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ABSTRACT OF THESIS 
 
 
 
 

STRANDED CORE TRANSFORMER LOSS ANALYSIS  
 
 
 
 

 We will present the approaches used to investigating the power loss for the stranded 
core transformers. One advantage of using stranded core is to reduce power loss or enhance 
transformer efficiency. One difficulty in the modeling of this type of transformer is that the 
core is not solid (there are small gaps between core wires due to circular cross section). A 
two dimensional finite element method with nodal basis function for magnetostatic field 
was developed to study the effects of the small gaps between core wires. The magnetic flux 
densities are compared for the uniform (solid) cores and the stranded cores for various 
permeability values. The effects of different air gap dimensions in stranded core to the 
magnitude of magnetic flux density were also discussed. The results of the two 
dimensional study were applied to modify the B-H curves in a 3D simulation with an 
equivalent simplified uniformed core transformer model via Ansoft Maxwell 3D. This is 
achieved by output the magnitude of magnetic flux density at fixed points of mesh center. 
The total core loss of a transformer was predicted by integration of the losses of all 
elements. 
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Chapter 1. Introduction  

1.1 Background  

The calculation of core loss has been considered as an important step in the designing of 

transformer. Power transformer core is generally made of material which has a very low 

iron loss. However, as the numbers of unites applied as so large, even a small loss can 

add up to significant amount. The iron loss is mainly caused by distortion, unequal 

distribution and rotating of magnetic fluxes in a core [1]. Many approaches have been 

studied to reduce iron loss. One of the widely used techniques is to build the core using 

sheet iron. Using thin sheets can significantly reduce the eddy current loss. Another new 

approach, which has been proposed by Busswell Energy LLC, is to use strand iron to 

build the cores. The fundamental benefit of using a magnetic iron core made of stranded 

iron in a utility transformer is the reduction in the transformer’s iron loss [2].  

The application of the finite element method (FEM) has brought a great advance in 

analytical techniques for power transformer for power loss analysis. The 3D finite 

element analysis has been well developed in the recent three decades to compute 

unknowns such as magnetic field, magnetostatic field and magnetic vector potential [2-6]. 

Lately, finite element method has been improved for both accuracy and efficiency. In the 

application of solving three-dimensional magnetostatics, the nodal scalar potential 

function is mixed with a face-edge formulation to obtain a more accurate result [7]. A 

transient edge-based vector formulation is utilized to compute the induced eddy-current 

losses in the rotor of a claw-pole alternator and the use of adaptive mesh optimization 

leads to a correct result [8]. Mesh quality can directly affect the accuracy of finite 

element analysis. A new mesh improvement system related to potential benefits and costs 

are investigated using a suite of electromagnetic benchmarks and mesh quality measures 
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theoretically linked to FEM accuracy [9]. The hybrid finite element method and boundary 

integral method is widely used for scattering and radiation problems while this method 

has a very slow convergence rate since the finite element matrix is ill-conditioned. The 

improvement of this method including the adoption of multi-frontal method makes the 

hybrid method converge very fast and still keeps accuracy [10].  

In this thesis, our goal is to predict the iron loss of a three winding stranded core 

transformer with complex geometry. A commercial software Ansoft Maxwell 3D is used 

to compute magnetostatic field in three dimension models. However, the 3D modeling 

through Maxwell 3D can only model cores of transformer with uniformed materials. In 

this case, the B-H curve of stranded core material, which is provided by the manufacturer, 

need to be modified for the uniform core via two-dimensional finite element method.            

In this two-dimensional finite element approach, the first order triangle elements 

were used with a nodal basis function. The basic field equation is vector Poisson’s 

equation [11, 12]. We need to solve the magnetic vector potential in Poisson’s equation 

by dividing the field region into small elements and approximate the unknown by linear 

equation in every element. The Dirichlet boundary condition is imposed on the mesh 

terminal. By the definition of magnetic vector potential, the magnetic flux density can be 

solved to modify the B-H curve for uniform core.   

    Maxwell 3D is an electromagnetic field simulation software used for the design and 

analysis of 3D structures. In this thesis, we used Maxwell 3D to analysis and display field 

distribution of 3D transformer model and output result data at selected points. The 

pre-processing work included core volume discretization and center points of each 

elements output. The post processing work is to integrate the core loss per unit volume 

which determined by the magnitude of B field.  
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 1.2 Thesis structure  

In this thesis, we presented a method to calculate the core loss of a three phase 

transformer. The main procedure of this method is as following:  

1) A finite element method using nodal basis function is derived and validated for 2D 

magnetostatic field.  

2) B-H curve for stranded core transformer modified for uniform core. 

3) Using Ansoft Maxwell3D to simulate the 3D simplified transformer model. Find the 

magnetic flux density distribution in order to calculate the core loss.  
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Chapter 2. B-H curve Modification via Finite Element Method  

In the process of 3D modeling using Maxwell 3D, uniform core is used to substitute 

stranded core. Therefore, the B-H curve which represents the material characteristics 

needs to be modified. In this chapter, a two-dimensional finite element approach is used 

to modify the B-H curve for uniform core. Equation Section 2 

2.1 Theory and formulations  

2.1.1 Govern equation and weak form  

The 2D magnetostatic problem has been formed in terms of the magnetic vector potential 

A, which defined as:  

 A B∇× =       (2.1) 

 0A∇⋅ =   (2.2) 

It is assumed that the excitation which is independent of the variable . For 

this excitation, the vector potential 

zJ J z= z

A  has  component only. The govern vector 

Poisson equation for 

ẑ

A  can be written as:  

 0
1

z
r

zA Jμ
μ

⎛ ⎞
∇× ∇× =⎜ ⎟

⎝ ⎠
 (2.3) 

Therefore, the magnetic flux density can be calculated from  [11, 12]. In 

the above, 

zB = ∇× A

rμ  is the relative permeability which is a function of position.  

Introducing a test function a
zA , we can derive the weak form of vector Poisson 

equation as,  
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 ( ) 0
1, a a

z z z z z
rV

F A A A A J dVμ
μ

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪= ⋅ ∇× ∇× −⎨ ⎬⎢ ⎥⎜ ⎟
⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

∫  (2.4) 

Using vector identity ( )A B A B B A⋅∇× = −∇ ⋅ × + ⋅∇× , Equation (2.4) can be 

simplified in a 2D case [11],  

 ( ) ( )0
1 1 ˆ, a a a a

z z z z z z z z
r rV V

F A A A A dV A J dV A A ndlμ
μ μ Γ

= ∇× ⋅∇× − ⋅ − × ∇× ⋅∫ ∫ ∫  (2.5) 

where  denotes the unit vector normal to n̂ Γ . 

Equation (2.5) is the weak form of 2D vector Poisson equation.  

2.1.2 Triangular elements  

Before the derivation of finite element analysis for a 2D magnetostatic problem, a useful 

area coordinates (  is presented below.  )1 2 3, ,L L L

A convenient set of coordinates ( )1 2 3, ,L L L  for a triangle ( )1,2,3 in Figure 2.1 is 

defined by the following linear equations in Cartesian system:  

 
1 1 2 2 3 3

1 1 2 2 3 3

1 2 31

x L x L x L x
y L y L y L y

L L L

= + +⎧
⎪ = + +⎨
⎪ = + +⎩

 (2.6)               

Every set of  corresponds to a unique set of Cartesian coordinates [13].  ( 1 2 3, ,L L L )

Solving Equation (2.6) for x and y, we have                                                       

 

1 1 1
1

2 2 2
2

3 3 3
3

2

2

2

a b x c yL

a b x c yL

a b x c yL

+ +⎧ =⎪ Δ⎪
+ +⎪ =⎨ Δ⎪
+ +⎪ =⎪ Δ⎩

 (2.7) 

where,  
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1 1

2 2

3 3

1
1 det 1
2

1

x y
x y
x y

Δ = = area of trangle123 

and                                                 (2.8) 
1 2 3 3

1 2 3

1 3 2

a x y x y
b y y
c x x

= −⎧
⎪ = −⎨
⎪ = −⎩

2

1

2

  (2.9) 
2 3 1 3

2 3 1

2 1 3

a x y y x
b y y
c x x

= −⎧
⎪ = −⎨
⎪ = −⎩

  (2.10) 
3 1 2 1

3 1 2

3 2 1

a x y y x
b y y
c x x

= −⎧
⎪ = −⎨
⎪ = −⎩

Based on the above definition, we observe that when point P on edge 23, 1 0L = ; if it 

is on vertex 1, then . 1 1L =

When point P on edge 13, 2 0L = ; if it is on vertex 2, then . 2 1L =

When point P on edge 12, 3 0L = ; if it is on vertex 3, then . 3 1L =

The major advantage of triangular elements is that they can be used in problems 

with irregular geometries. In finite element procedure, triangular mesh is widely adopted 

and area coordinates are used to represent both linear and nonlinear local functions.  
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Edge 1 

Edge 3 

x

y 

 1 

( )1 1,x y
2 

2 2( , )x y  

3 

3 3( , )x y  

Edge 2 ( )1 2 3, ,P L L L

 

Figure 2.1.  Parameters of a typical triangle 
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2.1.3 Linear interpolation function of magnetic potential  

In a triangular element, the magnetic potential component at any point can be 

approximated by the linear interpolation function defined at every vertex.  

( , )zA x y

In the triangle of Figure 2.1, the magnetic potential can be approximated 

as:  

( , )zA x y

 ( , )A x y a bx cy= + +  (2.11) 

If the potential has values of ,  and  at the vertices 1, 2 and 3 respectively, 

then we apply Equation 

1A 2A 3A

(2.11) to the three vertices to obtain, 

  (2.12) 
1 1

2 2

3 3

A a bx cy
A a bx cy
A a bx cy

= + +⎧
⎪ = + +⎨
⎪ = + +⎩

1

2

3

This will allow us to solve for the expansion coefficients ( ), ,a b c . The results are 

listed as follows,  

 

( )

( )

( )

1 1 2 2 3 3

1 1 2 2 3 3

1 1 2 2 3 3

1
2
1

2
1

2

a a A a A a

b b A b A b A

c c A c A c A

⎧ = + +⎪ Δ⎪
⎪ = + +⎨ Δ⎪
⎪ = + +⎪ Δ⎩

A

 (2.13) 

Pluging Equation (2.13) in Equation (2.11), we get, 

 ( ) (
3

1

1,
2 i i i

i
A x y a b x c y A

=

= + +
Δ∑ ) i  (2.14) 

In terms of area coordinates, Equation (2.14) becomes   

  (2.15) 
3

1
( , ) i i

i
A x y L A

=

=∑
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Thus, we obtained the linear representation of the unknown potential using its values 

at the vertices of triangles. 

 

2.1.4 Local element calculation  

From Equation (2.15), nodal basis expansion in each element can be expected in such a 

form:  

  (2.16) ( ) ( )
3 3

1 1

ˆ, and ,e ae
z i i z j

i j

A C L x y z A L x y
= =

= =∑ ∑ ẑ

where is the unknown coefficient which needs to be determined.  iC

Now, we discretize Equation (2.5) on each triangle. The triangle index “e” is ignored 

for some quantities for simplicity.  

Define 

 ( )( ) ( )( )ˆ1 ˆ, ,ij j i
rV

S L x y z L x y z dV
μ

= ∇× ⋅ ∇×∫  (2.17) 

 ( ) ˆ,j j z
V

B L x y z J dV= ⋅∫  (2.18) 

 ( ) ( )(1 ˆˆ, ,ij j i
r

L x y z L x y z ndl
μΓ

Γ = × ∇× ⋅∫ )ˆ  (2.19) 

where  denotes the unit vector normal to n̂ Γ . 

Then, function can be expanded in local element as  ( ,e ae
z zF A A )

) ( ) (
3 3

0
1 1

,e ae
z z i ij j i ij

i j

F A A C S B Cμ
= =

= − − Γ∑∑  (2.20) 

In the following part, we will discuss each matrix respectively.  

1)  matrix calculation  S

Using some vector identities, can be simplified as ijS
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( )( ) ( )( )1 ˆ ˆ, ,

1 ˆ ˆ ˆ ˆ

1

ij j i
rV

j j i i
rV

j i i j
rV

S L x y z L x y z dV

L x L y L x L y dV
y x y x

L L L L dV
y y x x

μ

μ

μ

= ∇× ⋅ ∇×

⎛ ⎞ ⎛∂ ∂ ∂ ∂
= − ⋅ −⎜ ⎟ ⎜∂ ∂ ∂ ∂⎝ ⎠ ⎝

⎛ ⎞∂ ∂ ∂ ∂
= +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

∫

∫

∫

⎞
⎟
⎠

 (2.21) 

By the definition of area coordinates, the differential operation can be calculated as 

1
2 2

i i i
i i

a b x c yL c
y y

+ +∂ ∂
= =

∂ ∂ Δ Δ
  and  1

2 2
i i i

i i
a b x c yL b

x x
+ +∂ ∂

= =
∂ ∂ Δ Δ

 

In the same way, we have,  

1
2j jL

y
c∂

=
∂ Δ

 and 1
2j jL b

x
∂

=
∂ Δ

 

Imposing the results in equation (2.21),  

2

2 1

1 1

1 20 0

1 1 1 1 1
2 2 2 2

1 1 1 1 1
2 2 2 2

ij i j i j
rV

L

i j i jL L
r

S c c b b dV

c c b b gdL dL

μ

μ
−

= =

⎛ ⎞= +⎜ ⎟Δ Δ Δ Δ⎝ ⎠

⎛ ⎞= +⎜ ⎟Δ Δ Δ Δ⎝ ⎠

∫

∫ ∫
 

where 2g = Δ , and  is the area of the triangle  Δ

Then,  

 1 1 1
4 4ij i j i j

r

S c c
μ

⎛= +⎜ Δ Δ⎝ ⎠
b b ⎞

⎟  (2.22) 

2) B  matrix calculation 

Similarly, the result of B  matrix calculation can be written as  

 

( )

2

2 1

1 1

1 20 0

ˆ,

1
6 3

j j z j
V V

L

jL L

B L x y z J dV J L dV

J L gdL dL

J g J

−

= =

= ⋅ =

=

Δ
= =

∫ ∫

∫ ∫  (2.23) 

In the above,  is the excitation current at the center of the triangles. J
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3)  matrix calculation  Γ

By definition,  

( ) ( )( )1 ˆˆ ˆ, ,i ij j i i
r

C L x y z C L x y z ndl
μΓ

Γ = × ∇× ⋅∫  

Using vector identities,  and ( )ab a b b a∇× = ∇× − ×∇ ( ) ( ) ( )a b c a c b a b c× × = ⋅ − ⋅  

we have,  

 
( ) ( )i i i i i i

i i

C L z C L z z C L

C L z

∇× = ∇× − ×∇

= ∇ ×
 (2.24) 

Thus, 

 

1 ˆˆ ˆ( )

1 ˆˆ ˆ ˆ( ) ( )

1 ˆ

i ij j i i
r

j i i i i i
r

j i i
r

C L z C L z ndl

L z z C L L z C L ndl

L C L ndl

μ

μ

μ

Γ

Γ

Γ

Γ = × ∇ × ⋅

⎡ ⎤= ⋅ ∇ − ⋅ ∇⎣

= ∇ ⋅

∫

∫

∫

⋅⎦  (2.25) 

In the above, we have applied the fact the L∇  is in x-y plane where . ˆ 0z L⋅∇ =

For every triangular mesh,  

 
3

1

1 e
z

i ij j
i r

AC L
nμ= Γ

∂
Γ =

∂∑ ∫ dl  (2.26) 

An example is given in Figure 2.2. Two adjacent triangular elements were used for 

illustration. 

In triangle 1,  

 
node2 node3 node113

1
1 node1 node2 node3

1 e
z

i ij j j je
i r

AC L dl L dl L dl
nμ=

⎛ ⎞∂
Γ = + +⎜ ⎟∂ ⎝ ⎠

∑ ∫ ∫ ∫  (2.27) 

In triangle 2,  

 
node4 node2 node323

2
1 node2 node3 node4

1 e
z

i ij j je
i r

AC L dl L dl L dl
nμ=

⎛ ⎞∂
Γ = + +⎜ ⎟∂ ⎝ ⎠

∑ ∫ ∫ ∫ j  (2.28) 
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For two adjacent triangle mesh which share a same edge, at the interface, the 

magnetic potential satisfies [12] 

1e
zA A= 2e

z  and 
1 2

1 2

1 1e e
z z

e e
r r

A A
n nμ μ

∂ ∂
=

∂ ∂
. 

Thus, the middle terms of the right-hand side in Equation (2.27) and Equation (2.28) 

cancelled. Therefore,  matrix can be cancelled at all interior edges. We will discuss the 

outer boundary condition later.   

Γ

4) Magnetic flux density calculation  

From Equation (2.1), B can be expanded in local element as,  

 

( )

( )

3

1

3

1

3

1

ˆ

ˆ

1 ˆ ˆ
2

e
i i

i

i i i
i

i i i
i

B C L z

C L x L y
y x

C c x b y

=

=

=

= ∇×

⎛ ∂ ∂
= −⎜ ∂ ∂⎝ ⎠

= −
Δ

∑

∑

∑

ˆ ⎞⎟  (2.29) 

The weak form for local element Equation (2.20) can be simplified as:  

( ) ( )
3 3

0 0
1 1

,e ae
z z i ij j lem lem lem

i j
F A A C S B C S Bμ μ

= =

= − = −∑∑  

To minimize the equation, we set 0F = . This leads to . 1
0lem lem lemC B Sμ −=
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Figure 2.2.  Example to illustrate the integration on the interior boundary 
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2.1.5 Boundary Condition  

There are several absorbing boundary conditions to be applied for mesh truncation. When 

the boundary is far enough to the transformer model, the Dirichlet Boundary Condition, 

 ( ), 0A x y =  (2.30) 

on the outer boundary can yield an accurate solution.  
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2.2 Validation of finite element method  

2.2.1 Ampere’s circuital law  

Ampere’s circuital law states that the line integral of H about any closed path is exactly 

equal to the direct current enclosed by that path [14], 

 H dL I⋅ =∫  (2.31) 

The magnetic flux density is related to H by 

 0 rB μ μ= Η  (2.32) 

In the govern vector Poisson Equation 0
1

z zJ
r

A μ
μ

⎛ ⎞
∇× ∇× =⎜ ⎟

⎝ ⎠
zJ, denotes the electric 

current density with the unit . If 2A/m zJ is uniformly distributed, the total current I  

can be calculated from , where zJ ⋅Δ Δ  is the area containing zJ .  

We will test the FEM program with three test cases and compare the result with the exact 

H value computed by Ampere’s circuital law.  

2.2.2 Test case 1  

The first case is a conductor of circular cross section with a radius which has a 

relative permeability

0.1ma =

1rμ = . A current density  is imposed on it. The 

background mesh is terminated at a circle of radius

21A/mJ =

1.2mg = . The geometry is shown in 

Figure 2.3.  

The exact H can be calculated as  

 
2

,
2 2
J r JH

r
π π
π

,r a= = <  (2.33) 
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2

,
2 2
J a J aH

r r
π π
π

,r a= = ≥  (2.34) 

Using the finite element program, H is calculated at fixed angles of , 

respectively. Figure 2.4 is the comparison of results of FEM and the exact H value. 

Figure 2.5 and Figure 2.6 show the mesh plot [15]. The figures show that the results 

calculated by FEM agree well with the exact results.  

0 ,45 and 90
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Figure 2.3.  Case 1 geometric model 
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Figure 2.4. Comparison between H value calculated via FEM and exact result for Case 1 
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Figure 2.5.  Mesh plot for Case 1 
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Figure 2.6.  Detail mesh plot of Case 1 
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2.2.3 Test case 2  

The second case is a circle cross section of a conductor with a radius which has 

a relative permeability

0.1a = m

1rμ = . A current density  is imposed on it. A material 

which has a relative permeability

21A/mJ =

900rμ = surrounds the source with a radius 

.The background is filled of air with a radius 0.2mb = 1mg = which has a relative 

permeability 1rμ = . The geometry is shown in Figure 2.7.  

The exact H can be calculated in the same way as in case 1.  

The finite element program calculated H at fixed angles of 0  

respectively. Figure 2.8 is the comparison of results of FEM and the exact H value.  

,45 and 90

Figure 2.9 and Figure 2.10 show the mesh plot. 

The figures show that the results calculated by FEM agree well with the exact results  
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Figure 2.7.  Geometric model of Case 2 
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Figure 2.8. Comparison between H value calculated via FEM and exact H value in Case 2 
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Figure 2.9.  Mesh plot for Case 2 
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Figure 2.10.  Detailed mesh plot for Case 2 
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2.2.4 Test case 3  

The third case is a ring cross section of a conductor with an inner radius and 

outer radius which has a relative permeability

0.1ma =

0.2mb = 1rμ = . A current density 

 is imposed on it. A material which has a relative permeability 21A/mJ = 900rμ =  

surrounds the source with a radius 0.24mc = .The background is filled of air with a 

radius which has a relative permeability1.2mg = 1rμ = . The geometry is shown in 

Figure 2.11.  

The exact H can be calculated from 

 0, ,H r a= <  (2.35) 

 
( ) ( )2 2 2 2

,
2 2

r a J r a J
H

r r
π

π
− −

= = ≤ ,a r b<  (2.36) 

 
( ) ( )2 2 2 2

,
2 2

b a J b a J
H

r r
π

π
− −

= = ,r b≥  (2.37) 

The finite element program calculated H at fixed angles of 0  

respectively. Figure 2.12 is the comparison of results of FEM and the exact H value. 

Figure 2.13 and Figure 2.14 show the mesh plot.  

,45 and 90

From Figure 2.12, we can see that the results calculated via FEM match well with 

the exact results.  

Through testing three cases with regular geometry which have exact results, the 

algorithm and program of this 2D finite element method are demonstrated accurate to 

solve magnetostatic field. In the next section, this method will be applied on two models 

with different transformer core structures.   
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Figure 2.11.  Geometric model of Case 3 
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Figure 2.12.  Comparison between H value calculated via FEM and exact H value in 

Case 3 
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Figure 2.13.  Mesh plot for Case 3 
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Figure 2.14.  Detailed mesh plot for Case 3 
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2.3 B-H curve Modification 

In order to predict accurate core loss for a transformer, a simple but accurate transformer 

model including non-linear B-H characteristics, external exciting circuit, and core loss 

per pound, must be available. In our case, the stranded core model is hard to model and 

simulate by software such as Maxwell 3D. Then, an equivalent but simple model is 

necessary to build. In the following part, transformer core with uniform distributed 

material will replace the stranded core in the simulation of core loss analysis. For an 

accurate result, the B-H curve needs to be modified for a uniform core transformer.  

2.3.1 B field distribution in both stranded core and uniform core models 

The stranded core mesh plot is shown in Figure 2.15. The source area in the upper part of 

the model is imposed with a current density of  while the other source area 

in the lower part is imposed with a current density of . The material 

between source areas denotes the stranded core. The small gaps between core sections 

and whole background are filled with air.  

2
1 1A/mJ =

2
2 1 A/mJ = −

Figure 2.16 is the mesh plot for the simplified uniform core model. The source and 

background are the same as the stranded core model. The material of core between source 

areas is uniform distributed as shown in detailed mesh plot.  

We start with a 100rμ =  imposed on both the stranded core and uniform core 

elements. Figure 2.17 and Figure 2.18 show the result of B field distribution in a patch 

plot view in the center core area.  
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(a).  Mesh plot for the stranded core model 
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(b).  Detailed mesh plot for stranded core model 

Figure 2.15.  Mesh plot and detailed mesh plot for the stranded core model 
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(a).  Mesh plot for the uniform core model 
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(b).  Detailed mesh plot for the uniform core model 

Figure 2.16.  Mesh plot and detailed mesh plot for the uniform core model 
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Figure 2.17.  B field distribution for stranded core model 

 
Figure 2.18.  B field distribution for uniform core model 

28 



 

2.3.2 B-H curve modification  

Table 2.1 shows the B-H curve supplied by manufacturers which obtained from 

measuring the stranded core transformer. Since the model has been simplified as a 

uniform distributed core transformer, the original B-H curve is no longer applicable to the 

new model. We need to modify the curve based on the results of B field calculation via 

finite element method.  

Same mesh was applied to the model of stranded core and the model of uniform core. 

We calculate the error of B when relative permeability is fixed for the mesh elements in 

the core area of stranded core model using  

 1

N

ui si
i

error

B B
B

N
=

−
=
∑

 (2.38) 

where denotes the total number of elements in the core area of stranded core. N uiB  

and siB  represent the magnetic flux density of uniform core and the magnetic flux 

density of stranded core in the i th−  element respectively.  

Based on Equation (2.38), we calculate the error of B between stranded core and 

uniform core when relative permeability changes. Figure 2.19, Figure 2.20 and Figure 

2.21 respectively show that when the relative permeability of stranded core is 150, 300 

and 1000, the error of B between stranded core and uniform core. The test results are in 

Table 2.2, Table 2.3 and Table 2.4 respectively.  

Then, we calculate B average for both stranded core and uniform core model using  

 1

1

N

i i
i

avg N

i
i

B
B =

=

⋅Δ
=

Δ

∑

∑
 (2.39)    
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where denotes the total number of elements in the core area, N iB and represent the 

magnetic flux density and area of the 

iΔ

i th−  element respectively.  

We change the value of rμ  for stranded core model and recalculate avgB . Table 2.5 

lists the test values of rμ and the corresponding avgB  for the stranded core.  

In the same way, Table 2.5 is the test values rμ and the corresponding avgB  for the 

uniform core.  

The avgB - rμ curves for stranded core model and uniformed core model are shown 

in Figure 2.22. For the purpose of transformer design, we also test rμ and the 

corresponding avgB  for stranded core with a smaller gap and uniform core in the same 

mesh discretization.. We can see that avgB  is a fixed value when rμ going to infinite. 

We will explain this phenomenon by introducing the generation of static magnetic fields 

[16, 17].  

The basic laws of magnetostatics are     

 0B∇⋅ =  (2.40) 

 H J∇× =  (2.41) 

Considering a surface  which enclosed by a path , we can operate surface 

integral of Equation 

S C

(2.41) over .  S

 
s s

Hds Jds∇× =∫ ∫  (2.42) 

By applying Stokes’ theorem to Equation (2.42), we have  

 
c s

Hdl Jds I= =∫ ∫  (2.43) 

Equation (2.43) often states as Ampere’s circuit law.  

Apply Equation (2.43) to our 2D core model, we can get,  

 0 0 1 1

0 0

*
r

B l B l J area
μ μ μ

+ =  (2.44) 
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where 0B denotes the magnetic flux density in the air and coil. 1B  denotes the magnetic 

flux density in core.  is the path length in the air and coil.  is the path length in the 

core.  

0l 1l

If the relative permeability is infinite, Equation (2.44) becomes  

 0 0

0

*areaB l J
μ

=  (2.45) 

Thus, avgB  is a fixed value.  

Provided with the test data, the B-H curve can be calculated through algorithm 

involving Fourier series and finite element analysis iteration [18]. The initial value of the 

iteration is fixed on the B value when relative permeability goes infinitely. The difference 

of  between stranded core and uniform core is
r

Bμ =∞
102.7065 10−× . When the gap size 

reduces to 5
6

 of the original gap size, the difference of 
r

Bμ =∞  between stranded core 

and uniform core reduces to 101.8800 10−×  as we expected. In our modeling, based on the 

original B-H curve for stranded core transformer, we can adjust the original B-H curve 

proportional to the values of avgB when rμ  is infinite. Figure 2.24 shows the original 

B-H curve for stranded core transformer and the modified B-H curve for uniform core 

model.  

The next chapter shows the Maxwell 3D simulation using the modified B-H curve 

and the results of iron loss prediction.  
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Figure 2.19.  B error between stranded core with rμ =150 and uniform core 
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Figure 2.20.  B error between stranded core with rμ =300 and uniform core 
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Figure 2.21.  B error between stranded core with rμ =1000 and uniform core 
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Figure 2.22.  Tested B- rμ  data for stranded core and uniform core  
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Figure 2.23.  Tested B- rμ  data for stranded core and uniform core with a smaller gap 
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Figure 2.24.  Original B-H Curve for stranded core transformer and Modified B-H 

Curve for uniform core transformer 
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( )B T  ( )/H A m  
0 0

r
B
H

μμ
μ μ

= =  

0.5000 11.5 34599 

0.6000 13.1 36448 

0.7000 14.7 37894 

0.8000 16 39789 

0.9000 17.1 41883 

1.0000 18.3 43485 

1.1000 19.6 44661 

1.2000 21 45473 

1.3000 22 47023 

1.4000 24.1 46228 

1.5000 27.9 42784 

1.6000 33 38583 

1.6500 39 33667 

1.7000 49 27609 

1.7500 65 21425 

1.8000 110 13022 

1.8500 220 6692 

1.9000 500 3024 

1.9500 1100 1411 

2.0000 4500 354 

Table 2.1.  Original B-H data for stranded core 
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Relative permeability of uniform core 25 50 100 150 200 

B error ( ) 910−× 1.1823 1.2672 1.3118 1.3271 1.3348 

Table 2.2.  B error between stranded core with rμ =150 and uniform core 

 

Relative permeability 

of uniform core 
25 50 100 150 200 250 300 

B error ( ) 910−× 1.1710 1.2559 1.3005 1.3158 1.3235 1.3281 1.3312

Table 2.3.  B error between stranded core with rμ =300 and uniform core 

 

rμ  50 100 150 200 300 400 500 750 1000 

B error 

( ) 910−×
1.2479 1.2926 1.3078 1.3155 1.3232 1.3271 1.3295 1.3326 1.3341

Table 2.4.  B error between stranded core with rμ =1000 and uniform core 
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( )avgB T 910−×  rμ  

2.7098 25 

2.7731 50 

2.806 100 

2.8172 150 

2.8229 200 

2.8262 250 

2.8285 300 

2.8313 400 

2.8331 500 

2.8353 750 

2.8365 1000 

2.8376 1500 

2.8388 3000 

Table 2.5.  Tested B- rμ  data for stranded core 
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( )avgB T 910−×  rμ  

2.9341 25 

3.019 50 

3.0636 100 

3.0789 150 

3.0866 200 

3.0912 250 

3.0943 300 

3.0982 400 

3.1005 500 

3.1036 750 

3.1052 1000 

3.1069 1500 

3.1094 3000 

Table 2.6.  Tested B- rμ  data for uniform core  
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Chapter 3. Ansoft Maxwell 3D Modeling  

In this chapter, we will calculate the iron loss of a three winding transformer in a 3D 

model. The manufacturer provides measured data which include the dimensions of 

transformer, density of core materials, iron loss per pound in different magnetic flux 

density at frequency of 60 Hz, and B-H curve for core material. In the simulation of 

Ansoft Maxwell 3D, it is hard to model the stranded core and the software will consume 

lots of time to compute fields in complex geometry. Therefore, a uniform distributed core 

is a good choice of substitute for stranded core. We have modified B-H curve which is the 

main property for a core material.  

The original geometry is very complex which will be described in section 3.2. For 

computational convenience, the model can be simplified as an equivalent model under 

those two conditions: the equal of core volume and the equal of mean length per turn. The 

next step is to simulate the simplified model in Maxwell 3D and output data of B field. 

Although the software can generate 3D mesh automatically, the mesh data can not be 

obtained. In that way, we need to discretize the core space and compute the center of 

every mesh element by program. Maxwell 3D can output field value on fixed points. 

Then, the given B-power loss per pound data is obtained by interpolation. According to B 

value at every mesh center, a corresponding power loss per pound value can be found. By 

assembling the volume and power loss per pound at every point, the iron loss of 

transformer can be achieved.     
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3.1 Introduction to Ansoft Maxwell 3D  

Maxwell 3D is a software for the simulation of electromagnetic fields which can be used 

to predict the performance of electromagnetic and electromechanical component designs 

in a virtual environment. It includes 4 solver modules: Transient, AC Magnetic, DC 

Magnetic and electric field. They are designed to solve problems in both time and 

frequency domains. Each model uses 3D Finite Elements and automatic adaptive 

meshing techniques to compute the electrical/electromagnetic behavior of low-frequency 

components. Maxwell 3D can solve for electromagnetic-field parameters such as force, 

torque, capacitance, inductance, resistance and impedance as well as generate state-space 

model, visualize 3D electromagnetic fields, and optimize design performance [19].  

In this chapter, we need to use this software to solve field for the 3D simplified 

transformer model and output the magnetic flux density at selected points in core material. 

Equation Section 3 
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3.2 Simplified three winding transformer model  

The geometry and dimensions of original transformer model is shown in Figure 3.1. The 

inner winding and outer winding are both low voltage windings. The middle winding is 

high voltage winding. Outside the three concentric windings are eight identical pieces of 

core.    

Our goal is to output the magnitude of B in the center of every mesh element and the 

corresponding volume of the mesh element. The geometry of original eight-piece 

transformer is hard to operate and will involves many additional works. Therefore, an 

equivalent simplified transformer model is constructed and analyzed first.  

The conditions of equivalent for two transformers are stated as: the equal of core 

volume and the equal of mean length per turn. Based on these two conditions, we can 

build a simplified transformer model shown in Figure 3.2.  
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(a).  Geometry of original eight-piece core transformer 
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(b).  Dimensions of eight-piece core transformer (top view) 
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(c).  Dimensions of eight-piece core transformer (side view) 

Figure 3.1.  Geometry and dimensions of eight-piece core transformer 
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Figure 3.2.  Simplified transformer model  
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3.3 General formulation of transformer loss  

The total loss of transformer is mainly made of two components: copper loss (winding) 

and core loss. The core loss is determined by the volume integration of the core loss per 

unit volume,  

 , ,
1

( ) ( )
N

core v T v T i i
iV

P p B dV p B
=

V= =∑∫ Δ  (3.1) 

where  is the total number of mesh elements of the core, N iB  is the flux density at the 

center of the i-th element,  is the volume of the i-th element.  iVΔ

For a uniform flux density distribution (the same value over the entire core region), 

the total core loss is the loss per unit volume multiply the volume of the core. If the core’s 

mass density is ρ , the estimated loss per pound (for core) will be 

 ( )
2

2 12
2lb c hyst p p eddy pP H K B B K Bπ

ω ω
ρ

⎡
= + +⎢
⎣ ⎦

⎤
⎥  (3.2) 

The coefficient  may be determined quite accurately for laminate iron sheet and 

strands.  Let 

eddyK

Feσ  be the conductivity of the iron, then 

For laminate iron sheet with sheet thickness ,   a

 2
Fe( ) 1eddyK aσ= 2  (3.3) 

For strands of circular cross section of diameter ,    d

 2
Fe( ) 32eddyK dσ=  (3.4) 

From Equation (3.3) and Equation (3.4), we can see the coefficient  is reduced 

which makes a notable reduction in the iron loss when stranded core material is used. 

eddyK
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3.4 Maxwell 3D simulation and core loss calculation  

In Maxwell 3D project interface, we draw the simplified model in the region and input 

data of B-H curve obtained from Chapter 2.3.2 for the material of core. The external 

circuit is shown in Figure 3.3. Mesh generated by Maxwell 3D is shown in Figure.3.4. 

The magnitude of B field distribution calculated by Maxwell 3D is posted in Figure 3.5.  

Figure 3.6 shows the mesh generated by program and the magnitude of B at every 

mesh center in the core outputted by Maxwell 3D. Table 3.1 lists the data of core loss per 

pound for the transformer model when B value changed. Then, the data of core loss per 

pound at every point in Figure 3.6 can be calculated by interpolation. Figure 3.7 is the 

plot of power loss per pound function. The density of core material is . The 

volume of core is .  

37.65kg/dm

30.0113 m

Steps to calculate core loss are as follows:  

1. Divide the core space into more than 2000 small elements and calculate the 

coordinate for the center of every element.  

2. Use Maxwell 3D to model the 3D simplified transformer model and analyze B field 

in core pace. 

3. Input points calculated in step 1 to Maxwell 3D and output the B field magnitude in 

selected points.   

4. According to the B field magnitude in selected points, find the corresponding power 

loss per pound values at center points of elements from Figure 3.7.   

5. Plug all the data into Equation (3.1) and we can obtain the final result of iron loss.  

 81.3coreP W=  (3.5) 
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Figure 3.3.  External circuit of transformer 

 

Figure 3.4.  Mesh generated by Maxwell 3D 
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Figure 3.5.  B magnitude distribution via Maxwell 3D 
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Figure 3.6.  Outputted B magnitude data at fixed points 
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Figure 3.7.  Power loss data 
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B (T) 0 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1

Loss 

(W/Kg) 
0 0.112 0.192 0.294 0.416 0.565 0.740 1.00 1.63 2.58

Table 3.1.  Core loss per pound provided by manufacturer 
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Chapter 4. Conclusion  

In this thesis, A 2D finite element method for magnetostatic field and Ansoft Maxwell 3D 

are adopted to predict the core loss of a three winding transformer. Model simplification 

and data approximation are important approaches in engineering. The stranded core 

which has a complex geometric dimension is simplified as a uniform distributed core. In 

order to keep the accuracy of power loss prediction, the B-H curve of the stranded core 

which the manufacturer provides needs to be corrected for uniform core. The calculation 

of modified B-H curve is implemented by finite element method which has been 

validated by three magnetostatic cases. The original 3D model of the three winding 

transformer has an inconvenient geometry which has eight pieces of core. Therefore, an 

equivalent model under the rules of equal core volume and equal mean length per turn is 

produced in a rectangular shape for easy discretization of mesh. Maxwell 3D is used to 

create the equivalent model and solve for the field. The output B field data on every mesh 

center and the corresponding power loss per pound need to be assembled with the density 

of core material and volume of every mesh element to acquire the prediction of core loss 

in three-winding stranded core transformer.  

   The whole procedure still needs improvement. For the 2D nodal basis finite element 

method, the matrix solving is very time consuming. An improved algorithm is necessary 

to enhance the efficiency. The accuracy of this prediction can be improved by adopting 

numerical method to calculate the modified B-H curve for uniform core.    
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