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       ABSTRACT OF THESIS 
 

                    Motion Correction Structured Light using 
                               Pattern Interleaving Technique 

 
Phase Measuring Profilometry (PMP) is the most robust scanning technique for static 3D 

data acquisition. To make this technique robust to the target objects which are in motion 

during the scan interval a novel algorithm called ‘Pattern Interleaving’ is used to get a 

high density single scan image and making Phase Measuring Profilometry insensitive to 

‘z’ motion and prevent motion banding which is predominant in 3D reconstruction when 

the object is in motion during the scan time                                                             

  

KEYWORDS: Structured Light Illumination, Phase Measuring Profilometry,  

                         Pattern Interleaving, Motion banding and 3D reconstruction.  
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Chapter 1 Introduction 
 

3D data acquisition techniques are broadly classified into two types: active and passive. 

The necessary condition for both active and passive 3D data acquisition techniques is 

optical triangulation. The most prominent scanning feature technique in the passive 3D 

data acquisition is Stereo Vision (StV). In stereo vision technique, the optical 

triangulation is established between the target object and an array of cameras. In stereo 

vision techniques, the 3D reconstruction of the target object is achieved by finding the 

correspondence between the images viewed from two or more points of view (POV). 

However, the main problem associated with the stereo vision is the one relating to the 

feature correspondence.  This correspondence problem in the stereo vision technique is 

solved by using active methods [1] but is very dependent on the object having distinctive 

features. The most widely used scanning feature technique in active methods is structured 

light illumination (SLI). It has its applications in different fields like biomedical topology 

[2], quality control [3] and telecollaboration [4]. In the Structured Light Illumination 

(SLI) technique optical triangulation is established by replacing one of the cameras in the 

stereo vision technique with a projector. Thus, a geometric relationship between the 

cameras, projector and the target object is established. In a SLI technique, a coded light 

pattern is projected by the projector on to the target object which is captured by the 

camera. Depth information can be obtained by measuring the distortion occurred between 

the captured image and the reflected image. Various coded light patterns like binary, 

single spot, stripe or a complex pattern can be used. A commonly used SLI scanning 

technique is Phase Measuring Profilometry (PMP).  

The SLI methodology overcomes the feature correspondence problem associated with the 

StV   by projecting structured patterns. The advantages of using multiple patterns are [6]  

1. Depth resolution is determined by number of patterns 

2. Non ambiguous depth measurement over long ranges  

3. Insensitive to ambient light interference  

4. Insensitive to surface shading or color  

5. Spatial resolution is determined by camera resolution.  
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The main drawback of using multi pattern SLI is that it takes more time to scan the target 

object and thus not suitable for the target objects which are in motion during the scan 

time. To overcome this drawback, a single pattern technique [7] is used for the dynamic 

scenes but this technique is not as accurate as the multi pattern technique.  

By using multi frequency PMP technique higher accuracy and precision of 3D data can 

be obtained for a static target object [11]. Chun Guan et al introduced a new technique 

called composite pattern (CP) by using the multi frequency PMP patterns for scanning 

dynamic scenes [12]. In this technique, multiple PMP patterns are combined to form a 

single pattern by using communication theory concepts. However, this technique suffers 

from low depth resolution and also carrier frequency detection in the captured pattern. 

Hassebrook et al [6] proposed a new method, “Lock and Hold strategy” to track the 

object motion. In this technique, a ‘lock’ state can be obtained by using methods like 

multiple patterns PMP or single pattern or successive boundary subdivision to determine 

the snake identity. The phase value of each snake is obtained, thereby getting the phase 

value of the camera coordinates. In the hold state a single multi frequency sine wave is 

used and the snake process is used to track the hold state. However it is difficult for 

certain target objects like human hand to be in standstill state in the ‘lock’ state.  

Song Zhang [29] proposed a novel algorithm called ‘Fast three step phase shift 

algorithm’ which must have a high speed projector and a camera. Hall-Holt [8] proposed 

a new method for compensating motion. In this technique motion compensation is 

achieved by tracking the stripe boundaries. Wiese [9] presented a 3D scanning system 

which uses both structured light and stereo vision and proposed a stereo phase shift 

method for motion compensation. In this method, the motion compensation is performed 

on each pixel by analyzing the motion error. Soren Konig [10] proposed a novel motion 

compensation technique where two additional patterns (on and off patterns) are 

introduced between the structured light patterns to track the motion. 

The main aim of the research work is to compensate for the error that occurred in 3D 

reconstruction due to the motion of the target object during the scan time. In our method, 

we interleave a single pattern in between each SLI pattern. We then track motion of these 
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interleaved patterns and correct the SLI pattern set for object motion during the scan. We 

call this “Pattern Interleaving (PIL)” 

 This technique uses the traditional PMP technique, a robust algorithm for static 3D 

scanning, thereby making the traditional PMP insensitive to motion.   

1.1 Thesis Organization  

This thesis is organized into six chapters, chapter one gives the introduction to the 

research work and the objective of the research work. Chapter two gives the description 

of SLI technique, description of multi frequency Phase Measuring Profilometry (PMP)  

is presented, the importance of the calibration and a mathematical relationship between 

the camera coordinates and the world coordinates is presented. Chapter three introduces a 

new technique, Pattern Interleaving (PIL), which is used to compensate the ‘z’ motion 

during the scan time. Chapter four presents an approach to compensate the lateral 

movement of the object during the scan time. Chapter five explains the experimental 

results of the 3D reconstruction of the objects obtained by using PIL technique. Chapter 

six is a concluding chapter with a few insights of further research.  
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Chapter 2 Background 
 
We discuss the structured light illumination technique and its advantages. The commonly 

used SLI technique,  Phase Measuring Profilometry, is discussed followed by advantages 

of calibrating the system and the different calibration techniques used that take distortion 

models into account and mathematical relationship between the camera coordinates and 

world coordinates and the projector coordinates is presented.   

2.1 Structured Light Illumination Technique 

One of the most important scanning methodologies used in the active methods for 3D 

shape measurement is SLI. Unlike the passive scanning methods like stereovision, SLI 

overcomes the fundamental ambiguities [12] and it is also simpler and has high precision. 

And another advantage is the cost of using SLI techniques is low and we can achieve 

high speeds. A SLI technique consists of a camera and a projector as shown in the  

Figure 2.1 

 
Figure 2.1 Structured Light Illumination (SLI) setup [27] 
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The projector projects coded light patterns such as stripes, binary codes and gray codes 

etc. on to the target object and the deformed patterns are captured by the camera. As 

shown in the Figure 2.1, the camera, the projector and the target object have to form a 

triangle to detect the deformation. As the captured images are encoded with projector 

coordinates, by decoding the captured images the correspondence matching can be 

obtained.   

2.2 Multi Frequency Phase Measuring Profilometry  

Phase Measuring Profilometry (PMP) is one of the most accurate and robust scanning 

SLI techniques used for 3D reconstruction. In a SLI PMP technique, the projector 

projects the shifted sinusoidal patterns on to the target object which are expressed as [5] 

( ) ( )N
nfyBAyxI ppppp

n
ππ 22cos, −+=                                       (2.1) 

where ( )pp yx ,  are the projector coordinates, pA  and pB  are the constants of the 

projector, f is the frequency of the sine wave and n is the phase shift index and N

represents the total number of sine wave patterns.  

 The deformed projected images are captured by the camera, which is expressed as  

( ) ( ) ( ) ( )( )N
nyxyxByxAyxI cccccccc

n
πφ 2,cos,,, −+=                  (2.2)     

where ( )cc yx ,  are the camera co-ordinates and ( )cc yx ,φ  is the phase of the pixel 

location ( )cc yx ,  and can be calculated as  

( )
( )

( ) 

































=

∑

∑

=

=
N

n

cc
n

N

n

cc
n

cc

N
nyxI

N
nyxI

yx

1

1

2cos,

2sin,
arctan,

π

π

φ                                              (2.3) 

 

The projector co-ordinate can be calculated from the phase obtained in the Eq (2.3) as  

( )
f

yxy
cc

p
π

φ
2

,=                                                                                            (2.4) 

Hence with the help of py  and ( )cc yx ,φ  3D world coordinates can be obtained.  
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In the single frequency PMP, the accuracy of the depth measurement is directly 

proportional to the number of the shifted sine wave patterns used and the spatial 

frequency. However, as the spatial frequency increases the ambiguity error increases.     

To solve this, Chun and Yalla et al proposed multi frequency PMP [5] [12] which is an 

extension of the single frequency PMP.  In the multi frequency PMP, N number of 

frequencies can be used and the total number of shifted sine wave patterns projected is 

constant.  

The multi frequency PMP algorithm is described below  

1.  Project the base frequency PMP and capture it  

2.  Calculate the phase at each pixel of the captured image using Eq. (2.3). This serves as 

the   base frequency for the higher frequencies   

3. Repeat the following steps until all the higher frequencies are projected  

     3.1 capture the higher frequency deformed patterns  

     3.2 calculate the phase using Eq. (2.3) and the phase value lies in the range of 0-2π 

     3.3 unwrap the phase obtained above using the base frequency obtained in step 2 and 

subtract π to bring it in the range of (-π, π]. This new phase is used to unwrap the 

phase for the next higher frequency.  

4. Calculate py  from the phase obtained above and find the 3D world coordinates  

2.3 Calibration 
 Camera calibration plays a prominent role in 3D data acquisition process. With the help 

of camera calibration 3D depth information can be extracted. The main aim of the camera 

calibration is to form a relationship between the target object, projector and the camera. 

Thus, a mathematical relationship between the world coordinates, projector coordinates 

and the camera coordinates have to be established. This mathematical relationship is 

affected by two parameters intrinsic parameters and the extrinsic parameters. Intrinsic 

parameters are mainly related to the camera characteristics like focal length, optical 

center, pixel scale factors and the distortion parameters. Extrinsic parameters are those 

which   describe the position of camera coordinate system with respect to the world 

coordinate system. Thus, camera calibration is the process of estimating the above said 
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parameters. In general, if the camera is calibrated accurately, the error in 3D 

reconstruction is minimal.  

2.3.1 Lens Distortions:  

Lens distortions, which are occurred by optical aberrations, play a prominent role in the 

3D reconstruction so it is very important to take these distortions into consideration when 

performing calibration. Lens distortions are of two types  

1. Radial distortion  

2. Perspective distortion.  

Radial distortion: Radial distortion occurs when the image points are distorted in the 

radial direction from the optical center. Depending upon the radial direction from the 

optical center, radial distortion is classified into two types 

1.  Barrel distortion  

2. Pincushion distortion  

When the image points move towards the optical center along the radial direction then 

that distortion is called “Barrel distortion”. If the image points move away from the 

optical center along the radial direction then that distortion is called “Pincushion 

distortion”.  

The barrel distortion and the pincushion distortion of a rectangular grid are shown in 

Figure 2.2 .The solid line is the original rectangular object and dotted lines represent the 

distortion of the rectangular object.  
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Figure 2.2  Radial Distortion (a) Barrel distortion (b) Pincushion distortion. [19] 

  

Perspective Distortion: Perspective distortion in an image occurs when the distance 

between the object and the lens is changed. The perspective distortion of a rectangular 

grid is shown in Figure 2.3 
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         Figure 2.3 Perspective distortion of a rectangular grid [28] 

             
As already mentioned, higher the accuracy of the calibration of camera parameters the 

better is the 3D reconstruction. So these distortion parameters play a huge role in 3D 

reconstruction.  

Hall [14] proposed a camera calibration technique, in which the transformation matrix is 

achieved by using linear techniques. O.D.Faugeras and G.Toscani [15] proposed a 

solution to estimate the camera parameters by considering two cases, with and without 

the knowledge of 3D world coordinates. In the first case, camera parameters are obtained 

by using linear least squares approach. In the second case, the camera parameters are 

obtained by matching features and recursively performing kalman filtering to estimate the 

parameters. However, the main disadvantage of using these linear techniques is higher 

accuracy can’t be achieved when the distortion parameters are taken into consideration. 

Brown [16] proposed the plumb line method to calibrate the lens distortions (radial and 

tangential). Salvi[17] proposed a non linear optimization technique to calibrate the 

camera by considering the distortion parameters. Higher accuracy can be achieved by 

using this technique but the initial guess for the iterative algorithm to achieve 
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convergence is the main limitation to this technique. Tsai [18] proposed a new calibration 

technique that considers the lens distortion. In this method, camera parameters (intrinsic 

and extrinsic) are estimated by single view of coplanar and non-coplanar points.  

Weng et al [19] proposed a two-step calibration technique, in the first step camera 

parameters are estimated by using linear methods without considering the distortion and 

in the second step these estimated camera parameters are iterated through non linear 

optimized techniques by considering distortion parameters. The initial guess for the 

second step is obtained from the step one. Zhang [13] presented a new calibration 

technique, the camera parameters are estimated by observing a planar pattern at different 

orientations and using a closed form solution. The nonlinear refinement, by considering 

radial distortion, of the camera parameters is done by maximum likelihood criteria.  

Wang et al [20] proposed a new calibration model for lens distortion. The basic idea of 

this model lies in mathematically expressing the decentering and tilt distortion in a 

transform consisting of rotation and translation. Thus, this transform is described as two 

angular parameters and two linear parameters. The two angular parameters describe the 

pose of the sensor array plane with respect to ideal image plane and the two linear 

parameters describe location of the sensor array with respect to optical axis.  

Guangjun Zhang et al [21] proposed a new calibration algorithm for radial distortion 

based on cross ratio invariability of the perspective projection. De Xu et al[22] proposed 

a new calibration method to correct the large lens distortions using a planar grid pattern. 

In this method, an iterative algorithm is used initially to adjust the distortion parameters 

and later the camera parameters are estimated when the distortion parameters are 

adjusted. Zhengyou Zhang [23] presented a new calibration technique by considering the 

epipolar geometry between the two images having lens distortion. This method is based 

on the idea that a point in one image and the corresponding point in another image should 

lie on an epipolar curve instead of straight lines (which is the case for distortionless 

models). Basing on this epipolar constraint the distortion parameters and the camera 

parameters are estimated. Lili Ma et al[24] presented a piece wise radial distortion model 

correction for the camera calibration. In this technique the distortion parameters are 

solved analytically. Simone Graf and Tobias Hanning [25] also presented a method 

where the camera parameters can be solved analytically.  
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 Frederic Devernay and Faugeras [26] proposed an automatic calibration for the 

distortion. This method is based on the idea, that a projection of every line in a space on 

to the camera is a line if the camera is modeled as a pin hole model. This method doesn’t 

require any calibration object and it requires images of scenes containing 3D segments. 

Edge extraction is performed initially on the distorted video sequence followed by a 

polygonal approximation to extract lines and then finding the distortion parameters that 

transfers edges to segments.  

 

2.3.2 Mathematical Relationship between the camera coordinates, 

world coordinates and projector coordinates 

As already explained, camera calibration is the process of establishing relationship 

between the camera coordinates and the world coordinates and also establishing the 

relationship between the world coordinates and projector coordinates. Camera calibration 

is achieved by estimating intrinsic and extrinsic parameters. Extrinsic parameters are 

mainly dependent on the camera position and camera orientation with respect to the 

world frame and intrinsic parameters are mainly dependent on the camera internal 

characteristics such as focal length, scale factors etc.  

The transformation of the world coordinates and the camera coordinates is achieved by 

the following four steps [5] [15] [18][27] 

1. Rigid body transformation  

2. Projective transformation  

3. Lens Distortion  

4. Mapping from the camera coordinates to image pixel location  

Let ( )cc yx ,  be the camera image coordinates, ( )www ZYX ,,  be the world coordinates and 

( )ccc ZYX ,,  be the 3D camera coordinates.  

Rigid body transformation:  

The rigid body transformation is given as  

 

(2.6) 
1333 ×× +
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where 33×R  is the rotation matrix and 13×T is the translation matrix are the extrinsic 

parameters  given as  

            















=×
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Perspective projection: 

 Let us consider ( )uu YX ,  is the undistorted image coordinates and f is the focal length 

of the camera. By considering the camera as a pin-hole model, the perspective projection 

is 









= c

c
u

Z
XfX           (2.7a) 









= c

c
u

Z
YfY

          (2.7b)
 

Lens Distortion: 

Let ( )dd YX ,  be the undistorted image coordinates, by considering the radial distortion 

into account we get  

X
du DXX +=                       (2.8a) 

Y
du DYY +=                   (2.8b) 

XD  is the distortion in x direction defined as  

                ( )++= 4
2

2
1 rkrkXD d

X             (2.9a) 

 YD  is the distortion in y direction defined as  

( )++= 4
2

2
1 rkrkYD d

Y              (2.9b) 

where 1k  and 2k are the radial parameters and r  is given as  
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  ( ) ( )( )22 dd YXr +=              (2.10) 

Mapping from the camera coordinates to image pixel location: 

Finally the camera coordinates measured are mapped to the camera image coordinates in 

the frame buffer as  












+
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where 0cx , 0cy  are the constant offsets in x and y  directions respectively, XS  and yS  

are the scale factors in x and y directions respectively  

These parameters, focal length, radial parameters, scale factors and constant offsets, are 

intrinsic parameters.  

Thus, the transformation of world coordinates to the camera coordinates is expressed as  
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where  s is the scale factor              

Thus Eq. (2.12) can be expressed as  
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where 43×M  is called the perspective transformation matrix and it can be also written as  
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Thus, Eq. (2.12) becomes  
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Thus, the calibration procedure which is used to estimate the intrinsic and extrinsic 

parameters is obtained by estimating the perspective transformation matrix.  

As the optical models for both projector and the camera are same, the calibration 

procedure for a structured light illumination system is the calculation of perspective 

matrices of camera and projector which is given as  
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From Eq. (2.15) the camera coordinates cane be written as 
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=      (2.19)  

This perspective matrix has 11 independent variables and it is computed by two most 

prominent techniques  

1. Singular Value Decomposition(SVD) technique  

2. Least squares solution technique 

 

Singular Value Decomposition (SVD) technique: [5] 

By rearranging the Eq. (2.18) and Eq. (2.19) we can write in a linear form as  

0122 =×
cc

M mA    
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where c
MA 122 × is given as  
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[ ]Twcwcwcwcc mmmmm 34131211 =      (2.21) 

By using SVD technique cm  can be obtained with the help of  
Tc

M UDVA =×122          (2.22) 

Where U is a 122 ×M sized matrix and the columns of this matrix are orthogonal vectors  

D  is a positive diagonal eigen value matrix and V  is a 1212×  sized matrix whose 

columns are orthogonal. There exists only one nontrivial solution that corresponds to the 

last column of V  and this is the solution to wcM 43× . Similar procedure is used to  

obtain wpM 43× .  

After the calibration is performed, the reconstruction procedure is obtained using  

[ ] DCZYXP Twwww 1−==                 (2.23) 

where  
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 In the above equations, only the vertical direction of the projector is encoded.  
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  Least squares solution method:      

The world to camera coordinate transformations are given in the Eqns (2.18) and (2.19) 

 From these equations we can observe that there are infinite number of solutions as there 

is an unknown coefficient in every term so by making wcm34 and wpm34 equal to 1 we can 

obtain a linear transform at the world origin. This assumption holds well because the 

perspective transformation matrices are defined to scale factor. [30].  

Therefore,  

 [ ] Twcwcwcwcwcwcwcwcwcwcwcc mmmmmmmmmmmm 3332312423222114131211=  (2.24) 

is obtained by solving the linear equation BAmc = where A is given as  
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and B is given as  

[ ]c
ii xB =−12     [ ]c

ii yB =2                (2.26) 

The vector cm is obtained by pseudo inverse solution as  

( ) BAAAm TTc 1−
=           (2.27) 

Similar procedure is used to obtain pm . After the calibration is performed, the 

reconstruction procedure is obtained using  
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[ ] DCZYXP Twwww 1−==                (2.28) 

 

where  
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In the above equations, only the vertical direction of the projector is encoded.  
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Chapter 3 Pattern Interleaving (PIL) Technique 

3.1 Introduction 

Pattern Interleaving (PIL) is a novel technique used to obtain high density single scan 

image when the object is in motion during the scan time. It uses the robust SLI scanning 

method, Phase Measuring Profilometry (PMP) there by making the traditional PMP 

insensitive to depth of ‘z’ motion. When the object is in motion during the scan time it is 

difficult to get high density single scan image because of the movement of the PMP sine 

wave patterns. In Figure 3.1 we show the 3D reconstruction of a smooth surface when it 

is in static state and in Figure 3.2 when it is in motion during the scan time.  

 
Figure 3.1 Static 3D reconstruction of a static surface 
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Figure 3.2 3D reconstruction of a smooth surface in motion 

 

The main objective of the PIL technique is to correct the movement of the sine waves that 

occurs during the scan time and thereby reducing the motion banding. Thus, making 

traditional PMP insensitive to ‘z’ motion and thereby preventing motion banding by 

correcting for the motion.  

3.2 Description of Pattern Interleaving (PIL) Technique 

In PIL technique, traditional PMP patterns are projected in between the triangular wave 

patterns (PIL patterns) of constant frequency. The pattern sequence is shown  

in Figure 3.3 
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0tt =

1tt =

3tt =
2tt =

4tt =

0T
0P

1T
1P

2T  
Figure 3.3 Pattern sequence 

 
 where nT  is the PIL pattern and n varies from 0 to N  where 1+N  is the total number of 

PIL patterns and nP  is the PMP pattern and n varies from 0 to 1−N  and ∑
=

=

np

p
pt

0

is the scan 

time where pp tt >+1 . 

The motion correction is accomplished with the help of two triangular wave patterns  

(PIL patterns) projected before and after the sine wave pattern. The pictorial 

representation of the PIL technique is shown in Figure 3.4 

offset (in pixels)

offset(in pixels)

1

N-1

0

1

2

N

PMP patterns Triangular snake 
patterns Difference Image 

0

 
Figure 3.4 Pictorial representation of PIL technique 
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With the help of two triangular wave patterns the movement of the target object from one 

time frame to another time frame is tracked.  The process of creating a difference image 

as shown in the Figure 3.4 is the difference of the two respective triangular wave peaks. 

The peaks are encoded as +1 and non-peaks as 0 so the difference results in the values of 

{ }1,0,1 −+ .The lines in the difference image are the ‘snakes’ where the bold lines in the 

difference image indicates the positive peak locations and the dotted lines indicates the 

negative peak locations, the distance between these two (which is measured in pixels) 

gives the movement of the target object from one PIL pattern to the next PIL pattern. 

This tracked movement or the offset between the two PIL patterns helps to correct the 

PMP pattern in between these two PIL patterns. That is, the movement in the sine wave 

pattern is corrected by shifting the sine waves with half amount of the calculated offset 

(since PMP pattern is half way between the PIL patterns) plus the accumulated sum of 

the offsets of the previous PIL patterns. For example, for correcting 0P PMP pattern the 

offset between 0T  and 1T  snakes is calculated and the sine waves of the 0P pattern are 

shifted by half amount of the offset of 0T and 1T . For correcting 4P  PMP pattern the offset 

which is used to correct the sine waves is half of the offset of 4T and 5T  PIL patterns and 

sum of the offsets of the previous PIL patterns, that is, 0T  and 1T ;  1T  and 2T ; 2T  and 3T . 
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3.3 PIL Algorithm               

Let ( )yxPn , be the n th PMP pattern which is in motion where x =0, 1,…..( 1−xN )  

and y =0, 1,2…( 1−yM ) and n  is the frame number ranges from 0 to 1−N where 1+N

represents the total number of the PIL frames. Let ( )yxTn ,  be the n th PIL pattern which 

is also in motion.  

Step1: Filtering the PIL patterns 

The PIL images are filtered to remove the noise. Let ( )yxCn , be the PIL image which is 

filtered by using a moving average filter such that   

     ( ) ( ) ( )yxhyxTyxC nn ,*,, =                      (3.1) 

where ( ) 







=

x

yrectyxh
τ

, 










y

xrect
τ

 

and  ‘*’ represents convolution  

Step 2: Finding the peak to side lobe ratio 

Let ( )yxPSRn ,  be the peak to side lobe ratio for the filtered PIL images and it is 

calculated as  

( ) ( )
( ) ( ){ }ττ +−

=
yxCyxC

yxC
yxPSR

nn

n
n ,,,max

,
,          (3.2) 

where τ  is the side lobe spacing  

Step3: Snake detection and encoding 

Snakes detection is performed by looking at the locations where nPSR  is maximum as 

snakes represent the maximum nPSR locations. By performing snake detection, we can 

make snakes visible and thus make it easier to calculate the offset that occurred due to the 

motion in the PIL pattern images. Let ( )yxSn , be the snake image. The snake masking is 

mainly carried out in two steps  

1. Snake Locations 

2. Snake Peaking 
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Snake Locations: For a pixel to be encoded as a peak the PSR at that pixel must be 

greater than the predetermined threshold and the intensity or the peak value at that pixel 

must be greater than a predetermined minimum value. The resulting regions encoded 

with 255 contain the snake center positions. To determine the most likely snake centers, 

we apply “Snake Peaking” process. 

 Snake Peaking: After creating low region (zero values) and a high region (255 values) 

we need to run the snake process in two states  

1. Search for the start of high region (state 0)  

2. Search for the end of high region (state 1)  

First, search for the start of high region (search for value 255) if a value of 255 is found 

then encode that location as peak and as a start location and then go to state 1. In state 1, 

search for value 0 and assign the location as an end location. Search for maximum PSR  

between the start and end locations, if a maximum PSR is obtained encode that location 

as peak and assign a value of 255 at that location and  go to state 0. 
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A flowchart explaining the process of snake detection is shown in Figure 3.5 
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Figure 3.5 Flowchart of snake detection 

                                                                                                                                                         
 

 Initializing the mask: 
( ) 255, =yxSn  

 If ( ) ( ) 0,min, =⇒< yxSPeakyxC nn  
 If  ( ) ( ) 0,min, =⇒< yxSPSRyxPSR nn  
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=
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Step 4: Finding the offset 

Let the difference image between the two snake images be    

( ) ( ) ( )yxSyxSyxD nnn ,,, 1 −= −                      (3.3) 

if the difference between the two snake images is zero, then there is no movement 

that is, if   ( ) 0, =yxDn  there is no movement otherwise if ( ) 0, >yxDn there is 

movement. Let  { }pyx,  where p =0, 1, 2…. 1−P be the positive peak locations in the 

difference image, that is, ( ) 0, >pn yxD . As we are considering the movement in y 

direction, the x value can be ignored and P is the total number of positive peak locations 

in the difference image. Similarly let { }qyx,  where q =0, 1, 2…. 1−Q  be the negative 

peak locations in the difference image, that is, ( ) 0, <qn yxD . Q  is the total number of the 

negative peak locations in the difference image. The offset, due to motion, is calculated 

as the magnitude of the difference between the positive peak and its associated negative 

peak   Let ndy be the offset which is calculated as  

qpn yydy −≡                                                                                          (3.4)                       

Step 5: Compensating the PIL patterns:   

The PIL images can be compensated with the help of the offsets obtained in Eq.(3.4) 

depending on the movement of the object with reference to camera  Let us consider my  

and 1−my be the locations of the adjacent snakes in ( )yxSn ,  where m=0, 1, 2… 1−M . M  

is the total number of snakes in the image. From Eq.(3.4) we know that mdy  is the offset 

occurred due to motion at my  in ( )yxSn ,  image with respect to ( )yxSn ,1−  image. 

Similarly we know that 1−mdy is the offset due to motion at 1−my  in ( )yxSn ,  image with 

respect to ( )yxSn ,1− . These can be expressed as  

( ) ( )mnm yxdyxdy ,=               (3.5) 

( ) ( )11 , −− = mnm yxdyxdy          (3.6) 
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The offsets between the adjacent snakes can be estimated by the interpolation of the 

offsets that occurred at the snakes. That is, the offsets between my  and 1−my  can be 

estimated by interpolating with the help of mdy and 1−mdy . 

The offset values between the peaks is interpolated such that  

 ( ) mmn byayxdy +×=,       for ( ) ( )xyyxy mm ≤≤−1      (3.7)           

The values of ma and mb  are obtained with the help of two equations shown below  

        ( )( ) mmmmn byaxyxdy +×=,          (3.8) 

       ( )( ) mmmmn byaxyxdy +×= −− 11,      (3.9) 

As we know ( )( )xyxdy mn , , ( )xym , ( )( )xyxdy mn 1, −  and  ( )xym 1−  , ma and mb  values can be  

 calculated easily   

                               
( ) ( )

1

1,,

−

−

−
−

=
mm

mnmn
m yy

yxdyyxdy
a                   (3.10) 

                               ( ) mmmnm yayxdyb −= ,                  (3.11) 

The motion correction of the snake image is   

         ( )( ) ( )yxSyxdyyxS nnn ,,, 1−=+    for ( ) ( )xyyxy mm ≤≤−1                               (3.12) 

With the help of Eq(3.7) the PMP images are motion compensated. As the PMP images 

contributes only half of that of PIL images the offset is taken as 
( )
2

, yxdyn instead of 

( )yxdyn , and we require the previous offsets to accurately align all the PMP patterns  

The compensation of the PMP patterns is as follows  

         ( ) ( ) ( )yxPyxdy
yxdy

yxP n

nk

k
k

n
n ,,

2
,

,
1

1
=








++ ∑

−=

=

  for ( ) ( )xyyxy mm ≤≤−1         (3.13) 
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 3.4 Experiments and results 

3.4.1 Estimating offset between the two successive PIL patterns  
As explained in the section 3.3, in order to track the movement of the target object during 

the scan time we need to find the difference between the two successive snake masked 

PIL patterns. The two successive PIL snake masked patterns are shown in Figure 3.6 and 

Figure 3.7 

 
 Figure 3.6 Snake masked 0T  PIL pattern  

 
    Figure 3.7 Snake masked 1T  PIL pattern 
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The difference between the two snaked masked PIL patterns (Figure 3.6 and Figure 3.7) 

is shown in Figure 3.8 

 
Figure 3.8 Difference image of the snake masked 0T PIL pattern and 1T  PIL pattern 

A cropped out section of  Figure 3.8  is shown in  Figure 3.9 

 
Figure 3.9 Cropped section of the difference image 

The white line in the difference image indicates the positive peak locations and the black 

lines in the difference image indicate the negative peak locations. The difference between 

Negative 
peak 

Positive 
peak 
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these two gives the offset or the movement of the object at that location from one PIL 

frame to the next PIL frame.  

 
A cross sectional plot of the intensity of the middle column of the difference image is 

shown in  Figure 3.10 for better visualization of the positive and negative locations  

 
Figure 3.10 Middle column intensity of the difference image 

If the object is moving towards the camera the difference between the negative peak and 

the corresponding positive peak will give the movement or the offset which is the case as 

shown in the figure above similarly if the target object is moving away from the camera 

the difference between the positive peak and the corresponding negative peak will give 

the offset.  That is, from Eq(3.4) we have  

 ( ) 0, >qpn yydy  When the object is moving away from the camera 

    ( ) 0, <qpn yydy When the obj

ect is moving towards the camera 

However, the magnitude of the distance between the negative peak and positive peak (or 

positive peak and negative peak) will give the offset.   
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A cross sectional plot of the offsets (the movement of the 1T  PIL pattern with respect to 

0T  PIL pattern) for the middle column locations is shown in Figure 3.11 

 
Figure 3.11 dy for the pixel locations of the middle column at snake locations 

From the Figure 3.11 we can determine the offset at the pixel locations (snake locations) 

for the middle column of 1T  PIL pattern with respect to the 0T  PIL pattern. Similarly one 

can find out the offset at the other columns snake locations for 1T  PIL pattern.  
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3.4.2 Interpolating the offset to correct the PMP pattern 

The offset which is calculated above is used only to correct the snake locations, so in 

order to correct the typical PMP pattern we need to know the offset between the snakes.  

 

 
Figure 3.12 Need for interpolating the offset between the snake regions 

To calculate the offset between the snake regions, as explained in section 3.3, we use 

linear interpolation to find out the offsets between the snake regions with the help of 

known offsets at the snake locations which is explained in the section 3.4.1.  
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A cross sectional plot of the interpolated offsets for a middle column is shown  

in Figure 3.13 

 
Figure 3.13 Figure showing the offset at the snake locations and the interpolated offset 

between the snake regions 

From the Figure 3.13 we can observe that the blue lines indicate the offsets which are 

calculated in the section 3.4.1 and the green line indicates the interpolated offsets 

between the snake locations by using the help of the offsets at the snake locations.  
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3.4.3 Result of PIL technique 

The 3D reconstruction of a smooth surface by using PIL technique is shown in        

Figure 3.14 (a) and the filtered 3D reconstructed image is shown in Figure 3.14 (b). 

 
(a)                                                                       (b) 

Figure 3.14 (a) 3D reconstruction of a smooth surface using PIL technique (b) filtered 3D 
reconstructed smooth surface using PIL 

  
A cross sectional side view of the 3D reconstruction of static smooth surface, smooth 

surface in motion and smooth surface in motion corrected by PIL technique are shown in   

Figure 3.15 for better visualization of the results.  
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(a)                     (b)                   (c) 

  Figure 3.15  (a)Side view of static 3D reconstruction of smooth surface (b) side view of the 3D 
reconstructed smooth surface in motion (c) side view of the 3D reconstructed smooth surface                      

using PIL technique 

 
From the Figure 3.15 (b), we can clearly see that due to motion on the smooth surface 

during scan time the 3D reconstruction of smooth surface contains ripples unlike static 

smooth surface as shown in Figure 3.15 (a). From the Figure 3.15 (c), we can see that by 

applying the PIL technique the ripples are significantly reduced and the 3D 

reconstruction of smooth surface using PIL technique looks approximately similar to the 

static 3D reconstruction.   
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3.5 Band Ripple Measurement 

3.5.1 Calculation of Band Energy for an ideal ripple  
To objectively evaluate the performance of PIL, we need a motion banding measure. We 

introduce a “band energy measure” where band energy is defined as the ratio of  the peak 

to peak distance of ripples to the wavelength of the ripples.  

λ
hbe =                           (3.14) 

Where eb  is the average band energy, λ  is the wavelength of the ripples and h is the 

peak to peak distance of ripples. 

 

The calculation of band energy for an ideal ripple (sine wave) is shown in the Figure 3.16 

h

A B

C

a
b

λ=c

 
Figure 3.16  Ideal ripple 

From the Figure 3.16, we can observe that the points A , B and C  form a triangle where 

A and B are the maximum peaks of a ripple and C is the valley point of a ripple and a, b 

and c are the corresponding distances or the length of sides of a triangle. Therefore, the 

wavelength of a ripple is nothing but the distance between the points A and B, which is c. 
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To calculate the peak to peak distance of a ripple, initially we use Heron’s formula to 

calculate the area of the triangle and after that we can get the peak to peak distance of the 

ripple from the area calculated.    

The area of a triangle is calculated from Heron’s formula as follows  

    ( ) ( )( )csbsassArea −−−=   where semi-perimeter 
2

cbas ++
=  

The peak to peak distance of the ripple is calculated as  

λ
Areah ×

=
2   

since λ is the base of the triangle.  

As the peak points and the valley points are expressed in world coordinates, the band 

energy measure is independent of the orientation.  

3.5.2 Calculation of Band Energy without PIL correction 

Band energy for a smooth surface target without PIL correction is calculated with the 

help of GL3D View software as shown in Figure 3.17 

 
Figure 3.17 Measuring Band Energy of a smooth surface without PIL correction 
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From the  Figure 3.17, the green and red points denote the maximum peak points and 

blue point is valley point. The horizontal orientation of ripples is shown in Figure 3.18 

 
Figure 3.18 Measuring wavelength of ripples of a smooth surface without PIL correction 

 
From Figure 3.18, we can clearly see that these three points form a triangle and the length 

of the sides can be easily measured with the help of measurement panel. The wavelength 

of the ripple is nothing but the distance between the red point and the green point as 

shown in the Figure 3.18. As we know the length of the sides of the triangle we can easily 

measure the peak to peak distance of the ripple as explained in the section 3.5.1   

The wavelength which is measured in world coordinates is obtained as 7.04474 mm and 

the approximate peak to peak distance calculated is 1.9265 mm.  

Therefore, average band energy is =eb 1.9265 mm /7.04474 mm 

                      = 0.2735. 
 
The average band energy without PIL correction is 0.2735.  

3.5.3 Calculation of Band Energy after PIL correction 

The procedure for calculating the band energy after PIL correction is same as calculating 

the band energy without PIL correction. The 3D reconstruction of a smooth surface after 

PIL correction is shown in Figure 3.19  
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Figure 3.19 Measuring Band Energy of a smooth surface after PIL correction 

  

The horizontal orientation of the ripples after PIL correction is shown in Figure 3.20 

 
Figure 3.20 Measuring wavelength of the ripples of a smooth surface after PIL correction 
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By applying the same procedure which is used to find band energy for a smooth surface 

without PIL correction we get the wavelength of ripples after PIL correction in world 

coordinates is 6.359 mm and the approximate peak to peak distance is 0.8701  

Average band energy eb   =       0.8701 mm/6.359 mm 

                                         =          0.1368.  

 
Therefore, band attenuation which is defined as the ratio of the band energy using PIL 

technique to the band energy without using PIL technique is  

ab  = 0.1368/0.2735 

     = 0.5001 
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Chapter 4 Lateral Correction Approach 
 
Pattern Interleaving (PIL) Technique is used to correct the ‘z’ motion of the object that 

occurs during the scan time. In this chapter, an approach to correct the lateral movement 

of the object during the scan time is presented.  In this approach, an object with 

distinctive features and a uniform black background is considered as shown in the 

                    Figure 4.1 

 
                    Figure 4.1 Setup arrangement for lateral correction                                                                         

 4.1 Steps to correct the lateral movement 
  
Step 1: Edge enhancement of the PMP patterns:  
 
Two successive PMP patterns are considered to track the lateral or “left to right” motion. 

These two captured images are edge enhanced by using “sobel” edge enhancement 

technique so that the distinctive features more visible.  
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The first captured PMP pattern which is used as a reference to correct the captured 

second captured PMP pattern is shown in the Figure 4.2 

 
Figure 4.2 First captured PMP pattern 

A marker point is used to show the movement from one frame to another frame. The 

second captured PMP pattern which needs to be compensated in the motion in the lateral 

direction is shown in the     Figure 4.3 

 
    Figure 4.3 Second captured PMP pattern 

(1017, 580) 

(955,580) 



42 
 

 

We can clearly see that there is a movement in the lateral direction on the second 

captured PMP pattern.  That is, the movement from { } { }580,1017, =yx  to 

{ } { }580,955, =yx . The sobel edge enhanced image of the first captured PMP pattern is 

shown in the Figure 4.4 

 

 

Figure 4.4 Sobel edge enhancement image of the first captured PMP pattern 

The sobel edge enhancement of the second captured PMP pattern is shown  
in the            Figure 4.5 

                                      
 

           Figure 4.5 Sobel edge enhanced image of the second captured PMP pattern 
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Step 2:  Normalized cross correlation of the edge enhanced images 
 
The two edge enhanced images obtained in the step 1 are cross correlated and normalized 

to find out the offset or the movement of the PMP pattern from one frame to another 

frame. 3D cross correlated plot is shown in Figure 4.6 

 
Figure 4.6  3D plot of cross correlation between the two sobel edge enhanced images 

Peak location of the plot helps to figure out the offset that needs to be compensated. In 

general, the offset in ‘x’ direction would be the difference between the peak ‘x’ location 

and the number of rows in the image.  
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Step 3: Compensating the PMP patterns  
 
 The PMP pattern that needs to be corrected is moved laterally with the help of the offset 

obtained in the step 2. The PMP pattern which is laterally corrected is shown in  

the  Figure 4.7 

 
 

Figure 4.7 Corrected second captured PMP pattern 

 
From the Figure 4.7 and Figure 4.2 we could see that the second captured PMP pattern is 

motion compensated in the lateral direction.  Thus, using this approach we are able to 

correct the lateral movement in all the PMP patterns.  

(1017, 580) 



45 
 

Chapter 5 Experiments and Results 
In this section, different experimental results conducted on different objects by 

considering two types of ‘z’ motion are presented. The two types of ‘z’ motion are  

1.  uniform ‘z’ motion  

            2.  non-uniform ‘z’ motion  

In a uniform ‘z’ motion, the object moves in the ‘z’ direction in equal increments and in 

only one direction during the scan time  either towards the SLI system or away from the 

SLI system. In a non-uniform ‘z’ motion, the object moves in the ‘z’ direction in both 

ways during the scan time that is it moves back and forth (towards the SLI system and 

away from the SLI system) during the scan time. The comparison of 3D reconstructed 

results with and without using the PIL algorithm is presented.  

5.1 3D reconstruction of objects in uniform ‘z’ motion 

We present the comparison of the 3D reconstruction of the objects when they are in 

static,  uniform ‘z’ motion during the scan time and motion corrected using PIL technique  

The ‘z’ motion towards the camera and ‘z’ motion away from the camera are considered. 

The side views of the 3D reconstructed images are presented for better visualization of 

the ripples that occurred due to the motion of the object during the scan time and the side 

views of the 3D reconstructed images using PIL are also presented to show the 

correction. 

A smooth surface which is subjected to uniform ‘z’ motion towards the camera is 

considered and the comparison of the 3D reconstruction of the smooth surface when it is 

in static, ‘z’ motion towards the camera and motion corrected using PIL technique is 

shown in the Figure 5.1 
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             (a)               (b)                     (c)  
Figure 5.1 (a) side view of the 3D reconstructed smooth surface in static, (b) side view of the 3D 

reconstructed smooth surface in motion and (c) side view of the 3D reconstructed smooth surface 
using PIL technique. 

 
From the Figure 5.1 we could clearly see that there is no variation in the ‘z’ direction 

when the object is in a static position and there is a variation in the ‘z’ direction when the 

object is subjected to ‘z’ motion during the scan time and we also see the compensation 

of the ‘z’ motion by using PIL technique. The ripples which appeared in Figure 5.1 (b) 

are significantly reduced by using PIL technique as shown in Figure 5.1 (c). 

Similarly, a face mannequin, ‘Alice’ is subjected to uniform motion in ‘z’ direction 

during the scan time.  
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The 3D reconstruction of the Alice in static is shown in the  Figure 5.2. 

 
Figure 5.2 3D reconstruction of a face model 

The side views of the static, motion and motion corrected (using PIL) 3D reconstructed 

images are presented to compare the results are shown in the Figure 5.3. 

 
      

(a)                                             (b)                                                  (c) 

Figure 5.3 (a) cropped side view of the static 3D reconstructed face model (b) cropped side view of 
the 3D reconstructed face model in motion (c) cropped side view of the 3D reconstructed face model 
using PIL technique.  
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Instead of moving towards the camera, a smooth surface is subjected to ‘z’ motion away 

from the camera during the scan time. The comparison of the side views of the 3D 

reconstructed smooth surface when it is in static, ‘z’ motion away from the camera and 

the motion corrected using PIL are shown in the Figure 5.4 

                                     
                                        (a)             (b)             (c)  

Figure 5.4 (a) side view of the static 3D reconstructed smooth surface  (b) side view of the 3D 
reconstructed smooth surface in ‘z’ motion away from the camera (c) side view of the 3D 

reconstructed smooth surface using PIL technique. 

5.2 3D reconstruction of objects in non-uniform ‘z’ motion  

We present the 3D reconstructions of the objects which are subjected to non-uniform ‘z’ 

motion. Cropped side views of the 3D reconstruction of the objects are presented to show 

the ripples that occurred due to non-uniform ‘z’ motion during the scan time and also 

cropped side views of 3D reconstruction of the objects using PIL correction are presented 

to show the correction of the ripples. 
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In this section, a smooth surface which is moved back and forth is considered and also a 

card board hung with strings such that it exhibits free oscillation during the scan time is 

also considered.   

A smooth surface which is moved back and forth in the ‘z’ direction during the scan time 

is considered and the comparison of the cropped side views of the 3D reconstruction of 

the smooth surface in static, in non uniform ‘z’ motion and the motion corrected using 

PIL technique is shown in the Figure 5.5 

       
      (a)                 (b)             (c)  

Figure 5.5 (a) cropped side view static 3D reconstruction of a smooth surface (b) cropped side view of 
the 3D reconstruction of the smooth surface which is subjected to non-uniform motion and (c) 

cropped side view of the 3D reconstruction of the smooth surface using PIL technique. 
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Instead of manually moving the object during the scan time, the object that is held with 

strings is allowed to freely oscillate during the scan time as shown in the Figure 5.6 

 
Figure 5.6 object held with strings to freely oscillate during the scan time 

Thus, the object is held such a way that it exhibits oscillating motion in ‘z’ direction.  

The 3D reconstruction of the object when the object is in static, when the object is in  

non-uniform ‘z’ motion is considered and the 3D reconstruction of the object by using 

PIL technique is obtained.  
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The comparison of the 3D reconstruction of the object in static, in non uniform ’z’ 

motion and the motion corrected using PIL is shown in the Figure 5.7 

           
                (a)                   (b)                (c)  

Figure 5.7 (a) cropped side view static 3D reconstruction of  the surface (b) cropped side view 3D 
reconstruction of the surface when it is oscillating during the scan time and (c) cropped side view of 

the 3D reconstruction of the surface using PIL technique 
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Chapter 6 Conclusion and Future work 

6.1 Conclusion 

In this research work, a new technique called “Pattern Interleaving” (PIL) is presented.  

In PIL technique, an additional pattern (PIL pattern) is introduced to track and correct the 

‘z’ motion of the sine waves during the scan time. By correcting the sine wave patterns, 

we are able to reduce ripples caused by the movement of the object during the scan time. 

In PIL technique, the offset or the movement of the pixels from one frame to another 

frame is obtained with the help of tracking ‘snakes’ of the PIL patterns. To correct the 

PMP patterns, linear interpolation is performed between these snake locations, by taking 

the offset at the snake locations as the reference. There by using PIL technique we are 

able to correct the PMP patterns and reduce the motion banding. 

 Band ripple measurement is performed on the 3D reconstructed object using PIL 

technique to measure the performance of the PIL technique. The comparison of the 3D 

reconstruction of the objects in static, in motion and the motion corrected using PIL is 

performed and we are able to see that the ripples are significantly reduced by using PIL 

technique. 

 An approach to correct the lateral movement of the object during the scan time is also 

presented. In this approach, sobel edge enhancements of the images are obtained and are 

correlated to track the movement in the lateral direction. We leave additional study of the 

lateral motion correction to future work. 

6.2 Future works  
This thesis work is mainly confined to correct the object motion  in ‘z’ direction during 

the scan time. Even though an approach to correct the lateral movement of the object 

during the scan time is presented, still it needs a robust algorithm to track the lateral 

movement. There is also a need to correct the movement in the ‘y’ direction. This can be 

implemented by looking at the phase of the captured PMP patterns. Additionally, we 

correct the ‘z’ motion by shifting the captured PMP patterns which reduces motion 

banding but will blur or corrupt high frequency albedo and depth variations. A better 
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approach would be to correct the phase in the Eq. (2.3) and use it to determine the phase 

map.  
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              Appendix 

 Assumptions and Limitations of PIL technique: 
 
Though PIL technique is used to correct the ‘z’ motion of the object, there is a limitation 

on the maximum constant velocity that the surface can move and it is related to 

triangulation angle, frame rate of the capture and PIL pattern spatial period on the 

surface. Let us assume a camera with a frame rate of N frames/sec is oriented to have its 

optical axis parallel to the Z direction. We assume an average triangulation angle of θ

degrees, the distance of the surface from the camera is R meters, y∆ be the distance 

between the snakes in the PIL pattern and z∆ be the distance of the object in the ‘z’ 

direction from one frame to another frame just to reach ambiguity that is just before 

incorrect snake matching will take place as shown in the Figure 7.1 

 

 
Figure 7.1 SLI arrangement 
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Calculation of z∆ : 
 
From the Figure 7.1, we are able to see two similar triangles as shown in  

 
Figure 7.2 Similar Triangles from Figure 7.1 

From these two similar triangles, we can write  

CP
y

R
z ∆=

∆                                                                                                             (7.1) 

where CP  is the distance between the distance between the camera and the projector.  
 

 From Eq.(7.1) we get  R
CP

yz 





 ∆=∆

                                                                    
(7.2) 

The distance in Eq.(7.2) that would shift one snake to the another. However, we must 

allow for movement in any direction so the boundary of non-ambiguous movement 

would be 
2
z∆ . 

Calculation of the maximum ambiguous surface:   
 
Let maxv  be the maximum allowed velocity that surface can move between frames. From 

2
z∆  and the frame rate we have maximum allowed velocity as  

( )
CP
yRNNzv

2
2/max

∆
=∆=

                                                                                      
(7.3) 
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 Visual C++ code used to correct the object motion in ‘z’ direction 
 

  void CTrial2Dlg::OnBnClickedCorrect() 
  { 
   //file name variables 
   char tfilename[512],tfilereturn1[512],tfilereturn2[512]; 
   char pfilename[512],pfilereturn[512]; 
   char filesave[512],filesavereturn[512]; 
   //open the file          
   strcpy_ansi(tfilename,"C:\\Scanner_Settings\\UofKScanner3\\patterns\\tdm#.bmp"); 
   strcpy_ansi(pfilename,"C:\\Scanner_Settings\\UofKScanner3\\patterns\\pmp#.bmp");    
   //get the size of the image  
   fileindexall(tfilename,long(0),tfilereturn1); 
   bmptest(tfilereturn1,&glbNx,&glbMy); 
   //allocation  
   glbNindex=(long)glbNx*(long)glbMy; 
   pbmpimage=new BMPPIXEL[glbNindex]; 
   tbmpimage1=new BMPPIXEL[glbNindex]; 
   tbmpimage2=new BMPPIXEL[glbNindex]; 
   pcbmpimage=new BMPPIXEL[glbNindex]; 
   tcbmpimage=new BMPPIXEL[glbNindex]; 
   // 
   pshtimage=new short[glbNindex]; 
   tshtimage1=new short[glbNindex]; 
   tshtimage2=new short[glbNindex]; 
   pcshtimage=new short[glbNindex]; 
   tcshtimage=new short[glbNindex]; 
   dimage=new short[glbNindex]; 
   glboffset=new float[glbNindex]; 
   // 
   pvol=new BMPPIXEL[glbNindex*24];  
   int dir;  
   short negpoint[20000],pospoint[20000]; 
   long start,end,n,poffset,toffset,t,p; 
   float a,b,offset1,offset2,off; 
   double offset;  
   n=0; 
   t=0; 
   p=0; 
   short t1negpoint[20000],t2negpoint[20000]; 
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//intialize the offset to 0 
   for(unsigned int i=0;i<glbNx;i++) 
   { 
    for(unsigned int j=0;j<glbMy;j++) 
    { 
     glboffset[j*glbNx+i]=0; 
    } 
   } 
   //get the images  
   long inum; 
   short iresult; 
   for(long inum=0;inum<24;inum++) 
   { 
    iresult=fileindexall(tfilename,inum,tfilereturn1); 
    iresult=fileindexall(tfilename,inum+1,tfilereturn2); 
    iresult=fileindexall(pfilename,inum,pfilereturn); 
    bmpin(tbmpimage1,tfilereturn1,&glbNx,&glbMy); 
    bmpin(tbmpimage2,tfilereturn2,&glbNx,&glbMy); 
    bmpin(pbmpimage,pfilereturn,&glbNx,&glbMy); 
    //convert to short  
    bmp2sht(tshtimage1,tbmpimage1,glbNx,glbMy); 
    bmp2sht(tshtimage2,tbmpimage2,glbNx,glbMy); 
    bmp2sht(pshtimage,pbmpimage,glbNx,glbMy); 
    //nullify the 128's  
    for(unsigned int m=0;m<glbNx;m++) 
    { 
     for(unsigned int j=0;j<glbMy;j++) 
     { 
      if(tshtimage1[j*glbNx+m]==128){tshtimage1[j*glbNx+m]=0;} 
      if(tshtimage2[j*glbNx+m]==128){tshtimage2[j*glbNx+m]=0;} 
                                       if(tshtimage1[j*glbNx+m]==255)         
                                      { 
     t1negpoint[t]=j; 
     t++; 
     if(t>1) 
     { 
      if((t1negpoint[t-1]-t1negpoint[t-2])>60) 
      { tshtimage1[t1negpoint[t-2]*glbNx+m]=0;} 
          
                                                              
 
                                                            if((t1negpoint[t-1]-t1negpoint[t-2])<10) 
      { tshtimage1[t1negpoint[t-1]*glbNx+m]=0; } 
     } 

      } 
      if(tshtimage2[j*glbNx+m]==255) 
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      { 
       t2negpoint[p]=j; 
       p++; 
       if(p>1) 
       { 
        if((t2negpoint[p-1]-t2negpoint[p-2])>60) 
        { 
         tshtimage2[t2negpoint[p-2]*glbNx+m]=0; 
        } 
        if((t2negpoint[p-1]-t2negpoint[p-2])<10) 
        { 
         tshtimage2[t2negpoint[p-1]*glbNx+m]=0; 
        } 
       } 
      } 
       }  
     t=0; 
     p=0; 
    } 
    movesht2sht(tcshtimage,tshtimage2,glbNx,glbMy); 
    movesht2sht(pcshtimage,pshtimage,glbNx,glbMy); 
    subtractsht(dimage,tshtimage1,tshtimage2,glbNx,glbMy); 
    //correction code here 
    for(unsigned int i=0;i<glbNx;i++) 
    { 
     for(unsigned int j=0;j<glbMy;j++) 
     { 
      if(dimage[j*glbNx+i]==-255)// a negative peak is found  
      { 
       //look for the direction of the motion  
       for(unsigned int k=j+1;k<j+10;k++) 
       { 
        if(k<=1024) 
        { 

        if(dimage[k*glbNx+i]==255)    
         { 
         dir=0; //towards the projector 
         negpoint[n]=j; 
         pospoint[n]=k; 
         n=n+1;  
         } 
        } 

       }//end of first 'k' for loop  
       for(unsigned int k=j-1;k>j-10;k--) 
       { 
        if(k<=1024) 
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        { 
         if(dimage[k*glbNx+i]==255)  
         { 
         dir=1;//away from the projector 
         negpoint[n]=j; 
         pospoint[n]=k; 
         n=n+1; 
         } 
        } 
       }//end of second 'k' for loop 
       if((dir==0)&&(n>1)) 
       { 
        start=negpoint[n-2]; 
        end=negpoint[n-1]; 
        offset1=pospoint[n-2]-negpoint[n-2]; 
        offset2=pospoint[n-1]-negpoint[n-1]; 
        a =(offset1-offset2)/float(start-end); 
        b =offset1-float(start)*a; 
        if(inum==0)//this is the first PMP image 
        { 
         glboffset[start*glbNx+i]=offset1; 
         glboffset[(pospoint[n-2])*glbNx+i]=0; 
        }//end of 'if' num  
        //interpolation  
        for(unsigned int p=start;p<=end;p++) 
        { 
         off=float(p)*a+b; 
         offset=off+0.5; 
         if(inum==0)//first image  
         { 
          poffset=(off/2)+0.5; 
          toffset=offset; 
         } 
         else 
    {        
                                             poffset=((off/2)+0.5)+glboffset[(pospoint[n-2])*glbNx+i];  
                                                        toffset=offset+glboffset[pospoint[n-2]*glbNx+i]; 
               } 
          
 
 
                                           if(((p+poffset)<1024)&&((p+toffset)<1024)) 
                                          { 
                  

tcshtimage[(p+toffset)*glbNx+i]=tshtimage2[p*glbNx+i];  
pcshtimage[(p+poffset)*glbNx+i]=pshtimage[p*glbNx+i]; 
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          } 
                                              }//end of interpolation  

                      tcshtimage[(negpoint[n-2])*glbNx+i]=0; 
                     if(inum>=1) 
                   {                           

glboffset[start*glbNx+i]=offset1+glboffset[(pospoint[n-2])*glbNx+i];    
glboffset[pospoint[n-2]*glbNx+i]=0; 

                   } 
         }//end of if 'dir=0' 
         if((dir==1)&&(n>1)) 
        { 
             start=negpoint[n-2]; 
  end=negpoint[n-1]; 
             offset1=pospoint[n-2]-negpoint[n-2]; 
  offset2=pospoint[n-1]-negpoint[n-1]; 
  a=(offset1-offset2)/float(start-end); 
  b=offset1-float(start)*a; 
  if(inum==0)//first PMP 
  { 
      glboffset[start*glbNx+i]=offset1; 
      glboffset[pospoint[n-2]*glbNx+i]=0; 
   }//end of if 'inum' 
   //interpolation 
    for(unsigned int p=start;p<=end;p++) 
    { 
        off=(float(p)*a)+b; 
        offset=off-0.5;  
        if(inum==0) 
       { 
           poffset=(off/2)-0.5; 
           toffset=offset;  
                   } 
                 else 
     { 
        poffset=(off/2-0.5)+glboffset[pospoint[n-2]*glbNx+i]; 
        toffset=offset+glboffset[pospoint[n-2]*glbNx+i]; 
     }          
             
 
 
 
             if(((p+poffset)>0)&&((p+poffset)<1024)) 
  { 
       pcshtimage[(p+poffset)*glbNx+i]=pshtimage[p*glbNx+i];                 

}               
if(((p+toffset)>0)&&((p+toffset)<1024)) 
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 { 
     tcshtimage[(p+toffset)*glbNx+i]=tshtimage2[p*glbNx+i]; 
             } 
      }//end of interpolation  
     tcshtimage[(negpoint[n-2])*glbNx+i]=0; 
         if(inum>0) 
       {  
           glboffset[start*glbNx+i]=offset1+glboffset[(pospoint[n-2])*glbNx+i]; 
           glboffset[pospoint[n-2]*glbNx+i]=0; 
       }       
     } 

               }//end of if 'dimage''-2 
              }//end of j 

    n=0; 
             }//end of i  

  //convert bmp to sht  
  sht2bmp(tcbmpimage,tcshtimage,glbNx,glbMy);  
  strcpy_ansi(filesave,"C:\\patterns\\newtdm#.bmp"); 
  fileindexall(filesave,inum,filesavereturn); 
  bmp2bmp24file(filesavereturn,tcbmpimage,glbNx,glbMy); 
  sht2bmp(pcbmpimage,pcshtimage,glbNx,glbMy); 
  strcpy_ansi(filesave,"C:\\patterns\\newpmp#.bmp"); 
  fileindexall(filesave,inum,filesavereturn); 
   bmp2bmp24file(filesavereturn,pcbmpimage,glbNx,glbMy); 
  /*fltzipper(50,3,1,interpoff,glbNx,glbMy); 
    short Nsidex,Msidey; 
    unsigned char *bimageI; 
    long index; 
    bimageI=new unsigned char [glbNindex]; 
    Nsidex=2; 
    Msidey=2; 
    for(index=0;index<glbNindex;index++) bimageI[index]=10; 
     mat5mvfilter(bimageI,interpoff,glbNx,glbMy,Nsidex,Msidey,1);    
   seasky(interpoff,glbNx,glbMy,0,255,0); 
   flt2bmp(interpoffsetimage,interpoff,glbNx,glbMy); 
   strcpy_ansi(filesave,"C:\\interpdy#.bmp"); 
   fileindexall(filesave,inum+1,filesavereturn); 
   bmp2bmp24file(filesavereturn,interpoffsetimage,glbNx,glbMy); 
      delete [glbNindex] bimageI;*/ 
    
       bmp2volume(pvol,pcbmpimage,glbNx,glbMy,24,inum); 
 
   }//end of inum  
delete [] pbmpimage; 
delete [] tbmpimage1; 
delete [] tbmpimage2; 
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delete [] pcbmpimage; 
delete[] tcbmpimage; 
delete[] pshtimage; 
delete[] tshtimage1; 
delete[] tshtimage2; 
delete[] pcshtimage; 
delete[] tcshtimage; 
delete[] dimage; 
delete[] glboffset;  
 
 float* pphase; 
 pphase=new float[glbNindex]; 
 BMPPIXEL*  bmpphase; 
 bmpphase=new BMPPIXEL[glbNindex]; 
   
 short freq[3],npat[3]; 
 freq[0]=1; 
 freq[1]=8; 
 freq[2]=16; 
 //npat[0]=8; 
 //npat[1]=8; 
 //npat[2]=7; 
 npat[0]=8; 
 npat[1]=8; 
 npat[2]=8;  
 MFPMP2Phase(pphase,pvol,glbNx,glbMy,24,&freq[0],&npat[0],3);  
 flt2bmp(bmpphase,pphase,glbNx,glbMy); 
 char phasefile[512]; 
 strcpy_ansi(phasefile,"C:\\patterns\\phase.bmp"); 
 //strcpy_ansi(phasefile,"C:\\Scanner_Settings\\UofKScanner1\\Patterns\\phase.bmp"); 
 bmp2bmp24file(phasefile,bmpphase,glbNx,glbMy); 
 //strcpy_ansi(phasefile,"C:\\Scanner_Settings\\UofKScanner1\\Patterns\\phase.byt"); 
 strcpy_ansi(phasefile,"C:\\patterns\\phase.byt"); 
 mat5fltfileio(1,phasefile,pphase,glbNx,glbMy); 
 delete []pphase; 
 delete []bmpphase; 
 delete []pvol; 
AfxMessageBox("Complete"); 
 
 
} 
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