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ABSTRACT OF THESIS

MODELING AND ANALYSIS OF SPLIT AND MERGE

PRODUCTION SYSTEMS

Many production systems have split and merge operations to increase production capac-
ity and variety, improve product quality, and implement product control and scheduling
policies. This thesis presents analytical methods to model and analyze split and merge
production systems with Bernoulli and exponential reliability machines under circulate,
priority and percentage policies. The recursive procedures for performance analysis are de-
rived, and the convergence of the procedures and uniqueness of the solutions, along with the
structural properties, are proved analytically, and the accuracy of the estimation is justified
numerically with high precision. In addition, comparisons among the effects of different
policies in system performance are carried out.

KEYWORDS: Split, Merge, Production Rate, Bernoulli Reliability, Exponential
Reliability
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Chapter 1

INTRODUCTION

Substantial amount of research effort has been devoted to performance analysis of pro-
duction systems for decades. Most of the studies emphasize on serial production lines or
assembly systems (see reviews by Dallery and Gershwin 1992, Papadopoulos and Heavey
1996, Li et al. 2006, 2008 and monographs by Viswanadham and Narahari 1992, Buzacott
and Shanthikumar 1993, Papadopoulos et al. 1993, Gershwin 1994, Altiok 1997 and Li and
Meerkov 2007). In modern manufacturing systems, split and merge operations are typically
used to increase production capacity and variety, improve product quality, and implement
product control and scheduling policies. For example, parallel operations/lines are used
to increase production volumes, defective parts are separated from main line to be either
repaired or scraped, dedicated operations may be carried out for specific products, etc. To
implement such operations, different split and merge policies have been adopted to pursue
desired system performance. In recent years, a few performance analysis methods have been
developed to model such systems (see reviews by Li et al. 2006, 2008 and representative
papers by Helber 2000, Tan 2001, Helber and Jusic 2004, Diamantidis et al. 2004, Li and
Huang 2005, Colledani et al. 2005, Li 2004a, b, c, 2005 and Diamantidis and Papadopoulos
2006). Despite of these efforts, the split and merge systems with different policies have
not been studied thoroughly. Comparisons among different split and merge policies and
system-theoretic properties have not been discussed.

In this thesis, Bernoulli and exponential reliability production systems with split and
merge operations are considered. Three most widely used split and merge policies are con-
sidered: circulate, priority and percentage. In circulate policy, the split machine sends a
part to downstream branches in circulation when it is not blocked by any of these branches.
A branch will be ignored if its buffer is full, thus blocks the split machine. Similar scenario
occurs in merge operations, where the merge station takes parts from all upstream branches
circularly while ignoring an empty buffer branch. In priority policy, one branch has higher
priority so that the split machine always dispatches parts to this branch first. Parts are sent
to lower priority branches only when the split machine is blocked by the one with higher
priority. Similarly, the merge station takes parts from higher priority upstream branch first.
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In percentage policy, parts are dispatched to downstream branches or loaded from upstream
branches based on given percentages. This thesis presents recursive analytical algorithms
to analyze the performance of split and merge systems with Bernoulli and exponential re-
liability machines under different scheduling policies, investigates the structural properties,
and compares the effectiveness of different policies.

The remaining of the thesis is structured as follows: Chapter 2 reviews the available
literature. Chapter 3 gives the details about split/merge system with Bernoulli reliability
machines, and Chapter 4 gives the details about split/merge system with exponential reli-
ability machines, where the problems are formulated in Sections 3.1 and 4.1 for Bernoulli
and exponential models, respectively. Detailed analysis for split and merge policies are
introduced in Sections 3.2 and 3.3 for Bernoulli models respectively, and 4.2, 4.3 for ex-
ponential models respectively. Structural properties are discussed in Sections 3.4, 4.4 for
Bernoulli and exponential models, respectively. Chapter 5 extends the methods introduced
to split and merge systems with longer lines and multiple branches. Finally, Chapter 6
formulates the conclusions and presents some possible future research directions. All proofs
are provided in the Appendix.
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Chapter 2

LITERATURE REVIEW

2.1 Split and Merge

Most of the studies on modeling and analysis of production systems emphasize on serial lines
and assembly systems. A few relatively recent papers address more complex structures, such
as split and merge. Specifically, a transfer line with split operations is introduced in Helber
2000, and three station merge system with a shared buffer are discussed in Tan 2001, Helber
and Jusic 2004, Diamantidis et al. 2004 and Diamantidis and Papadopoulos 2006. Papers by
Li and Huang 2005 and Colledani et al. 2005 study multiple product systems where different
products are processed at the dedicated machines or buffers. Rework split and merge are
discussed in Li 2004a, b, for single and multiple loops, respectively. Li 2004c analyzes
parallel systems where parallel lanes are split from a common buffer. After additional
processing, the parallel lanes merge into another shared buffer. A general approach to
model complex production systems, referred to as overlapping decomposition, is introduced
in Li 2005. Although significant advancement has been achieved in such studies, the split
and merge systems with different policies have not been studied thoroughly. In particular,
more complete study on split and merge system under different policies is needed. To our
best knowledge, no study has compared the impact of different split or merge policies.
The structural properties of the split and merge system have not been fully investigated.
Therefore, this thesis is intended to contribute in this direction.

2.2 Re-entrant Line

Re-entrant lines are widely encountered in semiconductor and electronics manufacturing
industries. Most of the studies in re-entrant lines concentrates on scheduling and control
policies, using queueing models, Petri net and simulation approaches.

In Kumar 1993, the author first describes a re-entrant line with multiple buffers before
each service center. Under the assumption that the machines do not fail, the arrivals are
described by a Possion process, the service times at service center are all exponentially dis-
tributed and the scheduling policy at each service center is First Come First Serve (FCFS).
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In order to reduce the mean delay (cycle-time), the Last Buffer First Serve (LBFS) policy is
introduced. However, some buffer priority policies can be unstable. Then the stability of the
Last Buffer First Serve (LBFS) policy is given. It’s a non-trivial fact that the LBFS policy
is stable. It also shows that the FBFS policy is stable. Since reduction of the variance of
the cycle-time is also often described as an important goal in semiconductor manufacturing,
a Least Slack (LS) policy is introduced.

Queueing theory has been extensively used to model the manufacturing systems with
re-entrant lines (Shanthikumar et al. 2007, Bramson and Dai 1999). In re-entrant lines, the
parts which are going to be processed by different machines at different stages are similar
to the customers in a multi-class queueing model. Bramson and Dai 1999 studies the queue
limit at high traffic load, and proves the heavy traffic limit theorem for re-entrant lines with
FBFS and LBFS policies.

Fluid model is also used to study multi-class queueing network in re-entrant lines. The
fluid approximation and the stability for a multi-class queueing network are given in Chen
1995 and Dai 1995. It has been proved that a scheduling policy is stable if the corresponding
fluid model is stable. The stability of First Buffer First Serve (FBFS) and Last Buffer First
Served (LBFS) policies for re-entrant lines are addressed in Dai 1995.

Due to the complexity of re-entrant lines, queueing theory faces changelings. According
to the literature, most of the analysis is cumbersome and is limited to the study of different
scheduling policies. However, typically, only a performance bound can be obtained using
queueing and fluid models, the production rate of the whole system has not been analyzed
accurately.

Petri net approach provides another way of modeling re-entrant lines. Choi and Rev-
eliotis 2003 presents an analytical framework for modeling flexibly automated re-entrant
lines. However, a limitation of this approach is that it requires the enumeration of the state
space, which explodes fast when the production system becomes more complex.

Since the queueing model and Petri net approach are limited to provide accurate anal-
ysis, simulations are widely applied in cycle time estimation and performance analysis of
re-entrant lines (Shanthikumar et al. 2007). Running the computer model after many it-
erations could give relatively accurate result to help design and schedule the production
lines, and validate any analytical model. However, intensive computation is required for
simulation. Furthermore, simulation is a case study method. Therefore, it could not give
insight for general scenarios.

The future research work intends to develop novel methods to evaluate re-entrant lines
analytically using the results obtained in the Bernoulli and exponential split/merge system
analysis.
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Chapter 3

BERNOULLI PRODUCTION
SYSTEMS

3.1 Problem Formulation

The typical structures of Bernoulli split and merge systems are shown in Figures 3.1 and
3.2 respectively, where the circles represent the machines and the rectangles represent the
buffers. The following assumptions address the machines, the buffers, and their interactions.
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Figure 3.1: Bernoulli production system with split
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Figure 3.2: Bernoulli production system with merge

i) All machines have identical processing times. The time is slotted as cycle time.
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ii) Each machine mi, i = 1, . . . , 4, is characterized by its reliability pi, i.e., at each cycle,
mi has probability pi to be up and 1− pi to be down. When it is up, it is capable of
processing a part. When the machine is down, no production takes place.

Remark 1 Assumptions i) and ii) formulate the Bernoulli reliability model of the
machines. Many production systems can be characterized by this reliability model,
where the machine downtime is comparable to machine cycle time. For example, in
automotive assembly systems, the majority of the machine breakdowns is due to pallet
jam, push button stop, etc., and only a short period of time is needed to correct these
problems. In Li and Meerkov 2007, an exp-B transformation is introduced to transform
exponential machine reliability models, where machines may have different speeds, up-
and downtimes, into Bernoulli models with acceptable accuracy. For instance, the
slower machines in the split branches would be transformed into Bernoulli machine
with a smaller pi. Li et al. (2006a) show that the differences in throughput using
Bernoulli and other reliability models are typically small.

iii) Each buffer bk, k = 1, 2, 3, has capacity Nk, 0 < Nk < ∞.

iv) A machine is blocked if it is up, downstream buffer is full and downstream machine
does not take a part from the buffer at the beginning of the time slot. In split system,
machines m3 and m4 are never blocked. In merge system, m4 is never blocked.

v) A machine is starved if it is up, and upstream buffer is empty. Machine m1 in split
system is never starved, and m1 and m2 in merge system are never starved.

vi) Machine m2 in split system (correspondingly, m3 in merge system) will send a part to
downstream buffers b2 and b3 (respectively, take a part from upstream buffers b1 and
b2) based on the following policies:

• Circulate policy. m2 will send a part to buffers b2 and b3 circularly if it is not
blocked (respectively, m3 takes part from b1 and b2 circularly when it is not
starved). If it is blocked by one buffer, m2 will send the part to another buffer
(respectively, m3 will take part from another buffer if it is starved by one).

• Priority policy. m2 will keep sending parts to buffer b2 whenever it has space,
i.e., b2 has higher priority (respectively, m3 takes part from b1 if it has available
parts). m2 sends parts to b3 only when it is blocked by b2 (respectively, m3 takes
parts from b2 only when it is starved by b1).

• Percentage policy (split only). m2 will send a part to buffers b1 and b2 based on
pre-designed percentage, α · 100%, i.e., α · 100% to b1 and (1− α) · 100% to b2.

Remark 2 In practice, circulate and priority policies are used more often in produc-
tion than other policies due to relatively easy implementation. For example, circulate
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policy is often used in parallel operations, and priority policy are typical in rework
and re-entrant lines. Percentage policy has also been studied in the literature, how-
ever, it is less popular due to implementation difficulty. In addition, the application of
percentage merge is not widely encountered, therefore, only percentage split policy is
included in discussion.

The system under consideration is defined by assumptions i)− vi), which define a sta-
tionary, ergodic Markov chain in the time scale of the time slot. We consider the steady state
of the chain in this thesis and refer to this steady state as the normal system operations.

Let PR be the production rate of the system, i.e., the average number of parts produced
by the last machines (m3 and m4 in split system and m4 in merge case) per time slot. The
problem addressed is formulated as follows: Given production system i) − vi), develop a
method for evaluating the production rate as a function of the system parameters.

3.2 Modeling and Analysis of Bernoulli Split Systems

3.2.1 Idea of the approach

The main difficulty of analyzing split system is that the split machine has to allocate
capacity to different downstream branches and all machines and buffers are interfering with
each other and impact such allocation. This makes the exact analysis all but impossible.
Therefore, approximation is pursued. The idea of the approximation is based on overlapping
decomposition (Li 2005), and is illustrated as follows (Figure 3.3):
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Figure 3.3: Overlapping decomposition of Bernoulli split system

Consider the split system depicted in Figure 3.3.
Assume the probabilities that m2 is blocked by b2 and b3 are known, machine m2 can be

modified as m′
2 to take into account these effects. Denote this line as Line 1 (m1, b1 and m′

2).
Then the probability that m2 is starved by b1 can be calculated. Now consider machine m2

with capacity allocated only to buffer b2 and m3, modify m2 into m′′
2 to include only such

capacity and its starvation probability by b1, we obtain Line 2 (m′′
2, b2 and m3). Again,

the probability that m2 is blocked by b2 can be calculated. Analogously, m2 again can
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be modified into m′′′
2 to take into account the starvation probability and the only capacity

allocated to b3 and m4, Line 3 (m′′′
2 , b3 and m4) is composed and the probability that m2

is blocked by b3 can be obtained. Using these probabilities, we carry out the analysis for
Line 1 again, and the procedure is repeated anew. When the procedure is convergent, we
obtain the production rates of Lines 1-3. The specific split policies (priority or circulate)
will be taken into account when modifications of m2 are carried out.

3.2.2 Recursive procedures for Bernoulli split system

Introduce operator PR(p1, p2, N1) to denote the production rate calculation of a two-
machine serial line, where pi and N1 represent the machine reliability and buffer capacity,
respectively (see Li and Meerkov 2007 for details). Then the formula for PR(p1, p2, N1) is:

α(p1, p2) =:
p1(1− p2)
p2(1− p1)

,

P0 =





(1−p1)(1−α(p1,p2))

1− p1
p2

αN1 (p1,p2)
, if p1 6= p2,

1−p
N1+1−p , if p1 = p2 = p,

PR(p1, p2, N1) = p2(1− P0), (1)

where P0 represents the probability of that the buffer occupancy is 0.
Using this operator, the recursive procedures to analyze split systems with different

policies are developed.

Circulate policy Consider the split system in Figure 3.1. The rationale behind the
modification of m2 is that, in Line 1, m2 is available to b1 if it is blocked by neither b2 nor
b3. In Line 2, when m2 is not starved, it is available to b2 50% of time if b3 is not full, and
100% of time otherwise. Similar argument applies to Line 3. Thus, the recursive procedure
is introduced as follows:

Procedure 1

Line 1

p′2(s + 1) = p2(1− X̂2N2(s)X̂3N3(s)),

p̂r1(s + 1) = PR(p1, p
′
2(s + 1), N1), (2)

X̂10(s + 1) = 1− p̂r1(s + 1)
p′2(s + 1)

,

Line 2

p′′2(s + 1) = p2(0.5(1− X̂3N3(s)) + X̂3N3(s))(1− X̂10(s + 1)),

p̂r2(s + 1) = PR(p′′2(s + 1), p3, N2), (3)

X̂2N2(s + 1) = 1− p̂r2(s + 1)
p′′2(s + 1)

,

8



Line 3

p′′′2 (s + 1) = p2(0.5(1− X̂2N2(s + 1)) + X̂2N2(s + 1))(1− X̂10(s + 1)),

p̂r3(s + 1) = PR(p′′′2 (s + 1), p4, N3), (4)

X̂3N3(s + 1) = 1− p̂r3(s + 1)
p′′′2 (s + 1)

,

s = 0, 1, 2, . . . ,

X̂2N2(0) = X̂3N3(0) = 0,

where X̂10, X̂2N2, X̂3N3 denote the estimates of the probabilities that b1 is empty, b2 and b3

are full, respectively.

Priority policy Assuming buffer b2 has higher priority than b3. Then, in Line 2, m2 is
always available to b2 when b1 is not empty. m2 is available to b3 only when it is not starved
by b1, but blocked by b2. The recursive procedure is modified as follows:

Procedure 2

Line 1

p′2(s + 1) = p2(1− X̂2N2(s)X̂3N3(s)),

p̂r1(s + 1) = PR(p1, p
′
2(s + 1), N1), (5)

X̂10(s + 1) = 1− p̂r1(s + 1)
p′2(s + 1)

,

Line 2

p′′2(s + 1) = p2(1− X̂10(s + 1)),

p̂r2(s + 1) = PR(p′′2(s + 1), p3, N2), (6)

X̂2N2(s + 1) = 1− p̂r2(s + 1)
p′′2(s + 1)

,

Line 3

p′′′2 (s + 1) = p2(1− X̂10(s + 1))X̂2N2(s + 1),

p̂r3(s + 1) = PR(p′′′2 (s + 1), p4, N3), (7)

X̂3N3(s + 1) = 1− p̂r3(s + 1)
p′′′2 (s + 1)

,

s = 0, 1, 2, . . . ,

X̂2N2(0) = X̂3N3(0) = 0.

Percentage policy To ensure that the final products consisting of parts 100·α% produced
by m3 and 100 · (1 − α)% by m4, which agrees with the expectation of percentage policy,
assume machine m2 has probability β to be available on parts to buffer b2, and probability
1− β on parts to b3. This implies that during the uptime of machine m2, it has probability
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β intended to send parts to buffer b2 and 1− β to b3. However, it may be blocked by b2 or
b3. When it is blocked, it has to wait until the route is clear. Thus, the actual probability
sending parts to b2 and b3 will be α and 1− α, respectively. Therefore, we need

p2(1− X̂10)β(1− X̂2N2) = p2(1− βX̂2N2 − (1− β)X̂3N3)(1− X̂10) · α,

i.e., products to branch b2 are α · 100% of products going through b1, which leads to

β(1− X̂2N2) = (1− βX̂2N2 − (1− β)X̂3N3) · α.

It follows that
β(1− X̂2N2 + X̂2N2α− X̂3N3α) = (1− X̂3N3)α.

Therefore, we obtain

β =
(1− X̂3N3)α

1− X̂2N2 + X̂2N2α− X̂3N3α
. (8)

Finally, the recursive procedure is introduced as follows:

Procedure 3

β(s + 1) =
(1− X̂3N3(s))α

1− X̂2N2(s) + X̂2N2(s)α− X̂3N3(s)α
,

Line 1

p′2(s + 1) = p2(1− β(s + 1)X̂2N2(s)− (1− β(s + 1))X̂3N3(s)),

p̂r1(s + 1) = PR(p1, p
′
2(s + 1), N1), (9)

X̂10(s + 1) = 1− p̂r1(s + 1)
p′2(s + 1)

,

Line 2

p′′2(s + 1) = β(s + 1)p2(1− X̂10(s + 1)),

p̂r2(s + 1) = PR(p′′2(s + 1), p3, N2), (10)

X̂2N2(s + 1) = 1− p̂r2(s + 1)
p′′2(s + 1)

,

Line 3

p′′′2 (s + 1) = (1− β(s + 1))p2(1− X̂10(s + 1)),

p̂r3(s + 1) = PR(p′′′2 (s + 1), p4, N3), (11)

X̂3N3(s + 1) = 1− p̂r3(s + 1)
p′′′2 (s + 1)

,

s = 0, 1, 2, . . . ,

X̂2N2(0) = X̂3N3(0) = 0.

3.2.3 Convergence

Let p̂ri, i = 1, 2, 3, denote the production rates obtained for Line i if Procedures 1-3 are
convergent. It is shown below that these procedures lead to convergent results.
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Theorem 1 Under assumptions i)-vi), Procedures 1 and 2 are convergent, therefore,
the following limits exist:

lim
s→∞ p̂ri(s) := p̂ri, i = 1, 2, 3. (12)

Proof: See Appendix.

The analytical proof of the convergence of Procedure 3 is not available. However, the
procedure converges in all the examples we tested. Therefore, we formulate it as a numerical
fact below.

Numerical Fact 1 Under assumptions i)-vi), Procedure 3 is convergent and the fol-
lowing limits exist:

lim
s→∞ p̂ri(s) := p̂ri, i = 1, 2, 3. (13)

Corollary 1 Under assumptions i)-vi) and Numerical Fact 1, the steady state equations
of Procedures 1-3 have unique solutions.

Proof: See Appendix.

Therefore, we obtain an estimate of the production rates, P̂Rs,c for circulate policy,
P̂Rs,p for priority policy, and P̂Rs,% for percentage policy, of the split systems in steady
state. Such estimates equal to p̂r2 + p̂r3 in their corresponding procedures.

3.2.4 Accuracy

The accuracy of the estimation is investigated numerically. Specifically, we randomly and
equiprobably select machine and buffer parameters from the following sets, and construct
50 split systems for circulate and priority policies, and 20 split systems for percentage policy
with three different percentages for each line.

p1, p2 ∈ [0.75, 0.95],

p3, p4 ∈ [0.4, 0.6], (14)

Ni ∈ {1, 2, 3},
α ∈ {10%, 30%, 50%}.

For each of these lines, both analytical method using Procedures 1-3 and simulation ap-
proach using Simul8 (Haige and Paige 2001) are pursued to evaluate system production
rates. In each simulation, 10,000 cycles of warmup time are assumed, and the next 100,000
cycles are used for collecting steady state statistics. 20 replications are carried out to ob-
tain the average production rate, with 95% confidence intervals consistently ranging within
±0.0006. Typically, the computation time for Procedures 1-3 is within a fraction of second,

11



and is around 5 minutes for simulation on a PC with 3.4GHz processor and 2GB RAM.
The differences between analytical and simulation results are evaluated as

εs,c =
P̂Rs,c − PRs,c

PRs,c
· 100%,

εs,p =
P̂Rs,p − PRs,p

PRs,p
· 100%, (15)

εs,% =
P̂Rs,% − PRs,%

PRs,%
· 100%,

where PRs,c, PRs,p and PRs,% are the production rates obtained by simulation for circulate,
priority and percentage split policies, respectively.

Remark 3 Assumption iv) defines a block before service (BBS) convention, i.e., a ma-
chine will not load a part if it is blocked. In Simul8, a block after service (BAS) is typically
used, where a part is still loaded and processed even if no downstream buffer is available.
The capacity of buffers under BBS and BAS schemes are related as

NBBS
i = NBAS

i + 1, i = 1, 2, 3.

The results of this investigation are illustrated in Figures 3.4-3.6 for Procedures 1-3,
respectively. It is shown that in all cases we studied, the error is less than 2%. Therefore,
Procedures 1-3 provide an accurate approximation for system production rates.
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%
)

Case Number

Figure 3.4: Accuracy of Procedure 1

3.3 Modeling and Analysis of Bernoulli Merge Systems

3.3.1 Idea of the approach

The idea similar to that of the split system can be applied to the merge system (Figure 3.7)
as well. Machine m1, buffer b1 and a pseudo machine m′

3, which takes into the account of
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Figure 3.5: Accuracy of Procedure 2
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Figure 3.6: Accuracy of Procedure 3
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blockage of buffer b3 and capacity allocation to buffer b1, consists of Line 1. Analogously,
Line 2 is composed of m2, b2 and pseudo machine m′′

3, which considers the blockage of b3 and
capacity allocated to b2. Finally, Line 3 has pseudo machine m′′′

3 , which includes starvation
probabilities from b1 and b2, buffer b3, and last machine m4. The recursive procedures are
again introduced to update the blockage and starvation probabilities of machine m3 until
they are convergent.

3

b 1

b2

1m

2m

p1

p2

N

N

1

2

p pN

m m4
b3

43

Line 1

Line 2

Line 3

Figure 3.7: Overlapping decomposition of Bernoulli merge system

3.3.2 Recursive procedures for Bernoulli merge system

Circulate policy Consider the merge system in Figure 3.2. Similar to the rationale in
circulate split policy, by replacing the blockage with starvation, and vice versa, we obtain

Procedure 4

Line 3

p′′′3 (s + 1) = p3(1− X̂10(s)X̂20(s)),

p̂r3(s + 1) = PR(p′′′3 (s + 1), p4, N3), (16)

X̂3N3(s + 1) = 1− p̂r3(s + 1)
p′′′3 (s + 1)

,

Line 1

p′3(s + 1) = p3(0.5(1− X̂20(s)) + X̂20(s))(1− X̂3N3(s + 1)),

p̂r1(s + 1) = PR(p1, p
′
3(s + 1), N1), (17)

X̂10(s + 1) = 1− p̂r1(s + 1)
p′3(s + 1)

,

Line 2

p′′3(s + 1) = p3(0.5(1− X̂10(s + 1)) + X̂10(s + 1))(1− X̂3N3(s + 1)),

p̂r2(s + 1) = PR(p2, p
′′
3(s + 1), N2), (18)

X̂20(s + 1) = 1− p̂r2(s + 1)
p′′3(s + 1)

,

s = 0, 1, 2, . . . ,
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X̂10(0) = X̂20(0) = 0,

where X̂10, X̂20, X̂3N3 denote the estimates of the probabilities that b1 and b2 are empty,
and b3 is full, respectively.

Priority policy Assuming buffer b1 has higher priority than b2. Analogously to Procedure
2, we have

Procedure 5

Line 3

p′′′3 (s + 1) = p3(1− X̂10(s))X̂20(s)),

p̂r3(s + 1) = PR(p′′′3 (s + 1), p4, N3), (19)

X̂3N3(s + 1) = 1− pr3(s + 1)
p′′′3 (s + 1)

,

Line 1

p′3(s + 1) = p3(1− X̂3N3(s + 1)),

p̂r1(s + 1) = PR(p1, p
′
3(s + 1), N1), (20)

X̂10(s + 1) = 1− p̂r1(s + 1)
p′3(s + 1)

,

Line 2

p′′3(s + 1) = p2X̂10(s + 1)(1− X̂3N3(s + 1)),

p̂r2(s + 1) = PR(p2, p
′′
3(s + 1), N2), (21)

X̂20(s + 1) = 1− pr2(s + 1)
p′′3(s + 1)

,

s = 0, 1, 2, . . . ,

X̂10(0) = X̂20(0) = 0.

3.3.3 Convergence

Again let p̂ri, i = 1, 2, 3, denote the production rates obtained for Line i when Procedures
4 and 5 are convergent. We show below that both procedures are convergent.

Theorem 2 Under assumptions i)-vi), Procedures 4 and 5 are convergent, therefore,
the following limits exist:

lim
s→∞ pri(s) := p̂ri, i = 1, 2, 3. (22)

Proof: See Appendix.

Corollary 2 Under assumptions i)-vi), the steady state equations of Procedures 4 and
5 have unique solutions.
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Proof: See Appendix.

Therefore, we obtain the estimates of the production rates, P̂Rm,c for circulate policy,
P̂Rm,p for priority policy, of the merge systems in steady state, which are equal to p̂r3 in
their corresponding procedures.

3.3.4 Accuracy

The accuracy of the estimation is again investigated numerically. By reversing the split
systems, and applying the corresponding parameters, we obtain 50 merge lines. We apply
both circulate and priority merge policies to these lines and same simulation setups are
carried out. The differences between analytical and simulation results are evaluated as

εm,c =
P̂Rm,c − PRm,c

PRm,c
· 100%,

εm,p =
P̂Rm,p − PRm,p

PRm,p
· 100%, (23)

where PRm,c, PRm,p are the production rates obtained by simulation for circulate and
priority merge policies, respectively.

The results of this investigation are illustrated in Figures 3.8 and 3.9 for circulate and
priority merge policies, respectively. Again it is shown that both procedures provide accu-
rate approximation for production rates, with errors less than 2% (except two cases where
errors go up to 2.5%).
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Figure 3.8: Accuracy of Procedure 4
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Figure 3.9: Accuracy of Procedure 5

3.4 Structural Properties

3.4.1 Conservation of flow

The conservation of flow holds for both split and merge systems.

Corollary 3 Under assumptions i)-vi), the production rates of Lines 1-3 in split system
satisfy the following property:

p̂r1 = p̂r2 + p̂r3. (24)

In particular, for percentage split policy,

p̂r2 = αp̂r1, p̂r3 = (1− α)p̂r1. (25)

Similarly, for Lines 1-3 in merge system,

p̂r3 = p̂r1 + p̂r2.

Proof: See Appendix.

3.4.2 Monotonicity

It has been shown in Li and Meerkov 2007 that monotonicity holds in serial lines and
assembly systems, i.e., improving machine reliability and/or increasing buffer capacity lead
to improvement of system production rate. Similar properties are observed in split and
merge systems for all policies as well.

Corollary 4 Under assumptions i)-vi), the system production rates in split and merge
systems are monotonically increasing with respect to pi, i = 1, . . . , 4, and Ni, i = 1, 2, 3.
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Proof: See Appendix.

3.4.3 Reversibility

It has been shown that the reversibility exists in Bernoulli serial production lines (Li and
Meerkov 2007). For the split and merge systems with circulate and priority policies con-
sidered in this thesis, such property still holds. To illustrate this, denote the machine and
buffer parameters in Figure 3.1 as ps

i , i = 1, . . . , 4, N s
i , i = 1, 2, 3, and in Figure 3.2 as pm

i ,
and Nm

i . In addition,

ps
1 = pm

4 , ps
2 = pm

3 ,

ps
3 = pm

1 , ps
4 = pm

2 ,

N s
1 = Nm

3 , N s
2 = Nm

1 , (26)

N s
3 = Nm

2 .

Corollary 5 Under assumptions i)-vi) and condition (26), the system production rates
in split and merge systems with circulate and priority policies have identical production
rates. In other words

P̂Rm,c = P̂Rs,c, P̂Rm,p = P̂Rs,p. (27)

Proof: See Appendix.

3.4.4 Comparisons

A comparison between the circulate and priority policies has been carried out. The results
show that the difference in system production rates between systems with circulate and
priority policies is typically small. In other words,

|P̂Rs,c − P̂Rs,p| ¿ 1, |P̂Rm,c − P̂Rm,p| ¿ 1. (28)

Comparing with percentage policy with 50% split, we obtain

P̂Rs,c > P̂Rs,50%, P̂Rs,p > P̂Rs,50%. (29)

The reason for smaller production rate in split systems under percentage policy is due to
the fact that parts that are intended to be sent to buffer bi have to wait for the availability
of bi if they are blocked, in order to ensure a 50% split.

In addition, numerical results suggest that it is always beneficial to assign more reliable
machine with higher priority. In other words, if p1 > p2, then a merge system with machine
m1 having higher priority will achieve better production rate than a system where m2 has
higher priority. It is formulated as the following numerical fact.
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Numerical Fact 2 Under assumptions i)-vi), for Bernoulli merge system with priority
policy where the first branch has higher priority, if p1 > p2, then

P̂R(p1, p2, p3, p4, N1, N2, N3) > P̂R(p2, p1, p3, p4, N1, N2, N3). (30)

Based on reversibility, similar argument applies to split system as well.
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Chapter 4

EXPONENTIAL PRODUCTION
SYSTEMS

4.1 Problem Formulation

The typical structures of exponential split and merge systems are shown in Figures 4.1 and
4.2, respectively.
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3
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µ2 ,λ 2,2c
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µ4 ,λ 4,4c
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Figure 4.1: Exponential production system with split
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µ3 ,λ 3,3c µ4 ,λ 4,4c3N

Figure 4.2: Exponential production system with merge

The following assumptions address the machines, the buffers, and their interactions.

i′) Each machine’s processing speed is ck parts/unit of time, k = 1, . . . , 4, which implies
the production system is asynchronous.
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ii′) Each machine mi, i = 1, . . . , 4, is characterized by its breakdown rate λi and repair
rate µi. When it is up, it is capable of processing parts. When the machine is down,
no production takes place.

iii′) Each buffer bk, k = 1, 2, 3, has capacity Nk, 0 < Nk < ∞.

iv′) A machine is blocked if it is up, downstream buffer is full and downstream machine
does not take a part from the buffer. In split system, machines m3 and m4 are never
blocked. In merge system, m4 is never blocked.

v′) A machine is starved if it is up, and upstream buffer is empty. Machine m1 in split
system is never starved, and m1 and m2 in merge system are never starved.

vi′) Machine m2 in split system (correspondingly, m3 in merge system) will send a part
to downstream buffers b2 and b3 (respectively, take material from upstream buffers b1

and b2) based on the following policies:

• Circulate policy. m2 will send a part to buffers b2 and b3 circularly if it is not
blocked (respectively, m3 takes part from b1 and b2 circularly when it is not
starved). If it is blocked by one buffer, m2 will send the part to another buffer
(respectively, m3 will take part from another buffer if it is starved by one).

• Priority policy. m2 will keep sending parts to buffer b2 whenever it has space,
i.e., b2 has higher priority (respectively, m3 takes part from b1 if it has available
parts). m2 sends parts to b3 only when it is blocked by b2 (respectively, m3 takes
parts from b2 only when it is starved by b1).

Remark 4 Percentage policy in exponential lines is still under investigation and
will be part of the future work.

The system under consideration is defined by assumptions i′) − vi′), which define a
stationary, ergodic Markov chain. We still consider the steady state of the chain and refer
to this steady state as the normal system operations.

The problem is similar to that in Section 3.1: Given production system i′)−vi′), develop
a method for evaluating the production rate as a function of the system parameters.

Solutions to the problem are presented in Sections 4.2 and 4.3 for split and merge
systems, respectively.

4.2 Modeling and Analysis of Exponential Split Systems

4.2.1 Idea of the approach

Again, similar to the Bernoulli case, due to the complexity in the split and merge systems,
exact analysis is all but impossible. Therefore, approximation is pursued. The idea of the
approximation is again based on overlapping decomposition, and is illustrated as follows
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(Figure 4.3):
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Figure 4.3: Overlapping decomposition of exponential split system

The split system is decomposed into 3 overlapped two-machine lines, and m2 is the
overlapping machine. Line 1 has machines m1 and m′

2, where m′
2 includes blockage effects

from buffers b2 and b3; line 2 consists of machines m′′
2 and m3, and the starvation of b1 and

the blockage of b3 are embedded in m′′
2; finally, m′′′

2 and m4 compose line 4, and m′′′
2 has

starvation impact from b1 and blockage impact from b2. Then the recursive procedures are
introduced to estimate the blockage and starvation probabilities. When the procedure is
convergent, we obtain the production rates of Lines 1-3. The specific split policies (priority
or circulate) will be taken into account when modifications of m2 are carried out.

4.2.2 Recursive procedures for exponential split system

Introduce operator PR([λ1, λ2], [µ1, µ2], [c1, c2], N1) to denote the production rate calcu-
lation of a two-machine serial line. The time is continuous and the machines obey the
exponential reliability model, i.e., having processing speed ci, break down rate and repair
rate λi and µi, i = 1, 2, and N1 represent the buffer capacity (see Li and Meerkov 2007 for
details). The formula for PR([λ1, λ2], [µ1, µ2], [c1, c2], N1) is as follows:

• If c1 < c2,

PR =
c2e2Aek1N1 + c1e1Bek2N1 + c1e1Ce−k2N1

Aek1N1+Bek2N1+C1e−k2N1
, (1)

where

ei =
µi

λi + µi
, i = 1, 2

R =
√

[c1(µ1 + µ2 + λ2)− c2(µ1 + µ2 + λ1)]2 + 4c1c2λ1λ2,

k1 =
1

2c1c2(µ1 + µ2)(c1 − c2)
[µ1c

2
1(µ1 + µ2 + λ2)− c1c2[(µ1 + µ2)2

+((µ1 + µ2)(λ1 + λ2) + (µ1λ2 + µ2λ1)] + µ2c
2
2(µ1 + µ2 + λ1)],

k2 =
(c1µ1 + c2µ2)R

2c1c2(µ1 + µ2)(c2 − c1)
,
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A = µ1R
2 + µ1R[c1(µ1 + µ2 + λ2)− c2(µ1 + µ2 + λ1)],

B = µ2λ1c2[(c1 − c2)(µ1 − µ2)− (c2λ1 + c1λ2)−R],

C1 =
e2(c2 − c1e1)A + c1e1(1− e2)B

c1e1(e2 − 1)
.

• If c1 > c2,

PR =
c1e1Aek1N1 + c2e2Bek2N1 + c2e2Ce−k2N1

Aek1N1+Bek2N1+C2e−k2N1
, (2)

where

ei =
µi

λi + µi
, i = 1, 2

R =
√

[c1(µ1 + µ2 + λ2)− c2(µ1 + µ2 + λ1)]2 + 4c1c2λ1λ2,

k1 =
1

2c1c2(µ1 + µ2)(c2 − c1)
[µ1c

2
1(µ1 + µ2 + λ2)− c1c2[(µ1 + µ2)2

+((µ1 + µ2)(λ1 + λ2) + (µ1λ2 + µ2λ1)] + µ2c
2
2(µ1 + µ2 + λ1)],

k2 =
(c1µ1 + c2µ2)R

2c1c2(µ1 + µ2)(c2 − c1)
,

A = µ1R
2 + µ1R[c1(µ1 + µ2 + λ2)− c2(µ1 + µ2 + λ1)],

B = µ1λ2c1[(c1 − c2)(µ1 − µ2)− (c2λ1 + c1λ2) + R],

C2 =
e1(c1 − c2e2)A + c2e2(1− e1)B

c2e2(e1 − 1)
.

Using this operator, the recursive procedures to analyze split systems with different
policies are developed.

Circulate policy Consider the split system in Figure 4.1. The rationale behind the
modification of m2 is that, in Line 1, m2 is available to b1 if it is not blocked by both b2 and
b3. In Line 2, when m2 is not starved, it is available to b2 50% of time if b3 is not full, and
100% of time otherwise. Similar argument applies to Line 3. Thus, the recursive procedure
is introduced as follows:

Procedure 6

Line 1

µ′2(s + 1) = µ2(1− X̂2N2(s)X̂3N3(s)),

λ′2(s + 1) = λ2 + µ2 − µ′2(s + 1),

p̂r1(s + 1) = PR([λ1, λ
′
2(s + 1)], [µ1, µ

′
2(s + 1)], [c1, c2], N1), (3)

e′2(s + 1) = µ′2(s + 1)/(λ′2(s + 1) + µ′2(s + 1)),

X̂10(s + 1) = 1− p̂r1(s + 1)
c2e′2(s + 1)

,

Line 2

µ′′2(s + 1) = µ2(0.5(1− X̂3N3(s)) + X̂3N3(s))(1− X̂10(s + 1)),
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λ′′2(s + 1) = λ2 + µ2 − µ′′2(s + 1),

p̂r2(s + 1) = PR([λ′′2(s + 1), λ3], [µ′′2(s + 1), µ3], [c2, c3], N2), (4)

e′′2(s + 1) = µ′′2(s + 1)/(λ′′2(s + 1) + µ′′2(s + 1)),

X̂2N2(s + 1) = 1− p̂r2(s + 1)
c2e′′2(s + 1)

,

Line 3

µ′′′2 (s + 1) = µ2(0.5(1− X̂2N2(s + 1)) + X̂2N2(s + 1))(1− X̂10(s + 1)),

λ′′′2 (s + 1) = λ2 + µ2 − µ′′′2 (s + 1),

p̂r3(s + 1) = PR([λ′′′2 (s + 1), λ4], [µ′′′2 (s + 1), µ4], [c2, c4], N3), (5)

e′′′2 (s + 1) = µ′′′2 (s + 1)/(λ′′′2 (s + 1) + µ′′′2 (s + 1)),

X̂3N3(s + 1) = 1− p̂r3(s + 1)
c2e′′′2 (s + 1)

,

s = 0, 1, 2, . . . ,

X̂2N2(0) = 0,

X̂3N3(0) = 0,

where X̂10, X̂2N2 , X̂3N3 denote the estimates of the probabilities that b1 is empty, b2 and
b3 are full, respectively.

Priority policy Assuming buffer b2 has higher priority than b3. Then, in Line 2, m2 is
always available to b2 when b1 is not empty. m2 is available to b3 only when it is not starved
by b1, but blocked by b2. The recursive procedure is modified as follows:

Procedure 7

Line 1

µ′2(s + 1) = µ2(1− X̂2N2(s)X̂3N3(s)),

λ′2(s + 1) = λ2 + µ2 − µ′2(s + 1),

p̂r1(s + 1) = PR([λ1, λ
′
2(s + 1)], [µ1, µ

′
2(s + 1)], [c1, c2], N1), (6)

e′2(s + 1) = µ′2(s + 1)/(λ′2(s + 1) + µ′2(s + 1)),

X̂10(s + 1) = 1− p̂r1(s + 1)
c2e′2(s + 1)

,

Line 2

µ′′2(s + 1) = µ2(1− X̂10(s + 1)),

λ′′2(s + 1) = λ2 + µ2 − µ′′2(s + 1),

p̂r2(s + 1) = PR([λ′′2(s + 1), λ3], [µ′′2(s + 1), µ3], [c2, c3], N2), (7)

e′′2(s + 1) = µ′′2(s + 1)/(λ′′2(s + 1) + µ′′2(s + 1)),
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X̂2N2(s + 1) = 1− p̂r2(s + 1)
c2e′′2(s + 1)

,

Line 3

µ′′′2 (s + 1) = µ2X̂2N2(s + 1)(1− X̂10(s + 1)),

λ′′′2 (s + 1) = λ2 + µ2 − µ′′′2 (s + 1),

p̂r3(s + 1) = PR([λ′′′2 (s + 1), λ4], [µ′′′2 (s + 1), µ4], [c2, c4], N3), (8)

e′′′2 (s + 1) = µ′′′2 (s + 1)/(λ′′′2 (s + 1) + µ′′′2 (s + 1)),

X̂3N3(s + 1) = 1− p̂r3(s + 1)
c2e′′′2 (s + 1)

,

s = 0, 1, 2, . . . ,

X̂2N2(0) = 0,

X̂3N3(0) = 0.

The definitions of X̂10, X̂2N2 , X̂3N3 are the same as in Procedure 6.

4.2.3 Convergence

Let p̂ri, i = 1, 2, 3, denote the production rates obtained for Line i if Procedures 6 and 7
are convergent. It is shown below that these procedures lead to convergent results.

Theorem 3 Under assumptions i’)-vi’), Procedures 6 and 7 are convergent, therefore,
the following limits exist:

lim
s→∞ p̂ri(s) := p̂ri, i = 1, 2, 3. (9)

Proof: See Appendix.

Corollary 6 Under assumptions i’)-vi’), the steady state equations of Procedures 6 and
7 have unique solutions.

Proof: See Appendix.

Therefore, we obtain an estimate of the production rates, P̂Rs,c for circulate policy,
P̂Rs,p for priority policy of the split systems in steady state. Such estimates equal to
p̂r2 + p̂r3 in their corresponding procedures.

4.2.4 Accuracy

The accuracy of the estimation is investigated numerically. Specifically, we randomly and
equiprobably select machine and buffer parameters from the following sets, and construct
30 split systems for circulate and priority policies for each line.
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ei ∈ [0.75, 0.95], i = 1, . . . , 4,

Tdown,i ∈ [2, 10], i = 1, . . . , 4,

ci ∈ [1, 1.2], i = 1, 2, (10)

ci ∈ [0.6, 0.8], i = 3, 4,

Ni ∈ [1, 3] · Tdown,i, i = 1, . . . , 4,

where ei and Tdown,i represent machine mi’s efficiency and average downtime respectively.
The following equations show how λi and µi are obtained through ei and Tdown,i.

λi =
1

Tup,i
,

µi =
1

Tdown,i
, (11)

ei =
Tup,i

Tup,i + Tdown,i
=

µi

λi + µi
.

For each of these lines, both analytical method using Procedures 6 and 7 and simulation
approach using Simul8 are pursued to evaluate system production rates. The simulation
settings are the same as that in the Bernoulli case. Typically, the computation time for
Procedures 6 and 7 is within a fraction of second, and is around 7 minutes for simulation
on a PC with 3.4GHz processor and 2GB RAM. The differences between analytical and
simulation results are evaluated as

εs,c =
P̂Rs,c − PRs,c

PRs,c
· 100%,

εs,p =
P̂Rs,p − PRs,p

PRs,p
· 100%, (12)

where PRs,c and PRs,p are the production rates obtained by simulation for circulate and
priority split policies, respectively. Note that again the block before service (BBS) conven-
tion is used in the exponential models.

The results of this investigation are illustrated in Figures 4.4 and 4.5 for circulate and
priority split policies, respectively. Again it is shown that both procedures provide accu-
rate approximation for production rates, with errors less than 10% (except two cases where
errors go up to 12.5%).

4.3 Modeling and Analysis of Exponential Merge Systems

4.3.1 Idea of the approach

An idea similar to that of the split exponential system is applied to the merge exponential
system (Figure 4.6).
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Figure 4.4: Accuracy of Procedure 6
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Figure 4.5: Accuracy of Procedure 7
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Figure 4.6: Overlapping decomposition of exponential merge system
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The system is again decomposed into three overlapped serial lines and pseudo machines
m′

2, m′′
2 and m′′′

2 are introduced to represent the effects of blockages and starvations due
to other lines. The recursive procedures are again introduced to update the blockage and
starvation probabilities of machine m3 until they are convergent.

4.3.2 Recursive procedures for exponential merge system

Circulate policy Consider the merge system in Figure 4.2. Similar to the rationale in
circulate split policy, by replacing the blockage with starvation, and vice versa, we obtain

Procedure 8

Line 1

µ′3(s + 1) = µ3(0.5(1− X̂20(s)) + X̂20(s))(1− X̂3N3(s)),

λ′3(s + 1) = λ3 + µ3 − µ′3(s + 1),

p̂r1(s + 1) = PR([λ1, λ
′
3(s + 1)], [µ1, µ

′
3(s + 1)], [c1, c3], N1), (13)

e′3(s + 1) = µ′3(s + 1)/(λ′3(s + 1) + µ′3(s + 1)),

X̂10(s + 1) = 1− p̂r1(s + 1)
c3e′3(s + 1)

,

Line 2

µ′′3(s + 1) = µ3(0.5(1− X̂10(s + 1)) + X̂10(s + 1))(1− X̂3N3(s)),

λ′′3(s + 1) = λ3 + µ3 − µ′′3(s + 1),

p̂r2(s + 1) = PR([λ2, λ
′′
3(s + 1)], [µ2, µ

′′
3(s + 1)], [c2, c3], N2), (14)

e′′3(s + 1) = µ′′3(s + 1)/(λ′′3(s + 1) + µ′′3(s + 1)),

X̂20(s + 1) = 1− p̂r2(s + 1)
c3e′′3(s + 1)

,

Line 3

µ′′′3 (s + 1) = µ3(1− X̂10(s + 1)X̂20(s + 1)),

λ′′′3 (s + 1) = λ3 + µ3 − µ′′′3 (s + 1),

p̂r3(s + 1) = PR([λ′′′3 (s + 1), λ4], [µ′′′3 (s + 1), µ4], [c3, c4], N2), (15)

e′′′3 (s + 1) = µ′′′3 (s + 1)/(λ′′′3 (s + 1) + µ′′′3 (s + 1)),

X̂3N3(s + 1) = 1− p̂r3(s + 1)
c3e′′′3 (s + 1)

,

X̂20(0) = 0,

X̂3N3(0) = 0,

where X̂10, X̂20, X̂3N3 denote the estimates of the probabilities that b1 and b2 are empty,
and b3 is full, respectively.
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Priority policy Assuming buffer b1 has higher priority than b2. Analogously to Procedure
7, we have

Procedure 9

Line 1

µ′3(s + 1) = µ3(1− X̂3N3(s)),

λ′3(s + 1) = λ3 + µ3 − µ′3(s + 1),

p̂r1(s + 1) = PR([λ1, λ
′
3(s + 1)], [µ1, µ

′
3(s + 1)], [c1, c3], N1), (16)

e′3(s + 1) = µ′3(s + 1)/(λ′3(s + 1) + µ′3(s + 1)),

X̂10(s + 1) = 1− p̂r2(s + 1)
c3e′3(s + 1)

,

Line 2

µ′′3(s + 1) = µ3X̂10(s + 1)(1− X̂3N3(s)),

λ′′3(s + 1) = λ3 + µ3 − µ′′3(s + 1),

p̂r2(s + 1) = PR([λ2, λ
′′
3(s + 1)], [µ2, µ

′′
3(s + 1)], [c2, c3], N2), (17)

e′′3(s + 1) = µ′′3(s + 1)/(λ′′3(s + 1) + µ′′3(s + 1)),

X̂20(s + 1) = 1− p̂r2(s + 1)
c3e′′3(s + 1)

,

Line 3

µ′′′3 (s + 1) = µ3(1− X̂10(s + 1)X̂20(s + 1)),

λ′′′3 (s + 1) = λ3 + µ3 − µ′′′3 (s + 1),

p̂r3(s + 1) = PR([λ′′′3 (s + 1), λ4], [µ′′′3 (s + 1), µ4], [c3, c4], N3), (18)

e′′′3 (s + 1) = µ′′′3 (s + 1)/(λ′′′3 (s + 1) + µ′′3(s + 1)),

X̂3N3(s + 1) = 1− p̂r3(s + 1)
c3e′′′3 (s + 1)

,

X̂10(0) = 0,

X̂3N3(0) = 0.

The definitions of X̂10, X̂20, X̂3N3 are the same as in Procedure 8.

4.3.3 Convergence

Again let p̂ri, i = 1, 2, 3, denote the production rates obtained for Line i when Procedures
8 and 9 are convergent. We show below that both procedures are convergent.

Theorem 4 Under assumptions i’)-vi’), Procedures 8 and 9 are convergent, therefore,
the following limits exist:

lim
s→∞ pri(s) := p̂ri, i = 1, 2, 3. (19)
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Proof: See Appendix.

Corollary 7 Under assumptions i’)-vi’), the steady state equations of Procedures 8 and
9 have unique solutions.

Proof: See Appendix.

Therefore, we obtain the estimates of the production rates, P̂Rm,c for circulate policy,
P̂Rm,p for priority policy, of the merge systems in steady state, which are equal to p̂r3 in
their corresponding procedures.

4.3.4 Accuracy

The accuracy of the estimation is again investigated numerically. By reversing the split
systems, and applying the corresponding parameters, we obtain 30 merge lines. We apply
both circulate and priority merge policies to these lines and same simulation setups are
carried out. The differences between analytical and simulation results are evaluated as

εm,c =
P̂Rm,c − PRm,c

PRm,c
· 100%,

εm,p =
P̂Rm,p − PRm,p

PRm,p
· 100%, (20)

where PRm,c, PRm,p are the production rates obtained by simulation for circulate and
priority merge policies, respectively.

The results of this investigation are illustrated in Figures 4.7 and 4.8 for circulate and
priority merge policies, respectively. Again it is shown that both procedures provide accu-
rate approximation for production rates, with errors less than 10% (except two cases where
errors go up to 12.5%).

4.4 Structural Properties

4.4.1 Conservation of flow

The conservation of flow holds again for both split and merge systems in exponential models.

Corollary 8 Under assumptions i’)-vi’), the production rates of Lines 1-3 in split sys-
tem satisfy the following property:

p̂r1 = p̂r2 + p̂r3. (21)

Similarly, for Lines 1-3 in merge system,

p̂r3 = p̂r1 + p̂r2.

Proof: See Appendix.
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Figure 4.8: Accuracy of Procedure 9
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4.4.2 Monotonicity

It has been shown in Li and Meerkov 2007 that monotonicity holds in serial lines and
assembly systems, i.e., improving machine reliability and/or increasing buffer capacity lead
to improvement of system production rate. Similar properties are observed in split and
merge systems for all policies as well.

Corollary 9 Under assumptions i’)-vi’), the system production rates in split and merge
systems are monotonically increasing with respect to µi and ci, i = 1, . . . , 4, Ni, i = 1, 2, 3;
and are monotonically decreasing with respect to λi.

Proof: See Appendix.

4.4.3 Reversibility

For the split and merge exponential systems with circulate and priority policies considered
in this thesis, reversibility property still holds. To illustrate this, denote the machine and
buffer parameters in Figure 4.1 as λs

i , µs
i , cs

i , i = 1, . . . , 4, N s
i , i = 1, 2, 3, and in Figure 4.2

as λm
i , µm

i , cm
i , and Nm

i . In addition,

λs
1 = λm

4 , λs
2 = λm

3 ,

λs
3 = λm

1 , λs
4 = λm

2 ,

µs
1 = µm

4 , µs
2 = µm

3 ,

µs
3 = µm

1 , µs
4 = µm

2 , (22)

cs
1 = cm

4 , cs
2 = cm

3 ,

cs
3 = cm

1 , cs
4 = cm

2 ,

N s
1 = Nm

3 , N s
2 = Nm

1 ,

N s
3 = Nm

2 .

Corollary 10 Under assumptions i’)-vi’) and condition (22), the system production
rates in split and merge systems with circulate and priority policies have identical production
rates. In other words

P̂Rm,c = P̂Rs,c, P̂Rm,p = P̂Rs,p. (23)

Proof: See Appendix.

4.4.4 Comparisons

Again, a comparison between the circulate and priority policies has been carried out. Similar
to Bernoulli case, the results show that the difference in system production rates between
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systems with circulate and priority policies is typically small. In other words,

|P̂Rs,c − P̂Rs,p| ¿ 1, |P̂Rm,c − P̂Rm,p| ¿ 1. (24)

In addition, numerical results suggest that it is always beneficial to assign more reliable
machine with higher priority.

Based on reversibility, similar argument applies to split system as well.
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Chapter 5

EXTENSIONS

The methods introduced here can be easily extended to split and merge systems with longer
lines and multiple branches. Please see Figures (see Figures 5.1-5.4 for illustrations).

The preliminary studies have been carried out to analyze such systems. Overlapping
decomposition procedures have been implemented to evaluate the system performance. For
example, for long split lines, overlapped Lines 1-3 become (m11, . . ., m′

1M1
, b11, . . ., b1M1−1),

(m′′
1M1

, m21, . . ., m2M2 , b21, . . ., b2M2) and (m′′′
1M1

, m31, . . ., m3M3 , b31, . . ., b3M3). Long
serial line analysis procedure (Li and Meerkov 2007) will be applied here. For multiple split
lines, M lines are introduced, (m1, m′

2, b1), (m′′
2, m3, b2), . . ., (m′...′

2 , mM+1, bM ).
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Figure 5.1: Long split lines

The preliminary results show that the proposed methods still achieve acceptable ac-
curacy in production rate estimation. All structural properties hold for such systems as
well.
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Chapter 6

CONCLUSIONS AND FUTURE
WORK

Split and merge are widely used in many manufacturing systems. This thesis presents
analytical methods to approximate the system production rates of split and merge systems
with Bernoulli and exponential reliability machines. Three split and merge policies are
addressed: circulate, priority and percentage. It is shown that these methods can provide
an accurate precision for system production rate estimation. The successful development of
such methods will provide production engineers a quantitative tool for design and continuous
improvement of such complex production systems.

In future work, we plan to extend the work to performance analysis of re-entrant lines.
Figure 6.1 provides an example of a re-entrant line with Bernoulli reliability machines. The
system consists of M machines and 2M−1 buffers and jobs need to be processed twice before
releasing. The first time jobs are processed at machines mi, i = 1, . . . ,M , and buffers b1i,
i = 1, . . . , M −1, between two consecutive machines. After first time processing at machine
mM , all jobs are sent to buffer b0, waiting for second time processing. Then the jobs are
reprocessed at machines mi, i = 1, . . . , M , but through buffers b2i, i = 1, . . . ,M − 1. Jobs
leave the system after being processed at mM for the second time.

1 2 3 MM−1m m m m m

b b b b

bbb11 12 1M−1

21 2M−1220

p p p p
MM−12 p31

N N N

NN N

N0 21 22 2M−1

1M−11211

Figure 6.1: Re-entrant lines

As pointed out in Chapter 2, no accurate analysis of re-entrant lines is available. De-
veloping a method to analyze the performance of re-entrant lines is of importance. Using
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the method on split/merge systems developed here, we can consider re-entrant lines as a
group of multiple split/merge lines. Therefore, a recursive procedure could be developed to
analyze them iteratively.

The successful development of this work could provide production engineers and man-
agers a quantitative tool for design, analysis and continuous improvement of complex pro-
duction systems.
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APPENDIX: PROOFS

To prove Theorem 1, we need the following facts:

Lemma A.1 Consider the sequences X̂2N2(s) and X̂3N3(s), defined in procedures 1 and
2. If X̂2N2(s) > X̂2N2(s− 1) and X̂3N3(s) > X̂3N3(s− 1), then X̂2N2(s + 1) > X̂2N2(s) and
X̂3N3(s + 1) > X̂3N3(s).

Proof: First we consider circulate policy. If

X̂2N2(s) > X̂2N2(s− 1), X̂3N3(s) > X̂3N3(s− 1),

from (2) and monotonicity in serial line (Jacobs and Meerkov 1995) we obtain

p′2(s + 1) < p′2(s), p̂r1(s + 1) < p̂r1(s), X̂10(s + 1) < X̂10(s).

It follows from (3) and monotonicity in serial line that

p′′2(s + 1) > p′′2(s), p̂r2(s + 1) > p̂r2(s), X̂2N2(s + 1) > X̂2N2(s).

Analogously, due to (4), we obtain

p′′′2 (s + 1) > p′′′2 (s), p̂r3(s + 1) > p̂r3(s), X̂3N3(s + 1) > X̂3N3(s).

Using similar logic, the statement is true for priority policy.

Lemma A.2 Sequences X̂2N2(s) and X̂3N3(s) defined in Procedures 1 and 2 are mono-
tonically increasing.

Proof: By induction. First we consider circulate policy. For s = 0, from (2)

p′2(1) = p2, X̂10(1) < 1.

It follows from (3) and (4) that

p′′2(1) = 0.5p2(1− X̂10(1)), X̂2N2(1) > 0,

p′′′2 (1) = 0.5p2(1 + X̂2N2(1))(1− X̂10(1)), X̂3N3(1) > 0.
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This leads to
p′2(2) < p2 = p′2(1), X̂10(2) < X̂10(1).

Thus, we obtain
p′′2(2) > p′′2(1), p′′′2 (2) > p′′′2 (1),

which implies that
X̂2N2(2) > X̂2N2(1), X̂3N3(2) > X̂3N3(1).

Now assume for s > 0, X̂2N2(s) > X̂2N2(s− 1) and X̂3N3(s) > X̂3N3(s− 1). Then from
Lemma A.1, we obtain

X̂2N2(s + 1) > X̂2N2(s) X̂3N3(s + 1) > X̂3N3(s).

Similar arguments apply to priority policy.

Proof of Theorem 1: Since the sequences X̂2N2(s) and X̂3N3(s) are monotonic (Lemma
A.2) and are bounded from above and below (Jacobs and Meerkov 1995), they are conver-
gent. Therefore, the limits of p̂ri(s), i = 1, 2, 3, exist.

It turns out it is easy to prove Corollary 3 first then to prove Corollaries 1 and 2.
Proof of Corollary 3: First we prove the property for split system shown in Figure

3.3.

• Circulate policy. The steady state equations of Procedure 1 are as follows:

p′2 = p2(1− X̂2N2X̂3N3),

p̂r1 = PR(p1, p
′
2, N1), (A.1)

X̂10 = 1− p̂r1

p′2
,

p′′2 = 0.5p2(1 + X̂3N3)(1− X̂10),

p̂r2 = PR(p′′2, p3, N2), (A.2)

X̂2N2 = 1− p̂r2

p′′2
,

p′′′2 = 0.5p2(1 + X̂2N2)(1− X̂10),

p̂r3 = PR(p′′′2 , p4, N3), (A.3)

X̂3N3 = 1− p̂r3

p′′′2
.

Then the production rates of Lines 1-3 can be written as

p̂r1 = p′2(1− X̂10) = p2(1− X̂2N2X̂3N3)(1− X̂10),

p̂r2 = p′′2(1− X̂2N2) = 0.5p2(1 + X̂3N3)(1− X̂10)(1− X̂2N2),

p̂r3 = p′′′2 (1− X̂3N3) = 0.5p2(1 + X̂2N2)(1− X̂10)(1− X̂3N3).

39



It follows that

p̂r2 + p̂r3 = 0.5p2(1 + X̂3N3)(1− X̂10)(1− X̂2N2) + 0.5p2(1 + X̂2N2)(1− X̂10)(1− X̂3N3)

= 0.5p2(1− X̂10)(1 + X̂3N3 − X̂2N2 − X̂2N2X̂3N3 + 1− X̂3N3 + X̂2N2 − X̂2N2X̂3N3)

= p2(1−X10)(1− X̂2N2X̂3N3)

= p̂r1.

• Priority policy. Similarly, the steady state equations of Procedure 2 are

p′2 = p2(1− X̂2N2X̂3N3),

p̂r1 = PR(p1, p
′
2, N1), (A.4)

X̂10 = 1− p̂r1

p′2
,

p′′2 = p2(1− X̂10),

p̂r2 = PR(p′′2, p3, N2), (A.5)

X̂2N2 = 1− p̂r2

p′′2
,

p′′′2 = p2(1− X̂10)X̂2N2 ,

p̂r3 = PR(p′′′2 , p4, N3), (A.6)

X̂3N3 = 1− p̂r3

p′′′2
.

Then we obtain

p̂r1 = p2(1− X̂2N2X̂3N3)(1− X̂10),

p̂r2 = p2(1− X̂10)(1− X̂2N2),

p̂r3 = p2(1− X̂10)X̂2N2(1− X̂3N3).

Again it follows that

p̂r2 + p̂r3 = p2(1− X̂10)(1− X̂2N2) + p2X̂2N2(1− X̂10)(1− X̂3N3)

= p2(1− X̂10)(1− X̂2N2 − X̂2N2 + X̂2N2 − X̂2N2X̂3N3)

= p2(1− X̂10)(1− X̂2N2X̂3N3)

= p̂r1.

• Percentage policy. The steady state equations of Procedure 3 will be

β =
(1− X̂3N3)α

1− X̂2N2 + X̂2N2α− X̂3N3α
,

p′2 = p2(1− βX̂2N2 − (1− β)X̂3N3),

p̂r1 = PR(p1, p
′
2, N1), (A.7)
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X̂10 = 1− p̂r1

p′2
,

p′′2 = βp2(1− X̂10),

p̂r2 = PR(p′′2, p3, N2), (A.8)

X̂2N2 = 1− p̂r2

p′′2
,

p′′′2 = (1− β)p2(1− X̂10),

p̂r3 = PR(p′′′2 , p4, N3), (A.9)

X̂3N3 = 1− p̂r3

p′′′2
.

Then we obtain

p̂r1 = p2(1− βX̂2N2 − (1− β)X̂3N3)(1− X̂10),

p̂r2 = p2(1− X̂10)(1− X̂2N2)β,

p̂r3 = p2(1− X̂10)(1− X̂3N3)(1− β).

It implies that

p̂r2 + p̂r3 = p2(1− X̂10)(1− X̂2N2)β + p2(1− X̂10)(1− X̂3N3)(1− β)

= p2(1− X̂10)(β − X̂2N2β + 1− X̂3N3 − β + X̂3N3β)

= p̂r1.

In addition, it can be shown that

p̂r2

p̂r1

=
p2(1− X̂10)(1− X̂2N2)β

p2(1− βX̂2N2 − (1− β)X̂3N3)(1− X̂10)

=
β(1− X̂2N2)

1− βX̂2N2 − (1− β)X̂3N3

=
(1− X̂2N2)

α(1−X̂3N3
)

1−X̂2N2
+αX̂2N2

−αX̂3N3

1− α(1−X̂3N3
)

1−X̂2N2
+αX̂2N2

−αX̂3N3

X̂2N2 − (1− α(1−X̂3N3
)

1−X̂2N2
+αX̂2N2

−αX̂3N3

)X̂3N3

=
α(1− X̂2N2)(1− X̂3N3)

(1− X̂2N2 + αX̂2N2 − αX̂3N3)(1− X̂3N3)− α(1− X̂3N3)(X̂2N2 − X̂3N3)
= α.

Similarly
p̂r3

p̂r1

= 1− α.

Analogously, the same logic can be applied to the merge system. The corollary is readily
obtained.

To prove Corollary 1, the following lemma is needed.
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Lemma A.3 Introduce quantity γ,

γ = 1− βX̂2N2 − (1− β)X̂3N3 . (A.10)

Quantity γ is monotonically decreasing with respect to X̂2N2 and X̂3N3.

Proof:

γ = 1− βX̂2N2 − (1− β)X̂3N3

= 1− (1− X̂3N3)α

1− X̂2N2 + X̂2N2α− X̂3N3α
X̂2N2 −

(
1− (1− X̂3N3)α

1− X̂2N2 + X̂2N2α− X̂3N3α

)
X̂3N3

=
1

1− X̂2N2 + X̂2N2α− X̂3N3α

(
1− X̂2N2 + αX̂2N2 − αX̂3N3 − αX̂2N2 + αX̂2N2X̂3N3 − x̂3N3

+X̂2N2X̂3N3 − αX̂2N2 3̂N3 + αX̂2
3N3

+ αX̂3N3 − αX̂2
3N3

)

=
(1− X̂2N2)(1− X̂3N3)

1− X̂2N2 + X̂2N2α− X̂3N3α
.

Then,

∂γ

∂X̂2N2

=
−(1− X̂3N3)

1− X̂2N2 + X̂2N2α− X̂3N3α
− (1− X̂2N2)(1− X̂3N3)

[1− X̂2N2 + X̂2N2α− X̂3N3α]2
(−1 + α)

=
(1− X̂3N3)(−1 + X̂2N2 − X̂2N2α + X̂3N3α + 1− α− X̂2N2 + αX̂2N2)

[1− X̂2N2 + X̂2N2α− X̂3N3α]2

=
−α(1− X̂3N3)

2

[1− X̂2N2 + X̂2N2α− X̂3N3α]2

< 0,

∂γ

∂X̂3N3

=
−(1− X̂2N2)

1− X̂2N2 + X̂2N2α− X̂3N3α
− (1− X̂2N2)(1− X̂3N3)

[1− X̂2N2 + X̂2N2α− X̂3N3α]2
(−α)

=
(1− X̂2N2)(−1 + X̂2N2 − αX̂2N2 + αX̂3N3 + α− αX̂3N3)

[1− X̂2N2 + X̂2N2α− X̂3N3α]2

=
−α(1− X̂2N2)

2

[1− X̂2N2 + X̂2N2α− X̂3N3α]2

< 0.

Therefore, γ is monotonically decreasing with respect to X̂2N2 and X̂3N3 .

Proof of Corollary 1: This corollary is proved by contradiction.

• Circulate policy. Assume there exists another solution ˜̂pr1 6= p̂r1.

– Case 1. If ˜̂pr1 > p̂r1, then from (A.1), due to monotonicity of serial lines (Jacobs
and Meerkov 1995) and by monotonicity of Q(·) function (Jacobs and Meerkov
1995), it follows that

p̃′2 > p′2,
˜̂
X2N2

˜̂
X3N3 < X̂2N2X̂3N3 ,

˜̂
X10 > X̂10. (A.11)
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Now consider the following cases:

∗ Case 1.1. If ˜̂pr2 ≤ p̂r2, from (A.2) and monotonicity of Q(·) function, we
must have

p̃′′2 ≤ p′′2,
˜̂
X2N2 ≤ X̂2N2 .

Due to (A.3) and (A.11), it implies that

p̃′′′2 < p′′′2 , ˜̂pr3 < p̂r3.

It follows that
˜̂pr2 + ˜̂pr3 < p̂r2 + p̂r3.

From Corollary 3, we have ˜̂pr1 ≤ p̂r1, which is a contradiction.

∗ Case 1.2. If ˜̂pr2 > p̂r2, again using (A.2) and monotonicity of Q(·) function,
we obtain

p̃′′2 > p′′2,
˜̂
X2N2 > X̂2N2 .

Due to (A.11), we must have

˜̂
X3N3 < X̂3N3 .

From (A.2) it implies that

p̃′′2 < p′′2, ˜̂pr2 < p̂r2.

Again it is a contradiction to the assumption. Therefore, ˜̂pr1 > p̂r1 is not
possible.

– Case 2. If ˜̂pr1 < p̂r1, analogously we can show that it also leads to a contradic-
tion.

Therefore, the only possibility is ˜̂pr1 = p̂r1, i.e., there is a unique solution.

• Priority policy. Again assume there exists another solution ˜̂pr1 6= p̂r1.

– Case 1. If ˜̂pr1 > p̂r1, then equation (A.11) is obtained. From (A.5), we obtain

p̃′′2 < p′′2, ˜̂pr2 < p̂r2,
˜̂
X2N2 < X̂2N2 . (A.12)

By (A.6), it implies that

p̃′′′2 < p′′′2 , ˜̂pr3 < p̂r3.

Thus, we obtain ˜̂pr2 + ˜̂pr3 < p̂r2 + p̂r3, which leads to a contradiction. Hence
˜̂pr1 > p̂r1 is not possible.

– Case 2. If ˜̂pr1 < p̂r1, analogously we can show that it also leads to contradiction.

43



Therefore, the only possibility is ˜̂pr1 = p̂r1, i.e., there is a unique solution.

• Percentage policy. Assume again there exists another solution ˜̂pr1 6= p̂r1.

– Case 1. If ˜̂pr1 > p̂r1, then we obtain equation (A.11). From Corollary 3 we
have

˜̂pr2 = α ˜̂pr1 > αp̂r1 = p̂r2,
˜̂pr3 = (1− α) ˜̂pr1 > (1− α)p̂r1 = p̂r3.

It follows that
˜̂
X2N2 > X̂2N2 ,

˜̂
X3N3 < X̂3N3 .

From Lemma A.3 it leads to
γ̃ < γ.

It follows that
p̃′2 < p′2,

which is contradictory to (A.11). Hence ˜̂pr1 > p̂r1 is not possible.

– Case 2. If ˜̂pr1 < p̂r1, analogously we can show that it also leads to contradiction.

Therefore, the only possibility is ˜̂pr1 = p̂r1, i.e., there is a unique solution.

Proof of Corollary 2: By applying the similar logic in the proof of Corollary 1, the
corollary can be approved.

Proof of Corollary 4: This corollary is also proved by contradiction. First, we consider
the split system.

• Circulate policy. We begin with monotonicity with respect to pi, i = 1, . . . , 4, then
extent to the cases of Ni, i = 1, 2, 3.

Monotonicity with respect to p1. Assume that if p̃1 > p1, it leads to ˜̂pr1 ≤
p̂r1. Then we must have

p̃′2 < p′2,
˜̂
X2N2

˜̂
X3N3 > X̂2N2X̂3N3 ,

˜̂
X10 < X̂10. (A.13)

∗ Case 1. If ˜̂
X3N3 ≥ X̂3N3 , then from (A.2) we obtain

p̃′′2 > p′′2, ˜̂pr2 > p̂r2,
˜̂
X2N2 > X̂2N2 . (A.14)

Using (A.3) this implies that

p̃′′′2 > p′′′2 , ˜̂pr3 > p̂r3,
˜̂
X3N3 > X̂3N3 . (A.15)

It follows that ˜̂pr2 + ˜̂pr3 > p̂r2 + p̂r3, which leads to a contradiction.
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∗ Case 2. If ˜̂
X3N3 < X̂3N3 , from (A.3) we must have

˜̂pr3 < p̂r3, p̃′′′2 < p′′′2 ,
˜̂
X2N2 < X̂2N2 ,

which implies that
˜̂
X2N2

˜̂
X3N3 < X̂2N2X̂3N3 .

Again it is a contradiction.

Therefore, the only possibility is ˜̂pr1 > p̂r1, i.e., there is a unique solution.

– Monotonicity with respect to p2. Again assume that p̃2 > p2 leads to
˜̂pr1 < p̂r1. Then we obtain equation (A.13).

∗ Case 1. If p̃′′2 > p′′2, we obtain

˜̂pr2 > p̂r2,
˜̂
X2N2 > X̂2N2 .

This leads to (A.29). In other words, we have ˜̂pr1 > p̂r1, which is a contra-
diction.

∗ Case 2. If p̃′′2 < p′′2, following the similar logic we can obtain ˜̂
X2N2 < X̂2N2 .

Then due to (A.13) we must have ˜̂
X3N3 > X̂3N3 , which implies that

˜̂pr3 > p̂r3, p̃′′′2 > p′′′2 .

However, this results in p̃′′2 > p′′2, which is a contradiction.

∗ Case 3. If p̃′′2 = p′′2, this implies from (A.2) and (A.3) that

˜̂
X3N3 < X̂3N3 , p̃′′′2 < p′′′2 ,

and
˜̂pr3 < p̂r3,

˜̂
X2N2 < X̂2N2 .

This will be contradict to (A.13). Therefore, ˜̂pr1 < p̂r1 is impossible.

Now we consider the possibility of ˜̂pr1 = p̂r1. Similarly, we can show that this
implies

˜̂
X10 = X̂10,

˜̂
X2N2

˜̂
X3N3 > X̂2N2X̂3N3 ,

˜̂pr2 = p̂r2.

∗ Case 1. If ˜̂
X3N3 < X̂3N3 , we have

˜̂
X2N2 > X̂2N2 , p̃′′′2 > p′′′2 ,

this leads to ˜̂
X3N3 > X̂3N3 , which is a contradiction.

∗ Case 2. If ˜̂
X3N3 ≥ X̂3N3 , it implies (A.29) holds and it follows that

p̃′′′2 > p′′′2 , ˜̂pr3 > p̂r3.

In other words, we obtain ˜̂pr1 > p̂r1, which contradicts the assumption.
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Therefore, the only possibility is ˜̂pr1 > p̂r1, which implies the monotonicity.

– Monotonicity with respect to p3. Again Assume that p̃3 > p3 results in
˜̂pr1 < p̂r1. Then we obtain (A.13).

∗ Case 1. If ˜̂
X3N3 ≥ X̂3N3 , then from (A.2) we have

p̃′′2 ≥ p′′2, ˜̂pr2 > p̂r2,
˜̂
X2N2 > X̂2N2 .

Using (A.3) this leads to

p̃′′′2 > p′′′2 , ˜̂pr3 > p̂r3.

In other words, we have ˜̂pr1 > p̂r1, which is a contradiction.

∗ Case 2. If ˜̂
X3N3 < X̂3N3 , then from (A.13) we must have

˜̂
X2N2 > X̂2N2 .

This results in
p̃′′′2 > p′′′2 ,

˜̂
X3N3 > X̂3N3 ,

which is a contradiction.

Now if ˜̂pr1 = p̂r1. Similarly, we can show that this implies

˜̂
X10 = X̂10,

˜̂
X2N2

˜̂
X3N3 > X̂2N2X̂3N3 ,

˜̂pr2 = p̂r2.

∗ Case 1. If ˜̂
X3N3 > X̂3N3 , again it implies (A.29) and it follows that

p̃′′′2 > p′′′2 , ˜̂pr3 > p̂r3.

Again this implies ˜̂pr1 > p̂r1, and is a contradiction.

∗ Case 2. If ˜̂
X3N3 < X̂3N3 , due to (A.13) we must have

˜̂
X2N2 > X̂2N2 ,

and it leads to

p̃′′′2 < p′′′2 , ˜̂pr3 < p̂r3,
˜̂
X3N3 < X̂3N3 . (A.16)

A contradiction is also arrived.

Therefore, the only possibility is ˜̂pr1 > p̂r1.

– Monotonicity with respect to p4. Using the same logic to prove the mono-
tonicity with respect to p3, we can obtain the conclusion analogously.

– Monotonicity with respect to N1. If Ñ1 > N1 results in ˜̂pr1 < p̂r1. Then we
obtain (A.13).
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∗ Case 1. If ˜̂
X3N3 ≥ X̂3N3 , then from (A.2) we obtain (A.29). Using (A.3)

this leads to
p̃′′′2 > p′′′2 , ˜̂pr3 > p̂r3.

In other words, we have ˜̂pr1 > p̂r1, which is a contradiction.

∗ Case 2. If ˜̂
X3N3 < X̂3N3 , then due to (A.13) we must have

˜̂
X2N2 > X̂2N2 .

From (A.3) this results in

p̃′′′2 > p′′′2 ,
˜̂
X3N3 > X̂3N3 ,

which is again a contradiction.

Now if ˜̂pr1 = p̂r1. Following the similar logic, we can show that this also leads
to a contradiction. Therefore, the only possibility is ˜̂pr1 > p̂r1.

– Monotonicity with respect N2. Still we assume Ñ2 > N2 leads to ˜̂pr1 < p̂r1.
Then (A.13) is obtained.

∗ Case 1. If ˜̂
X2N2 ≥ X̂2N2 , then (A.15) holds and this leads to

p̃′′2 > p′′2, ˜̂pr2 > p̂r2.

Thus we have a contradiction.

∗ Case 2. If ˜̂
X2N2 < X̂2N2 , then from (A.13) we must have

˜̂
X3N3 > X̂3N3 .

This results in
p̃′′2 > p′′2, ˜̂pr2 > p̂r2,

which implies that we must have ˜̂pr3 < p̂r3. In other words,

p̃′′′2 < p′′′2 ,
˜̂
X3N3 < X̂3N3 ,

which is also a contraction.

Now if ˜̂pr1 = p̂r1, it implies

p̃′2 = p′2,
˜̂
X10 = X̂10,

˜̂
X2N2

˜̂
X3N3 = X̂2N2X̂3N3 . (A.17)

∗ Case 1. If ˜̂
X3N3 ≥ X̂3N3 , then from (A.2) we have

p̃′′′2 ≥ p′′′2 , ˜̂pr2 > p̂r2.

It follows that
˜̂pr3 < p̂r3, p̃′′′2 < p′′′2 .

Thus, a contradiction is arrived.
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∗ Case 2. If ˜̂
X3N3 < X̂3N3 , then

˜̂
X2N2 > X̂2N2 , p̃′′′2 ≥ p′′′2 .

It implies that ˜̂
X3N3 > X̂3N3 , which is again a contradiction.

Therefore, the only possibility is ˜̂pr1 > p̂r1.

– Monotonicity with respect to N3. This property can be proved analogously
to the above proof.

• Priority policy.

– Monotonicity with respect to p1. Assume that if p̃1 > p1, it leads to ˜̂pr1 ≤
p̂r1. Then from (A.4) we must have (A.13). By (A.5) it results in (A.29). From
(A.6) this implies that (A.15) holds. It follows that

˜̂pr2 + ˜̂pr3 > p̂r2 + p̂r3,

which leads to a contradiction. Therefore, the only possibility is ˜̂pr1 > p̂r1.

– Monotonicity with respect to p2. Again assume that if p̃2 > p2, it leads to
˜̂pr1 < p̂r1. Then we obtain (A.13) again. Similarly, (A.29) and (A.15) hold. In
other words, we have ˜̂pr1 > p̂r1, which is a contradiction. If ˜̂pr1 = p̂r1. we can
show that this implies

˜̂
X10 = X̂10,

˜̂
X2N2

˜̂
X3N3 > X̂2N2X̂3N3 , p̃′2 = p′2.

Then from (A.5) we obtain (A.29), and this leads to (A.15), which will result in
˜̂pr1 > p̂r1, i.e., a contradiction. Therefore, the only possibility is ˜̂pr1 > p̂r1.

– Monotonicity with respect to p3. Assume that if p̃3 > p3, it leads to ˜̂pr1 <

p̂r1. Then we again obtain (A.13). From (A.5) it leads to

p̃′′2 > p′′2, ˜̂pr2 > p̂r2,

Then we must have ˜̂pr3 < p̂r3. From (A.6) this implies that

p̃′′′2 < p′′′2 ,
˜̂
X3N3 < X̂3N3 .

It follows that we need to have

˜̂
X2N2 < X̂2N2 .

This leads to ˜̂
X2N2

˜̂
X3N3 > X̂2N2X̂3N3 , which is a contradiction. Now if ˜̂pr1 =

p̂r1. We can show that this implies (A.17) holds. It follows from (A.5) that

p̃′′2 = p′′2, ˜̂pr2 > p̂r2,
˜̂
X2N2 > X̂2N2 .

Thus (A.15) holds. Again this implies ˜̂pr1 > p̂r1, and is a contradiction. There-
fore, the only possibility is ˜̂pr1 > p̂r1.
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– Monotonicity with respect to p4. Assume again that if p̃4 > p4, it leads to
˜̂pr1 < p̂r1. Then we obtain (A.13). It follows that (A.29) and (A.15) hold and
this leads to ˜̂pr1 > p̂r1, which is a contradiction. Now if ˜̂pr1 = p̂r1. We can show
that this implies (A.17) holds. Due to (A.5) it implies

p̃′′2 = p′′2, ˜̂pr2 = p̂r2,
˜̂
X2N2 = X̂2N2 .

Thus from (A.6) we have

p̃′′′2 = p′′′2 , ˜̂pr3 > p̂r3.

Again this implies ˜̂pr1 > p̂r1, and is a contradiction. Therefore, the only possi-
bility is ˜̂pr1 > p̂r1.

– Monotonicity with respect to N1. If Ñ1 > N1 results in ˜̂pr1 < p̂r1. Then
we obtain (A.13). Similarly it follows that (A.29) and (A.15) hold and we have
˜̂pr1 > p̂r1, which is a contradiction. If ˜̂pr1 = p̂r1, following the similar logic, we
can show that this also leads to a contradiction. Therefore, the only possibility
is ˜̂pr1 > p̂r1.

– Monotonicity with respect N2. Still we assume Ñ2 > N2 results in ˜̂pr1 < p̂r1.
Then (A.13) is obtained. Thus from (A.5) we have

p̃′′2 > p′′2, ˜̂pr2 > p̂r2.

Then we must have (A.16) and it leads to ˜̂
X2N2 < X̂2N2 . Thus we have a

contradiction. Now if ˜̂pr1 = p̂r1, it implies (A.17) holds. Then it follows from
(A.5) that

p̃′′2 = p′′2, ˜̂pr2 > p̂r2,
˜̂
X2N2 < X̂2N2 .

Due to (A.6) we obtain (A.16), which implies that

˜̂
X2N2

˜̂
X3N3 < X̂2N2X̂3N3 .

Thus, a contradiction is arrived. Therefore, the only possibility is ˜̂pr1 > p̂r1.

– Monotonicity with respect to N3. Assume Ñ3 > N3 results in ˜̂pr1 < p̂r1.
Then we obtain (A.13) and (A.29) again. Then it follows that

p̃′′′2 > p′′′2 , ˜̂pr3 < p̂r3,

which leads to a contradiction. Now if ˜̂pr1 = p̂r1, it implies (A.17) holds and

p̃′′2 = p′′2, ˜̂pr2 = p̂r2,
˜̂
X2N2 = X̂2N2 .

It follows from (A.6) that

p̃′′′2 = p′′′2 , ˜̂pr3 > p̂r3.

It results in contradiction. Therefore, the only possibility is ˜̂pr1 > p̂r1.
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• Percentage policy.

– Monotonicity with respect to p1. Assume that p̃>p2 leads to ˜̂pr1 ≤ p̂r1.
From (A.7) it follows that p̃′2 < p′2. In addition, from Corollary 3 we obtain

˜̂pr2 ≤ p̂r2,
˜̂pr3 ≤ p̂r3.

Using (A.8) and (A.9) we have

p̃′′2 ≤ p′′2, p̃′′′2 ≤ p′′′2 ,

and it follows that
˜̂
X2N2 ≤ X̂2N2 ,

˜̂
X3N3 ≤ X̂3N3 .

From Lemma A.3, we obtain p̃′2 ≥ p′2, which is a contradiction. Therefore, the
only possibility is ˜̂pr1 > p̂r1

– Monotonicity with respect to pi, i = 2, 3, 4 and to Ni, i = 1, 2, 3. Following
the similar logic, these monotonic properties can be proved.

The monotonic properties in merge system can be proved analogously.

Proof of Corollary 5: This corollary is also proved by contradiction.

• Circulate policy. If p̂rs
1 > p̂rm

3 , from (A.1) we obtain

ps′
2 > pm′

3 , X̂s
10 > X̂m

3N .

– Case 1. If p̂rs
2 < p̂rm

1 , we will have

ps′′
2 < pm′′

3 , X̂s
2N < X̂m

10.

It follows from (A.3) that

ps′′′
2 < pm′′′

3 , p̂rs
3 < p̂rm

2 .

It implies that p̂rs
1 < p̂rm

3 , which is a contradiction.

– Case 2. If p̂rs
3 < p̂rm

2 , by following the similar logic we can show that this also
leads to a contradiction.

– Case 3. If p̂rs
2 ≥ p̂rm

1 , p̂rs
3 ≥ p̂rm

2 , we obtain that

ps′′
2 ≥ pm′′

3 , X̂s
2N ≥ X̂m

10,

and
ps′′′
2 < pm′′′

3 , X̂s
3N < X̂m

20.

It follows from (A.1) that

ps′
2 < pm′

3 , p̂rs
1 < p̂rm

3 .

Again a contradiction is arrived.
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Analogously we can prove that p̂rs
1 < p̂rm

3 also implies contradictory results. There-
fore, the only possibility is p̂rs

1 = p̂rm
3 , i.e, P̂Rs,c = P̂Rm,c.

• Priority policy. If p̂rs
1 > p̂rm

3 , from (A.4) we obtain

ps′
2 > pm′

3 , X̂s
10 > X̂m

3N .

Using (A.5) we have

ps′′
2 < pm′′

3 , p̂rs
2 < p̂rm

1 , X̂s
2N < X̂m

10.

From (A.6) it follows that

ps′′′
2 < pm′′′

3 , p̂rs
3 < p̂rm

2 , X̂s
3N < X̂m

20.

It implies that p̂rs
1 < p̂rm

3 , which is a contradiction. Analogously, p̂rs
1 > p̂rm

3 also leads
to a contradiction. Therefore, the only choice is p̂rs

1 = p̂rm
3 , i.e, P̂Rs,p = P̂Rm,p.

To prove Theorem 3, we need the following lemmas:

Lemma A.4 Consider the sequences X̂2N2(s) and X̂3N3(s), defined in procedures 6 and
7. If X̂2N2(s) > X̂2N2(s− 1) and X̂3N3(s) > X̂3N3(s− 1), then X̂2N2(s + 1) > X̂2N2(s) and
X̂3N3(s + 1) > X̂3N3(s).

Proof: First we consider circulate policy. If

X̂2N2(s) > X̂2N2(s− 1), X̂3N3(s) > X̂3N3(s− 1),

from (3) and monotonicity in serial line (Chiang 1999) we obtain

µ′2(s + 1) < µ′2(s), λ′2(s + 1) > λ′2(s), p̂r1(s + 1) < p̂r1(s), X̂10(s + 1) < X̂10(s).

It follows from (4) and monotonicity in serial line that

µ′′2(s + 1) > µ′′2(s), λ′′2(s + 1) < λ′′2(s), p̂r2(s + 1) > p̂r2(s), X̂2N2(s + 1) > X̂2N2(s).

Analogously, due to (5), we obtain

µ′′′2 (s+1) > µ′′′2 (s), λ′′′2 (s+1) < λ′′′2 (s), p̂r3(s+1) > p̂r3(s), X̂3N3(s+1) > X̂3N3(s).

Using similar logic, the statement is true for priority policy.

Lemma A.5 Sequences X̂2N2(s) and X̂3N3(s) defined in Procedures 6 and 7 are mono-
tonically increasing.

51



Proof: By induction. First we consider circulate policy. For s = 0, from (3)

µ′2(1) = µ2, λ′2(1) = λ2, X̂10(1) < 1.

It follows from (4) and (5) that

µ′′2(1) = 0.5µ2(1− X̂10(1)), λ′′2(1) = λ2 + µ2 − µ′′2(1), X̂2N2(1) > 0,

µ′′′2 (1) = 0.5µ2(1 + X̂2N2(1))(1− X̂10(1)), λ′′′2 (1) = λ2 + µ2 − µ′′′2 (1), X̂3N3(1) > 0.

Thus, we obtain
X̂2N2(1) > X̂2N2(0), X̂3N3(1) > X̂3N3(0).

Now assume for s > 0, X̂2N2(s) > X̂2N2(s− 1) and X̂3N3(s) > X̂3N3(s− 1). Then from
Lemma A.4, we obtain

X̂2N2(s + 1) > X̂2N2(s) X̂3N3(s + 1) > X̂3N3(s).

Similar arguments apply to priority policy.

Proof of Theorem 3: Since the sequences X̂2N2(s) and X̂3N3(s) are monotonic (Lemma
A.5) and are bounded from above and below (Chiang 1999), they are convergent. Therefore,
the limits of p̂ri(s), i = 1, 2, 3, exist.

Proof of Corollary 8: First we prove the property for split system shown in Figure
4.3.

• Circulate policy. The steady state equations of Procedure 6 are as follows:

µ′2 = µ2(1− X̂2N2X̂3N3),

λ′2 = λ2 + µ2 − µ′2,

p̂r1 = PR([λ1, λ
′
2], [µ1, µ

′
2], [c1, c2], N1), (A.18)

e′2 = µ′2/(λ2 + µ2),

X̂10 = 1− p̂r1

c2e′2
,

µ′′2 = 0.5µ2(1 + X̂3N3)(1− X̂10),

λ′′2 = λ2 + µ2 − µ′′2,

p̂r2 = PR([λ′′2, λ3], [µ′′2, µ3], [c2, c3], N2), (A.19)

e′′2 = µ′′2/(λ2 + µ2),

X̂2N2 = 1− p̂r2

c2e′′2
,

µ′′′2 = 0.5µ2(1 + X̂2N2)(1− X̂10),

λ′′′2 = λ2 + µ2 − µ′′2,
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p̂r3 = PR([λ′′′2 , λ4], [µ′′′2 , µ4], [c2, c4], N3), (A.20)

e′′′2 = µ′′′2 /(λ2 + µ2),

X̂3N3 = 1− p̂r3

c2e′′′2
.

Then the production rates of Lines 1-3 can be written as

p̂r1 = c2µ2(1− X̂10)(1− X̂2N2X̂3N3)/(λ2 + µ2),

p̂r2 = 0.5c2µ2(1− X̂2N2)(1 + X̂3N3)(1− X̂10)/(λ2 + µ2),

p̂r3 = 0.5c2µ2(1 + X̂2N2)(1− X̂3N3)(1− X̂10)/(λ2 + µ2).

It follows that

p̂r2 + p̂r3 = 0.5c2µ2(1− X̂2N2)(1 + X̂3N3)(1− X̂10)/(λ2 + µ2)

+0.5c2µ2(1 + X̂2N2)(1− X̂3N3)(1− X̂10)/(λ2 + µ2)

= 0.5c2µ2(1− X̂10)(1− X̂2N2X̂3N3 + X̂3N3 − X̂2N2

+1− X̂2N2X̂3N3 − X̂3N3 + X̂2N2)/(λ2 + µ2)

= c2µ2(1− X̂10)(1− X̂2N2X̂3N3)/(λ2 + µ2)

= p̂r1.

• Priority policy. Similarly, the steady state equations of Procedure 7 are

µ′2 = µ2(1− X̂2N2X̂3N3),

λ′2 = λ2 + µ2 − µ′2,

p̂r1 = PR([λ1, λ
′
2], [µ1, µ

′
2], [c1, c2], N1), (A.21)

e′2 = µ′2/(λ2 + µ2),

X̂10 = 1− p̂r1

c2e′2
,

µ′′2 = µ2(1− X̂10),

λ′′2 = λ2 + µ2 − µ′′2,

p̂r2 = PR([λ′′2, λ3], [µ′′2, µ3], [c2, c3], N2), (A.22)

e′′2 = µ′′2/(λ2 + µ2),

X̂2N2 = 1− p̂r2

c2e′′2
,

µ′′′2 = µ2X̂2N2(1− X̂10),

λ′′′2 = λ2 + µ2 − µ′′2,

p̂r3 = PR([λ′′′2 , λ4], [µ′′′2 , µ4], [c2, c4], N3), (A.23)

e′′′2 = µ′′′2 /(λ2 + µ2),

X̂3N3 = 1− p̂r3

c2e′′′2
.
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Then we obtain

p̂r1 = c2µ2(1− X̂2N2X̂3N3)(1− X̂10)/(λ2 + µ2),

p̂r2 = c2µ2(1− X̂10)(1− X̂2N2)/(λ2 + µ2),

p̂r3 = c2µ2(1− X̂10)X̂2N2(1− X̂3N3)/(λ2 + µ2)).

Again it follows that

p̂r2 + p̂r3 = c2µ2(1− X̂10)(1− X̂2N2)/(λ2 + µ2) + c2µ2(1− X̂10)X̂2N2(1− X̂3N3)/(λ2 + µ2))

= c2µ2(1− X̂10)(1− X̂2N2 + X̂2N2 − X̂2N2X̂3N3)/(λ2 + µ2)

= c2µ2(1− X̂2N2X̂3N3)(1− X̂10)/(λ2 + µ2)

= p̂r1.

Analogously, the same logic can be applied to the merge system. The corollary is
readily obtained.

Proof of Corollary 6: This corollary is proved by contradiction.

• Circulate policy. Assume there exists another solution ˜̂pr1 6= p̂r1.

– Case 1. If ˜̂pr1 > p̂r1, then from (A.18), due to monotonicity of serial lines
(Chiang 1999), it follows that

λ̃′2 > λ′2, µ̃′2 < µ′2,
˜̂
X2N2

˜̂
X3N3 < X̂2N2X̂3N3 ,

˜̂
X10 > X̂10. (A.24)

Now consider the following cases:

∗ Case 1.1. If ˜̂pr2 ≤ p̂r2, from (A.19), we must have

λ̃′′2 ≥ λ′′2, µ̃′′2 ≤ µ′′2,
˜̂
X2N2 ≤ X̂2N2 .

Due to (A.20) and (A.24), it implies that

µ̃′′′2 ≤ µ′′′2 , λ̃′′′2 ≥ λ′′′2 , ˜̂pr3 ≤ p̂r3.

It follows that
˜̂pr2 + ˜̂pr3 ≤ p̂r2 + p̂r3.

From Corollary 8, we have ˜̂pr1 ≤ p̂r1, which is a contradiction.

∗ Case 1.2. If ˜̂pr2 > p̂r2, again using (A.19), we obtain

λ̃′′2 < λ′′2, µ̃′′2 > µ′′2,
˜̂
X2N2 > X̂2N2 .

Due to (A.24), we must have

˜̂
X3N3 < X̂3N3 .
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From (A.19) it implies that

µ̃′′2 < µ′′2, ˜̂pr2 < p̂r2.

Again it is a contradiction to the assumption. Therefore, ˜̂pr1 > p̂r1 is not
possible.

– Case 2. If ˜̂pr1 < p̂r1, analogously we can show that it also leads to a contradic-
tion.

Therefore, the only possibility is ˜̂pr1 = p̂r1, i.e., there is a unique solution.

• Priority policy. Again assume there exists another solution ˜̂pr1 6= p̂r1.

– Case 1. If ˜̂pr1 > p̂r1, then equation (A.24) is obtained. From (A.22), we obtain

µ̃′′2 < µ′′2, ˜̂pr2 < p̂r2,
˜̂
X2N2 < X̂2N2 . (A.25)

By (A.23), it implies that

µ̃′′′2 < µ′′′2 , ˜̂pr3 < p̂r3.

Thus, we obtain ˜̂pr2 + ˜̂pr3 < p̂r2 + p̂r3, which leads to a contradiction. Hence
˜̂pr1 > p̂r1 is not possible.

– Case 2. If ˜̂pr1 < p̂r1, analogously we can show that it also leads to contradiction.

Therefore, the only possibility is ˜̂pr1 = p̂r1, i.e., there is a unique solution.

Proof of Corollary 7: By applying the similar logic in the proof of Corollary 6, the
corollary can be approved.

Proof of Corollary 9: This corollary is also proved by contradiction. First, we consider
the split system.

• Circulate policy. We begin with monotonicity with respect to λi, i = 1, . . . , 4, then
extend to the cases of µi, ci, i = 1, . . . , 4 and Ni, i = 1, 2, 3.

Monotonicity with respect to λ1. Assume that if λ̃1 > λ1, it leads to
˜̂pr1 ≥ p̂r1. Then we must have

λ̃′2 < λ′2, µ̃′2 > µ′2,
˜̂
X2N2

˜̂
X3N3 < X̂2N2X̂3N3 ,

˜̂
X10 > X̂10. (A.26)

∗ Case 1. If ˜̂
X3N3 ≥ X̂3N3 , then from (A.20) we obtain

˜̂
X2N2 < X̂2N2 , µ̃′′′2 < µ′′′2 , ˜̂pr3 < p̂r3,

˜̂
X3N3 < X̂3N3 . (A.27)

This leads to a contradiction.
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∗ Case 2. If ˜̂
X3N3 < X̂3N3 , from (A.19) we must have

µ̃′′2 < µ′′2, ˜̂pr2 < p̂r2,
˜̂
X2N2 < X̂2N2 ,

which implies that

µ̃′′′2 < µ′′′2 , ˜̂pr3 < p̂r3,
˜̂pr1 < p̂r1.

Again it is a contradiction.

Therefore, the only possibility is ˜̂pr1 < p̂r1, i.e., there is a unique solution.

– Monotonicity with respect to λi, i = 2, . . . , 4. Using similar logic, we can
obtain the conclusion analogously.

– Monotonicity with respect to µ1. Assume that if µ̃1 > µ1, it leads to
˜̂pr1 ≤ p̂r1. Then we must have

λ̃′2 > λ′2, µ̃′2 < µ′2,
˜̂
X2N2

˜̂
X3N3 > X̂2N2X̂3N3 ,

˜̂
X10 < X̂10. (A.28)

∗ Case 1. If ˜̂
X3N3 ≤ X̂3N3 , then from (A.20) we obtain

˜̂
X2N2 > X̂2N2 , µ̃

′′′
2 > µ′′′2 , ˜̂pr3 > p̂r3,

˜̂
X3N3 > X̂3N3 . (A.29)

This leads to a contradiction.

∗ Case 2. If ˜̂
X3N3 > X̂3N3 , from (A.19) we must have

µ̃′′2 > p′′2, ˜̂pr2 > p̂r2,
˜̂
X2N2 > X̂2N2 ,

which implies that

µ̃′′′2 > µ′′′2 , ˜̂pr3 > p̂r3,
˜̂pr1 > p̂r1.

Again it is a contradiction.

Therefore, the only possibility is ˜̂pr1 > p̂r1, i.e., there is a unique solution.

– Monotonicity with respect to µi, i = 2, . . . , 4. Using similar logic, we can
obtain the conclusion analogously.

– Monotonicity with respect to c1. We assume that c̃1 > c1 leads to ˜̂pr1 < p̂r1,
then we obtain

λ̃′2 > λ′2, µ̃′2 < µ′2,
˜̂
X2N2

˜̂
X3N3 > X̂2N2X̂3N3 ,

˜̂
X10 < X̂10. (A.30)

∗ Case 1. If ˜̂
X3N3 ≥ X̂3N3 , then from (A.19), we obtain

µ̃′′2 > µ′′2,
˜̂
X2N2 > X̂2N2 ,

˜̂pr2 > p̂r2.

Using (A.20) this leads to

µ̃′′′2 > µ′′′2 , ˜̂pr3 > p̂r3.

In other words, we have ˜̂pr1 > p̂r1, which is a contradiction.
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∗ Case 2. If ˜̂
X3N3 < X̂3N3 , then due to (A.30), we must have

˜̂
X2N2 > X̂2N2 .

From (A.20) this results in

µ̃′′′2 > µ′′′2 ,
˜̂
X3N3 > X̂3N3 ,

which is again a contradiction.

Now if ˜̂pr1 = p̂r1. Following the similar logic, we can show that this also leads
to a contradiction. Therefore, the only possibility is ˜̂pr1 > p̂r1.

– Monotonicity with respect ci, i = 2, . . . , 4. This property can be proved
analogously to the above proof.

– Monotonicity with respect to N1. If Ñ1 > N1 results in ˜̂pr1 < p̂r1. Then we
obtain (A.30).

∗ Case 1. If ˜̂
X3N3 ≥ X̂3N3 , then from (A.19), we obtain

µ̃′′2 > µ′′2,
˜̂
X2N2 > X̂2N2 ,

˜̂pr2 > p̂r2.

Using (A.20) this leads to

µ̃′′′2 > µ′′′2 , ˜̂pr3 > p̂r3.

In other words, we have ˜̂pr1 > p̂r1, which is a contradiction.

∗ Case 2. If ˜̂
X3N3 < X̂3N3 , then due to (A.30), we must have

˜̂
X2N2 > X̂2N2 .

From (A.20) this results in

µ̃′′′2 > µ′′′2 ,
˜̂
X3N3 > X̂3N3 ,

which is again a contradiction.

Now if ˜̂pr1 = p̂r1. Following the similar logic, we can show that this also leads
to a contradiction. Therefore, the only possibility is ˜̂pr1 > p̂r1.

– Monotonicity with respect Ni, i = 2, 3. This property can be proved analo-
gously to the above proof.

• Priority policy. The proof for priority policy is similar to circulate policy.

Proof of Corollary 10:
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• Circulate policy. In Procedure 6, change the name of the parameters as follows:

λs
1 ⇒ λm

4 , λs
2 ⇒ λm

3 ,

λs
3 ⇒ λm

1 , λs
4 ⇒ λm

2 ,

µs
1 ⇒ µm

4 , µs
2 ⇒ µm

3 ,

µs
3 ⇒ µm

1 , µs
4 ⇒ µm

2 ,

cs
1 ⇒ cm

4 , cs
2 ⇒ cm

3 ,

cs
3 ⇒ cm

1 , cs
4 ⇒ cm

2 ,

N s
1 ⇒ Nm

3 , N s
2 ⇒ Nm

1 ,

N s
3 ⇒ Nm

2 .

Also change the serial number of the three lines as follows:

Lines
1 ⇒ Linem

3 ,

Lines
2 ⇒ Linem

1 ,

Lines
3 ⇒ Linem

2 .

Finally, change the estimate of the probability that a buffer is empty to the estimate
of the probability that a buffer is full, and vice versa.

After these three name changes, Procedure 6 becomes Procedure 8. Therefore, we get
p̂rs

1 = p̂rm
3 , i.e, P̂Rs,c = P̂Rm,c.

• Priority policy. After applying the same method, we get the conclusion that p̂rs
1 =

p̂rm
3 , i.e, P̂Rs,p = P̂Rm,p.

58



REFERENCES

Altiok, T., 1997, Performance Analysis of Manufacturing Systems. Springer.

Blackstone, J.H., 2001, Theory of constraints - a status report. International Journal
of Production Research, 39(6), 1053-1080.

Bramson, M. and Dai, J.G., 1999, Heavy traffic limits for some queueing networks.
Annals of Applied Probability, 11(1), 49-90.

Buzacott, J.A. and Shantikumar, J.G., 1993, Stochastic Models of Manufacturing Sys-
tems. Prentice Hall.

Buzacott, J.A., 1994, Coordination Induced Bottlenecks in Multistage Serial Production
Systems. ORSA/TIMS, Detorit.

Chen, H., 1995, Fluid approximations and stability of multiclass queueing networks:
Work-conserving disciplines. Annals of Applied Probability, 5, 637-655.

Chiang, S.-Y., Kuo, C.-T., and Meerkov, S.M., 1998, Bottlenecks in Markovian Produc-
tion Lines: A Systems Approach. IEEE Transactions on Robotics and Automation, 14(2),
352-359.

Chiang, S.-Y., 1999, Bottlenecks in Markovian Production Lines: A Systems Approach.
Dept. of EECS, U. of Michigan, Ann Arbor.

Chiang, S.-Y., Kuo, C.-T., and Meerkov, S.M., 2000, DT-Bottlenecks in Serial Pro-
duction Lines: Theory and Application. IEEE Transactions on Robotics and Automation,
16(5), 567-580.

Chiang, S.-Y., Kuo, C.-T., and Meerkov, S.M., 2001, c-Bottlenecks in Serial Production
Lines: Identification and Application. Mathematical Problems in Engineering, 6, 543-578.

Choi, J.Y. and Reveliotis, S.A., 2003, A Generalized Stochastic Petri Net Model for
Performance Analysis and Control of Capacitated Re-entrant Lines. IEEE Transactions on
Robotics and Automation, 20, 474-480.

Colledani, M., Matta, A. and Tolio, T., 2005, Performance Evaluation of Production
Lines with Finite Buffer Capacity Producing Two Different Products. OR Spectrum, 27,
243-263.

Dai, J.G., 1995, On positive Harris recurrence of multiclass queueing networks: a unified

59



approach via fluid limit models. Annals of Applied Probability, 5, 49-77.

Dallery, Y. and Gershwin, S.B., 1992, Manufacturing Flow Line Systems: A Review of
Models and Analytical Results. Queuing Systems, 12, 3-94.

Delp, D., Si, J., Hwang, Y., and Pei, B. 2003, A Dynamic System Regulation Measure for
Increasing Effective Capacity: the X-Factor Theory. IEEE/SEMI Advanced Semiconductor
Manufacturing Conference and Workshop, Munich, Germany.

Diamantidis, A.C. and Papadopoulos, C.T., 2006, Markovian Analysis of a Discrete
Material Manufacturing System with Merge Operations, Operation-Dependent and Idleness
Failures. Computer & Industrial Engineering, 50, 466-487.

Diamantidis, A.C., Papadopoulos, C.T. and Vidalis, M., 2004, Exact Analysis of a
Discrete Material Three-Station One-Buffer Merge System with Unreliable Machines. In-
ternational Journal of Production Research, 42, 651-675.

Gershwin, S.B., 1994, Manufacturing Systems Engineering. PTR Prentice Hall.

Goldratt, E.M. and Cox, J., 1992, The Goal: A Process of Ongoing Improvement. North
River Press.

Haige, J.W. and Paige, K.N., 2001, Learning Simul8: the Complete Guide. Plain Vu.

Helber, S., 2000, Approximate Analysis of Unreliable Transfer Lines with Splits in the
Flow of Material. Annals of Operations Research, 93, 217-243.

Helber, S. and Jusic, H., 2004, A New Decomposition Approach for Non-Cyclic Contin-
uous Material Flow Lines with a Merging Flow of Material. Annals of Operations Research,
125, 117-139.

Jacobs, D.A. and Meerkov, S.M., 1995, A System-theoretic Property of Serial Production
Lines: Improvability. International Journal of Systems Science, 26, 95-137.

Kumar, P.R., 1993, Re-entrant Lines. Queueing Systems, 13, 87-110.
Kuo, C.-T., Lim, J.-T., and Meerkov, S.M., 1996, Bottlenecks in Serial Production

Lines: A System-Theoretic Approach. Mathematical Problems in Engineering, 2, 233-276.

Lawrence, S.R., and Buss, A.H., 1995, Economic Analysis of Production Bottlenecks.
Mathematical Problems in Engineering, 1(4), 341-369.

Li, J., and Meerkov, S.M., 2000, Bottlenecks with Respect to Due-Time Performance in
Pull Serial Production Lines. Mathematical Problems in Engineering, 5, 479- 498.

Li, J., 2004a, Performance Analysis of Production Systems with Rework Loops. IIE
Transactions, 36, 755-765.

Li, J., 2004b, Throughput Analysis in Automotive Paint Shops: A Case Study. IEEE
Transactions on Automation Sciences and Engineering, 1, 90-98.

Li, J., 2004c, Modeling and Analysis of Manufacturing Systems with Parallel Lines.

60



IEEE Transactions on Automatic Control, 49, 1824-1829.

Li, J., 2005, Overlapping Decomposition: A System-Theoretic Method for Modeling and
Analysis of Complex Production Systems. IEEE Transactions on Automation Sciences and
Engineering, 2, 40-53.

Li, J. and Huang, N., 2005, Modeling and Analysis of a Multiple Product Manufacturing
System with Split and Merge. International Journal of Production Research, 43, 4049-4066.

Li, J., Blumenfeld, D.E., and Alden, J.M., 2006, Comparisons of Two-Machine Line
Models in Throughput Analysis. International Journal of Production Research, 44, 1375-
1398.

Li, J. and Meerkov, S.M., 2007, Production Systems Engineering. WingSpan Press.

Li, J., Blumenfeld, D.E., Huang, N. and Alden, J.M., 2008, Throughput Analysis in
Production Systems: Recent Advances and Future Topics. To appear in International
Journal of Production Research.

Liu, Y. and Li, J., 2007, Modeling and Analysis of Split and Merge Systems with
Bernoulli Reliability Machines. Technical Report PSL-07-02, Dept. of Electrical and Com-
puter Eng., Univ. of Kentucky, Lexington, KY.

Luthi, J., and Haring, G., 1997, Bottleneck Analysis for Computer and Communication
Systems with Workload Variabilities and Uncertainties. Proceedings of 2nd International
Symposium on Mathematical Modelling, 525-534, Vienna, Austria.

Luthi, J., 1998, Interval Matrices for the Bottleneck Analysis of Queueing Network
Models with Histogram-Based Parameters. IEEE Intemational Computer Performance and
Dependability Symposium, 142-151, Durham, NC, USA. IEEE Computer Society Press.

Papadopoulos, H.T. and Heavey, C., 1996, Queueing Theory in Manufacturing Sys-
tems Analysis and Design: A Classification of Models for Production and Transfer Lines.
European Journal of Operational Research, 92, 1-27.

Papadopoulos, H.T., Heavey, C. and Browne, J., 1993, Queueing Theory in Manufac-
turing Systems Analysis and Design. Chapman & Hall.

Shanthikumar, J.G., Ding, S., Zhang, M.T., 2007, Queueing Theory for Semiconductor
Manufacturing Systems: A Survey and Open Problems. IEEE Transaction on Automation
Science and Engineering, 4(4), 513-522.

Tan, B., 2001, A Three-Station Merge System with Unreliable Stations and a Shared
Buffer. Mathematical and Computer Modeling, 33, 1011-1026.

Viswanadham, N. and Narahari, Y., 1993, Performance Modeling of Automated Manu-
facturing System. Prentice Hall.

61



VITA

Yang Liu was born on December 20, 1981 in Kaifeng, China. He received his M.S. and B.S.
from Department of Automation, Tsinghua University in Beijing, China, in July 2006 and
July 2004 respectively. He is studying in the Department of Electrical Engineering at the
University of Kentucky since August 2006.

62


	MODELING AND ANALYSIS OF SPLIT AND MERGE PRODUCTION SYSTEMS
	Recommended Citation

	Abstract
	Title
	Acknowledgements
	Table of Contents
	List of Figures
	List of Files
	Chapter 1 Introduction
	Chapter 2 Literature Review
	2.1 Split and Merge
	2.2 Re-entrant Line

	Chapter 3 Bernoulli Production System
	3.1 Problem Formulation
	3.2 Modeling and Analysis of Bernoulli Split Systems
	3.2.1 Idea of the approach
	3.2.2 Recursive procedures for Bernoulli split system
	3.2.3 Convergence
	3.2.4 Accuracy

	3.3 Modeling and Analysis of Bernoulli Merge Systems
	3.3.1 Idea of the approach
	3.3.2 Recursive procedures for Bernoulli merge system
	3.3.3 Convergence
	3.3.4 Accuracy

	3.4 Structural Properties
	3.4.1 Conservation of flow
	3.4.2 Monotonicity
	3.4.3 Reversibility
	3.4.4 Comparisons


	Chapter 4 Exponential Production Systems
	4.1 Problem Formulation
	4.2 Modeling and Analysis of Exponential Split Systems
	4.2.1 Idea of the approach
	4.2.2 Recursive procedures for exponential split system
	4.2.3 Convergence
	4.2.4 Accuracy

	4.3 Modeling and Analysis of Exponential Merge Systems
	4.3.1 Idea of the approach
	4.3.2 Recursive procedures for exponential merge system
	4.3.3 Convergence
	4.3.4 Accuracy

	4.4 Structural Properties
	4.4.1 Conservation of flow
	4.4.2 Monotonicity
	4.4.3 Reversibility
	4.4.4 Comparisons


	Chpater 5 Extensions
	Chapter 6 Conclusions and Future Work
	Appendix: Proofs
	References
	Vita

