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ABSTRACT OF THESIS 
 
 

SOIL MICROBIAL COMMUNITY RESPONSE TO CLIMATE CHANGE: RESULTS 
FROM A TEMPERATE KENTUCKY PASTURE 

 
 

Climate change is likely to alter plant species composition and interactions 
between plants and soil microbes that together dictate the quantity and quality of forage 
produced in pastures, the base of animal production in central Kentucky. This study 
assessed the seasonal dynamics of soil microbes and their response to increased 
temperature (+3oC) and growing season precipitation (+30% of the mean annual). Total 
soil microbial biomass, community composition, enzyme activities, potential carbon 
mineralization, and catabolic responses to selected substrates were measured seasonally 
in the different climate treatments. In this system, seasonal variability was a dominant 
driving factor for all the soil microbial characteristics that I investigated.  Summer 
maxima and winter minima were identified in the active microbial biomass, while soil 
microbial community structure differed between each season. Extracellular enzyme 
activities were generally highest in either the spring or summer, while seasonal patterns 
for each substrate were unique across catabolic response profiles. Climate treatments 
produced few significant main or interactive effects on the soil microbial biomass and 
function. This resiliency, coupled with evidence of functional redundancy, suggests that 
central Kentucky pasture ecosystems may be well-equipped to handle future 
environmental stress associated with climate change and to maintain critical ecosystem 
services.     
 
KEYWORDS: Climate change, Pasture, Soil microbial communities, Phospholipid fatty 
acid analysis, Extracellular enzyme assays 
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Chapter 1: Introduction 
 

 The soil microbial community is an important biological component of soil 

function, valued for its role in improving soil quality and regulating nutrient availability, 

and thereby influencing plant production for agriculture and other purposes (Kennedy 

and Smith, 1995; Papendick and Parr, 1992). For example, the soil microbial community 

composition affects the belowground dynamics and fate of photosynthetically-fixed 

carbon, which can influence fertility (Bradford et al., 2007). Soil microbial communities 

can also affect the interaction between plants and important aboveground macrofauna.  

For example, the presence of nematodes and microoganismal inoculants has been shown 

to reduce aphid populations, significant herbivores and vectors of disease, in a mixture of 

mid-succession grassland species (Bezemer et al., 2005).  Singh et al. (2011) reviewed 

the role of soil microorganisms in the development of sustainable agriculture, and 

showed that plant growth promoting rhizobacteria and cyanobacteria often result in 

increased crop production and ecosystem health. Because of the importance of soil 

microbes for agricultural and plant production systems, understanding the effects of 

climate-related stressors, such as increased temperatures and altered precipitation, on the 

soil microbial community is necessary in order to better understand likely agricultural 

ecosystem responses to predicted climate change. 

 The soil microbial community is expected to be impacted by various facets of 

global climate change, such as increased atmospheric [CO2], altered temperature and 

precipitation patterns, and increased frequency of extreme climate events (IPPC, 2007). 

Some notable examples of extreme, widespread climate events that negatively impacted 

agriculture in the U.S. southeast region, and presumably had some effect on the soil 
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microbial communities, included the 1986 summer heat wave and drought and the 1998 

winter and spring flooding due to El Niño (Rosenzweig et al., 2000). According to a 

report by the U.S. Global Change Research Program, the average annual temperature in 

the southeast has risen by approximately 1.1oC since 1970, with the greatest increase 

occurring in the winter months, while average annual rainfall has declined by 7.7%, 

despite a 3.3% increase in rainfall during the summer months (GCCI, 2009). The report 

predicts an increase of 2.5oC in average annual temperatures in the southeast U.S. by the 

2080s under a low CO2 emissions scenario, and an increase of 5oC under a high 

emissions scenario. These higher temperatures, combined with variable alterations in 

total average rainfall and difficult to predict changes in the seasonality and nature of 

precipitation events, may lead to increased frequency, intensity, and duration of droughts 

in the region (GCCI, 2009).  Soil microbial community structure and function are known 

to be sensitive to changes in both temperature and water availability (Hartel, 2005), and 

are, therefore, predicted to be responsive to such alterations to the climate system. 

 As part of the microbiome, soil microorganisms could potentially play an 

important role in contributing to the development of ecosystem resistance to abiotic 

stresses, such as increased temperature and precipitation, and increasing resiliency in 

agricultural systems (Pankhurst et al., 1996). The soil microbial community also plays a 

significant role in the global exchange of C between the biosphere and atmosphere via 

organic matter decomposition and utilization (Schimel and Holland, 1995). Because the 

factors exerting the greatest control on global C fluxes (e.g., photosynthesis and 

respiration) are also those which strongly affect heterotrophic microbial activity (e.g., 

temperature, moisture, and nutrient availability), soil microorganisms and their responses 
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to changing biotic and abiotic factors will ultimately control whether ecosystems help 

mitigate or further exacerbate increases in atmospheric [CO2], which can have direct 

feedbacks to future climate change (Schimel and Holland, 1995). Insights from research 

in microbial ecology should therefore be incorporated into ecosystem models to better 

predict how changes such as warming and altered precipitation regimes may affect global 

carbon cycling (Treseder et al., 2011).  Multiple reviews and studies highlight the need 

for multifactor, long-term experimental approaches for assessing soil microbial response 

to climate change (Bardgett et al., 2008; Balser, 2010; Butenschoen et al., 2011; Docherty 

and Gutknecht, 2012). 

1.1 Importance and Dynamics of the Soil Microbial Community 

 The soil ecosystem is a complex network composed of the interactions of 

thousands of organisms, of which the soil microbial community is a particularly 

important component (Brady and Weil, 2002). Soil microbial biomass and abundance is 

regulated by the quality and quantity of available substrate in an environment. Additional 

factors that can also affect soil microbial biomass include: physical factors, such as 

temperature and moisture; biotic factors, such as trophic interactions; and chemical 

factors, such as pH (Brady and Weil, 2002). It is important to understand how these 

factors affect soil microbes to manage soils in a manner that fosters an abundant, diverse 

community, which is essential to support plant growth, recycle nutrients, and other 

ecosystem services. 

 1.1.1 Regulation of Nutrient Use and Availability  

 Soil microorganisms are responsible for decomposing organic matter and 

regulating nutrient availability and turnover in the soil (Swift et al., 1979). As such, the 
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soil microbial community is widely recognized as an integral component of nutrient 

cycling through the atmosphere-plant-soil continuum, regulating how essential nutrients 

such as carbon, nitrogen, and phosphorus become available to plants and other soil biota. 

With regard to the cycling of carbon, microbes control the decomposition of soil organic 

matter and soil carbon pool dynamics, in part through their ability to produce and exude 

extracellular enzymes which are capable of breaking down complex compounds.   

1.1.1.1 Soil Organic Matter & Decomposition In light of concerns about 

increasing atmospheric [CO2], researchers are increasingly interested in the global carbon 

(C) cycle, in which soil plays a critical role (Wolf and Wagner, 2005). As seen in Figure 

1.1, it is estimated that organic C stored in soil organic matter (SOM) accounts for 1550 

Pg C in the total global C stock (Lal, 2008), which is over twice the amount of C in the 

atmosphere (Wolf and Wagner, 2005). SOM can be anything from decayed plant and 

faunal debris to microbial exudates, and consists of elements that are vital for life such as 

nitrogen (N), phosphorus (P) and sulfur (S), but the largest single component is organic C 

(Dungait et al., 2012). One of the most important functions of the soil microbial 

community is the breakdown and turnover of soil organic matter, converting the C 

contained in this material back to CO2, which enters the atmospheric CO2 pool. Carbon 

entering the atmosphere is cycled back into terrestrial ecosystems via photosynthesis by 

plants and other autotrophic organisms (Figure 1.1). Given the size of the terrestrial 

SOM-C pool, small increases or decreases in microbial conversion of SOM-C to CO2 can 

have a dramatic impact on atmospheric [CO2].   
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Figure 1.1. Conceptual diagram of global carbon (C) flux between the atmosphere and 
terrestrial ecosystems. Modified from Wolf and Wagner (2005; adapted from Post et al., 
1990). Carbon flux from terrestrial to atmospheric C pools by decomposition includes the 
breakdown of plant residue, litter, and soil organic matter by soil organisms, which is 
balanced by the net assimilation of carbon via photosynthesis in ecosystems that are in 
steady state. Values for soil carbon pools are from Wolf and Wagner (2005) and Lal 
(2008). All units are in Pg C (1015 g). 
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        Soil organic matter provides many beneficial biological, chemical and physical 

functions in the soil, including supplying slowly-available C-compounds and energy to 

microbes and other organisms, increasing cation exchange capacity (CEC) and pH 

buffering, decreasing bulk density, and increasing water-holding capacity (Wolf and 

Wagner, 2005). During SOM decomposition, some of the C is incorporated into and 

cycled through the soil microbial biomass (Rinnan and Baath, 2009). Organic matter is 

also related to stable soil aggregates in that the supply and decomposition of SOM by 

microorganisms contributes to the formation of soil aggregates, while aggregate stability 

also helps stabilize SOM (Watts et al., 2001; 2005).   

  There is a variety of C-substrates found in soil and utilized by the soil microbial 

community, primarily coming from plant litter degradation, SOM decomposition, 

microbial biomass turnover, and/or plant root exudation. Conceptually, these compounds 

are often divided into ‘labile’ and ‘recalcitrant’ substrate pools, depending on the ease 

with which they are broken down by soil microorganisms and exoenzymes. Simple 

sugars, fats, and proteins are easily decomposed by bacteria in soil, and are considered 

labile, while more complex carbohydrates, like cellulose, lignin, waxes, and oils, are 

degraded slowly and regarded as recalcitrant (Alexander, 2005). To put this into 

perspective, it has been found that in surface soil horizons the half life of simple sugars 

and amino acids may be less than one hour (Boddy et al., 2007; Hill et al., 2008). 

However, it takes one month to decompose 60% of cellulose added to soil, with another 

three months necessary to break down an additional 7% (Derrien et al., 2007), with the 

remaining 33% incorporated into long-term soil carbon pools (Gleixner et al., 2002; 
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Quenea et al., 2005). For a highly recalcitrant compound, such as lignin, it may take five 

years to decompose the majority (Thevenot et al., 2010).  

         It is often assumed in environmental microbiology that: (1) the soil microbial 

community can always be depended on to degrade a wide range of organic molecules; (2) 

nearly every soil has the capacity to decompose any substrate (Dungait et al., 2012). 

However, many studies have suggested  that microorganisms may be preferentially 

adapted to break down specific C substrates found in their soil environment to maximize 

efficiency (Grayston et al., 2004; Hamer and Marschner, 2005; Orwin et al., 2006). If the 

diversity of the C substrates entering the soil is increased, possibly due to plant 

succession or disturbances, the microbial community could exhibit a similar increase in 

functional diversity by adapting to degrade those substrates, which could potentially 

affect the rate of C flux from the soil (Grayston et al., 1998).  Similarly, if the microbial 

community does not adapt, then there will be different implications for the fate of this 

new C.  

        Because liberation of CO2 from the soil is often the terminal product of 

microbial utilization of C, the quantitative rate at which CO2—C is emitted from soil, or 

respiration, is commonly used as a proxy for microbial activity (Wolf and Wagner, 2005). 

While microbial activity via soil respiration is important as a feedback to the atmospheric 

[CO2] pool and is thus commonly measured, one specific mechanism which greatly 

affects the efficiency by which microorganisms decompose SOM is extracellular enzyme 

production.  
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1.1.1.2 Extracellular Enzymes One of the ways that microbes control the rate at 

which they obtain energy from organic and inorganic compounds in the environment is 

through the production and use of enzymes to catalyze metabolic reactions (Fuhrmann, 

2005). Enzymes are utilized throughout all spheres of soil biota (flora, fauna, micro- and 

macroorganisms) to degrade complex substances such as cellulose and chitin into simple 

nutrients that may be ingested directly by microorganisms via diffusion (Burns, 1982). 

One group of enzymes, called extracellular enzymes, are released outside the microbial 

cell and are generally used to catalyze the reactions that decompose polymeric 

compounds that are too large to pass through the cellular membrane. The term 

‘extracellular enzyme’ is often used interchangeably with ‘exoenzyme’, though 

exoenzymes specifically catalyze reactions that remove terminal monomers from 

polymeric compounds and are usually released extracellularly (Fuhrman, 2005).  

 Specific extracellular enzymes are named for the reactions which they catalyze. 

Two major classes that are important for microbial metabolism include oxidoreductases, 

which aid respiration and fermentation pathways by catalyzing oxidation-reduction 

reactions, and hydrolases, which facilitate cleavage of chemical bonds via hydrolysis. 

Example subclasses of these enzymes include oxidases and peroxidases, which are 

oxidoreductases, and peptidases and phosphatases, which are hydrolases (Fuhrman, 

2005).  

 Because of the complex chemical and biological strategies involved in microbial 

metabolism, soil enzymes are as diverse and prevalent as the soil microorganisms that 

employ them for nutrient-cycling processes.  As the “proximate agents of organic matter 

decomposition,” understanding the activity of certain enzymes provides valuable insight 
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into the metabolic function and decomposition of soil organic matter (Sinsabaugh et al., 

2008). Assaying the activity of extracellular enzymes allows researchers to estimate 

microbial demand for the compounds they degrade, such as carbon, nitrogen, and 

phosphorus (Sinsabaugh and Moorhead, 1994). Enzyme activity and production may also 

be responsive to altering the concentrations of relevant compounds or substrates. Because 

extracellular enzyme activity is sensitive to changes in temperature and moisture, though 

the degree of sensitivity depends on individual enzymes and interactions with the 

substrates they degrade, their activity may be influenced by climate change (Conant et al., 

2011; Henry 2012).  

 1.1.2 Soil Microbial Communities within Pasture Ecosystems  

 The diversity and composition of the aboveground plant community influences 

the soil microbial community primarily through the supply, timing, and composition of 

residues and exudates (Scherber et al., 2010). Thus, it is intuitive that grass-dominated 

systems, such as pastures, would support a unique soil microbial community compared to 

other biomes dominated by different plant species, such as forests or croplands, and 

microbial communities have indeed been shown to vary distinctly and predictably across 

biomes (Fierer et al., 2009). For example, grasslands are generally considered to contain 

a less diverse microbial community but higher biomass than is typically found in forests 

(Brady and Weil, 2002).  Temperate grasslands can also exhibit higher soil C than 

forests, due to greater C inputs belowground derived from the high root:shoot ratios 

typical of grasses and potentially limited decomposition (De Deyn et al., 2008). 

Grassland ecosystems dominated by fungal-based soil food webs have shown elevated 

resilience and adaptability to drought in terms of microbial evenness and reduced C and 
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N loss, compared to bacterially-dominated wheat soils (De Vries et al., 2012). Much of 

the literature investigating soil microbial community dynamics has focused on cropped 

and forested ecosystems, despite the fact that pastures comprise a large area within the 

U.S., are often important providers of ecosystem services, and support animal production 

(Sanderson et al., 2009). This thesis will focus on literature concerning microbial 

dynamics in pasture and other grass-dominated ecosystems not utilized for agricultural 

row-cropping.  

 Many grass-dominated ecosystems experience dramatic inter- and intra-annual 

variability in precipitation and temperature (Craine et al., 2012).  Such fluctuations in 

climate, from year-to-year or season-to-season, could have significant effects on soil 

microbial communities, directly via effects on soil moisture and temperature, or 

indirectly via effects on plant growth.  For example, AMF (arbuscular mycorrhizal fungi) 

composition has been shown to vary seasonally, with distinct differences between winter 

and summer AMF communities in a temperate UK grassland (Dumbrell et al., 2011). 

Microbial biomass in temperate grasslands is known to vary significantly across seasons, 

with the greatest differences often exhibited between summer and fall (Bardgett et al., 

1999b). Microbial fatty acid abundance has also been shown to be affected by both 

season and soil moisture (Bardgett et al., 1999b). Many grassland studies suggest that 

maximum microbial biomass and activity occurs in the spring, early in the growing 

season (Patra et al., 1990; Ross et al., 1995; Sarathchandra et al., 1988). Grassland 

systems also exhibit a high degree of year-to-year variation in plant production (Parton et 

al., 1995), often correlated to climate variability, and such variation may result in equally 

variable soil microbial communities.  
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 Given that climate change will occur in conjunction with seasonal and inter-

annual variability in temperature and precipitation, and all are likely to influence plant 

growth and soil microbial communities, evaluating the potential effects of climate change 

on grassland ecosystem response will be challenging. Year-to-year variation can alter the 

way manipulative climate treatments affect the soil microbial community (Saiya-Cork et 

al., 2002). In addition, numerous studies have demonstrated that seasonal variation (e.g., 

changes in weather) heavily influences soil microbial community structure and function 

(Ebersberger et al., 2003; Jin and Evans, 2007; Luo et al., 1996; Wolf et al., 2007). 

Seasonal variation in the soil microbial community may interact with climate change 

factors, such that warming effects on microbial activity in the spring differ from those 

observed in the fall.  The use of long-term, multifactor studies can help determine 

whether the effects of warming and altered precipitation, predicted to occur as a result of 

climate change, on soil microbial community structure and function are seasonally 

dependent and/or vary across years.  

1.2 Climate Change Effects on the Soil Microbial Community 

 Climate change factors such as increased atmospheric [CO2] and altered 

temperature and precipitation regimes are expected to affect the soil microbial 

community in various ways. The alteration of surface soil temperature and moisture 

regimes is likely to have direct effects on soil microbes (Balser et al., 2010), as studies 

show community structure and function are responsive to changes in environmental 

extremes (Waldrop and Firestone, 2006). However, if plant activity, allocation, exudates, 

or community composition are altered by the climate change factors, then the microbes 

may be indirectly effected via changing substrate availability and potentially micro-
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climatic effects (Figure 1.2; Singh et al., 2010).  The current state of knowledge on the 

direct and indirect effects of three key climate change factors (atmospheric [CO2], 

temperature, and precipitation) and their interactions with the plant community and each 

other will be explored.  

 1.2.1 Atmospheric [CO2]  

 The direct effect of elevated [CO2] in stimulating aboveground biomass 

production has been extensively studied (Pan et al., 1998). This increase in aboveground 

net primary production (ANPP) has been shown to increase C supply belowground and 

stimulate soil biological activity (Pendall et al., 2004). The effects of increased 

atmospheric [CO2] on bacterial biomass, richness, and community composition have 

been shown to vary between ecosystems, resulting in no common trends, except a 3.5-

fold decrease in the relative abundance of Acidobacteria Group 1 bacteria (Dunbar et al., 

2012). Results from free-air [CO2] enrichment (FACE) studies in pasture ecosystems in 

Europe found that elevated [CO2] induced changes in soil microbial community activity, 

biomass and composition in both rhizosphere and bulk soil, but those changes were 

largely dependent on the plant species that was sampled (Marilley et al., 1999; 

Montealegre et al., 2002). A meta-analysis by van Groenigen et al. (2011) found that the 

most potent effects of elevated atmospheric [CO2] on the soil system were increased soil 

gas emissions, such as N2O, and that these effects became larger over time. However, 

other research has suggested that the effects of elevated atmospheric [CO2] on the soil 

microbial population will diminish with time, as plant-soil feedbacks may have a 

balancing effect on carbon dynamics, though the effects of changing temperature and 

precipitation intensify with time, as permanent changes in temperature and water 
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availability may cause permanent changes in soil microbial population size and 

composition (Niklaus et al., 2003; Blankinship, 2011).  

 In recent years, research exploring how grassland ecosystems will respond to 

climate change has escalated in response to the potential for grassland C-sequestration 

and efflux dynamics to mitigate increasing atmospheric [CO2] (Bahn et al., 2008; Gill et 

al., 2002).  However, because the main driver of C sequestration in the soil is the balance 

between plant productivity (C-inputs) and microbial activity (C-outputs), it has been 

suggested that long-term soil C-input and sequestration can only be maintained with 

fertilization to sustain the plant community (De Graaff et al., 2006). Much uncertainty 

still surrounds the effect of elevated [CO2] on long-term carbon dynamics, especially in 

conjunction with changes in temperature and precipitation.   

 1.2.2 Temperature  

 Because temperature is generally known to exhibit a strong influence on 

microbial activity, understanding the effects of temperature change, such as is likely to 

accompany climate change (i.e., warming), is important for assessing impacts on the soil 

microbial community and predicting its response. Increased temperature is generally 

known to increase decomposition of organic matter (Wallenstein et al., 2012). Increased 

temperature often affects ‘recalcitrant’ SOM more than ‘labile’ SOM (Bauer et al., 2008), 

because warming increases the likelihood of passing the critical activation energy (Ea) 

needed for decomposing resistant compounds (Dungait et al., 2012). This may allow soil 

microorganisms to access older soil C stocks under climate warming and release more C 

into the atmosphere. However, temperature sensitivity of soil respiration has also been 

shown to acclimate to warming conditions over time (Luo et al., 2001), which could 



 

14 

mitigate the initial release of C into the atmosphere that is typically observed with soil 

warming.  

 One possible mechanism by which microbes may acclimate to warming is by 

altering their physiology, specifically their carbon use efficiency (CUE) or the amount of 

carbon utilized by the soil microbial community that is allocated to growth (Allison et al., 

2010). If microbial CUE is reduced with warming because microbial activity (respiration) 

is increased and prevents C-allocation to  microbial growth (biomass), then respiration 

losses may initially be higher, but may decline over time as decomposer microorganismal 

biomass is reduced, which may reduce future C-losses from respiration over time 

(Allison et al., 2010). However, warming effects on CUE and the resulting amounts of 

CO2 released from decomposition vary and may even differ based on quality and 

complexity of substrates, suggesting that research on temperature and CUE responses, as 

well as energy use for microbial maintenance and growth, is incomplete (Dijkstra et al., 

2011; Steinweg et al., 2008). Research has shown that microbial biomass increases 

initially in direct response to heat, but may actually decrease over time as microbial 

growth efficiency is altered (Bardgett and Shine, 1999; Schimel et al., 2007).   

 While increasing temperature is generally known to increase decomposition of 

soil organic matter, biological responses to temperature, such as enzyme activities (Koch 

et al., 2007) and substrate utilization patterns (Dell et al., 2012), can also affect 

temperature sensitivity of decomposition (Wallenstein et al., 2012). Long-term warming 

could induce changes in plant species composition, which can significantly affect soil 

microbial production of extracellular enzyme activity (Henry, 2012). Changes in 

extracellular enzyme activities and production may influence which compounds are most 
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effectively utilized by soil microorganisms under warming conditions and potentially 

result in altered nutrient pools. Taken together, these studies suggest that the effects of 

elevated temperature on the soil microbial community activity, biomass, and function as 

related to decomposition, and the resulting influence on C stocks and soil nutrients are 

more complex than previously thought and may vary over time.  

 1.2.3 Precipitation  

 Unlike temperature, in which climate change predictions suggest increases (i.e., 

warming) will occur for most of the planet (IPCC, 2007), changes in precipitation are 

likely to be more regionally variable, with some areas experiencing increases in total 

quantity and others reductions, as well as the possibility of altered spatial or temporal 

patterns of distribution. More specific projections of precipitation regimes vary between 

climate models, especially by region, making it difficult to assess the potential impacts of 

precipitation on a biologically meaningful scale (Weltzin et al., 2003).  

 Less is known about the variable and complex soil microbial community response 

to alterations in precipitation or moisture than that of temperature or increased 

atmospheric [CO2], although it is widely accepted that precipitation, in how it alters soil 

moisture regimes, regulates decomposition in periods of water stress (drought) or anoxia 

(wet) (Balser et al., 2010).  

 Microbial communities are able to adapt to local precipitation regimes and 

respond to moisture stressors such as drying/rewetting in different ways, in part 

depending on the historical variability of the system.  This complexity of response 

inhibits generalizations about microbial response to soil moisture across biomes (Balser 

et al., 2010; Evans and Wallenstein, 2011; Fierer et al 2003).  Despite this, soil moisture 
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has often been found to be the primary variable associated with microbial community 

structure and function and enzyme activities (Brockett et al., 2011; Guenet et al., 2012; 

Kardol et al., 2010), even dominating activity in other spheres of soil biota such as 

microarthropod populations (Kardol et al., 2011). 

 In mesic grassland systems, the pattern of precipitation (e.g., increased extremity 

and greater intervals between rainfall events) can be more important to aboveground 

plant production or soil microbial responses than the total amount of precipitation 

received (Knapp et al., 2008). Increasing the time between rainfall events has been shown 

to reduce soil microbial respiration (C-output) in a temperate tallgrass prairie system, but 

simultaneously, increased carbon inputs via leaf photosynthesis resulting in net C uptake 

and storage (Fay et al., 2008).  Large precipitation events (>10 mm day-1) have been 

shown to influence net ecosystem productivity (NEP) in a shortgrass steppe ecosystem by 

increasing soil water content, which increases plant photosynthesis and contributes to 

overall gains in daytime CO2 uptake (Parton et al., 2012). Small precipitation events (<10 

mm day-1) caused overall losses in NEP by increasing nighttime, in part soil microbial, 

respiration losses over daytime CO2 uptake, (Parton et al., 2012). Grassland ecosystem 

responses to altered precipitation regimes are likely to vary depending on the interactive 

effects of timing and duration of events, intensity, and total amount of rainfall delivered.  

All of which will influence plant-microbe ecosystem functions, such as plant productivity 

and soil microbial respiration, and determine ecosystem carbon dynamics (Fay et al., 

2008). Predicting soil microbial responses to altered precipitation is difficult and will 

depend on a variety of factors such as regional and historical variation, and changes in the 

pattern, intensity and total amount of rainfall, and the response of the existing vegetation.   
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  Figure 1.2: Illustration of direct (solid line) and indirect (dashed line) effects of 
climate change factors on a pasture ecosystem. Adapted from Balser et al. (2010). 
Most direct effects of these factors on soil microbes will occur either at the soil 
surface via drought stress and response to changes in surface temperature or 
aboveground by influencing plant productivity and species composition, crop 
selection and nutrient management dynamics (Dixon 2009; Tylianakis et al., 2008). 
The belowground effects of altered [CO2], temperature and precipitation are largely 
indirect, and are related through resource availability and use between plants and 
the microbial community. 
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        1.2.4 Indirect Effects Through Plant Communities  

        Consideration of the response of aboveground plant communities is very 

important for understanding belowground responses to climate change (Kardol et al., 

2010). Often in multi-factor climate change studies, plant and soil communities change 

simultaneously, making it difficult to tease apart direct and indirect effects of the climate 

change factors or even obscuring the response (Dermody, 2006).  Feedbacks moderating 

plant community responses in climate change studies are also difficult to assess if 

changes occur slowly over time (Wu et al., 2012). Climate change effects on soil 

ecosystem functioning such as enzyme activities and nematode abundance and 

community structure can be significantly affected by shifts in plant communities (Kardol 

et al., 2010). It is likely that changes in plant species composition, such as C3—C4 

competition, will alter or mediate ecosystem responses to climate change, sometimes by 

altering water use efficiency and water availability (Morgan et al., 2004; Wan et al., 

2005).  

        In addition to plant community composition and diversity, specific plant traits are 

important for assessing plant-soil feedback and ecosystem response to shifts in plant 

communities as a result of climate change. Traits such as relative growth rate influence 

leaf and litter quality, which thereby affect the quality of substrates entering the soil, and 

drive microbial biomass and C-cycling responses (Orwin et al., 2010). In temperate 

grasslands, plant species traits and productivity may exhibit a larger effect on soil 

biological properties (e.g., microbial biomass and activity) than direct addition of 

nitrogen fertilizer (Bardgett et al., 1999a).  Plant communities can also influence the soil 

microbial community through changes in plant root exudates, which may favor certain 
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microbial groups (Bever et al., 2012; Kardol et al., 2007). One study showed that plant 

diversity affected microbial community composition and function, though C-

mineralization was more affected by plant diversity-driven changes in microbial biomass 

rather than community composition (Carney and Matson 2005).  In contrast to these 

studies, Marshall et al. (2011) found no effect of plant functional group on microbial 

community substrate utilization. However, studies have shown microbial community 

diversity and ecosystem functions can influence aboveground plant communities 

(Bonkowski and Roy, 2005). Competition between microbial communities for plant and 

soil resources can also affect plant-soil feedbacks in response to stress, generally through 

negative effects of plant pathogens (Bever et al., 2012).  

        1.2.5 Interactive Effects of Climate Change Factors  

       Climate change factors such as increased atmospheric CO2, altered temperature 

or precipitation regimes, and shifts in plant species composition are unlikely to act 

individually, as often they will be varying simultaneously.  The interactive (e.g., additive, 

subtractive, or multiplicative) effects of these conditions are powerful drivers of soil 

microbial responses (Paul and Clark, 1996a). The effects of soil moisture in particular 

may drive the effects of multiple climate change factors such as increased atmospheric 

[CO2] or warming, as both atmospheric [CO2] and warming have ramifications for soil 

moisture availability (Zavaleta et al., 2003).  

       Increased temperature and elevated [CO2] have been shown to influence plant 

species composition. Pendall et al. (2011) found that [CO2] enrichment and warming 

(+2oC) favored C4 species over C3 species in Australian temperate grasslands, with 

increased soil carbon under C4 species with only warming. They also found that warming 
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decreased decomposition, possibly due to limited soil moisture, but [CO2] enrichment 

increased decomposition (Pendall et al., 2011).  

        Abundant soil moisture in conjunction with increased temperature has been 

shown to accelerate belowground decomposition, apparently due to increased microbial 

activity and efficiency (Bontti et al., 2009). Precipitation often regulates the effects of 

temperature—if precipitation is not limiting (i.e., abundant soil moisture) then increased 

temperature will improve microbial activity and efficiency, accelerating root or litter 

decomposition and carbon flux from grasslands; if precipitation is limiting (i.e., low soil 

moisture) then elevated temperature is likely to further inhibit microbial function, 

decelerating root or litter decomposition and potentially increasing carbon storage in 

grasslands (Bontti et al., 2009; Butenschoen et al., 2011). Similarly, belowground net 

primary productivity (BNPP), which is a primary substrate for microbes in these systems, 

has been shown to increase with warming and clipping in a tallgrass prairie when 

moisture is not limiting (Xu et al., 2011). In another study, warming and altered 

precipitation regimes affected plant functional composition (which, as previously 

discussed, can have effects on the soil microbial community) but did not significantly 

increase herbaceous biomass (Hoeppner and Dukes, 2012). Microbial metabolic 

efficiency of litter decomposition can also increase in concordance with plant diversity 

when soil moisture is abundant, but remains unchanged with limited soil moisture even 

with increased plant diversity (Butenschoen et al., 2011). This suggests that climate 

change effects on soil moisture may even overwhelm the benefits of plant diversity on 

microbial ecosystem functions (Butenschoen et al., 2011).  
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When studied with elevated [CO2], soil moisture was the main factor explaining 

variations in microbial community structure and enzyme activities, though elevated 

[CO2] increased acid phosphatase activity (Guenet et al., 2012). However, soil moisture 

levels induced no changes in soil carbon stocks (Guenet et al., 2012). 

Relatively few studies have examined the effects of increased atmospheric [CO2], 

warming, and altered precipitation together. Those that have often report that water was 

the primary driver for changes in ecosystem functions such as plant or microbial 

community composition or enzyme activities, rather than changes resulting directly from 

warming or [CO2] enrichment  (Castro et al., 2010; Henry, 2012; Kardol et al., 2010). 

Given the previously discussed complex interactions between temperature and moisture 

and their influence on the soil microbial community, it is likely that these factors will be 

the climate change factors of greatest importance in temperate grassland ecosystems.  

Elevated atmospheric [CO2] by influencing plant water use and biomass production may 

have secondary, largely indirect effects.  The specific effects of altered precipitation and 

temperature are likely to vary depending on local historical regimes and responses of 

vegetation and management. More long term studies are required which include 

manipulations of both temperature and moisture in various ecosystems (Balser et al., 

2010; Bardgett et al., 2008; Butenschoen et al., 2011; Docherty and Gutknecht, 2012). 

1.3 Objective and Hypotheses 

 The objective of this study was to quantify the seasonal responses of the soil 

microbial community to increased temperature and precipitation treatments, utilizing a 

manipulative field climate change study in a temperate pasture ecosystem.  Soil microbial 
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response was measured in terms of total biomass, community composition, extracellular 

enzyme activities, soil microbial activity, and substrate utilization. 

 Hypothesis 1:  There will be significant differences in total biomass, microbial 

composition and function, and extracellular enzyme activity across seasons. Specifically, 

soil microbial community structure and function will differ across seasons in ways that 

reflect the activity of the aboveground plant community.  For my predominantly cool-

season forage pasture, such changes may occur with new growth in spring vs. late growth 

in the fall vs. dormancy in the winter. 

 Hypothesis 2:  While natural seasonal variation may significantly affect measured 

parameters such as microbial biomass or microbial fatty acid abundance, climate 

treatment effects would be significant enough to cause differences in microbial biomass 

and community structure.  Given that soil moisture has been shown to regulate the effects 

of heat, I hypothesized there would be significant differences between treatments that 

receive only heat, and treatments which are a combination of warming and added 

precipitation. Warming treatments receiving added moisture would support enhanced 

microbial biomass and functions, such as enzyme activities and catabolic responses, 

whereas warming only treatments would have reduced responses due to water limitation 

that accompanies this treatment.  Increased microbial catabolic response to recalcitrant 

substrate additions, such as lignin and cellulose, was expected in all warming treatments. 

Hypothesis 3:  Given the temperate location of my site and distinct seasonality of the 

climate, I hypothesized that season would modify the climate treatment soil microbe 

responses. For example, heated plots may stimulate microbial activity in months when 

temperature is generally considered limiting at the site and when precipitation is naturally 
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more abundant, such as during spring and winter. Precipitation treatments may boost 

activity in drier, warmer months when water may be the limiting factor, such as late 

summer. 
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Chapter 2: Materials and Methods 

2.1. Site Description  

The study area was located at the University of Kentucky Spindletop Research 

Farm in Lexington, Kentucky (38° 06'29.24"N; 84°29'29.72"W), at 281 m above sea 

level. The area was an upland pasture ecosystem and has a 30 year long-term annual 

precipitation of 1163 mm, with a 30 year mean annual summer temperature of 23.8oC and 

a mean annual winter temperature of 1.6oC (Ferreira et al., 2010). The underlying soil 

series was a Bluegrass-Maury silt loam complex with a 2 to 6 percent slope, which is a 

well drained, fine-silty, mixed, active, mesic Typic Paleudalf that formed from silty non-

calcareous loess over clayey residuum derived from phosphatic limestone (USDA Soil 

Conservation Service, 1967).  

2.2 Experimental Design  

The UK Forage Climate Change Study was established in Spring 2008 as a hay-

managed pasture uniformly seeded with Kentucky bluegrass (Poa pratensis), tall fescue 

(Festuca arundinacea), red clover (Trifolium pretense), and white clover (Trifolium 

repens).  Bermuda grass (Cynodon dactylon) was plugged in August 2008 from 

established sod located in a nearby pasture. The site is mowed three times a year; mowing 

began May 2009. During a mowing event, all plant biomass above 7.6 cm from the soil 

surface was removed from the site.  Harvest dates during the study year were May 23, 

2011 (spring), July 25, 2011 (summer), and October 10, 2011 (fall).  

 Twenty, 5.8 m2 hexagonal plots were identified within the pasture in Spring 2009 

and were divided into five blocks with four treatments assigned at random: +Heat, 

+Precipitation, +Heat+Precipitation, and Control (Figure 2.1). Prior to treatments being 
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imposed, individual plots were similar with regard to plant community composition 

(unpublished data). Data collected from two permanent vegetation subplots (0.25 m2) 

within each plot show that, at the time this study was conducted (2011), plant 

communities had diverged in response to the climate treatments. While varying 

seasonally, Control and +Precip plots tended to be dominated by C3 perennial grasses 

(tall fescue, bluegrass) while +Heat and +Heat+Precip plots were dominated by C4, 

annual (crabgrass [Digitaria sanguinalis]) and perennial (Bermuda) grasses and a 

mixture of forbs (Appendix 1, 2). 
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Figure 2.1. Randomized complete blocking design of the UK Forage Climate Change 
Study, located at the University of Kentucky Spindletop Research Farm in Lexington, 
Kentucky, USA. Four treatments (Control, +Heat, +Precip, +Heat+Precip) were assigned 
randomly to 5.8 m2 plots within each of the 4 blocks. +Heat and +Heat+Precip treatments 
are maintained at 3oC above ambient air temperature day and night. +Precip and 
+Heat+Precip treatments receive an additional 30% of the long-term mean precipitation, 
added during the growing season. The control treatment experienced ambient conditions 
at the site. 
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 Treatments for the project began on May 1, 2009, and have been applied 

continuously since. A temperature of +3oC above ambient was maintained at plant 

canopy level day and night, year-round in the +Heat plots (Kimball et al., 2008). Constant 

heating in a uniform distribution throughout the plot areas was achieved using twelve, 

1000W Salamander infrared heaters (Mor Electric Heating Assoc., Comstock Park, MI). 

The heaters were arranged around the edges of each plot, maintained at a 120 cm height 

above the plant canopy and angled at 45o toward the ground at the center of each plot. 

Treatment plots that did not receive added heat (+Precip, Control) were surrounded by 

heater housing units that lacked the infrared heaters to account for any shading from the 

units. The +Precip plots received an additional 30% of the long-term mean precipitation 

applied primarily on rainy days (2 per month) throughout the growing season (April—

September). The exact amount of added precipitation was determined by long-term 

monthly trends. Rain was collected from precipitation events on site, stored in a water 

tank, and applied using metered wands. To prevent lateral movement of water between 

plots, aluminum flashing was established around each plot at 0.5m depth. Control 

treatment plots remained at ambient conditions, with no added heat or precipitation, while 

the +Heat+Precip treatment plots received both the +Heat and +Precip treatments 

described above.  

 To ensure effectiveness and consistency of treatments, air temperature, soil 

temperature, and soil moisture have been continuously monitored since treatments began 

in 2009. To assess the treatment effects on the soil microenvironment, soil temperature 

measurements were recorded every 15 minutes in each plot using thermocouples at a 

depth of 5 cm (soil). Soil moisture between 0 and 15 cm in depth was measured as 
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volumetric water content using time domain reflectrometers (TDR) and was also 

recorded in each plot every 15 minutes.  

2.3 Sample Collection and Storage  

This study occurred in the third growing season of the project and lasted 

approximately one year. Soil samples were harvested once during all four seasons, and 

were collected approximately one week before each of the plant biomass harvest dates, 

except in winter, when there was no plant harvest. Soil harvest dates during the study 

period were May 18, 2011 (spring), July 19, 2011 (summer), October 3, 2011 (fall), and 

February 4, 2012 (winter). Three 1.5 cm diameter soil cores were taken to a depth of 15 

cm in each plot, composited, placed in plastic bags, and put on ice in a cooler for 

immediate transport to the University of Toledo, Ohio, where extracellular enzyme 

assays and chloroform fumigation extractions were performed on hand-homogenized 

sub-samples. Once these analyses were completed, the remaining soil was transported 

back to the University of Kentucky, where the material was sieved to 2 mm and stored at 

-80oC while awaiting further analyses.  

2.4 Microbial Biomass 

2.4.1 Chloroform Fumigation Extraction  

Soil microbial biomass was measured using the chloroform fumigation extraction 

described in Rinkes et al. (2011), which was modified from Brookes et al. (1985) and 

Scott-Denton et al. (2006). For each sample plus three soil-free blanks, extractions were 

performed by adding 15 ml of 0.5 M potassium sulfate to 5 g of fresh soil (or a blank) 

and shaking on an orbital shaker for 1 hour, then vacuum filtering the extracts through 

Pall A/E glass fiber filters and freezing at -20oC until total carbon could be measured, 
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usually within one week of extraction (Rinkes et al., 2011; Weintraub et al., 2007). For 

fumigated samples, 2 ml of ethanol-free chloroform was added to 5 g of fresh soil in a 

stoppered 250 ml Erlenmeyer flask, swirled gently to mix, and then incubated for 24 

hours at room temperature in a fume hood. After the incubation period the flasks were 

allowed to vent for 30 minutes, and then extractions were performed as described above. 

Total dissolved organic carbon (DOC) was quantified for all extractions using a 

Shimadzu total organic carbon (TOC-VCPN) analyzer (Shimadzu Scientific Instruments 

Inc., Columbia, MD, USA). The difference in DOC between the fumigated and non-

fumigated samples represented extractable microbial biomass carbon (MB-C), expressed 

as µg-C g dry soil-1.  

 2.4.2 Phospholipid Fatty Acid Analysis    

Soil microbial biomass was also measured in terms of phospholipid fatty acid 

(PLFA) content following the procedure described by Findlay and Dobbs (1993) for 

assessing microbial communities via lipid analysis. For each sample, methylene chloride, 

phosphate buffer (50 mM), methanol and nanopure water were added to 5 g of thawed, 

sieved, field moist soil to extract and separate total lipids in a single phase. Soil dry 

weights were determined after lipid extraction by drying each sample at 105oC for 2 days. 

Silicic acid chromatography (SiOH columns) was used to isolate the neutral lipids, 

glycolipids, and phospholipids with chloroform, acetone, and methanol eluents, 

respectively, keeping only the phospholipid fraction. Phospholipids were hydrolyzed and 

transmethylated to fatty acid methyl esters (FAMEs) using solutions of methanol: toluene 

(1:1) and 0.2 M potassium hydroxide (KOH) in methanol. FAMEs were purified using 

reverse-phase, solid phase extraction (SPE) column chromatography (C18 columns), then 
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dissolved in hexane and quantified using capillary gas chromatography (GC) with flame 

ionization detection (FID) (Shimadzu, Columbia, MD) and a RESTEK Rtx-1 column (30 

m long, .25 µm thick, and .32 mm id, Bellefonte, PA). The GC measured a 1 µl injection 

of sample FAMEs at 250oC, with an initial column temperature of 80oC increased to the 

detector temperature of 260oC at a rate of 3.0oC/minute. A Supleco 37 component FAME 

mix (Sigma-Aldrich Co., St. Louis, MO) standard was run between every 4 samples to 

identify peaks and confirm column function. The total extractable PLFA quantified in 

each sample represented microbial biomass, expressed as nmol PLFA g soil-1.  

2.5 Microbial Community Structure  

Phospholipid fatty acid analysis (PLFA), described above, was also used to assess 

microbial community structure by identifying individual FAMEs (Findlay and Dobbs, 

1993). FAMEs were identified by comparing retention times for individual peaks to those 

in other published works and against the Supleco 37 standard (Zelles, 1999).  

 PLFA nomenclature is assigned to fatty acids based on the number of carbon 

atoms, number and location of double bonds, and other structural differences. An “n” 

followed by a number shows the location of the double bond, if present, from the 

aliphatic end of the C-chain. The prefix “cy” indicates that the FAME is a cyclopropane 

fatty acid. Cis or trans configurations are denoted by the suffixes “c” and “t”, while 

branching at the iso and anteiso positions are indicated by the prefixes “i” and “a”, 

respectively. A number followed by “Me” refers to a methyl group located that many C 

positions away from the carboxyl group (Sundh et al., 1997).   

Certain FAMEs are used as biomarkers of broad taxonomic microbial groups, 

such as gram positive bacteria—a15, i15, i16 (Zelles, 1999); gram negative bacteria—
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18:1n7c, cy19, 18:1n5c, 16:1n9c (Zelles, 1999); Desulfovibrio, a gram negative sulfate-

reducing bacteria—i17:1n7c (D’Angelo et al., 2005); gram negative proteobacteria—

11Me18:1 (Rowe et al., 2000); general bacteria—16:0, 18:0, 16:1n9c (Zelles, 1999); 

actinomycetes—10Me18 (Zelles, 1999);  and general fungi—18:1n9c, 18:2n6c (Zelles, 

1999).The relative abundance of all individual FAMEs was calculated for each sample. 

Seventy-eight FAMEs were identified from each sample. Of those, 20 FAMEs were 

present in >1% mole abundance in all samples.  

2.6 Extracellular Enzyme Activity   

Extracellular enzymes (a.k.a. exoenzymes), produced by soil microbes, are 

important in governing the rate of decomposition of soil organic matter and cycling of N 

and P. I assessed extracellular enzyme activities using assays, described in Saiya-Cork et 

al. (2002) and Weintraub et al. (2007). Table 2.1 describes the six exoenzymes that were 

assayed using 96-well microplates, and their substrates: 1.) β-1,4, Glucosidase (BG); 2.) 

β-1,4-N-Acetyl-glucosaminidase (NAG); 3.) Leucine amino peptidase (LAP); 4.) Acid 

phosphatase (PHOS); 5.) Phenol oxidase (Phenox) and 6.) Peroxidase (Perox). BG, NAG, 

LAP and PHOS were fluorimetrically assayed on black microplates. Phenox and Perox 

were assayed colorimetrically on clear microplates (Weintraub et al., 2007).  
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Table 2.1. Extracellular enzymes assayed in this study, their functions, and the substrates 
that were used to assess their activity. Adapted from Weintraub et al. (2007).  

Enzyme Function Substrate 

β-1,4, 
Glucosidase 
(BG), 

Enables hydrolysis of 1,4-linked β-D-glucose 
residues from compounds such as cellobiose, 
a short-chain cellulose oligomer, to release 
β-D-glucose. 

4-MUB-β-D-
glucoside 

β-1,4-N-Acetyl-
glucosaminidase 
(NAG) 

Facilitates hydrolysis of N-acetyl-β-D-
glucosaminide residues with 1,4-β linkages 
in chitin and chitin-derived oligomers. 

4-MUB-N-acetyl-
β-D-glucosaminide 

Leucine amino 
peptidase (LAP) 

Enables hydrolysis of the peptide bonds 
adjacent to free amino groups, heavily 
targeting leucine while also breaking down 
other amino acid amines and methyl esters. 

L-Leucine-7-
amino-4-
methylcoumarin 

Acid 
phosphatase 
(PHOS) 

Hydrolyzes phosphoric ester bonds to 
mineralize organic P into phosphate. 4-MUB-phosphate 

Phenol oxidase 
(Phenox) 

Uses oxygen to break down aromatic carbon 
compounds such as benzendiols into 
semiquinones (free radical). 

L-3,4-
dihydroxyphenylal
anine (L-DOPA) 

Peroxidase 
(Perox) 

Reduces H2O2 to catalyze oxidation 
reactions, and is commonly considered a 
lignolytic enzyme due to its ability to break 
down erratically-structured molecules. 

L-3,4-
dihydroxyphenylal
anine (L-DOPA) 
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For each sample, 1 g of fresh soil was homogenized with 125 mL of 50 mM 

sodium bicarbonate buffer (adjusted to match soil pH at harvest, 6-6.5) to make sample 

slurries using a Biospec Tissue Tearer for 1 min. From the continuously-stirred sample 

slurries, 200-µl aliquots were pipetted into 96-well microplates, with 16 replicate wells 

for each sample and enzyme (Weintraub et al., 2007). For the fluorimetric assays (BG, 

NAG, LAP, PHOS), 50 µl of 50 mM substrate solution was added to each sample well. 

Blank wells for each sample and enzyme used only 50 µl of the sodium bicarbonate 

buffer solution and 200 µl of soil slurry. Negative control wells for each sample and 

enzyme received 50 µl of the corresponding substrate and 200-µl of the buffer solution. 

Quench standard wells, to correct for the interference of slurry particulates with 

absorbance readings, received 50 µl of standard (7-amino-4-methylcoumarin for LAP, 10 

mM4-methylumbelliferone for BG, NAG and PHOS) and 200 µl of soil slurry. Reference 

standard wells received 50 µl of standard and 200 µl of buffer solution. Blank, negative 

control and quench standard wells had 8 replicates each (Weintraub et al., 2007). Black 

microplates were incubated at 200C for up to 4 hours, after which fluorescence was 

measured on a Bio-Tek Synergy HT microplate reader (Bio-Tek Inc., Winooski, VT, 

USA) at 365 nm excitation and 460 nm emission filters. Quench and negative control 

readings were used to correct enzyme activity, which was calculated as nmol activity h-1 

g soil-1. For the colorimetric assays (PHENOX, PEROX), clear microplates received 

sample and substrate solutions in a similar manner, except that they both used 25 mM L-

DOPA as the substrate solution, and PEROX received an added 10 µl  of 0.3% H2O2 in 

the substrate, blank, and negative control wells. Clear microplates were incubated at 20oC 

for up to 2 hours, after which absorbance was measured on the Bio-Tek Synergy HT 
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microplate reader (Bio-Tek Inc., Winooski, VT, USA) with 460 nm emission filters. 

PHENOX and PEROX activities are expressed as µmol activity h-1 g soil-1, with net 

Peroxidase activity, the difference between calculated Phenol oxidase activity and 

Peroxidase activity, reported as PEROX (Weintraub et al., 2007; Burke et al., 2011).  

2.7 Substrate Availability and Use 

 2.7.1 Carbon Mineralization Assay  

To measure potential carbon mineralization for each sample, a static soil 

incubation assay was modified from Fierer et al. (2003) and Iqbal et al. (2012). Six grams 

dry weight equivalent of thawed, sieved, field moist soil was weighed into 50 ml plastic 

centrifuge tubes with a septum and O-ring installed in each cap. The samples were 

adjusted to and maintained at 65% water holding capacity, and incubated at 200C 

throughout the assay period of 70 days. CO2 concentration in the headspace was 

measured in 24 hour “snap shot” incubations during the assay period.  An initial (T0) 

headspace CO2 sample was taken from each capped tube by plunging three times with a 

syringe, then drawing 10 ml of headspace gas and measuring CO2 concentration in parts 

per million (ppm) on a PP Systems EGM-4 soil respirometer (Amesbury, MA). After a 

24 hour incubation, headspace CO2 was measured with the same procedure, and the T0 

measurement was subtracted from this value. This procedure was repeated periodically 

until a steady rate of CO2 emission was observed in each sample over time. Between 

CO2 measurement incubations, samples were left uncapped in the incubator at 20oC and 

100% moisture atmosphere. Throughout the assay period, CO2 emission was measured 1, 

2, 3, 4, 5, 8, 15, 22, 29, 36, 43, 50, 57, 63 and 70 days from when the first T0 
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measurement was taken. Cumulative mineralization of CO2 from each sample was 

expressed as µg CO2-C g soil-1 (Iqbal et al., 2012).   

 2.7.2 Catabolic Response Profiles  

To evaluate soil microbial function in terms of metabolic potential, catabolic 

response profiles were conducted for each sample based on the procedure developed by 

Degens and Harris (1997) and modified by Degens and Vojovodic (1999), in which 

multiple compounds are used to induce respiration responses from the soil microbial 

community. This study included nine substrates which represented a broad range of 

complexity and chemical structure: two simple sugars (75 mM glucose, 75 mM sucrose), 

two carboxylic acids (100 mM oxalic acid, 100 mM citric acid), one amino acid (15 mM 

L-glycine), one biological substrate (48 mg ml-1 autolysed yeast cells), one complex, 

somewhat recalcitrant polysaccharide (48 mg ml-1 cellulose), and two recalcitrant carbon 

compounds (42 mg ml-1 lignin, 48 mg ml-1 chitin). Deionized water was also included to 

adjust for basal respiration. Before use, all substrate solutions were adjusted to pH 6.0 by 

adding either HCl or NaOH. One gram equivalent dry weight of thawed, sieved, field-

moist soil for each substrate and sample was weighed into 50 ml plastic centrifuge tubes 

with septum and O-rings installed in the caps. Next, 2 ml of substrate was added to the 

respective samples, and the tubes were allowed to incubate for 1 hour on a horizontal 

shaker at room temperature, uncapped. After shaking, the tubes were capped and 

headspace CO2 measured using the same protocol as for the carbon mineralization 

assays.  An initial (T0) measurement was taken by plunging three times with a syringe, 

then extracting 10 ml of headspace gas to measure the CO2 concentration on a PP 

Systems EGM-4 soil respirometer (Amesbury, MA). The tubes were incubated at 200C 
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for 4 hours (labile compounds: sugars, carboxylic acids, glycine and yeast) or 24 hours 

(recalcitrant compounds). Final headspace CO2 concentrations were measured in the 

same manner after the incubation period. Total CO2 produced from each substrate was 

calculated by subtracting the T0 values from the final values, then subtracting the total 

CO2 evolved from basal respiration (deionized water).  Respiration induced by each 

substrate was expressed as µg CO2-C g soil-1 h-1.  

2.8 Statistical Analysis  

This experiment was designed to explore the effects of increased heat and 

precipitation on multiple soil microbial characteristics in a pasture ecosystem and the 

seasonality of these treatment effects. A mixed effects linear model procedure (proc 

mixed) (9.3 SAS Institute Inc., Cary, NC) was used to test for differences in data across 

all seasons and treatments for enzyme activities, total microbial biomass from both 

chloroform fumigation extraction and PLFA, cumulative carbon mineralization, and 

respiration responses from each substrate in the catabolic response profiles. Season 

(Spring, Summer, Fall and Winter) and treatment (Control, +Heat, +Precip, and 

+Heat+Precip) were designated as fixed effects, and a repeated effect of the treatments 

within blocks was specified. Type 3 Hotelling-Lawley-McKeon (HLM) statistics 

(McKeon, 1974) with an unstructured (un) covariance matrix were used to compare the 

means of each treatment and season across all levels of heat and precipitation, as the 

HLM output is more useful for small sample numbers than the default F-statistic from 

typical ANOVA tables (Wright, 1994).  If the data was unable to converge, the 

covariance matrix was adjusted to a first-order autoregressive (ar(1)) type. In addition to 

the Least Squares Means (LSMeans) statement, the Estimate statement was used to test 
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the effects of individual heat and precipitation levels within each significant main effect 

or interaction. Hypotheses tested using the estimate statement produced the same 

significance values generated by LSMeans, but in a customized format (9.3 SAS Institute 

Inc., Cary, NC).  

 An additional statistical approach was used to further explore the PLFA data: the 

relative abundance of individual FAMEs with >1% average abundance (n=20) from 

PLFA extractions were also included in a non-metric multidimensional scaling ordination 

(NMS; PC-ORD version 4.41, MjM Software, Gleneden Beach, OR). The Multi-

Response Permutation Procedure (MRPP) was used to statistically compare the 

differences between pairs of seasons (e.g., Spring vs. Summer; Control vs. +Heat) or 

pairs of treatments  for each ordination, and a significant p-value was defined using the 

Bonferroni adjusted error rate (P = 0.05, divided the by the number of intended 

comparisons). Bonferroni adjustment is considered the default method of accounting for 

the family-wise error rate between multiple comparisons because it is the most 

conservative estimate. For MRPP comparisons, a Bonferroni adjusted error rate of 

P=0.008 (P = 0.05, divided by 6 comparisons between either 4 treatments or 4 seasons = 

0.008) was used to determine significance. Ordinations were plotted by sample (as 

designated by sample and treatment) and by species (individual FAMEs). Enzyme 

activity and catabolic response profile data obtained from each sample were used as 

environmental variables, and overlaid on ordination plots to assess correlation with the 

ordination axis values. 
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Chapter 3: Results 

3.1 Soil Temperature and Moisture 

Overall, there were significant main effects of season and treatment on daily soil 

temperatures averaged across 30 days prior to each soil harvest, and a significant 

interaction of season and treatment (Table 3.1). Seasonal trends in soil temperature 

(Figure 3.1A) averaged across treatments for the year of study included a summer 

maxima of 25.2oC and a winter minima of 7.3oC. Reflecting the intended heat treatments, 

+Heat and +Heat+Precip plots were consistently 1—3oC warmer than ambient controls 

for all seasons, with the greatest differences observed in winter (+3.4oC for +Heat and 

+1.6oC for +Heat+Precip over Controls; Figure 3.1A). In addition, soil temperatures in 

+Heat plots were 1.9—3.8oC higher than in +Precip plots across seasons, with the 

greatest difference seen in the summer (+3.8oC for +Heat plots over +Precip; Figure 

3.1A). With the exception of spring, soil temperatures in +Heat plots were generally 

higher than in +Heat+Precip plots, with the greatest difference seen in summer (+1.8oC 

for +Heat over +Heat+Precip; Figure 3.1A). As such, the added moisture applied to the 

+Heat+Precip treatment appeared to have slightly mitigated soil warming associated with 

elevated heat, although the effect was not significant in any season.  

There were also significant main effects of season and treatment, and a significant 

interaction between season and treatment, on continuous surface soil moisture, i.e. 

volumetric water content (%), measured over the 30-days preceding soil harvests (Table 

3.1). In general, winter months had the most abundant soil moisture (32.5%), followed by 

spring (31.5%), fall (30.0 %), and summer (25.5%) (Figure 3.1B). Reflecting the drying 

influence of the +Heat treatment, volumetric soil moisture tended to be lowest in the 
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+Heat plots, averaging 3.3% lower than Control and +Precip plots (Figure 3.1B).  The 

additional precipitation given to the +Heat+Precip plots tended to ameliorate this heat-

associated drying effect to some degree in the summer and fall seasons (+3.4% for 

+Heat+Precip over +Heat, averaged across summer and fall), although the effect was not 

significant in either season.  +Precip plots had the highest soil moisture throughout the 

year, but never differed significantly from ambient controls.  The greatest differences in 

soil moisture across the treatments occurred in the summer, primarily between +Precip 

and +Heat plots (+9.0% for +Precip over +Heat; Figure 3.1B).  Subtle differences in 

statistical significance across treatments in spring, summer, and fall, coupled with the fact 

that there was no difference in soil moisture across treatments in the winter, contributed 

to the significant season × treatment interaction for this parameter.    
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Table 3.1. Significance tests for soil temperature (oC) and soil moisture, as volumetric 
water content (%), over the sampled seasons and climate treatments. Bolding indicates 
statistical significance (P < 0.05). 
Effect  Soil Temperature Soil Moisture 
 DF 

n, d 
F P F P 

Season 3,10 2243.22 <0.0001 6.82 <0.0001 

Treatment 3,12 15.65 0.0003 0.10 0.0477 

Treatment*Season  9,12.9 4.93 0.0073 2.97 0.0056 
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 Figure 3.1. Daily soil temperature (oC) (A) and soil volumetric water content (% VWC) 
(B) averaged across the month preceding seasonal soil sampling for each treatment. 
Although a significant treatment x season interaction was found for both parameters, for 
ease of interpretation, the main effect of season is represented by capital letters (P < 
0.05), and within a season, the effects of treatment are indicated by small letters (P < 
0.05).  Bars represent average ± 1 S.E.   
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3.2 Soil Microbial Biomass 

3.2.1 Chloroform Fumigation Extraction 

There were significant main effects of season and treatment for microbial biomass 

as measured by chloroform fumigation extraction (CFE), but no significant interaction 

(Table 3.2). Microbial biomass C in spring and winter was, on average, 16 µg C g-1 dry 

soil higher than in summer and fall (Figure 3.2A). This seasonal effect was consistent 

across treatments. While +Heat tended to have the highest CFE biomass, +Heat and 

+Heat+Precip were not significantly different from each other, and both averaged +165 

µg C g-1 dry soil more than the Control and +Precip treatments (Figure 3.2B).  

3.2.2 Phospholipid Fatty Acid Analysis 

Unlike microbial biomass measured by CFE, microbial biomass as quantified by 

phospholipid fatty acid analysis (PLFA) exhibited only significant seasonal effects, with 

no significant treatment main effect or interaction between season and treatment (Table 

3.2). Also in contrast to the CFE data, microbial biomass by this estimate was highest in 

the summer (83 nmol PLFA g-1 dry soil) and lowest in the winter (46 nmol PLFA g-1 dry 

soil), with spring and fall being intermediate and not significantly different from each 

other (Figure 3.2C).    
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Table 3.2. Significance tests for soil microbial biomass estimates obtained from 
Chloroform Fumigation Extraction (CFE; µg C g-1 dry soil) and Phospholipid Fatty Acid 
Analysis (PLFA; nmol g-1 soil) over the sampled seasons and climate treatments. Bolding 
indicates statistical significance (P < 0.05).  
Effect  CFE PLFA 
 DF 

n, d 
F P F P 

Season 3,10 4.00 0.0414 118.80 <0.0001 

Treatment 3,12 4.00 0.0345 0.61 0.6215 

Treatment*Season  9,12.9 1.60 0.2137 0.70 0.7033 
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Figure 3.2.  Microbial biomass results from Chloroform Fumigation Extraction (CFE) 
for significant main effects (A—Season; B—Treatment), and Phospholipid Fatty Acid 
Analysis (PLFA) results for the only significant main effect (C—Season). Bars represent 
averages ± 1 S.E., and significant differences within panels are denoted by different 
letters (P < 0.05).  
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3.3 Soil Microbial Community Structure 

Non-metric multidimensional (NMS) scaling ordination analyses of the 20 most 

abundant PLFAs showed significant seasonal effects on soil microbial community 

composition overall and within each treatment.  When all samples were included in the 

same ordination, strong seasonal separation was observed (Figure 3.3A).  Multi-response 

permutation analysis of all the seasonal pairwise comparisons contained in this ordination 

indicated that lipid profiles for each season were distinct (Table 3.3).  In the spring, 

abundant lipid biomarkers in the soil microbial community included a mix of mostly 

gram-negative and non-specific bacterial biomarkers, such as cy19, 18:0, 18:1n7c, 

16:1n9c, 16:1n7c and 16:1n5c. In the summer, the population shifted more strongly 

toward general bacteria 18:0 and 16:0 biomarkers, and also toward gram-positive bacteria 

biomarkers such as i15 and i16. The relative abundance of lipid biomarkers in the fall, 

while significantly different from spring and summer, fell in between these two seasons 

in ordination space, indicating some overlap in lipid profiles. The winter population 

strongly favored gram-negative bacteria biomarkers such as 16:1n9c, 16:1n7c and 

16:1n5c (Table 3.4).  

NMS ordination (Figure 3.4A,C,E,G) and MRPP testing (Table 3.5) revealed 

significant seasonal separation of PLFA profiles in each climate treatment. For all 

treatments, the relative abundance of lipid biomarkers indicated that summer and winter 

microbial communities differed significantly from each other and from those observed in 

spring and fall, which where were statistically similar in all treatments.  Specific FAMEs 

driving NMS ordinations of the seasonal effects for each treatment are outlined in 

Appendices 3—6. In general, the lipid biomarkers responsible for driving the overall 
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seasonal differences observed when all treatments were run in the same ordination 

(Figure 3.3A; Table 3.5) were also important for each treatment.  However, multiple 

FAMEs that were not significant in the seasonal NMS ordination for all samples were 

found to be important in treatment-dependent ways (Appendix 3—6). Fungal biomarkers 

(18:1n9c and 18:2n6c) were present in each treatment, and appeared to drive seasonal 

separation of spring and fall samples from that of summer or winter in the Control and 

+Heat plots (Appendix 3,4), but appeared to drive separation of winter samples from the 

other seasons in the +Precip and +Heat+Precip plots (Appendix 5,6). The biomarker 

i17:1n7 for a sulfate-reducing bacteria, Desulfovibrio (D’Angelo et al., 2005), became 

significant in both the +Heat and +Precip plots and appeared to slightly drive spring 

samples (Appendix 4,5). The biomarker 11Me18:1, which has been described for lipids 

in various groups of gram negative proteobacteria (Rowe et al., 2000), was positively 

correlated with Axis 1 in the Control and +Heat+Precip ordinations, in areas associated 

with winter samples (Appendix 3,6). 

NMS ordination analyses of the 20 most abundant PLFAs showed that there were 

no treatment effects on the soil microbial community composition (Figure 3.3B). 

Additional ordinations performed on each season separately and multi-response 

permutation analyses on these ordinations confirmed this result (Figure 3.5; Tables 3.3 & 

3.6). Lipid profiles of the soils associated with the four climate treatments were similar to 

each other in all measured seasons. 
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Figure 3.3. Non-metric multidimensional scaling ordination of the 20 most abundant 
lipid biomarkers for all samples collected during this study. The samples are grouped 
based on Season (A) and Treatment (B). The stress value for the ordination was 14.537, 
which indicates the ordination is an accurate two-dimensional representation of the data, 
and the amount of variation explained by each axis (r2) is included in each axis title. (A) 
Text and circles indicate significant separations (P < 0.008) between seasons (Table 3.3) 
in the panel. There were no significant separations across treatments (B).  (C) Displays 
weighted cumulative average of individual FAME scores from the NMS ordination, and 
includes correlated vectors of two environmental variables, activity of selected enzymes 
(where BG = β-1, 4, Glucosidase; NAG = β-1, 4-N-Acetyl-glucosaminidase; LAP = 
Leucine amino peptidase; PHOS = Acid phosphatase; and Perox = Peroxidase) and 
catabolic response to substrates (glucose and chitin). Axes in panel (C) are zoomed in 
from those of (A) and (B) for clarity.  Not all 20 FAMEs included in the ordination are 
shown in (C) because they were located outside of the zoomed in axes; however, if these 
nine missing FAMEs were important in explaining the variation in this ordination, they 
are shown in Table 3.4.
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Table 3.3. Significance tests for the Multi-Response Permutation Procedures (MRPP) 
used to perform pairwise comparisons between seasons and treatments for the Non-
metric multidimensional scaling ordination of the 20 most abundant lipid biomarkers for 
all samples. A-values represent the within-group agreement statistic corrected for chance, 
where higher values mean differences are less likely due to chance. Bolded P-values 
indicate statistical significance, based on a Bonferroni-adjustment (P < 0.05 / 6 
comparisons < 0.008).  

Paired 
Comparison 

Season Paired 
Comparison 

Treatment 
A P A P 

Spring vs. 
Summer 0.216 <0.0001 Control vs. 

+Heat 0.015 0.0778 

Spring vs. 
Fall 0.067 <0.0001 Control vs. 

+Precip -0.007 0.7298 

Spring vs. 
Winter 0.207 <0.0001 Control vs. 

+Heat+Precip 0.020 0.0449 

Summer vs. 
Fall 0.149 <0.0001 +Heat vs. 

+Precip 0.015 0.0748 

Summer vs. 
Winter 0.343 <0.0001 +Heat vs. 

+Heat+Precip -0.004 0.5518 

Fall vs. 
Winter 0.260 <0.0001 +Precip vs. 

+Heat+Precip 0.012 0.1198 
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Table 3.4. FAMEs driving the NMS ordination of all samples combined (Figure 3.3). 
The most correlated FAMEs (r > 0.500) with each ordination axis are shown, as well as 
the most correlated environmental overlay variables (r > 0.400). The amount of variation 
explained by each axis (r2) is indicated. Positive r-values for each FAME and Overlay 
correlate with the right-most area of Axis 1 or the upper-most area of Axis 2. Negative r-
values for each FAME and Overlay correlate with the left-most area of Axis 1 or the 
bottom-most area of Axis 2. For FAMEs, Classification indicates the microbial 
taxonomic group for which each FAME is used as a lipid biomarker, whether the 
environmental overlay variable used was an extracellular enzyme (exoenzyme), or the 
type of compound used as a substrate.  

NMS, All Samples 
Axis 1 (r2=0.40) Axis 2 (r2=0.50) 

      
FAME r-value Classification FAME r-value Classification 

18:1n7c 0.74 Gram-negative 
bacteria 16:1n7c 0.697 Gram-negative 

bacteria 

16:1n7c 0.691 Gram-negative 
bacteria 16:1n5c1 0.658 Gram-negative 

bacteria 

16:1n9c 0.663 Non-specific 
bacteria 16:1n9c 0.647 Gram-negative 

bacteria 

16:1n5c1 0.556 Gram-negative 
bacteria a15 0.588 Gram-positive 

bacteria 

16:0 -0.74 Non-specific 
bacteria cy19 -0.85 Gram-negative 

bacteria 

i16 -0.674 Gram-positive 
bacteria 18:0 -0.681 Non-specific 

bacteria 

i15 -0.637 Gram-positive 
bacteria    

18:0 -0.572 Non-specific 
bacteria    
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Table 3.4 (cont’d). FAMEs driving the NMS ordination of all samples combined (Figure 
3.3). The most correlated FAMEs (r > 0.500) with each ordination axis are shown, as 
well as the most correlated environmental overlay variables (r > 0.400). The amount of 
variation explained by each axis (r2) is indicated. Positive r-values for each FAME and 
Overlay correlate with the right-most area of Axis 1 or the upper-most area of Axis 2. 
Negative r-values for each FAME and Overlay correlate with the left-most area of Axis 1 
or the bottom-most area of Axis 2. For FAMEs, Classification indicates the microbial 
taxonomic group for which each FAME is used as a lipid biomarker, whether the 
environmental overlay variable used was an extracellular enzyme (exoenzyme), or the 
type of compound used as a substrate.  

NMS, All Samples 
Axis 1 (r2=0.40) Axis 2 (r2=0.50) 

      
Overlay r-value Classification Overlay r-value Classification 

BG2 -0.606 Exoenzyme Chitin3 -0.479 Recalcitrant carbon 

PHOS2 -0.505 Exoenzyme Glucose3 -0.461 Simple sugar 

Perox2 -0.619 Exoenzyme LAP2 -0.553 Exoenzyme 

LAP2 -0.443 Exoenzyme    

      
 

1Has also been used as a biomarker for arbuscular mycorrhizal fungi. 
2 Assayed extracellular enzymes, (BG = β-1, 4, Glucosidase; NAG = β-1, 4-N-Acetyl-
glucosaminidase; LAP = Leucine amino peptidase; PHOS = Acid phosphatase; Phenox = 
Phenol oxidase; and Perox = Peroxidase). 
3Substrate used in Catabolic Response Profiling. 
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Figure 3.4. Non-metric multidimensional scaling ordination of the 20 most abundant 
lipid biomarkers for all seasons within each Treatment (Control—A, +Heat—C, 
+Precip—E, +Heat+Precip—G). Stress values are included in each panel indicating the 
accuracy of the two-dimensional representation (lower is better), and the amount of 
variation explained by each axis (r2) is included in axis titles. (A, C, E, G) Circled groups 
indicate significant separations ( Table 3.5), where Summer and Winter samples differ 
from each other and from Spring and Fall samples combined. (B, D, F, H) Displays 
weighted cumulative average of PLFA scores from the NMS ordinations, and includes 
correlated vectors (r > 0.40) of two environmental variables, the activity of selected 
enzymes (where BG = β-1, 4, Glucosidase; NAG = β-1, 4-N-Acetyl-glucosaminidase; 
LAP = Leucine amino peptidase; PHOS = Acid phosphatase; Phenox = Phenol oxidase; 
and Perox = Peroxidase.) and catabolic response to substrates (Glucose, Sucrose, Yeast, 
L-Glycine, Citric and Oxalic Acids, and Chitin). Axes in panels (B, D, F, H) are scaled 
down from those in (A, C, E, G) so that individual PLFA scores and environmental 
variables are easier to read.  This scaling down resulted in some of the 20 PLFAs 
included in the ordinations not being shown because they were located outside the range 
of the zoomed in axes; however, if these missing FAMEs were important in explaining 
the variation in the ordinations, they are shown in Tables A1.2 – 1.5.
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Table 3.5. Significance tests for the Multi-Response Permutation Procedures (MRPP) 
used to perform pairwise comparisons between seasons for Non-metric multidimensional 
scaling ordination of the 20 most abundant lipid biomarkers for each treatment (Figure 
3.4). A-values (A) represent the within-group agreement statistic corrected for chance. 
Bolded P-values indicate statistical significance, with a Bonferroni-adjusted acceptable P-
value of <0.008.  

Compared 
Treatment 

Control +Heat +Precip +Heat+Precip 
A P A P A P A P 

Spring vs. 
Summer 0.262 0.0016 0.246 0.0017 0.197 0.0034 0.209 0.0023 

Spring vs. 
Fall 0.127 0.0149 0.050 0.0818 0.041 0.1668 0.065 0.0412 

Spring vs. 
Winter 0.203 0.0014 0.293 0.0020 0.176 0.0065 0.217 0.0033 

Summer vs. 
Fall 0.176 0.0023 0.158 0.0020 0.187 0.0017 0.184 0.0034 

Summer vs. 
Winter 0.389 0.0018 0.386 0.0017 0.407 0.0017 0.359 0.0020 
Fall vs. 
Winter 0.282 0.0022 0.336 0.0020 0.274 0.0015 0.338 0.0016 
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Figure 3.5. Non-metric multidimensional scaling ordination of the 20 most abundant 
lipid biomarkers for all samples by treatment during each season (Spring - A, Summer - 
B, Fall - C, Winter - D). Stress values are included in each panel indicating the accuracy 
of the two-dimensional representation, and the amount of variation explained by each 
axis (r2) is included in each axis title.   
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Table 3.6. Significance tests for the Multi-Response Permutation Procedures (MRPP) 
used to perform pairwise comparisons between treatments for Non-metric 
multidimensional scaling ordination of the 20 most abundant lipid biomarkers for each 
season (Figure 3.5). A-values (A) represent the within-group agreement statistic corrected 
for chance. No P-values were statistically significant, with a Bonferroni-adjusted 
acceptable P-value of <0.008. 

Compared 
Season 

Spring Summer Fall Winter 
A P A P A P A P 

Control vs. 
+Heat -0.016 0.6718 0.049 0.0757 0.083 0.0392 0.135 0.0156 

Control vs. 
+Precip -0.015 0.5484 -0.023 0.7572 -0.015 0.6418 -0.026 0.6798 

Control vs. 
+Heat 

+Precip 
0.012 0.3300 0.097 0.0178 0.085 0.0424 0.060 0.1045 

+Heat vs. 
+Precip 0.004 0.3968 0.004 0.4069 0.033 0.1529 0.164 0.0120 

+Heat vs. 
+Heat 

+Precip 
-0.013 0.6308 -0.005 0.5327 0.049 0.1030 0.007 0.3527 

+Precip vs. 
+Heat 

+Precip 
-0.026 0.6707 0.029 0.1335 0.060 0.0872 0.057 0.1128 
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3.4 Extracellular Enzyme Activity 

 All of the assayed extracellular enzymes were significantly affected by season 

(Table 3.7). No significant main effect of treatment or interaction between treatment and 

season were observed for any of the measured enzymes (Table 3.7). Similar seasonal 

dynamics were recorded for β-1,4-glucosidase (BG) and acid phosphatase (PHOS), with 

both having highest activity in the summer (161 and 275 nmol activity h-1 g-1 soil, 

respectively) followed by dramatic declines in activity in fall and winter ( Figure 3.6 A, 

C). β -1, 4-N-acetyl glucosaminidase (NAG) differed from BG and PHOS in that the 

highest activity was measured in the spring instead of the summer (Figure 3.6 D). For 

leucine amino peptidase (LAP), differences in activity between spring, summer, and fall 

were less dramatic than that observed for the other exoenzymes; however, similar to the 

rest of the hydrolases (BG, PHOS, NAG), winter activity was much reduced, dropping to 

19 nmol activity h-1 g -1 soil (Figure 3.6 B). In contrast, the oxidoreductases, Peroxidase 

(Perox) and Phenol oxidase (Phenox), had lowest activities in the spring (12 µmol 

activity h-1 g-1 soil) and fall (14 µmol activity h-1 g-1 soil), respectively (Figure 3.6 E, F). 

Similar to the hydrolases, both enzymes had the highest activity in the summer.  
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Table 3.7. Significance tests for extracellular enzyme activities assayed over the sampled 
seasons and climate treatments (BG = β-1, 4, Glucosidase; LAP = Leucine amino 
peptidase; NAG = β-1, 4-N-Acetyl-glucosaminidase; PHOS = Acid phosphatase; Phenox 
= Phenol oxidase; and Perox = Peroxidase). BG, LAP, NAG and PHOS values were 
measured as nmol activity h-1 g-1 soil; Perox and Phenox values were measured in µmol 
activity h-1 g-1 soil.  Bolding indicates statistical significance (P < 0.05).  

Effect 
 

BG 
 

LAP 
 

NAG DF 
n, d 

  
F P  F P  F P 

Season 3,10 140.74 <0.0001  216.8 <0.0001  330.44 <0.0001 

Treatment 3,12 0.14 0.9371  0.82 0.5079  0.71 0.5661 

Treatment
* Season  

9,12.9 1.25 0.3457  0.68 0.7134  0.97 0.5046 

Effect 
 

PHOS 
 

Perox 
 

Phenox DF 
n, d 

  
F P  F P  F P 

Season 3,10 314.63 <0.0001  9.19 0.0032  23.45 <0.0001 

Treatment 3,12 0.23 0.876  0.56 0.6489  0.51 0.6805 

Treatment
* Season  

9,12.9 0.86 0.5796  0.68 0.7176  0.89 0.5606 
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Figure 3.6. Extracellular enzyme activities with significant seasonal main effects (P-
values shown) (A) BG = β-1, 4, Glucosidase; (B) LAP = Leucine amino peptidase; (C) 
PHOS = Acid phosphatase; (D) NAG = β-1, 4-N-Acetyl-glucosaminidase; (E) Perox = 
Peroxidase; and (F) Phenox = Phenol oxidase. Bars represent average ± 1 S.E., and 
within each panel, columns with differing letters are significantly different (P < 0.05).  
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3.5 Substrate Availability and Use 

 3.5.1 Carbon Mineralization Assay 

A significant main effect of season and treatment x season interaction was found 

for the amount of respired carbon measured via the carbon mineralization assay (CMA); 

however, no significant treatment effect was identified (Table 3.8). Averaged across 

treatments, soils from each season respired significantly different amounts of carbon 

(Figure 3.7), with the greatest amount measured in the spring (185 µg CO2-C g soil-1) and 

decreasing throughout the growing season to 120 µg CO2-C g soil-1 in the fall. However, 

labile soil carbon pools appeared to increase from fall to winter, as respired carbon 

measured via CMA increased to 134 µg CO2-C g soil-1 in the winter soils.  

 There was only one season where significant treatment differences were 

identified. In winter, the amount of carbon respired in +Heat plots was 40 µg CO2-C g 

soil-1 less than that measured in Control or +Heat+Precip plots (Figure 3.7). This general 

trend (+Heat < Control, +Heat+Precip) was also apparent in the summer, although it was 

only marginally significant (P ≤ 0.075).  However, the +Heat plots had greater respired 

carbon in the spring than the other treatments, although again this comparison was not 

statistically significant.  These trends explain the significant treatment x season 

interaction for this parameter. 
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Table 3.8. Significance tests for carbon mineralization assays (CMA) over the sampled 
seasons and climate treatments, measured as cumulative µg CO2-C g-1 soil produced over 
a 70 day incubation period. Bolding indicates statistical significance (P < 0.05). 
Effect  CMA 
 DF 

n, d 
F P 

Season 3,10 6.82 0.0088 

Treatment 3,12 0.10 0.9585 

Treatment*Season  9,12.9 2.97 0.0375 
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Figure 3.7. Carbon Mineralization Assay (CMA) results showing the seasonal effects 
and treatment effects within season. Values are cumulative soil respiration (µg CO2-C g-1 
soil) produced over a 70 day incubation period for each sample. Although a significant 
treatment x season interaction was found, for ease of interpretation, the main effect of 
season is represented by capital letters, and within a season, the effect of treatment is 
indicated by small letters (P < 0.05).  Bars represent average ± 1 S.E  
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 3.5.2 Catabolic Response Profiles 

 In assessing the microbial communities’ ability to utilize nine substrates with a 

wide range of digestibility, a significant main effect of either season or treatment was 

observed for all substrates except oxalic acid (a carboxylic acid) and yeast (a biological 

substrate) (Table 3.9). There were no significant interactions between treatment and 

season for any of the substrates tested. 

Three labile substrates (glucose, citric acid, and L-glycine) and three recalcitrant 

carbon substrates (cellulose, chitin and lignin) exhibited significant seasonal patterns 

(Table 3.9). Glucose, cellulose, and chitin had similar seasonal patterns in utilization, 

with spring being highest, winter lowest, and summer and fall in between (Figure 3.8A, 

D, E).  Citric acid induced the largest microbial utilization response of the labile 

substrates, but unlike glucose, another labile compound, utilization of this substrate 

increased throughout the growing season (Figure 3.8B).   The response to L-glycine 

additions was relatively low compared to the other labile substrates and seasonal patterns 

were subtle (Figure 3.8C).  Of the recalcitrant compounds, lignin additions elicited the 

strongest microbial utilization response (averaged across seasons, 2.02 µg CO2-C g soil-1 

h-1 for lignin vs. 0.69 µg CO2-C g soil-1 h-1 and 0.27 µg CO2-C g soil-1 h-1 for cellulose 

and chitin, respectively), and this response was most pronounced in the fall, which had 

significantly greater utilization than spring, summer and winter for this substrate (Figure 

3.8F).   

Only two substrates exhibited significant treatment effects: sucrose, a labile 

simple sugar, and cellulose, a more recalcitrant compound (Table 3.9). Treatment effects 

for sucrose additions consisted of increased microbial utilization in +Heat plots, inducing 
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an average of +0.34 µg CO2-C g soil-1 h-1 more respiration in +Heat than from soils of 

Control, +Precip, or +Heat+Precip plots (Figure 3.9A). Cellulose was similarly affected 

by treatments, except in this case, the stimulation of the microbial response was observed 

from both +Heat and +Heat+Precip plots, producing an average of +0.14 µg CO2-C g 

soil-1 h-1 more respiration than the Control or +Precip plots (Figure 3.9B).   
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Table 3.9. Significance tests for catabolic response profiles over the sampled seasons and 
climate treatments, where soil microbial response is measured as µg CO2-C g soil-1 h-1. 
Substrates are grouped based on whether they are considered to be labile or recalcitrant 
compounds. Bolding indicates statistical significance (P < 0.05). 

Effect 
 Labile  Substrates 

DF 
n, d 

Glucose Sucrose Citric Acid 
F P  F P  F P 

Season 3,10 30.15 <0.0001  0.18 0.9068  33.06 <0.0001 

Treatment 3,12 1.18 0.3585  7.13 0.0052  0.84 0.4957 

Treatment*
Season 

9,12.9 1.29 0.3289  0.87 0.5717  1.15 0.3964 

Effect 
 Labile  Substrates 

DF 
n, d 

Oxalic Acid  L-Glycine Yeast 
F P  F P  F P 

Season 3,10 1.76 0.2420  4.17 0.0131  2.52 0.1174 

Treatment 3,12 0.25 0.8626  0.23 0.8713  1.09 0.3925 

Treatment*
Season  

9,12.9 0.55 0.7988  1.08 0.4038  1.5 0.2453 

Effect 
 Recalcitrant Substrates 

DF 
n, d 

Cellulose  Chitin  Lignin  
F P  F P  F P 

Season 3,10 4.22 0.0359  36.84 <0.0001  35.11 <0.0001 

Treatment 3,12 4.56 0.0237  1.52 0.2596  2.57 0.1030 

Treatment*
Season  

9,12.9 0.71 0.6944  0.89 0.5578  1.28 0.3318 
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Figure 3.8. Catabolic response profile results showing the main effect of season for each 
substrate. Labile substrates are: A) Glucose; B) Citric Acid; and C) L-Glycine. 
Recalcitrant substrates are: D) Cellulose; E) Chitin; and F) Lignin. Values are microbial 
respiration induced by additions of each substrate on a per hour basis (µg CO2-C g soil-1 
h-1). Bars represent average ± 1 S.E., and within each panel, columns having no common 
letter are significantly different from each other. 
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Figure 3.9. Catabolic response profile results showing the main effect of treatment for a 
labile substrate, (A) Sucrose, and a recalcitrant substrate, (B) Cellulose. Values for 
microbial response are presented as respiration induced by each substrate per hour (µg 
CO2-C g-1 soil h-1). Bars represent ± 1 S.E., and within each panel, columns having no 
common letter are significantly different.  
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3.6 Relationships Between Soil Microbial Community Structure and Function 

 To examine the relationships between structure and function of the soil microbial 

community, the PLFA results (community structure) and the results from exoenzyme 

activity assays and microbial responses to substrate additions (community function) were 

compared across seasons and treatments. For each PLFA NMS ordination, the 

corresponding extracellular enzyme activities and the catabolic responses to the various 

added substrates were added as potential environmental overlays that may correlate with 

the axes the ordination identified as explaining variability in the PLFA data (Figure 3.3C; 

Figure 3.4B,D,F,H).  Significant correlations between individual FAMEs and these 

parameters may illustrate relationships between taxonomic groups of microbes and some 

aspect of function.    

 As described in Section 3.3, the NMS ordination and MRPP comparisons of the 

20 most abundant lipid biomarkers for all samples collected during the study revealed 

significant separation  of microbial community structure between seasons (Figure 3.3A; 

Table 3.3). The most highly correlated overlay variables for this ordination included 

exoenzymes BG, PHOS, Perox, LAP, and the CRP substrates, chitin and glucose (Table 

3.5). Exoenzymes BG, PHOS, and Perox were correlated with the summer PLFA samples 

in the ordination (Figure 3.3A), when the activity of all three of these enzymes was 

highest.  The overlay indicates that their activity was positively correlated to the 

abundance of FAME i17, a lipid biomarker for gram-positive bacteria (Figure 3.3C). 

Exoenzyme NAG and CRP substrates, glucose and chitin, were associated with spring 

PLFA profiles (Figures 3.3A,C), also when their activities/responses were highest, and 

were correlated with lipid biomarkers for gram-negative bacteria, cy17 and 18:1n5c 
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(Figure 3.3C). LAP was correlated with fall and spring PLFA samples and general 

biomarkers (16:0, 18:0). Interestingly, no exoenzymes or CRP substrates were correlated 

with the winter ordination space.   

 When examining the soil microbial community for each climatic treatment across 

seasons (Figure 3.4), MRPP revealed significant shifts in community structure between 

summer and winter, but similar communities in the spring and fall for each treatment 

(Table 3.5).  In general, the FAMEs driving these lipid profile trends were similar across 

treatments (Appendix 3—6), and the correlated exoenzymes and CRP substrate responses 

also tended to be similar across treatments (Figures 3.4B,D,F,H), consistent with the fact 

that these parameters exhibited no significant season × treatment interaction in the 

ANOVA analyses (Tables 3.7, 3.9).  

Functional parameters that were significantly correlated with ordination axes in 

every treatment included exoenzymes Perox and LAP, and the CRP substrate glucose 

(Figure 3.4B,D,F,H). In each treatment, the environmental vector for Perox was oriented 

towards the lipid biomarker for gram-positive bacteria, i16, and correlated with summer 

PLFA measurements. The environmental vectors for LAP and glucose correlated with 

summer PLFA measurements in the Control and +Precip plots, but for fall and spring, 

LAP and glucose correlated with PLFA measurements in the +Heat and +Heat+Precip 

plots. LAP activity was also associated with different individual FAMEs in the different 

treatments.  For example, in the Control and +Heat plots, the environmental vector for 

LAP tended to point towards fungal biomarkers such as 18:2n6c and 18:1n9c, but in 

+Precip and +Heat+Precip plots, it tended to point towards non-specific bacterial 

biomarkers such as 18:0 and 16:0. The vector for glucose tended to be directed towards 
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the bacterial biomarker 16:0 (for all treatments except +Heat+Precip) and the fungal 

biomarker 18:2n6c (for +Heat and Control treatments) (Figure 3.4B,D,F,H).  

A variety of exoenzymes and CRP substrates were not strongly correlated with 

the seasonal PLFA ordinations of specific treatments (Appendix 3—6). For example, the 

CRP substrate oxalic acid was not correlated with lipid profiles in the Control plots, and 

yeast was not correlated with either Control or +Heat ordinations. Chitin was absent from 

the +Precip ordination, and L-glycine was not correlated with the +Heat+Precip 

ordination. Citric acid utilization was correlated with Control and +Precip ordinations, 

but not +Heat and +Heat+Precip. The exoenzymes PHOS and BG were not correlated 

with +Heat plots, and NAG activity was not related to the lipid profiles of the +Precip or 

+Heat+Precip plots. However, correlated environmental vectors for the exoenzyme 

Phenox and the CRP substrate sucrose only appeared in +Heat+Precip plots. None of the 

seasonal ordinations for each treatment included correlated environmental vectors for 

CRP substrates cellulose and lignin, despite significant seasonal variation for these 

substrates (Table 3.9). 

 Citric acid and NAG were unique in that the environmental vectors correlated 

with different FAMEs between treatments when significant correlations occurred. In the 

Control plots, citric acid correlated with fall PLFA measurements but no specific 

FAMEs. In the +Precip plots, citric acid turned towards the winter PLFA measurements 

and gram-negative bacteria biomarkers such as 16:1n5c (Figure 3.4B,F). The vectors for 

NAG, while correlating with the spring and fall PLFA ordinations in both control and 

+Precip treatments, tended to point towards fungal biomarker 18:1n9c in Control plots 

but towards gram-negative bacteria biomarkers (18:1n7c, 18:1n5c) in +Heat plots.  
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Environmental vectors that showed consistent correlation with certain FAMEs or 

microbial taxonomic groups between treatments, included PHOS, BG, chitin, L-glycine, 

yeast, oxalic acid, sucrose, and Phenox. The vectors for PHOS and BG, where present, 

tended to point towards gram-positive and non-specific bacterial biomarkers i17 and 16:0 

(Figure 3.4B,D,F,H). In both the Control and +Heat plots, the environmental vector for 

chitin was oriented towards fungal biomarkers such as 18:1n9c and correlated with the 

spring and fall PLFA measurements. The environmental vector for L-glycine, present in 

each treatment except +Heat+Precip, appeared to orient towards the lipid biomarker for 

gram-negative sulfate-reducing bacteria i17:1n7. Yeast also tended to correlate with 

i17:1n7. The vector for oxalic acid tended to point towards various gram-negative 

biomarkers (18:1n7c, 18:1n5c, cy 17, 11Me18:1) and to correlate with spring and fall 

PLFA measurements in +Heat and +Heat+Precip plots, but shifted towards summer 

PLFA measurements in the +Precip plots (Figure 3.4D,F,H). Unique to the +Heat+Precip 

plots, sucrose and Phenox correlated with the actinomycetes biomarker, 10Me18, and the 

gram-positive bacteria biomarker, a17 (Figure 3.4B,D,F,H).  
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Chapter 4: Discussion 

In this study, seasonal patterns in the soil microbial community structure and 

function were more dramatic than effects produced by the climate change treatments. 

While every aspect of the soil microbial community assessed in this study exhibited 

significant seasonal variation, treatment effects were either relatively subtle or interacted 

with seasonal variation. Taken together, these results suggest the soil microbial 

community of this temperate Kentucky pasture may be quite resilient to potential future 

increases in heat and precipitation.   

4.1 Seasonal Drivers of Soil Microbial Community Structure and Function 

My first hypothesis, in which I expected to see significant differences across 

seasons in each measured microbial parameter, was verified by my data, but not always 

in the manner I had predicted. Prior work has shown that plant communities influence the 

soil microbial community through timing and composition of plant root exudates (Bever 

et al., 2012; Kardol et al., 2007; Scherber et al., 2010). My site, being temperate in 

climate, experiences distinct seasons of varying plant activity and community 

composition. Therefore, I expected to see significant seasonal variation in soil microbial 

community structure across all samples. This was observed, although for individual 

climate treatments, spring and fall communities were comparable, which is unusual given 

that there were distinct contrasts in plant community composition across treatments 

between spring (dominated by C3 grasses) and fall (dominated by C4 grasses) (Appendix 

2). In spring the soil microbial community was composed of a mix of gram-negative and 

general bacteria. In summer, when the plant community was a mix of late growth C3 

grasses, early growth of C4 grasses, and forbs, the soil microbial community was 
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dominated by gram-positive and general bacteria. While the fall plant community was 

composed largely of C4 grasses (as opposed to mainly C3 grasses in the spring), the soil 

microbial community composition was similar to that of spring, containing a mix of the 

previously mentioned bacterial groups. The soil microbial community was dominated by 

gram-negative bacteria in the winter, when plant activity was presumably lowest and no 

plant species harvest took place. 

Although many studies consider C3 and C4 grasses as distinct plant functional 

groups (e.g., Burke et al., 1998; Morgan et al., 2011; Zak et al., 2003), in this system, C3 

and C4 grasses appeared to provide similar feedbacks to the soil microbial community 

structure. This result contrasts with multiple studies that have observed differences in soil 

microbial communities associated with C3 and C4 grass-dominated plant communities, 

but most of these studies were conducted across multiple years and included plant 

community dynamics in response to altered CO2 years in arid environments, where the 

impacts of CO2 on water use and availability over time were potentially more influential 

than in a temperate environment with relatively abundant rainfall (Morgan et al., 2004; 

Morgan et al., 2011).  

Other studies in long-term experiments have shown that plant diversity has 

significant effects on soil microbes, increasing microbial biomass and fungal abundance 

(Zak et al., 2003). However, Kowalchuk et al. (2002) demonstrated that while many 

studies assume that aboveground plant diversity drives belowground microbial diversity, 

this influence might be restricted to rhizosphere soil rather than the microbial community 

in bulk soil. Similar to my results, Marshall et al. (2011) found no effect of plant 

functional group on soil microbial community structure or substrate utilization, also using 
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bulk soil samples for analysis. The lack of distinction between the spring and fall soil 

microbial communities, despite large differences between plant functional composition in 

the spring and fall, suggests aboveground plant communities were not driving seasonal 

variation of soil microbial community structure at this site. 

As hypothesized, microbial biomass expressed significant seasonal effects. 

However, the two measurements of this parameter (CFE and PLFA) provided different 

estimates of seasonal maxima and minima, presumably because the methods are 

measuring two different microbial components: carbon and lipids. PLFA measurements 

suggested summer maxima and winter minima, while CFE yielded spring/winter maxima 

and summer/fall minima. These results are in direct contrast to Bardgett et al. (1999b), 

who found spring maxima and fall minima with PLFA measurements, and summer 

maxima and winter minima with CFE at temperate grassland sites in the United 

Kingdom. Some studies have shown significant correlation between these two 

measurements of microbial biomass (Zelles et al., 1992; Zogg et al., 1997), while others 

have shown significant differences (Zak et al., 1996). Differences between the two 

methods might stem from the fact that the total amount of PLFA generally has a fast 

turnover rate and therefore, primarily reflects the amount of active microbial biomass 

(Tunlid et al., 1985; Tunlid and White, 1992; Zak et al., 1996), whereas CFE simply 

measures cytoplasmic microbial carbon in soil with no differentiation between pools of 

potentially active or dormant biomass (Paul and Clark, 1996b). My results suggest that, 

while microbial biomass as measured by CFE was highest in the spring and winter, the 

greatest active microbial community was present in the summer. Bardgett et al. (1999b) 

attributed spring maxima of microbial biomass to probable increases in soil temperatures, 
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root growth, and utilization of organic material accumulated over the winter, and such 

seasonal trends are supported by similar reports from other temperate grassland sites 

(Lovell et al., 1995; Sarathchandra et al., 1998; Ross et al., 1995). The summer maxima 

of microbial biomass measured at this site may also reflect increased soil temperatures 

(Figure 3.1A), although it is noteworthy that in general elevated temperature plots did not 

have enhanced microbial biomass over that measured in Control and +Precip plots.  

4.2 Treatment Effects on the Soil Microbial Community 

My second hypothesis, that I would find significant differences between climate 

treatments for each parameter, was largely unsupported by my data. I hypothesized that 

either heat or moisture stress would have some consistent effect on the soil microbial 

community despite seasonal variation. In this study, the only significant effects of climate 

treatments included increased microbial biomass C in warming treatments (+Heat and 

+Heat+Precip), and increased microbial response to CRP substrates sucrose and 

cellulose. In agreement with my second hypothesis, warming treatments with added 

moisture enhanced microbial biomass. Although this effect was only as measured by 

CFE, and warming only treatments did not exhibit reduced response due to water 

limitation. Also, I had predicted increased microbial response to recalcitrant substrates as 

a result of warming. I instead found increased response to one labile substrate (sucrose) 

and one recalcitrant substrate (cellulose) from warming treatments. Because I assayed 

microbial response to six labile substrates and three recalcitrant substrates, these results 

do not overwhelmingly suggest that warming treatments favored recalcitrant compounds 

over labile.   
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However, surprisingly, microbial community composition, soil extracellular 

enzyme activities, labile soil carbon, and seven out of nine catabolic substrates did not 

express significant treatment effects. Climate change effects on parameters such as 

enzyme activities and microbial lipid abundance have been overcome by year-to-year 

variation in other studies (Gutknecht et al., 2010; Gutknecht et al., 2012). As this study 

did not encompass multiple years, the effects of inter-annual variability remain unknown.  

It is possible seasonal variation at this temperate site would remain consistent across time 

or it may vary depending on yearly weather events.   

4.3 Interactive Effects of Season and Treatment 

My third hypothesis, that season would modify microbial response to climate 

treatments, was also largely unsupported by my data. The only parameter in this study 

that exhibited significant interactions between treatment and season was labile soil 

carbon, as measured by carbon mineralization assays. However, the only notable 

interactive effect was decreased labile soil carbon due to +Heat treatments but only in the 

winter. This interaction appeared relatively subtle, and could have resulted from variation 

within samples or precision of measurement associated with the technique.  

While not explicitly analyzed for treatment x season interactions, results from the 

seasonal ordinations of PLFA with environmental overlay variables suggested that 

treatments did have some interactive effect on microbial community structure and 

function. When the seasonal effect of PLFA abundance and environmental overlay 

variables were examined within climate change treatments, some of the links observed 

between microbial community structure and function were altered by absence or presence 
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of certain correlated environmental variables or lipid biomarkers which were not 

observed in the seasonal ordination of all samples.  

These results suggest that while no significant interaction between season and 

climate treatment was independently found in PLFA analysis, exoenzyme activities, or 

CRP, climate treatments may act subtly on each of these parameters to collectively 

influence the relationship between microbial community structure and function. This 

relationship merits more thorough exploration in future studies. 

4.4 Functional Redundancy and Resilience of the Soil Microbial Community 

Studies often utilize either extracellular enzyme activity or catabolic response 

profiles to assess changes in functional diversity or the capacity of the soil microbial 

community to degrade organic substrates for both microbial and plant utilization (Marx et 

al., 2001; Torsvik and Ovreas, 2002). It was surprising to find in this study no similarity 

in seasonal patterns of extracellular enzyme activity and catabolic response profiles, 

especially for enzymes and CRP substrates that should, intuitively, be related. For 

example, β-1,4, Glucosidase (BG) is known to release glucose residues from cellulose; β-

1,4-N-Acetyl-glucosaminidase (NAG) is a chitinase, and Peroxidase (Perox) is widely 

recognized as a lignolytic enzyme (Table 2.1). Therefore, one might expect that the 

ability of the microbial community to utilize the substrates cellulose, chitin, and lignin 

over the year would parallel the measured activity of the enzymes BG, NAG and Perox, 

respectively, presuming said enzymes were responsible in part for digestion of these 

substrates. However, similar seasonal patterns in utilization and enzyme activity were not 

observed. Waldrop et al. (2000) also found extracellular enzyme activities did not 

correlate well with results from substrate utilization profiles. However, Waldrop et al. 
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(2000) assayed heterotrophic substrate utilization colorimetrically using BIOLOG 

microplates (Garland and Mills, 1991), rather than measuring CO2 respiration response 

from incubation vessels (Degens and Harris, 1997) as I did in my study.   

Because extracellular enzymes are often assayed using microplates, it is more 

convenient in some cases to also utilize a microplate method to assess substrate 

utilization profiles, such as BIOLOG plates (Garland and Mills, 1991). BIOLOG plates 

have been shown to account for only a small portion of the soil microbial community 

responsible for degradation of organic material (Smalla et al., 1998; Torsvik and Ovreas, 

2002), while microplate methods for extracellular enzyme activities are thought to be a 

more useful indicator of functional changes in microbial communities, especially in 

relation to community composition (Waldrop et al., 2000; Torsvik and Ovreas, 2002). In 

addition, multiple studies have shown that unlike extracellular enzymes, substrate 

utilization results from BIOLOG plates often do not correlate well with PLFA results 

(Buyer and Drinkwater, 1997; Waldrop et al., 2000; Torsvik and Ovreas, 2002), but in 

this study, various extracellular enzymes and CRP substrates showed multiple 

correlations with seasonal PLFA ordination data across treatments. Because there are no 

known studies assessing both extracellular enzyme activity and substrate utilization using 

the same combination of microplate assays for enzyme activities and CO2 efflux for 

catabolic response techniques used in this study, I can only speculate as to why seasonal 

variation of extracellular enzyme activities and catabolic response profiles did not show 

parallels.   

My results suggest extracellular enzymes and catabolic response profiles 

accounted for separate fractions of the microbial communities’ ability to breakdown and 
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utilize related substrates, which varied independently of each other on a seasonal basis. 

This  indicates to me that this site exhibits a high degree of functional redundancy, i.e., 

multiple organisms are able to perform the same tasks in an ecosystem, contributing to 

the stability and resilience of the soil microbial community to perturbations, such as 

climate change may present (Brady and Weil, 2002). Soil microbial communities use 

functional redundancy to buffer biotic and abiotic stress and maintain ecosystem services, 

a concept becoming increasingly important in research dedicated to improving soil 

stability and ecosystem response to change (Griffiths and Philippot, 2012). 

Functional redundancy in the microbial community at this site may also be 

observed in the measured patterns of microbial utilization of cellulose and lignin.  

Despite significant seasonal effects on microbial utilization of cellulose and lignin, 

neither parameter was well correlated with any of the seasonal PLFA overlays; even 

though lignin exhibited relatively high catabolic responses for each season. This suggests 

soil microbes at this site possessed the capacity to utilize lignin and cellulose, and this 

capacity varied seasonally but was not strongly linked to any specific taxonomic group of 

microorganisms, as determined by PLFA. Multiple microorganisms may contribute to 

these functions at this site at different times in the year. 

The contribution of functional redundancy to the resilience of the soil microbial 

community at this site potentially explains the lack of response to climate treatments in 

this study. Resiliency is the ability of an ecosystem to resume relatively normal functions 

after a perturbation (Scheffer and Carpenter, 2003). In this study, I considered increases 

in heat and precipitation to be possible perturbations to the soil microbial community that 

may result from future climate change. With the exception of a slight increase in 
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microbial biomass carbon and increased microbial utilization of sucrose and cellulose 

additions, there were no effects of climate treatments on microbial community 

composition or function. The resistance, resiliency and functional redundancy of the soil 

microbial community was recently reviewed by Allison and Martiny (2008), who found 

broad microbial taxa are generally not immediately resilient to disturbance. Allison and 

Martiny (2008) also showed the average length of studies finding soil microbes to be 

resistant to change in temperature lasted up to 2 years, while studies finding soil microbes 

to be sensitive to changes in temperature lasted up to 8 years. As such, the timeframe of 

microbial response can vary greatly. Because climate treatments have been in place for 

almost three years at this site, it is possible that either a) the soil microbial community is 

very resilient and has already resumed normal composition and function; or b) the soil 

microbial community has resisted climate treatments thus far, and more dramatic changes 

to increased heat or precipitation may be seen if the study is continued.  Additional years 

of data would help answer these questions. 

4.5 Altered Relationships Between Microbial Community Structure and Function 

 Despite the overwhelming influence of seasonal variation on the soil microbial 

community in this study, the effect of climate change treatments raised some interesting 

questions about microbial community structure and function. The fact that the soil 

microbial community exhibited little response to increased heat and precipitation with 

respect to active microbial biomass, community structure, extracellular enzyme activities, 

or catabolic response profiles suggests the interactive effects of biotic and abiotic 

feedbacks at this site may enable soil microbes to withstand stresses induced by climate 

change. Apparent lack of correlation or similar seasonal patterns between extracellular 
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enzyme activity and catabolic response profiles, both of which influence the capacity of 

the soil microbial community to utilize nutrients and organic material, implies functional 

redundancy may be one of the ways soil microbes mitigate stress induced by climate 

treatments. In addition, changes in the relationship between certain exoenzymes, CRP 

substrates, and seasonal ordination of microbial lipids either examined as a whole or 

when divided by climate treatment, promotes the need for further research evaluating 

microbial community structure and function and the nature of their relationship in 

response to environmental stress.
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Chapter 5: Conclusions 

 This thesis assessed the seasonal soil microbial community structural and 

functional responses to increased temperature and precipitation in a Kentucky pasture 

ecosystem. In this study, seasonal variation was the primary driver of changes in the soil 

microbial community. Active microbial biomass was highest in the summer and lowest in 

the winter. Relative abundance of microbial lipid biomarkers across all samples indicated 

that the soil microbial community was dominated by a mixture of gram-negative and 

non-specific bacteria in the spring, gram-positive and non-specific bacteria in the 

summer, an overlapping mix of the previously mentioned bacterial groups in the fall, and 

a primarily gram-negative bacteria community in the winter. Activity of extracellular 

enzymes (β-1,4, Glucosidase, BG; β-1,4-N-Acetyl-glucosaminidase, NAG; Leucine 

amino peptidase, LAP; Acid phosphatase, PHOS; Phenol oxidase, Phenox; and 

Peroxidase, Perox) were generally highest in the spring or summer. Seasonal dynamics of 

catabolic response to substrates (glucose, sucrose, oxalic acid, citric acid, L-glycine, 

autolysed yeast, cellulose, lignin, and chitin) were highly variable and exhibited few 

generalities.  

Because seasonal dynamics of enzyme activities and catabolic response profiles 

were dissimilar, my data suggest that the soil microbial community of this site contains a 

high degree of functional redundancy, which allows soil microbes to utilize various 

nutrients and organic materials during times of stress. Because microbial response to 

seasonal variation largely overwhelmed treatment effects in this study, I conclude that the 

soil microbial community is quite resilient to climate change factors,  
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However, some changes in the soil microbial community due to climate 

treatments were observed, such as increased microbial biomass carbon and increased 

catabolic response to sucrose and cellulose due to warming treatments. In addition, 

examination of microbial lipid abundance across seasons for individual climate 

treatments yielded different functional relationships with community structure than when 

lipid abundance was examined by season alone. These results lead me to conclude that, 

given the varying timeframe of microbial responses in other studies, more pronounced 

effects could arise over time due to potential changes in carbon dynamics and substrate 

utilization. These changes could further affect the aboveground plant community through 

alterations in available soil carbon and nutrients. Also, future changes in climate could 

alter specific relationships between soil microbial community structure and function, 

such as between microbial taxonomic groups and the functional processes they regulate.  

More long-term, multifactor research is required to further investigate the 

relationship between microbial community structure and function and how the response 

to climate change may transform over time. This type of research will lead to more 

thorough understanding of ecological feedbacks in the soil microbial community and how 

they potentially affect both above and belowground ecosystem responses to change. 
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Appendix 1. Significance tests for total aboveground plant biomass (g m-2) produced and 
collected over the sampled seasons of this project and climate treatments. Bolding 
indicates statistical significance (P < 0.05). 

Effect  Aboveground plant biomass 
 DF 

n, d F P 
Season 2,11 13.2 0.0012 
Treatment 3,12 6.16 0.0089 
Treatment*Season  6,13 24.21 <0.0001 
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Appendix 2. Aboveground plant biomass for the various functional groups (g m-2; C3 
Grasses, C4 Grasses, Forbs, N-Fixers, and Dead) produced in 2011, collected during each 
seasonal harvest (A - Spring, May 2011; B - Summer, July 2011; C - Fall, October 2011). 
Column height within each panel represents total biomass for each treatment, and the 
shaded areas within each column represents the amount of each plant functional group 
comprising the total (g m-2). Although a significant  treatment*season interaction was 
found, for ease of interpretation, the main effect of season for total biomass is represented 
by capital letters between panels (P < 0.05). Within panels, the effect of treatment for 
total biomass is indicated by small letters (P < 0.05). 
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Appendix 3. FAMEs driving NMS ordination of seasonal effects for the Control plots 
(Figure 3.5 A, B). The most correlated FAMEs (r > 0.500) with each ordination axis are 
shown, as well as the most correlated environmental overlay variables (r > 0.400). The 
amount of variation explained by each axis (r2) is indicated. Positive r-values for each 
FAME and Overlay correlate with the right-most area of Axis 1 or the upper-most area of 
Axis 2. Negative r-values for each FAME and Overlay correlate with the left-most area 
of Axis 1 or the bottom-most area of Axis 2. For FAMEs, Classification indicates the 
microbial taxonomic group for which each FAME is used as a lipid biomarker, whether 
the environmental overlay variable used was an extracellular enzyme (exoenzyme), or the 
type of compound used as a substrate. 

NMS, Control  
Axis 1 (r2=0.22) Axis 2 (r2=0.70) 

      
FAME r-value Classification FAME r-value Classification 

a15 0.672 Gram-positive 
bacteria 16:1n7c 0.846 Gram-negative 

bacteria 

i15 0.607 Gram-positive 
bacteria 16:1n9c 0.813 Gram-negative 

bacteria 

i16 0.559 Gram-positive 
bacteria 16:1n5c1 0.803 Gram-negative 

bacteria 

18:1n9c -0.575 Fungi 18:1n7c 0.787 Gram-negative 
bacteria 

cy19 -0.676 Gram-negative 
bacteria a17 0.578 Gram-positive bacteria 

   11Me18:1 0.572 Gram-negative 
bacteria 

   18:1n5c 0.517 Gram-negative 
bacteria 

   cy19 -0.579 Gram-negative 
bacteria 

   a15 -0.599 Gram-positive bacteria 

   i15 -0.707 Gram-positive bacteria 

   i17 -0.765 Gram-positive bacteria 

   18:0 -0.814 Non-specific bacteria 

   16:0 -0.842 Non-specific bacteria 
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Appendix 3 (cont’d). FAMEs driving NMS ordination of seasonal effects for the Control 
plots (Figure 3.5 A, B). The most correlated FAMEs (r > 0.500) with each ordination axis 
are shown, as well as the most correlated environmental overlay variables (r > 0.400). 
The amount of variation explained by each axis (r2) is indicated. Positive r-values for 
each FAME and Overlay correlate with the right-most area of Axis 1 or the upper-most 
area of Axis 2. Negative r-values for each FAME and Overlay correlate with the left-
most area of Axis 1 or the bottom-most area of Axis 2. For FAMEs, Classification 
indicates the microbial taxonomic group for which each FAME is used as a lipid 
biomarker, whether the environmental overlay variable used was an extracellular enzyme 
(exoenzyme), or the type of compound used as a substrate. 

NMS, Control  
Axis 1 (r2=0.22) Axis 2 (r2=0.70) 

      

Overlay r-value Classification Overlay 
r-

value Classification 

Citric 
Acid3 

0.407 Carboxylic acid L-Glycine3 0.417 Amino acid 

LAP2 -0.476 Exoenzyme Glucose3 -0.536 Simple sugar 

NAG2 -0.588 Exoenzyme Perox2 -0.658 Exoenzyme 

Chitin3 -0.674 Recalcitrant Carbon PHOS2 -0.694 Exoenzyme 

   LAP2 -0.755 Exoenzyme 

   BG2 -0.757 Exoenzyme 
1Has also been used as a biomarker for arbuscular mycorrhizal fungi. 
2 Assayed extracellular enzymes, (BG = β-1, 4, Glucosidase; NAG = β-1, 4-N-Acetyl-
glucosaminidase; LAP = Leucine amino peptidase; PHOS = Acid phosphatase; Phenox = 
Phenol oxidase; and Perox = Peroxidase). 
3Substrate used in Catabolic Response Profiling.  
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Appendix 4. FAMEs driving NMS ordination of seasonal effects for +Heat plots (Figure 
3.5 C, D). The most correlated FAMEs (r > 0.500) with each ordination axis are shown, 
as well as the most correlated environmental overlay variables (r > 0.400). The amount of 
variation explained by each axis (r2) is indicated. Positive r-values for each FAME and 
Overlay correlate with the right-most area of Axis 1 or the upper-most area of Axis 2. 
Negative r-values for each FAME and Overlay correlate with the left-most area of Axis 1 
or the bottom-most area of Axis 2. For FAMEs, Classification indicates the microbial 
taxonomic group for which each FAME is used as a lipid biomarker, whether the 
environmental overlay variable used was an extracellular enzyme (exoenzyme), or the 
type of compound used as a substrate. 

NMS, +Heat  
Axis 1 (r2=0.33) Axis 2 (r2=0.62) 

      
FAME r-value Classification FAME r-value Classification 

i15 0.874 
Gram-positive 

bacteria 16:1n5c1  0.916 
Gram-negative 

bacteria 

i16 0.613 
Gram-positive 

bacteria 16:1n7c 0.900 
Gram-negative 

bacteria 

cy17 -0.535 
Gram-negative 

bacteria 16:1n9c 0.854 
Gram-negative 

bacteria 

i17:1n7 -0.806 
Desulfovibrio 
and anaerobes a15 0.573 Gram-positive bacteria 

18:1n7c -0.855 
Gram-negative 

bacteria cy17 -0.528 
Gram-negative 

bacteria 

   18:2n6c -0.572 Fungi 

   16:0 -0.714 Non-specific bacteria 

   18:0 -0.761 Non-specific bacteria 

   cy19 -0.946 
Gram-negative 

bacteria 
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Appendix 4 (cont’d). FAMEs driving NMS ordination of seasonal effects for +Heat 
plots (Figure 3.5 C, D). The most correlated FAMEs (r > 0.500) with each ordination axis 
are shown, as well as the most correlated environmental overlay variables (r > 0.400). 
The amount of variation explained by each axis (r2) is indicated. Positive r-values for 
each FAME and Overlay correlate with the right-most area of Axis 1 or the upper-most 
area of Axis 2. Negative r-values for each FAME and Overlay correlate with the left-
most area of Axis 1 or the bottom-most area of Axis 2. For FAMEs, Classification 
indicates the microbial taxonomic group for which each FAME is used as a lipid 
biomarker, whether the environmental overlay variable used was an extracellular enzyme 
(exoenzyme), or the type of compound used as a substrate. 

NMS, +Heat  
Axis 1 (r2=0.33) Axis 2 (r2=0.62) 

      
Overlay r-value Classification Overlay r-value Classification 

Perox2 0.622 Exoenzyme L-Glycine3 0.435 Amino acid 

NAG2 -0.463 Exoenzyme Chitin3 -0.589 
Recalcitrant 

Carbon 

Oxalic 
Acid3 -0.716 Carboxylic acid Glucose3 -0.669 Simple sugar 

   LAP2 -0.680 Exoenzyme 
1Has also been used as a biomarker for arbuscular mycorrhizal fungi. 
2 Assayed extracellular enzymes, (BG = β-1, 4, Glucosidase; NAG = β-1, 4-N-Acetyl-
glucosaminidase; LAP = Leucine amino peptidase; PHOS = Acid phosphatase; Phenox = 
Phenol oxidase; and Perox = Peroxidase). 
3Substrate used in Catabolic Response Profiling.  
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Appendix 5. FAMEs driving NMS ordination of seasonal effects for +Precip plots 
(Figure 3.5 E, F). The most correlated FAMEs (r > 0.500) with each ordination axis are 
shown, as well as the most correlated environmental overlay variables (r > 0.400). The 
amount of variation explained by each axis (r2) is indicated. Positive r-values for each 
FAME and Overlay correlate with the right-most area of Axis 1 or the upper-most area of 
Axis 2. Negative r-values for each FAME and Overlay correlate with the left-most area 
of Axis 1 or the bottom-most area of Axis 2. For FAMEs, Classification indicates the 
microbial taxonomic group for which each FAME is used as a lipid biomarker, whether 
the environmental overlay variable used was an extracellular enzyme (exoenzyme), or the 
type of compound used as a substrate. 

NMS, +Precip  
Axis 1 (r2=0.41) Axis 2 (r2=0.53) 

      

FAME r-value Classification FAME r-
value Classification 

i17 0.849 Gram-positive bacteria 18:0 0.796 Non-specific 
bacteria 

i16 0.793 Gram-positive bacteria cy19 0.790 Gram-negative 
bacteria 

16:0 0.788 Non-specific bacteria 18:1n5c 0.616 Gram-negative 
bacteria 

i15 0.601 Gram-positive bacteria 18:2n6c 0.537 Fungi 

cy19 0.546 Gram-negative bacteria i15 -0.588 Gram-positive 
bacteria 

18:0 0.509 Non-specific bacteria 16:1n7c -0.669 Gram-negative 
bacteria 

16:1n5c1 -0.562 Gram-negative bacteria a15 -0.682 Gram-positive 
bacteria 

i17:1n7 -0.579 Desulfovibrio and 
anaerobes 16:1n5c1 -0.733 Gram-negative 

bacteria 

16:1n9c -0.587 Gram-negative bacteria 16:1n9c -0.794 Gram-negative 
bacteria 

18:1n9c  -0.660 Fungi    

16:1n7c  -0.715 Gram-negative bacteria    

18:1n7c  -0.769 Gram-negative bacteria    
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Appendix 5 (cont’d). FAMEs driving NMS ordination of seasonal effects for +Precip 
plots (Figure 3.5 E, F). The most correlated FAMEs (r > 0.500) with each ordination axis 
are shown, as well as the most correlated environmental overlay variables (r > 0.400). 
The amount of variation explained by each axis (r2) is indicated. Positive r-values for 
each FAME and Overlay correlate with the right-most area of Axis 1 or the upper-most 
area of Axis 2. Negative r-values for each FAME and Overlay correlate with the left-
most area of Axis 1 or the bottom-most area of Axis 2. For FAMEs, Classification 
indicates the microbial taxonomic group for which each FAME is used as a lipid 
biomarker, whether the environmental overlay variable used was an extracellular enzyme 
(exoenzyme), or the type of compound used as a substrate. 
 

NMS, +Precip  
Axis 1 (r2=0.41) Axis 2 (r2=0.53) 

      
Overlay r-value Classification Overlay r-value Classification 

BG2 0.670 Exoenzyme Yeast3 -0.501 Biological 
substrate 

Oxalic 
Acid3 

0.641 Carboxylic acid Citric 
Acid3 

-0.633 Carboxylic acid 

PHOS2 0.604 Exoenzyme    

Glucose3 0.569 Simple sugar    

Perox2 0.556 Exoenzyme    

LAP2 0.536 Exoenzyme    

Yeast3 -0.420 Biological substrate    

L-Glycine3 -0.580 Amino acid    
 

1Has also been used as a biomarker for arbuscular mycorrhizal fungi. 
2 Assayed extracellular enzymes, (BG = β-1, 4, Glucosidase; NAG = β-1, 4-N-Acetyl-
glucosaminidase; LAP = Leucine amino peptidase; PHOS = Acid phosphatase; Phenox = 
Phenol oxidase; and Perox = Peroxidase). 
3Substrate used in Catabolic Response Profiling.  
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Appendix 6. FAMEs driving NMS ordination of seasonal effects for +Heat+Precip plots 
(Figure 3.5 G, H). The most correlated FAMEs (r > 0.500) with each ordination axis are 
shown, as well as the most correlated environmental overlay variables (r > 0.400). The 
amount of variation explained by each axis (r2) is indicated. Positive r-values for each 
FAME and Overlay correlate with the right-most area of Axis 1 or the upper-most area of 
Axis 2. Negative r-values for each FAME and Overlay correlate with the left-most area 
of Axis 1 or the bottom-most area of Axis 2. For FAMEs, Classification indicates the 
microbial taxonomic group for which each FAME is used as a lipid biomarker, whether 
the environmental overlay variable used was an extracellular enzyme (exoenzyme), or the 
type of compound used as a substrate. 
 

NMS, +Heat+Precip (Figure 3.5 G, H) 
Axis 1 (r2=0.32) Axis 2 (r2=0.58) 

      
FAME r-value Classification FAME r-value Classification 

i16 0.898 
Gram-positive 

bacteria 18:0 0.874 
Non-specific 

bacteria 

i15 0.808 
Gram-positive 

bacteria cy19 0.874 
Gram-negative 

bacteria 

i17 0.789 
Gram-positive 

bacteria 16:0 0.658 
Non-specific 

bacteria 

16:0 0.641 Non-specific bacteria i17 0.572 
Gram-positive 

bacteria 

a15 0.606 
Gram-positive 

bacteria a15 -0.560 
Gram-positive 

bacteria 

11Me18:1 0.532 
Gram-negative 

bacteria 16:1n5c1 -0.856 
Gram-negative 

bacteria 

a17 0.521 
Gram-positive 

bacteria 16:1n9c -0.876 
Gram-negative 

bacteria 

18:2n6c -0.631 Fungi 16:1n7c -0.898 
Gram-negative 

bacteria 

18:1n9c -0.855 Fungi    
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Appendix 6 (cont’d). FAMEs driving NMS ordination of seasonal effects for 
+Heat+Precip plots (Figure 3.5 G, H). The most correlated FAMEs (r > 0.500) with each 
ordination axis are shown, as well as the most correlated environmental overlay variables 
(r > 0.400). The amount of variation explained by each axis (r2) is indicated. Positive r-
values for each FAME and Overlay correlate with the right-most area of Axis 1 or the 
upper-most area of Axis 2. Negative r-values for each FAME and Overlay correlate with 
the left-most area of Axis 1 or the bottom-most area of Axis 2. For FAMEs, 
Classification indicates the microbial taxonomic group for which each FAME is used as a 
lipid biomarker, whether the environmental overlay variable used was an extracellular 
enzyme (exoenzyme), or the type of compound used as a substrate. 
 

NMS, +Heat+Precip (Figure 3.5 G, H) 
Axis 1 (r2=0.32) Axis 2 (r2=0.58) 

      
Overlay r-value Classification Overlay r-value Classification 

Perox2 0.603 Exoenzyme LAP2 0.685 Exoenzyme 

BG2 0.574 Exoenzyme Oxalic 
Acid3 

0.538 Carboxylic acid 

Phenox2 0.527 Exoenzyme Chitin3 0.485 Recalcitrant 
carbon 

Sucrose3 0.441 Simple sugar    

PHOS2 0.432 Exoenzyme    

Yeast3 -0.472 Biological substrate    

Glucose3 -0.521 Simple sugar    
 

1Has also been used as a biomarker for arbuscular mycorrhizal fungi. 
2 Assayed extracellular enzymes, (BG = β-1, 4, Glucosidase; NAG = β-1, 4-N-Acetyl-
glucosaminidase; LAP = Leucine amino peptidase; PHOS = Acid phosphatase; Phenox = 
Phenol oxidase; and Perox = Peroxidase). 
3Substrate used in Catabolic Response Profiling.  
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