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ABSTRACT OF DISSERTATION 
 
 
 
 

INFLUENCES OF HOST SIZE AND HOST QUALITY  
ON HOST USE IN A SEED-FEEDING BEETLE 

 
 For insects that develop inside discrete hosts both host size and host quality 
constrain offspring growth, influencing the evolution of body size and life history traits. 
This dissertation examines the effects of host size, host quality, and intraspecific 
competition on life history and associated traits of populations of the seed-feeding 
beetle S. limbatus adapted to different host plants, and quantifies population differences 
in phenotypic plasticity. Populations of the study correspond to divergent clades of the 
species phylogeography (Colombia and United States). 
 
 Clades compared differ genetically for all traits when beetles were raised in a 
common garden. Contrary to expectations from the local adaptation hypothesis, beetles 
from all populations were larger, developed faster and had higher survivorship when 
reared in Acacia greggii, the larger host. Two host-plant mediated maternal effects were 
found: offspring matured sooner, regardless of their rearing host, when their mothers 
were reared on Pseudosamanea guachapele and females laid larger eggs on Ps. 
guachapele. These results also show that this species in addition to be a smaller is a 
low quality host. Females also laid more eggs and sooner on A. greggii than in Ps. 
guachapele and, laid more eggs on P. guachapele when A. greggii seeds were small 
than when they were large. Eggs were larger when laid on Ps. guachapele and 
Parkinsonia florida, two hosts that reduce survivorship in all populations. However, 
Colombia females laid eggs of similar size on Ps. guachapele and Pa. florida, while 
USA females laid the largest eggs on Pa. florida. Larger beetles were most affected 
when larval competition was increased and seed size decreased. The responses of 
different body sized females were asymmetrical showing significant variation in 
plasticity. 
 
 Although differences between populations in growth and life history traits appear 
to be adaptations to the size and quality of their host plants, host-associated maternal 
effects, partly mediated by maternal egg size plasticity play an important role in the 
evolution of S. limbatus’ diet breadth. More generally, phenotypic plasticity mediates the 
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fitness consequences of using novel hosts, likely facilitating colonization of new hosts 
but also buffering herbivores from selection post-colonization.  
 
 

KEY WORDS: Local adaptation, host use, phenotypic plasticity, Stator limbatus, 

population variation 
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Chapter 1: Introduction 
 

Understanding behavioral, physiological and ecological factors that influence 

host use by insects, and the ways in which these factors interact  to produce variation at 

different levels (within individuals, among individuals within populations, among 

populations, and among species), is an important objective of the field of evolutionary 

ecology (Mazer and Damuth 2001). These factors may have genotypic, phenotypic and 

ecological bases and determine properties of host use such as host performance and 

host discrimination. 

 

The interaction between organisms and their environment, in this case an insect 

and its host plant, is mediated by both behavioral and physiological traits. Ecological 

and environmental factors such as temperature, natural enemies, competition, and host 

quality, impose selection on insect behavior and physiology. For parasitoids and seed 

feeder insects, in which development occurs in a single host and for which larvae 

cannot move among hosts (they are restricted to the host selected by their mother), 

resources are limited by host size. Both host size and quality are therefore major 

determinants of selection on female oviposition decisions and subsequent adaptation to 

host plants. Host size constrains the evolution of adult size and clutch size (Hardy et al. 

1992, Allen and Hunt 2001, Mackauer and Chau 2001, Tsai et al. 2001). Body size 

increases with host size, both among populations and species (i.e., populations and 

species adapted to larger hosts evolve larger body size) and within populations 

(individuals reared on larger hosts tend to mature at larger size; Kirk 1991), though 

there are exceptions to these patterns. For example, in the seed beetle Callosobruchus 

maculatus, the effect of seed size on body size is the opposite: Beetles from 

populations adapted to small size seeds are larger than beetles from populations 

adapted to large seeds. The explanation for this pattern is related to the type of 

competition experienced by larvae developing inside of the seed – beetles adapted to 

small seeds evolve contest competition, which favors large body size, whereas beetles 

that use large seeds evolved scramble competition (Tokenaga and Fuji 1990, Messina 

1991a). 
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Within populations, larger hosts may support a larger number of individuals (e.g., 

larvae), but increased clutch size increases larval competition among co-specifics which 

in turn reduces the resources available to individual larvae, increasing larval mortality 

and because resources run out sooner, reducing larval development time and body size 

at maturation (Fox et al. 1996, Ode et al. 1996, Fox and Savalli 1998). 

 

The quality of the host is influenced by defensive mechanisms in the plant such 

as secondary compounds, and by the nutritional value of the plant tissues. Secondary 

compounds may deter insect feeding or cause higher mortality. Feeding on low 

nutritional hosts may extend development time or even prevent normal development, 

increasing the susceptibility of organisms to pathogens and exposing immature to 

higher probability of mortality by natural enemies (Schoonhoven et al. 1998) among 

others. In consequence, females have evolved strategies to evaluate host quality and 

availability, and adjust their oviposition behavior and their resource allocation to 

offspring. For example, in seed-feeding beetles females avoid adding eggs to seeds 

already bearing eggs (Messina and Renwick 1985, Messina and Mitchell 1989, Tsai et 

al. 2001), adjust clutch size in response to host size (e.g., lay more eggs on larger 

hosts), and tend to distribute their eggs more evenly on smaller seeds (Hardy et al. 

1992). However, the host that females prefer is not always the best for the performance 

or their progeny; female oviposition behaviors evolve in response to host abundance 

(Singer 1983, Jaenike 1990) and other ecological factors that influence larval mortality 

risks, such as susceptibility to natural enemies (Ballabeni et al. 2001, Stamp 2001). 

 

 

1.1 Population Variation in Host Use: Local Adaptation and Phenotypic 
Plasticity 

 

Many studies show the existence of variation in host use within populations - i.e., 

individuals within the same population vary in host preference and behavior to hosts of 

varying quality and size (Mopper et al. 1984, Thompson 1988, Fry 1992, Fox et al. 

1994, Kraaijeveld et al.1995, Hess et al. 1996). Likewise, populations vary substantially 
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in host preference and the behavior of females towards hosts of varying quality and size 

(Prokopy et al. 1984, Papaj 1986, Waring et al. 1990, Singer and Thomas 1996). 

 

In general, there are two sources of variation among and within populations: 

genetic and environmental. These sources interact to generate the phenotypes 

observed in nature. The interaction between genetic and environmental sources of 

variation generates genetic differentiation among populations and phenotypic plasticity 

within populations. In the field of host selection by phytophagous insects, including 

behaviors such as preference for hosts and acceptability of hosts for oviposition may be 

variable (Bernays and Chapman 1994). Variation among populations is mainly due to 

genetic differentiation among populations caused by adaptation to local host species 

being greater than the homogenizing effect of gene flow between populations. 

Disruptive selection (Singer and Parmesan 1993) generates differentiation among 

populations in which some phenotypes are adapted to specific host characteristics, 

leading to local adaptation and host specialization. In contrast, individuals within the 

same population should have very similar patterns of host choice, oviposition 

preference and performance of their offspring (Jaenike 1990) because selection is 

expected to maintain cohesion between individuals of the same population.  

 

This variation also affects female oviposition preference. For example, studies of 

the butterfly Euphydrias editha show that females of Del Puerto Canyon prefer oviposit 

upon their local host than on the host of E. edytha from Indian Flat, and that larvae from 

Del Puerto Canyon, perform better on this host than in the host of larvae from Indian 

Flat (Singer et al. 1988). Populations of P. glaucus from Georgia and Florida were 

tested in their oviposition preference and larval performance, finding significant genetic 

differentiation among populations in these traits. This difference resulted of strong 

selection that enhanced the use of Magnolia on the Florida population (Bossart and 

Scriber 1995). Numerous other studies have now shown similar degrees of adaptation 

to local host plants in herbivorous insects (Mopper 1996). 
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Intrapopulation variation is mainly due to phenotypic plasticity (the expression of 

different phenotypes by a given genotype; Via 1994). Thus, variation in host availability 

could lead to the evolution of phenotypic plasticity being an important mechanism of 

adaptation to variable environments (Futuyma 2001), and facilitating colonization and 

expansion into new environments (Fox and Savalli 2000). Plastic responses to host 

plants may be mediated by maternal experiences, a phenomenon called cross-

generational (or trans-generational) phenotypic plasticity (Mousseau and Dingle 1991) 

in which parents modify the phenotype of their offspring in response to environmental 

conditions (Fox and Mousseau 1998, Lacey 1998). Because oviposition behavior and 

host choice are maternal characters the environment in which females develop and their 

phenotype may influence offspring performance and survivorship. For example, In the 

seed beetles Stator limbatus and Callosobruchus maculatus there is a strong influence 

of the clutch size on offspring size and development time. Large clutches per seed 

produce small progeny hatching from small eggs in C. maculatus and extension of 

development time to reach a normal body size in S. limbatus (Fox 2000b). Females may 

also be able to program developmental changes in offspring in response to 

environmental cues (Csezack and Fox 2003). 

 

1.2 Stator limbatus: a system to study population variation in host use 
 

Stator limbatus is a seed feeding beetle (Coleoptera: Chrysomelidae: Bruchinae) 

with a broad distribution in the Americas. Populations are found from the northwest of 

Argentina to the southwest in the United States (Johnson and Kingsolver 1976, Johnson 

et al. 1989). This species lives mostly in desert or semiarid environments and use ≥ 80 

host plant species in at least 9 genera throughout its broad distribution. Although S. 

limbatus is considered a generalist because of the large number of hosts it uses, host 

use varies substantially among localities and most populations use few hosts and are 

thus specialists relative to the diversity of plant species available to them (Fox et al. 

1995, Morse and Farrell 2005a, b). 
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Females of S. limbatus oviposit directly onto the mature seeds of their hosts. 

After hatching, the larvae burrow into, and develop completely inside, the seed. Beetles 

emerge from seeds as adults and start oviposition 12-48 h later. The complete life cycle 

takes 28-30 days at 28oC. 

 

Studies previously done with this beetle have shown local adaptation of 

populations differing in their native host. For example, the Scottsdale population 

(Arizona) collected from Parkinsonia florida and the Black Canyon population (Arizona) 

collected from Acacia greggii differ in preference for host seeds and have higher 

fecundity and perform better on their native host. The differences in survivorship and 

development time observed between these populations represent genetic differences in 

the ability of populations to use P. florida and are also mediated by maternal effects 

(Fox et al. 1994). Similar results have been shown using other populations differing in 

their native host plant (Fox et al. 1997). 

 

Given that this beetle develops completely inside a single seed, and is unable to 

move among seeds, the physiological and ecological factors that mediate adaptation to 

host seeds will be directed largely to overcome hurdles to access and use individual 

seeds; among those hurdles are seed size, seed quality, and intra and interpopulation 

competition. Seed composition of the hosts that populations of S. limbatus use vary, 

imposing substantial variation in selection on individuals using these species. Because 

host use varies among populations, this variation in selection favors local adaptation 

and thus substantial differentiation among populations that use different host species. 

For example, populations from Arizona use as their major hosts seeds of Acacia greggii 

and Parkinsonia florida which differ in the chemical composition of their seed coats. A. 

greggii seeds do not have toxic substances in their seed coat and thus larvae reared on 

these seeds have high survival, regardless of egg size. This allows females to lay small 

eggs, and thus have high fecundity, when their larvae will develop on A. greggii seeds. 

In contrast, seed coats of P. florida seeds are largely resistant to penetration by beetle 

larvae, and there is a large effect of egg size on larval survival (larvae from large eggs 

are better able to penetrate seed coats than are larvae from small seeds). This imposes 
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selection on egg size and females have responded by evolving egg size plasticity in 

which they lay larger eggs on seeds of P. florida (and necessarily have lower fecundity) 

than when ovipositing on seeds of A. greggii (on which they lay smaller eggs and have 

higher fecundity) (Fox et al. 1999). Thus, when comparing selection across the three 

host species commonly used by S. limbatus in the southwestern United States, there is 

intense selection for egg size when eggs are laid on P. florida, intermediate selection on 

P. microphylla and very low selection on A. greggii (Fox 2000a). Females respond to 

this by laying larger eggs on P. florida than on either P. microphylla or A. greggii (Fox et 

al. 2001).  

 

A second major source of selection on beetles is mediated through seed size. In S. 

limbatus, populations from Colombia adapted to the small seeds of Pseudosamanea 

guachapele are around 40 to 50% smaller than populations adapted to the large seeds 

of A. berlandieri (Populations from Texas, USA) (Figure 1.1). Studies using populations 

from Arizona have shown that seed size has significant effects on adult body size. Thus, 

beetles raised on large seeds are larger and have longer development time than beetles 

that developed in small seeds (Fox et al. 1996). 

 

Seed size also influences clutch size and female preferences. In the congeneric 

seed beetle S. beali, females laying eggs on a mixed treatment containing a large and a 

small seed of their native host, Chloroleucon ebano, preferred to lay eggs on the large 

seed and, when forced to lay eggs only on a seed of a specific size, females adjusted 

clutch size in response to seed size (Fox and Mousseau 1995). In nature seeds are a 

limiting resource for S. limbatus such that females are forced to lay several eggs per 

seed, and oviposit on seeds bearing eggs laid by other females. Larval competition 

within seeds results in beetles maturing smaller than beetles emerging from seeds with 

fewer eggs (Fox 1997b).   

 

Because S. limbatus larvae cannot move among seeds, it is expected that seed 

size and seed quality will have important consequences for life history and associated 

traits. In addition, populations of S. limbatus are adapted to different host plants making 
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possible the comparison of life histories among them. However, there are no studies 

analyzing population variation in response to seed size and quality on S. limbatus, and 

no work has been done comparing plastic responses to these factors among 

populations located outside of the United States nor using hosts other than A. greggii 

and P. florida (which produce seeds that are quite similar in size). Populations used 

through this study correspond to very divergent clades of S. limbatus. Colombia 

populations are located into the South American clade and the United States 

populations are included in the North American clade. This phylogenetic divergence has 

a genetic basis strongly influenced by the reduction in gene flow between populations 

across geographic barriers (Morse and Farrell 2005a). These barriers are, from south to 

north, The Andes Mountains in South America, the Isthmus of Panama and the Sierra 

Madre Oriental and Cordillera Transvolcanica in Mexico.  

 

The goal of my research in this dissertation is to (a) examine the effects of host 

size, host quality, and intraspecific competition on life history and associated traits on 

populations of S. limbatus adapted to different host plants and (b) to quantify population 

differences in phenotypic plasticity in response to host size, host quality, and 

intraspecific competition. This dissertation includes three major projects: In the first I 

examined the contributions of local adaptation, phenotypic plasticity and maternal 

effects to differences in growth and life history traits between populations adapted to 

hosts that differ in size and quality (Chapter 2). In the second project I examined the 

influence of host size, host species (quality), and body size on host discrimination, 

oviposition behavior and egg size (Chapter 3). Finally, I examined how host size, host 

quality and beetle body size influence the consequences of larval competition for growth 

and life history traits of S. limbatus (Chapter 4). 
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a. b. 

Males 

Females 

Figure 1.1: Differences in body size among beetles of: (a) Del Rio population (Texas, 

USA) and, (b) Anapoima (Cundinamarca, Colombia).   

 

Copyright © Angela Rocío Amarillo-Suárez 2006 
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Chapter 2: Pop n, phenotypic 
plasticity and maternal effects 

 
2.1 Introduction 

 

ong host plants is an important determinant of phenotypic variation 

in herbivorous insects (Ohsaki and Sato 1994, Mira and Bernays 2002, Singer and 

Stirem

 

e at 

 of 

e 

. 

spring in 

 

 

rs, 

host size and host quality are major sources of phenotypic variation among host species 

and m ry 

ulation differences in host use: Local adaptatio

Variation am

an 2003). Species for which host availability varies among populations may 

become genetically differentiated due to adaptation to their local hosts (Mopper 1996

and references therein). When trade-offs in host use exist, local adaptation can com

a cost of decreased performance on alternative hosts (Van Zandt and Mopper 1998, 

Agrawal 2000). Variation in host availability could also result in the evolution of 

phenotypic plasticity in which the same genotype expresses different phenotypes on 

different hosts (Via 1994). Phenotypic plasticity can be an important mechanism

adaptation to variable environments (Futuyma 2001), can facilitate colonization and 

expansion into new environments (Fox and Savalli 2000), and may even influence th

evolution of community structure by molding multitrophic interactions (Agrawal 2001)

Plastic responses to host plants may be mediated by maternal experiences, a 

phenomenon called cross-generational (or trans-generational) phenotypic plasticity 

(Mousseau and Dingle 1991) in which parents modify the phenotype of their off

response to environmental conditions (Fox and Mousseau 1998, Wade 1998, Lacey

1998, Mazer and Damuth 2001); e.g., mothers may program developmental changes in 

their offspring, or change patterns of resource allocation to their offspring, in response

to predictive environmental cues (Czesak and Fox 2003 and references therein). 

 

For insects that use discrete resources, such as parasitoids and seed feede

ay constrain offspring growth influencing the evolution of body size and life histo

traits (Hardy et al 1992, Allen and Hunt 2001, Mackauer and Chau 2001, Tsai et al. 

2001). In species with scramble competition, individuals in populations adapted to large 

hosts are generally larger than those adapted to small hosts, generating genetic 
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variation in body size among populations adapted to different hosts (Toquenaga a

Fuji 1990). Also, because resources are more likely to run out in smaller than in larger

hosts, insects mature at smaller size and sooner in small hosts, generating phenotypic 

variation in body size and development time within populations (Kirk 1991). In our study

system, the seed-feeding beetle Stator limbatus, beetles in populations adapted to the 

large-seeded host Acacia greggii are about 40% larger than are those adapted to the 

small-seeded host Pseudosamanea guachapele. This difference in body size is likely a

consequence of adaptation to large vs. small seeds and is associated with differences 

in a large suite of growth and life history traits. 

 

nd 

 

 

 

he objective of this study was to quantify the relative contribution of 

environ ferences in 

tory 

t 

.2 Materials and Methods 

2.2.1 The Beetle 

. limbatus is a seed-feeding beetle (Coleoptera: Chrysomelidae: Bruchinae) 

distribu d 

its 

e 

T

mental (host species), genetic (population) and maternal effects to dif

body size and life history traits between populations of S. limbatus developing on seeds 

of the small-seeded P. guachapele and the large-seeded A. greggii. Specifically, I 

asked: (1) What is the magnitude of the genetic differences in body size and life his

traits between populations that use hosts of different size? (2) What is the influence of 

rearing host and oviposition host on body size and fitness related traits? (3) How does 

maternal rearing host affect the phenotype of their offspring? and (4) Do females exhibi

adaptive egg size plasticity in response to the species upon which they were reared or 

on which they oviposit? 

 
2
 

 

S

ted from the north of Argentina to the southwestern United States (Johnson an

Kingsolver 1976, Johnson et al. 1989). Populations are found mostly in desert or 

semiarid environments on ≥ 80 host plant species in at least 9 genera throughout 

broad distribution. Although S. limbatus is considered a generalist because of the larg

number of hosts it uses, host use varies substantially among localities and most 
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populations use few hosts and are thus specialists relative to the diversity of plan

species available to them (Fox et al. 1995, Morse and Farrell 2005a, b). 

 

t 

emales of S. limbatus oviposit directly onto the mature seeds of their hosts. 

After h es 

he populations used for this study are from Colombia and Arizona 

(south nd Farrell 

2.2.2 The Host Plants 

compared populations adapted to the large seeds of A. greggii (Arizona, United 

States

all tree 

 

ds. 

. guachapele (Fabaceae) is a medium to large tree that grows mostly in 

pastures and dry areas from Guatemala to Ecuador. The dehiscent fruits have 10-25 

F

atching, the larvae burrow into, and develop completely inside the seed. Beetl

emerge from seeds as adults and start oviposition 12-48 h later. The complete life cycle 

takes 28-30 days at 28oC. In another seed beetle, Callosobruchus maculatus, pupation 

represents ~30% of total development, though this is dependent on host species and 

temperature (Chandrakantha & Mathavan 1986). 

 

T

western United States). Each group of populations is in what Morse a

(2005a) show to be different well supported monophyletic clades: the South American 

clade and the North American clade of S. limbatus. Because the two Arizona and the 

two Colombia populations are more related to each other than to populations from 

different clades, I expect genetic differences to be larger between populations of 

different clades than between populations in the same clade. 

 

 

I 

) with populations adapted to the much smaller seeds of P. guachapele 

(Cundinamarca and Tolima, Colombia). A. greggii (Fabaceae) is a shrub to sm

distributed throughout much of the southwestern United States and northern Mexico 

(Sargent 1965). It grows in dry areas on gravelly mesas, sides of low canyons and 

banks of mountain streams. Fruits contain 1 to 5 round, laterally compressed, brown

seeds with seed mass typically between 60 to 300 mg. Beetles access seeds by 

entering the pods through holes made by other insects or through cracks in the po

 

P
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small, to 46 

e 

2.2.3 Field Collection and Colonies Establishment 
 

om A. greggii seeds at two 

localities in Arizona, United States: Wenden 33°49'21’’N; 113°32'27’’W (Yavapai Co.) 

and Or

h locality and brought to the 

lab. Fruits were opened and seeds bearing eggs were placed individually in petri dishes 

at 28oC

 at 

s 

ed at 

2.2.4 Experimental Design 
 

 maternal host vs. rearing host effects I used a two 

generation rearing design in which half of beetles from each population were raised on 

seeds  

oval, laterally compressed cream-colored seeds that vary in mass from 18 

mg. Because the pods are dehiscent, beetles have direct access to the seeds once th

pods mature. 

 

Beetles were collected on 10-20 August 2002 fr

acle (Pinal Co.) 32°36'39’’N; 110°46'13’’W, henceforth referred to as the 

“Arizona” populations. Beetles were collected from P. guachapele seeds between 28 

December 2002 and 10 of January 2003 at two localities in Colombia: Melgar, 

4o13’83’’N; 74o37’26’’W (Tolima) and Anapoima 4°31'13’’N; 74°32'22W’’ 

(Cundinamarca) in Colombia (“Colombia” populations). 

 

Mature fruits were collected from >20 trees at eac

. Emerging beetles (> 200) from each population were used to establish 

laboratory colonies. To remove any environmental effects (Fox et al. 1995) beetles from 

all populations were maintained in the laboratory at >100 families per generation

28oC, 15:9 light:dark on seeds of A. greggii for two generations (9 weeks) prior to 

beginning this experiment. Survivorship is high on A. greggii seeds for all population

studied here (see Results) such that the rearing of beetles on this host seed impos

most small amounts of selection on the Colombia populations. 

 

To distinguish between

of A. greggii and the other half were raised on seeds of P. guachapele. The

emerging offspring from each host were then split into two groups that were mated and 
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had their offspring raised on A. greggii (one group) or P. guachapele (the other grou

Figure 2.1). 

 

The m

p; 

ating procedure for beetles from each population was as follows: 12 hours 

(h) after emergence from A. greggii, three virgin females and two virgin males, all non-

sibling

s 

gs 

 from 

the seed. Half of these beetles had been raised on A. greggii and half on P. guachapele 

seeds. it 

d 

le sizes for each generation were as follows: The Parental Generation 

consisted of 268 groups (families) giving raise to 1543 adult offspring in Generation 1. 

From t  

.2.5 Data Collection 
 

s, were enclosed in a 60 mm Petri dish with 10 seeds of a single host (either A. 

greggii or P. guachapele); these mating groups formed the Parental Generation. Beetle

were mated in groups of two males and three females because Colombian females 

rarely lay eggs when kept in pairs (unpublished data). Mating groups were provided with 

sugar water. Offspring from each of these groups of five beetles was treated in the 

analysis as a single data point. The dishes were inspected every day until at least 1 egg 

was laid on each seed, for a total of at least 10 eggs per family. Seeds containing eg

were divided into separate 15 mm Petri dishes (one seed/dish) and allowed to develop 

at a density of one egg per seed (excess eggs were scraped from the seed). Larvae 

were raised to adult at 28°C, 15:9 light:dark. These larvae were Generation 1. 

 

Generation 1 beetles were sexed and weighed within 12 h of emergence

 For each group, half of the emerging adults were mated and allowed to ovipos

on P. guachapele; the rest were mated and allowed to oviposit on A. greggii seeds. 

Larvae were again raised to adult at one individual per seed, 28°C, 15:9 light:dark. 

These larvae constituted Generation 2. Upon emergence these beetles were weighe

and sexed. 

 

Samp

hese Generation 1 beetles I created 211 groups (families) that produced 1388

offspring in Generation 2. 

 

2
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I collected both reproductive data and survival/growth data. Reproductive data 

were collected for Generation 1 beetles. These beetles differed in their rearing host (A. 

greggi

 I 

cular 

mic per 

2.2.6 Analysis 
 

ration 1 I used ANOVA (Type III sums of squares) to examine clade 

(country), population (nested within clade), sex, rearing host and oviposition host effects 

on age

examine 

 analysis of covariance to determine if differences in egg size among 

treatments remained significant after controlling for the body size of the females laying 

those eggs. All statistical tests were done using SAS (SAS Institute, 1985). 

i vs. P. guachapele) and in the host upon which they oviposited. I scored adult 

body mass, age at first reproduction, egg size, and the number of eggs laid during the 

first 24 h of oviposition (the 24 h after the female’s first egg was laid). Survival and 

growth data were collected on Generation 2 beetles. These beetles differed in both the 

host upon which they were raised and the host upon which their mother was raised.

recorded egg hatch, survivorship at different developmental stages (embryo, inside of 

seeds and total egg–to-adult), egg-to-adult development time (time between when the 

egg was laid and the adult beetle emerged from the seed), and adult body mass. 

All beetles were weighed on an electronic balance (Mettler Toledo AT261 Delta 

range) to 0.01 mg. I also measured the length of two eggs for each dish using an o

rometer; egg length was the average of these two eggs (i.e., one mean egg size 

group). 

 

For Gene

 at first reproduction, egg size, and the number of eggs laid in the first 24 h of 

oviposition. I used group means as our lowest level of independence. Analyses in which 

interactions between variables were non-significant were repeated without the 

interactions. When the ANOVA yielded significant results, I performed specific post-hoc 

comparisons between pairs of populations. For Generation 2 I used ANOVA to 

clade, population (nested within clade), sex, rearing host and maternal host effects on 

body mass and egg-to-adult development time. Survivorship was analyzed using logistic 

regression. 

 

I used
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tion Effects (Genetic Effects) 

Generation 1 – There were significant differences between the two clades 

tion and the number of eggs laid the first 

24 h of oviposition. Females from Arizona started to lay eggs sooner after emerging 

from th t 

2.3 Results 
 

2.3.1 Popula
 

(Colombia vs Arizona) for age at fist reproduc

eir host seed than did females from Colombia, regardless of oviposition hos

(Figure 2.2; Colombia X =3.2 ± 0.2 days; Arizona X =1.6 ± 0.1 days; F1,193=41.1, 

P<0.0001). Egg size did not differ between clades (Figure 2.3; F1,191=0.15, P=0.69) b

did differ between populations within clades; Oracle females laid the largest eggs an

Wenden females laid the smallest eggs in all treat ents. Arizona females also laid

eggs (twice as many) during the first 24 h of oviposition than did Colombia females 

(Figure 2.4; Colombia 

ut 

d 

m  more 

X =5.9 eggs ± 0.3; Arizona X =12.9 ± 1.1; F1,186 =43.8, 

P<0.0001). 

 

Generation 2 – Egg to adult development time and body mass varied am

populations. Arizona beetles took longer to 

ong 

develop to adult than did beetles from 

Colom ia (Figure 2.5; Colombia X =23.2 ± 0.1 days; Arizona Xb =23.9 ± 0.2days; 

F1,369=

fter 

4.29, P=0.039). Also, regardless of treatment, beetles from Arizona were 

substantially larger than beetles from Colombia (Figure 2.6; least squares means a

removing treatment effects: Colombia X =1.53 ± 0.01 mg; Arizona X =2.27 ± 0.04

F

 mg; 

ffect 3,364=387.0, P<0.0001). Males were larger than females in all populations (sex e

F1,364=49.2, P<0.0001) as has been shown in other studies with this species. However, 

the degree of dimorphism differed between clades – Colombian beetles were more 

sexually dimorphic than Arizona beetles (clade by sex interaction F1,368=8.23, 

P=0.0044). The mean body size difference between sexes in Arizona beetles was 2.4% 

but for Colombian beetles was 10%. 
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2.3.2 Rearing host and oviposition host effects 
 

Generation 1 – There was no significant effect of rearing host on the age at first 

reproduction (F1,193=0.02, P=0.9) but females started laying eggs sooner when 

eggii Xovipositing on A. greggii (Figure 2.2; laying on A. gr =2.6 ± 0.2 days; laying on P. 

guachapele X =2.9 ± 0.2 days; F1,193=4.7, P=0.032). There was no significant effect of 

either rearing or oviposition host on the number of eggs laid in the first 24 h of 

oviposition (rearing host effect: F1,186=2.33, P=0.13; oviposition host effect F1,186=0.24, 

 

Females exhibited egg size plasticity in response to their oviposition hos

Irrespective of population of origin, females laid larger eggs on seeds of P. guachapele 

than on A. greggii

P=0.62) 

t. 

 (Figure 2.3; average size of eggs laid on A. greggii = 0.54 ± 0.004 

mm; average size of eggs laid on P. guachapele = 0.57 ± 0.007 mm; F =37.41, 

P<0.00 or 

r 

 and matured sooner and larger when raised on seeds 

of A. greggii. 

ll 

Χ2
1=9.3, P<0.002; egg hatch Χ2

1=21.2, P<0.0001; 

survivorship of larvae and pupae inside the seed Χ2 =21.1, P<0.0001; survivorship from 

egg to

g 

1,185

01). This difference was still highly statistically-significant after controlling f

female body size (i.e., including female body mass as a covariate; host effect on egg 

size, F1,188=42.56, P<0.0001). 

 

Generation 2 – In general, seeds of A. greggii were a much better substrate fo

larval development than were seeds of P. guachapele; beetles from all populations 

experienced higher survivorship

 

When performing the logistic regression containing all terms, survivorship at a

stages of development was significantly higher when eggs were laid on A. greggii 

(Figure 2.7; survivorship of embryo 

1

 adult; Χ2
1= 8.5, P<0.004). However, survivorship was fairly high at all stages of 

development and thus effect sizes were small (Figure 2.7). Also, the effect of rearin

host differed between maternal host treatments (see Maternal rearing host effects 

section below). 
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Egg to adult development time was longer inside of P. guachapele seeds than 

inside A. greggii seeds (Figure 2.5; 2.1 d longer in males and 2.2 d longer in female

F

s; 

0.0001). This pattern was still significant after controlling for maternal 

egg size (host effect after controlling for maternal egg size, F1,375=103.15, P<0.0001) 

and of

re 

 

e size of beetles emerging from A. greggii =1.94 ± 0.37 mg; average 

size of beetles emerging from P. guachapele = 1.61 ± 0.02 mg; F1,364=367.8, P<0.0001). 

Althou  

 

 

) 

 interaction was found for egg hatch (X2
1=4.72, 

=0.02), survivorship inside of the seed (X2
1= 8.12, P=0.004) and egg to adult 

wever, though statistically significant, the patterns 

are unclear (Figure 2.7). 

1,369=103.6, P<

fspring body mass (host effect after controlling for body mass, F1,378=38.56, 

P<0.0001), though beetles that matured larger also matured sooner (slope = -0.17 

d/mg; P=0.0006). 

 

Despite taking longer to reach maturity, beetles raised on P. guachapele we

smaller than beetles raised on A. greggii, regardless of their native or maternal host

(Figure 2.6; averag

gh beetles from all populations were larger when raised on A. greggii, the effect

of rearing host differed between beetles from the two clades and differed between the

sexes (clade by rearing host by sex interaction F1,368=8.23, P=0.004). Beetles from 

Arizona, which are much larger than beetles from Colombia, were more negatively 

impacted by rearing on P. guachapele seeds than were the smaller-bodied Colombian 

beetles; Arizona beetles were > 20% smaller when raised on P. guachapele (relative to

being reared on A. greggii; females were 29.5% smaller and males were 24.5% 

smaller), whereas Colombian beetles were only 11.0% (females) and 16.5% (males

smaller when raised on P. guachapele. 

 

2.3.3 Maternal rearing host effect 
 

A significant maternal host x clade

P

survivorship (X2
1=8.44, P=0.004). Ho
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More evident is the result that beetles whose mothers were reared on P. 

guachapele emerged about one day sooner than beetles whose maternal host was A. 

greggii egardless of the host on which progeny were reared (Figure 2.5; maternal host 

P. gua

 r

chapele, X =23.0 ± 0.1 days, maternal host A. greggii, X =23.8 ± 0.2 days

F

; 

m  P. 

cted 

 effect of 

 Differences and Plastic Responses to Host Species 

Even though populations from the two clades (Colombia and Arizona) exhibited 

all 

populations of S. limbatus were phenotypically plastic in response to host species; they 

develo

lity – A. 

 

 

lts 

1,369=12.6, P=0.0004). This effect of maternal host was still highly significant after 

controlling for egg size (F1,375=15.4, P=0.0001) and for the mass of offspring 

(F1,378=18.7, P<0.0001). Despite maturing sooner, offspring fro  mothers reared on

guachapele were not smaller (F1,368=0.49, P=0.48) indicating that maternal host affe

development rate and not just development time. This result is contrary to the

rearing host on development time; beetles from all populations matured sooner (Figure 

2.5) and at much larger body size (Figure 6) when raised on A. greggii. 

 

2.4 Discussion 
 

2.4.1 Population
 

significant genetically-based differences in body size and life history traits, 

ped faster and matured at a larger size inside A. greggii seeds than inside P. 

guachapele seeds. This plasticity may be in response to seed size or seed qua

greggii are substantially larger seeds, but may also be a better nutritional source. In 

agreement with the usual expectations for scramble-competing species (Hardy et al.

1992, Tsai et al. 2001) beetles matured at larger size when developing on large seeds. 

However, contrary to the typical host size effects, beetles also matured sooner on the

large-seeded species (and thus had a higher growth rate). This is consistent with resu

from studies showing that development time decreases and adult mass increases when 

insects develop on high quality hosts (Lindroth et al. 1991; Stockhoff 1993). I thus 

believe that many of the host effects observed here are due to nutritional differences 

between the species rather than just seed size effects. 
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These data also suggest that large-bodied beetles (e.g., from Arizona) suffer 

greater fitness costs than do small beetles when raised on small seeds – although 

beetles from all populations matured smaller when raised on the small seeds of P. 

guacha

 

all 

g to 

h 

r 

all 

. 

Maternal effects are widespread among all types of organisms (Gil et al. 1999, 

 Agrawal 2002, Reinhold 2002). In insects, they influence 

a large number of traits including larval survival, development time, wing morph, and 

sex rat  

r. 

cted 

pele, beetles from Arizona (which are larger) were affected most by host 

species. This result does not directly demonstrate selection on body size, but is 

suggestive. The seed-beetle for which the effects of host size on body size are best

studied is Callosobruchus maculatus in which intense larval competition inside sm

seeds drives the evolution of contest competition favoring large larvae and leadin

the evolution of large body size (Messina 1991 a,b, 2004, Toquenaga 1993). In 

contrast, populations adapted to larger-seeded hosts evolve scramble competition wit

larvae feeding at the periphery of the seeds where the probability of encountering othe

larvae decreases. The absence of contest competition allows the evolution of sm

adults (Credland et al. 1986) possibly because maturing sooner (and thus smaller) 

reduces the probability of encountering potential competitors and reduces generation 

time. At the moment, there is no evidence that contest competition evolves in S. 

limbatus. Larval survival is high even at high larval density on small A. greggii seeds

 

2.4.2 Maternal host effects 
 

McIntyre and Gooding 2000a,

io. Maternal effects also provide a mechanism by which organisms can deal with

variable environments (Fox and Mousseau 1998). In generalist herbivorous insects, 

different host plants represent different sets of chemical and physical conditions with 

which offspring must cope. Female rearing environments, and their oviposition 

experiences, provide females information on which hosts their offspring will encounte

Females thus have the opportunity to modify traits such as egg size and composition 

(e.g., maternally-derived proteins and mRNAs) to prepare offspring for the expe

host species. Although many studies have now shown effects of maternal diet on 

offspring growth and development (reviews in Fox et al. 1995, Spitzer 2004) few have 
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demonstrated that maternal effects based on resource use are adaptive (Spitzer 2004

Those examples of adaptive resource-based maternal effects are largely cases in 

females respond to host species or host quality to regulate offspring flight morphs 

(review in Fox & Mousseau 1998) or for which females manipulate egg size in response 

to oviposition substrate (see Egg size plasticity section, below) or in response to food 

stress (e.g., many cladocerans; discussed in Fox and Czesak 2000). 

 

In this experiment S. limbatus offspring matured sooner (shorter egg-to-adult 

development time), regardless of rearing host, when the maternal rear

). 

which 

ing host was P. 

guachapele. This result is contrary to the effect of rearing host on development time; 

beetles  

r 

 

ve 

hen 

d 

 

ay 

 

 

 from all populations matured sooner when raised on A. greggii. However, this

result is similar to a maternal effect found for S. limbatus by Fox et al. (1995) in which 

offspring matured sooner when mothers had been reared on Parkinsonia florida, rathe

than A. greggii, regardless of offspring rearing host. That maternal effect was also 

contrary to the direct effect of rearing host on offspring – offspring reared on P. florida 

matured later than offspring reared on A. greggii. Fox et al. (1995) also found that 

maternal rearing host affected offspring body size (offspring were larger when their

mothers were raised on P. florida), but no such effect was found in this current study. 

Neither Fox et al. (1995) nor this current study found any evidence that offspring ha

higher fitness (higher survivorship, reduced development time or larger body size) w

raised on the same host as their mother (i.e., no significant maternal host x offspring 

host interactions). These data thus indicate that maternal rearing host affects offspring 

through some as yet unclear mechanism, but I have no evidence that S. limbatus 

mothers prepared their offspring for the specific host that the mothers had encountere

(no evidence of adaptive “conditioning” or “acclimatization”, following the terminology of

Via 1991 and Spitzer 2004, respectively). However, the observed maternal effect m

be adaptive – though females do not prepare their offspring for a specific host, they may

respond to the poor quality of their rearing substrate by changing their allocation to 

eggs, so that their offspring are better prepared to tolerate food stress or a lower quality

host. This type of maternal effect has been observed in many cladocerans (e.g., food-

stressed females lay larger and more energy rich eggs; references in Glazier 1992). 
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However, the adaptive significance, if any, of the maternal host effect observed in S. 

limbatus needs to be examined further. 

 

The mechanism for the maternal rearing host effect in S. limbatus is not known

Previous studies have shown that mater

. 

nal effects on offspring development time are 

often due, at least in part, to effects on egg size (Fox 1997a, Fox 1997b, Fox et al. 

1999).

e 

d by 

l 

h as 

4), 

Despite their much smaller body size, females from Colombia laid eggs similar in 

ied Arizona beetles. Arizona S. limbatus are 

largely capital breeders – they use primarily larval-acquired resources for producing 

eggs s

n 

 Despite the regular result that variation in egg size mediates variation in 

development time, the maternal rearing host effect on development time observed in th

current study is apparently not due to changes in egg size; egg size was not affecte

maternal rearing host and the maternal host effect on development time was stil

statistically highly significant after including egg size as a covariate in the statistical 

model. The observed maternal rearing host effect is thus more likely due to changes in 

egg composition, such as egg energy reserves, maternally produced proteins (suc

regulatory proteins or enzymes), or maternal mRNAs. Unfortunately, how maternal 

effects influence the composition of eggs is poorly studied in arthropods other than 

Drosophila (Rushlow et al. 1987, Girton and Jeon 1994). For herbivores it is known that 

egg energy reserves change with maternal age (McIntyre and Gooding 2000a) and 

female nutritional status (Murphy et al. 1983, Wallin et al. 1992, Fox and Dingle 199

and that compounds sequestered by parents during development can be passed to 

offspring (Hartmann et al. 2004, Sime et al. 2000), but little else is known. 

 

2.4.3 Egg size and egg size plasticity 
 

size to those laid by the much larger bod

uch that producing large eggs comes at a substantial fecundity cost to females 

(adult females will feed, and feeding does prolong their life, but it has very little effect o

total fecundity). Though I did not quantify lifetime fecundity in this study, our data do 

show that fecundity in the first 24 h of oviposition is much lower in Colombian beetles 

than in Arizona beetles, as expected from their large egg size relative to their body size. 
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Also, unpublished data (A. Amarillo) indicate that lifetime fecundity in the lab is very lo

for Colombian beetles and females do not lay eggs unless food is provided. Because 

selection for high fecundity is strong, the selection for high fecundity may be balanced 

by very strong selection favoring large eggs in Colombia beetles and, unlike Arizona 

beetles, Colombian beetles may use (and even require) adult food sources to produce

eggs (i.e., they are income breeders). Such variation in allocation strategies (capital v. 

income breeding) within a species provides an exciting opportunity to study the 

evolution of allocation strategies. 

 

Within the Coleoptera and Lepidoptera there are a number of species tha

egg size plasticity in response to h

w 

 

t exhibit 

ost species and/or quality (Leather and Burnand 

1987, Nylin and Gotthard 1998, Awmack and Leather 2002, Ekbom and Popov 2004, 

Takaku

 

 

his 

l 

) 

 

er eggs 

. greggii (note that I 

found no effect of maternal rearing host on egg size, but did find a large effect of 

matern s 

 

ra 2004). Plastic responses to host quality, like the responses I observed in S. 

limbatus, are a strategy that allows organisms to cope with variation among hosts. 

Previous studies with S. limbatus have shown that females adjust the size of eggs they

lay in response to the oviposition host species, but not in response to variation in the 

size of seeds within species (Fox et al. 1997, Savalli and Fox 2002). Specifically, 

populations of S. limbatus from Arizona and Texas (USA) lay larger eggs on seeds of 

Parkinsonia florida (which produces seeds very resistant to larval penetration) than on

seeds of either A. greggii or P. microphylla (which produce non-resistant seeds). T

plasticity appears to be adaptive. Offspring from larger eggs have much higher surviva

during penetration of P. florida seed coats (thus selection favors large eggs on this host

but females laying larger eggs have substantially reduced fecundity relative to females

laying smaller eggs (thus, selection favors small eggs on A. greggii and P. 

microphyllum, on which larval survival is high for small eggs). 

 

In this current study I found that females from all populations laid larg

when ovipositing on P. guachapele than when ovipositing on A

al oviposition host on egg size). This is the first time plasticity in S. limbatus ha

been demonstrated to increase egg size in response to a host species other than P.
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florida. In contrast to the egg size plasticity exhibited by Arizona beetles in respon

P. florida, the host effect on egg size observed here does not appear to be due to 

selection to overcome seed coat defenses. Larval mortality on P. guachapele was no

affected by egg size. The larger eggs laid on seeds of P. guachapele may be an 

adaptive strategy that helps larvae compensate for the low quality and/or size of P.

guachapele seeds; females may lay larger eggs either (a) as a mechanism to promote 

development on a poor quality nutritional source or (b) to prepare larvae for the sm

size of their host seed and the larval competition they are likely to experience. These

hypotheses have yet to be tested. 

 

Stator is a genus of beetles that mainly use seeds of legumes. Most species are

specialists in that they use just a couple of species as hosts. In contrast 

se to 

t 

 

all 

 

 

S. limbatus has 

colonized ~ 80 legume species across all three legume families. They thus must cope 

with w  

s 

s to 

ing egg 

 

tions 

ovel 

ide variation in seed quality, chemistry and size. Specialization on Acacia appears

to be the ancestral trait in the genus Stator and the generalist diet of S. limbatus 

appears to be derived from Acacia specialized ancestors (Morse and Farrel 2005a). It i

likely that the phylogenetic constraint on diet evolution (feeding on Acacia) was 

overcome in S. limbatus by the evolution of egg size plasticity, allowing the specie

colonize a wide diversity of host species and become a relative generalist. The 

Colombian and Arizona populations both responded to P. guachapele by increas

size (relative to the size of eggs laid on A. greggii). Both populations also respond to P.

florida by laying large eggs (Chapter three). That Colombian and Arizona popula

are located on very divergent clades (Morse and Farrell 2005a) supports the hypothesis 

that egg size plasticity is ancestral within S. limbatus; that egg size plasticity evolved 

before the divergence between clades is more parsimonious than the alternative 

hypothesis that egg size plasticity evolved separately in each clade. Recent studies of 

S. limbatus colonization of non-native (ornamental or invasive plants) species in the 

southwestern United States support this hypothesis – the survival of offspring on n

hosts following colonization is influenced by female experiences pre-colonization and 

the effects of these experiences on the size and composition of eggs laid by females 

(Fox 2006a).I propose that egg size plasticity is an adaptive trait that has played an 
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important role in diet expansion and diversification in S. limbatus and may be the 

feature of this beetle’s life history that allowed it to evolve a generalist life style. 

 

In conclusion, I have demonstrated that populations of S. limbatus that use

different hosts have diverged in body size and life history traits. However, all S. l

 

imbatus 

populations exhibited substantial host-associated phenotypic plasticity. This plasticity, 

both b e 

c 

r 

n 

y offspring (e.g., development time and body size) and their mothers (egg siz

plasticity, which affects offspring as a maternal effect) likely buffers these beetles from 

high mortality or low fitness that they would otherwise experience when encountering 

novel hosts, and thus likely facilitates colonization of novel hosts. However, phenotypi

plasticity also buffers organisms from selection post-colonization reducing the rate at 

which populations adapt to novel hosts (Strauss et al. 2006). In addition, plasticity in 

responses to novel environments (e.g., host species) may be asymmetrical with some 

populations (e.g., large-bodied Arizona populations of S. limbatus) experiencing greate

fitness costs than others (e.g., small-bodied Colombia populations) when exposed to 

lower quality (e.g., smaller-seeded) hosts. Disentangling the historical role of plasticity i

mediating the colonization of new environments, and subsequent adaptation to those 

environments, requires consideration of the phylogenetic history of the species and 

populations being studied. 
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Figure 2.1: Three generation rearing design used to evaluate maternal, oviposition and 

rearing host effects in four populations of the seed-feeding beetle S. limbatus. Beetles 

were reared on either Acacia greggii, a large-seeded host or Pseudosamanea 

guachapele, a small-seeded host. 
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Figure 2.2: Effect of oviposition host and rearing host on age at first reproduction of 

females from four populations of S. limbatus. Solid symbols indicate populations from 

Arizona, USA (Oracle (■), Wenden (●)).  Open symbols indicate populations from 

Colombia (Anapoima (□), Melgar (○)). Standard error bars for some points are in some 

cases smaller than the symbols. The means presented are averages of group means 

for each treatment-population combination. 
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Figure 2.3: Effect of oviposition host and rearing host on the size of eggs laid by 

females of four populations of S. limbatus. Solid symbols indicate populations from 

Arizona, USA (Oracle (■), Wenden (●)).  Open symbols indicate populations from 

Colombia (Anapoima (□), Melgar (○)). Standard error bars for some points are smaller 

than the symbols. 
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Figure 2.4: Effect of oviposition host and rearing host on the number of eggs laid during 

the first 24 h of oviposition for females from four populations of S. limbatus. Solid 

symbols indicate populations from Arizona, USA (Oracle (■), Wenden (●)).  Open 

symbols indicate populations from Colombia (Anapoima (□), Melgar (○)). Standard error 

bars for some points are in some cases smaller than the symbols. 
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Figure 2.5: Effect of maternal host and rearing host on egg-to-adult development time of 

a. Male and b. Female beetles from four populations of S. limbatus. Solid symbols 

indicate populations from Arizona, USA (Oracle (■), Wenden (●)).  Open symbols 

indicate populations from Colombia (Anapoima (□), Melgar (○)). Standard error bars for 

some points are smaller than the symbols. 
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Figure 2.6: Effect of maternal host and rearing host on body mass of beetles from four 

populations of S. limbatus. A, Males; B,  Females. Solid symbols indicate populations 

from Arizona, USA (Oracle (■), Wenden (●)).  Open symbols indicate populations from 

Colombia (Anapoima (□), Melgar (○)). Standard error bars for some points are in some 

cases smaller than the symbols. 

 30



 

Figure 2.7: Effect of maternal host and oviposition-rearing host on survivorship at 

different developmental stages (A-C) and total egg-to-adult survivorship (D) for four 

populations of S. limbatus. Solid symbols indicate populations from Arizona, USA 

(Oracle (■), Wenden (●)). Open symbols indicate populations from Colombia (Anapoima 

(□), Melgar (○)). Standard error bars for some points are smaller than the symbols. 

 
Copyright © Angela Rocío Amarillo-Suárez 2006 
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Chapter 3: Host Discrimination and oviposition behavior in Stator limbatus 
 

3.1 Introduction 
 

In parasitic insects that use discrete hosts, such as other insects or seeds, and 

for which larvae are unable to move among hosts, variation in host size and quality can 

have direct and substantial impact on larval development (Mangel 1992). Because 

larger hosts provide more nutrients or a greater quantity of food for the offspring (Yang 

et al 2006), progeny developing in larger hosts usually have lower mortality, greater 

fecundity and reach larger body size, which contributes to increased fitness (Godfray et 

al. 1991, Heimpel et al. 1996,). In some cases, large hosts also may confer greater 

space for parasitoid avoidance (Freese 1995). 

 

Oviposition decisions made by females may have large effects on both maternal 

and offspring fitness and in consequence, is expected that females would exhibit 

preference for ovipositing on larger and better quality hosts by discriminating the size 

and the number of eggs already laid on that host (Godfray 1987, Godfray et al. 1991, 

Broudeur and Boivin 2004). This prediction has been well supported by a number of 

studies that show that females of many species prefer to oviposit on non-parasitized 

rather than parasitized hosts, and in larger rather than smaller hosts (Fox and 

Mousseau 1995, Godfray et al. 1991, Awmack and Leather 2002). For example, 

females of Callosobruchus maculatus, a seed beetle for which oviposition host 

discrimination has been well studied, generally distribute their eggs uniformly among the 

seeds available (Messina 1989), deposit more eggs on larger hosts and are more likely 

to super-parasitize larger than smaller hosts (Cope and Fox 2003), though female 

oviposition behaviors and preferences are genetically variable, both within and between 

populations. 

 

Stator limbatus is a Bruchinae beetle (Coleoptera: Chrysomelidae: Bruchinae) in 

which larval development occurs completely inside a single seed and thus female 

oviposition decisions will have large effects on offspring fitness. This species feeds on 

seeds of about 80 host plants throughout its broad geographic range (Johnson and 
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Kingsolver 1976), but individual populations usually have just a few hosts available. In 

addition, host species vary in seed size and quality among and within localities. 

Adaptation to the specific hosts available at each locality have influenced the evolution 

of beetle body size, age at first reproduction and development time among others 

(Chapter two). Females can also manipulate egg size and egg content in response to 

host species (Fox et al. 1999).  

 

In this study I examine host discrimination and oviposition behavior of female S. 

limbatus from populations locally adapted to different hosts (hosts of differing seed size 

and quality). I performed four experiments in which I addressed the following questions: 

 

(1) When encountering seeds that vary in the density of conspecific eggs, how 

does the number of eggs present on a seed, and their developmental stage (hatched 

versus unhatched) affect female fecundity and egg dispersion? For insects that undergo 

development inside discrete resources such as parasitoids and seed feeders, female 

discrimination at oviposition affects offspring fitness (Yang et al. 2006). Studies with 

some insects have shown that females avoid host plants bearing con-specific eggs, 

leading to non random distribution of eggs among the available hosts (Messina and 

Dickinson 1993). For example, Callosobruchus maculatus females tend to distribute 

eggs uniformly among seeds (Messina and Mitchell 1989) and females prefer to oviposit 

on seeds with a lower than average number of eggs (Messina and Renwick 1985), 

though the degree of egg avoidance varies substantially among populations. This 

behavior leads to lower competition among siblings and in consequence generates 

higher survivorship, increasing female fitness (Wilson 1988). Because S. limbatus is a 

seed feeder with scramble competition, it is expected that females will distribute eggs 

non-randomly among seeds to minimize larval competition experienced by their 

offspring. Thus, the objective of this experiment was to determine the effects of seeds 

bearing different number of eggs, and at two different developmental stages, on 

female’s fecundity and egg dispersion. 
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(2) Do females prefer to oviposit on larger seeds? Previous studies with species 

of herbivorous and parasitoid insects show that larger hosts provide more nutrients to 

the developing larvae (Godfray et al. 1991 and references there in) and reduce the 

deleterious effects of competition among siblings. Compared with insects developing in 

small hosts, insects developing in larger hosts experience longer development time and 

increase body size, because they can make use of the additional resources to attain 

larger size (Mackauer and Chau 2001). These responses are associated to organisms 

with scramble competition in which immature share the same discrete patch. Studies 

done with S. beali, a specialist seed beetle on large seeds of Texas ebony, 

(Chloroleucon ebano Berlandier) show that females prefer to oviposit on large seeds 

when presented with both a large and a small seed (Fox and Mousseau 1995). The S. 

limbatus populations examined here all exhibit scramble competition. Thus, I expect 

ovipositing females to prefer larger over smaller hosts. However, the effect of seed size 

on female preference could be also influenced by female body size. Given that female 

body size is positively correlated with fecundity, clutch size and offspring size (Fox 

1994, Visser 1994, Allen and Hunt 2001) small females would lay fewer eggs and 

smaller clutches than large females, and in consequence it would be expected than 

smaller hosts would not be as restrictive for offspring development of small beetles. 

Thus, the objective of this experiment was to establish female’s oviposition preference 

for large and small seeds when exposed to mixed or non choice treatments differing in 

seed size. 

 

(3) How is oviposition preference of females affected by variation in size versus 

quality of seeds? When adaptation to a local host occurs, populations differing in host 

availability generally evolve preferences for their native host. This can reduce their 

willingness to accept alternate hosts if there is a trade-off between adaptation to the 

local host and the ability to use novel hosts (Mopper et al. 2000). However, preference 

for a better quality host, irrespective of the native host, could also drive females to 

prefer lay eggs on non native hosts. The objective of this experiment was to determine 

whether populations of S. limbatus adapted to host seeds differing in size and quality 

exhibit oviposition preference for their native host regardless of the size and quality of 
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the alternative host. In addition, because populations tested in this experiment differ in 

body mass as a result of adaptation to seed hosts (Chapter 2), I tested whether body 

mass affected preference for seeds.  

 

(4) Do females adjust egg size similarly in response to both native and non-

native resistant or low quality hosts? Studies examining the fitness consequences of 

egg size on progeny show that progeny hatching from larger eggs had higher fitness or 

better performance than progeny hatching from small eggs (Fox and Czesak 2000). 

Variation in egg size within populations had been demonstrated in response to several 

environmental factors such as maternal diet, rearing and oviposition temperature, 

maternal density, seasonal variation and oviposition host (Fox and Czesak 2000 and 

references there in). Egg size plasticity in S. limbatus has been demonstrated for 

populations in Arizona, which use A. greggii and Parkinsonia florida as major hosts. 

When ovipositing on Pa. florida, females lay larger eggs and larvae have higher 

probability of burrowing into the seed after overcoming the toxic seed coat (Fox et al 

1997). Pseudosamenea guachapele seeds are smaller and development of beetles 

takes longer than development in A. greggii seeds (Chapter two), suggesting that Ps. 

guachapele seeds are a low quality nutritional resource for larvae development. In 

addition, variation in egg size among populations within species is commonly 

associated to latitudinal and altitudinal clines, with smaller eggs produced at lower 

latitudes and altitudes, although for many arthropods variation in egg size is more 

associated with changes in host plants (Fox and Czesak 2000), a very determinant 

factor when herbivorous live in a variable environment with habitat heterogeneity across 

time or space, or when populations use each a different host, having an optimal 

phenotype (Futuyma 2001). The seeds used in this experiment are Ps. guachapele, Pa. 

florida and A. greggii. Ps. guachapele is a host that restricts survivorship given the small 

size and poor nutritional quality of its seeds, and Pa. florida a host that limits 

survivorship given the presence of secondary compounds in the seed coat. A. greggii is 

the seed in which beetles have higher survivorship. Thus, the objective of this 

experiment was to compare the ability of females from populations adapted to different 
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host plants to exhibit egg size plasticity when exposed to seeds of Ps. guachapele, Pa. 

florida and A. greggii.  

 

3.2 Methods and Results 
 

3.2.1 Beetle species and source populations 
 

Stator limbatus is a seed-feeding beetle (Coleoptera: Chrysomelidae: Bruchinae) 

with a broad distribution in the Americas, ranging from the southwestern United States 

in North America to the northwest of Argentina in South America (Johnson and 

Kingsolver 1976). Larval development occurs inside of seeds of ~80 different plant 

species, but populations have only a few hosts available at most localities. Females lay 

eggs directly onto the surface of seeds and first instar larvae burrow into the seed 

underneath the egg. Larval development takes place inside a single seed and larvae 

can not move among seeds. 

 

The populations used in these experiments were collected in Arizona and Texas 

in the United States and in Cundinamarca and Tolima in Colombia. Populations from 

the United States were collected from A. greggii in Oracle, (Pinal Co.; 32°36'39’’N; 

110°46'13’’W on August 2002), from Pa. florida in Phoenix (Arizona, August 2001) and 

from A. berlandieri in Del Rio (Texas; 29°28'31’’N; 100°59'21’’W, August of 2003). 

Populations from Colombia were collected from Ps. guachapele in Melgar (Tolima; 

4°13'45’’N; 74°13'91’’W) and Anapoima (Cundinamarca; , 4°31'13’’N; 74°32'22’’W) from 

December (2002) to January (2003). Beetles from the Colombia populations do not 

have access in the field to Pa. florida nor to A. greggii, and beetles from the United 

States populations do not have seeds of Ps. guachapele available. 

 

I collected seeds from >20 trees at each locality and stored them on hermetic 

bags to be transported to the laboratory. Seeds bearing eggs were enclosed in Petri 

dishes at 28oC. Emerging beetles were used to establish laboratory colonies; >200 

beetles emerged for all four populations. Colonies were maintained at ≥100 families 

 36



each generation. Because Colombian females do not lay eggs when enclosed with a 

single male, families were created by mating two females with one male. After two 

generations of laboratory rearing on their natural hosts, beetles from all colonies were 

transferred onto A. greggii seeds for one generation (to remove host-associated 

environmental effects). Beetles from all populations have very low mortality on seeds of 

A. greggii (Chapter 2).  

 

3.2.2 Host species 
 

I used seeds of three species of S. limbatus hosts for these experiments. Seeds 

of A. greggii, a host of the Arizona populations, were used for the experiments 

examining beetle preferences for large versus small seeds. A. greggii (Fabaceae) is a 

small to medium size tree that grows in semiarid areas throughout much of the 

southwestern United States and northern Mexico (Sargent 1965). Seed pods have 

between 1 and 5 brown seeds with seed mass typically between 60 to 300 mg. Seeds 

of Pa. florida, also a common host used by Arizona populations, were used for the 

experiment on egg size plasticity. Seeds of this species are similar in size to seeds of A. 

greggii, but have a toxic substance in the seed coat that causes high mortality of larvae 

burrowing into the seed (Fox et al. 1997). Seeds of Ps. guachapele, the host of the 

Colombia populations, were used in the experiments examining female oviposition 

preferences and egg size plasticity. This species is a medium to large tree that grows 

mostly in pastures and dry areas from Guatemala to Ecuador. The dehiscent seed pods 

have 10-25 small seeds that vary in mass from 18 to 46 mg. Because pods are 

dehiscent, beetles have direct access to the seeds once mature. 

 

3.2.3 Criteria to measure seed size preference and seed host preference 
 

Preference of females for seeds of a specific size or species was quantified in 

one of three ways, depending on the experiment: (a) the total number of eggs laid on 

seeds during a fixed period of time or until at least ten eggs were laid, (b) the proportion 
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of females that laid at least one egg on each seed type, and (c) the amount of time that 

females delayed oviposition on a seed type. In experiment two, females were exposed 

to a mixed seed size treatment (one large – one small A. greggii seed) and to two same 

seed size treatments (two large or two small A. greggii seeds). In experiment three 

females were exposed to three different seed size/host treatments (large or small A. 

greggii with Ps. guachapele seeds).  

 

Information about preference was obtained by determining number of eggs laid 

and the time to start ovipositing on each seed size/type. It is expected that females 

would lay more eggs and start to lay eggs sooner on the most preferred host. 

Information about acceptability was obtained by determining the proportion of females 

that laid at least one egg on each seed size/type. It is expected that females that lay at 

least one egg on the seed already accept the host even if this is not the most preferred. 

I also measured acceptability in experiment two in the non choice treatments. Details 

about the procedure for each experiment are given below in the sections explaining 

each individual experiment.  

 

3.2.4 Experiment 1: Effects of the number of eggs present on a seed, and their 
developmental stage (hatched versus unhatched) on female fecundity and egg 
dispersion. 

 

3.2.4.1 Methods 
 

 I tested the hypothesis that females are deterred from laying eggs on seeds 

bearing conspecific eggs relative to seeds without eggs, and that eggs laid on seeds 

already bearing eggs are distributed less uniformly than eggs laid on clean seeds. For 

this experiment I used beetles from the Oracle and Phoenix populations (both from 

Arizona) that use both A. greggii and Pa. florida seeds in nature. 
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520 pairs of beetles were confined in 35 mm Petri dishes (one pair per dish) with 

seeds bearing either zero, one, two, or three eggs per seed. In half of the replicates 

eggs on these seeds were hatched and in the other half eggs were unhatched. 

 

 To obtain seeds with hatched and unhatched eggs at the three required egg 

densities, 15 groups of 200, 24h old virgin beetles were enclosed in boxes containing 

either 300 or 500 clean (egg-free) seeds of A. greggii. Seeds were previously sieved to 

standardize size to a diameter of 10-12mm. Half of these eggs were allowed to hatch 

(after which they were frozen), and the other half were frozen two days after being laid.  

 

To determine how the presence of eggs, egg density, and the developmental 

stage of eggs (hatched versus unhatched) affects female egg laying, pairs of virgin 

beetles, 24 h post-emergence, were enclosed for 24 hours in Petri dishes without seeds 

and allowed to mate. 24 h later each mated pair was enclosed in a Petri dish containing 

10 seeds bearing 0, 1, 2, 3, or 4 hatched or 0, 1, 2, 3, or 4 unhatched eggs (only one 

egg density or egg treatment per dish). The pair was allowed to oviposit for 24 h, then 

was transferred to a new Petri dish containing 20 seeds with the same egg density per 

seed and allowed to oviposit until death. The total number of eggs laid by each female 

was counted. An analysis of variance was used to test for effects of conspecific egg 

density and egg developmental stage (hatched versus unhatched) on the number of 

eggs laid by females. Because there was no effect of replicate (population) on mean 

fecundity, (F1,283=2.86, P=0.09) analyses and graphs show pooled results. 

 

To determine how the presence of conspecific eggs affects the dispersion of new 

eggs laid by females, I recorded the distribution of eggs among seeds during the first 24 

h. period of oviposition and estimated the degree of uniformity of eggs among seeds 

following Messina and Mitchell (1989). This uniformity index is based on the number of 

“mistakes” committed by a female in distributing her eggs, with a “mistake” defined as 

the number of eggs that need to be relocated among seeds to obtain the most uniform 

distribution possible. This index is given by the algorithm U = (E – O)/E, where E is the 

expected number of mistakes and O the observed number of mistakes. The index 
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usually ranges between 0 and 1, where 0 represents a random distribution and 1 

represents a uniform distribution. U will be less than 0 if a female clumps her eggs. I 

tested for treatment effects using Analysis of Variance. All statistical analyses were 

performed using SAS (SAS Institute 1985). 

 

3.2.4.2 Results 
 

Females laid more eggs on clean seeds than on seeds bearing eggs, and female 

fecundity declined as the number of conspecific eggs increased (Figure 3.1; F3,344 =4.7; 

P=0.0031). However, there was no significant effect of the developmental stage of eggs 

(hatched vs. unhatched) on female fecundity (F1,344=1.24; P=0.26).  

 

 Irrespective of the type of eggs (F3,255=2.50; P=0.11) egg dispersion decreased 

with increasing number of eggs previously laid on the seed (Figure 3.2; F3,255 = 2.77; P = 

0.04). That is, as the number of eggs previously laid in the seeds increased, females 

distribute their eggs less uniformly. 

 

3.2.5 Experiment 2: Preference of females for large versus small seeds 
 

3.2.5.1 Methods 
 

I tested two hypotheses: (a) Females start ovipositing earlier and lay more eggs 

when enclosed with large seeds than when enclosed with small seeds of the same 

species, and (b) The effect of seed size on female preference is influenced by female 

body size (and thus egg load).  

 

To determine seed size and body size effects on oviposition preference for large 

vs. small seeds I used lines of beetles created by artificial selection to vary in body size. 

I used three selection lines (two replicates each) - UP beetles were selected to be large-

bodied, CONTROL were the unselected ‘natural’ size beetles, and DOWN beetles were 
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selected to be small. Details of this procedure will be presented elsewhere (J. Moya-

Laraño and C. W. Fox, unpublished). In short, starting with the outbred ORACLE 

population artificial selection was imposed on female body size (two replicates each for 

the UP and DOWN lines). These selection lines were paired with unselected control 

lines propagated with randomly-chosen offspring (two replicate CONTROL lines). For 

the selected lines (UP and DOWN), 25 families of beetles were raised per generation, 

each with 10 offspring (250 total offspring), from which the 25 largest (UP lines) or 

smallest (DOWN lines) females were selected for the next generation. Emerging 

females were weighed within 12 h of adult emergence then paired with a randomly 

chosen male from the same line. Females were allowed to lay eggs until they laid one 

egg on >10 A. greggii seeds. 10 of these eggs were raised for the next generation. In 

the CONTROL lines two random eggs were selected from every female such that no 

selection was imposed on body size. Selection was imposed for nine generations after 

which beetles were raised for two generations of random mating (within lines, not 

between lines). At the end of selection, UP beetles were 30% larger than the CONTROL 

beetles and DOWN beetles were 40% smaller than CONTROL beetles. 

 

Pairs of virgin beetles from each line (n = 100) were enclosed in 35 mm Petri 

dishes (one pair per dish) with two seeds of Acacia greggii of either one of the following 

three treatments: (a) two large seeds, (b) one large seed and one small seed, or (c) two 

small seeds. Seeds were sorted with a sieve. Large seeds averaged 2039 ± 10.3 mg 

and small seeds averaged 771.2 ± 5.6 mg. Dishes were inspected and eggs counted at 

12 h intervals until at least 10 eggs were laid by each female.  

 

To determine the effects of mixed treatments in fecundity and in the time to lay 

the first egg, I performed ANOVAs. Acceptability, measured as the proportion of 

females laying at least one egg on each seed size was evaluated with a logistic 

regression. All analyses were performed in SAS (SAS Institute 1985). 

 

3.2.5.2 Results 
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Overall, when presented with one large and one small seed simultaneously, 

females from all lines laid more eggs on the large seed than on the small seed (Figure 

3.3a; seed size effect F1,349=413.1; P<0.0001). This pattern was very different when 

females were enclosed with two large or two small seeds - there were no significant 

differences in the number of eggs laid (Figure 3.3b; F1,346=0.72; P=0.39); Larger 

females laid on average more eggs than medium and small females (Average number 

of eggs laid on large and small seeds: FUP = 11 and 3 respectively, CONTROL = 10 

AND 3 respectively and FDOWN = 8 and 3 respectively; F2,349 = 13.93; P<0.0001) and 

in the one seed size treatment (Average number of eggs laid on two large and two small 

seeds: FUP = 7 and 7 respectively, CONTROL = 7 and 6 respectively and FDOWN = 6 

and 5 respectively; F2,345=13.93; P<0.0001).  

 

When presented with one large and one small seed simultaneously, a greater 

proportion of females from all lines laid at least one egg in larger than in smaller seeds. 

Thus, females from all lines show significantly lower acceptability to lay eggs on small 

seeds (Figure 3.4a; Χ2
1=15.46, P=0.008); when enclosed with two small seeds 

acceptability is not significantly different from acceptability of two large seeds (Figure 

3.4b; Χ2
1=0.0010, P=0.97).  

 

Overall, when presented with one large and one small seed simultaneously, 

females from all lines took a significantly different time to lay eggs on the small seed 

than in the large seed in the mixed treatment (Figure 3.5a; F1,312=9.23; P=0.0024), but  

nor when they were enclosed only with two large or two small seeds (Figure 3.5b; 

F1,345=1.45; P=0.23).  I also detected a significant line effect when females were 

enclosed in the mixed treatment (F2,313=5.45; P=0.0047), but the pattern is unclear. 

  

These results indicate that females prefer to oviposit on large over small seeds 

when finding a mixed environment. Females laid more eggs on large seeds in the 

mixed-seed treatment. When comparing large vs. small seeds in no-choice treatments, 

females laid the same number of eggs on both sizes of seeds, the proportion of females 

accepting to lay at least one egg on each seed size and the time to lay eggs did not 

 42



vary significantly. Regarding our second hypothesis, that the effect of seed size on 

female preference is influenced by female body size, I found that smaller females lay 

fewer eggs on small seeds, but I did not find a seed size-by-line interaction that would 

indicate a differential response of lines to seed size. Thus, our second hypothesis is 

rejected. 

 

3.2.6 Experiment 3: Female preferences for seeds of varying species, size and 
quality  

 

3.2.6.1 Methods 
 

I tested the hypotheses that (a) females from different populations and adapted 

to different host species will prefer their native hosts over the alternative host, versus (b) 

females will prefer the larger-seeded host regardless of which host is their native host.  

 

Pairs of virgin beetles from three populations (Anapoima, Del Rio and Oracle) 

were mated and enclosed in a 35 mm Petri dish (one pair per dish) with two seeds per 

dish in one of the following combinations: (a) one large and one small A. greggii seed, 

(b) one large A. greggii seed and one Ps. guachapele seed, or (c) one small A. greggii 

seed and one Ps. guachapele seed (N = 30 pairs per treatment per population). Each 

dish was inspected for eggs every 12 h until the female laid ≥ 10 eggs.  

 

As in experiment two, to determine the effects of treatments in fecundity and in 

the time to lay the first egg, I performed ANOVAs. Acceptability, measured as the 

proportion of females that laid at least one egg on each seed size/type was evaluated 

with a logistic regression. All analyses were performed in SAS (SAS Institute 1985). 

 

3.2.6.2 Results 
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Females from all three populations laid more eggs on seeds of A. greggii than on 

seeds of Ps. guachapele (Treatment large A. greggii – Ps. guachapele, figure  3.6a, 

F1,167=683.9, P<0.0001; treatment Small A. greggii – Ps. guachapele, figure  3.6b, 

F1,166=232.1, P<0.0001) and on large than in small A. greggii seeds (Figure 

3.6c;F1,171=195.35, P<0.0001). I also found a significant population effect when females 

were enclosed with a large A. greggii  and a Ps. guachapele seed (F2,167=4.14, 

P=0.017). Only one female out of 60 laid one egg on P. guachapele (Figure 3.6a). 

 

Overall, a larger proportion of females from all populations accept to lay at least 

one egg on A. greggii than in Ps. guachapele (Seed type effect for the Large A. greggii - 

Ps. guachapele treatment, Figure 3.7a: Χ2
1=38.32, P< 0.0001; small A. greggii-Ps 

guachapele treatment, Figure 3.7b: Χ2
1=25.7, P<0.0001). Surprisingly, females from 

Oracle and Del Rio were less likely to reject Ps. guachapele seeds than were females 

from Anapoima and rejection of Ps. guachapele seeds were greatest when the alternate 

seed for oviposition was a large A. greggii. (Average proportion of females laying on Ps 

guachapele: Del Rio = 0,25, Oracle = 0.37, Anapoima = 0.034). In addition I found a 

significant interaction population by seed in the treatment small A. greggii – Ps. 

guachapele: Χ2
2=12.17, P=0.0023). A similar proportion of females accept large and 

small seeds of A. greggii in this treatment (Figure 3.7c; Χ2
1=2.47, P=0.11).  

 

Females delayed oviposition on seeds of Ps. guachapele longer than they 

delayed oviposition on seeds of A. greggii (Treatment large A. greggii – Ps. guachapele, 

Figure 3.8a, F1,168=70.34, P<0.0001; treatment Small A. greggii – Ps. guachapele, 

Figure 3.8b, F1,165=15.55, P=0.0001). However, this delay in oviposition on Ps. 

guachapele was greater when the alternate host was a large A. greggii seed than when 

the alternate host was a small A. greggii seed (Figure 3.8). Anapoima beetles also took 

longer to start ovipositing irrespective of seed species or size. These results are 

consistent with the results of the rejection of seeds – females prefer to oviposit on large 

A. greggii seeds, followed by small A. greggii seeds and lastly Ps. guachapele seeds. 

Significant population by seed species interaction show that females responded 
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differently to each seed type (Treatment large A. greggii – Ps. guachapele F5,168=23.77, 

P<0.0001; treatment Small A. greggii – Ps. guachapele F5,165=8.19, P<0.0001). 

 

Thus, these results confirm the hypothesis that, regardless the native host, 

females prefer larger A. greggii seeds, followed by small A. greggii seeds and last Ps. 

guachapele seeds. They also show that a trade-off between local adaptation and use of 

alternative hosts is dependent on factors such as the quality and size of the alternative 

host compared with the quality and size of the native host.  

 

3.2.7 Experiment 4: Egg size plasticity in response to host species, size and 
quality. 

 

3.2.7.1 Methods 
 

Previous studies have shown that Arizona populations of S. limbatus lay larger 

eggs on seeds of Pa. florida than on seeds of A. greggii, and that Colombian 

populations lay larger eggs on seeds of Ps. guachapele than on seeds of A. greggii. 

Here I simultaneously compare Colombian and Arizonan beetle responses to all three 

hosts and test the hypothesis that beetles from these two regions differ in their response 

(egg size plasticity) to these three host species. A. greggii and Pa. florida are hosts 

used by the USA populations and Ps. guachapele is a host used by the Colombia 

populations. 

 

Emerging females were weighed within 24 of their emergence from their rearing 

seed. Prior to mating, to ensure that eggs are matured in contact with seeds of the test 

host, virgin females from the four populations, Anapoima, Melgar, Del Rio and Oracle, 

were individually enclosed for 48h in a 35 mm Petri dish (one female per dish) with eight 

seeds of their treatment host. Females were then mated to virgin males (N = 90 pairs 

per population) and transferred to 35 mm Petri dish (one pair per dish) containing three 

seeds of either A. greggii, Ps. guachapele or Pa. florida (N= 30 pairs per seed host per 
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population). The former two of these hosts are natural hosts for beetle populations in 

Arizona whereas the third (Ps. guachapele) is a natural host for beetle populations in 

Colombia.  

 

24h after mating seeds were inspected for eggs. If all three seeds had eggs, then 

the beetles were discarded. Dishes in which females had not laid eggs on all three 

seeds were inspected every 12h until eggs had been laid on all three seeds. Eggs were 

allowed to hatch (larvae burrow into the seed under the egg) then frozen at -20oC until 

measured. 

 

I measured the length of one randomly chosen egg (at 55x) from each of the 

three seeds for each female. The average length of these three eggs was treated as a 

single data point for each female. I used analysis of variance to test for the effects of 

population and treatment (oviposition host) on egg size. All analyses were conducted in 

SAS (SAS Institute, 1985). 

 

3.2.7.2 Results 
 

As has been found in other studies with S. limbatus, female body mass 

influenced egg size (analysis of covariance, F1,212=12.36; P=0.0005). There was no 

significant difference between populations (within countries) in the size of eggs that they 

laid [population (nested within country) effect, F3,212=1.15, P=0.32]. Females from all 

four populations laid larger eggs on seeds of both Ps. guachapele and Pa. florida than 

on seeds of A. greggii (Figure 3.9; host effect, F2,212=43.1, P<0.0001). However, the 

magnitude of plasticity was different for Colombian and Arizona populations - 

Colombian females laid the smallest size eggs on A. greggii and larger eggs on both Ps. 

guachapele and Pa. florida, but the size of eggs that these females laid did not differ 

between Ps. guachapele and Pa. florida (Difference between means, tukey test = 0.004, 

no significant at 0.05 level). Arizona females also laid the smallest eggs on A. greggii 

and larger eggs on both Ps. guachapele and Pa. florida, but eggs laid on Pa. florida 

were significantly larger than eggs laid on Ps. guachapele (Figure 3.9; Difference 
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between means, tukey test = 0.029, significant at 0.05 level); population nested within 

country-by-host effect, F5,212=6.26, P<0.0001). 

  

These results confirm our hypothesis that females from divergent clades of the 

geographic range of S. limbatus adjust the size of their eggs in response to the species 

of seed on which they lay those eggs but that the shape and magnitude of this response 

differs between Colombian and Arizona populations. 

 

3.3 Discussion 
 

Beetles from all populations show greater preference for large A. greggii seeds, 

followed by small A. greggii seeds and lastly seeds of Ps. guachapele. Females laid 

more eggs on larger seeds, and distributed their eggs more uniformly on seeds bearing 

fewer conspecific eggs. In chapter two I demonstrated that larval performance was 

greater for all populations tested here when reared on A. greggii seeds than when 

reared on Ps. guachapele seeds. Thus, females prefer to lay eggs on the species on 

which performance is greatest, consistent with the oviposition preference – offspring 

performance hypothesis of Jaenike (1978) and with the preference for larger and better 

quality seeds. Concordance between oviposition preference and offspring performance 

has been observed in some species of herbivorous, of predaceous and of parasitoid 

insects (Tauber and Tauber 1987, Poore and Steinberg 1999, Sadeghi and Gilbert 

1999, Heisswolf et al. 2005). However there are cases in which preference for hosts is 

driven by other factors such as finding of enemy free space – even if the preferred host 

is not the best for offspring development, it enhances its survivorship by protecting them 

from natural enemies (Bernays and Graham 1988, Ballabeni et al. 2001, Lill et al. 2002). 

The influence of natural enemies on host use by the Colombia and Arizona populations 

of S. limbatus is currently under study.  

 

Females from all populations tested here preferred to oviposit in A. greggii, a 

host available in nature only for the Arizona populations. According with the deme 

formation hypothesis (Edmunds and Alstad 1978) selection on the ability to distinguish 
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hosts used in nature should reduce the ability to distinguish among alternative hosts not 

normally encountered in nature (Thompson 1996, Van Zandt and Mopper 1998, 

Agrawal 2000). Results from the third experiment do not support this hypothesis. 

Instead, I found that seed size and seed quality are the major determinants of variation 

in oviposition preference among these populations locally adapted to different hosts.  

 

In addition to changes in female fecundity associated with changes in size and 

quality of the seeds to which they have access, I found that acceptability (the proportion 

of females that laid at least one egg on each seed size/type) of small and poor quality 

hosts is dependant of the availability of alternate hosts. Females that had a small A. 

greggii seed and a Ps. guachapele seed available for ovipisition laid more eggs on the 

small Ps. guachapele seed than did females that were enclosed with a large A. greggii 

seed and a Ps guachapele. This indicates that the acceptability of hosts is dependant of 

the availability and quality of alternate hosts. In another seed beetle for which host 

discrimination is well studied, Callosobruchus maculatus, female oviposition decisions 

follow a threshold model in which the acceptance threshold for a host is adjusted by 

experience gained during the egg laying process showing that as females become more 

host limited they reduce their aversion to ovipositing on the less preferred host (Horng 

et al. 1999). In my case, the quality of the alternate seed (large vs. small A. greggii 

seeds) was a function of the size of these seeds relative to the Ps. guachapele seed. 

 

Females of S. limbatus assess the quality of the seed for oviposition based on 

seed size, nutritional content, toxicity and number of eggs previously laid upon it. 

Females also asses the number of conspecific eggs already present on the seeds and 

distribute their own eggs in a way that minimizes the effect of larval competition on 

survivorship. As the number of conspecific eggs on seeds increases females are less 

accepting of those seeds and distribute their eggs less evenly among the available 

seeds. Experiments with C. maculatus show a similar pattern. Females of this species 

distribute their eggs uniformly among seeds (Mitchell 1975) and are able to discriminate 

among seeds with small differences in egg number, laying preferentially on seeds with 

lower egg densities (Messina and Renwick 1985a).  
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All populations studied here showed similar responses to small seeds and to Ps. 

guachapele seeds – acceptability of Ps. guachapele seeds was higher when the 

alternate host was a small rather than a large A. greggii seed, and all populations 

exhibited egg size plasticity in response to low quality and/or toxic hosts. This suggests 

that female preference is relatively conserved across the broad distribution of the 

species. Populations from Colombia and Arizona represent very divergent clades on the 

S. limbatus phylogeny (Morse and Farrell 2005a), and females adjust egg size in 

response to seed quality. These results are consistent with the hypothesis I proposed in 

chapter two, that egg size plasticity is an ancestral trait in S. limbatus that facilitates 

colonization of new hosts, allowing diversification of diet and range expansion. The 

importance of egg size plasticity in colonization of new hosts in S. limbatus has been 

demonstrated by Fox and Savalli (2000) in reference to colonization of Texas ebony, a 

widespread ornamental, by an S. limbatus population in Arizona. They showed that 

females exposed to Pa. florida, which produces seed coats resistant to larval 

penetration, lay larger eggs and change egg composition and thus increase larval 

survivorship on this host by 10-fold, relative to the survivorship of larvae hatching from 

eggs of females that never encounter seeds of Pa. florida.  

 

In addition, the small body size of beetles in the Colombian populations may be a 

constraint on how large eggs can be in response to host quality – the size and the 

shape of the oviducts may limit the absolute size of eggs laid, regardless of the size 

favored by selection, in some insects. This may explain why, even though all four 

populations show egg size plasticity in response to their host species, Colombian 

populations are not as plastic as Arizona populations. Thus, although small body size 

has evolved in the Colombian populations in response to the small size of their host 

seeds, this small body size may constrain egg size plasticity and thus the ability of 

beetles to expand onto new hosts. 

 

In conclusion, I demonstrated that irrespective of population origin, females of S. 

limbatus prefer to oviposit on large over small A. greggii seeds (Experiment two) and on 
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the best quality seeds of A. greggii than on the smaller and low quality seeds of Ps. 

guachapele. Preference for the least preferred Ps. guachapele is dependant of the size 

of A. greggii and females from Anapoima laid the lower number of eggs on Ps. 

guachapele and had the lowest acceptability for this host (Experiment three). In addition 

to show higher preference for the larger host, results from these experiments agree with 

the hypothesis of a correlation preference performance (Jaenike 1978). Females 

preferred to oviposit in the host in which offspring performs better (Chapter two). Once 

females lay eggs on a selected seed, they lay more eggs on seeds with no eggs than 

on seeds bearing already eggs (Experiment one) and distribute eggs evenly among 

seeds available, though this evenly distribution of eggs decrease as eggs already on the 

seed increase (Experiment one). Females also exhibit egg size plasticity, laying larger 

eggs on the toxic Pa. florida and in the low quality Ps. guachapele seeds (Experiment 

four). However, body size may constrain how large eggs laid by Colombia females 

could be by an unknown mechanism. The size of oviducts may limit the size favored by 

selection. Thus, egg size plasticity, considered as an ancestral trait, may be a very 

important mechanism that favors host colonization and host expansion in S. limbatus, 

but body size may impose a constrain on how plastic organisms can be. 

 50



 

 

Figure 3.1: Mean fecundity of females on seeds with differential number of eggs already 

laid and of different developmental stages. Black bars: Eggs not hatched. White bars: 

Hatched eggs. 
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Figure 3.2: Distribution of eggs laid by females on seeds with differential number of 

eggs already laid and of different developmental stages. Black bars: Eggs not hatched. 

White bars: Hatched eggs. A more even distribution of eggs is represented by a higher 

egg dispersion value. 

 52



 

Figure 3.3: The number of eggs laid by female S. limbatus on large versus small seeds 

when presented (a) simultaneously with one large and one small Acacia greggii. (b) with 

two large or two small Acacia greggii seeds. FUP: Larger females, CONTROL: Medium 

size females, and FDOWN: Smaller females. Standard errors are smaller than the 

symbols in some cases. 
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Figure 3.4: The proportion of female S. limbatus laying at least one eggs on large 

versus small seeds when presented (a) simultaneously with one large and one small 

Acacia greggii. (b) with two large or two small Acacia greggii seeds. FUP: Larger 

females, CONTROL: Medium size females, and FDOWN: Smaller females. Standard 

errors are smaller than the symbols in some cases. 
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Figure 3.5: The time females S. limbatus last to lay the first egg on large versus small 

seeds when presented (a) simultaneously with one large and one small Acacia greggii. 

(b) with two large or two small Acacia greggii seeds. FUP: Larger females, CONTROL: 

Medium size females, and FDOWN: Smaller females. Standard errors are smaller than 

the symbols in some cases. 
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Figure 3.6: The number of eggs laid by female S. limbatus on seeds when presented 

simultaneously with (a) one large Acacia greggii and one Ps. guachapele (b) one small 

Acacia greggii and one Ps. guachapele and (c) one large and one small Acacia greggii; 

DEL RIO: Larger beetle size population, ORACLE: Medium size beetle population, 

ANAPOIMA: Smaller beetle size population. Standard errors are smaller than the 

symbols in some cases. 
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Figure 3.7: The proportion of females of S. limbatus that laid at least one egg on seeds 

when presented simultaneously with (a) one large Acacia greggii and one Ps. 

guachapele (b) one small Acacia greggii and one Ps. guachapele and (c) one large and 

one small Acacia greggii; DEL RIO: Larger beetle size population, ORACLE: Medium 

size beetle population, ANAPOIMA: Smaller beetle size population. Standard errors are 

smaller than the symbols in some cases. 
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Figure 3.8: The time females of S. limbatus last to lay at least one egg on seeds when 

presented simultaneously with (a) one large Acacia greggii and one Ps. guachapele (b) 

one small Acacia greggii and one Ps. guachapele. DEL RIO: Larger beetle size 

population, ORACLE: Medium size beetle population, ANAPOIMA: Smaller beetle size 

population. Standard errors are smaller than the symbols in some cases. 
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Figure 3.9: Changes in egg length in populations of S. limbatus of Colombia and the 

United States in response to three host seeds. 

 

Copyright © Angela Rocío Amarillo-Suárez 2006 
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Chapter 4: Effects of seed size and insect size on the consequences of larval 
competition 

 

4.1 Introduction 
 

Competition for resources, such as space, mates, territory and food, is one of the 

major factors determining animal morphology and life histories. Many traits have 

evolved that confer increases in competitive ability, or that reduce the negative effects 

of competition on animal fitness (Pexton and Mayhew 2004). For insects developing on 

discrete resources, in which host size and hence larval resources are fixed at 

oviposition, intraspecific larval competition has particularly important consequences for 

individual fitness when organisms cannot move to new resource patches, and when 

larval competition is high (Hess et al. 1996). In scramble competing species, larvae 

reared at high density usually mature smaller (Bai and Mackauer 1992, Hardy et al. 

1992, Mackauer and Chau 2001) and suffer higher larval mortality (Hess et al. 1996, 

Fox and Savalli 1998) but mature sooner (Ode et al. 1996, review in Roff 1992). For 

example, larvae of the seed feeding beetle, Stator limbatus, that develop at higher 

density are smaller and have lower survivorship than larvae that develop at low density 

(Fox et al. 1996). 

 

Studies with some gregarious parasitoids, for which development is analogous to 

seed feeders that undergo scramble competition (Messina 2004), show that host size 

and quality are important determinants of life histories, to the extent, that host size has 

been proposed to constrain the evolution of clutch size (Hardy et al. 1992, Tsai et al. 

2001). In both gregarious parasitoids and seed feeding insects, adult body size and 

development time increase with host size (Boivin and Lagace 1999, Mackauer and 

Chau 2001). For example, populations of the seed feeding beetle S. limbatus vary in 

adult body mass concordant with variation in host size (see chapter two); beetles from 

populations that use Acacia greggii are on average 49% larger (body mass) than 

beetles from populations that use the small seeds of Pseudosamanea guachapele 

(Chapter two). Moreover, components of host plant quality such as size, including 

nitrogen, carbon and secondary compounds, also affect oviposition behavior, fecundity, 
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development time, offspring size, and a variety of offspring traits (Chapter three in this 

dissertation, Awmack and Leather 2002). 

 

Adult body size is perhaps one of the major traits affecting the performance of 

organisms with important consequences for fitness (Price and Schluter 1991, Roff 

1992), metabolic rates and even population growth (Savage et al 2003, Charnov and 

Gillooly 2004). It affects almost all aspects of the life cycle, and often has large effects 

on adult traits such as mate selection, fecundity and offspring size (e.g., egg size, and 

survivorship on Visser 1994, Savalli and Fox 1998). Given that large adults have larger 

progeny than their smaller conspecifics, their offspring requirements for development 

and survivorship will be higher, and thus, is expected that these requirements will be 

scarcer as competition increase, suggesting that density dependent effects on body size 

would be more deleterious to large organisms than to small ones.  

 

Thus, it is expected that, in scramble competition systems with a fixed amount of 

resources for development, larger animals will be more susceptible to host size and to 

increasing competition than smaller animals. However, no previous studies have 

examined simultaneously the effects of host size, competition and body size on growth 

and life history traits in insects with resource limitation during development. A factorial 

experiment, varying simultaneously these factors, will allow to examine potential causal 

relationships and interactions among these components giving a better understanding 

of how clutch size, body size and host size may influence the evolution of life histories in 

organisms that use discrete hosts (Messina 2004). 

 

Thus, the aim of this study was to determine the fitness consequences of body 

size of a seed-feeding beetle in response to simultaneous variation in larval competition 

and seed size. Specifically we asked: (1) Do the effects of larval competition vary with 

host size? and (2) Do larger beetles suffer greater fitness costs to being reared at high 

density or on small seeds relative to smaller-bodied beetles?  
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To address these questions we performed two sequential experiments. First, we 

simultaneously manipulated larval density (1-16 larvae per seed) and seed size (large, 

medium, and small seeds) and quantified the consequences of these manipulations for 

growth and survival of beetles from three natural populations that are adapted to 

different size hosts (seeds), and differ in adult body size. Second, we tested whether the 

observed variation among populations in their response to seed size and larval density 

is likely a consequence of variation in body size by repeating our experiment using lines 

of three different sized beetles obtained by artificial selection from a single population. 

 

4.2 Materials and Methods 
 

4.2.1 The Model Organism 
 

S. limbatus (Horn) (Coleoptera: Chrysomelidae: Bruchinae) is a seed-feeding 

beetle with a broad distribution ranging from the northwest of Argentina in South 

America to the southwest of the United States in North America (Johnson and 

Kingsolver 1976, Johnson et al. 1989). Throughout its distribution S. limbatus feeds on 

seeds of about 80 species of legume trees, but populations at each locality usually have 

access to just a few species. 

 

Females oviposit directly onto mature seeds. First instar larvae hatch from eggs, 

burrow into, and develop entirely inside seeds. Adults emerge around 28-30 days later 

at 28oC. In the laboratory, oviposition in the southwestern United Sates desert 

populations starts 12-48 hours after emergence if mates and seeds are available. For 

the Colombian populations, oviposition starts about 48 hours after emergence if multiple 

mates, seeds and food are provided.  

 

4.2.2 Source Populations and Colony Establishment 
 

The three populations used for this study were collected at three localities from 

three different host species that produce different sized seeds. Beetles were collected 

 62



from the small-seeded Pseudosamanea guachapele (Anapoima, Cundinamarca, 

Colombia, South America, 4°31'13’’N; 74°32'22’’W) in December 2002, from the 

medium size seeds of Acacia greggii (Oracle, Pinal Co., Arizona, United States, 

32°36'39’’N; 110°46'13’’W) in August 2002, and from the large-seeded Acacia 

berlandieri (Del Rio, Texas, United States, 29°28'31’’N; 100°59'21’’W) in August 2003. 

ORACLE beetles are on average 8% smaller (body mass) than DEL RIO beetles, and 

ANAPOIMA beetles are 52% smaller than DEL RIO beetles. A. greggii seeds are 15-

20% smaller than A. berlandieri seeds, and P. guachapele seeds are 60% smaller than 

A. berlandieri seeds. These field collected populations (DEL RIO, ORACLE and 

ANAPOIMA) differ in a variety of growth and life history traits other than mean body 

size. Many of these differences are likely a consequence of adaptation to different host 

species and to seeds of different size (Chapter two). 

 

Mature seed pods were collected from at least 20 trees at each locality. These 

pods were opened in the laboratory and seeds bearing eggs were placed in individual 

Petri dishes inside a growth chamber at 28oC, 15:9 light: dark. Emerging adults (>200 

from each population) were used to establish laboratory colonies. Each colony was 

maintained in the lab at >100 families per generation at 28oC, 15:9 light: dark. Because 

survivorship of all populations is very high on A. greggii seeds (Chapter two) all colonies 

were maintained on this host prior to beginning the experiment at least for nine 

generations. The use of a common host was necessary to eliminate host-associated 

maternal effects that could confound population differences in growth and body size 

(Fox et al 1996). All beetles in the colonies were raised to adult at one larva per seed. 

 

4.2.3 Body Size Selected Lines 
 

To confirm whether the variation in response to seed size and larval density 

observed among natural populations in our first experiment was potentially a 

consequence of variation among populations in their body size, we repeated our 

experiment using lines of beetles created by artificial selection to differ in mean body 

size. Lines were selected to be composed by large (UP line), small (DOWN line), or 
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medium size (CONTROL line) beetles. They were all created from the ORACLE 

population and thus differences between the lines can only be a consequence of 

selection for differences in body size and not a consequence of different evolutionary 

histories with respect to seed size or larval density.  

 

Details of creation of the selected lines will be presented elsewhere (J. Moya-

Laraño and C. W. Fox, unpublished). In short, starting with the outbreed ORACLE 

population large and small beetles were created by imposing artificial selection on 

female body size (two replicates each of an UP and a DOWN line). These selection 

lines were paired with unselected control lines propagated with randomly-chosen 

offspring (two replicate CONTROL lines). For the selected lines (UP and DOWN) 25 

families of beetles were raised per generation, each with 10 offspring (250 total 

offspring), from which the 25 largest (UP lines) or smallest (DOWN lines) females were 

selected for the next generation. Emerging females were weighed within 12 h of adult 

emergence, and then paired with a randomly chosen male from the same line. Females 

were allowed to lay eggs until they laid one egg on >10 A. greggii seeds. 10 of these 

eggs from each female were raised for the next generation. In the CONTROL lines two 

random eggs were selected from every female such that no selection was imposed on 

body size. 

 

Selection was imposed for nine generations, after which beetles were raised for 

two generations without selection. At the end of selection, UP beetles were 30% larger 

than CONTROL beetles, and DOWN beetles were 40% smaller than CONTROL 

beetles.  
 

4.2.4 Experimental Design 
 

We set up two independent factorial experiments. Both experiments were 

identical except in the study populations we used. Experiment 1 compared the three 

natural populations of S. limbatus that differ in body size and in their natural seed 

size/host species (DEL RIO, ORACLE, ANAPOIMA). Experiment 2 compared the three 
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artificially selected lines of beetles that differed in body mass but were created from the 

single ORACLE population (UP, CONTROL, DOWN lines). 

 

Pairs of beetles from each population/line were allowed to oviposit on clean 

seeds of three different sizes (large, medium and small) and were reared to adult at six 

different densities (1, 2, 4, 8, 12 and 16 eggs per seed). Large and medium-size seeds 

were A. greggii seeds sorted by diameter using a sieve. Average mass for large and 

medium seeds were 2039 ± 10.3 mg and 771.2 ± 5.6 mg, respectively. Smaller A. 

greggii seeds were typically aborted/abnormal and thus were not used. For the smallest 

seed class seeds of P. guachapele were used. Thus, small seeds differed from large 

and medium seeds in both size and species. Average mass of these seeds was 345.8 ± 

2.94 mg. 

 

12 h after emergence, virgin females were each mated to a virgin male (from the 

same population/line) and randomly assigned to a seed size treatment. Each pair of 

beetles was confined with 1, 2, 4 or 8 clean seeds to obtain 1, 2, 4, 8, 12 or 16 eggs per 

seed (see details below). Seeds were inspected every 24h until the pre-defined number 

of eggs per seed were laid. Excess eggs laid on the seeds were scraped off with a pair 

of forceps. Seeds bearing eggs were placed in a growth chamber at 28 oC, L: D 15:9, at 

one seed per dish.  

 

To manipulate egg density, the number of seeds provided to mated pairs was 

manipulated. Pairs of beetles were provided either with (a) 8 seeds (20 pairs per seed 

size) to obtain a density of one egg per seed, (b) 4 seeds (10 pairs per seed size) to 

obtain two eggs per seed, (c) 2 seeds (10 pairs per seed size) to obtain four eggs per 

seed, (d) 2 seeds (10 seeds per seed size) to obtain six eggs per seed, (e) 1 seed (10 

pairs) to obtain eight eggs per seed, (f) 1 seed (10 pairs) to obtain 12 eggs per seed, 

and (g) 1 seed (10 pairs) to obtain 16 eggs per seed. The last three larval densities 

were created only on large seeds because inspection of clutch sizes on seeds collected 

in the field indicated that females in nature rarely lay these densities of eggs on small 

 65



and medium-sized seeds. Only eggs that hatched were counted as part of the larval 

density treatments.  

 

In summary, a total of 4 density treatments (1, 2, 4 and 6) were established per 

population/line on the small and medium size seeds, whereas 7 density treatments (1, 

2, 4, 6, 8, 12 and 16) per population/line were set up on the large seeds. I raised larvae 

from a total of 5,040 eggs for Experiment 1 (comparing the natural populations) and 

approximately 10,080 eggs, evenly divided amongst the two replicate sets of lines, for 

Experiment 2 (comparing the selected lines). 

 

I recorded larval survivorship (from egg hatch to adult emergence) and 

development time of all surviving beetles. All emerging beetles were weighed on 

electronic balances (Mettler Toledo AT261 Delta range) to 0.01 mg within 12h of 

emergence. 

 

4.2.5 Analyses 
 

Logistic regression was used to test for population, seed size, and larval density effects 

on larval survivorship. ANOVA (Type III sums of squares) was used to examine the 

effect of population or line (Experiments 1 and 2, respectively), seed size, and larval 

density on body mass and development time. Because I had two replicates from each 

selected line (Experiment 2), I included a replicate effect in the ANOVAS. Least 

Squares Means (LS Means) were used to estimate effect sizes of individual model 

parameters; these are presented in the text to show the size of individual effects. 

However, all figures present actual means and not LS Means. All analyses were 

performed in SAS 8.2 (SAS Institute, 

Cary, North Carolina, USA). 

  

 

Because the highest larval density treatments (8, 12 and 16 eggs per seed) were 

created only for large seeds, I performed two sets of analyses. In the first set I included 
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the densities created for all seed sizes (1 to 6 eggs per seed) across all 

populations/lines. For the second set of analyses I included only large seeds but 

consider all larval densities. In all cases the results from both set of analyses are 

consistent with each other; I thus present only the results of the first set of analyses. 

 

4.3 Results 

4.3.1 Experiment 1: Seed Size and Larval Density Effects on Growth and Survival 
in Natural Populations Differing in Body Mass 

 

In this first experiment I compared the three natural populations of S. limbatus 

that differ in body mass, DEL RIO (largest beetles), ORACLE (intermediate-sized 

beetles) and ANAPOIMA (smallest beetles).  

 

4.3.1.1 Hatch-to-Adult Survivorship 
 

Hatch-to-adult survivorship varied with seed size (Χ2
2= 259.4, P<0.0001), with 

larval density (Χ2
5 = 58.4, P<0.0001) and among populations (Χ2

2= 9.47, P=0.0087). 

Overall, survivorship decreased as seed size decreased, though the difference in 

survivorship was greater between large/medium and small seeds than between large 

and medium size seeds (Figure 4.1;average survivorship, 0.94on large, 0.94 on medium 

and 0.68 on small seeds). Survivorship also decreased with increasing larval density for 

all populations, but the magnitude of the larval density effect depended on seed size 

(seed size-by-larval density interaction, Χ2
10=24.1, P=0.007) – the effect of increasing 

larval density was greatest for larvae in the smallest seed (average survivorship at 5-6 

larval density on large seeds =0.92, on medium seeds =0.79 and on small seeds =0.35) 

and it also depended of population (population-by-larval density interaction, Χ2
10=23.35, 

P=0.0095).  

 

4.3.1.2 Hatch to Adult Development Time 
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Development time varied with seed size (F2,810=2.05, P<0.0001) and with larval 

density (F5,810=9.65, P<0.0001), but not among populations (F2,810=2.05, P=0.0804). 

However, when including in the analysis development time at densities higher than 6 

larvae per seed or all densities, there were significant differences among populations 

(F2,79=3.99, P=0.022 for densities higher than 6 and F2,957=3.24, P=0.04 including all 

densities). Overall, development time was longer on small seeds than on either large or 

medium seeds, but there was no difference in larval development time between large 

and medium size seeds (Figure 4.2; LS means: large seeds 26.4 ± 0.1d; medium seeds 

27.2 ±0.1d; small seeds 32.0 ± 0.2d). Larval development time was also shortest at high 

density and longest at low density (Figure 4.2).  

 

Neither the effect of seed size nor the effect of larval density varied among 

populations (i.e., no significant population-by-density or population-by-seed size 

interactions; P>0.05 for each). However, there was a significant three-way population-

by-seed size-by-larval density interaction (Figure 4.2; F19,810=1.61, P=0.047) – 

development time of the DEL RIO and ANAPOIMA beetles decreased as density 

increased from 1 to 4 larvae per seed in the small seeds, but it did not changed or 

increased between 4 and 6 larvae per seed in DEL RIO and ANAPOIMA respectively. 

Meanwhile, development time for the medium sized ORACLE beetles decreased with 

increasing larval density from 1 to 6.  

 

With regard to the differential response to larval competition on different seed 

sizes, we did no found a significant seed size x larval density interaction (F10,810=1.19, 

P=0.29). 

 

4.3.1.3 Emergence Body Mass 
 

Body mass varied with seed size (F2,810= 321.5, P<0.0001), larval density 

(F5,810=30.3, P<0.0001), and among populations (F2,810=374.4, P<0.0001). Overall, 

beetles emerged largest when developing in the largest seeds and at the lowest 

density, and emerged smallest when developing in the smallest seeds and at highest 
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densities (Figure 4.3). The effect of seed size on body mass varied among populations 

(population-by-seed size interaction F4,810=42.2, P<0.0001) – DEL RIO beetles (the 

largest-bodied population) were most affected by seed size and the ANAPOIMA beetles 

were the least affected by seed size (Proportional reduction in body mass between 

large and small seeds, DEL RIO: 41.1%, ORACLE: 40.9%, ANAPOIMA: 21.2%). 

Likewise, the effect of increasing larval density varied among populations (population-

by-larval density interaction, F10,810=6.0, p<0.0001) – DEL RIO beetles were the most 

affected by larval density (Proportional reduction in body mass between 1-2 and 5-6 

larval densities DEL RIO: 13.9%) and ANAPOIMA beetles were the least affected by 

larval density (Proportional reduction in body mass between 1-2 and 5-6 larval 

densities: 3.3%). 

 

Males were larger than females (F1,810=13.0, P=0.0100), though the degree of 

sexual dimorphism varied among populations (population-by-sex interaction; 

F1,810=3.52, P=0.03010; Sexual size dimorphism (male size-female size)/male size: DEL 

RIO =0.044, ORACLE =0.021, ANAPOIMA =0.14). The degree of sexual dimorphism 

did not vary with either seed size or larval density (non-significant sex-by-density and 

sex-by-seed size interactions, P>0.05).  

 

Regarding the differential response to larval competition on different seed sizes, 

we found that the response was not independent of population (population by larval 

density effect F19,810=1.82, P=0.017) and that the effect of larval density was not 

independent of larval density (seed size by larval density effect F10,810=5.5, P<0.0001). 

For example, ANAPOIMA beetles did experience a significant reduction in body mass 

when raised at higher densities, even though the differences in body mass were small 

compared with the reduction experienced by the largest DEL RIO and ORACLE beetles.  

 

4.3.2 Experiment 2: Seed Size and Larval Density Effects on Growth and Survival 
in Selection Lines 
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4.3.2.1 Hatch-to-Adult Survivorship 
 

As with the natural populations, hatch-to-adult survivorship varied with larval 

density (Χ2
18 = 13.02, P<0.0001), and among the body size lines (Χ2

2= 13.02, P=0.001), 

(Figure 4.4). Larger beetles experienced significant decreased survivorship as seed size 

decreased and as larval density at each seed size increased, while medium and smaller 

beetles presented overall significant reduction in body mass only from large or medium 

seeds to small seeds (line-by-larval density effect Χ2
29= 47.61, P=0.001). In all cases, 

seed size effects on larval survivorship were highly significant when doing pair wise 

comparisons (large vs. medium A. greggii seeds Χ2
1= 99.53, P=0.0002; large A. greggii 

vs. P. guachapele Χ2
1=13.4, p=0.0003; medium A. greggii vs. P. guachapele Χ2

1= 86.32, 

p<0.0001), (Figure 4.4).  

 

4.3.2.2 Hatch to Adult Development Time 
 

As with the natural populations, development time varied with seed size (F2,1648= 

379.4, P<0.0001) and larval density (F5,1648=4.45, P=0.0005); in contrast with the natural 

populations there was also variation among the selected lines when considering 

densities between 1 and 6 (Figure 4.5; F5,1648= 5.50, P<0.0001). As in Experiment 1, 

development time was longer in small seeds and shortest in large seeds with a small 

difference in development time between large and medium size seeds (Figure 4.5; LS 

means, large seeds, 28.3 ± 0.097; medium seeds, 28.8 ± 0.1; small seeds, 34.4 ± 0.12). 

Also, as observed in Experiment 1, development time was longest at low density and 

shortest at high density. In contrast to our results for the natural populations, the beetles 

from the three body size lines responded differently to larval competition (F25,1648=2.19, 

P=0.0006) and the effect of larval density varied with seed size (F10,1648=2.01, P=0.03). 

We also detected a significant 3-way interaction (line-by-seed size-by-larval density 

interaction; F249,1648=2.10, P<0.0001). 
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Overall, the effect of larval density on development time was generally smaller 

than observed in Experiment 1, the patterns were similar for single effects but in this 

case the effect of larval density varied among lines and with seed size.  

 

4.3.2.3 Emergence Body Mass 
 

As in Experiment 1, body mass varied with seed size (F2,1647=1052.8, P<0.0001), 

with larval density (F5,1647=50.75, P<0.0001) and among the selected lines 

(F5,1647=72.14, P<0.0001), (Figure 4.6). As observed in Experiment 1, beetles were 

larger when developing in the smallest seeds and at higher densities. In contrast with 

Experiment 1, the medium size beetles (the CONTROL line) were most affected and the 

smallest beetles (DOWN lines) were least affected by a decrease in seed size 

(proportional reduction in body mass between large and small seeds, UP: 45.7%, 

CONTROL: 49.5%, DOWN: 42.2%; line-by-seed size interaction, F10,1647=7.8, 

P<0.0001). The CONTROL beetles were also the most affected and the DOWN beetles 

were least affected by larval density (proportional reduction in body mass between 1-2 

and 5-6 larvae per seed, UP: 18.1%, CONTROL: 18.8%, DOWN: 7%; line-by-larval 

density interaction, F25,1647=3.96, P<0.0001) thought differences between the 

CONTROL and UP lines were small. I also detected in this experiment a significant line-

by-seed size-by-larval density interaction (F49,1647=1.8, P=0.0007) – larval density 

effects were generally greatest on medium size seeds for the UP lines, and on small 

seeds for the CONTROL and DOWN lines (significant interaction seed size-by-larval 

density: F10,1647= 6.23, P<0.0001), (Figure 4.6).  

 

Males were larger than females (F1,1647= 19.45, P<0.0001) but, in contrast with 

the natural populations, all lines responded in a similar way (F5,1647=0.73, P=0.60). 

 

4.4 Discussion 
 

With this study I tested (1) whether body size affects the consequences of 

variation in larval competition on different sized hosts, and (2) whether the effects of 
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larval competition vary with host size. Regarding the first question I expected that larger 

beetles would suffer greater fitness costs than smaller beetles when developing at 

higher densities and in smaller seeds (significant population x larval density and 

population x seed size effects). Regarding the second question, I expected that the 

effects of larval competition on fitness would be greater on smaller than on larger seeds 

(significant larval density x seed size effect). 

 

The first prediction was partially confirmed by the experiments. I observed a 

reduction in body mass and survivorship in response to increased larval density and 

seed size in all three S. limbatus populations. However the larger DEL RIO beetles were 

more affected than the smaller ANAPOIMA beetles indicating that the amount of 

plasticity varied significantly among different sized beetles. This highly significant 

interaction population-by-larval density for body mass and survivorship was evident also 

for the experiment with the selection lines showing that body mass is a determinant of 

the observed pattern. Studies done with parasitic insects that exhibit scramble 

competition consistently show that high density and small host size have deleterious 

effects on survivorship and body mass (Colegrave 1995) and thus impose selection on 

insects and influence the evolution of body size (Pexton and Mayhew 2004). Thus, the 

differential responses of beetles of different sized-populations/lines to seed size 

(significant population/lines-by-seed size interaction) and to competition I found 

(significant population/lines-by-larval density interaction) are possibly due to body size 

adaptation to seed size and to larval density (Messina 2004). Thus, I demonstrate that 

the magnitude of response depends on body size and that populations adapted to 

different sized hosts, and in consequence having different body size, may suffer in a 

different manner the consequences of competition. 

 

Another interesting result from this study is that body size may impose a 

constraint on how large or how small beetles can be. The small ANAPOIMA beetles 

adapted to small seeds, though increasing significantly body size when developing at 

low densities and on larger seeds may have a reduced ability to increase body size on 

larger hosts. On the other hand, the larger ORACLE and DEL RIO beetles do not reach 
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a significantly smaller size after being raised at 4 and 6 larvae per seed, and their 

survivorships decrease sharply, suggesting that some factor other than seed size is 

limiting their ability to exploit smaller hosts. 

 

Concerning development time, previous studies have shown that, as host size 

decreases, development time decreases (Boivin and Lagace 1999, Mackauer and Chau 

2001). I found a different result. When beetles were reared on the smallest seeds, P. 

guachapele, development time at all larval densities increased by ~ 5 days, and 

survivorship decreased by ~ 20%. In addition, there was not a significant difference of 

development on large and medium size seeds. As I suggested in chapter two, the 

smaller P. guachapele seeds are a poor nutritional food source and, as a consequence, 

beetles developing in those seeds either must feed more (extending development time) 

or assimilate resources more slowly than beetles feeding on A. greggii. Compensatory 

feeding has been found in numerous groups of organisms as a strategy to reach a 

target body size despite the deleterious effects of competition (Schoohoven 1998). 

Lowered feeding rate in group feeding animals can be caused by, among others, 

reduced food availability or by physical interaction among competitors (Gauvin and 

Giraldiu 2003). 

 

Regarding the second prediction on whether the effects of larval competition vary 

with host size, with the deleterious effects being greatest on smaller hosts, the 

significant interaction between seed size x larval density for body mass confirm that 

larval competition varied among seed sizes, but the greatest reduction in body mass 

with increasing larval density occurred in medium seeds instead of smaller seeds. This 

result, in addition to the fact that DEL RIO beetles were the most affected by both seed 

size and larval density (significant population x larval density x seed size effect), 

suggest differences in competitive ability of different sized beetles as a result of their 

differences in body size for being adapted to different sizes of seeds. In small seeds the 

probability of encounters among competitors sharing a seed will be higher as larval 

density and larval body mass increase. Thus, it would be expected that greater mortality 

will occur as a result of higher encounter rates among competitors. Messina (2004) 
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showed that Callosobruchus maculatus that had evolved different competitive strategies 

under natural conditions (scramble versus contest competition) switched their type of 

competition in a natural selection experiment in which beetles were allowed to adapt to 

different sizes of seeds - contest type beetles evolved in beetles adapted to small seeds 

and scramble competition evolved in beetles adapted to large seeds. Theory regarding 

the evolution of gregarious development, suggests two possible ways by which this 

could have evolved: decreased larval mobility and decreased larval aggressiveness 

(Brouder and Boivin 2004). S. limbatus larvae usually feed in near the surface of the 

seed reducing the probability of encounter with other larvae. Dissection of seeds 

indicates that, when seeds are smaller and larval density increases, encounters among 

larvae are more frequent (personal observation), a pattern consistent with findings of 

other studies (Pexton and Mayhew 2004 and references there in). Although contest 

competition have not been detected in S. limbatus, the non-linear effects of competition 

on survivorship and the lack of a difference in body mass above 4 larvae per seed on 

larger beetles and in smaller seeds are suggestive. Examination of interactions among 

larvae within small seeds could be enlightening to explaining the survivorship and size 

patterns observed here.  

 

Finally, selection experiments are a powerful way to conduct this type of studies. 

An advantage of using this approach is that the genetic constitution of selected lines is 

originated from a single population reducing the confounding effects caused by 

adaptation to other factors such as host, temperature, latitude, natural enemies, etc, 

factors that indeed may affect the outcome when analyzing variation in natural 

populations. The two independent experiments show that, in most cases, similar 

responses of large versus small beetles to larval density and seed size were found 

using the selected and the natural populations. The only major difference was the 

significant population effect for development time when considering only all densities or 

densities above 6 larvae per seed in the natural populations. In the selected lines these 

effects were significant at all levels of analysis. This difference may be due that in the 

selection lines, the only factor affecting the observed response was body size 

meanwhile natural populations differed in a series of traits (see chapter two) that could 
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affect the response at lower densities. The experiment with the body size selected lines 

allowed me to demonstrate that variation among populations in the effects of larval 

competition and seed size on larval growth and survival are partially a result of 

differences in body size and that these factors have been and are important 

determinants in the evolution of body size and other fitness traits in organisms with 

similar characteristics to S. limbatus.  

 

 

 

 

Figure 4.1: Hatch to adult survivorship on three populations of S. limbatus on three 

different seed sizes and at different larval densities.  
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Figure 4.2: Hatch to adult development time of three populations of S. limbatus on three 

different seed sizes and at different larval densities. 
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Figure 4.3: Emergence body mass of beetles from three populations of S. limbatus on 

three different seed sizes and at different larval densities. 
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Figure 4.4: Hatch to adult survivorship on body size selected lines of S. limbatus on 

three different seed sizes and at different larval densities. 
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Figure 4.5: Hatch to adult development time of three body size selected lines of S. 

limbatus on three different seed sizes and at different larval densities. 
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Figure 4.6: Emergence body mass of beetles from three body size selected lines of S. 

limbatus on three different seed sizes and at different larval densities. 

 

Copyright © Angela Rocío Amarillo-Suárez 2006 

 80



Chapter 5: Conclusions, future directions and implications 
 

 

Stator limbatus is a generalist seed parasite that feeds on seeds of 

approximately 80 host plants throughout its broad geographic distribution (Johnson and 

Kingsolver 1976, Johnson et al. 1989). However, populations have only a few hosts 

available at each locality. The populations studied here are from extreme ends of the 

geographic distribution of S. limbatus – Arizona and Texas in the United States and 

from Cundinamarca and Tolima in Colombia. The hosts used by these populations are 

non-overlapping – beetles in the United States use seeds of Acacia greggii, Parkinsonia 

florida and Acacia berlandierii (among others), all of which are large-seeded hosts, 

whereas the populations from Colombia use seeds of Pseudosamanea guachapele, 

which produces small seeds. Seeds of these species also vary substantially in their 

quality for beetle growth and development (Chapter two). 

 

5.1 Local adaptation phenotypic plasticity and maternal effects 
 

Populations used in this study represent very divergent clades in the 

phylogeography of the species (Morse and Farrell 2005a). Thus, I expected that 

populations that use different hosts, at different localities, would be adapted to seeds of 

their local hosts and that local adaptation and phylogenetic divergence caused a 

reduced ability to use alternative hosts (Van Zandt and Mopper 1998); i.e., that 

populations would have lower performance and survivorship on alternative hosts. 

Common garden experiments presented in chapter two, using Colombia and United 

States populations, revealed that populations are locally adapted to their native hosts. 

Local adaptation is based in genetic differences among Colombia and Arizona 

populations, and expressed in significant differences in age at first reproduction (Figure 

2.2), number of eggs laid in the first 24 h. of oviposition (Figure 2.4), body mass at 

maturation (Figure 2.6), and larval survivorship (Figure 2.7). These results also show 

that adaptation to seed size and quality has strong influence in body size. Beetles 

adapted to small seeds of P. guachapele are smaller than beetles adapted to the large 

seeds of A. greggii.  
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These experiments also show that local adaptation does not restrict the use of 

alternative hosts in those populations, particularly in the Colombian populations in which 

performance was better in A. greggii, the host of the Arizona populations. Phenotypic 

plasticity, especially egg size plasticity, maternal effects and seed size and quality are 

factors that shape this pattern of response.  Beetles developing in large seeds reach 

larger body size (Figure 2.6), have higher survivorship (Figure 2.7) and lay smaller eggs  

(Figure 2.3) than when developing in the small seeds  of P. guachapele, responses that 

agreed with the findings of other studies comparing insects that use large vs. small 

hosts (Chapter two). However, contrary to expectations, development time was longest 

in small seeds, suggesting that P. guachapele seeds, in addition to be smaller, are of a 

lower nutritional value compared to seeds of A. greggii. 

 

Though beetles from all populations experienced a similar pattern of response to 

host size, the magnitude of the responses varied. When beetles from Colombia were 

reared on the small P. guachapele seeds, body mass was 11.0% (females) and 16.5% 

(males) smaller than when beetles were reared on the larger seeds of A. greggii, 

whereas Arizona beetles were 29.5% smaller (females) and 24.5% (males). This result 

also show that in the Colombia populations the males experienced the highest reduction 

in body mass, while in the Arizona populations females were most affected (Figure 2.6).   

 

Beetles whose mothers were reared on P. guachapele emerged about one day 

sooner than beetles whose maternal host was A. greggii regardless of the host on which 

progeny were reared (Figure 2.5). In addition, females exhibited egg size plasticity in 

response to their oviposition host. Irrespective of population of origin, females laid larger 

eggs on seeds of P. guachapele than on A. greggii (Figure 2.3). Despite the regular 

result that variation in egg size mediates variation in development time, the maternal 

rearing host effect on development time obtained in chapter two is apparently not due to 

changes in egg size; egg size was not affected by maternal rearing host and the 

maternal host effect on development time was still statistically highly significant after 

including egg size as a covariate in the statistical model. The observed maternal rearing 
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host effect is thus more likely due to changes in egg composition, such as egg energy 

reserves, maternally produced proteins (such as regulatory proteins or enzymes), or 

maternal mRNAs (Chapter two). The examination on how maternal effects influence the 

composition of eggs in arthropods other than Drosophila is needed. Fox et al. (1995) 

also found that maternal rearing host affected offspring body size (offspring were larger 

when their mothers were raised on P. florida), but no such effect was found in this 

current study. Neither Fox et al. (1995) nor this current study found any evidence that 

offspring have higher fitness (higher survivorship, reduced development time or larger 

body size) when raised on the same host as their mother (i.e., no significant maternal 

host x offspring host interactions). 

 

This the first time egg size plasticity is demonstrated in populations of S. limbatus 

in response to a seed trait different than toxicity of the seed coat (Chapter three, 

experiment four). This study is also the first to demonstrate that egg size plasticity is 

present in populations of S. limbatus other than the Arizona populations. Because egg 

size plasticity is present in populations with a large phylogenetic divergence, it is likely 

an ancestral trait that allowed (and continues to facilitate) diet expansion via 

colonization of new hosts (Chapters two and three). 

 

5.2 Host discrimination and oviposition behavior in S. limbatus 
 

 Given that local adaptation does not limit the use of alternative hosts in these 

populations, and that performance of beetles was greater in the larger size and higher 

quality seeds of A. greggii, I analyzed female oviposition behavior and host 

discrimination to quantify the influence of female body size, seed size and seed quality 

on the preference of females for a given host. I found that females minimize the 

deleterious effects of small seed size, low seed quality and the increased larval density 

caused by superparasitism. Specifically, females laid more eggs (Figure 3.1; Chapter 

three, experiment one) and distributed eggs more evenly among seeds (Figure 3.2; 

chapter three, experiment one) on non-parasitized seeds than on seeds already 

parasitized. Females also preferred larger seeds over smaller seeds, (Figures 3.3 and 
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3.4; chapter three, experiment two) and preferentially laid eggs on higher quality A. 

greggii than on lower quality P. guachapele seeds (Figures 3.6 and 3.7; chapter three).  

  

Thus, host discrimination and oviposition preference experiments showed that 

size and quality of seeds are mayor determinants of host preference, and that local 

adaptation does not restricts the possibility of recognizing and using alternative hosts. 

 

5.3 Effects of seed size and insect size in the consequences of larval 
competition 

 

Once eggs are laid, one of the major factors affecting life history traits is 

competition among siblings. In chapter four I presented two experiments developed to 

determine how beetles differing in body size, and from populations adapted to different 

host species, respond to variation in larval competition on large versus small seeds and 

on high quality versus low quality seeds. To disentangle effects of body size from 

population differentiation in other traits I performed the experiment twice, once using 

beetles from populations naturally differing in body size and once using laboratory 

selected lines differing in body mass but created by artificial selection from a single 

Arizona population. I observed significant density dependence in all study populations – 

beetles reared at high density, and on small seeds, were smaller and had reduced 

survivorship (Figures 4.1 and 4.3; chapter four). However, populations responded 

differently to larval competition and seed size in a manner largely consistent with the 

hypothesis that large-bodied beetles suffer greater fitness consequences of high density 

and small seed size – the larger Del Rio beetles were more affected than the smaller 

Anapoima beetles. Larval competition also varied among seed sizes, but the greatest 

reduction in body mass with increasing larval density occurred in medium seeds instead 

of smaller seeds (Figure 4.3; chapter four). This, in addition to the fact that Del Rio 

beetles were the most affected by both seed size and larval density (significant 

population x larval density x seed size effect), suggest differences in competitive ability 

of different sized beetles as a result of their differences in body size. 

 

 84



5.4 Future directions 
 

5.4.1 Influence of natural enemies in host plant use 
 

Several papers have addressed the importance of natural enemies in shaping the 

evolution of insect-plant interactions (Bernays and Graham 1988, Hawkins and Lawton 

1987), having among other, important consequences for the evolution of specialization 

(Nosil et al. 2002). In some cases, parasitism is strongly host-plant dependent with 

some parasitoid species specialized with respect to the host found in specific plant 

species (Lill et al. 2002). In other, herbivores may escape from natural enemies being 

scare in space and/or, or chemically defended by metabolizing plant allelochemicals 

(Ballabeni et al. 2001, Stamp 2001).  It has been also suggested that host use is also 

determined by enemy free space and that in addition, and sometimes in opposition, to 

organisms using and preferring larger and better hosts for offspring development, 

females select less suitable hosts for offspring development, but with a lower risk of 

mortality by natural enemies. Preliminary studies on the effects of natural enemies for 

the populations here examined are currently undergoing. Seeds from a minimum of 

twenty trees from each host and from each population were collected and seeds 

bearing eggs were split in single petri dishes and placed in a growth chamber at 28oC. 

The number of S. limbatus emerging adults, parasitoids and predators emerging from 

those seeds were collected and scored. They will be classified in relation with S. 

limbatus as predator or parasitoid. Also, the number of eggs laid on each seed, its 

distribution, and the proportion of hatched versus unhatched eggs will be recorded. This 

will give an indication of the relative amount of pressure imposed by natural enemies on 

each host and how it varies among hosts.  

 

5.4.2 Allocation strategies in populations of S. limbatus 
 

The rearing procedure use in this research for the Colombia and the United States 

populations show differences in the mating strategies and food supply. Colombia 

beetles require adult food sources to produce eggs (they are income breeders), while 
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The United States beetles do not (they are capital breeders). Such variation in allocation 

strategies within a species provides an exciting opportunity to study the factors that 

could mediate the evolution of allocation strategies. A possible explanation for this 

difference is that selection on populations from each clade affects differentially the life 

cycle of beetles. Populations in Colombia have a continuous supply of food source in 

the form of nectar and water, while the United States populations do not.  In this way, 

Colombia beetles that develop in small, low quality seeds and in consequence are 

smaller, would require extra food supply to make eggs under the presumption that larval 

development in these beetles is primarily directed to survive in a low quality host. On 

the other hand, The United States beetles do not have sources of food for adults during 

most of the year given the extreme deserts in which hosts plants inhabit; in addition, 

compared with the Colombian hosts, seed hosts for these populations provide good 

quality nutrients for development. Thus, it is expected that larval development will 

generate beetles that once emerge start laying eggs sooner as was found in this 

research. 

 

5.5 Implications for host colonization and diet expansion. 
 

 Knowledge of how variation in host plant quality and host size influence variation 

in life histories during development, and how genetic differentiation affects the 

responses of populations to these plant factors, are essential in the understanding of 

host colonization and diet expansion of herbivorous insects. This dissertation shows 

that variation in life history traits due to the factors mentioned above are highly 

influenced by differences in body size, maternal effects and the amount of plasticity, 

effects that are of special importance when considering the evolution of diet breadth in 

organisms that like S. limbatus experience resource limitation during development (i.e.  

parasitoids and seed feeders). 

 

 I have also demonstrated that plasticity in life history traits and maternal effects 

facilitate responses of organisms to alternate plants which differ in size and quality. 

Thus, the environment mothers experience allow them to set up specific changes in the 
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offspring (i. e. increase egg size, that produce larger body sized progeny) that may 

increase their fitness when using new introduced hosts, and prepare them to survive 

and exploit a new environment. For example, in the case of insects that are pests of 

agricultural crops, plasticity may favor the colonization of new crops without causing 

changes in the genotype of the populations when exposed to the new environment. 

However, because the same genotype expresses different phenotypes in each 

environment, plasticity may also buffer herbivores from selection post colonization. In 

other words, genetic differentiation and attainment of an optimal phenotype on each 

plant would be slower if gene flow is maintained among organisms using the two 

sources (the native and the novel hosts), and thus local adaptation to host plants would 

be unlikely.  

 

 In addition, populations adapted to different size and different quality hosts show 

significant differences in plasticity when exposed to novel hosts, and as result, the 

outcome of using alternate hosts under stressful conditions such as competition and 

decreased host size is influenced by the size of organisms belonging to each 

population. This is also an important aspect to consider when making generalizations 

about the responses of species to host plants based on one or a few populations 

studied. This dissertation demonstrated that a species with a broad distribution in which 

populations have only a few hosts available respond differentially to changes in host 

size, quality and under intraspecific competition. 

 

Copyright © Angela Rocío Amarillo-Suárez 2006 
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