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Micro-Fabricated Hydrogen Sensors Operating at Elevated Temperatures  
 

In this dissertation, three types of microfabricated solid-state sensors had been designed 
and developed on silicon wafers, aiming to detect hydrogen gas at elevated temperatures. 
Based on the material properties and sensing mechanisms, they were operated at 140°C, 
500°C, and 300°C. The MOS-capacitor device working at 140°C utilized nickel instead 
of the widely-used expensive palladium, and the performance remained excellent. For 
very-high temperature sensing (500°C), the conductivity of the thermally oxidized TiO2 
thin film based on the anodic aluminum oxide (AAO) substrate changed 25 times in 
response to 5 ppm H2 and the response transient times were just a few seconds. For 
medium-high temperatures (~300°C), very high sensitivity (over 100 times’ increment of 
current for H2 concentration at 10 ppm) was obtained through the reversible reduction of 
the Schottky barrier height between the Pt electrodes and the SnO2 nano-clusters. 
Fabrication approaches of these devices included standard silicon wafer processing, thin 
film deposition, and photolithography. Materials characterization methods, such as 
scanning electron microscopy (SEM), atomic force microscopy (AFM), surface 
profilometry, ellipsometry, and X-ray diffractometry (XRD), were involved in order to 
investigate the fabricated nano-sized structures. Selectivities of the sensors to gases other 
than H2 (CO and CH4) were also studied. The first chapter reviews and evaluates the 
detection methodologies and sensing materials in the current research area of H2 sensors 
and the devices presented this Ph.D. research were designed with regard to the 
evaluations.    
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Chapter 1 - Introduction 

 

1.1 The significance of H2-sensing study:  

 

Discovered by Henry Cavendish in 1766 and then named by Antoine Lavoisier a few 

years later [1], hydrogen gas has been used by the human kind for many decades. 

Although artificially produced H2 was primarily used in aviation as the floatation gas for 

balloons and Zeppelins in the first one and half centuries after the discovery, nowadays 

gaseous hydrogen exploited by the society are mostly found in the fuel cells, which are 

emerging as a kind of promising clean energy source in the 21st century [2]. Nowadays, 

industries, such as the coal fire power plants and oil refineries, use large amount of H2 at 

high temperatures while H2 is an explosive gas (e.g., back to the age of the Zeppelins, the 

crash of the Hindenburg airship in 1937 in Manchester, New Jersey cost 36 lives [3]), 

detecting hydrogen with trace concentrations at elevated temperatures are applied 

extensively in industries and society.  

 

Besides of portability, cheapness, sensitivity, and rapidity, durability at high-temperatures 

is an indispensable requirement for any materials/structures involved in the sensors 

demanded for H2 fuel cells. In our research, the sensors are additionally required to 

operate in oxygen-free environments.  

 

Based on hydrogen sensors in commercial markets and scientific literatures, several 

detection methodologies and numerous sensing materials have been developed by 
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researchers. The next three sections will present a brief review and evaluation to the 

methods and materials, as well as presenting the fundamental ideas of this research based 

on the review and evaluation. Since the aim of the research is to develop on-chip sensors 

based on semiconductor technologies and microelectromechanical systems (MEMS), 

only solid-state hydrogen sensors will be involved in the review. Non-solid-state 

hydrogen sensors, such as the bulky flame ionization detector, thermal conductivity 

sensor, and nuclear magnetic resonance (NMR) sensor, are not the objects of this Ph.D. 

research.   

 

1.2 Methodologies of detection: 

 

Based on the fundamental approaches of detection, solid-state gas sensors can be roughly 

divided into four major types: optic, acoustic (piezoelectric), electrochemical, and electric. 

Optic sensors record the optical signals resulting from the change in volume, 

reflection/distinction intensity, refractive index, or color of the sensing material (e.g., 

palladium) due to the adsorption of gas molecules [4]. In acoustic sensors, the signal is 

generated from the variation of the characteristics, such as wavelength, phase, and 

attenuation, of certain microwave (usually surface acoustic wave (SAW)) owing to the 

mass change of the sensing material [5]. Currently, a large amount of devices belonging 

to the two types mentioned above is developed upon micro-machined cantilevers [6] due 

to the low-cost and easiness of fabrication in large arrays.  
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Although a lot of optic and acoustic sensors in literatures possess high sensitivities and 

quick responses to H2, three major disadvantages prevent them from being widely used as 

durable, portable, and economy gas detectors at high temperatures. First, the fabrication 

is complicated by the three-dimensional structures involved, such as the cantilever. 

Second, the requirement of light or wave source and detector enlarges the size of the 

overall equipment, as well as increasing the cost. Finally, and the most important, these 

two types of sensors have little compatibility with high-temperature applications, due to 

the sophisticated structure of the sensor, the extremely-temperature-dependence of the 

optic and piezoelectric properties of the sensing materials, and the vulnerability of the 

auxiliary components (light or wave source and detector).  

 

The sensing mechanism of an electrochemical H2 sensor is very close to the principle of a 

hydrogen fuel cell. The current in the solid-state electrolyte, which comprises the body of 

the sensor, is primarily carried by the oxidized state of the hydrogen gas in the ambient, 

the proton [7]. Gas concentrations are measured based on the electrochemical reactions 

occurring on the electrodes and/or at the electrode/solid-state electrolyte interface. While 

this type of sensors usually works at high-temperature in order to enhance the proton 

mobility in the solid-state electrolyte, the low detection limits are always quite high. For 

H2 concentration at ppm levels, the protonic current is too low to be differentiated from 

noises. Also, the large size is a drawback of many electrochemical sensors due to the 

requirement of reference gas chambers.    
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Therefore, the last type mentioned in the first paragraph, the electric sensor, seems to be 

the best candidate so far for detection of low-concentration H2 at elevated temperatures.   

 

“Electric sensor” is just a coined term for expediency. A sensor is called “electric” if and 

only if the signal results directly from the reversible change of certain electronic 

properties of the sensing material, such as resistance (or conductance), capacitance, 

inductance, or any field-effect characteristics (e.g., the capacitance-voltage (C-V) 

relationship of an MOS (metal-oxide-semiconductor) device). This kind of gas or 

humidity sensors was divided into two or three major types in reported reviews [4-5, 8] 

based on their sensing principles. Most of presented electric hydrogen gas sensors can be 

grouped into two kinds of devices: resistors and field-effect devices. Up to now, few 

hydrogen sensors have been reported based on the variation of capacitance or inductance 

(the C-V sensors do not account for this category but belong to the field-effect devices), 

although they are considered as a major kind of detectors for humidity [8].   

 

Fig. 1-1 shows the fundamental sensing principle of a MOS capacitor. H2 molecules 

adsorb on the gate metal surface and then dissociate in to hydrogen atoms (H2↔2H), 

which diffuse in the metal, reaching the metal/oxide interface. Finally, the hydrogen 

atoms form a dipole layer at the metal/insulator (SiO2) interface and an electric field is 

generated, pointing from the gate to the silicon. Thus, the flat band voltage becomes more 

negative and the C-V curve of the MOS capacitor is shifted to the left (assuming the 

semiconductor is p-type silicon). Elevated H2 concentration causes higher dipole density 

at the metal/SiO2 interface and therefore larger C-V shift. If the H2 concentration returns 
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to zero, the dissolved hydrogen will be released from the gate metal and the C-V curve 

regains the original shape. 
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Fig. 1-1 Sensing principle of a typical hydrogen-sensitive MOS capacitor. (a) Device 

scheme and the formation of a dipole layer of hydrogen atoms at the metal/SiO2 interface. 

(b) Shift of the C-V curve due to the introduction of H2.     
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Since the first MOS capacitor H2 sensor reported in the 1970s [9], similar devices have 

been frequently reported. The SiO2 layer beneath the metal gate in Fig. 1-1 (a) can be 

replaced by other insulators and therefore a metal-insulator-semiconductor (MIS) device 

is formed, while SiO2 grown from the silicon wafer (also the substrate of the device) 

usually holds the smallest leakage current density. Also, the silicon in Fig. 1-1 (a) can be 

replaced by other kinds of semiconductors as required by the measurements [9] (will be 

discussed in details in the next section).  

 

The sensing mechanism and electrical characteristics of another major type of field-effect 

H2 sensors, the Schottky diode [10], is shown in Fig. 1-2. A Schottky junction is formed 

at the metal/semiconductor interface. To simplify the problem, no bias voltage is applied 

to the device on both energy band diagrams (Fig 1-2 (a) and (b)). In other words, the 

Schottky junction is always at the flat band. In vacuum or certain inert ambient (e.g., Ar, 

N2), the barrier height is the subtraction of the electron affinity of the semiconductor (χ) 

from the work function of the metal (Φ, assuming Φ>χ). Upon the introduction of H2, a 

process similar to the one described in the last few paragraphs (the MOS capacitor) 

occurs. H2 molecules adsorbed on the metal surface and dissociate into hydrogen atoms 

(H), diffusing into the metal bulk and reaching the metal/oxide interface. The work 

function of the metal thin layer in proximity to the interface is therefore reduced by the 

donation of electrons from the atomic hydrogen (Fig 1-2 (b)). As a result, the barrier 

height of the Schottky junction is lowered down. With bias voltages are applied (Fig. 1-2 

(c)), the current under either forward or reverse bias increases due to the reduction of the 

Schottky barrier height. Higher concentration of H2 results in further reduction of the 
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barrier height, and therefore larger current under certain bias voltage. The reduction of 

the barrier height must always be reversible as long as the sensor is within its life-time.   
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Fig. 1-2 Energy band diagrams at the flat band and current-voltage (I-V) curves of a 

metal/n-type semiconductor interface (a Schottky junction). The metal is assumed to be 

quite thin (e.g., nanometers) in order to neglect the variation of work function along the 

direction normal to the interface. (a) In vacuum or certain inert ambient. (b) After 

exposure to H2. (c) I-V curves of the device when bias voltages are applied. The solid line 

represents the I-V curve in vacuum or certain inert ambient (in the case of Fig. 1-2 (a)); 

the dashed line stands for the I-V curve in the presence of H2 (in the case of Fig. 1-2 (b)). 

UVAC is the energy in the vacuum level. Ec, EF, and EV represent the energies at the 

conduction band, the Fermi level, and the valence band of the semiconductor, 

respectively. 
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The reduction of the barrier height in Fig. 1-2 can be also attributed the atomic hydrogen 

dipoles formed at the metal/semiconductor interface (see Fig. 1-2 (b)). Since these 

dipoles build up an electric field pointing to the semiconductor, the electrons in the bulk 

semiconductor are attracted to the interface, and the depletion of the semiconductor in 

proximity to interface is therefore partially neutralized. On the other hand, the C-V shift 

of the MOS capacitor in Fig. 1-1 can be also ascribed to the reduction of the work 

function of the thin layer of the metal gate close to the metal/oxide interface due to the 

donor effect of the dissolved hydrogen. These two descriptions (dipole formation at the 

interface and reduction of metal work function) for the sensing mechanisms of field-

effect devices are actually equivalent [11]. 

 

Since the C-V shift is generated by the dissolving and dissociation of H2 in the gate metal, 

metals with high hydrogen solubility and exceptional capability to dissociate H2 into 

single atoms, are expected to be good candidate for the MOS sensors. These metals will 

be discussed in details in the next section. 

 

The principle of resistor-based H2 sensor is apparent simple: the conductivity of the 

sensing material changes (reversibly in most cases) with the H2 concentration. However, 

detailed mechanisms are different from one material to another. We will introduce the 

physical and chemical properties of the most frequently reported sensing materials for H2 

in the next section, and the mechanisms of resistivity variation of these materials upon H2 

introduction will be discussed in details.  
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1.3 Sensing materials: 

 

A sensing material (or sensitizer) for H2 is a substance that changes its physical and/or 

chemical properties with regarding to the variation of H2 concentration in the ambient, 

and the resulting changes can be converted into recordable signals. The primary 

interaction between the sensing material and the H2 in the ambient is surface adsorption. 

Therefore, the specific surface area (or surface morphology) of the sensing material 

always have a significantly effect on the amount of hydrogen adsorbed, and therefore on 

the sensing characteristics.  

 

Almost all of the reported sensing materials for solid-state H2 sensors can be divided into 

two groups: metals (including alloys) and metal oxides (including composite or doped 

oxides).  

 

Palladium (Pd) is used or at least involved in most of the reported studies of H2 sensors. It 

is the best hydrogen-dissolving material that absorbs up to 900 times of its own volume 

of H2 at room temperature [12]. As a result of the reversible hydrogen dissolving, the 

conductivity of Pd deceases due to the formation of PdHx (x<1), while detailed 

information about the formation and properties of this unstable metal hydride remains not 

quite clear [12-13]. Since the response (resistance change) of bulk palladium to hydrogen 

is slow and acceptable response speeds can only be acquired at high H2 concentrations, 

Pd is always used as the gate metal of MOS sensors; the sensing principle is not the 

conductivity change but the C-V shift as demonstrated in Fig. 1-1. Hydrogen MOS 
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sensors based on Pd and commercial semiconductor wafers were exhaustively studied in 

the past three decades by researchers [9, 14] due to their great compatibility to the 

semiconductor industry. 

 

In the last few years, significant improvements of the performance of resistive Pd sensors 

have been achieved by the using of nanostructures, on which response times as short as 

less than 100 ms were demonstrated [15-16]. Nonetheless, resistive H2 sensors based on 

Pd nanomaterials are still research-level techniques, whereas the Pd-MOS devices had 

become mature enough to be applied in industries [9]. Furthermore, few Pd-based 

resistive sensors were reported to operate at above room temperature due to the oxidation 

of Pd (will discussed again in the next paragraph).  

 

Although Pd is the preferred sensing material for H2, two major drawbacks remain. First, 

it is expensive, the price was around 30 $/g in 2008 and once reached about 100 $/g in 

2001 [17]. Although a single sensor uses little palladium, considerable amount is 

consumed in mass production. Another drawback is the chemical reactivity. While Pd is 

usually regarded as a stable metal in air, it is oxidized at elevated temperatures (as tested 

in our group, 45 nm-thick Pd thin layer became non-conductive and the metallic luster 

disappeared after N2 annealing at 250°C for 2h due to the small leakage of air into the 

system) and therefore rarely used in sensors of any type working above 300°C.      
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Fig. 1-3 Elements locally close to Pd in the periodic table. 
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In the periodic table (Fig. 1-3), nickel (Ni), a low-cost metal with the average price of 

about only 15 ¢/g in 2008 [18], is located just above Pd and expected to have similar 

chemical and physical properties to the former. In Chapter 3, we will study the sensing 

characteristics and principles of H2 sensors based on MOS capacitors with Ni gate. In Fig. 

1-3, it also can been that ruthenium (Ru), osmium (Os), rhodium (Rh), iridium (Ir), 

palladium (Pd), and platinum (Pt) are proximally located in the table and all belong to the 

VIII Group. Researchers in chemistry, physics, and mineralogy have found out that all 

these six elements share similar chemical and physical properties and their minerals are 

likely to occur together in nature [19]. The capabilities to absorb and dissociate H2, which 

are in common among these elements, have been applied in chemical catalysis from 

many years. Despite of the similarity in chemistry, the resistance to oxidation of Pt or Ir 

is much better than that of Pd. Therefore, for high-temperature hydrogen-sensing (e.g., 

over 300˚C), Pt and Ir have been used as substitutes for Pd and shown good performance 

[9]. Since this dissertation is focused on H2-detection at elevated temperatures, Pt will be 

used in the devices in Chapter 4 as electrodes for resistive sensors and Chapter 5 as the 

metal terminal for Schottky-diode-based sensors.  

 

For high-temperature field-effect devices, the stability or durability of the metal materials 

is just a part of the problems. Traditional Si or GaAs wafers will become conductors at 

the temperatures over 300˚C due their narrow band gaps (less than 1.5 eV). Therefore, 

semiconductors with wide band gaps (>3.0 eV), such as silicon carbide (SiC), diamond 

(C), tin dioxide (SnO2), titanium oxide (TiO2), are applied in the MOS- and Schottky-

diode-based H2 sensors [9, 20]. However, the intimidating prices of SiC or diamond 
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wafers keep this kind of single-crystal materials from being widely applied. Therefore, 

wide-band-gap polycrystalline metal oxides (SnO2, TiO2, ZnO) are more economy 

choices for field-effect H2 sensors operating at high temperatures despite of their high-

density of defects. Sensors based on Pt/SnO2 Schottky junctions will be developed and 

studied in Chapter 5.  

 

As discussed above, besides of being used in field-effect devices, Pd films are also 

reported as H2-sensitive resistors. However, Pd is not durable at very high temperatures. 

To fabricate high-temperature H2-sensitive resistors, another major group of resistive 

sensing materials, the metal oxides, are utilized. According to the reported studies in the 

recent half century [5, 21-22], the majority of metal oxide-based hydrogen sensors works 

in oxygen-rich atmospheres (e.g., air) and the mechanism is that the adsorbed H2 

molecules alleviate or even eliminate the depletion caused by O2 adsorbed prior to the 

hydrogen (as shown in Fig. 1-4). The resistance at the grain-grain boundary, and 

therefore of the overall device, is reduced as a result of the alleviation of the oxygen 

depletion. The major drawback of this type of sensors is that oxygen must be presented in 

the ambient in order to “sensitize” the surface of the metal oxides.  
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Fig. 1-4 Oxygen depletion quenched by hydrogen absorbing of an n-type material (e.g. 

SnO2). (a) Oxygen depletion regions (between the dashed line and the grain surface) in 

two neighboring grains of an n-type metal oxide and the release of oxygen due to 

adsorption of H2 on the surface (water formation). (b) Change in the energy band diagram 

at the grain-grain boundary due to H2 adsorption. Ec, EF, and EV represent the energies at 

the conduction band, the Fermi level, and valence band of the metal oxide, respectively. 
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Although devices operated in air constitute the dominant party of metal oxide-based 

resistive H2 sensors, a different sensing mechanism has been reported and studied for H2 

detection without the necessity of pre-adsorption of O2 on the oxide surface [23, 24]. In 

this mechanism, the dissolved and dissociated hydrogen (mostly in the form of single 

atoms) spills out from the catalytic metal electrodes or metal particle dopants (e.g., Pt or 

Pd) to the surface of the metal oxide thin or thick film and then chemically adsorbed at 

the interstitial positions in the oxide lattice structure. Via this chemisorption, partial 

electron charge is transferred from the spilt hydrogen to the metal oxide. If the oxide is n-

type, the resistance will drop. Different from the metal oxide-based sensors dependent on 

the reduction of energy barrier at the grain-grain boundaries due to the removal of pre-

adsorbed oxygen, the fundamental sensing principle of this kind of devices is the 

elevation of the Fermi level of the metal oxide (assuming n-type) through the partial 

electron charge transfer from the split hydrogen, as shown in Fig. 1-5.  



 20

    

 

 

 

Fig. 1-5 Elevation of the Fermi level of an n-type metal oxide due to the partial electron 

charge transfer from the chemisorbed hydrogen that spills out of the Pt or Pd attached to 

the metal oxide. Ec, EF, and Ev represent the energies at the conduction band, the Fermi 

level, and valence band of the metal oxide, respectively. EF
’ is the elevated Fermi level 

energy owing to the partial electron charge transfer. 
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This “partial electron charge transfer” effect was initially studied in chemical catalysis 

[25]. Until now, most of the hydrogen-sensing studied in this domain are based on Pt-

TiO2 systems [23, 24]. TiO2 thin film resistive sensors with Pt as electrodes will be 

developed and studied in Chapter 4 and the sensing principle is proposed to be the partial 

electron charge transfer resulting from this effect.  

 

1.4 Summary of the designs: 

 

As discussed in the past two sections, commercial [26] and experimental microfabricated 

H2 sensors based on different detection approaches and materials can be summarized in 

the hierarchical organization chart in Fig. 1-6. Electric sensors will be chosen as objects 

for this Ph.D. research due to their high-sensitivity, low-cost, simplicity, and 

compatibility to high-temperature applications. Since material compatibility is the 

primary concern for designing hydrogen sensors operating at elevated temperatures, 

platinum will be used as the electrodes for the devices operating at above 200°C owing to 

both of its chemical stability and competence in dissolving and dissociating H2. Low-cost 

SnO2 thin films will be synthesized to fabricate H2-sensitive Pt/SnO2 Schottky diodes for 

applications at the temperature around 300°C (Chapter 5). In Chapter 4, resistive TiO2 

thin films with Pt electrodes will be prepared for sensing H2 at the temperature as high as 

500°C. MOS capacitors with Ni gates will also be developed for hydrogen detection at 

medium temperatures (e.g., 140°C) due to the low-cost of nickel. 
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Fig. 1-6 Hierarchical organization chart of solid-state hydrogen gas sensors with respect 

to the compatibility to operating temperatures. The maximum tolerable temperature 

ranges for the devices are marked in different colors. 
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Chapter 2 - Technologies and approaches 

 

2.1 Device fabrication: 

 

Since all the sensors in this Ph.D. research use silicon wafers as substrates, conventional 

silicon wafer processes, including RCA cleaning and oxidation, were applied in the 

sensor fabrication. Fig. 2-1 (a) and (b) show the clean bench for RCA cleanings and the 

tube furnace for oxidations (Linderburg Blue HTF55347C).  The role of the RCA 

cleaning is to remove contaminants and the native oxide on the silicon wafer; detailed 

procedures are described in handbooks [1]. Thermal oxidations for silicon wafers were 

performed at high temperatures in flowing O2, and the thickness of the resulting SiO2 is 

dependent on both the temperature and the time [2]. Thicknesses of thermally grown SiO2 

films in this research were determined by a J. A. Woollam M-2000V spectroscopic 

ellipsometer (Fig. 2-1 (c)).  



 28

 

 

 

Fig. 2-1 Major equipments for the silicon wafer processes. (a) Clean bench for RCA 

cleanings. (b) Oxidation furnace. (c) Ellipsometer. 
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Photolithography was used to define patterns on the samples [3]. Four major steps are 

involved in the photolithography: photoresist (PR) coating, baking, exposure, and 

developing. Fig. 2-2 shows the spin coater to disperse the PR, the hot plate to bake the 

coated thick layer of the PR, the mask aligner for exposure, and the solvent hood for pre-

cleaning of the device samples and developing the pattern, as well as for the lift-off 

process following the thin film deposition (see next paragraph). A microscope was used 

to inspect the quality of the photolithography (also shown in Fig. 2-2). 



 30

 

 

 

Fig. 2-2 Major equipments for the photolithography. (a) Spin coater (CEE 100). (b) Hot 

plate (CHEMAT Technology KW-4AH). (c) Mask aligner (Karl Suss 100UV002). (d) 

Solvent hood. (e) Microscope (Carl Zeiss 181549). 
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Thin film deposition techniques, including electron beam (e-beam) evaporation and 

sputtering, were applied to fabricate tens of angstroms to a few microns of metal layers 

on the samples (non-metal materials can be also deposited by these techniques while in 

this research only metals are deposited). The principles of e-beam evaporation and 

sputtering can be found out in textbooks [3]. Lift-off processes, in which the exposed or 

unexposed PR (depending on whether the PR is positive or negative) beneath the 

deposited metal films is dissolved so that the metal layer on top is stripped off, were 

carried out as long as patterns were required on the samples. Heating and ultrasonic 

cleaning may be needed to accomplish the lift-off. The microscope in Fig. 2-2 was used 

to inspect the quality of the lift-off. Thicknesses of the deposited films were determined 

and calibrated by a stylus profiler. 
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Fig. 2-3 Major equipments for the thin film deposition. (a) Torr International EB-4P 

Series electron beam evaporator. (b) AJA International ATC2000 sputtering system. (c) 

Dektak 6M stylus profiler.  
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2.2 Characterization of materials and structures: 

 

The material/structure characterization included the investigation of morphologies of the 

sample surfaces and the determination of crystal phases of the synthesized films. A 

scanning microscope (Hitachi S-4300) and an atomic force microscope (TI A-35) were 

used to study the surface morphologies and the crystal phases are determined by an X-ray 

diffractor (Siemens D500). The principles of scanning microscopy (SEM), atomic force 

microscopy (AFM), and X-ray diffractometry (XRD) can be found out in textbooks [4-5].   
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Fig. 2-4 Major equipments for the material/structure characterization. (a) Hitachi S-4300 

scanning microscope (Copyright 2009, Electron Microscope Center, University of 

Kentucky). (b) TI A-35 atomic force microscope. (c) Siemens D500 X-ray diffractor. 
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2.3 Measurement of gases: 

 

A Barnstead International F21100 tube furnace with adjustable operating temperatures 

was used as the testing chamber for H2 and the assumed cross-sensitive gases, such as CO 

and CH4. Commercial gas tanks (purchased from Scott-Gross) were connected to the 

furnace tube via a multi-input single-output gas flow meter. The concentration of the 

tested gas was prepared by mixing the tested gas with the background gas. Both nitrogen 

and air were used as the background gas. To prepare concentrations below 1000 ppm, 

commercial tanks filled with pre-mixed low-concentration H2 or CO (e.g., 1000 ppm) 

were utilized. The total flow rate was set to over 1 liter/min in order to minimize the 

resident time of the whole system. The overall gas measurement system is shown in Fig. 

2-5. 
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Fig. 2-5 Gas measurement system. 
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Additionally, a special cap for the quartz tube in the furnace was made in the Glassware 

Shop, Department of Chemistry, University of Kentucky. This cap, as shown in Fig. 2-6, 

is equipped with three tungsten rods piercing through the glass without any orifices. The 

sealed penetration was attained by thrusting the tungsten rods into the half-melted glass 

and then cooling the glass down. The major advantage of using this special cap is that the 

testing chamber (inside the tube) is excellently physically separated from but electrically 

connected to the outside.      
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Fig. 2-6 Lab-made cap of the quartz tube with tungsten rods piercing through. 
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Chapter 3 - Hydrogen sensors based on Ni/SiO2/Si MOS capacitors 

 

3.1 Introduction: 

 

Since hydrogen fuel cells are emerging as a promising clean energy source in the 21st 

century, detecting and monitoring of hydrogen leakage will be applied extensively in 

industries and society. Hydrogen MOS sensors based on palladium (Pd) sensing were 

widely studied in the past three decades by numerous researchers [1-4]. The adsorbed and 

dissolved hydrogen atoms form a dipole layer at the Pd/insulator (mostly silicon oxide) 

interface and the work function of the Pd gate is decreased [1, 5, 6]. Although palladium 

(Pd) is well-known for sensing of hydrogen, nickel (Ni), an element in the same group in 

the periodic table as the former, is also good at adsorbing and dissolving hydrogen and 

has been used for hydrogen storage or batteries for many years [7, 8]. When hydrogen 

molecules dissociate on nickel surface and diffuse in the metal bulk, some nickel-

hydrogen compounds are formed under certain conditions [9-11]. Comparing with the 

expensive palladium, hydrogen sensors based on nickel have an advantage of low cost in 

large-scale manufacturing. Up to now, there are no reports on nickel-based hydrogen-

sensing devices using MOS structures. 

 

In this paper, we report a novel Ni-based hydrogen sensor using the Ni/SiO2/Si MOS 

structure. We present experimental results of the performance of the sensor and discuss 

the possible sensing mechanism.  
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3.2 Experimental: 

 

Conventional fabrication processes for silicon MOS capacitors were used. A thin silicon 

oxide layer of 14.4 nm was grown on a regular (100) p-type wafer, following a standard 

RCA cleaning. A nickel film with a thickness of 500 Å was deposited on the silicon 

oxide by argon plasma sputtering and patterned by photolithography. The size of the Ni-

covered area was 5×5 mm2. At a fixed frequency (100 kHz), the capacitance was 

measured as the d.c. bias (gate voltage) was scanned from accumulation to strong 

inversion. The capacitance-voltage (C-V) measurements were carried out at hydrogen 

concentrations of 50 ppm, 100 ppm, 200 ppm, 500 ppm, and 1000 ppm, obtained by 

diluting hydrogen in pure nitrogen or synthetic air. The response/recovery measurements 

for hydrogen concentrations at 100 ppm, 200 ppm, and 1000 ppm were carried out by 

keeping the bias voltage at a constant value (-0.4 V) and monitoring the capacitance as a 

function of time. All the data were collected by using an HP4192 Impedance Analyzer 

with an a.c. testing signal of 100 kHz frequency at 140˚C. 

 

3.3 Results and discussion: 
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Fig. 3-1 C-V curves at different bias voltages for various H2 concentrations diluted by 

nitrogen. 
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Fig. 3-1 shows C-V curves of the Ni/SiO2/Si MOS capacitor in different hydrogen 

concentrations. It can be seen that exposure of the sensor to higher hydrogen 

concentrations causes a shift of the whole C-V curve to a more negative voltage. The 

hydrogen-induced shift of C-V curves is similar to that of the palladium MOS sensors, 

which was attributed to the reduced work function of the gate caused by the formation of 

a polarized hydrogen atom layer at the Pd/SiO2 interface [12-13]. The variation of sensor 

response to the bias voltage is shown in Fig. 3-2. For a certain bias voltage, the response 

(R) is defined as: 

C
ΔC100%R ×=       (3-1) 

where C is the capacitance in pure nitrogen; ΔC is the change in capacitance at a certain 

hydrogen concentration. From Fig. 3-2, it is observed that the highest response always 

occurs at the same bias voltage (-0.4 V) for all concentration levels and the response 

increases with the H2 concentration.  
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Fig. 3-2 Response as a function of bias voltage (in nitrogen). 
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By replotting the data at bias=-0.4 V, the response as a function of the hydrogen 

concentration is shown in Fig. 3-3. It can be seen that the response is reduced 

substantially by changing the carrier gas from nitrogen to synthetic air. Lofdahl et al. [14] 

has observed that at a hydrogen concentration of 250 ppm, the response of a Pt-MOS 

sensor was very small in air although increased considerably in nitrogen. This difference 

in response was ascribed to the existence of oxygen, which caused a high hydroxyl 

formation rate on the Pt surface. The cause of reduction of response of the presented Ni-

MOS sensor in the presence of oxygen might be similar to those of the Pt-MOS sensor, 

while further research is necessary to investigate the principles.  
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Fig. 3-3 Dependence of the highest response on the hydrogen concentration (bias voltage 

= -0.4 V). 
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According to Fig. 3-3, it is plausible to use the Langmuir isotherm model to explain the 

adsorption/desorption mechanism of dissolved hydrogen at the metal/SiO2 interface in 

nitrogen ambient, similar to those proposed for palladium devices [15, 16]. The Langmuir 

isotherm model assumes that, on a given interface, there are a fixed and evenly 

distributed number of active sites for a certain kind of gaseous specie to be adsorbed; and 

one active site can only adsorb one molecule or atom.  

 

As long as equilibrium is established, the solid-state concentration of atomic hydrogen in 

the nickel thin layer will be proportional to the hydrogen partial pressure in the gaseous 

ambient. If we assume that the Ni/SiO2 interface has a fixed number of active sites, the 

dissolved hydrogen coverage (θ) on this interface, at equilibrium, will be functionally 

related to the hydrogen gas concentration, whose square root is proportional to the solid-

state concentration of hydrogen atoms in nickel, as presented in several references [1, 14, 

17-19], 

θ−
θ

=×
1

]H[K 2
1

2         (3-2) 

where K is a constant associated with the temperature. It is reasonable to assume that the 

hydrogen coverage on the Ni/SiO2 interface is proportional to the change of the 

capacitance, because the hydrogen atoms trapped at the interface can be considered as 

polarized dipole charges [13-14, 19-21]. At the maximum coverage (θ = 1), at which all 

of the active sites are occupied by the dissolved atomic hydrogen, the change of the 

capacitance or the response (R) should reach the maximum. Therefore the relationship 

between the response and the hydrogen coverage (θ) can be established as: 
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θ×=
Δ

= k
C
CR            (3-3) 

and     k
C

C
R max

max =
Δ

=        (3-4) 

where ΔC is the change of the capacitance and k is a constant that is equal to the 

maximum response. Rmax is found to be about 35%, corresponding to 1000 ppm hydrogen, 

at which the response to hydrogen is nearly saturated. Use R/Rmax to represent θ, we have 

max

max2
1

2

R
R1

R
R

]H[K
−

=×       (3-5) 

In Fig. 3-4, the experimental data in nitrogen are plotted using the above equation and a 

good linearity is obtained. This means that the proposed Langmuir isotherm model is in 

agreement with our experimental data. However, the fact that the regression line is not 

passing zero might be an indication that some hydrogen molecules could be consumed 

during the diffusion inside the nickel layer, e.g., by the formation of nickel-hydrogen 

compounds. The data for hydrogen concentrations larger than 500 ppm are not plotted in 

Fig. 3-4, because R is quite close to Rmax, leading to a large computation error as shown 

in Eq. (3-5). 
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Fig. 3-4 Dependence of the highest response on the hydrogen concentration, replotted to 

fit the Langmuir isotherm model (bias voltage = -0.4 V, in nitrogen). 
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Fig. 3-5 shows response/recovery transients of the sensor at the bias voltage of -0.4V and 

hydrogen concentrations of 100 ppm, 200 ppm, 1000 ppm in pure nitrogen. The response 

times for reaching 50% peak values (t50%) for hydrogen gases are 23 s from 0 ppm to 

100 ppm, 37 s from 0 ppm to 200 ppm, and 44 s from 0 ppm to 1000 ppm, while 

recovery times are 160 s from 100 ppm to 0 ppm, 270 s from 200 ppm to 0 ppm, and 630 

s from 1000 ppm to 0 ppm. The transient curve of 50 ppm H2 is very close to that of 100 

ppm, and the response/recovery times of 500 ppm are in between of those of 200 ppm 

and 1000 ppm. To avoid confusion, the response/recovery curves for 50 ppm and 500 

ppm are therefore omitted in Fig. 3-5.  
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Fig. 3-5 Response/recovery transients at different hydrogen concentrations (bias voltage 

= -0.4 V, in nitrogen). 
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Response/recovery becomes slow as hydrogen concentrations increase. For all the 

concentrations, the recovery is much slower than the response. The response/recovery of 

our Ni sensors is very similar to that of palladium sensors reported [5, 15]. It was also 

reported that the dissolved hydrogen atoms diffused through the thin oxide layer and 

trapped at the Si/SiO2 interface [5, 22-23]. Removal of the atomic hydrogen depends on 

the sorption or trapping energy, resulting in slow recovery. At high H2 concentrations, a 

large amount of hydrogen atoms are chemisorbed or trapped in the MOS structure, and 

therefore the removal takes longer time.  

 

The device performance at room temperature (25˚C) was also investigated. However, 

both the response and recovery required more than half an hour to reach or retreat to 50% 

peak values (the recovery time (t50%) was found out to be as long as about 2 h as the 

ambient was switched from 100 ppm H2 to pure N2). Very slow transients at room 

temperature had been reported in MOS capacitors with Pd-gates long time ago [1], and 

can be ascribed to the reduced diffusivity of hydrogen in nickel and the decreased 

dissociating rate of H2 into H at lower temperatures. 

 

Two more MOS capacitors with the Ni gate thicknesses of 30 nm and 100 nm 

respectively were also fabricated using the same procedure described in the Section 3.2. 

The responses (as defined in Eq. (3-1)) of devices with three different gate thicknesses to 

200 ppm H2 at the bias voltage of -0.4 V were shown in Fig. 3-6. According the result it 

can be concluded that within the range of 30 to 100 nm of the thickness of the Ni gate, 

the response is not likely to vary significantly. The insignificant influence of gate metal 
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thickness on device response to H2 was also verified by previous Pd- , Pt-, and Ir-MOS 

studies [14]. However, thick gates waste nickel while very thin gates are liable to be 

damaged (e.g., the 30 nm-thick Ni in this report was much easier to be scratched than the 

thicker ones). Therefore, moderate gate thickness is preferable. 
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Fig. 3-6 Ni thickness vs. response (∆C/C) to 200 ppm H2 at 140˚C. Bias voltage = -0.4 V. 
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3.4 Conclusions: 

 

A novel hydrogen sensor based on Ni/SiO2/Si MOS capacitors were fabricated and 

characterized at hydrogen concentrations ranging from 50 ppm to 1000 ppm at an 

operating temperature of 140 ˚C. The highest response occurs at the same bias voltage (-

0.4 V) for all the concentration levels measured and is about 18% at 50 ppm in nitrogen 

ambient. The response/recovery time of the Ni-based sensors is similar to that of the Pd-

based hydrogen sensors. The proposed model based on the Langmuir isotherm is in good 

agreement with our experimental data. Influences of operating temperature and gate 

metal thickness on the device performance were also studied. The low-cost nickel-based 

hydrogen sensors showed the same sensing capability as Pd-based ones, suggesting that it 

is a promising low-cost alternative for hydrogen sensing in oxygen-free environments. 
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Chapter 4 - High-temperature resistive hydrogen sensor based on thin 

nanoporous rutile TiO2 film on anodic aluminum oxide 

 

4.1 Introduction: 

 

The sensing and monitoring of hydrogen leakage is an indispensable issue for hydrogen 

fuel cells [1]. Durable hydrogen sensors working at elevated temperatures with high 

sensitivity and fast response are always desired, while appropriate compatibility to micro-

fabrication is also highly preferred. 

 

During the past few years, hydrogen sensors based on the n-type titanium oxide (TiO2) 

films with the thickness of microns or sub-microns have been studied extensively [2-14]. 

Among these reported devices, films composed of either self-organized TiO2 nanotube 

arrays [8-12] or nano-scaled TiO2 porous structures [6-7, 13-14] are proved to have much 

higher sensitivities over bulk films. The sensing principle is always based on the 

significant and abrupt change in resistance [6-14]. Most of such nano-porous devices are 

fabricated on Ti metal plate or foil, and the top TiO2 is prepared by anodisation followed 

by sintering at elevated temperatures. The major or functional component of the TiO2 

films obtained by this method is anatase, a meta-stable phase of TiO2, which gradually 

converts into rutile, the preferred polymorph of TiO2, at above 430°C for nanotubes [15] 

or 465°C~525°C for nano-crystallites growing over the size of 14 nm [16]. Doping 

inhibitors into the anatase phase (e.g., P2O5 [17]) is only able to reduce the rate of the 

transformation. Due to this reason, most of the TiO2 nanotube sensors were characterized 
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at below 400°C [8-12]. Therefore, for hydrogen detections at temperatures over the onset 

point of the anatase-to-rutile transformation, the durability becomes a problem. 

Furthermore, the metal substrate (Ti foil) is not a durable material due to its high 

chemical activity at elevated temperatures.  

 

Although it had been found that porous films with rutile as the major phase are sensitive 

to hydrogen [6], the sensitivity was quite low [14] or even null [4], especially at above 

400°C [4, 6, 14]. Jun et. al. [18] reported rutile-phased sensors prepared by thermal 

oxidation, with high sensitivity and swift response. However, the substrate was still a 

titanium metal plate, which can be further oxidized or electrically shorted. The operating 

temperature was also limited to less than 300°C. Therefore, the advantage of the rutile-

phased sensor (thermal stability) was not demonstrated.  

 

Another major disadvantage of the above Ti-metal-based devices is the difficulty in size-

shrinking, due to the millimeter-scaled metal substrate. In addition, the oxide/metal 

interface is vulnerable to stress. Cracks are easily formed, causing mechanical failure. On 

considering these problems, fabrication of a nanometer-thick TiO2 film on a stiff and 

durable substrate with good adhesion, which is resistant to thermal and/or mechanical 

stress, is very important for robust hydrogen-detection devices operating at high 

temperatures. 

 

In the last fifty years of the past century, anodic aluminum oxide (AAO) under certain 

preparation conditions was found to have a nano-sized, self-organized, hexagonal porous 
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structure [19-24], and the preparation methods of AAO on non-conductive substrates 

(e.g., silicon wafer with a native/thermal oxide layer on top) have been refined during the 

last ten years [25-27]. AAO films prepared by anodization of aluminum metal films 

coated on durable substrates were used as supporting substrates in H2 gas detection [28-

30] due to their large specific surface area. With a thick barrier layer at the bottom of the 

pores, the AAO porous structure and AAO/substrate interface are almost invincible to 

thermal or even mechanical shocks. In addition, the process for AAO is quite compatible 

to micro-fabrication, and therefore has little difficulty for applications in integrated optic 

and electronic technologies [31-32]. All the advantages of AAO make it possible to be 

used as a platform for thin film sensors [28].  

 

In this study, we will present fabrication, characterization, and performance of hydrogen 

sensors based on very thin rutile-phased TiO2 films supported by porous AAO and plain 

silicon oxide, operating at 500°C. The effect of film thickness and the selectivity over 

other reducing gases than hydrogen will be investigated. Also, possible sensing 

mechanism will be discussed.       

 

4.2 Experimental: 

 

The preparation of AAO started from a commercial (100) silicon wafer with a 300 nm-

thick thermal silicon oxide on the surface, which was coated with a 2.2 µm aluminum 

metal layer through e-beam evaporation.  A two-step anodization procedure was used, in 

which anodization was performed on an Al metal layer in a 0.3 M oxalic aqueous 
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solution under a bias voltage of 40 V, with a platinum plate served as the cathode. The 

anodization details were described in several previous studies and reviews [23, 26, 33-34]. 

Until the Al metal layer was completely converted into porous Al2O3, the sample was 

rinsed by de-ionized water and then immersed in a 0.6 M phosphoric acid solution for 25 

min. at room temperature for pore widening [35].  

 

After rinsing in de-ionized water again and drying, the AAO samples, along with the bare 

thermal oxide substrates (300 nm-thick, grown on commercial (100) silicon wafers), were 

both coated with 25 nm, 50 nm, and 100 nm titanium metal layer through e-beam 

evaporation. Then the samples were oxidized and sintered at 600ºC for 6 h in oxygen 

with a flow rate of 200 ml/min. After sintering, the crystal phase of the oxidized layer 

was examined by a Siemens D500 X-ray diffactometer (Source: Cu-Kα). A Hitachi S-

9300 scanning electron microscope was used to study the surface morphology of the 

samples. 

 

Platinum was used as the electrode material of the samples, due to its chemical inertia. 

Two Pt electrodes arranged in an interdigit configuration were fabricated on the oxidized 

and sintered TiOX film for all the samples. The spacing between digits of the two 

electrodes is 5 µm, as shown in Fig. 4-1. All the samples were equipped with the same 

number of digits by photolithography. However, the electrodes and digits of the samples 

based on plain SiO2 substrates experienced sizeable damages (peeling-off) during the lift-

off of the photoresist (will be mentioned later).      
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Fig. 4-1 Photos of a finalized sample with the TiOX film converted from 25 nm-thick Ti 

on top of the porous AAO substrate, under an optical microscope. The shining regions are 

the coated platinum. Two large Pt areas were connected to the digits in order to make 

electrical contacts. The distance between these two large contact areas is about 2 mm, 

while the spacing between two neighboring digits is only 5µm. The right one has a higher 

magnification.     
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The entire procedure for fabricating the samples based on porous AAO substrates is 

illustrated in Fig. 4-2. For the samples based on plain SiO2 substrates, the preparation 

procedures just include the last three steps of that in Fig. 4-2.  
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Fig. 4-2 Fabrication steps for preparation of porous AAO, thin TiO2 film, and Pt 

electrodes. 
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Resistance measurements at different hydrogen concentration levels (5 ppm-500 ppm), as 

well as 50 ppm carbon monoxide and 2000 ppm methane, were performed using an 

MASTECH M3900 multimeter at elevated temperatures. Nitrogen was used as the 

background gas. Both of the absolute change of conductance (ΔG=Gg–G0, where G0 is the 

conductance in pure nitrogen ambient, Gg is the stabilized conductance at an applied 

hydrogen concentration level) and the relative change of conductance (ΔG/G0) at 

different hydrogen concentration levels will be used to define the sensor responses in this 

presentation. 

 

4.3 Results and discussion: 

 

The surface morphologies of the titanium oxide films on all processed substrates were 

shown in Fig. 4-3, as well as the original substrates. It is noticeable that the oxidized 

layers from the e-beam-evaporated titanium have been shaped by the porous AAO 

substrates (Fig 3 (b) to and Fig. 4-3 (c)). Considering that the sample of Fig. 4-3(b) has 

the same initial thickness of titanium (25 nm) as the sample of Fig. 4-3 (f), it is 

reasonable to speculate that the oxidized film on the porous AAO from 25 nm-thick Ti 

holds much larger specific surface area than that based on the plain SiO2 substrate. Same 

assumption can be drawn by comparing Fig 3 (c) to Fig. 4-3 (g), samples with identical 

thickness of Ti (50 nm) before oxidation but on different substrates. Another substantial 

feature of the morphologies of samples based on porous AAO is the influence of 

thickness on the specific surface area. From Fig. 4-3 (b) to Fig. 4-3 (d), as the oxide 

becomes thicker, the diameter of the pores shaped by the AAO underneath shrinks, 
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reducing the specific surface area. For the oxidized film from 100 nm-thick Ti on AAO 

(Fig. 4-3 (d)), the pores are completely blocked from the top. However, the rough shape 

of the AAO substrate is still visible in Fig. 4-3d and the surface morphology is quite 

different from those based on plain SiO2 (Fig. 4-3 (f) to Fig. 4-3 (h)). Fig. 4-3 (f), Fig. 4-3 

(g), and Fig. 4-3 (h) show similar surface morphology although the thicknesses are 

different.       
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Fig. 4-3 SEM images of surface morphologies: (a) the original porous AAO substrate, (b) 

oxidized from 25 nm Ti on AAO, (c) oxidized from 50 nm Ti on AAO, (d) oxidized from 

100 nm Ti on AAO, (e) the original plain SiO2 substrate, (f) oxidized from 25 nm Ti on 

SiO2 (g) oxidized from 50 nm Ti on SiO2, and (h) oxidized from 100 nm Ti on SiO2. All 

the samples are sintered at 600°C for 6 h in flowing oxygen. 
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Fig. 4-4 shows the XRD spectra for the oxide films prepared by oxidizing Ti metal layers 

with thicknesses of 25 nm,  50 nm and 100 nm on porous AAO substrates at 600ºC for 6 

h in oxygen with a flow rate of 200 ml/min. There are two significant peaks at about 

27.5° and 36° and one wide peak around 33.5° in all the three samples, as well as an 

additional significant peak at about 54.5° for the thickest oxide film only. Considering the 

wavelength of the incident X-ray is 1.54 Å (Cu-Kα), we can figure out through Bragg’s 

Law by referring to the lattice constants of all possible crystals on the surface [36]. All 

the peaks, but the wide one around 33.5° that represents the silicon (200) plane (because 

the porous AAO layer is based on a commercial (100) Si wafer), are corresponding to the 

lattice planes of rutile. Therefore, the metallic Ti layers were completely transformed into 

TiO2 and rutile was the only observable phase in the TiO2 films. This is in agreement 

with previous studies [18, 37, 38, 39], in which rutile was the main product of high-

temperature thermal oxidization of Ti metal. It is believed that nano-crystalline anatase 

with a size smaller than ~14 nm is thermodynamically more stable than rutile under the 

same size limit [40]. However, the coarsening of anatase is a fast process at elevated 

temperatures and the anatase crystallites convert to rutile rapidly as long as the size 

exceeds ~14 nm [16, 40]. Although anatase may have existed during the initial stage of 

the oxidation process at 600°C, the long-time sintering (6 h) made the crystalline grains 

grow and no anatase was detected in the final product.  
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Fig. 4-4 XRD spectra of TiO2 films that were converted from 25 nm, 50 nm, and 100 nm 

Ti metal layers on porous AAO substrates. The as-deposited metal layers were processed 

at 600°C for 6 h in oxygen with a flow rate of 200 ml/min. 
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Response transients of the TiO2 film oxidized from 25 nm Ti on AAO at 500°C are 

shown in Fig. 4-5, the H2 concentration ranges from 5 ppm to 500 ppm. The baseline 

conductance, at which no hydrogen was introduced but only pure nitrogen was in the 

ambient, was found to be ~7 µS or ~142 KΩ. This means the resistivity of the TiO2 film 

oxidized from 25 nm-thick Ti on AAO at 500°C in pure N2 can be roughly estimated to 

be 12.2 KΩ·cm, assuming the device accommodates 90 TiO2 strips with the width of 5 

µm and the length of 0.19 cm among the Pt digits and the volume expansion from Ti to 

TiO2 can be neglected (the density for Ti is 4.51 g/cm-3 and 4.23 g/cm-3 for TiO2 single 

crystal). However, this is a quite sketchy approximation of the resistivity of the converted 

TiO2 thin film, the volume expansion resulting from the oxidation, the dimension of the 

Pt/TiO2 contacts (not point contacts but strips with the width of 1.5~3 µm, as shown in 

Fig. 4-1), the porous shape of the film, and the loose texture of the polycrystalline TiO2 

should be carefully considered in order to compute an accurate value.    

 

According to Fig. 4-5, the conductance change due to the introduction of 5 ppm-500 ppm 

hydrogen is about 25~90 times. For example, at a hydrogen concentration level of 50 

ppm, the stabilized conductance is ~0.35 mS, thus the change from the baseline is around 

50 times (see Fig. 4-6 for details). Although it is less than that of some reported anatase-

phased TiO2 sensors with a resistance drop of 103~104 times upon introduction of 100 

ppm H2 [9, 14], this sensitivity is large enough. More importantly, the data in Fig. 4-5 

was obtained from a rutile-phased sample, supported by an insulating substrate which is 

more robust and durable. The conductance increased rapidly upon the introduction of 

hydrogen. For all the H2 concentration levels measured in Fig. 4-5, the time delay to 
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reach 50% of the platform conductance (t50%) was always about 5~10 s. The recovery was 

quicker than the response (t50%≤5 s) for all concentration levels, indicating a quite fast 

removal of hydrogen from the device.  
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Fig. 4-5 Response transients to 5 ppm, 10 ppm, 20 ppm, 50 ppm, 100 ppm, 200 ppm, and 

500 ppm H2 of the TiO2 film oxidized from 25 nm Ti supported on AAO. The operating 

temperature was 500°C. 
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The influence of specific surface area on H2 response can be demonstrated by comparing 

Fig. 4-6 with Fig. 4-3. Since the TiO2 film converted from 25 nm Ti on AAO (Fig. 4-3 

(b)) has the thinnest thickness and largest pores among all the TiO2 films shown in Fig. 4-

3, it is no doubt that this thin film holds the largest specific surface area. In Fig. 4-6, the 

relative change of conductance (ΔG/G0) of this sample (TiO2 film converted from 25 nm 

Ti on AAO) is also the largest. The ΔG/G0 of the TiO2 film oxidized from 50 nm Ti 

(surface morphology shown in Fig. 4-3 (c)) on AAO is weaker than that of the film 

converted from 25 nm Ti on AAO, indicating a reduction in specific surface due to the 

increasing thickness and the shrinkage in the diameter of the nano-sized pores on the film. 

As the original Ti film becomes even thicker (100 nm), the pores on the TiO2 film shaped 

by the AAO substrate are totally blocked (Fig. 4-3 (d)), and the specific surface area 

drops significantly, resulting in a much weaker ΔG/G0 to hydrogen than the previous two 

samples mentioned in this paragraph. Therefore, the surface morphology plays an 

important role in the response magnitude of the rutile-phase TiO2 thin film on AAO. This 

is in agreement with previous studies, in which surface area is a major factor that 

determines the response magnitude to gases of metal-oxide films, such as TiO2 [6], SnO2 

[41], ZrO2 [42], and, WO3 [43].  



 76

 

 

 

Fig. 4-6 Relative changes of conductance (ΔG/G0) to 5 ppm-500 ppm hydrogen gas of 

samples based on various TiO2 thicknesses as well as different substrates. The operating 

temperature was 500°C for all the samples. 
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The very weak response of the film oxidized from 25 nm Ti based on plain SiO2 should 

be attributed to both the lack of surface area (Fig. 4-3 (f)) and the partial peeling-off of 

the Pt electrodes during the fabrication. Actually the Pt electrodes on this sample suffered 

more peeling-off in the high-temperature (500°C) measurement environment. This 

destruction of the already damaged electrodes had further degraded the performance. The 

very weak response and the vulnerability of the electrodes suggest that TiO2 oxidized 

directly on a plain SiO2 surface, is not suitable for high-temperature hydrogen detection. 

The relative changes of conductance of thicker oxide films (converted from 50 nm and 

100 nm Ti) supported by the plain SiO2 are even weaker than that of the film oxidized 

from 25 nm Ti on SiO2. 
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Fig. 4-7 Transient responses to 50 ppm H2 for AAO-based samples with different TiO2 

thickness: (a) converted from 50 nm Ti, (b) converted from 100 nm Ti. Operating 

temperature: 500°C. 
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Typical response transients of the AAO-based TiO2 film converted from 50 nm and 100 

nm Ti are shown in Fig. 4-7. The sample based on the film oxidized from 100 nm Ti on 

AAO showed not only quite weak response magnitude (Fig. 4-6), but also slow transient 

rates. As summarized in Fig. 4-8, in response to 50 ppm H2, the time delay to reach 50% 

of the platform conductance (t50%) after the introduction of hydrogen of this sample is as 

long as 84 s, which is several times of those of the thinner films (5 s). The recovery time 

(time delay to retreat to 50% of the platform conductance after the shut-off of hydrogen) 

of the thickest film (100 nm-Ti-converted) is 21 s, which is also much longer than those 

of the thinner films (3 s for the film oxidized from 25 nm Ti, 4 s for that from 50 nm Ti). 

This phenomenon, in which TiO2 surfaces with poor specific surface area show slow 

transient rates, has been noticed in previous studies [18, 44]. A reasonable explanation is 

that the nano-scaled geometrical flaws on the TiO2 surface produce an enhanced catalysis 

effect that accelerates the adsorption of H2 or derivatives of H2. According to the theory 

constructed for surface chemical reactions long time ago [45], the reaction rate is directly 

determined by the surface density of active sites, which increases with the specific 

surface area. Therefore, large specific surface area results in fast response.  
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Fig. 4-8 Response and recovery times in terms of t50% for TiO2 films with different 

thicknesses supported by AAO. 
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The response transients of the sample based on oxidizing 25 nm-thick Ti on AAO to 50 

ppm carbon monoxide and 2000 ppm methane are shown in Fig. 4-9. By summarizing the 

relative changes of conductance in Fig. 4-10, it can be seen straightforwardly that the 

sample is also very sensitive to carbon monoxide. At 50 ppm CO, the relative change of 

conductance is about 23 times, nearly half of the ΔG/G0 in response to H2 at the same 

concentration level (around 50 times, see Fig. 4-5 and Fig. 4-6). Whereas the selectivity 

to methane is quite high, the relative conductance change in response to 2000 ppm CH4 is 

approximately as low as 3 times.  
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Fig. 4-9 Response transients to 50 ppm CO and 2000 ppm CH4 of the AAO-based TiO2 

film converted from 25 nm Ti. Operating temperature was 500°C and the background gas 

was N2. 
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Fig. 4-10 Relative changes of conductance of the TiO2 film oxidized from 25 nm Ti on 

AAO in response to 50 ppm H2, 50 ppm CO, and 2000 ppm CH4. 
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The resistance of the TiO2 films fabricated in this presentation increased upon the 

introduction of oxygen, and the recovery took very long time (up to hours) after the shut-

off of oxygen. With synthetic air as the background gas, all the samples showed null 

response to hydrogen. This phenomenon has been observed in previous studies [8, 18].   

 

The sensing mechanism of anatase-phased TiO2 nanotube has been studied rather 

thoroughly [8, 9]. The large, fast, and reversible response is attributed to a “spill-over” 

mechanism, in which hydrogen molecules are adsorbed onto the platinum electrodes, 

dissociating into atoms or even protons, and finally spill out of the Pt, diffusing into the 

surface layer of the TiO2. Once the active hydrogen atom is chemically adsorbed at the 

interstitial positions in the oxide lattice structure, partial electron charge is transferred to 

the n-type TiO2 and the conductance increases rapidly [46]. Also, the adsorption of 

hydrogen atoms is enhanced by the large specific surface area [9].  

 

It is reasonable to consider the sensing principle of the sensors presented in this paper as 

a spill-over mechanism as well, due to the considerable resistance drop and the swift 

response transients (Fig. 4-5), as well as the enhanced relative change of conductance 

(Fig. 4-6) and accelerated transient rates (Fig. 4-7, Fig. 4-8) by the enlarged specific 

surface area. The swiftness of the transients indicates that the change of conductance is 

primarily from the partial charge transfer from/to the chemically adsorbed hydrogen 

atoms but not electrons transfer from/to the totally ionized hydrogen atoms (protons), 

which causes severe hysteresis due to the slow ionization process. Since the background 

gas is pure nitrogen and the conductance reaches full recovery, the “oxygen-removal” 
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mechanism [47], involving desorption of the oxygen adsorbates on the oxide surface by 

combination with hydrogen to form water (Oad+2Had→H2O), is definitely not applicable. 

Furthermore, the fast and reversible response has ruled out the possibility of hydrogen 

reduction of Ti4+ into Ti3+ [48]. 

 

The null response in air was ascribed to the re-oxidation of the TiO2 lattice by Varghese, 

et al [8]. Furthermore, the Pt thin-film electrode itself is a catalyst for hydrogen-oxygen 

combination [49], since the hydrogen concentration is quite low (ppm levels) and the 

background gas is 20% O2 (synthetic air), it is very likely that the platinum surface is 

covered with adsorbed oxygen and hydrogen atoms or molecules are consumed very 

quickly before the spill-over occurs.      
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Fig. 4-11 Relative change of conductance and response time in terms of t50% of the TiO2 

film oxidized from 25 nm-thick Ti at different operating temperatures, in response to 50 

ppm H2. 
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Fig. 4-11 shows the performance of the device based on the TiO2 film converted from 25 

nm-thick Ti in response to 50 ppm H2 at 300°C, 400°C, and 500°C. It is found out that 

the magnitude of the response (ΔG/G0) is enhanced slightly as the operating temperature 

drops. In the upper curve in Fig. 4-11, ΔG/G0 increases about 30% as the operating 

temperature falls from 500°C to 300°C. However, the response rate becomes much 

slower at lower temperatures. At 300°C, t50% is more than 3 times of that at 500°C (see 

the lower curve in Fig. 4-11). The enchantment in ΔG/G0 can be considered as a result of 

increased degree of hydrogen adsorption on the TiO2 surface at low temperatures, while 

in the meantime, the surface reactions are severely retarded due to higher activation 

energies required at low temperatures and therefore t50% is substantially prolonged. Based 

on the results in Fig. 4-11, higher operating temperatures are preferred for the device 

based on the TiO2 film oxidized from 25 nm-thick Ti. The 30% decrement in response 

magnitude becomes trivial when comparing to the 3-time faster response rate, as the 

temperature increases from 300°C to 500°C. 

 

4.4 Conclusions: 

 

Hydrogen sensors based on TiO2 films oxidized from e-beam-evaporated thin layers of 

metallic titanium on AAO were prepared through regular micro-fabrication steps. The 

specific surface area plays a key role in the sensing. Expanded specific surface not only 

significantly improves the relative change of conductance, but sharply increases the 

transient rates of response and recovery. The stable rutile phase, as well as the chemical 

stability and mechanical stiffness of the AAO, make it possible to fabricate durable high-



 88

temperature hydrogen sensors, which are chemically and mechanically stable. The porous 

AAO surface also helps the adhesion of thin-film metal electrodes.  
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Chapter 5 - Highly hydrogen-sensitive SnO2 nanoscale grain films with 

platinum electrodes 

 

5.1 Introduction:  

 

Use of tin dioxide (SnO2) in detection of reactive gases can be traced back to 1960s [1]. 

Due to its high sensitivity and low operating temperature [2-3], SnO2-based gas-sensing 

devices are more preferable over those based on other metal oxides (e. g., ZnO [4], WO3 

[5]), and in the last two decades of the 20th century there were abundant studies of SnO2 

gas-sensors [6-9].  

 

Since early 1990s, nano-crystalline SnO2 (doped or un-doped) has become a focus in gas-

sensing studies due to its highly improved sensitivity [10-11]. Various shapes of nano-

structured SnO2, including nano-particle-based films [12-16], nano-wires [17-19], nano-

belts [20-21], nano-rods [22], and self-assembled or pattern-transferred nano-porous 

structures [23-24], were fabricated and studied for their gas-sensing properties. Currently 

there are several fabrication approaches for preparation of nano-structured SnO2 for gas 

detections, such as sol-gel [12-13, 15, 25-27], pyrolysis [28-30], sputtering [14, 31], 

chemical vapor deposition [32], rheotaxial growth and thermal oxidation (RGTO) [33-42], 

etc. Among these processes, RGTO, in which SnO2 is formed by oxidizing metallic tin 

films deposited on certain substrates in dry environments, has an advantage in obtaining 

high aspect-ratio nano-structures [33, 42] and controlling the grain size distribution [35]. 

Since the SnO2 particles obtained from the sub-micron-thick Sn film by RGTO are 
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distributed on almost a uniform plane [36] (“two dimensional”), the irreversible 

coarsening of the crystallites at elevated temperatures, which causes fast aging for those 

nano-particle-composed SnO2 thick films (“three dimensional”) [23], is substantially 

inhabited. Furthermore, the RGTO approach holds good compatibility to MEMS 

processes as well as industrial microelectronic technologies because no wet-chemical 

processes are used.    

 

However, most of the reported SnO2 devices prepared through RGTO were focused on 

NOx or CO detection [33-34, 36-38, 40-41]. Although there were some studies 

concerning about H2-sensing by RGTO-fabricated SnO2 thin films, either the response 

magnitude was too low [42] as comparing to the micron-thick un-doped SnO2 films 

consisting of nano-particles prepared by sol-gel or pyrolysis [25, 28], or the operation 

temperature is too high (e.g., 450°C-530°C [33]), or detailed sensing properties were 

absent [33, 35].    

 

VIII group metals, especially platinum (Pt) and palladium (Pd), have been used as 

electrodes for hydrogen detectors for a long time due to their adsorption of hydrogen and 

capability of dissociating H2 into atoms [43-46]. H2 molecules adsorbed on the Pt or the 

Pd electrode surface are believed to break into hydrogen atoms which migrate into the 

metal bulk or even to the metal-oxide (n-type) contact, reducing the work function of the 

metal and therefore lowering the Schottky barrier height (SBH) at the metal/oxide 

interface. This effect has been studied and applied to develop hydrogen sensors based on 

Pd (or Pt)/SiO2 MOS structures [47], as well as those based on Pd (or Pt)/TiO2 (or SnO2) 
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Schottky diodes [48-54]. Although fabrication of Pd (or Pt)/TiO2 Schottky devices and 

their sensing properties to reactive gases were thoroughly investigated during the last two 

decades [49-51, 53-54], gas-sensing studies on Pt/SnO2 diodes were much less frequently 

reported than the former. The research of gas-sensitive Pt/SnO2 devices is focused on 

varistors [55-56], in which the sensing mechanism is not the reduction of the barrier 

height at the Pt/SnO2 interface but the lowering of barriers between SnO2 grains. In this 

paper, we present a novel Pt/SnO2 Schottky junction-based hydrogen sensor with high 

sensitivity, fast response, and good selectivity at low concentrations of hydrogen. The 

thin films are composed of nano-sized SnO2 grains converted from the electron-beam-

evaporated metallic tin films on thermally oxidized silicon wafers. 

 

5.2 Experimental:  

 

The fabrication procedures are illustrated in Fig. 5-1. A (100) commercial silicon wafer 

was used as the substrate. Dry oxidation was performed on the wafer following a 

standard RCA cleaning, and the final thickness of the silicon oxide (SiO2) was about 100 

nm. The wafer was then cut into small pieces. Five pieces with approximately the same 

sizes were used as samples. Tin (purity 99.99%) was deposited on the samples with 

thicknesses of 5 nm, 10 nm, 20 nm, 50 nm, and 100 nm using electron-beam (e-beam) 

evaporation. The evaporation rate was kept in the range of 0.4 - 1.0 Å/s, and the chamber 

pressure was less than 5×10-6 torr. Thermal oxidation was performed on the evaporated 

Sn films at 200ºC for 2 h, then 400ºC for 2 h, and finally 600ºC for 8 h in pure oxygen 

with a constant flow rate of 200 ml/min. The ramp rate was 5ºC/min for all temperature 
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switches. The surface morphologies of the as-deposited Sn films and the oxidized films 

were studied using a Hitachi S-4300 field emission scanning electron microscope (FE-

SEM) and a TI A-35 atomic force microscope (AFM). The crystalline phase of the 

oxidized films was determined by a Siemens D500 X-ray diffractometer. The source of 

the X-ray is Cu-Kα (λ=1.54Å). 
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Fig. 5-1 Process flow of the fabrication procedure. 
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Interdigital platinum electrodes were fabricated on all the samples using e-beam 

evaporation and photolithography (Fig. 5-2). The thickness of the Pt layer was 60 nm and 

the electrode separation was 5 µm. The samples were annealed in pure nitrogen at 500ºC 

for 1 h before any sensing measurements were conducted. Fig. 5-2 shows a device under 

an optical microscope, for which the thickness of the as-deposited Sn film is 20 nm.  
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Fig. 5-2 Photos of devices with SnOx film obtained from oxidation of a 20 nm-thick Sn 

film. Shining regions are Pt electrodes. The separation between neighboring Pt fingers is 

5 µm. Higher magnification is applied to photo on the right.      
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Current-voltage (I-V) measurements at different H2 concentration levels (10 ppm - 1000 

ppm, balanced by nitrogen or synthetic air) were performed at 300ºC. Bias voltage levels 

ranging from ±0.2V to ±1.2V were applied to the Pt electrodes in Fig. 5-2 by a Hewlett 

Packard 6236B triple outlet power supply and the resulted current values were measured 

by a Mastech M3900 digital multimeter. Since both electrodes were Pt, the bias polarity 

was assigned arbitrarily. Cross-sensitivities of 100 ppm CO and 2000 ppm CH4 were also 

tested. The relative response to H2 is evaluated by I/I0, where I0 is the current intensity in 

pure N2 and I is the current intensity in the tested gases under a certain bias voltage. The 

response/recovery transient rates are represented by t50%, which is the time delay to reach 

or retreat to half of the stable signal.  

 

5.3 Results and discussion:  
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Fig. 5-3 XRD patterns of oxidized Sn films. The thickness of the as-deposited Sn film is 

100 nm, 20 nm, 5 nm, respectively.  
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The X-ray diffraction (XRD) pattern of the oxidized Sn films is shown in Fig. 5-3. It can 

be seen that all peaks belong to cassiterite, a rutile-structured crystal phase of tin dioxide 

[57]. Therefore we may conclude that the e-beam deposited metallic Sn films were 

completely converted to SnO2, and cassiterite is the only detectable crystal phase. 

Detailed studies on the thermal oxidation of evaporated Sn films showed that heating in 

oxygen at 600ºC for 8h is sufficient for oxidation of the entire 100 nm-thick Sn film [58-

59]. Since the intensity of the peak of the silicon (200) plane (2θ value is around 33.5°, as 

we have seen Fig. 4-4) is very weak and the position is quite close to the large and strong 

cassiterite peak around 34°, the peak observed for Si in the XRD spectra of the TiO2 

films in Chapter 4 is indistinguishable in Fig. 5-3.    

 

Fig. 5-4 shows the SEM images of both as-deposited Sn metal films and the SnO2 films. 

Since the melting point of Sn is as low as 232°C [57], and the substrate holder was 

mounted very close to the evaporation source, the condensed thin layer grew 

predominantly in liquid-phase, agglomerating into nano-sized grains on the ultra-smooth 

silicon wafer substrate due to surface tension. It is also observed that under the same 

evaporation conditions, the Sn grain size shrinks as the film thickness decreases. 

Furthermore, for thicker films, there were observable small particles in the intergranular 

regions (Fig. 5- 4 (d) and (e)). 

 

This film-growth mechanism is believed to be a typical Volmer-Weber mode suggested 

by previous researchers [42, 60, 61]. The dependence of grain size on film thickness and 
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the formation of the small particles between large grains have also been confirmed using 

computer simulations [62].  
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Fig. 5-4 SEM images of the surface morphologies of Sn and SnO2 films with different 

thicknesses. (a) 5 nm-thick as deposited Sn film; (b) 10 nm-thick as deposited Sn film; (c) 

20 nm-thick as deposited Sn film; (d) 50 nm-thick as deposited Sn film; (e) 100 nm-thick 

as deposited Sn film; (f) SnO2 oxidized from 5 nm-thick Sn film; (g) SnO2 oxidized from 

10 nm-thick Sn film; (h) SnO2 oxidized from 20 nm-thick Sn film; (i) SnO2 oxidized 

from 50 nm-thick Sn film; (j) SnO2 oxidized from 100 nm-thick Sn film. The oxidation-

sintering procedure was described in the Experimental section. Note that any one image 

in the lower row is the oxidized morphology of the sample in the upper row in the same 

column, e.g., (f) is oxidized from (a).      
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During the thermal oxidation that started at a slow temperature ramping rate (5ºC/min), 

the agglomerated morphology of the deposited Sn was transformed from metal into oxide. 

According to the two-dimensional morphologies in Fig. 5-4, the change of particle size 

and surface roughness due to the Sn-SnO2 transformation is not very significant. 

However, AFM images (Fig. 5-5) do demonstrate raised particle height and therefore 

increased roughness as a result of oxidation. Comparing the two images in Fig. 5, the 

particle height is considerably enlarged after oxidation and sintering (200ºC for 2 h, then 

400ºC for 2 h, and finally 600ºC for 8 h). This indicates that the volume expansion 

caused by oxidation is mostly on the direction normal to the substrate plane (z-axis), 

while little volume change occurs on the directions parallel to the substrate plane (x- and 

y-axis) due to the confinement of the wafer substrate beneath the Sn or SnO2 film.    
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Fig. 5-5 AFM images of the 20 nm-thick as-deposited Sn film (a) and the SnO2 film 

produced by oxidation of the former (b). 
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The results of the I-V measurements for devices with different SnO2 thicknesses in pure 

N2 and 100 ppm H2 (balanced by N2) are shown in Fig. 5-6. It can be seen that all of the 

I-V curves in 100 ppm hydrogen are primarily ohmic, while in pure nitrogen the curves 

look like from reversely biased Schottky junctions in varying degrees. For thicker oxide 

films, such as the samples converted from 50 nm- and 100 nm-thick as-deposited Sn film, 

the I-V curves are more like ohmic than Schottky. For the thinner oxide films (oxidized 

from 5 nm-, 10 nm-, 20 nm-thick as-deposited Sn), however, the details of the I-V curves 

in pure N2 is not clearly displayed due to the scale of the plots. Therefore, these three 

curves are re-plotted in Fig. 5-7. 
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Fig. 5-6 I-V curves of devices based on SnO2 films with different thicknesses: (a) 

oxidized from 5 nm-thick as-deposited Sn; (b) oxidized from 10 nm-thick as-deposited 

Sn; (c) oxidized from 20 nm-thick as-deposited Sn; (d) oxidized from 50 nm-thick as-

deposited Sn; (e) oxidized from 100 nm-thick as-deposited Sn. All the measurements 

were processed at 300°C. 
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Fig. 5-7 I-V curves for the devices based on the three thinner SnO2 films (oxidized from 

5 nm-, 10 nm-, 20 nm-thick as-deposited Sn films) in pure N2. 
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In Fig. 5-7, very weak currents were observed at the bias voltage ranging from 0.2V to 

1.2V, although the current increases slightly and non-linearly with the voltage, for either 

polarity. Based on the results displayed in Fig. 5-6 and Fig. 5-7, it is reasonable to 

speculate that Schottky barriers exist at the Pt/SnO2 interfaces as long as the ambient 

atmosphere is pure nitrogen. The whole device can be considered as two Schottky diodes 

connected back-to-back (or head-to-head). The overall Pt/SnO2 interface can be regarded 

as a kind of “mixed phased contact” [63-64] that consists of both Schottky and ohmic. As 

the SnO2 film is thicker than that converted from 20 nm as-deposited Sn film, ohmic 

contact becomes dominant (Fig. 5-6 (d) and (e)). Therefore, the currents in pure N2 in Fig. 

5-6 (d) and (e) are much larger than their counterparts in thinner films (Fig. 5-7).  
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Fig. 5-8 Transient curves in response to 100 ppm H2 in N2 for devices based on SnO2 

films oxidized from 5 nm-, 10 nm-, and 20 nm-thick as-deposited Sn films. Bias voltage: 

0.5V. Operating temperature: 300°C.  
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In the presence of 100 ppm H2, the Schottky barrier height (SBH) is lowered to such 

extent that electrons can easily cross the barrier at low voltage and the I-V curve becomes 

approximately linear. This is observed on all devices with various SnO2 thicknesses. Fig. 

5-8 shows the reversible response/recovery transient curves to 100 ppm H2 on SnO2 films 

oxidized from 5 nm-, 10 nm-, and 20 nm-thick as-deposited Sn films (the reversible 

transient curves for thicker oxide films (converted from 50 nm- and 100 nm-thick as-

deposited Sn films) is not plotted in Fig. 5-8 due to their large absolute current values and 

low relative responses (I/I0)). The response/recovery times to 100 ppm H2 of SnO2 films 

oxidized from 5 nm-, 10 nm-, and 20 nm-thick as-deposited Sn films are summarized in 

Fig. 5-9. The response times are all around 7 s. Regarding the delay of the gas delivery 

system, the reaction of the sensor to H2 should be considered as a fast process.  
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Fig. 5-9 Response/recovery times (t50%) for devices based on SnO2 films oxidized from 5 

nm-, 10 nm-, and 20 nm-thick as-deposited Sn films. 
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The mechanism of this interface phase-conversion can be ascribed to the following 

sequential processes: (1) H2 adsorbs on the Pt electrode surface; (2) H2 dissociates into 

atomic hydrogen (H), which is an electron donor; (3) H migrates into Pt, reaching the 

Pt/SnO2 interface, causing reduction of work function of the Pt in proximity to the 

interface and the SBH is lowered down. This mechanism has been demonstrated in 

several previous studies [49-50, 52, 54]. Fig. 5-10 illustrates the reduction of the SBH 

caused by hydrogen introduction. The uniformity in the response or recovery rates 

regardless of the film thickness (Fig. 5-9) also supports the mechanism proposed above. 

Since the sensing (change of current) results from the reduction of the SBH at the 

Pt/SnO2 interface, major kinetic processes of H2 adsorption (response) or desorption 

(recovery) occurs only on the electrode (Pt) surface and in the bulk, and thus the 

thickness of the SnO2 film has little influence on the transient rate.  



 119

 

 

 

Fig. 5-10 Energy phase diagrams of the fabricated Pt/SnO2 interface (a Schottky junction) 

under zero bias: (a) in pure N2; (b) after exposure to H2. Φ is the work function of 

platinum in pure nitrogen (5.64 eV in vacuum [57]), Φ' is the modified work function due 

to the introduction of hydrogen, and Φ>Φ'. χ is the electron affinity of SnO2 in pure 

nitrogen (around 4.50 eV in vacuum, as calculated in [65]). UVAC is the energy in vacuum 

level. Ec, EF, and EV represent the energies at the conduction band, the Fermi level, and 

valence band of the SnO2 nano-grain film, respectively.      
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Although the SBH reduction mechanism illustrated in Fig. 5-10 is supported by I-V 

curves and transient rates, the magnitudes of relative responses (I/I0) of SnO2 films with 

different thicknesses, as shown in Fig. 5-11, does not suggest a simple model. Due to 

large absolute currents in pure N2 (Fig. 5-6 (d) and (e)), I/I0 values of the two thicker 

films (oxidized from 50 nm- and 100 nm-thick as-deposited Sn) are much lower than 

those of the thinner films. The large current in pure N2 is apparently from the significant 

content of ohmic contact existing at the Pt/SnO2 interface [63-64], which can be 

confirmed by the “poor linear” shapes of the I-V curves in pure N2 in Fig. 5-6 (d) and (e).  
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Fig. 5-11 Relative response (I/I0) of SnO2 films with different thicknesses under the bias 

voltage of 0.5V. The x-axis represents the thickness of the as-deposited Sn films before 

oxidation.  
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As a polycrystalline semiconductor, SnO2 has high densities of defects at the grain 

boundaries [66]. Although most of the Pt-SnO2 contact regions have high SBH values as 

verified by X-ray photoelectron spectroscopy (XPS) [66], minority contact patches with 

low SBH dominate the I-V characteristics, just like a set of parallel resistors for which the 

total resistance is primarily decided by the small ones. This phenomenon has also been 

frequently observed and verified by computer simulations on other defect-rich 

semiconductors [63-64, 67]. In this research, we believe that the significant ohmic 

components on the samples with as-deposited Sn thickness of 50 nm and 100 nm are 

caused by the local low SBH Pt/SnO2 contact patches at the grain boundaries. However, 

for the samples with thin SnO2 films (converted from 5 nm, 10 nm, and 20 nm-thick as-

deposited Sn), the low SBH contact patches are “pinched off” by the depletion regions 

created by the high SBH metal/semiconductor patches that surround the formers [63-64, 

68]. It is reasonable to assume that the size of the grain boundary, at which low SBH 

exists, is roughly proportional to the grain size. Therefore a pinch-off model to explain 

the discrepancy in the Pt/SnO2 contact phases (good Schottky or Schottky-ohmic mixed) 

between the thin SnO2 films with small grain sizes and the thick films with large grains 

can be shown in Fig. 5-12.                       
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Fig. 5-12 Pinch-off model for (a) small (converted from thin Sn film as-deposited) and (b) 

large SnO2 grains (converted from thick Sn film as-deposited). The depletion depths 

(shown as the “thickness” of the shadowed regions) in (a) and (b) are identical. Large 

grains in (b) and small grains in (a) are assumed to be in the same shape (geometrically 

similar).   
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In Fig. 5-12 (a), even if any low SBH contact exists locally at a grain boundary between 

the small grains, it is electrically confined to the boundary by the depletion regions that 

penetrate throughout the grains to the SnO2/SiO2 interface. In Fig. 5-12 (b), since the 

grain is so large and thick, the depletion depth, which is independent of the grain size or 

thickness, stops far beyond the SnO2/SiO2 interface, and the low-SBH contacts at the 

grain boundaries cannot be pinched off.               

 

Although Fig. 5-12 provides a qualitative model that reasonably explicates the grain-size-

dependent mixed phase contacts of the presented Pt/SnO2 devices, details of this model 

remains not quite clear. The depth of the depletion region drawn in Fig. 5-12 can be 

regarded as the Debye Length (LD) of the prepared SnO2. According to literatures [25], 

sol-gel produced SnO2 has a Debye Length of around 3 nm. In Fig. 5-12 (b), if the 

minimum thickness of the grain (from the grain top to the SnO2/SiO2 interface) is 50 nm 

(significant ohmic characteristic is observed in the I-V curve in pure N2 of the SnO2 film 

converted from 50 nm-thick as-deposited Sn, as shown in Fig. 5-6 (d)), then the LD 

should be much less than 50 nm. But this rough analysis cannot solve an exact value of 

LD in order to support or weaken the model presented in Fig. 5-12. Further experiments, 

such as ballistic electron emission microscopy (BEEM) and spectroscopic approaches for 

local SBH values, high-resolution SEM and TEM for the grain shapes, and Hall 

measurements for the carrier density (nc) of the prepared SnO2 (LD ~ nc
-0.5) are necessary 

in order to construct a reliable quantitative model for the speculated grain-size-dependent 

Pt/SnO2 contacts of the presented devices.  

 

According to Fig. 5-11, the relative response (I/I0) reached the maximum (168 times) for 

the SnO2 film converted from the 20 nm-thick as-deposited Sn film. The small values of 

I/I0 for the thicker films (converted from 50 nm- and 100 nm-thick as-deposited Sn films) 

can be attributed to the poor Schottky contacts (or more ohmic-like contacts) that cause 

large I0, as discussed above. Because the Pt/SnO2 interfaces of thinner films (converted 

from 5 nm-, 10 nm-, and 20 nm-thick as-deposited Sn films) are much better Schottky 

contacts, the corresponding leakage currents (I0) are quite low and thus the I/I0 ratios are 

very large (Fig. 5-6 (a), (b), and (c), and Fig. 5-7). However, there should be an extra 
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mechanism that is responsible for the decrease in I/I0 as the SnO2 film becomes thinner 

than the one converted from the 20 nm-thick as-deposited Sn film (See Figure 5-11).  
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Fig. 5-13 Circuit model of the devices based on SnO2 films oxidized from 5 nm-, 10 nm-, 

and 20 nm-thick as-deposited Sn. 
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The circuit model drawn in Fig. 5-13 simulates the overall device in pure N2 as long as 

the Pt/SnO2 contact is in good Schottky phase with little leakage. The two back-to-back 

diodes represent the Pt/SnO2 interfaces beneath the paired electrodes. The resistor (R) 

represents the whole serial resistance in the loop, in which the resistance of the SnO2 film 

between the electrodes is the dominant constituent (other equivalent components, such as 

the resistors and/or capacitors in parallel to the Schottky diodes, are omitted in Fig. 5-13). 

Although thinner film bears high resistance, the magnitude of the loop current does not 

vary too much with the film thickness (Fig. 5-7), due to the much higher resistance at the 

reverse-biased Schottky junction. Whereas at the presence of 100 ppm H2 and under a 

constant bias voltage, the SBH becomes so low that the resistance at Schottky junction is 

trivial, the loop current is mostly determined by the resistance R, which decreases with 

the film thickness. Therefore, as the SnO2 film turns thinner, the resistance R increases so 

that the loop current drops in the 100 ppm H2 ambient.  
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Fig. 5-14 Dependence of relative response (I/I0) on H2 concentration for the device based 

on SnO2 films oxidized from 20 nm-thick as-deposited Sn.                 
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Under the bias voltage of 0.5 V and at the H2 concentration of 100 ppm, since the highest 

I/I0 was found on the device based on the SnO2 film converted from 20 nm-thick as-

deposited Sn at 300°C, the relationship between I/I0 and H2 concentration was further 

tested, as shown in Fig. 5-14. It was found that the device was quite sensitive to hydrogen, 

I/I0 reached about 144 times at the H2 concentration as low as 10 ppm. However, 

significant saturation was observed over 100 ppm H2.      
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Fig. 5-15 Transient curves in response to 100 ppm CO and 2000 ppm CH4 for the device 

based on the SnO2 film oxidized from 20 nm-thick as-deposited Sn. Bias voltage: 0.5V. 

Operating temperature: 300°C. 
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The response transients to 100 ppm carbon monoxide and 2000 ppm methane of the 

device based on the SnO2 film converted from the 20 nm-thick as-deposited Sn film are 

shown in Fig. 5-15. Relative response (I/I0) values are extracted from Fig. 5-15 and re-

plotted in Fig. 5-16. Undoubtedly, the device’s response to CO was much less than that to 

H2, and no response was found for CH4 at the concentration as high as 2000 ppm.    
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Fig. 5-16 I/I0 values in response to 100 ppm H2, 100 ppm CO, and 2000 ppm CH4 for the 

device based on the SnO2 film oxidized from the 20 nm-thick as-deposited Sn film.  
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Upon introduction of oxygen into the pure nitrogen ambient, the device current decreases 

and null responses (I/I0≈1) to 10 ppm ~ 1000 ppm H2 were recorded on all the fabricated 

devices in synthetic air (80% N2 + 20% O2) at 300°C under bias voltages ranging from 

±0.2V to ±1.2V. The current drop at O2 introduction can be attributed to the elevation of 

SBH due to the chemical adsorption of oxygen molecules (usually electron acceptors) at 

the electrode/oxide interface [52], as well as due to the increased SnO2 resistance 

resulting from the surface depletion caused by the adsorbed oxygen [53]. The null 

response to H2 in air should result from the platinum-catalyzed hydrogen-oxygen 

combination (H2O formation), which was reported to be 100% complete at the 

temperature as low as 150°C [69]. Null or very weak H2 response in air or oxygen for 

sensors based on SnO2 or TiO2 equipped with platinum electrodes has been reported in 

multiple studies [54, 70-71]. In addition, the null response at the presence of oxygen 

further excludes the likelihood that the quite high and fast response to hydrogen in pure 

N2 is caused by the removal of lattice oxygen in the SnO2 films.  

 

5.4 Conclusions:  

 

Sn layers with thicknesses from 5 nm to 100 nm were prepared on silicon wafers by e-

beam evaporation. After thermal oxidation, SnO2 films composed of nanoscale grains 

with thickness-dependent sizes were obtained. Novel hydrogen sensors were formed by 

coating interdigital Pt electrodes on the nano-grain SnO2 films. Very high signal and fast 

responses to H2 in low concentrations were found on thinner films. A sensing mechanism 

is proposed, i.e. the H2-induced reduction of the SBH at the Pt/SnO2 contact is 

responsible for hydrogen sensing. An improved model is also proposed to elucidate the 

discrepancies between the experimental results and the simple SBH-reduction mechanism.      
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Chapter 6 - Summary and future works 

 

6.1 Summary of the research: 

 

Three types of H2 sensors operating at elevated temperatures were developed based on 

micro-fabrication technologies. Significant improvements were achieved as comparing to 

previously reported devices. The sensing mechanisms were investigated and verified to 

be consistent with existing theories. The structural features of the devices were studied by 

micro-to-nano scale materials characterization approaches. Detailed conclusions for each 

device can be found in Section 3.4, 4.4, and 5.4. 

 

6.2 Future works:  

 

The research presented in this dissertation can be extended to the following directions: 

 

(1) Construction of quantitative models for devices presented in Chapter 4 and 5. 

Although the mechanisms have been proposed and supported by the experimental data, 

detailed numerical models will help better understand the sensing properties and improve 

the performances.     

 

(2) H2 microsensors operating at ultra-high temperatures (600 - 800°C). Above 600°C, 

sub-micron-thick Pt film strips off the substrate, in spite of the material or surface 

roughness of the substrate. Inserting adhesive layers, such as chromium (Cr) and titanium 
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(Ti), between the Pt film and the substrate would not provide remarkable improvement. 

Due to this, lifetimes of microfabricated gas sensors for ultra-high temperature 

applications were always short [1] and long-term stable devices were rarely reported [2]. 

Durable H2 sensors operating at over 600°C were usually electrochemical devices 

equipped with macroscale Pt electrode, i. e., millimeter-to-centimeter-sized bulky Pt 

sintered from Pt ink or paste [3, 4]. The development of micro-sized H2 sensors tolerant 

to ultra-high temperatures will be a noteworthy topic for the next-step research.      

 

(3) High temperature H2 sensors operating in both nitrogen and air ambients. Although 

the operation environment of the devices presented in this research is limited to oxygen-

free ambients, O2 gravely interferes with the hydrogen sensing of all these devices. 

Therefore improved sensors with good sensing performances in oxygen-rich ambients are 

necessary in case the existence of oxygen is unavoidable. SiO2 thin films have been 

developed as a type of filters for O2 and other large gas molecules on H2 sensors [4]. Thin 

film filters may also be applied to the devices presented in this dissertation in order to 

minimize the interference from oxygen. 
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