = 5 subjects) 

 Site(s) Treatment paradigm 2  

(n = 8 subjects) 

1 MN array + occlusion  1 and 2 MN array + diclofenac 

gel + occlusion 

2 MN array + diclofenac 

gel + occlusion 

 3 and 4 MN array + placebo gel 

+ occlusion 

3 Diclofenac gel + 

occlusion 

 5 Diclofenac gel + 

occlusion 

4 Occlusion of non-

treated skin 

 6 Placebo gel + occlusion 

5 MN array, unoccluded    

6 MN array + placebo 

gel + occlusion 

   

 

Table 6.1  Description of the treatments applied to each subject to examine the 

effect of diclofenac and placebo gels on micropore closure kinetics. All treatments 

consisted of 200 μl total volume. Three subjects in paradigm 1 received treatment on the 

volar forearm; the remaining two subjects in this treatment paradigm and all subjects in 

paradigm 2 were treated on the upper arm.  
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Table 6.2 
 

Schedule 1 (n = 9) Schedule 2 (n = 4) Schedule 3 (n = 2) 

Day of 

study 

Applied 

treatments 

Day of 

study 

Applied 

treatments 

Day of 

study 

Applied 

treatments 

0 MN treatment, 

application of 

gels, occlusion 

of sites 

0 Application of 

blank occlusive 

patches to 

intact skin 

0 Application 

of blank 

occlusive 

patches to 

intact skin 

1 - 3 Daily 

application of 

fresh gels and 

occlusive 

patches 

1 (following 

72 hours of 

occlusion) 

MN treatment, 

application of 

gels, occlusion 

of sites  

1 (following 

24 hours of 

occlusion) 

MN 

treatment, 

application 

of gels, 

occlusion of 

sites 

4 (96 

hours 

post-

MN) 

Removal of 

gels/patches 

2 – 4 Daily 

application of 

fresh gels and 

occlusive 

patches 

4 (72 hours 

post-MN) 

Re-

application 

of gels and 

occlusive 

patches 

5 (96 hours 

post-MN) 

Removal of 

gels/patches 

8 (7 days 

post-MN) 

Removal of 

gels/patches 

 

Table 6.2  Description of the different treatment schedules to determine the effect 

of varying timeframes of pre-hydration on micropore closure kinetics.  Three 

different schedules were examined, with varying timeframes of pre-hydration (0, 24 or 72 

hours of pre-hydration). Two subjects completed both schedules 1 and 2 in a crossover-

type design. 
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Table 6.3 

Subject demographics Count 

Sex 

Male (%) 

Female (%) 

 

7 (54) 

6 (46) 

Mean age, years (SD) 

Minimum age 

Maximum age 

27.5 (5.8) 

22 

45 

Race 

Caucasian (%) 

Asian (%) 

 

11 (85) 

2 (15) 

Mean body mass index (SD) 

Minimum BMI 

Maximum BMI 

27.4 (5.6) 

 

18.7 

39.7 

 

Table 6.3  Human subject demographics (n = 13). 
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Table  6.4 

 

Subjects Treatment 

paradigm 

Schedule Treatment 

site 

1 – 3 1 1 Volar forearm 

4 – 9 2 1 Upper arm 

6, 9, 10 – 

11 

2 2 Upper arm 

12, 13 1 3 Upper arm 

 

Table 6.4  Description of the combinations of treatment paradigms, schedules, 

and treatment sites for all subjects. Subjects 6 and 9 completed both Schedules 1 

and 2.  
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Figure 6.1  Image of a microneedle array. The MN arrays are arranged in a 

configuration of 5 x 10 needles, with a total of 50 MNs per array. The array is displayed 

next to a penny in order to demonstrate the relative small size of the whole array. 
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Figure 6.2  Treatment patches and electrodes on a subject’s upper arm. The 

reference electrode was placed in the middle of all the treatment sites, which were 

protected during the study by blank occlusive patches. The top treatment site displays 

one of the Ag/AgCl measurement electrodes, which is moved from site to site to make 

impedance measurements. Both the reference and measurement electrodes are 

connected by lead wires to the impedance meter. 
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Figure 6.3  Impedance of the micropores immediately following MN treatment. All 

data are represented as average ± SD. Black bars represent diclofenac treatment sites, 

and grey bars represent placebo sites. One subject’s impedance values were excluded 

as outliers (n = 2 measurements). Regardless of hydration status, no significant 

difference was found between the impedance measurements at diclofenac vs. placebo 

sites. Micropore impedance (irrespective of hydration status, n = 24 in each group) at 

diclofenac treatment sites was 0.62 ± 0.50 kΩ, compared to 0.62 ± 0.54 kΩ at placebo 

treatment sites (p = 1.0, Student’s t-test). At non pre-hydrated sites (n = 14 in each 

group), micropore impedance at diclofenac and placebo treatment sites was 0.45 ± 0.49 

kΩ and 0.43 ± 0.52 kΩ, respectively (p = 0.9, Student’s t-test). Finally, sites that were 

pre-hydrated (n = 10 in each group) at diclofenac and placebo treated sites had an 

impedance of 0.87 ± 0.42 kΩ vs. 0.90 ± 0.47 kΩ, respectively (p = 0.9, Student’s t-test). 
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Figure 6.4  Comparison of AUC values at diclofenac vs. placebo treatment sites. 

The AUC (%·days) at MN + diclofenac and MN + placebo treated sites were calculated 

from %-normalized admittance measurements and compared within each subject over 

the entire treatment period (n = 15 treatment periods in 13 subjects, because two 

subjects completed a crossover design). For those subjects who had two independent 

sites each for diclofenac and placebo treatments, the average was calculated and used 

to determine the AUC. The overall difference in AUC was statistically significant (p < 

0.0001, paired t-test). 
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Figure 6.5  Representative profiles of micropore admittance from two subjects. 

These profiles demonstrate inter-subject differences in the change in micropore 

admittance over a 5 day period (MN treatment occurring on Day 0). Values were 

normalized to the highest post-MN admittance value. Two independent sites were 

treated with MN + diclofenac (solid lines with solid shapes), and two additional sites were 

treated with MN + placebo (dashed lines with open shapes), and the area under the 

admittance-time curve, %·days (AUC) was calculated from the normalized admittance 

values. Subject A completed treatment schedule 2, and Subject B completed treatment 

schedule 1. Subject A: AUC for diclofenac and placebo was 240.5 ± 88.5 %·days vs. 

74.6 ± 6.2 %·days, respectively. Subject B: Average (± SD) AUC for diclofenac sites was 

253.2 ± 32.1 %·days vs. 92.9 ± 28.0 %·days at placebo sites. Despite differences in the 

shape of the profiles at diclofenac sites, all placebo treatment sites follow an 

approximately exponential decay. Under this model, the calculated t1/2 of the micropores 

at placebo sites for Subject A is 11.7 ± 2.1 hours and 18.3 ± 4.5 hours for Subject B. 
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Figure 6.6  Comparison of admittance profiles in two subjects who completed a 

crossover design. Subject 6 (graph A, left) and Subject 9 (graph B, right) completed 

both schedules 1 and 2 in order to examine the effect of pre-hydration on the AUC. 

Triangles represent the diclofenac treatment sites, and squares represent the placebo 

sites. Solid lines with solid shapes display the sites with pre-hydration, and dashed lines 

with open shapes represent non pre-hydrated sites. As seen in the profiles, the effect of 

pre-hydration was not consistent between the two subjects, though the shape of the 

profiles (regardless of hydration status) was consistent within each individual subject. 

The average ± SD AUC at the pre-hydrated diclofenac treatment sites for was 240.5 ± 

88.5 %·days and 145.8 ± 17.0 %·days (Subject 6 and 9, respectively), vs. the AUC at 

non-prehydrated diclofenac sites of 271.4 ± 55.6 %·days and 131.9 ± 25.4 %·days. Pre-

hydrated placebo site AUC values were 74.6 ± 6.2 %·days (Subject 6) vs. 59.8 ± 8.9 

%·days (Subject 9), compared to the non pre-hydrated values of 170.1 ± 3.8 %·days and 

81.1 ± 3.4 %·days. 
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Figure 6.7  Ratios of diclofenac to placebo AUC. A simple ratio of the AUC values of 

active treatment (diclofenac) to placebo was calculated for each subject in order to 

demonstrate the magnitude of a treatment effect, thus allowing for a more direct 

comparison between subjects (n = 13). Solid triangles represent subjects with no pre-

hydration, open circles represent subjects with pre-hydration. For subjects who had 2 

treatment sites each for diclofenac or placebo, the average AUC for each treatment type 

was calculated and used to determine the ratio. The 2 subjects who completed the 

treatments with and without pre-hydration are outlined by the open boxes. Any ratio >1 

demonstrates a favorable treatment effect for diclofenac. The average ± SD ratio was 

1.76 ± 0.62 (range 1.01 – 3.23). The skin’s hydration state at the time of MN treatment 

did not have a consistent impact on the treatment effect, which is particularly evident for 

the 2 subjects who completed the crossover schedule.     
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Figure 6.8  Assessment of skin irritation. Erythema was quantified via daily 

colorimetry readings. Change in erythema from baseline at each site was assessed by 

calculating the Δa* value according to the equation: Δa* = a*t (at time t days after 

starting the study) – a*0 (at time 0, prior to application of treatment); data is displayed as 

the mean ± SD at each timepoint (n = 6 subjects). The bold line at 4.7 depicts a typical 

value expected after treating humans with sodium lauryl sulfate [119]. Sites treated with 

diclofenac are depicted by solid lines, whereas dashed lines represent placebo treated 

sites. Overall, no significant skin erythema was noted between diclofenac and placebo 

treatment sites (p = 0.2, one-way ANOVA). 
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Chapter 7 

In vitro determination of naltrexone flux and quantification of diclofenac in 

microneedle-treated skin and in vivo assessment of skin irritation 

 

7.1  Introduction 

In recent years, microneedle-assisted transdermal delivery has proven to be a 

minimally invasive, patient-friendly technique for delivering drug compounds across the 

impermeable outer layers of the skin.  Application of microneedles (MNs) to the skin 

creates micropores in the stratum corneum (SC, the outermost layer of the skin) through 

which a drug can diffuse and bypass the barrier functions of the SC.  While only microns 

in dimension, the micropores allow for percutaneous delivery of macromolecules (insulin, 

oligonucleotides, human growth hormone) [47, 53, 56, 57, 132] and compounds that 

cannot otherwise permeate the lipophilic structure of the SC (naltrexone, desmopressin) 

[9, 11, 48].  

This unique physical enhancement method offers immense flexibility for means 

of application, and previous reports have described successful drug delivery using 

dissolving MNs, coated MNs, hollow MN systems, and solid metal and polymer MN 

arrays.  In the “poke (press) and patch” technique, a solid MN array is applied to the skin 

once and removed, creating a grid of micropores in the SC.  A drug gel, solution, or 

patch can be applied over the MN-treated skin, permitting the drug to passively diffuse 

from the formulation into the micropores, ultimately resulting in systemic delivery.  The 

first drug to be described in a human pharmacokinetic study using this MN technique 

was naltrexone (NTX), an opioid mu-receptor antagonist approved for the treatment of 

opioid and alcohol abuse.  Therapeutic plasma concentrations of NTX were detectable 

for 48 – 72 hours following one application of a MN array with topical application of a 

16% NTX gel [9]. 

While the “poke and patch” technique is both simple and effective, the drug 

delivery window is dependent on the lifetime of the newly created micropores.  When the 

skin remains exposed to air after application of the MNs, the barrier function of the SC is 

restored within a period of 15 minutes to 2 hours [10, 13, 14].  That timeframe is 

extended to approximately 48 – 72 hours when the skin is occluded beneath a patch or 

impermeable membrane, as demonstrated by impedance spectroscopy and 

pharmacokinetic plasma data from humans and guinea pigs [9, 12, 14]. 
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While the specific physiologic events contributing to micropore re-sealing are not 

explicitly understood, it is possible that subclinical inflammation is involved in the early 

phases of barrier restoration, as inflammatory responses are one of the first steps of the 

skin’s wound healing cascade.  In fact, previous work from our lab (Banks, et al) has 

demonstrated that application of topical diclofenac sodium (a non-specific anti-

inflammatory drug) to MN-treated skin in hairless guinea pigs allows for delivery of NTX 

through the skin for up to 7 days [11].  Additionally, as described earlier, (Research Plan 

3.2) this effect can also be achieved in human subjects, as seen by a significant 

difference in micropore closure kinetics between diclofenac and placebo gels when 

applied to MN-treated skin. 

A proof-of-concept human study is necessary (Research Plan 3.6) 

to characterize the pharmacokinetics of NTX after application to MN-treated skin in the 

presence of diclofenac sodium for extending micropore lifetime.  The overall objective of 

the studies in this chapter was to optimize the dosing scenario for a pharmacokinetic 

study, based on 3 parameters: 1) local concentration of diclofenac sodium in MN-treated 

skin in vitro; 2) in vitro flux of NTX in the presence of diclofenac sodium or placebo gel; 

3) the irritation potential of the combination of diclofenac sodium and NTX when applied 

to the same treatment area.  The data presented in this chapter satisfy Research Plans 

3.3 and 3.4. 

 

7.2  Methods and materials 

7.2.1  Preparation of drug formulations 

The following components were purchased through the University of Kentucky: 

Solaraze® gel (PharmaDerm, Melville, NY), naltrexone HCl (Mallinkrodt, Mansfield, MA), 

propylene glycol (VWR, Atlanta, GA), benzyl alcohol (Fisher Scientific, Hanover Park, 

IL), polyethylene glycol methyl ether 350 (Dow Corporation, Louisville, KY), and sterile 

water for injection.  Hyaluronate sodium (Rita Corporation, Crystal Lake, IL) and 

hydroxyethylcellulose (HEC, Ashland Specialty Ingredients, Wilmington, DE) were gifts 

from the companies.  An 11% NTX•HCl gel was prepared as follows: 110 mg/ml 

NTX•HCl, 10% propylene glycol, 1% v/v benzyl alcohol, 89% sterile water, and 2.5% 

HEC.  The placebo gel was prepared with all components in the same proportions 

(minus the diclofenac sodium) as the active Solaraze® gel): 20% polyethylene glycol 

methyl ether 350, 1% benzyl alcohol, 79% sterile water, and 2.5% hyaluronate sodium.  
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All of the components were combined, vortexed, and allowed to stir on a stir plate for 

approximately 5 minutes before the hyaluronate sodium was added as the gelling agent.  

 

7.2.2  In vitro diffusion studies 

Full-thickness Yucatan miniature pig skin was harvested from the dorsal surface 

of a euthanized animal (approximately 6 months old).  The animal protocol was 

approved by the University of Kentucky IACUC.  A scalpel was used to remove all 

subcutaneous fat, and all skin samples were approximately 1 – 2 mm thick, as measured 

by calipers.  All skin samples were stored at -20° C until use; a 30 minute thawing period 

was allowed before using the skin for diffusion studies.  The skin was treated with a solid 

metal, 5 MN “in-plane” array (Mark Prausnitz’s lab, Georgia Institute of Technology, 

Atlanta, GA) with the following MN dimensions: 750 μm long, 200 μm wide, and 75 μm 

thick.  For the MN treatment, a polydimethylsiloxane polymer wafer was placed beneath 

the skin in order to mimic the natural mechanical support of the tissue underlying the 

skin in vivo.  MN insertion was achieved by manually pressing the array gently into the 

skin and removing it immediately.  Twenty applications were applied to create 100 non-

overlapping micropores on a 0.95 cm2 area of skin.  

A PermeGear In-Line flow-through diffusion system (Hellertown, PA, USA) was 

used for skin diffusion studies. The skin was mounted into the diffusion cells and the 

experiments were initiated by charging the cells with 100 or 200 μl of Solaraze® gel ± 

500 μl of NTX gel.  The Solaraze® gel was rubbed gently into the skin using a Teflon 

rod, followed by application of the NTX gel over top.  For the studies determining the 

local skin concentration of diclofenac in the absence of NTX, the receiver solution 

consisted of nanopure water with 20% EtOH, adjusted to a pH of 7.4; the EtOH generally 

increases drug solubility in the receiver solution.  For the studies containing both 

diclofenac and NTX, the receiver solution consisted of isotonic pH 7.4 HEPES-buffered 

Hank’s balanced salts with 87 μM gentamicin sulfate (to prevent bacterial growth in the 

receiver solution).  For all studies the receiver solution was kept at a flow rate of 1.5 

ml/min and temperature of 37°C and the skin temperature was maintained at 32 - 35° C 

with a circulating water bath.  Samples were collected at 6 hour intervals and stored at 

4°C until analysis by HPLC.  

7.2.2.1  HPLC conditions: The HPLC system consisted of the following 

components: Waters 717 plus autosampler, Waters 600 quaternary pump, and a Waters 

2487 dual wavelength absorbance detector with Waters Empower™ software.  The UV 
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detector was set to wavelengths of 215 or 278 nm and used with a Brownlee (Wellesley, 

MA, USA) C-18 reversed phase Spheri-5 μm column (220x4.6 mm) with a C-18 reversed 

phase guard column (15x3.2mm, Perkin Elmer®, Waltham, MA, USA).  For analyzing 

NTX flux, the mobile phase was 70:30 v/v ACN:buffer (0.1% TFA with 0.065% 1-octane 

sulfonic acid sodium salt, adjusted to pH 3 with TEA).  A flow rate of 1.5 ml/min and run 

time of 4 minutes (5 minutes for samples containing only diclofenac sodium) were used, 

with an injection volume of 100 μl.  Standard curves of diclofenac sodium and NTX in the 

linear range of 100 – 10,000 ng/ml were analyzed and displayed excellent linearity under 

the above conditions (R2 always ≥ 0.97).  NTX had a retention time of 2.55 ± 0.1 min, 

while diclofenac sodium had a retention time of 3.78 ± 0.3 minutes.   

 

7.2.3  Quantification of diclofenac in the skin 

At the end of each diffusion experiment, the skin was removed from the diffusion 

apparatus, rinsed twice with water and blotted gently with Kimwipes® to remove excess 

drug from the skin surface. The skin sample was tape stripped twice and the skin weight 

was recorded. The skin was suspended in acetonitrile and shaken in a 32°C water bath 

overnight.  Diclofenac concentration was analyzed by HPLC.  Skin concentrations were 

expressed as μm/gram of skin. 

 

7.2.4  Determination of naltrexone flux  

 The cumulative quantity of NTX collected in the receiver solution was plotted as a 

function of time and the flux was determined from the slope of the line at steady state.  

Fick’s First Law of diffusion was used according to the equation: 

 

            Equation 7.1 

 

where A is the area of the skin (0.95 cm2), M is the cumulative amount of NTX 

permeating through the skin (nmol) during time (t), Jss is the flux at steady state 

(nmol/cm2·hr), P is the effective permeability coefficient (cm/h), and ΔC represents the 

difference in NTX concentration between the donor and receiver compartments.  Sink 

conditions were maintained in the receiver solution throughout the experiment, allowing 

ΔC to be approximated by the initial drug concentration applied to the donor 

compartment. 
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7.2.5  In vivo assessment of skin irritation 

7.2.5.1  Microneedle treatment and gel application:  Male and female hairless 

guinea pigs weighing approximately 800 - 1000 g each were treated on the dorsal 

surface with 50 MN arrays of the following MN dimensions: 750 μm long, 200 μm wide, 

and 75 μm thick.  The arrays were sterilized before treatment by autoclaving under high 

pressure saturated steam at 121° C for 15 minutes.  Immediately prior to treatment, the 

arrays were assembled into adhesive patches with sterile Arclad adhesive backing 

(Adhesives Research, Inc., Glen Rock, PA), allowing for very close contact between the 

MNs and the flexible skin during treatment.  The treatment sites were cleaned with 

isopropyl alcohol wipes and allowed to dry before applying the MN arrays.  Each 

treatment site received two applications of a MN array, with the 2nd application rotated 45 

degrees so as not to overlap the first, to create 100 non-overlapping micropores.  MN 

application is achieved by gently pressing the array onto the skin for approximately 15 – 

20 seconds followed by immediate removal of the array.  All MN applications were 

performed by the same investigator in order to avoid inter-investigator variability.  

Diclofenac sodium (delivered via application of 100 or 200 µl of Solaraze® gel) and 11% 

NTX gel (500 µl) were applied to the skin immediately post-MN and then at various 

intervals for the remaining days in the study (treatment paradigms described in Table 

7.1).  

7.2.5.2  Assessment of local erythema:  Tristimulus colorimetry was used to 

evaluate the skin irritation potential of the gel combination when applied in vivo to MN-

treated hairless guinea pigs.  Erythema was quantified with a Konica Minolta meter 

(ChromaMeter CR-400, Konica Minolta, Japan) according to previously published 

guidelines [115].  Tristimulus colorimetry measures a three-dimensional scale of color 

(L*a*b*).  The L* value (luminance) represents the black/white axis and the relative 

brightness, which is expressed as a range of total black (L* = 0) to pure white (L* = 100).  

The red/green axis is represented by the a* value, as increasing redness (i.e. erythema) 

results in higher a* values (+100 represents full red); b* describes the yellow/blue axis.  

The colorimeter was calibrated daily against a white plate provided by Konica Minolta. 

Measurements were made by placing the head of the instrument gently on the skin area 

to record the color reflectance. Readings were taken in triplicate at every site at each 

time point and the mean a* value was calculated. The change in erythema was reported 

as a change from the baseline, Δa*, calculated as Δa* = a*t (at time t days after starting 

the study) – a*0 (at time 0, prior to application of treatment).  
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7.2.6  Data analysis   

Statistical analysis was performed using Student’s t-tests and one-way ANOVA 

with Tukey's post-hoc  analysis (GraphPad Prism®, version 5.04); p<0.05 was 

considered statistically significant. 

 

7.3  Results  

7.3.1  Diclofenac skin concentration, in the absence of naltrexone 

Diclofenac in the skin was quantified following the same treatment schedule as 

the proof-of-concept human micropore lifetime study (Research Plan 3.2).  Two hundred 

µl of Solaraze® (equivalent to 6 mg of diclofenac sodium) was applied to MN-treated 

skin daily for 5 days, resulting in local skin concentrations ranging from 0.38 to 0.84 

μmol/g of skin, from 48 to 96 hours.  A second study was also conducted to examine 

diclofenac skin concentrations following one-time application of 200 µl of Solaraze® 

immediately post-MN treatment.  Resulting skin concentrations spanned a range of 0.32 

to 0.96 μmol/g of skin, and the concentration steadily increased daily.  There was no 

significant difference between skin concentrations following daily application vs. one 

application of diclofenac immediately post-MN (p > 0.05, one-way ANOVA).  All skin 

concentrations can be seen in Table 7.1.  

 

7.3.2  Diclofenac skin concentration, in the presence of naltrexone 

To determine the local concentration of diclofenac in the skin in the presence of 

an 11% NTX gel (to mimic the conditions that will be used in an upcoming 

pharmacokinetic study), 100 µl of Solaraze® gel and 500 µl of NTX gel were applied to 

MN-treated skin at baseline and then re-applied every 48 hours or just once at 96 hours 

post-MN.  When applied every 48 hours (a total of 3 re-applications over 7 days), the 

skin concentration of diclofenac ranged from 0.96 to 3.14 μmol/g of skin, which was not 

significantly different from the concentrations of 0.59 to 2.3 μmol/g of skin observed 

when the treatment schedule was prolonged to one re-application at 96 hours post-MN 

treatment (p > 0.05, one- way ANOVA). 

 

7.3.3  In vitro flux of naltrexone through microporated skin 

The flux of NTX in the presence of diclofenac sodium or placebo was evaluated 

to calculate an appropriate number of patches for a human pharmacokinetic study.  

Table 7.1 and Figure 7.1 display the mean (± SD) flux values under the various 
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conditions. The flux of NTX alone through microporated skin was 195.66 ± 47.35 

nmol/cm2·hr, which was not significantly different from the flux of 170.84 ± 32.12 

nmol/cm2·hr, obtained when NTX was applied in the presence of a 2.5% hyaluronate 

sodium placebo gel (p = 0.49, Student’s t-test).  In contrast, when co-applied with 

diclofenac sodium, the resulting NTX flux of 42.58 ± 7.88 nmol/cm2·hr was significantly 

lower compared to NTX alone (p = 0.005) or in the presence of a placebo gel (p = 

0.003).   

 

7.3.4  Tolerability of microneedle treatments and gels 

 Three hairless guinea pigs were treated with 100 μl of diclofenac sodium and 500 

μl of 11% NTX gel for a total of 6 treatment courses (2 independent courses per guinea 

pig). Four sites were evaluated: 2 MN-treated sites, one intact skin site treated with gels 

alone, and one non-treated control site that was occluded with a blank patch.  The 

treatments were well tolerated.  An initial increase in erythema was noted across all 

animals from baseline to the 48 hour post-MN measurement, as evidenced by a mean (± 

SD) Δa* of 2.85 ± 2.97 (range -2.24 to 6.89) at one MN-treated site, and 2.22 ± 2.83 

(range -0.01 to 5.04) at the second MN-treated site.  Despite the initial increase, the Δa* 

quickly subsided and decreased to a mean of 0.63 ± 1.14 (96 hours) and -0.8 ± 0.97 

(144 hours) at Site 1 (MN treated) and 0.34 ± 0.62 (96 hours) and 0.41 ± 0.68 (144 

hours) at Site 2 (MN treated).  There was no significant difference between any of the 

applied treatments (p = 0.11, one-way ANOVA).  All Δa* values can be seen in Table 

7.3, and the trend of Δa* can be seen in Figure 7.2. 

 

7.4  Discussion 

Previous animal and human studies have demonstrated that micropore lifetime 

(following one-time application of a MN array) can be extended via topical application of 

diclofenac sodium [11].  This novel drug delivery principle is only relevant in a clinical 

scenario, however, if 2 conditions can be simultaneously achieved: 1) a drug compound 

can be delivered to therapeutic plasma concentrations for the duration of the micropore 

lifetime (in this case, NTX serving as the model compound for systemic delivery); and 2) 

the skin is not irritated by the diclofenac, NTX gel, or the combination of both 

compounds.  An upcoming pharmacokinetic study is planned to assess these 

parameters in human volunteers (Research Plan 3.6) via application of a NTX gel to skin 

treated with MNs and diclofenac.  The objective of the current studies was to determine 



99 
 

the flux of NTX through microporated Yucatan pig skin in vitro, local concentrations of 

diclofenac in the skin, and irritation potential of the combination of diclofenac and NTX 

gels.  The information gained from this work will allow for calculation of an appropriate 

patch number, gel volume, and treatment schedule for the human pharmacokinetic 

study.  

 

7.4.1  Local diclofenac concentrations under various treatment paradigms 

The proof-of-concept human studies described earlier (Research Plan 3.2) 

established that daily application of Solaraze® gel significantly extends micropore 

lifetime compared to placebo conditions.  An additional treatment schedule in that study 

also demonstrated that daily application may not be necessary to exhibit effects on 

micropore lifetime, as similar results were observed in subjects only treated with 

diclofenac once at baseline and again at 96 hours post-MN.  Thus, the current studies 

determined local concentrations of diclofenac in MN-treated skin under various 

schedules of diclofenac application (daily, every 48 hours, or just one re-application at 

96 hours post-MN).  The concentration of diclofenac in the skin was determined under 

similar conditions to the proof-of-concept study, in which 200 µl of Solaraze® gel was 

applied to MN-treated skin.  The concentration was notably consistent at 48 and 72 

hours post-MN, and increased slightly at the 96 hour time point, likely as a result of 

increased drug on the skin surface and/or accumulation of the diclofenac within the 

viable epidermis.  The Solaraze® formulation used to deliver the diclofenac to the 

micropores is unique in that the vehicle contains 2.5% hyaluronate sodium, a large 

polyanionic polysaccharide that is naturally present in almost all human organs, but is 

particularly abundant in human skin.  It is present in the SC, epidermis (~0.5 mg/g wet 

tissue) and dermis (~0.1 mg/g wet tissue). [120].  This polysaccharide has been used 

extensively in cosmetic formulations, and is particularly notable for its ability to promote 

formation of a local depot of drug in the skin, allowing for a localized effect of the active 

drug moiety.  This property is particularly appealing for the purposes of extending 

micropore lifetime, as the anti-inflammatory effects of diclofenac are only necessary in 

the local micropore environment.  Interestingly, there was no significant difference in the 

local diclofenac concentrations when daily application of Solaraze® was compared to 

one application of 200 µl immediately post-MN treatment, confirming that local drug 

concentrations are sufficiently maintained without the need for daily re-application.  This 
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is especially encouraging as fewer treatment applications would improve patient 

satisfaction and compliance with therapy. 

For the purposes of extending micropore lifetime, the diclofenac in these studies 

is intended for a local effect at the micropores, and thus the minimum amount of gel that 

can be applied to the skin but still achieve similar skin concentrations is desired.  The 

patch size that can be applied in vivo for irritation studies is somewhat restricted based 

on the small size of the hairless guinea pigs, and a smaller patch area is also desirable 

for human studies in order to increase patient satisfaction with therapy.  As the only 

treatment applied, 200 µl of diclofenac gel can be easily contained underneath a small 

occlusive patch.  However, in combination with the additional NTX gel for a 

pharmacokinetic study, the volume of diclofenac gel needs to be reduced to allow for a 

sufficient amount of NTX to also be contained under the patches.  From a practical 

standpoint, 100 µl of gel is sufficient to completely cover the micropore treatment area 

and be rubbed into the skin, while allowing enough space under the patch to allow for up 

to 500 μl of the NTX gel.  The local skin concentrations of diclofenac in microporated 

skin were determined following application of 100 µl of Solaraze® at baseline, with re-

application every 48 hours or just once at 96 hours.  This was in combination with 500 µl 

of an 11% NTX gel, to determine that the presence of another drug moiety would not 

affect local diclofenac concentrations.  There was no significant difference in diclofenac 

concentrations between the treatment schedules, or compared to the application of 200 

µl daily.  This confirms that application of 100 µl of Solaraze® in the presence of NTX 

provides local concentrations of diclofenac sufficient to maintain micropore lifetime, 

under a variety of application schedules. 

 

7.4.2  In vitro naltrexone flux in the presence of diclofenac 

 In order to calculate the appropriate number of NTX patches for safe and 

effective delivery in human subjects, it was necessary to determine the flux of NTX in the 

presence or absence of diclofenac.  In the current study, the local concentrations of 

diclofenac were adequately maintained in the presence of the NTX gel, though the 

interaction of the 2 active moieties created a hindrance to the flux of NTX through the 

micropores, demonstrated by the significant decrease in flux from 195.66 ± 47.35 

nmol/cm2•hr (NTX alone) to 42.58 ± 7.88 nmol/cm2•hr (NTX + diclofenac).  This 

decrease in the flux was not observed in the placebo conditions, in which a 2.5% 

hyaluronate sodium placebo was applied to the MN-treated skin in lieu of the diclofenac 
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formulation.  The resulting NTX flux under placebo conditions was 170.84 ± 32.12 

nmol/cm2•hr, which was not significantly different from the NTX gel alone.  All flux values 

can be seen in Table 7.2 and Figure 7.1. 

The basis for the decrease in flux observed between when Solaraze® and NTX 

gels are applied together is likely due to the differing physicochemical characteristics of 

the active moieties, diclofenac sodium and NTX•HCl.  When co-applied to a small 

treatment area, a mild precipitate forms at the interface of the gels, and there are a few 

possible explanations for how this might decrease the flux of NTX.  First, the precipitate 

may initially be physically blocking the micropores, which would impede this drug 

pathway to the underlying circulation.  Second, the NTX that precipitates out of the gel 

formulation would decrease the diffusional gradient, thus reducing the driving force for 

the passive diffusion of the NTX.  Despite these limitations, the flux of NTX in the 

presence of diclofenac is still adequate to allow for therapeutic systemic delivery in 

humans; in fact, the flux is similar to that observed in the in vitro studies used for patch 

calculations in the first human pharmacokinetic study with NTX (39.0 ± 13.1 

nmol/cm2•hr) [9].  The formation of a precipitate between the 2 independent gel 

formulations also provides justification for the development of a codrug of diclofenac and 

NTX, in which the 2 molecules are joined by a chemical linker.  Upon entry into the skin 

the linker is enzymatically cleaved by skin enzymes, releasing the active moieties and 

allowing for delivery of NTX while providing a local diclofenac concentration from the 

same formulation [133].  Thus, the application of 2 separate gels creates some logistical 

challenges, but in spite of these limitations the treatments are still appropriate for a 

proof-of-concept human study. 

 

7.4.3  Local erythema and tolerability of the treatments 

 One of the most important components of a successful transdermal delivery 

system is negligible skin irritation from the patch and/or drugs applied to the skin.  In the 

current study we investigated the tolerability of diclofenac and NTX when co-applied to 

MN-treated skin.  Hairless guinea pigs are often used for studying irritation and 

sensitization potential for topical and transdermal therapies, as their skin is more 

sensitive to topical xenobiotics, as compared to humans [130].  This allows for a more 

conservative estimation of irritation that might be expected in humans under the same 

treatment conditions.  In the previous diclofenac proof-of-concept human study 

(Research Plan 3.2), there was no significant difference in irritation between diclofenac 
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and placebo treatments in human subjects.  In the current study, the same result was 

observed when diclofenac was co-applied with the NTX gel, as there was no significant 

difference in ∆a* values between any treatments.  This is very encouraging, as humans 

are unlikely to experience irritation to the gels if they are well tolerated by the guinea 

pigs.  A mild increase in erythema was observed initially (at 48 hours post-MN), though 

this was still lower than typical reactions observed in guinea pigs topically treated with a 

known skin irritant [134].  The erythema also subsided for the remainder of the study.  

Some mild irritation has been noted in previous studies of NTX applied to MN-treated 

skin, so the initial increase in erythema is not necessarily surprising [9].  However, a mild 

increase in the Δa* value does not necessarily correlate with erythema that would be 

clinically significant for human subjects.  To demonstrate this point, no subjects withdrew 

from the NTX pharmacokinetic study based on local skin irritation, and the irritation 

quickly subsided upon completion of the study. 

 Based on the diclofenac skin concentrations described above, re-application of 

the gels every 48 hours is not necessary from a drug delivery standpoint.  From a clinical 

safety perspective, however, this dosing schedule would be appropriate for a first-in-

human study, as it allows for visual inspection of the skin every 2 days.  This adds an 

additional conservative safety component to the study, as the gels could be quickly 

removed if any significant irritation was observed. 

 

7.5  Conclusions 

The studies described in this chapter have demonstrated that co-application of 

diclofenac sodium and NTX to MN-treated skin achieves local diclofenac concentrations 

suitable for prolonging micropore lifetime and sufficient NTX flux for achieving 

therapeutic plasma concentrations in healthy human subjects.  A variety of treatment 

schedules would be appropriate for a pharmacokinetic study, allowing for a great deal of 

flexibility in designing study parameters.  These data also allow for calculation of an 

appropriate patch number and treatment schedules suitable for human subjects, without 

concern for clinically significant skin damage or irritation.  
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Table 7.1 

Donor Frequency of 

donor re-

application  

Concentration of 

diclofenac in MN-

treated skin (µmol/g) 

Average skin 

thickness 

(mm) 

3% diclofenac 

sodium, 200 µl 

Once at 

baseline 

24 hours  0.32 ± 0.06 2.17 ± 0.06 

48 hours  0.45 ± 0.23 2.3 ± 0.1 

72 hours  0.62 ± 0.37 2.27 ± 0.06 

96 hours  0.96 ± 0.57 2.33 ± 0.06 

3% diclofenac 

sodium, 200 µl 

Every 24 hours 48 hours  0.38 ± 0.08 1.67 ± 0.2 

72 hours  0.38 ± 0.11 1.80 ± 0.09 

96 hours  0.84 ± 0.51 1.6 ± 0.0 

3% diclofenac 

sodium, 100 µl 

11% NTX•HCl, 

500 µl   

Every 48 hours 48 hours  0.96 ± 0.11 1.53 ± 0.06 

96 hours  2.90 ± 0.73 1.50 ± 0.10 

7 days** 3.14 ± 1.10 1.55 ± 0.07 

3% diclofenac 

sodium, 100 µl 

11% NTX•HCl, 

500 µl  

Once at 96 

hours post-MN 

96 hours 0.59 ± 0.34 1.96 ± 0.04 

7 days 2.3 ± 0.33 1.8 ± 0.04 

 

Table 7.1  Quantification of diclofenac sodium in MN-treated Yucatan miniature pig 

skin under various schedules of application, in the presence or absence of 11% 

NTX gel (10% propylene glycol formulation, described by Milewski and Stinchcomb 

[135]).  All conditions represent n = 3 cells.  Diclofenac sodium was delivered from 

Solaraze® gel (3% diclofenac sodium in a 2.5% hyaluronate sodium vehicle).   

* n = 2 cells 
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Table 7.2 

Type of skin  Donor  Frequency 

of donor re-

application  

NTX flux 

(nmol/cm2·hr) 

Human [9]  16% NTX NA 39.0 ± 13.1  

Yucatan pig 11% NTX  

Every 48 

hours post-

MN 

195.66 ± 47.35 (n = 3) 

11% NTX 

3% diclofenac sodium 

42.58 ± 7.88 (n = 3) 

11% NTX 

2.5% HA placebo  

170.84 ± 32.12 (n = 3) 

 

Table 7.2  Comparison of in vitro flux from 2 formulations of NTX through 100 

micropores in the presence of diclofenac sodium.  The placebo gel was a 2.5% 

hyaluronate sodium gel, similar to the commercial Solaraze® formulation.  The 16% NTX 

gel formulation contained 30.75% propylene glycol (as described by Wermeling, Banks 

and Stinchcomb [9] ), while the 11% NTX gel was formulated in 10% propylene glycol 

[135]. 
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Table  7.3 

Treatment Δa* 

48 hours 96 hours 144 hours 

MN + diclofenac + NTX, Site 1 2.85 ± 2.97 

(2.23 – 6.89) 

0.63 ± 1.14‡ 

(-1.03 – 1.70) 

-0.80 ± 0.97‡ 

(-1.78 – 0.38) 

MN + diclofenac + NTX, Site 2 2.22 ± 2.83 

(-2.18 – 5.04) 

0.34 ± 0.62‡ 

(-0.53 – 1.15) 

0.41 ± 0.68† 

(-0.59 – 0.90) 

Intact skin + diclofenac + NTX -1.63 ± 1.06 

(-2.48 – 0.39) 

-1.13 ± 0.99 

(-2.14 – 0.46) 

-1.27 ± 1.40 

(-2.59 – 0.96) 

Occluded, non-treated skin 1.13 ± 2.05 

(-0.07 – 5.28) 

0.13 ± 1.36 

(-2.05 – 1.85) 

-0.04 ± 1.19 

(-1.61 – 1.49) 

 

Table 7.3  Assessment of skin irritation.  Erythema was quantified via colorimetry 

measurements at 48 hour intervals.  Δa* values were calculated over a 6 day period to 

determine tolerability of the combination of diclofenac sodium and NTX following MN 

treatment.  MNs were applied once at baseline and gels were replenished every 48 

hours.  Data is displayed as the mean ± SD (range) at each time point (n = 6).  An initial 

increase in erythema was seen at 48 hours at the MN treated sites, but subsided by the 

later time points.  There was no significant skin erythema between any treatment sites, 

irrespective of treatment applied (p = 0.11,one-way ANOVA). 
†n = 4, ‡n = 5 

 

 

 

 

 



106 
 

 

 

Figure 7.1  In vitro flux of NTX through microporated skin in the presence of 

diclofenac sodium or 2.5% HA placebo gel.  Yucatan pig skin was treated with a MN 

array to create 100 micropores; 100 μl of Solaraze® gel or placebo gel was applied with 

500 μl of an 11% NTX gel; gels were replenished every 48 hours.  The flux of NTX was 

significantly lower when applied with diclofenac sodium (p = 0.005, Student’s t-test).   
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Figure 7.2  Trends of erythema in hairless guinea pigs following application of 

NTX and diclofenac gels to MN-treated skin every 48 hours.  An initial rise in the ∆a* 

value was seen at 48 hours (confirming increased erythema over baseline), but quickly 

subsided for the remaining treatment period.  There was no significant difference in 

erythema between any treatment sites (p = 0.11, one-way ANOVA). 
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Chapter 8 

Pharmacokinetic evaluation of microneedle/diclofenac sodium enhanced 7-day 

transdermal delivery of naltrexone HCl in healthy human volunteers 

 

8.1  Introduction 

Transdermal drug delivery avoids several major downfalls of other common drug 

delivery paradigms (i.e. oral, injectable).  Through application of patches that adhere to 

the skin and passively deliver drugs into the underlying circulation, transdermal delivery 

systems are able to avoid first-pass metabolism through the liver, enzymatic degradation 

in the gastrointestinal tract, and the pain of an injection.  One substantial challenge with 

transdermal systems, however, is the strict physicochemical properties required for a 

drug to effectively permeate through the skin (primarily the stratum corneum (SC), the 

outermost skin layer).  As such, a very limited number of drug moieties can be 

successfully delivered via this route (as of 2008, the U.S. market has less than 20 drugs 

approved for passive transdermal delivery systems) [2]. 

In order to expand the transdermal drug delivery field to a larger number of active 

drug molecules, a number of physical enhancement techniques have been explored to 

temporarily breach the SC, including iontophoresis, electroporation, sonophoresis, and 

microneedles.  Of these methods, microneedles (MNs) are arguably the most “clinically-

friendly” technique, as there is no requirement for software, equipment, or extensive 

training in order to apply the MNs.  While there are various application methods, the 

simplest MN technique is known as the “poke (press) and patch” method, in which a MN 

array is pressed gently into the skin and immediately removed, leaving behind a grid of 

micropores in the SC.  A drug solution, patch, or gel can be applied over the treatment 

area, allowing for passive delivery of the drug through the micropores and into the 

underlying circulation. 

Two critical factors directly relate to the effectiveness of this method of MN-

enhanced permeation: 1) sufficient breaching of the SC via creation of micropores; and 

2) the lifetime of the micropores.  The topic of micropore lifetime has recently become of 

great interest, as it is now known that the micropores will heal quickly (ranging from 15 

minutes to 2 hours) when exposed to air, and this window can be extended to 

approximately 48 – 72 hours under occluded conditions [9-12, 14].  The first 

pharmacokinetic study using this MN technique (Wermeling, Banks et al) confirmed that 

one-time application of MNs allows for transdermal delivery of naltrexone HCl (NTX•HCl) 
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for 48 – 72 hours in healthy human subjects, as determined by plasma concentrations of 

both NTX and its active metabolite, 6-β-NTXol [9].  Previous work from this same 

research group has demonstrated that topical application of diclofenac sodium, a non-

specific cyclooxygenase (COX) inhibitor, can prolong the lifetime of the micropores in 

hairless guinea pigs, allowing for transdermal delivery of NTX•HCl for up to 7 days [11], 

and proof-of-concept human studies have demonstrated a similar trend, using 

impedance spectroscopy as a surrogate marker (described previously in Research Plan 

3.1).  The underlying hypothesis of these studies was that subclinical local inflammation 

at the micropores contributes to the re-sealing process; as such, inhibition of this 

inflammation via a topical COX inhibitor (i.e. diclofenac) blunts the re-sealing process.  

Prolonging micropore lifetime alone is not beneficial, however, unless an active drug 

moiety can be delivered through the micropores for a clinically relevant timeframe in 

humans (7 days of delivery would be ideal for a transdermal system).  The objective of 

the present studies was to collect pilot pharmacokinetic human data in healthy subjects 

to demonstrate delivery of NTX•HCl over a 7 day time period following one-time MN 

treatment and application of a transdermal NTX•HCl gel, with co-application of 

diclofenac or a placebo gel. These studies satisfy Research Plan 3.6. 

 

8.2  Methods and materials 

8.2.1 Preparation of drug formulations  

The following gels and components were purchased through the University of 

Kentucky: Solaraze® gel (PharmaDerm, Melville, NY), naltrexone HCl 

(Covidian/Mallinckrodt, Hazelwood, MO), benzyl alcohol (Fisher Scientific, Hanover 

Park, IL), polyethylene glycol monomethyl ether (Dow Chemicals, Louisville, KY), 

propylene glycol (VWR, Atlanta, GA), and sterile water for injection.  Hyaluronate sodium 

powder (Rita Corporation, Crystal Lake, IL) and hydroxyethylcellulose (Ashland 

Specialty Ingredients, Wilmington, DE) were gifts from the companies. 

An 11% NTX gel was compounded as follows: 110 mg/ml NTX•HCl, propylene 

glycol (10% v/v), benzyl alcohol (1% v/v), sterile water (89% v/v), and 

hydroxyethylcellulose (2% w/v).  A 2.5% hyaluronate sodium placebo gel (containing no 

diclofenac sodium) was compounded with polyethylene glycol monomethyl ether (20% 

v/v), benzyl alcohol (1% v/v), water (79% v/v), and hyaluronate sodium (2.5% w/v).  To 

compound the NTX•HCl gel, NTX•HCl was weighed out and allowed to dissolve in the 

mixture of propylene glycol, benzyl alcohol, and water.  The solution was vortexed and 
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allowed to mix on a stir plate for approximately 5 minutes before addition of the gelling 

agent (HEC).  The same procedure was followed for the components of the placebo gel 

(no diclofenac or NTX•HCl present), with addition of the hyaluronate sodium serving as 

the final gelling step.  The gels were allowed to sit at room temperature overnight before 

being used; no particulates were observed.  All gels were compounded in the University 

of Kentucky Investigational Drug Services Pharmacy.  The commercially available 

Solaraze® gel (3% diclofenac sodium, 2.5% hyaluronate sodium) was used to deliver 

the diclofenac sodium topically. 

 

8.2.2  Preparation of microneedle arrays and occlusive patches 

The design and geometry of the MN arrays was provided by the Prausnitz lab at 

the Georgia Institute of Technology.  Microneedle arrays were cut into stainless steel 

sheets (50 µm thick) in a 5 x 10 array, to provide 50 MNs per array; the MNs were 

manually bent perpendicular to the plane of the metal substrate.  In order to enhance 

contact between the MNs and the skin during treatment (to overcome the mismatch 

between the rigid metal of the array and the flexibility of the skin tissue), the arrays were 

further assembled into adhesive patches with Arclad (Adhesives Research, Inc., Glen 

Rock, PA).  Each MN was 800 µm in length and 200 µm in width at the base; all arrays 

were ethylene oxide sterilized at University of Kentucky Medical Center prior to use. 

Blank occlusive patches were made to allow for full occlusion of the treatment 

sites and containment of the drug gels over the microporated skin for the duration of the 

study.  A rubber ring was fabricated with a drug-impermeable membrane on one side 

(Scotchpak 1109 SPAK 1.34 MIL heat-sealable polyester film; 3M, St. Paul, MN) that 

was secured to the ring with 3M double-sided medical tape.  The other side of the ring 

also had a layer of double-sided tape to hold the patches to the skin and prevent leaking 

of the gels.  The patches were further secured to the skin with waterproof Bioclusive 

dressing (Systagenix Wound Management, Quincy, MA).  

 

8.2.3  Microneedle application technique 

 The same investigator applied all MN treatments in order to eliminate inter-

investigator variability between subjects or treatments.  The process of MN insertion is 

very simple: the array is pressed gently into the skin for approximately 15 – 20 seconds 

and immediately removed, leaving behind a grid of 50 micropores in the SC.  A 2nd 
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insertion was applied, rotating the array 45° from the first insertion, so as to create a total 

of 100 non-overlapping micropores. 

 

8.2.4  Clinical study procedures 

This was an open-label pharmacokinetic study carried out in healthy human 

volunteers.  All study procedures were approved by the University of Kentucky 

Institutional Review Board and complied with the principles set forth by the Declaration 

of Helsinki.  Healthy volunteers with no history of dermatologic disease were recruited.  

Suitability for the study was determined through baseline blood samples (including 

chemistries and cell counts), urine samples (urinalysis, pregnancy sample if applicable, 

and drug of abuse screen), and a complete drug/medical history and physical exam.  

Any subjects with a history of opioid or alcohol abuse or hepatitis were excluded. 

 Subjects were randomly assigned into 3 groups: MN + diclofenac + NTX (Group 

1, n = 6 subjects), MN + placebo + NTX (Group 2, n = 2 subjects), and diclofenac + NTX 

applied to intact skin (Group 3, n = 2 subjects).  On Day 1 of the study, 8 treatment sites 

were marked for MN treatment on the upper arm for subjects in Groups 1 and 3, and 2 

treatment sites were marked for subjects in Group 2.  All treatment sites (regardless of 

treatment group) were wiped with 70% isopropyl alcohol pads and allowed to dry.  The 

subjects assigned to MN-treated groups were treated with MN arrays at each site before 

gel patch application.  As described above, an array of 50 MNs was applied twice to 

each site, rotating the array by 45 degrees for the second insertion to create a grid of 

100 non-overlapping micropores per NTX patch.  For Group 1 there were 2x8 MN array 

insertions per subject, creating 800 total micropores for 8 patch sites; for the subjects in 

Group 2 there were 2 patch sites, and therefore 2X2 MN array insertions per subject, 

creating 200 total micropores. Table 8.1 displays all of the patches and treatments 

applied to the subjects in each group. 

Following MN treatment, each site was treated with diclofenac gel (100 μl, 

rubbed gently into the skin), followed by application of the NTX gel (500 μl) and 

occlusion with an occlusive patch.  The same procedure was followed with Group 2, with 

placebo gel replacing the diclofenac gel.  Group 3 received application of the same gels 

as Group 1, in the absence of MN treatments.  In all groups, 2 non-MN treated control 

sites on the opposite arm received identical gel applications as the MN sites.  Every 48 

hours following the initial treatment the patches were removed to allow for visual 

inspection of the skin for any irritation or erythema; the gels were then replenished and 
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occluded with clean patches.  All gels and patches were completely removed on Day 8 

(corresponding to 7 days post-MN), the final day of the study.  

 

8.2.5  Calculation of naltrexone patch number per treatment group 

In the first pharmacokinetic study demonstrating delivery of NTX•HCl through 

MN-treated skin in human subjects, 4 patches were applied to the upper arm of each 

subject [9].  The calculation of the number of patches for that study was based on the 

equation: A = Cl * Css * Jss where Cl is the systemic clearance of NTX (3.5 L/min), Css is 

the target minimum therapeutic steady state concentration (2 ng/ml) and Jss is the steady 

state flux of NTX (39.0 ± 13.1 nmol/cm2•hr for the previous study).  In a sample size of 6 

subjects treated with MNs, this yielded a mean (± SD) NTX plasma concentration of 2.5 

± 1.0 ng/ml over a 72 hour period.  For the current study, the in vitro flux for the 

Solaraze® + NTX condition was 42.58 ± 7.88 nmol/cm2•hr, and 170.84 ± 32.12 

nmol/cm2•hr for placebo gel + NTX.  In order to target a higher plasma NTX 

concentration (approximately 4 ng/ml), 8 treatments sites were necessary for the 

subjects in Group 1, whereas only 2 sites were necessary to achieve the same plasma 

concentrations in Group 2, due to the difference in flux between the conditions.   

 

8.2.6  Sampling schedule for pharmacokinetic analysis 

On day 1, subjects came to the outpatient research unit in the Center for Clinical 

and Translational Science.  An indwelling catheter was inserted into the antecubital vein 

and a single blood sample was drawn as a blank baseline.  Following MN treatment and 

NTX patch administration, serial blood samples were obtained at 15, 30, 45, and 60 

minutes and at 1.5, 2, 4, 6, and 8 hours. The catheter was removed from the arm and 

subjects went home for the evening.  They returned to the clinic every day for the 

remainder of the study, and individual venipunctures were performed for all additional 

time points.  For days 2 – 6, one sample was drawn every 24 hours.  On days 7 and 8, 

samples were drawn at 24 and 30 hours following the previous points.  All blood 

samples were approximately 4 ml volume, collected into 4 ml green top plastic collection 

tubes, spray-coated with 60 USP units of sodium heparin (BD Research, Franklin Lakes, 

NJ).   Immediately following collection, blood samples were immediately centrifuged at 

1308 x g for 10 minutes to separate the plasma from the red blood cells.  The plasma 

was pipetted off and stored at -80°C until analysis. 
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8.2.7  Plasma extraction procedure and analysis, naltrexone and 6-β-naltrexol 

 The plasma extraction procedure was similar to that described previously by 

Valiveti et al, with minor modifications [93].  Two hundred µl of plasma was added to 

1000 µl of 1:1 ethyl acetate:ACN, resulting in protein precipitation.  The mixture was 

vortexed for 15 seconds and immediately centrifuged for 20 minutes at 12,000 x g.  

Following centrifugation, the supernatant was pipetted into glass tubes (with care taken 

to not disturb the pellet) and evaporated under nitrogen.  The resulting residue was re-

suspended in 200 µl of acetonitrile, vortexed for 15 seconds, and sonicated for 10 

minutes.  Afterwards the sample was transferred to low volume inserts in glass HPLC 

vials, and injected onto the HPLC column.  Working NTX•HCl and NTXol standards were 

made in acetonitrile over a range of 10 to 750 ng/ml.  In order to make plasma 

standards, 200 µl of blank human plasma (Innovative Research, http://www.innov-

research.com/1-home) was spiked with 20 µl of the ACN working standard and extracted 

as described above for the experimental plasma samples.  The resulting concentrations 

of the plasma standards were 1 – 75 ng/ml, which displayed excellent linearity over the 

whole concentration range (R2 ≥ 0.97). 

All plasma samples were analyzed on a LC-MS/MS system consisting of a HPLC 

Waters Alliance 2695 Separations Module, Waters Micromass® Quattro MicroTM API 

Tandem Mass Spectrometer and Masslynx Chromatography software with Waters 

Quanlynx (V. 4.1) analysis software. Positive mode atmospheric pressure chemical 

ionization was used for detection of both compounds (APCI+). Multiple reaction 

monitoring (MRM) was carried out with the following parent to daughter ion transitions 

for NTX•HCl and NTXol•HCl: m/z 341.8→323.8, m/z 343.8→325.8, respectively. The 

corona voltage was 3.5 μA, cone voltage 25 V, extractor 2 V, RF lens 0.3 V, source temp 

130 °C, APCI probe temperature 575 °C. The collision gas was 20 eV. Nitrogen gas was 

used as a nebulization and drying gas at flow rates of 50 and 350 l/h, respectively. The 

chromatographic column was a Waters Atlantis Hilic Silica 5 μm, 2.1x150, with a mobile 

phase of methanol with 0.1% acetic acid:buffer 95:05 (v/v). Twenty mM ammonium 

acetate and 5% methanol comprised the aqueous buffer. The injection volume was 40 μl 

for all samples. Liquid chromatography was carried out in the isocratic mode at the flow 

rate of 0.5 ml/min with a total run time of 4.5 min.  
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8.2.8  Impedance spectroscopy and micropore closure kinetics 

Adequate formation of micropores in the skin and confirmation of longer 

micropore lifetime in the diclofenac vs. placebo group was assessed via impedance 

spectroscopy, which has been shown to be a reliable method of measuring micropore 

closure kinetics [14].  Impedance measurements were made at 3 time points during the 

study: baseline (pre-MN), immediately post-MN, and on the final day of the study after all 

gels and patches were removed.  Impedance measurements were made according to 

previously described procedures (Research Plan 3.1).  Gel Ag/AgCl measurement 

electrodes (Though Technology T-3403; 25 mm x 25 mm total area) were used to 

measure the impedance at all sites, held to the skin with direct pressure applied by the 

thumb of the investigator (similar to the pressure required for a typical doorbell); a large 

electrode with a conductive gel surface served as the reference (Superior Silver 

Electrode with PermaGel, 70 mm total and active electrode diameter; Tyco Healthcare 

Unit-Patch, Wabasha, MN).  All treatment sites were placed equidistant from the 

reference electrode.  Measurements were made by connecting lead wires to 

measurement and reference electrodes; the opposite ends were connected to the 

impedance meter (EIM-105 Prep-Check Electrode Impedance Meter; General Devices, 

Ridgefield, NJ).  A low frequency alternating current was modified with a 200 kΩ resistor 

in parallel (IET labs, Inc., Westbury, NY).  Each measurement took 30 seconds to obtain.   

With this impedance setup, three parallel pathways can be distinguished in the 

presence of MN-treated skin, according to the following equation: 

 

          Equation 8.1 

 

where Ztotal is the raw measurement directly from the impedance meter; Zbox represents 

the 200 kΩ resistor in parallel, and Zskin is estimated from the intact skin sites.  This 

setup thus allows for calculation of the impedance specifically at the micropores, 

assuming that they occupy approximately 2% of the total area under the electrode 

surface.  This also allows for estimation of an “upper limit” at the 2% surface area, 

providing a reference point for evaluating closure of the micropores (as the micropores 

begin to close, they will gradually start to approach their own upper limit at that site).  On 

Day 1, each site’s own intact skin baseline is used to calculate the upper limit and the 

difference in pre- vs. post-MN Zpores values; at Day 8 the same process was followed 

except that the Zskin was estimated from the 2 control sites on the arm opposite from the 
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MN treatments.  This method of calculation allows controls for the mismatch that occurs 

from the differing skin hydration status from baseline to the end of the study (baseline 

measurements are made on dry skin, while end of study measurements are made on 

skin that has been hydrated over an 8 day period under an occlusive patch). 

 An additional means of monitoring micropore formation in the SC is the 

calculation of the permeable area (Apermeable) according to the following equation, 

described by Gupta et al [14]: 

 

          Equation 8.2 

 

where  represents the interstitial fluid electrical resistivity in the skin (~78 Ω-cm), L is 

the estimated length of the diffusional pathways in the SC (~15 μm, representing the 

average SC thickness over most of the body), and Z is the absolute impedance.  

Calculating the Apermeable further allows for determination of the radius of each individual 

micropore, assuming that the micropores have a cylindrical shape and that each 

micropore occupies 1/100 of the total permeable area (measurements are made on skin 

that has received 2 applications of a 50 MN array). 

 

8.2.9  Data analysis 

 The analysis of plasma NTX and NTXol concentration vs. time profiles after MN 

treatment and NTX patch application was performed by fitting the data to a 

noncompartmental model with extravascular input (Phoenix™ WinNonlin®, version 6.3, 

Pharsight Corporation, Mountain View, CA).  The data generated was used to determine 

peak concentration (Cmax), steady state concentration (Css), lag time to steady state 

concentration (Tlag), and area under the plasma concentration time curve from 0 to 174 

hours (AUC0 – 174 h).  Steady state plasma concentration of NTX was calculated according 

to the equation:  

 

          Equation 8.3 

 

Clast was defined as the plasma concentration at the last time point (t = 174 hours 

following MN treatment).  Statistical analysis was performed with Student’s t tests 

(GraphPad Prism®, version 5.04). 
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8.3  Results 

Nine independent studies were carried out in 10 subjects: 5 males and 4 

females, mean (± SD) age of 26.4 ± 3.4 years.  Subject demographics and baseline are 

displayed in Table 8.2.  Six subjects enrolled in Group 1 (MN + diclofenac + NTX), while 

4 subjects were enrolled in each of the control groups (2 subjects per group).  One 

female subject enrolled as a crossover subject and completed the study twice: once in 

Group 1 and once in Group 3 (1 week washout period in between).   

 

8.3.1  Micropore impedance and permeable area  

In Groups 1 and 2, the Apermeable was significantly higher post-MN treatment 

compared to the intact skin baseline (p < 0.05, Student’s t test), demonstrating the 

presence of new pathways for drug diffusion.  The calculated micropore radii was within 

the range of what has been previously reported [14]: 1.8 ± 0.4 μm in Group 1 (n = 46 

measurements in 6 subjects), and 1.3 ± 0.04 μm in Group 2 (n = 4 measurements in 2 

subjects).  Pre- and post-study micropore radii measurements can be seen in Table 8.3. 

In all subjects treated with MNs (Groups 1 and 2), the Zpores decreased 

significantly from baseline to post-MN (p < 0.05, Student’s t test), confirming an 

adequate breach of the SC barrier (n = 50 measurements total in 8 subjects; 2 

measurements thrown out as outliers).  At the end of the study, the Zpores was 

significantly lower than the intact skin control sites (p < 0.05, Student’s t test) for all 

subjects in Group 1 (n = 44 measurements in 6 subjects, 4 measurements thrown out as 

outliers), suggesting that the lifetime of the micropores had been prolonged for the entire 

7 days post-MN.  In contrast, by the end of the study, MN-treated sites had reached their 

Zpores “upper limit” in both subjects in the placebo treatment group (n = 4 measurements 

in 2 subjects), demonstrating closure of the micropores and re-establishment of an intact 

skin barrier.  Representative impedance profiles can be seen in Figure 8.1.   

 

8.3.2  Pharmacokinetic parameters 

 All pharmacokinetic data is displayed below in Table 8.4.  No NTX (or NTXol)  

was detected at any timepoints in the subjects from Group 3 (no MN treatment).  In 

contrast, NTX was delivered through the micropores for the duration of the study for all 

subjects in Group 1 (n = 6), with a mean (± SD) AUC0 – 174 hr of 196.5 ± 37.7 ng•h/ml, 

compared to the AUC0 – 174 hr of 188.1 ng•h/ml in one subject in Group 2 (the other 

subject in Group 2 did not have detectable NTX levels throughout the study, discussed 
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below).  The lag time (Tlag) was short, at 0.4 ± 0.8 hours (Group 1) and 0 hours (Group 

2).  The Cmax and Css were quite similar between the groups: Cmax of 2.6 ± 0.7 ng/ml 

(Group 1) and 2.8 ng/ml (Group 2); Css values were 1.2 ± 0.3 ng/ml and 1.1 ng/ml, 

respectively.  A notable difference between the treatment groups, however, was the 

Tmax.  This parameter was somewhat variable but amongst the subjects in Group 1, with 

a mean of 112.0 ± 62.7 hours, compared to the Tmax of 8 hours observed in the subject 

from Group 2.  In all subjects in Group 1, however, NTX was detectable until the end of 

the study; in contrast, NTX was no longer detectable in the plasma after 72 hours in the 

subject from Group 2.  

 The plasma concentration of the active metabolite, 6-β-NTXol, was also 

quantified in all subjects.  NTXol was detectable at one timepoint (48 hours) during the 

study for the subject in Group 2.  However, it was detected from approximately 1 hour 

onward for the subjects in Group 1, with a mean AUC of 335.8 ± 103.6 ng•h/ml.  In 

contrast to the NTX, a longer delay to max NTXol concentration was observed, with a 

Tmax of 126 ± 41.3 hours.  The profiles for both NTX and NTXol for all subjects in Group 

1 can be seen in Figures 8.1 and 8.2. 

 

8.3.3 Tolerability of treatments 

 Overall, the MN insertion and gel application process were well tolerated.  For 

most subjects, mild erythema was noted to some degree under the waterproof tape that 

was used to secure the patches to the skin, but little (if any) redness was observed at 

the MN and gel treatment sites.  The mild irritation from the Bioclusive® waterproof tape 

resolved over the course of hours to a few days for all subjects.  One subject in Group 1 

developed a mild contact dermatitis at the MN treatment sites with notable erythema and 

pruritus over the MN insertion grid; this subject was withdrawn from the study a day early 

at the decision of the study physician.  The irritation and pruritus subsided after a short 

treatment course with 1% hydrocortisone cream. 

 The systemic adverse event profile was favorable across all subjects.  The most 

commonly observed side effects included nausea and general gastrointestinal upset, 

mild dysphoria or anxiety, and sleep disturbances (primarily vivid dreams); the incidence 

of adverse events can be seen in Table 8.5.  No subjects withdrew from the study 

because of any intolerable adverse events.  All of these systemic adverse events were 

consistent with those observed in the previous NTX pharmacokinetic study in human 
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volunteers [9], and are consistent expected adverse events following other routes of 

NTX delivery. 

  

8.4  Discussion 

Naltrexone is an FDA approved treatment for opioid and alcohol addiction, is 

available in an oral and an injectable depot form to help addicts maintain a drug-free 

state.  Unfortunately, currently available forms of NTX have substantial problems that 

lead to problematic side effects and ultimately decreased patient compliance (which 

could potentially lead to relapse).  Several problems exist with currently available 

formulations of NTX, including extensive first-pass metabolism and hepatotoxicity 

associated with the oral formulation (ReVia®), and the high cost and inconvenience of 

the monthly injectable formulation (Vivitrol®).  Transdermal delivery of NTX is desirable 

for opioid addicts and alcoholics in order to help reduce side effects and improve 

compliance, though the physiochemical properties of the molecule (specifically its 

hydrophilicity), do not allow it to pass through the skin barrier and achieve therapeutic 

concentrations.  Conversely, however, the aqueous solubility of NTX is desirable to allow 

the drug to partition into the interstitial fluid once it has passed through the skin. This 

creates a significant challenge for delivering NTX via traditional transdermal delivery 

approaches. However, these properties make NTX an excellent candidate for MN-

enhanced delivery, as the micropores create aqueous pathways that allow NTX to pass 

through the SC, regardless of its hydrophilic nature, allowing it to be readily measured in 

the plasma.  In fact, NTX was the model compound in the first pharmacokinetic study in 

the literature to describe successful delivery of a drug to therapeutic concentrations with 

the “poke (press) and patch” method, administered to healthy human volunteers 

(described above).  While therapeutic concentrations were maintained during the study, 

variability began to increase between 48 – 72 hours post-MN, and not all subjects 

maintained therapeutic levels beyond 48 hours.  These results suggest that the 

micropores were beginning to re-seal and the skin was restoring its baseline barrier 

properties.  A similar timeframe of delivery has also been observed when the active 

metabolite of NTX (6-β-NTXol) was administered to hairless guinea pigs with the same 

MN treatment approach. 

The results of the current study demonstrate that topical application of diclofenac 

(a non-specific COX inhibitor) applied to MN-treated skin can maintain micropore viability 

and allow for delivery of NTX for 7 days.  The shape of the pharmacokinetic profiles (for 
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both NTX and NTXol) demonstrate sustained delivery over the whole timeframe, which 

is in stark contrast from the subject who received placebo gel treatment.  In that case, 

the Cmax was reached at 8 hours, followed by a sharp decline after 72 hours, 

demonstrating full closure of the micropores under the predicted timeframe of 2 – 3 

days. 

While the local skin concentrations of diclofenac are sufficient to maintain 

micropore lifetime following just one application immediately post-MN (described in 

Chapter 7, Research Plan 3.3), gels were re-applied every 48 hours in the current study 

to allow for frequent visual inspection of the skin.  The MN and gel treatments were well 

tolerated overall; one subject had some local irritation to the gels and her study was 

terminated a day early at the decision of the study physician.   

 

8.4.1  Impedance spectroscopy for predicting drug delivery timeframes 

The use of impedance spectroscopy has been utilized in previous studies to 

monitor the formation and lifetime of micropores available for drug delivery [14] 

(Research Plans 3.1 and 3.2, both submitted for publication).  This technique is valuable 

in that it provides multiple options for monitoring lifetime of the micropores, through 

calculation of Zpores (impedance specifically at the microporated skin), radii of individual 

micropores, and Apermeable (permeable area of the entire micropore grid).  In both groups 

that received MN treatment in the current study, adequate formation of the micropores 

was confirmed through a significant difference in both Zpores and Apermeable from the intact 

skin values, and the micropore radii were also similar to previously reported ranges [14].   

From the results described in Research Plan 3.2, a drug delivery window of 

approximately 2 – 3 days was predicted from the Zpores calculations in a placebo 

treatment setting.  This correlates precisely with the data from the placebo subject in the 

current study, matches the prediction from Gupta et al examining micropore re-sealing 

kinetics under occluded conditions, and is also in agreement with previous 

pharmacokinetic studies in humans and guinea pigs [9, 11, 12, 14].  Furthermore, our 

previous impedance data also suggested, based on area under the admittance-time 

curve, that diclofenac would prolong the drug delivery window approximately 1.76 ± 0.62 

times over placebo, resulting in a drug delivery window of 3.4 – 7.1 days (assuming a 

placebo micropore half life of 0.76 days).  The current pharmacokinetic plasma data is in 

agreement with these values, as the placebo subject did not have detectable NTX in the 

plasma after 72 hours, whereas the subjects in the diclofenac + NTX group had drug 
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delivery for up to 7 days post-MN.  These data demonstrate the capability of impedance 

spectroscopy to closely predict a drug delivery window; this valuable technique could be 

extrapolated to other drug moieties or physical enhancement techniques that create 

pores in the skin (thermal ablation, electroporation, etc.) to expand the possibilities of 

prolonging the skin’s re-sealing time after a one-time breach. 

 

8.4.2  In vitro naltrexone flux and in vivo delivery considerations 

In the first MN-assisted pharmacokinetic study with NTX, 4 patches were applied 

to subjects’ arms, corresponding to a total of 400 micropores (100 micropores/patch) [9]. 

The patch calculations were based on an in vitro NTX flux of 39.0 ± 13.1 nmol/cm2•hr, 

with an estimated systemic clearance of 3.5 L/min and a target plasma NTX 

concentration of 2 ng/ml.  The in vitro-in vivo correlation was very good, with a predicted 

steady state concentration of 1.9 ± 0.7 ng/ml and an observed steady state 

concentration of 2.5 ± 1.0 ng/ml [9].  This patch calculation was based on a total 

treatment area of 28 cm2 for 400 micropores (thus resulting in 4 patches with 100 

micropores under each patch).  Because the flux of NTX through intact skin is negligible 

[135], it would be more appropriate for future MN studies to calculate a number of 

patches based on the number of micropores total.  

The in vitro NTX flux from the 11% NTX•HCl gel in this study (in the presence of 

diclofenac sodium) was 42.58 ± 7.88 nmol/cm2•hr, which is very similar to the flux from 

the previous study (from a 16% NTX•HCl gel in the absence of diclofenac sodium).  In 

order to achieve higher plasma concentrations, a steady state NTX concentration of 

approximately 4 ng/ml was targeted, such that NTX and NTXol could still be detected in 

the plasma if the concentrations decreased towards the end of the study.  Assuming 

similar parameters as those described above to calculate the 4 patch requirement for the 

first pharmacokinetic study, 8 patches were required for the current study to achieve 

approximately double the NTX plasma concentration (through twice as many 

micropores).  In contrast, only 2 MN-treated sites with patches were calculated for the 

placebo condition (200 micropores total), based on the in vitro flux of 170.84 ± 32.12 

nmol/cm2•hr.   

In both the active and placebo treatment groups (Groups 1 and 2, respectively), 

the trends of NTX delivery were as predicted: delivery for a full week in the presence of 

diclofenac, vs. no delivery after 72 hours in the placebo subject.  However, in both 

groups the plasma concentrations were approximately half of what was predicted from 
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the in vitro studies and patch calculations.  For the placebo conditions there is a 

reasonably straightforward possibility to explain this discrepancy.  Previous work has 

described the in vitro flux of this NTX formulation through MN-treated skin as ~70 

nmol/cm2•hr, as compared to the value of 170.84 ± 32.12 nmol/cm2•hr that the 

calculations were based on for the patch number in the placebo group.  Thus, 

approximately twice as many patches (i.e. 4 patches total) would likely have achieved 

the target of 4 – 5 ng/ml in the placebo subjects.  Large amounts of variability (up to 

30%) can be observed with in vitro permeation studies, which might have contributed to 

the error in patch calculation [24, 124], and biological variability for in vivo studies can 

also result in plasma concentrations not achieving the predicted levels.  The subject in 

the placebo group who did not have detectable levels was at the higher end of the BMI 

range across the subjects, and was also the only African American subject in the study.  

Both of these factors might have contributed to greater intersubject variability.  His blood 

volume may have been larger as compared to the other subjects, thus requiring higher 

amounts of drug to reach a detectable concentration.  Recovery has been shown to be 

faster in darker skin following acute barrier perturbation, SC lipid content is higher in 

African Americans, and increased electrical resistance of the skin in African Americans 

suggests an increased SC thickness as compared to Caucasians [136]. In combination 

with too few patches, all of these reasons might have contributed to why this subject did 

not have detectable NTX or NTXol levels throughout the study.  However, despite not 

having a plasma profile that could be compared to the other subjects, his impedance 

data followed the expected trend for placebo conditions.  The Zpores at the MN-treated 

sites reached the upper limits at the end of the study, confirming that the micropores had 

sealed as expected in the absence of diclofenac. 

The possible explanations for why NTX concentrations only reached 

approximately half of the predicted values for the subjects in Group 1 are not quite as 

straightforward as for the placebo subjects.  The impedance data supports that the 

micropores were viable for the whole treatment period; additionally, despite levels being 

low, NTX was delivered throughout the full 7 days of the study.  Thus, the most logical 

explanation for the decreased plasma concentrations is that the NTX did not deliver 

through the micropores as efficiently as expected.  During the study, movement of the 

subjects’ arms with day to day activities could have decreased the contact between the 

gels and the skin, as compared to the constant contact that is present in the in vitro  

studies.  Additionally, the diclofenac gel could have been rubbed into the skin differently 



122 
 

on the arms of the subjects as compared to what is achievable for the in vitro studies.  

There is a significant difference in the flux of NTX in the presence of diclofenac when 

compared to NTX alone (p < 0.05, Student’s t test), suggesting that the active diclofenac 

moiety interacts with the NTX•HCl and impedes its flux.  This is not entirely unexpected, 

as diclofenac is an acid and NTX is a base, thus forming a local precipitate when co-

applied.  There are two possibilities that seem likely with regards to how this precipitate 

could have affected NTX delivery.  While the amount of diclofenac (100 μl) was very 

small, an equal amount of NTX precipitating with the diclofenac would significantly 

decrease the diffusional gradient, as 100 μl of NTX would represent 1/5th of the total gel 

applied at each site.  A second possibility is that the precipitate could possibly block 

some of the permeable area of the micropores, allowing for less NTX to physically pass 

through the newly created pathways.  A combination of both of these scenarios is also 

possible.  Thus, while the diclofenac is effective for inhibiting micropore closure, the 

greatest challenge from a therapeutic perspective is to develop a system capable of 

delivering diclofenac locally to the micropores without significantly impeding the NTX 

flux. 

All of the above discussion postulates why the observed concentrations of NTX 

alone did not reach predicted values. Upon further examination, however, the sum of 

NTX and NTXol together achieves a plasma concentration that is much closer to the 

predicted, with a mean Css of 3.18 ± 0.7 ng/ml (Group 1).  NTXol is the primary 

metabolite of NTX, with a negligible difference in molecular weight from the parent 

(341.8 and 343.8 for NTX and NTXol, respectively).  This allows the sum of NTX and 

NTXol to be compared directly to the predicted NTX concentration, assuming 

approximately 1:1 conversion of NTX to NTXol.  This also reprsesents the most accurate 

overall clinical scenario, as near zero-order delivery of NTX will result in the presence of 

the metabolite over the entire treatment course.  Thus, the correlation of in vitro 

predictions to in vivo plasma concentrations is 79.5%, which is excellent for human 

clinical studies.   

The flux of NTX from this formulation through intact skin has been described as 8 

nmol/cm2•hr, which would be considered negligible from a systemic delivery perspective 

[135].  However, due to the increased number of patches in this study compared with 

previous studies, 10 patches were applied to intact non-MN treated skin in 2 subjects to 

discern if any of the plasma NTX observed in the subjects in MN groups was partially 

due to passive diffusion through intact skin.  In both control subjects there was no 
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detectable NTX or NTXol at any timepoints, confirming the lack of flux in the absence of 

micropores.  Thus, the plasma concentrations observed in the MN treatment groups can 

be attributed to NTX flux through the micropores, rather than passive diffusion from a 

relatively high number of patches.  This was also confirmed by the crossover subject 

who completed the study twice, once with and once without MN treatment.  She had 

detectable levels throughout the study following MN treatment, but no detectable NTX or 

NTXol when the treatments were applied to intact skin. 

 

8.5  Conclusions 

 This is the first study in humans to demonstrate that drug delivery can be 

achieved for a full week after one application of a MN array, using the “poke (press) and 

patch” method.  Furthermore, the drug delivery windows were accurately predicted by 

impedance spectroscopy as a surrogate technique, allowing for extrapolation of the 

technique to other drug moieties and poration techniques.  The final challenge for this 

type of NTX delivery system will be to achieve a formulation NTX and/or diclofenac that 

will allow for therapeutic plasma concentrations (> 2 ng/ml) to be delivered from a 

clinically reasonable patch number or size.  These data demonstrate the immense 

potential of MN technologies for drug delivery over longer periods of time than what has 

been shown previously. 
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Table 8.1 

Group Total 

number of 

micro-

pores 

Gels 

applied 

In vitro flux 

of NTX•HCl, 

nmol/cm2•hr

Predicted 

[NTX], 

plasma 

(ng/ml) 

Actual 

[NTX], 

plasma 

(ng/ml) 

Actual 

[NTX] + 

[NTXol], 

plasma 

(ng/ml) 

1 800  

(8 patches) 

Diclofenac 

+ NTX 

42.58 ± 7.88 

(n = 3) 

4  1.2 (0.3) 3.18 (0.7) 

2 200  

(2 patches) 

Placebo + 

NTX 

170.84 ± 

32.12 (n = 3) 

4  1.1 1.19 

3 NA Diclofenac 

+ NTX 

NA 0 0 0 

 

Table 8.1  Description of the number of micropores created for each treatment 

group and the gels applied to the skin.  Patch numbers were calculated based on the 

previous human pharmacokinetic study demonstrating that NTX plasma concentrations 

of 2.5 ± 1.0 ng/ml were achieved from 400 micropores (4 patches); the goal of this study 

was to achieve concentrations closer to ~4 ng/ml. 
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Table 8.2 

Sex 4 male 

5 female 

Mean age, years (SD) 26.4 (3.4) 

(range 23 to 32) 

Mean body mass index, kg/m2 (SD) 27.9 (6.9) 

(range 18.5 – 42.2) 

Race 8 Caucasian 

1 African American 

 

Table 8.2  Subject demographics across 9 healthy human volunteers. 
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Table 8.3 

Treatment applied Micropore radii (μm), 

Day 1 

Micropore radii (μm), 

Day 8 

MN + diclofenac + NTX 

(Group 1) 

1.8 ± 0.4 (n = 46) 2.5 ± 0.5 (n = 48) 

MN + placebo + NTX 

(Group 2) 

1.3 ± 0.04 (n = 4) 0.9 ± 0.04 (n = 4) 

 

Table 8.3  Radii of the individual micropores in Groups 1 and 2 (subjects in Group 

3 did not receive MN treatment).  Calculation of the Apermeable for the entire 

microporated skin area allows for estimation of the radii of the individual micropores, 

assuming a cylindrical shape and that each micropore contributes 1/100th of the total 

permeable area.  
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Table 8.4 

 NTX NTXol 

Group 1 Group 2 Group 3 Group 1 Group 2 Group 3 

Css, ng/ml 1.2 (0.3) 1.1 NA 2.0 (0.6) NA NA 

Tlag, h 0.4 (0.8) 0 NA 2.8 (1.4) 48.0 NA 

Cmax, ng/ml 2.6 (0.7) 2.77 NA 3.5 (1.3) 0.49 NA 

Tmax, h 112.0  

(62.7) 

8 NA 126.0 

(41.3) 

48.0 NA 

AUC0-174 hr 

ng•h/ml 

196.5 

(37.7) 

188.1 NA 335.8 

(103.6) 

18.98 NA 

Clast, ng/ml 1.4 (0.4) 0 NA 1.89 (1.4) 0 NA 

 

Table 8.4  Pharmacokinetic parameters for NTX and its active metabolite, NTXol, in 

human plasma.  Group 1 received treatment with MN + diclofenac + NTX gel (Group 3 

received the same treatment but with no MN application), and Group 2 was treated with 

placebo gel in lieu of the diclofenac gel.  The data were fitted to a noncompartmental 

model with extravascular input (Phoenix WinNonlin® version 6.3). 
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Table 8.5 

Adverse event Incidence 

General GI disturbance 20% (nausea) 

Sleep disturbances  10% (vivid dreams) 

20% (hypersomnia) 

Mild dysphoria or anxiety 30% (dysphoria) 

10% (anxiety) 

Local skin irritation at MN 

treatment sites 

10% 

  

Table 8.5  Incidence of subject-reported adverse events during 7 days of NTX 

delivery in 9 healthy human subjects.  
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Figure 8.1  Representative impedance profiles from one subject in Group 1 (MN + 

diclofenac + NTX) and one subject in Group 2 (MN + placebo + NTX).  In both 

subjects, the Zpores decreased significantly from baseline to post-MN, demonstrating a 

breach of the SC via the creation of micropores.  A: At the end of the study (Day 8), a 

significant difference was still present between intact skin and the MN-treated sites for 

the subject in Group 1.  B: The Zpores had reached its upper limit by Day 8 in the subject 

from Group 2, confirming that the micropores had healed and would thus prevent any 

further drug delivery.  On Day 1, the grey bar (intact skin) represents the mean 

impedance of the 4 treatment sites; all other bars represent individual measurements at 

each site.  
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Figure 8.2  NTX plasma profiles following one-time MN treatment and application 

of diclofenac and NTX gel every 48 hours for 7 days post-MN (n = 6 subjects).  NTX 

was detected to the end of the study for all subjects, with a mean AUC0 – 174 hr of 196.5 ± 

37.7 ng•h/ml, which correlated with the impedance measurements that predicted 

micropore lifetime for approximately 3 – 7 days with application of diclofenac. 
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Figure 8.3  NTXol plasma profiles following one time MN treatment and application 

of diclofenac and NTX gel every 48 hours for 7 days post-MN treatment (n = 6 

subjects).   
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Chapter 9 

Pharmacokinetic evaluation of microneedle-enhanced 7-day transdermal delivery 

of naltrexone via restoration of the epidermal Ca2+ gradient in  

hairless guinea pigs 

 

9.1  Introduction  

The stratum corneum (SC) is the outermost layer of the skin, and serves as the 

primary permeability barrier to most xenobiotics.  The structure of the SC is remarkably 

unique in that it exists in a “brick and mortar” conformation, with keratinocytes (bricks) 

surrounded by a continuous lipid matrix (mortar).  The continuous lipid phase provides 

most of the permeability barrier, preventing the outward movement of water and the 

inward flux of xenobiotics and chemicals.  Following acute disruption of the SC 

permeability barrier, a pathway of homeostatic events is initiated to restore the barrier, 

and the pathways of repair are the same irrespective of the method of disruption (tape 

stripping, solvent treatment, skin irritants etc.) [66-68, 76].  One of the first changes in 

the skin that occurs immediately following barrier disruption is increased transepidermal 

water loss between the skin and the external environment, which dissipates the 

epidermal calcium gradient.  Under normal conditions, a steep epidermal calcium 

gradient exists such that low concentrations of calcium are found in the basal layer of the 

epidermis (~180 mg/kg), and high concentrations are found in the outer layers of the 

stratum granulosum (~460 mg/kg, approximately 10 μm from the skin surface); the 

gradient drops off sharply and the lowest calcium levels in the skin are found within the 

SC [76].  When the skin barrier is disrupted, the movement of water between the internal 

and external environment increases, carrying calcium towards the skin surface and 

eliminating the steep gradient.  Dissipation of this gradient provides a signal for 

exocytosis of lamellar bodies into the domain between the SC and the stratum 

granulosum [66-68, 76, 137-139].  This response is initiated quickly after barrier 

disruption (within 1 hour), and the permeability function of the skin is quickly restored, as 

displayed in Figure 9.1 [68].   

When the change in the calcium gradient after barrier disruption is prevented via 

application of a vapor-impermeable membrane or submersion in a calcium-containing 

solution, the secretion of lamellar bodies is not initiated and barrier repair is delayed [66-

68].  This suggests that the dissipation of the gradient from the change in water 

movement provides a signal for the repair response.  Based on these properties of the 



133 
 

skin’s response to barrier perturbation, we hypothesized that blocking dissipation of the 

calcium gradient via topical application of calcium gels to microneedle (MN) treated skin 

would inhibit barrier restoration, allowing for delivery of naltrexone HCl (NTX•HCl) 

through the micropores for up to 7 days.  The intent of this study was to determine the 

effect of topically applied calcium salts on the kinetics of micropore closure in hairless 

guinea pigs; these studies satisfy Research Plan 3.7. 

 

9.2  Methods and materials 

The following components were purchased through the University of Kentucky: 

naltrexone HCl (Mallinkrodt, Mansfield, MA), propylene glycol (VWR, Atlanta, GA), 

benzyl alcohol (Fisher Scientific, Hanover Park, IL), 10% calcium chloride injection, USP 

(NDC 0409-1631-10, Hospira, Inc., Lake Forest, IL), calcium gluconate 23% solution 

(NDC 57561-802-50, Agri Laboratories, Ltd. St. Joseph, MO), calcium acetate powder, 

USP (Spectrum Chemical Mfg. Corporation, ordered through VWR, Atlanta, GA), and 

sterile water for injection. Hydroxyethylcellulose (HEC, Ashland Specialty Ingredients, 

Wilmington, DE) was a gift from the company. 
 

9.2.1  Preparation of gel formulations 

A gel of 8.4% NTX•HCl was prepared with the following components: 84 mg/ml 

NTX•HCl, propylene glycol (10%), benzyl alcohol (1%), sterile water (89%), and HEC 

(2.5%).  Gels were prepared with varying concentrations of 3 calcium salts: calcium 

acetate (8.4%), calcium gluconate (2.5 or 5%), and calcium chloride (1mM or 2mM); 

each gel only contained one salt form (all gel formulations displayed in Table 9.1).  To 

deliver the calcium to the skin, the salts were added to a NTX•HCl solution to obtain the 

desired end concentration prior to gelling.  The calcium gluconate and chloride were 

both commercially available as aqueous solutions (23% and 10%, respectively); the 

solutions were used to add calcium to the gels prior to the final step of gelling the 

solution via addition of HEC.  Calcium acetate was available as a raw powder; a 23% 

stock solution was made in sterile water and was used to augment the gels to the correct 

concentration of calcium acetate.  For all gels, the solution of NTX•HCl, propylene glycol, 

benzyl alcohol, and calcium was vortexed and allowed to mix on a stir plate for 

approximately 5 minute before addition of the HEC.  All gels were allowed to sit at room 

temperature overnight before being used; no particulates or precipitation was observed 

in any of the gels; the viscosity of the gels was not measured.    
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9.2.2  Preparation of microneedle arrays and occlusive patches 

Microneedle arrays were prepared with methods previously described (NTXol 

paper); the MN arrays were designed by the Prausnitz lab at the Georgia Institute of 

Technology.  In-plane MN rows were cut into stainless steel sheets with an infrared laser 

(Resonetics Maestro, Nashua, NH) using a template drafted in AutoCAD® software 

(Autodesk®, San Rafael, CA).  The arrays contained 50 MNs arranged in a 5 x 10 array 

configuration; each MN measured 750 µm in length and 200 µm in width at the base.  

While the needles were still in-plane, the arrays were cleaned to de-grease the surface 

and remove the slag deposited during laser-cutting; this cleaning step was performed 

with detergent (Alconox, White Plains, NY).  Afterwards, the arrays were electropolished 

in a solution of glycerin, 85% ortho-phosphoric acid, and water (ratio of 6:3:1, all 

chemicals from Fisher Scientific, Hanover Park, IL).  Following the electropolishing 

procedure, the needles were cleaning by dipping alternatively in 25% nitric oxide (Fisher 

Scientific) and deionized water (total of 3 times).  A final rinse with deionized water 

performed and the arrays were dried under pressurized air.   

For better insertion and adhesion of patches to the skin, microneedle arrays were 

assembled into adhesive patches with Arclad (Adhesives Research, Inc., Glen Rock, 

PA).  The adhesive serves to hold the MNs firmly against the skin by compensating for 

the mechanical mismatch between the flexible skin tissue and the rigid MN array. The 

MN patches were sterilized before use by autoclaving under high pressure saturated 

steam at 121° C for 15 minutes.  

 To hold the gels close to the skin and occlude the MN-treated area, blank 

occlusive patches were made.  A rubber ring was secured with 3M double-sided medical 

tape to an impermeable backing membrane (Scotchpak 1109 SPAK 1.34 MIL heat-

sealable polyester film; 3M, St. Paul, MN).  The other side of the rubber ring also had a 

layer of 3M double-sided tape in order to hold the patch closely to the skin and prevent 

leaking of the gels.  

 

9.2.3  Study procedures 

Hairless guinea pigs were treated with MN arrays at 2 sites on the dorsal surface.  

MN insertion is a simple procedure, achieved by placing the 50 MN array on the skin and 

pressing gently for approximately 10 – 15 seconds and then immediately removing the 

array.  The array was rotated 45 degrees for a second insertion, in order to create 100 

non-overlapping micropores.  Immediately following MN application, 200 µl of the 
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NTX/calcium gel of interest was applied to the microporated skin at each site and 

immediately covered with an occlusive patch.  The patches were secured to the skin with 

Bioclusive dressing (Systagenix Wound Management, Quincy, MA).  The animals were 

weighed and temperature was recorded daily to monitor for acute illness or intolerance 

of the treatments.  Blood samples were obtained over a period of 5 – 7 days after MN 

treatment in order to assess NTX plasma concentrations. 

 

9.2.4  Pharmacokinetic sampling 

Prior to the studies, all animals underwent surgery to surgically implant indwelling 

catheters into the jugular vein; all surgeries were performed by Kalpana Paudel, Ph.D.  

All blood samples were drawn from the indwelling catheter during the studies.  Before 

applying any treatments, a blood sample was drawn as a blank; following MN treatment 

and NTX gel administration, serial blood samples (approximately 200 µl each) were 

obtained at 15, 30, 45, and 60 minutes and at 1, 2, 4, 7, and 10 hours.  Starting at 24 

hours post-treatment, samples were taken at 12 hour intervals for the remainder of the 

study, collected into tubes coated with a 500 IU/ml heparin solution to prevent blood 

coagulation.  The blood samples were immediately centrifuged at 10,000 x g for 3 

minutes; the plasma was separated and stored at -80° C until analysis.  

 

9.2.5  Plasma extraction procedure  

 The plasma extraction procedure was similar to that described previously by 

Valiveti et al, with minor modifications [93].  One hundred µl of plasma was added to 500 

µl of 1:1 ethyl acetate:acetonitrile, resulting in protein precipitation.  The mixture was 

vortexed for 15 seconds and immediately centrifuged for 20 minutes at 12,000 x g.  

Following centrifugation, the supernatant was pipetted into glass tubes (with care to not 

disturb the pellet) and evaporated under nitrogen.  The resulting residue was re-

suspended in 100 µl of acetonitrile, vortexed for 15 seconds, and sonicated for 10 

minutes.  Afterwards the sample was transferred to low volume inserts in glass HPLC 

vials, and injected onto the HPLC column.  Working NTX standards were made in 

acetonitrile over a range of 10 to 750 ng/ml.  In order to make plasma standards, 100 µl 

of blank guinea pig plasma was spiked with 10 µl of the ACN working standard and 

extracted as described above for the experimental plasma samples.  The resulting 

concentrations of the plasma standards were 1 – 75 ng/ml, and displayed excellent 

linearity (R2 > 0.98 for all standard curves). 
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9.2.6  Analysis of plasma pharmacokinetic parameters 

 The analysis of plasma NTX concentration vs. time profiles after MN treatment 

and NTX patch application was performed by fitting the data to a noncompartmental 

model with extravascular input (Phoenix™ WinNonlin®, version 6.2, Pharsight 

Corporation, Mountain View, CA).  The data generated was used to determine peak 

concentration (Cmax), time to peak concentration (Tmax), lag time (Tlag), and area under 

the plasma concentration time curve from 0 to 96 hours (AUC0 – 96 h).   

 

9.2.7  Data analysis   

Student’s t tests were used to compare the AUC0-96h and Cmax between all 

treatment groups; p < 0.05 was considered statistically significant (GraphPad Prism® 

software, version 5.04). 

 

9.3  Results 

The effects of different calcium salts (acetate, chloride, and gluconate) on 

micropore re-sealing rates were examined in hairless guinea pigs treated once with MN 

arrays (total of 200 micropores) followed by application of an 8.4% NTX•HCl gel 

containing different concentrations of the various calcium salts.  All pharmacokinetic 

parameters can be seen in Table 9.2.  Three control guinea pigs were treated once with 

NTX•HCl gel containing no calcium.  Mean (± SD) AUC0 – 96h for these animals was 

1,278.3 ± 635.6 ng•hr/ml.  NTX was no longer detectable in the plasma after 34, 72, and 

96 hours for the 3 control animals.   

 

9.3.1  Calcium acetate 

Three guinea pigs (mean ± SD weight of 430 ± 65 g) were treated with MNs + an 

8.4% NTX•HCl gel with 8.4% w/v of calcium acetate.  AUC was calculated over a period 

of 96 hours to allow for direct comparison with the control animals.  The AUC0 – 96h was 

1204.9 ± 167.5, which was not significantly different from control (p > 0.05, Student’s t 

test), and the Cmax of 58.0 ± 13.2 ng/ml was also not significantly different from control.  

Despite the AUC0 – 96h not being significantly higher as a result of the calcium acetate 

treatment, NTX was detectable in the plasma in all 3 animals up until the end of the 

study at 178 hours, demonstrating continued delivery of NTX through the micropores (in 

contrast to the control animals, in which NTX was not detectable after 96 hours).   
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9.3.2  Calcium chloride 

One guinea pig was treated with an 8.4% NTX•HCl gel containing 1mM CaCl2, 

while 3 additional animals were treated with a NTX•HCl gel containing 2mM CaCl2.  

Mean ± SD weight of the animals was 435 ± 73 g.  AUC was calculated over a period of 

96 hours to allow for direct comparison with the control animals.  The AUC0 – 96h was 

1227.9 ng•hr/ml (n = 1 animal, 1 mM CaCl2) and 1213.9 ± 692.6 ng•hr/ml (2 mM CaCl2, 

n = 3), with a mean Cmax of 81.4 ± 28.2 ng/ml (n = 4).  Both AUC0 – 96h and Cmax were not 

significantly different from control (p > 0.05, Student’s t tests).  NTX was not detectable 

in the plasma after 48 hours for one animal treated with a 2mM gel, while the other 2 

animals receiving the same treatment still had detectable levels at 96 hours.  The animal 

treated with 1mM CaCl2 had detectable concentrations at 120 hours post-MN. 

 

9.3.3  Calcium gluconate 

Three studies were carried out in 3 guinea pigs: 2 studies examining the effect of 

a 2.5% calcium gluconate gel on micropore closure (applied either once or re-applied 

every 36 hours), and a 5% calcium gluconate gel; mean (± SD) weight of the animals 

was 533.3 ± 118.9 g.  The AUC0 – 96h for these treatments were 419.1, 570.0, and 479.4 

ng•hr/ml, respectively.  NTX was detectable in the plasma for 58, 130, or 96 hours (2.5% 

gel applied once, 2.5% gel re-applied every 36 hours, and 5% gel applied once, 

respectively). The AUC0 – 96h and Cmax were not significantly different from control (p > 

0.05, Student’s t test). 

 

9.4  Discussion 

The unique structure of the SC provides a barrier to the ingress of noxious 

chemicals and xenobiotics, and this lack of permeability is primarily dictated by the lipids 

that form the intercellular domain. The calcium gradient across the epidermal skin layers 

is a primary signal for stimulating secretion of lamellar bodies, a critical event for 

restoring normal barrier homeostasis.  These studies sought to inhibit the change in the 

calcium gradient (following MN treatment) through the topical application of a NTX•HCl 

gel containing various calcium salts.  Drug permeability of NTX (measured by plasma 

concentrations) was used to assess micropore lifetime.  In these studies, no-MN 

treatment controls were not included, as the flux of this NTX formulation through intact 

skin is negligible [135]. 
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Previous studies examining pharmacokinetic parameters of NTX and its 

metabolite (6-β-NTXol) following MN-assisted delivery have demonstrated a delivery 

window of approximately 48 – 72 hours under occluded conditions [9, 11, 12].  The 

control animals in this study demonstrated similar profiles, as NTX was not detectable 

after 34 – 96 hours when no calcium was present in the gel formulation.  While one 

animal had a slightly longer delivery window than what is typically observed NTX 

delivery, some biological variation is expected and this particular animal may have had 

slightly slower barrier restoration than the other animals.   

The AUC was calculated over the timeframe of 0 – 96 hours (rather than the full 

0 – 178 hours of the study) because several of the animals loosened their patches or 

removed them completely around 96 hours in the calcium acetate studies (discussed 

below).  Thus, calculating the AUC over 0 – 96 hours allowed for a more consistent 

comparison between treatments.  None of the calcium salts, regardless of concentration 

or salt form, displayed significant differences in AUC0 – 96h or Cmax compared to the 

control animals. Furthermore, all of the profiles demonstrated similar shapes, exhibiting 

an exponential decay and confirming that the treatments did not alter the re-sealing 

mechanisms of the skin significantly.  The shape of all of the profiles can be seen in 

Figure 11.1.  There are various reasons specific to each calcium salt form that may have 

contributed to the non-significant difference (i.e. lack of treatment effect).            

Previous studies have demonstrated prolonged recovery of barrier function 

following restoration of the calcium gradient via submersion in calcium containing 

solutions (CaCl2), and a range of calcium concentrations from 0.01 to 10 mM of CaCl2 

were effective for delaying repair [67, 139].  The effect of the calcium on barrier repair 

was most effective at a concentration of 0.1 mM.  As a comparison, the concentrations 

of CaCl2 in the present studies were 1 and 2 mM, which falls in the middle of the range 

of concentrations studies previously.  From the resulting pharmacokinetic profile of NTX 

delivery, this concentration was not effective for prolonging micropore lifetime as 

compared to control.  This particular salt form is highly water soluble and is typically 

used in clinical practice as an injectable preparation [90].  It is possible that the high 

water solubility resulted in diffusion of the CaCl2 from the gel and into the aqueous 

interstitial fluid within the micropores.  Over the duration of the entire study this may 

have resulted in subtherapeutic concentrations of calcium at the skin surface, therefore 

not restoring the gradient as needed to delay barrier recovery.  In the earlier studies, 

submersion in calcium containing solutions was only for a period of a few hours, and 
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barrier recovery (or its delay) was measured for just hours after the treatment.  Thus, 

CaCl2 may not be effective for delaying recovery after MN treatment for such a long 

period as 7 days.  Once the CaCl2 had diffused away from the gel and skin surface, the 

skin’s normal paradigms would likely take over and result in near-normal restoration 

times. 

Calcium gluconate was studied at concentrations of 2.5% w/v and 5% w/v.  This 

salt form was selected as a potential calcium source due to its known tolerability and 

lack of irritation potential in animals and humans, in which it is used to treat hydrofluoric 

acid skin burns [140].  In this setting, calcium gluconate is effective for treating 

hydrofluoric acid burns because of its ability to bind the dissociated fluoride ions and 

form an insoluble salt.  However, it has not been investigated if there are other 

mechanisms involved in its ability to quickly heal the wounds.  While the binding of free 

fluoride ions seems to be the primary mechanism, if there are other mechanisms 

involved then those pathways may have affected the micropore re-sealing times in the 

present studies.  Additionally, the elemental calcium component of calcium gluconate is 

one of the lowest of the available salt forms (9%), and even at the concentrations of 2.5 

and 5%, there may not have been sufficient calcium present at the micropores to allow 

for the gradient to be fully restored.  

In these studies, calcium acetate was investigated as a salt form as the source of 

calcium because of its higher elemental calcium (40%) compared to the other salts.  The 

concentration of the calcium salt in the gel was the highest of all of the studies 

performed, at 8.4% calcium acetate in an 8.4% NTX•HCl gel.  While the AUC0 – 96h was 

not significantly different from control, NTX was detectable in the plasma for the entire 

duration of the study (suggesting prolonged delivery of NTX through the micropores as a 

result of a restored calcium gradient).  Upon removal of the patches, however, one 

notable observation was the odor of vinegar, suggesting the formation of acetic acid 

from the acetate within the gel.  The treatment sites were flaky, peeling, and dry for 2 – 3 

days after study termination; on some animals a slightly raised grid of micropores could 

be clearly observed in the skin. The animals appeared to be bothered by the patches, as 

many of the guinea pigs chewed or scratched at the patches until they pulled them off 

the skin.  All of these characteristics suggest some level of nonspecific irritation at the 

treatment sites, which likely contributed to the prolonged barrier perturbation during the 

treatment period.  In fact, 10% acetic acid has been shown to cause skin irritation in 

humans after just 4 hours of patch exposure [141, 142].  For these reasons, calcium 
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acetate would not likely be appropriate as a source of calcium for prolonging micropore 

lifetime due to the high potential to cause irritation at the treatment sites.  Other calcium 

salts with reasonably high elemental calcium such a calcium citrate (21%) or calcium 

carbonate (40%) might be reasonable targets for future studies, as these formulations 

would provide high local calcium concentrations with less irritation potential. 

Previous studies demonstrating a delay in barrier repair as a result of masking or 

replacing the epidermal calcium gradient examined a delay in barrier recovery over a 

period of hours following disruption (2.5 up to 24 hours) [66, 67, 75, 139].  In stark 

contrast, the studies in this chapter were carried out over 7 days total (although the AUC 

was calculated over 0 – 96 hours in order to be consistent across all conditions).  Ahn et 

al demonstrated that even under occluded conditions, the epidermal calcium gradient is 

restored by 60 hours, suggesting that occlusion may delay the skin’s response to the 

altered calcium gradient, but that it will ultimately proceed normally [143].  Following tape 

stripping an immediate disappearance of both intra- and extracellular calcium was 

observed, demonstrating dissipation of the gradient.  By 72 hours after occlusion, re-

accumulation of calcium precipitates could be seen, however, confirming that the skin is 

able to re-establish the gradient even in the presence of occlusion.  This suggests that 

restoring the calcium gradient may not be a suitable method for prolonging micropore 

lifetime for a period as long as 7 days, as the skin will ultimately restore the gradient on 

its own. 

 

9.5  Conclusion 

These studies attempted to delay micropore closure kinetics via restoration of a 

dissipated epidermal calcium gradient immediately following disruption.  Irrespective of 

the calcium salt investigated, the treatments were no more effective than control, 

suggesting that calcium modulation may not be an appropriate mechanism to target for 

inhibiting micropore re-sealing over a week-long timeframe. 
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Table 9.1 

Salt form Elemental 

calcium 

[c] of salt form 

in gel  

Gel formulation 

Acetate 40% 8.4% v/v 10% propylene glycol  

1% benzyl alcohol 

3% HEC 

8.4% NTX•HCl 

 

Chloride 27% 1mM 

2mM 

Gluconate 

 

9% 2.5% v/v 

5% v/v 

 

Table 9.1  Description of the various calcium salts and concentrations in the NTX  

gels.   
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Table 9.2 

PK 

Parameter 

No calcium 

(n = 3) 

Acetate 

(n = 3) 

Chloride 

(n = 4) 

Gluconate 

(n = 3) 

Tlag, h 0 0 0 0  

Cmax, ng/ml 87.8 ± 30.6 58.0 ± 13.2 81.4 ± 28.2 43.8 ± 23.2 

Tmax, h 1.8 ± 1.9 1.6 ± 0.6 1.7 ± 1.7 2.1 ± 1.9 

AUC0-96h, 

ng•hr/ml 

1278.3  

± 635.6 

1204.9  

± 167.5 

1227.9 

(n = 1) 

1 mM 418.1  

(n = 1) 

2.5%, 

applied 

once 

1213.9  

± 692.6 

(n = 3) 

2 mM 570.0  

(n = 1) 

2.5%, 

applied 

every 36 

hrs 

479.4  

(n = 1) 

5%, 

applied 

once 

 

Table 9.2  Pharmacokinetic parameters in hairless guinea pigs treated once with 

MN arrays (200 micropores total) followed by application of an 8.4% NTX gel 

containing various calcium salts.  There were no significant differences in the AUC0-

96h between any of the treatments (p > 0.05, Student’s t test) as compared to control, 

demonstrating no significant barrier delay as a result of the local calcium concentration. 
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Figure 9.1  Visual depiction of the change in the SC barrier as the calcium gradient 

is restored after insult. 
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Figure 9.2  Plasma concentrations of NTX following one time treatment with a MN 

array and application of various calcium-containing NTX•HCl gels.  A: plasma 

profiles over 0 – 96 hours; B: the same plasma profiles, from 24 – 96 hours.  All of the 

profiles demonstrate a similar shape of exponential decay, suggesting that the calcium 

treatments did not significantly alter the skin’s barrier restoration mechanisms following 

MN treatment. 
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Chapter 10 

Conclusions and future directions 

There were two primary objectives that this body of work sought to address: 1) to 

characterize the lifetime and re-sealing kinetics of the micropores created from MN 

insertion, and 2) to prolong the lifetime of the micropores via inhibition of the skin’s 

normal wound healing and/or barrier restoration processes.  

The first pharmacokinetic study in humans using the “poke (press) and patch” 

MN approach confirmed that naltrexone, a mu opioid receptor antagonist approved for 

the treatment of opioid and alcohol abuse, could be delivered to therapeutic 

concentrations for 2 – 3 days in healthy human subjects treated once with MNs [9].  

While this confirmed the feasibility of transdermally delivering an otherwise skin-

impermeable drug, the short timeframe of delivery would not be reasonable in clinical 

practice, as addicts require lifelong therapy.  Thus, a 7-day transdermal delivery system 

of NTX would ideal to enhance patient compliance and satisfaction with therapy. 

While pharmacokinetic studies are the most relevant method of evaluating drug 

diffusion through micropores, these types of studies are very expensive and labor 

intensive; as such, it would be impractical to use this type of study design for screening 

new MN designs or therapies intended to prolong micropore lifetime.  For these reasons, 

it was necessary to develop a reliable surrogate technique for predicting micropore 

lifetime and drug delivery windows under various conditions.  While multiple methods 

exist to monitor micropore closure kinetics, impedance spectroscopy is suitable for both 

animal and human studies and can be used to evaluate skin in varying hydration states 

(which is very important in the transdermal field).  Furthermore, this technique has been 

used in other MN studies in human subjects, providing good correlation of micropore 

closure kinetics with pharmacokinetic data [14].  In the current work various electrodes 

and pressure application techniques were examined in animals and humans, to develop 

a reproducible method to monitor micropore formation and closure.  Gel Ag/AgCl 

electrodes applied with direct pressure on microporated skin (human subjects) were able 

to detect changes in the SC from baseline to post-MN treatment with low levels of 

variability between measurements (demonstrated by %RSD).  This method holds great 

appeal because it can also be applied to other physical enhancement techniques that 

also create pores in the SC, such as electroporation or thermal ablation.  Through 

calculation of the Zpores or Apermeable, closure of the micropores can be followed over time 

and a drug delivery window can be predicted. 
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In order to extend micropore lifetime to a more clinically relevant period of time 

(ideally 7 days of drug delivery following one MN application), a non-specific COX 

inhibitor (diclofenac sodium) was applied to MN-treated skin in healthy human subjects.  

Impedance spectroscopy was utilized as a surrogate technique to monitor micropore 

closure rates over time, comparing diclofenac to placebo conditions.  Comparison of 

area under the curve between treatment groups confirmed that diclofenac prolongs 

micropore lifetime, with a predicted drug delivery window of approximately 2 – 3 days 

under placebo conditions.  These results were in excellent agreement with the drug 

delivery window observed from the aforementioned NTX pharmacokinetic study, in 

addition to results from Gupta et al [14], demonstrating that under occluded conditions 

the micropores will remain viable for approximately 2 days. 

Finally, in vitro diffusion studies and in vivo animal skin irritation studies were 

completed to design an optimal dosing scheme for a human pharmacokinetic study, with 

the objective of delivering NTX through MN-treated skin in the presence of diclofenac.  

As predicted from the previous impedance data, NTX and its metabolite were detected in 

the plasma for 7 days post-MN in the subjects treated with MN + diclofenac + NTX.  In 

contrast, NTX and NTXol were only detectable for up to 72 hours in the placebo subject, 

confirming closure of the micropores.  These results represent an exciting advance in 

the MN field, as this is the first study in human subjects to demonstrate such a long drug 

delivery window following just one application of a MN array.    

The MN field has reached an exciting and pivotal stage of development.  We now 

know that a variety of MN delivery techniques can be used to successfully deliver drugs 

to therapeutic concentrations for a range of timeframes, and the recent introduction of 

the Fluzone® intradermal vaccine confirms the commercial potential of MN technologies.  

Additionally, large companies such as 3M have begun developing MN products (both 

hollow and solid MN systems), suggesting that the commercial market for these devices 

will continue to grow.  The perception of these techniques by patients and healthcare 

workers has been positive [144], and thus this market has immense potential to expand.  

One particularly appealing component of MN technologies is the possibility to 

individualize therapies based on a therapeutic need, timeframe, or drug moiety.  MN 

treatments remove the strict physicochemical restrictions on drug compounds that can 

be transdermally administered, and it now seems within reach that MN therapy could be 

tailored to achieve specific delivery windows, which would further broaden the scope of 

appeal.  In particular, prolonging micropore lifetime seems particularly well suited for 
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delivery of medications for chronic disease states, as once weekly patch application 

would allow for constant therapeutic delivery of a drug while increasing patient 

complince.  In situations when prolonging micropore lifetime would be desirable for 

longer periods of drug delivery, the safety profile is also favorable, as the micropores 

exhibit a “switch-like” behavior, as they close rapidly when occlusion is removed, thus 

removing the concern of local infection.  Additionally, a gel formulation would contain 

antimicrobial excipients to further prevent the possibility of infection.  Further clinical 

investigation will be necessary to determine the safety profile of extending micropore 

lifetime in higher risk populations (immunocompromised patients, patients with chronic 

skin diseases such as atopic dermatitis or psoriasis, or elderly populations). 

Delivering NTX for a week-long timeframe is ideal for the treatment of opioid and 

alcohol abuse, both chronic disorders that require lifelong therapy.  Transdermal NTX 

overcomes some of the most problematic hurdles with the oral and injectable forms of 

the drug that are commercially available.  The next step in developing a MN-assisted 

transdermal NTX system will be to create a formulation that allows for therapeutic 

concentrations of NTX to be achieved when delivered in the presence of diclofenac. 

Despite achieving 7 days of delivery in the current studies, the plasma concentrations of 

NTX were subtherapeutic (< 2 ng/ml) following treatment with 8 patches.  The most likely 

explanation is the incompatibility of diclofenac and NTX when closely applied, as a 

precipitate forms that may be impeding flux through the micropores.  There are several 

possibilities for how this could be potentially overcome.  First, development of a codrug 

system (linking diclofenac and NTX together by a chemical moiety that dissociates within 

the skin) would allow for application of both moieties from a single formulation that would 

deposit diclofenac in the skin and allow NTX to pass through the micropores.  Second, 

other COX inhibitors with varying specificity for COX-1 and COX-2 could be examined 

for effects on prolonging micropore lifetime.  If the effects of diclofenac are solely related 

to its ability to reduce local inflammation, then other COX inhibitors might be effective in 

a similar manner.  Finally, it is possible that diclofenac may be exerting its effects 

through a pathway other than simply inhibiting the COX enzymes, such as cytokine 

expression or the lipooxygenase pathway.  Further investigation of its specific 

mechanisms of action would allow for better understanding of the micropore re-sealing 

process, leading to the development of more specific local therapies that might not 

interact as strongly with the NTX moiety. 
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The studies presented herein demonstrate great strides in MN delivery 

techniques, through: 1) the development of a measurement technique that is sensitive 

enough to monitor micropore lifetime and accurately predict drug delivery windows; and 

2) delivery of a model compound through MN-treated skin for 7 days via simple topical 

application of a non-specific anti-inflammatory.  This provides an exciting clinical 

springboard for the development of MN treatment systems that are suitable for a variety 

of therapeutics for treating human disorders. 
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