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ABSTRACT OF DISSERTATION 

 

 

PATTERN RECOGNITION INTEGRATED SENSING METHODOLOGIES (PRISMS) 

IN PHARMACEUTICAL PROCESS VALIDATION, REMOTE SENSING AND 

ASTROBIOLOGY 

 

 

 Modern analytical instrumentation is capable of creating enormous and complex 

volumes of data.  Analysis of large data volumes are complicated by lengthy analysis 

time and high computational demand.  Incorporating real-time analysis methods that are 

computationally efficient are desirable for modern analytical methods to be fully utilized.  

The use of modern instrumentation in on-line pharmaceutical process validation, remote 

sensing, and astrobiology applications requires real-time analysis methods that are 

computationally efficient.   

Integrated sensing and processing (ISP) is a method for minimizing the data burden and 

sensing time of a system. ISP is accomplished through implementation of chemometric 

calculations in the physics of the spectroscopic sensor itself. In ISP, the measurements 

collected at the detector are weighted to directly correlate to the sample properties of 

interest.  This method is especially useful for large and complex data sets.  In this 

research, ISP is applied to acoustic resonance spectroscopy, near-infrared hyperspectral 

imaging and a novel solid state spectral imager.  In each application ISP produced a clear 

advantage over the traditional sensing method.   

The limitations of ISP must be addressed before it can become widely used.  ISP is 

essentially a pattern recognition algorithm.  Problems arise in pattern recognition when 

the pattern-recognition algorithm encounters a sample unlike any in the original 

calibration set.  This is termed the false sample problem.  To address the false sample 

problem the Bootstrap Error-Adjusted Single-Sample Technique (BEST, a non-

parametric classification technique) was investigated.  The BEST-ISP method utilizes a 

hashtable of normalized BEST points along an asymmetric probability density contour to 

estimate the BEST multidimensional standard deviation of a sample.  The on-line 

application of the BEST method requires significantly less computation than the full 

algorithm allowing it to be utilized in real time as sample data is obtained. This research 

tests the hypothesis that a BEST-ISP metric can be used to detect false samples with 

sensitivity > 90% and specificity > 90% on categorical data. 



KEYWORDS: Process Analytical Technology, Chemometrics, False Sample, Bootstrap  

  Error-Adjusted Single-Sample Technique, Integrated Sensing and   

  Processing 
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Section I: Background 

 

 

Chapter One- Pattern Recognition, Integrated Sensing and Processing and 

Chemometrics 

 

 

Introduction 

 

Modern analytical instrumentation is capable of collecting an enormous amount of data.  

Hyphenated and hypernated techniques are commonly employed and produce a wealth of 

information from a single sample
1-3

.  The large and diverse data volumes that are 

generated from modern techniques must be carefully analyzed to reveal meaningful and 

useful relationships among the data.  This becomes a difficult task when real-time results 

are needed.  Consider the combination of hyperspectral imaging and synthetic aperture 

radar (SAR) for military target identification
4
.  The combining of these imaging 

techniques generates both spectral and spatial feature information of target scenes.  The 

sensor output may comprise millions of pixels covering hundreds of discrete wavelength 

intensities.  In a combat situation HSI alone is capable of producing greater than 10
12

 

pixels/day which would require on the order of 10
16

 flops/day to process
5
.  Taking into 

account that valuable target information may be hidden within the data, there is a need to 

rapidly reduce the data from physical fields to high level information.     

 Integrated Sensing and Processing (ISP) is a method of physically reducing high-

dimensional data at the sensor to produce a low-dimensional representation of the 

underlying high-level information.   ISP was initiated by the Defense Advanced Research 
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Projects Agency (DARPA) as a paradigm for the implementation of mathematical 

processes into sensor design
6
.  There are a number of mathematical (chemometric) 

methods that are commonly applied to determine correlations within data sets.  The 

application of ISP in the data collection process essentially weights the raw data 

according to a chemometric method.  This weight function results in low-dimensional 

high-level data that resemble a mathematic computation.  In this respect, ISP is 

essentially a pattern recognition algorithm in that it produces a mathematical computation 

that resembles a predefined pattern. 

 Modern microelectronics, optics, mechanical and computer technology facilitate 

the acquisition of high-quality and large data volumes.  Today, the Analytical chemist 

typically spends more time analyzing data then on its actual acquisition.  To this end, 

there is sufficient reason to explore methods which simplify the data analysis procedure.  

The following chapter is meant to serve as an introduction to pattern recognition and 

integrated sensing and processing.    Within the following section the chemometric 

techniques used will also briefly be discussed. 
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Pattern Recognition 

 

The ability to classify patterns is accomplished easily by humans yet instilling this in a 

machine becomes an exceedingly complex task and has yet to be fully realized. Pattern 

recognition (PR) is a field of science that has been evolving since the development of 

computer technology.  There are innumerable applications of PR which range from 

common programs like automated bill payment software or speech and text recognition to 

the more extensive and elusive applications such as artificial intelligence.  The Oxford 

English dictionary defines PR as “the process by which a computer, the brain, etc., 

detects and identifies ordered structures in data or in visual images or other sensory 

stimuli”
7
.  While computers cannot be programmed to match the human ability to identify 

ordered structures they can be programmed to tackle statistical specific tasks.  For 

example, Hyperspectral imaging (HSI) of aspirin tablets can easily be done on-line.  Each 

HSI may contain information on hundreds of tablets moving down a process line.  

Imagine that for each image pixel the physical observations, such as aspirin 

concentration, of a single tablet are represented as a 1 x n vector, x where n represents the 

number of discreet wavelengths, and can be mapped onto a single point in n-dimensional 

space, X.  When the physical properties of multiple vectors are similar they lye close 

together in X. Using a priori knowledge of the statistical distribution of aspirin tablets of 

specific concentrations, pattern recognition can be used to determine whether the tablets 

on the process line are within a defined concentration range.  Therefore, the position of x 

in X-space may be used to make a prediction about the physical properties of an aspirin 

tablet.  Figure 1.1 describes this process.  For the pattern recognition routine to be 

complete a decision boundary in X-space must be specified.  The decision boundary is 
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identified according to a classification routine.    In this work the bootstrap error-adjusted 

single-sample technique (BEST) is used to determine the class of objects in an n-

dimensional space.  The BEST creates a nonparametric boundary (contour) in 

multidimensional standard deviations (MSDs) around each cluster in X-space.  Objects 

falling within a 3 MSD contour are considered to be from the same population.  Figure 

1.2 illustrates the use of BEST distances as a decision boundary for the pattern 

recognition algorithm.   

With the use of PR in analytical sensors it has become possible to automate many 

measurement processes.  The automation and real-time control of measurement processes 

is at the center of what is termed process analytical technology (PAT).  PAT is a 

paradigm with the goal of understanding and controlling manufacturing processes
8
.  

Although PAT is a Food and Drug Administration (FDA) initiative the advantages 

associated with it extend to other manufacturing areas.  It is widely recognized that on-

line and at-line measurements are required for better process understanding and have the 

ability to save time and cost while producing a better quality product.  A system that is 

capable of controlling or predicting a measurement through real-time control of the 

process is termed a dynamic data driven application system (DDDAS).   

In a DDDAS data is incorporated in to the measurement process dynamically 

rather than statically.  In this manner the predictions and measurements become more 

reliable.  In the HSI example previously used, a DDDAS system would control the 

manufacturing process based on real-time feedback of tablet data.  As manufacturing 

conditions change the DDDAS would have the ability to adjust in real-time.  This is a 

process that is commonly applied to hurricane forecasting.  Data from the US Air Force 
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53
rd

 Weather Reconnaissance Squadron (“Hurricane Hunter”) aircraft is used to update 

computer models in real-time to make better predictions and storm tracking forecasts.  

The prediction accuracy based on the updated information has produced as much as a 

30% increased in warnings and predictions
9
.    

The advantages of PAT and DDDASs are evident however; they are difficult to 

implement because of the processing requirements associated with multivariate data.  

Another disadvantage is the use of multivariate data in prediction models.  Techniques 

such as HSI can produce a large number of intensity values over a wide range of discrete 

wavelengths.  Problems arise when including many dimensions into the classification 

model.  This is known as the “curse of dimensionality” and there are many publications 

on the subject
10-12

.  A detailed examination of the subject is out of the scope of this paper.  

However, it is well understood that for a training set of size m x n, where m is the number 

of samples and n, the number of predictor variables, m must be much larger than n.   

Generally it is taken that to estimate the sample distribution of m in n-dimensional space 

the ratio of samples to dimensions (predictor variables) must be greater than ten (

)
13

.  Because of this it is often necessary to use chemometric techniques to extract a 

small number of useful features from the data.   

 Feature extraction is an important aspect in a PR algorithm.  The feature 

extraction process works to reduce the dimensionality of the PR space which has 

advantages in measurement cost and classification accuracy.  Dimensionality reduction 

also aids in the visualization of the data, storage and retrieval, and noise removal.  There 

are a number of data reduction techniques available such as principal component analysis 

(PCA)
14-15

, kernel PCA
16

, partial least squares (PLS)
17

, and Fisher linear discriminant 
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analysis
18

.  Data reduction techniques function to reduce multivariate data to high-level 

information.  This step is an essential part of the PR process.  However, many of these 

techniques require a high computational cost.  The purpose of the aforementioned 

statistical methods is to find a smaller subset of the multivariate data that accurately 

represents the physical properties of the sample.  This generally involves the translating 

and rotation of the data to a new coordinate system.  This can be done by calculating the 

eigenvectors and eigenvalues of the data covariance matrix.  Calculation of the data 

covariance matrix cannot always be done at an efficient rate to handle large data feeds 

such as those from on-line imaging.  The development of rapid and real-time data 

reduction techniques will improve future PR systems and facilitate the use of PAT sensor 

systems throughout the manufacturing industry.  One such method of reducing data to 

high-level useful information is by integrating the sensing and processing directly into the 

detector.   
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Integrated Sensing and Processing 

An alternative approach to performing factorization techniques post data acquisition is to 

perform them during the acquisition process.  Integrated sensing and processing (ISP) is a 

method that incorporates information about the sample directly into the physical design 

of the data collection process.  ISP is an alternative approach to traditional factorization 

techniques.  In traditional methods sampling is performed to obtain data which is then 

analyzed to reveal information about the sample.  The statistics gained from the analysis 

can be applied to future data sets but computation will always follow sampling.  The 

computational processes following sampling in traditional methods are applied with ISP 

during the sampling process by weighting the raw data at the sensor, making computation 

following data acquisition unnecessary.  This works well for situations where there is 

more than enough time for calibration before data collection, but limited time after. For 

example, consider the PAT initiative in the pharmaceutical industry.  An ideal PAT for 

on-line processes must be nondestructive and have the ability to make accurate and rapid 

measurements.  It would be very difficult to analyze hundreds of terabytes of HSI data 

from tablets moving down a process line in real time.  As imaging technology becomes 

smaller and cheaper, the ratio of “pixels to pupils” is moving toward infinity. It is 

certainly possible with today‟s technology to collect data for 100% of the pharmaceutical 

tablets on a production line.  It is analyzing all of that data and acting on it that is 

problematic.  An ISP approach to process monitoring would work well under these 

circumstances where high sample throughput is required.   

 ISP is well suited for optical and acoustic spectroscopy.  In optical spectroscopy 

ISP is achieved by weighting the optical spectrum at the detector to encode high-level 
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information about the analyte.  In acoustic resonance spectroscopy ISP is accomplished 

by weighting the acoustic excitation waveform to encode high-order information at the 

detector.  There are numerous approached to ISP in both acoustics and optical 

spectroscopy.  Three ISP methods are discussed in this paper and the theoretical 

approaches can be found in their respective sections.  The commonality between each 

method is the use of principal components in the algorithm design.  The implementation 

of an ISP sensor into the data collection design has the advantages of a reduced 

computational cost, increased throughput and signal-to-noise.   

 The advantages of ISP as a PAT in sensing processes are evident.  However, the 

limitations of ISP must be addressed before it can become widely used.  ISP is essentially 

a pattern recognition algorithm that can be performed both optically and acoustically.  

Problems arise in pattern recognition when the pattern-recognition algorithm encounters a 

sample unlike any in the original calibration set.  This is termed the false sample 

problem.  The false sample problem is only an issue if the calibration set used to select 

the ISP method contained every substance in the known universe.  Figure 1.3 illustrates 

the absorption regions from overtones and combinations of common functional groups in 

the near-IR region of the electromagnetic spectrum.  Consider the use of an ISP algorithm 

in near-infrared (IR) hyperspectral imaging for ethanol detection.  If a sample contains 

nothing but ethanol, theoretically a filter could be used to weight all light transmitted to 

the detector except that of ethanol.  An ISP filter for hyperspectral imaging could be 

composed from molecules containing all functional groups except –OH. All light would 

be blocked (weighted) by the filter except light that reveals ethanol concentration.  The 

ISP filter would be immune to false samples as long as functional groups absorbed light 
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completely and only where indicated in a spectra-structure correlation chart.  However, in 

real life, everything absorbs light at all wavelengths in the near-IR.  Different chemicals 

just absorb light in slightly different amounts at all wavelengths.  It is this property of 

absorbance that creates a need for multivariate analysis and can lead to false-sample 

problems.     

For example, consider contamination of pharmaceuticals.  Millions of pills are 

recalled each year at great expense.  In 2006, 500 mg acetaminophen tablets were 

contaminated with metal wire leading to the recall of 11 million bottles
19

.  Metal wires 

act like perfect electrical conductors at near-IR wavelengths and thus have no 

distinguishing spectral features.  Even if a PAT HSI system had been in place to analyze 

100 % of the tablets, it is possible that the contaminant would have been predicted as a 

reasonable concentration of the drug.  Calibration of an ISP algorithm would not have 

considered metal in the training set.  The false sample problem is further exacerbated 

when the foreign object has a similar spectrum to the analyte (isospectrality).   

 Integrated sensing and processing strategies for optical and acoustic spectroscopy 

have potential for use in many areas because of the real-time processing power.  

However, it is impossible to integrate sensing and processing to encompass all 

conceivable contaminants.  For these reasons a fast, ISP method of false sample detection 

is needed.   
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Chemometrics 

According to the International Chemometrics Society (ICS) chemometrics is “the science 

of relating measurements made on a chemical system or process to the state of the system 

via application of mathematical or statistical methods”.  With the advancements of 

microelectronics and computer technology today, the analyst is capable of acquiring high 

quality information with relative ease.  These advancements have also led to better 

understanding of the basic theories and methodologies associated with modern analytical 

chemistry.  The field of chemometrics has led to a wide range of new theories and 

algorithms for manipulating chemical data as well.  Many chemometric theories and 

applications are routinely applied in all areas of chemistry from pharmaceutical sciences 

to chemical engineering.  In this work there are several commonly applied chemometric 

techniques that are used such as multiplicative scatter correction, cubic spline smoothing 

and multiple linear regression (MLR) that will not be presented in this section.   For 

information on these techniques the reader is directed to several source materials
20-22

.  

Two techniques which are at the center of this work will, however be covered in this 

section.  Principal component analysis (PCA) is a data reduction technique that is used in 

this work and is what the ISP techniques are based on.   The bootstrap error adjusted 

single sample technique (BEST) is used throughout for classification of data clusters and 

as for false sample detection and thus will be presented here as well.  The performance 

metrics for evaluating the classification models will also be presented.   

Principal Component Analysis (PCA).  PCA is one of the most commonly used tools for 

preprocessing multivariate data
14-15,23

.  PCs are calculated according to the singular value 

decomposition (SVD).  The SVD is considered to be a very important computational tool 
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because of its properties such as its use in solving ill-conditioned systems
24

.  This is 

especially useful for analyzing physical data because in most situations the physical 

observations will lead to ill-conditioned systems.  Ill-conditioned systems are problematic 

due to the fact that very small changes in observed data can cause very large changes in 

calculated answers.  These changes can have an enormous effect on predictions by 

causing very large errors. For example, consider the equation  

 

The system is easily solved and the solutions for x1 and x2 are found to be 101 and 200, 

respectively.  Introducing a small change to one number in the system can have an 

enormous effect on the answer. For example, .  

 

Solving this system, the solutions for x1 and x2 are now calculated to be -40300 and -

80400, respectively.  The large error in the answer is evident. 

SVD begins by the factorization of an (m x n) matrix A (for n > m) according to 

Equation 1.1. 

       1.1 

Where V is an m x m orthogonal matrix, S is an m x m matrix of positive and real 

singular values of A and are ranked according to their variance such that

, and U
T
 is an orthogonal n x n matrix.  The standard principal component solution, 
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D is formed from the combination of V and S.   Two important aspects of PCA can be 

expressed by equation 1.2. 

      1.2 

Where di and ui are the i
th

 column vectors of the D and U matrices and A
(k)

 is the closest 

rank-k matrix to A such that A
(k)

 minimizes the sum of the squares of the difference of the 

elements of A and A
(k)

, .  One, small singular values have little effect on 

the summation while large singular values contribute significantly to the sum, and two, 

when small singular values are omitted from the summation the corresponding rank is 

lower.  It is important to note that if a variable in A has a much larger variance than the 

rest it will dominate the first PC.  To avoid this situation each variable in the raw data is 

usually standardized to zero mean and unit variance.  When the raw data is normalized 

there is a direct correspondence between the covariance matrix of A and the principal 

components, D calculated from S which are ordered according to the variance of the data 

set.  The PC loadings, U are calculated such that the corresponding PCs are not 

correlated.  PCA is equivalent to a rotation of axis such that the first PC contains the 

largest amount of variation the second PC contains the next greatest and so on until all of 

the variation is accounted for.   

 PCA is an excellent data reduction technique for large data set.  In most cases 

only a few PCs are needed to represent the variation in the data set.  In a pure two 

component system the variation of the components could theoretically be captured by the 

first two PCs assuming the components were not correlated.  However in practice this 

will not always be the case.  Interferences, detector noise, drift and other inconsistencies 
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will no doubt make the number of PCs needed to describe the variation greater than that 

of the individual components.    It is generally accepted however, that the number of PCs 

should be less than half of the number of training set samples used in the analysis. 

Bootstrap Error-adjusted Single-sample Technique (BEST). The BEST is a 

nonparametric method for estimating the distribution of a sample
25-29

.  The BEST metric 

provides advantages over other methods because it does not assume equal covariance for 

all spectral groups and that each group is drawn from a normally distributed population.  

The BEST uses the method of bootstrapping for statistical inference of the true sample 

distribution from a finite sample set
30-33

.  The BEST method begins by acquiring an m x n 

training set sample T, where m corresponds to the number of sample measurements and n 

corresponds to independent variables (e.g., reflectance or absorbance).  The training set 

T, is a representative sample of the population P, and is chosen to describe the population 

variation in the universe of possible samples.  A discrete realization (P*), of P is 

calculated with the bootstrap operation κ(T).  The bootstrap operation begins by drawing 

j random samples for from T, with replacement.    Bootstrap sample sets 

B(s), are constructed from the random selections of T and make up the i
th

 rows of B for 

according to:  

      1.3 

And the center C, of the bootstrap distribution is calculated according to: 

         1.4 
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The k x n bootstrap distribution B, is the Monte Carlo approximation to the distribution.   

While there is no specified criterion for the number of bootstraps (k) used in the 

approximation, the number should be much larger than the number of samples.  In this 

work 2000 bootstraps are used in all BEST calculations unless otherwise specified. 

 Once the bootstrap distribution has been calculated the analysis of a test sample 

can be completed.  For a test sample X (1 x n), the operation is used to 

calculate the MSD of X from the center, C of the distribution. The standard deviation, σ 

in the direction of X is calculated according to Equation 1.5. 

     1.5 

The upper and lower confidence limits are skew corrected based on the comparison of the 

expected value of P, and the median value of T, .  The 

correction is projected onto the hyperline connecting C and X according to: 

       1.6 

The result of the corrected projection is a skewed MSD in the positive and negative 

direction of X according to Equations 1.7 and 1.8: 

     1.7 

 

     1.8 
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The asymmetric confidence limits make no assumption about size, shape or orientation of 

the spectral cluster in hyperspace. 

Performance Metrics.  In every analytical measurement there exists some degree of 

error.  While the analyst will make every effort to minimize this error it cannot be 

avoided. To this end, there must always be an estimation of the uncertainty in the data if 

the results are to be accepted.  In this work regression models and classification models 

were evaluated using the performance metrics described below.    

Regression Models.  For regression models leave-one-out cross validation 

(LOOCV) was performed.  LOOCV, starts with n + 1 samples, the last n samples are 

used to calculate a calibration, which is then used to predict the value of the first sample. 

The first sample is then put back and the second sample is left out to form the second 

calibration, which is then used to predict the second sample. The process continues until 

each sample has been left out of the calibration and predicted once. Predictions from 

LOOCV regression were assessed using the correlation coefficient (R
2
), the standard 

error of estimate (SEE) and standard error of prediction (SEP).  The F test (a ratio of 

SEE
2
/SEP

2
) is employed to establish the equivalence of the calibration and validation 

errors for cross validation.  The null hypothesis for the test was that the calibration errors 

and the validation errors were the same (i.e., F is close to 1). If the probability returned 

by the F test is high (typically greater than 0.05), the null hypothesis is accepted and the 

calibration is deemed acceptable. If the F probability is less than 0.05, potential problems 

in the sample selection or calibration method (e.g., over-fitting) must be investigated. 
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Classification Models.  In classification models a set of samples must be assigned 

a class.  This is generally referred to as a binary classification because the samples are 

either of the class (sample = 1) or not (sample = 0).  Accuracy, precision, sensitivity and 

specificity were used to determine the performance of classification models and were 

calculated according to: 

     1.9 

       1.10 

      1.11 

      1.12 

Where TP = True Positive, TN = True Negative, FP = False Positive, and FN = False 

Negative.  The accuracy describes the overall correctness of the classification, precision 

describes the effectiveness of class assignments, sensitivity describes the effectiveness of 

the model for samples correctly identified with respect to the correct class and specificity 

describes the effectiveness of the model for samples successfully classified with respect 

to incorrect class.  In other words sensitivity and specificity can be thought of as correct 

classes identified as correct and incorrect classes identified as incorrect, respectively. 
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Chapter One Figures 

 
Figure 1.1:  Illustration of synthetic bivariate data mapped into X-space where x1 and x2 

are the measured values of two sample groups (represented by „+‟ and „x‟).  The position 

of a data point in X-space can be used to determine the physical properties, such as 

concentration of the sample. 
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Figure 1.2:  Illustration of synthetic bivariate data mapped into X-space where x1 and x2 

are the measured values of two sample groups (represented by „+‟ and „x‟).  A BEST 

multidimensional standard deviation contour is used to determine if samples in X-space 

belong to one of the two concentration groups. 
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Figure 1.3:  Near-infrared correlation chart for common functional groups.  This chart is 

only an approximate guide for near-IR band assignment of functional groups. 
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Section II: Pharmaceutical Process Validation 

 

Process validation encompasses the whole drug development process, with the end goal 

of ensuring that a product continually meets its predetermined requirements, and is 

required for all pharmaceutical products under Section 501(a)(2)(B) of the Federal Food, 

Drug, and Cosmetic Act.  Process validation can be broken down into many different 

steps taking place over the lifecycle of a product.  The FDA draft for process validation 

principles and practices describes process validation as taking place in three steps: 

process design, qualification, and continued process verification
34

.  In process design, the 

sensor system used to measure the product plays a role in validation.  Product monitoring 

through sensor data can be used to establish a control strategy for manufacturing, thus the 

sensor also has a role in process qualification.  The International Conference on 

Harmonisation (ICH) guidelines for pharmaceutical quality systems (ICH Q10) were 

designed to enhance current good manufacturing processes (cGMP) through better 

understanding of the pharmaceutical development cycle
35

.  One aspect of this is to 

provide feedback for process performance and product quality utilizing science and risk-

based processes.  While there are current protocols in place to monitor process 

performance and product quality, none are fool proof.  Many products are recalled every 

year at great expense to the manufacturer.  In June 2009, for example, Barr Laboratories, 

Inc. issued a recall of Dextroamphetamine/Amphetamine 20mg tablets due to an increase 

in the amount of the API in some tablets
36

.  In this case, the recall may have been avoided 

if better process monitoring were employed.  The current trend toward better science and 

risk-based process understanding and control can be seen in the FDA‟s process analytical 

technology (PAT) initiative
8
.  The goal of PAT is to build quality into the design of the 
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manufacturing process.  In regards to the sensor system an ideal PAT would have the 

ability to make rapid, nondestructive, and accurate measurements.  A PAT sensing 

system could have constant feedback and have the ability to continually control the 

manufacturing process.    
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Chapter Two-BEST-SCARS for Process Validation of Experimental Formulations of 

a Novel Diabetes Drug 

 

 

Introduction 

 

Diabetes.  Diabetes is a chronic illness that affects more than 171 million people 

worldwide and is expected to double in incidence by 2030
37

.  Although the number of 

people affected by diabetes is much larger in developing countries, the cost of diabetes in 

developed countries is still very high.  The total cost of diabetes in the United States in 

2007 was estimated at $174 billion
38

. Of the total cost of diabetes, the direct medical cost 

associated with those diagnosed with the illness was $116 billion
38

. The U.S. Medicare 

program spent $1.3 billion on diabetes-related hospital costs in 2001
39

, illustrating that 

the cost of diabetes is not only high for those afflicted with the illness.  Of those with 

diabetes 90% are diagnosed with Type II diabetes
40

.  Commonly referred to as adult onset 

diabetes, Type II diabetes usually occurs in overweight middle aged adults.   Although 

manageable, Type II diabetes can cause many complications including heart attack, 

stroke, kidney disease, blindness, and even death.  Type II diabetes occurs when the body 

can no longer effectively use insulin.  The result of insulin inefficiency is a buildup of 

blood glucose levels measured as A1c (or HbA1c) levels.  The United Kingdom 

Prospective Diabetes Study (UKPDS) indicated that aggressive treatment leading to the 

reduction of A1c levels in type II diabetes patients can significantly reduce the risk of 

microvascular disease
41

.  However, aggressive treatment does not lower the risk of 

cardiovascular complications
42

.  For most diabetes patients lifestyle changes (diet and 
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exercise) can make all the difference. However, as the number of diagnosis and deaths 

increase each year it is evident that the development of drugs to treat diseases such as 

diabetes is needed.   

 Novel Treatments.  D-Tagatose (tag) is a rare but naturally occurring hexose bulk 

sweetener found in heated dairy products.  There is interest in developing tag as an 

antidiabetic and obesity control drug and, it is currently in phase III clinical trials
43-44

.  A 

recent study indicated that substitution of tag for sucrose as a source of carbohydrate in 

the diets of mice lowers the incident of obesity, hyperglycemia, and coronary artery 

disease
45

.  In a phase II clinical trial designed to determine the smallest dose of tag with a 

biological effect, tag was still shown to lower A1c levels in patients by as much as 

0.3%
46

.  The ability to lower blood glucose levels and protect against cardiovascular 

diseases makes tag an excellent candidate drug for diabetes control.   

 Resveratrol (RSV; 3,5,4‟-trihydroxystilbene) is most notably known for its 

association with the French paradox (high calorie diet and low incident of coronary heart 

disease).  RSV is a natural component of red grapes and as such can also be found in 

wine.  Studies have shown RSV to improve health and longevity of mice on high calorie 

diets
47

. RSV is also known to possess a number of other pharmacotherapy effects
48-51

, 

some of which make it a suitable choice for antidiabetic therapies.  In a 2006 study, RSV 

was shown to lower instances of atherosclerosis and liver damage in diabetic mice
52

.  

RSV has also been demonstrated to have insulin-like effects while not overworking 

pancreatic β-cells, both important properties in the treatment of type 2 diabetes
53-54

.  

Pterostilbene (Stilbene; trans-3,5-dimethoxy-4′-hydroxystilbene) is chemically related to 

RSV and possesses many of the same pharmacotherapeutic properties.  Stilbene can be 
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found naturally in berries and in the heart wood of the Indian Kino tree, which is known 

as a medicinal plant in India.  Stilbene has been shown to decrease blood glucose and 

raise plasma insulin levels in diabetic rats
55-56

.  The properties of the aforementioned 

drugs provide a basis for their use in the treatment of diabetes.  The development of 

experimental drugs requires them to undergo vigorous scrutiny costing millions of dollars 

and taking many years before they can be approved for use.  The validation of the final 

product is an important aspect of process validation and begins early in the development 

of new drugs. 

 Acoustic Resonance Spectroscopy.  Acoustic resonance spectroscopy (ARS) is 

one potential PAT sensor.  ARS is a rapid and nondestructive method for sample 

identification.  ARS has been previously used in the analysis of pharmaceutical tablets
57-

59
, powder compacts

60
, liquids

61
, and semi-solids

62
.  Figure 2.1 is a schematic 

representation of the ARS used in this research.  The ARS comprises piezoelectric 

transducers (PZT) and a quartz rod which is kept in mechanical contact with a sample.  

Acoustic radiation is transmitted through the quartz rod via a transmitting PZT.  A second 

PZT in the sample holder transmits acoustic radiation directly into the sample which 

constructively increases the resonance energy transmitted through the sample. 

Constructive and deconstructive interferences between acoustic waves in resonance with 

the sample and rod form the unique waveform that is recorded at the receiving PZT.  

Acoustic spectra generated by the ARS contain thousands of data points. For example, 

analysis of a sample at a sample rate of 44.1 kHz over 5 seconds generates 220,500 data 

points per recorded spectrum. The time-based acoustic spectra data are converted into the 

frequency domain using the Fourier transform (FT).  The frequency spectrum of samples 
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obtained with the ARS may comprise a wide frequency range.  The data used in this 

study comprised a frequency range between 0.020 and 20 kHz.  Chemometric analysis of 

the Fourier transformed acoustic resonance (FTAR) data is used to determine the physical 

characteristics or identity of the sample.  As a PAT sensor the ARS has the ability to 

gather data at fast speeds (milliseconds).  However, performing the necessary 

chemometric calculations on acoustic data for qualification or quantification can be 

tedious and time consuming.   

 Sequencing computational acoustic resonance spectroscopy (SCARS), a method 

of integrated sensing and processing, is a new approach to FTAR spectroscopy.  ISP has 

previously been applied to optical
63-66

 and acoustic
59, 62

spectroscopies.  In SCARS 

chemometric calculations are integrated into the detection process.  In this method the 

excitation energy transmitted to the sample is weighted such that the signal at the detector 

corresponds to the physical characteristics or identity of the sample.  Principal component 

analysis (PCA) is a commonly employed chemometric method for reducing large data 

sets into more manageable volumes
15

.  In PCA the relationships and patterns within the 

data are more easily recognized.  PCs are calculated such that the first contains the 

greatest amount of variation in the data, the second contains the next greatest (orthogonal 

to the first), and so on until all the variation has been accounted for.  Thus, the 

relationships in FTARS data can be recognized with a much smaller number of PCs than 

with thousands of intensity values.  Spectral scores are generated in PCA by weighting 

each signal, a in a narrow bandpass, at each frequency, f with a coefficient X over n 

frequencies. 

       (2.1) 
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In SCARS an acoustic representation of the PC factors (X in Eq. 2.1) is constructed to 

weight the signal (a in Eq. 2.1) over a defined frequency range (f1 …fn in Eq. 2.1).  Figure 

2.2 illustrates this process.  The computational pulse sequences are transmitted through a 

sample resulting in an integrated signal, Vscore that corresponds directly to a PC score 

according to equation 2.2.   

           (2.2) 

Where Xj is the loading at wavelength j, aij is the spectral amplitude of the i
th

 mixture at 

frequency j, and j is an index over J frequencies.   In this research the largest 1, 10, and 

100 PC factors (loadings) were used.   

The computational pulse sequences generated for SCARS describe only the variations 

found in a specific training set.   In this respect SCARS is essentially a pattern 

recognition algorithm designed to identify substances from a defined calibration set.  

Problems can arise when the pattern recognition algorithm encounters a sample outside of 

its predefined calibration range.  This is termed the false sample problem. The intensities 

and peak frequencies measured with the ARS respond to both the intensive and extensive 

properties of a sample.  All samples absorb and transmit acoustic energy at different 

frequencies.  Because of these properties, substances outside of the SCARS training set 

can produce a false sample situation.  Consider the Barr Laboratories, Inc. super-potent 

Dextroamphetamine/Amphetamine 20mg tablets
36

.  Calibration of a SCARS algorithm 

used to monitor tablet concentration may not have considered such a wide range of API 

concentrations.  It is possible that the AR signals generated from contaminated tablets 

could be read as normal concentrations.  It is impossible to integrate sensing and 
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processing to encompass all conceivable contaminants.  For this reason, a fast ISP 

method of false sample detection is needed.   

 BEST-SCARS.  BEST is a classification method based on the bootstrapping 

technique
30, 33

.  In the BEST algorithm, multidimensional standard deviations (MSDs) of 

a sample population are estimated without making assumptions about the distribution of 

the population
25-26, 67

.  The BEST metric provides advantages over other methods such as 

the Mahalanobis metric, because it does not assume equal covariance for all spectral 

groups and that each group is drawn from a normally distributed population. The BEST-

SCARS method is capable of calculating BEST MSDs at speeds faster than the full BEST 

algorithm, giving BEST-SCARS potential as a PAT sensor.  In BEST-SCARS 

standardized distances are generated from a SCARS training set. The distances and 

centers of each training set distribution are stored in a hash table for on-line use.  On-line, 

estimated BEST distances are calculated by centering the test spectrum to each stored 

center and comparing its value to the distances in the hash table.  With BEST-SCARS 

method rapid determination of group classification and identification of false samples is 

possible.    

 

Theory 

 

The voltage scores acquired from a SCARS training set are used to construct a hash table 

of distances.  The hash table is constructed by first calculating the bootstrap distribution 

for each group in the training set.  In this research, 2000 bootstraps replications were 

calculated for each training set group. BEST MSDs are calculated for each bootstrap 
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distribution using the BEST method.  The ratio of a Euclidian distance to a BEST 

distance is calculated for each bootstrap according to Equation 2.3. 

         (2.3) 

Where is the Euclidian distance from the center C, (1 x n) of the bootstrap 

distribution to the bootstrap point, B (m x n), BESTSD (m x n) is a vector of BEST 

standard deviations for each bootstrap replicate, B and R (m x 1) is vector of ratios for 

each bootstrap.  A matrix of normalized bootstraps, BN (m x n) are calculated and stored 

in a hash table according to Equation 2.4. 

      (2.4) 

Each new voltage spectrum, V generated from a SCARS scan is centered to each hash 

table distribution and normalized according to Equation 2.5. 

        (2.5) 

The hash table is searched for the bootstrap point BN, closest to the voltage spectrum, VN 

by calculating the dot product of VN and BN.  The largest dot product of BN and VN 

indicates the bootstrap BN, closest to the test sample V.  The BEST SD of V is then 

estimated according to Equation 2.6. 

          (2.6) 

Where  and  are Euclidian distances. 

Materials and Methods 
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Mixture Preparation.  Samples consisted of combinations of D-tagatose (Spherix Inc.), 

resveratrol (Source Naturals, Inc., 40mg), and Pterostilbene (VDF FutureCeuticals, Inc., 

0.1mg).  The samples were ground in a mortar and pestle into a fine powder and hand-

blended so that the concentration of each constituent in a sample mixture was a 

combination of 0, 12.5, 33.3, 50, 75, and 100% (see Table 1).  A total of 9 mixture 

combinations were made.  500 mg of the powder mixture was combined with 50 mg each 

of casting resin (Bisphenol A/Epichlorohydrin) and polyamide curing agent (Versamid 

140) (Firefox Enterprises, Pocatello, ID).  The resulting paste was massed and hand 

pressed to yield a 450mg pellet.  The samples were allowed to cure for 48 hours prior to 

scanning. False samples were made in the same manner. Three false samples were 

constructed containing 100% D-glucose (Fisher Scientific), a third mixture each of D-

glucose, RSV and Stilbene, and 100% vitamin B-12 (Spring Valley, 2,000 mcg).   

ARS Data Collection.  A spring-loaded scale was used to keep samples in mechanical 

contact with the vertex of the quartz rod.  The scale was adjusted so that there was a 

constant 200g of pressure between the sample and rod.  White noise excitation was 

generated in MatLab and transferred to a MP3 player (Zoom Corp., H4).  The audio 

output of the MP3 player was used to transmit the excitation signal to the transmitting 

PZTs.  The audio output of the MP3 player was adjusted so that the signal sent to the 

ARS was at the maximum level.     Data were acquired over 10 s with a sample rate of 

44.1kHz using an external sound card (MobilePre USB, M-Audio), which allowed for 

amplification of the PZT output.  All processing and analysis was performed in MatLab 

R2008a (The Mathworks Company, Natick, MA, USA).  Analysis of ARS data was done 

in the frequency domain by performing the Fourier Transform (FT) on each time domain 
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spectrum.  This FT resulted in frequency spectra that contained 22,050 intensity values. 

The frequency spectra contained a large resonance peak over a frequency range of 3.1 to 

4.4 kHz that was subsequently selected for the analysis.  PCA was performed on the z-

scored frequency data over the defined range.  The BEST method was used to determine 

MDSs between sample clusters. Three PCs were used to classify the sample set. 

Acoustic Sequence Construction.  Acoustic sequences were generated using frequencies 

corresponding to loading values generated from PCA.  Positive and negative loading data 

were separated and the frequencies corresponding to the largest 1, 10, and 100 loading 

values were used to create acoustic sequences.    Each acoustic sequence was 500ms in 

length.  A total of three PCs separated into their positive and negative counterparts 

yielded 6 acoustic sequences for each 1, 10, and 100 models.  SCARS excitations for 

each frequency model were 3 s in length and comprised three positive sequences 

followed by three negative sequences. Each 1, 10, and 100 frequency acoustic sequence 

models were placed in succession.  The total length of the final acoustic excitation was 9 

s.   

BEST-SCARS Data Collection.  SCARS data was acquired in the same manner as FTARS 

data.  The average detector voltage for each negative acoustic sequence was inverted and 

summed with the average detector voltage of the positive sequences.  This produced a 

single dimension which was used to construct the BEST-SCARS hash table for 

classification of each sample group and identifying false samples.  A hash table 

comprising 2000 distances was used for each group.  In total the final hash table was an 

18000 x 3 matrix.  A hash table was constructed for each of the 1, 10, and 100 frequency 

acoustic sequence models. False samples were randomly scanned with the training set 
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samples.  Estimated BEST MSDs were calculated for each voltage spectrum using the 

hash table approach. 

Results and Discussion 

 

FTARS vs. SCARS.  The FTAR spectra were smoothed with a cubic spline operation.  The 

mean smoothed spectra for each pure component over a frequency range of 3.1 to 4.4 

kHz are depicted in Figure 2.3.  The large resonance peaks and the clear differences 

between the pure component spectra made this a useful region for classification studies.  

Spectra over the selected frequency range were investigated by PCA to determine the 

relationships between the samples.  The first three PCs accounted for 91.2% of the 

variation in the sample set (see Figure 2.4).  It is evident from the figure that separation 

between sample groups was achieved.  The loadings corresponding to the first three PCs 

were used to construct acoustic sequences for the SCARS method.  Three different 

frequency models were investigated comprising six acoustic sequences each.  The 

summed voltage signal corresponding to a negative loading vector was subtracted from 

the signal corresponding to the positive loading vector.  This resulted in a three 

dimensional data set analogous to PCs and was used for classification.  Figure 2.5 

illustrates the separation of the voltages acquired from the single frequency acoustic 

sequence.  Comparison of Figures 2.4 and 2.5 indicate that the separation achieved by 

performing PCs on the full data set can be accomplished at the detector by weighting the 

excitation signal.  A leave-one-out cross validated BEST method was used to quantify the 

differences between FTARS and the SCARS methods.  The performance of the 

classification can be measured by calculation of sensitivity and specificity according to: 
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      (2.7) 

      (2.8) 

Where TP = True Positive, TN = True Negative, FP = False Positive, and FN = False 

Negative.  Table 2.2 indicates the performance statistics for classification with PCA and 

SCARS using 1, 10, and 100 factors.  All samples were correctly classified in all cases 

resulting in a sensitivity of 100%.  However, specificity decreases somewhat for the 

SCARS model.  The decrease in specificity for the SCARS method is a result of a 

decrease in inter-cluster distances between some groups.  For example the proximity of 

sample 5 (50:50 ratio of tag to RSV) to its pure component samples (1 and 2) decreases 

in the SCARS model.  This in turn increases the chances of calculating a false positive 

between these groups.     The high sensitivity of the SCARS model, which is impart due 

to the use of single samples for each group, suggests that it may be possible to decrease 

the MSD cutoff for some groups in order to achieve better specificity. Figure 2.6 

illustrates the changes in mean intra- and inter-cluster distances between each model. For 

SCARS factor models the overall mean inter-cluster distances increase while the mean 

intra-cluster distances decrease.  The largest mean inter-cluster distance is found in the 

largest single factor loading model.  This is because the loadings in PCA are calculated 

such that their magnitude corresponds to the magnitude of the largest variation at each 

frequency.  In Figure 2.3 it is clear that the magnitudes of the differences between the 

spectra are different at different frequencies.  Therefore the PC loadings are also different 

in magnitude at different frequencies.  A single loading will maximize the variation of the 

sample set at a single frequency.  It is not always the case that there is significant 
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variation between all sample groups at a single frequency.  Where variation between 

samples is not maximized it becomes more difficult to distinguish between them at a 

single frequency.  The result is that some spectral groups are maximized and some are 

minimized.  In Figure 2.6 the maximization of the MSDs between some of the groups 

clearly outweighs the minimizing effect for the single factor model.  While there is little 

difference between the 1, 10, and 100 factor loading models, there appears to be a trend 

in the decrease of inter-cluster distances and increase of intra-cluster distances.  This 

trend can be attributed to weaker signals being overwhelmed by noise.  When 100 factor 

frequencies are used the amplitude of the frequencies corresponding to a portion of the 

factors can be significantly weak in comparison to the top 1 or 10.   

 BEST-SCARS for False Sample Identification.  The BEST-SCARS method 

operates on the assumption that samples of the same composition will cluster together in 

hyper space.  The precomputed hash table distances are calculated from a training set that 

should contain as much of the variation of the sample set as possible.  This approach 

effectively draws a hypothetical line around each sample cluster in hyperspace.  When a 

new sample is scanned it is projected into hyperspace; samples that fall outside of the line 

are identified as false samples.  So long as the proportion and number of frequencies used 

in the SCARS method can distinguish between substances, any sample not included in 

the training set will be identified.   

 To determine the ability of the BEST-SCARS method for identifying false 

samples, three additional samples outside of the sample set were included.  Figure 2.7 

indicates the separation of the false samples achieved with the single factor BEST-

SCARS model.  Sensitivity and specificity were used to quantify the performance of the 
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BEST-SCARS method for each factor model in identifying the false samples.  Table 2.3 

indicates the performance statistics for identifying false samples using the hash table 

approach.  There is a trade-off between sensitivity and specificity for any measure.  The 

optimum sensitivity would be 100% indicating that no false samples were ever classified 

as part of a training set.  In each case sensitivity was greater than 91% and specificity was 

always 100%.  The sensitivity increased for the 10 factor model because more 

frequencies were needed to separate the false samples from the training set samples.  The 

decrease in sensitivity in the 100 factor model can again be contributed to weaker signals 

in the excitation.   

 Only one false sample was identified as belonging to a training set.  Table 2.4 

reports the average BEST-SCARS MSDs for the single frequency excitations.  An MSD 

greater than 3 (99.8% confidence limit) indicates that samples are separable.  The false 

sample comprising a third mixture of glucose, RSV and Stilbene (FS1) was misidentified 

as sample 7.  Because the intra-cluster distances of the training set sample groups are low 

(average of 1.15) it is possible to decrease the MSD cutoff for identifying false samples.  

An MSD cutoff of 1.96 (95% confidence limit), which is smaller than the lowest inter-

cluster distance (2.13), would increase the sensitivity for identifying false samples to 

98.15%.  This would decrease the specificity (96.18%) but would reduce the chances of 

producing contaminated substances which could lead to costly recalls. 

 Speed of method.  The BEST-SCARS method is much faster on a digital computer 

than analysis of ARS data with the full BEST algorithm for identification of false 

samples.  In BEST-SCARS, MSDs are precomputed and each new sample scanned is 

compared to a table of values.  The BEST-SCARS method compared each sample 
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scanned to a hash table of 2000 distances for each group.  In total 18000 distances were 

compared, and the closest distance in the direction to the sample was chosen to estimate 

the MSDs of the samples in Table 2.4.  Identification of all false samples was completed 

in an average of 0.135 s.  Performing the full BEST algorithm on the same sample set 

required an average of 5.515 s.   

 

Conclusion 

 

Bootstrap error-adjusted single-sample technique sequencing computational acoustic 

resonance spectroscopy has been demonstrated to perform comparably with Fourier 

transform acoustic resonance spectroscopy.  ARS is nondestructive, rapid, and 

inexpensive. Coupled with the ability of the BEST-SCARS method to identify false 

samples rapidly, it is a useful choice for PAT applications.  Operating as a PAT, a BEST-

SCARS sensor could monitor several ingredients on a manufacturing line.  If a foreign 

ingredient is added or a substance is combined at the wrong time, a false sample situation 

would arise and the sensor system could ask for operator assistance.  The SCARS 

acoustic sequences could be tailored for various common drug compositions.  Tailored 

excitations for common pharmaceutical ingredients could be stored as MP3s and 

downloaded with their classification hash table.  If a company wishes to make aspirin 

they would simply download the appropriate excitations and hash tables needed to 

validate their product.      
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Chapter Two Tables 

 

 

Table 2.1.  Percent sample composition 

Sample D-Tag RSV Stilbene 

1 100 0 0 

2 0 100 0 

3 0 0 100 

4 50 0 50 

5 50 50 0 

6 12.5 12.5 75 

7 75 12.5 12.5 

8 12.5 75 12.5 

9 33.3 33.3 33.3 
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Table 2.2:  Performance statistics for BEST classification of PCA data and SCARS 

voltage data from sequences constructed from frequencies corresponding to the top 1, 10 

and 100 loading factors.    

Model PCA 1 Factor 10 Factors 100 Factors 

Sensitivity (%) 100 100 100 100 

Specificity (%) 95.83 93.40 92.60 94.79 
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Table 2.3:  Performance statistics for BEST-SCARS identification of false samples from 

sequences constructed from frequencies corresponding to the top 1, 10 and 100 loading 

factors.    

Model 1 Factor 10 Factors 100 Factors 

Sensitivity 92.60 94.44 91.67 

Specificity 1 1 1 
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Table 2.4:  Average BEST-SCARS calculated MSDs for false samples to each training 

set group for the single factor acoustic sequence.  Sample clusters greater than 3 MSDs 

are considered to be from different groups (99.8% confidence limit).  FS1 is a third 

mixture of D-glucose, RSV and Stilbene, FS2 is pure D-glucose and FS3 is vitamin B-12.   

Group 1 2 3 4 5 6 7 8 9 

FS1 4.61 22.82 28.28 7.99 5.76 14.65 2.13 8.65 3.59 

FS2 4.85 21.83 38.29 12.85 5.69 23.01 3.72 9.25 10.36 

FS3 7.42 29.16 27.89 6.38 8.24 13.59 3.26 12.38 11.44 
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Chapter Two Figures 

 

 

Figure 2.1:  Schematic representation of the ARS.  A function generator is used to 

provide a broadband signal to both transmitting PZTs. The emitted signal interacts with 

both the quartz rod (blue arrow) and sample (yellow arrow).  The second transmitting 

PZT acts to boost the resonance signal from the sample. Constructive and deconstructive 

interactions between the acoustic waves of sample and quartz rod produce the standing 

wave (green arrow) at the receiving PZT which is read by the ADC and stored in a 

computer for processing.  
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Figure 2.2:  The frequency ranges comprising the largest spectral variation in a data set 

can be visualized in their PC loadings (A).  Because loading values are weighted in both 

the positive and negative direction they must be separated and the negative values 

inverted (B).  A single frequency pulse sequence is constructed from the frequency 

corresponding to the largest loading value.  When multiple frequency components are 

used the amplitude of each frequency comprising the pulse sequence corresponds to 

the magnitude of the corresponding normalized loading value.  For each PC loading two 

pulse sequences must be transmitted independently through the sample to prevent 

cancelation of the integrated signal (C). 
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Figure 2.3:  Pure component spectra over the frequency range of 3.1 – 4.4 kHz. A clear 

difference was observed between the pure component spectra.   Each spectrum is the 

mean of 4 spectra taken from 12 scans of the same analyte. 
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Figure 2.4:  An XYZ scatter plot of the top three PCs. PCs 1-3 captured 91.2 % of the 

sample variation. The ellipses indicate a one standard deviation contour level. 
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Figure 2.5:  XYZ scatter plot of the voltage scores from the single frequency SCARS 

voltage data.  The ellipses indicate a one standard deviation contour level. 
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Figure 2.6:  Mean BEST MSDs for inter- and intra-cluster distances calculated from the 

full BEST algorithm for the Full spectrum PCA data and from the BEST-SCARS on 1, 

10, 100 and 1000 top factor loadings. 
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Figure 2.7:  XYZ scatter plot of the voltage scores from the single frequency SCARS 

voltage data.  The ellipses indicate a one standard deviation contour level.  FS1 is a third 

mixture of D-glucose, RSV and Stilbene, FS2 is pure D-glucose and FS3 is vitamin B-12. 
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Section III: Remote Alcohol Sensing 

 

The abuse of alcohol (ethanol) is a major problem in the United States for health and 

economic reasons. More than 125 million Americans aged 12 or older are alcohol 

consumers
68

. Alcohol abuse can lead to heart and liver problems, increased risk-taking 

behavior, and reduction of the ability to operate a motor vehicle
68

.  According to the 

National Traffic Highway Safety Administration’s Fatality Analysis Reporting System 

(FARS), in 2004, 39.5 percent of all auto crash fatalities were the result of alcohol 

impairment
69

.  The problems arising from the abuse of alcohol are not limited to the road 

and affect the well-being of many young Americans as well.  Alcohol has been shown to 

lower inhibitions and increase risk-taking behavior
68

.  In 2001, over 1,700 alcohol-related 

unintentional deaths occurred among college students, and there were approximately 

696,000 assaults by students who had been drinking
70

.   Economically, alcohol abuse 

harms entire communities, costing taxpayers huge amounts of money spent in order to 

protect them from those who are abusing alcohol.  The total yearly economic cost of 

alcohol abuse in 1998 was estimated to be 184.6 billion dollars
71

. 

 Treatments for abusers of alcohol, including Alcoholics Anonymous (AA) and 

other behavior modification-style organizations, are easy to find. However, the bulk of 

alcohol-related problems are caused by individuals who are not seeking help.  

Approximately 39 percent of the 400,000 Americans admitted to alcohol treatment 

programs are there due to a court order and not by personal choice
72

.  The need to remain 

alcohol-free in order to remain free from incarceration provides an incentive for 

individuals to lie about their consumption to counselors and parole officers.  A similar 

problem arises for the scientific community studying the effects of alcohol treatment 



48 
 

programs.  Evaluating treatments requires a continuous monitor of subjects' blood alcohol 

content (BAC), breath alcohol content (BrAC, known to be highly correlated to BAC
73

), 

or actual consumption.  Current alcohol content monitoring techniques include the 

sampling of breath, urine, saliva, or blood followed by a different analysis to assess the 

alcohol level in each.  Blood testing is the most sensitive method, but the test can suffer 

from temporal distortion due to the processing time needed to obtain the result.  Samples 

can ferment on their own over time, leading to inaccurate measurements of alcohol 

consumption.  Temporal distortion is problematic in the research setting when a time-

sensitive result is needed.  Urine testing is the most inexpensive of the techniques, but it 

tests for alcohol in the system in the past five days, not in real-time
74

.  Techniques that 

integrate consumption over long periods of time complicate experiments designed to test 

the effects of treatment on acute alcohol abuse. Contamination, dilution, and tampering of 

the samples are other common problems in urine testing
74-75

.  Breathalyzers are the most 

common on-site monitoring technique and are generally used by law enforcement on the 

public.  The breathalyzer is the only noninvasive technique that can be used to monitor 

real-time alcohol levels, but it has many drawbacks.  Some breathalyzer devices assume a 

hematocrit (cell volume of blood) of approximately 47 percent, when in reality it ranges 

from 37 to 52 percent
76

.  Testing an individual with a hematocrit level below the assumed 

value will result in a false positive reading on the breathalyzer
76

.   Breath testing can also 

lead to false positives when blood, alcohol, or vomit is present in an individual’s mouth.  

One of the most significant drawbacks of the breathalyzer is that the individual must be a 

willing participant in the measurement process.       
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 One approach to monitoring alcohol abuse is through the use of wristband fuel 

cells or implants.   The use of the Secure Continuous Remote Alcohol Monitoring 

(SCRAM) system has become common for those convicted of DUI. The SCRAM device 

monitors transdermal alcohol content (TAC) in the body. The SCRAM is attached to the 

offender’s ankle for typically a period of a month.  However, problems have been noted 

with use of the SCRAM device.  An offender placed in an alcohol supervision program 

that uses a SCRAM device may not use any products such as mouthwash or household 

cleaners that contain alcohols, because these products can cause the device to produce a 

false positive.   The device monitors attempts to bypass it by monitoring body 

temperature. If a sudden temperature change is recorded at the detector, an alert will be 

sent to the monitor.  A problem with all monitoring methods discussed so far is that the 

subject is aware that he or she is being monitored. 
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Chapter Three- Surreptitious Remote Sensing of Blood Alcohol Concentration: 

Integrated Near-Infrared Spectral Imaging and Laser Speech Detection 

 

 

Introduction 

 

A noninvasive and surreptitious measurement of BrAC is of interest because of the many 

problems regarding the existing real-time and more intrusive methods.  If a subject is 

unaware of when the measurement is being made, it becomes more difficult to attempt to 

defeat the measurement.  Figure 3.1 illustrates the use of MFC-NIR hyperspectral 

imaging and laser speech detection for unobtrusive monitoring of a subject.  This paper 

describes experiments to estimate BrAC using NIR hyperspectral imaging based on 

molecular factor computing (a method of integrated sensing and processing) and speech 

analysis.  These approaches have the potential to estimate alcohol impairment 

unobtrusively, remotely, and in real-time. 

 Near-Infrared (NIR) Imaging.  NIR spectroscopy has been demonstrated to be a 

valuable analytical tool for the simultaneous determination of multiple chemical 

components in mixtures. As a result, NIR spectroscopy is used throughout the 

biotechnology and pharmaceutical industries
77-82

.   Pulse oximetry, a medical application 

of NIRS, is very common in hospitals
83

.  The NIR region of the electromagnetic spectrum 

offers advantages for use in biological systems. NIR radiation is able to penetrate through 

the dermal layers of skin and has been shown to measure accurately blood levels of 

analytes in vivo
84-85

.  Thus, diffuse reflectance NIR imaging is a candidate for 

noninvasive determination of blood alcohol.  The combination of NIR imaging with 

molecular factor computing (MFC) filters offers several advantages over the traditional 
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approach to NIR imaging
86

. Advantages of using an MFC filter system with NIR imaging 

include a decrease in computational demand by integrating the sensing and processing 

directly into the transducer (the integrated sensing and processing, or ISP, advantage), the 

Fellgett advantage (acquisition of all wavelengths simultaneously permits higher signal-

to-noise ratio for a given acquisition time), and the Jacquinot advantage (the absence of 

monochromator slits allows higher optical throughput). The use of a small number of 

MFC filters also allows for a more robust instrument at a lower cost. The concept of 

molecular factor computing has been demonstrated in previous work
66

.       

 NIR hyperspectral imaging creates large volumes of data because images are 

acquired over many wavelengths where the analyte is expected to have signals.  Most 

images also contain a substantial number of pixels, and many images are often collected 

to form a video stream. The data sets generated by hyperspectral imaging can be difficult 

to analyze.  To this end, chemometric methods such as factor analysis are commonly used 

to reduce large data sets into factors and corresponding weights that relate to the observed 

variance in the data set.  MFC-NIR hyperspectral imaging exploits these chemometric 

methods and can be an effective alternative to conventional hyperspectral imaging
79, 87-88

.  

MFC essentially incorporates chemometrics directly into the physical design of the 

wavelength selector, thus integrating the sensing and processing at the detector itself 
66, 63

.  

MFC filters are selected to have transmission spectra that match the weights generated 

from factor analysis of a calibration set. Thus, the light passing through a MFC filter is 

effectively ―weighted‖, and the corresponding signal at the detector is proportional to a 

factor.  The use of weighted filters allows for factor analysis to be performed at the speed 
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of light.   The chemometric method we have used to perform MFC is principal 

component analysis (PCA). 

 Molecular factors are computed by first generating a training set of spectra over a 

concentration range of interest. An orthogonal linear transformation (PCA) of the raw 

spectra is done by a singular value decomposition of A according to Equation (3.1):  

     (3.1) 

where A is an  matrix of original spectra, S is an   matrix of the component 

scores (PCs), and L is a  matrix of loadings (weights). The dimensions of the 

matrices are dependent on the number of samples, m, and the number of predictors, n, 

and p is the number of PCs.  The decomposition of A is calculated such that the total 

variation of the training set is found in the component scores (PCs). The first PC contains 

the highest amount of variation, the second contains the next highest, and so on until the 

total variation is explained.  The regression of S, as shown in Eq. 3.2, produces a robust 

model for predicting the concentration C in a complex sample, where R is an  

matrix vector of regression coefficients, and D is the residual. 

     (3.2) 

 It is expected that a pure two-component system can be represented by one PC. 

However, due to instrumental noise, chemical inconsistencies, and spectral overlap, more 

than one PC may be needed.  MF filters are selected that have transmission spectra which 

closely match the loadings that correspond to the PCs used in the training set validation. 

Two filters are required for each PC loading because a MF filter cannot be negative.  The 

product of the loading and spectral amplitude summed over all wavelengths produces a 

voltage at the detector according to Eq. (3.3).     
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    (3.3) 

where L is the loading at wavelength j, Aij is the spectral amplitude of the ith mixture at 

wavelength j, Vi is the detector voltage, and j is an index over J wavelengths.   All 

wavelengths passing through a MF filter are weighted according to L.  The resulting V is 

directly proportional to the corresponding factor of L and proportional to the sample 

properties (BrAC) being investigated.  Figure 3.2 illustrates the use of MFC filters.  A 

theoretically perfect MFC filter would have a transmission spectrum that perfectly 

matches a positive or negative loading profile of the sample. In most cases, a perfect 

MFC filter cannot be constructed.  In cases where a perfect MFC filter cannot be 

constructed, partially modeling a PC loading may still give acceptable results.  In 

previous work, liquid filters were used to determine ethanol and water concentrations
66

.  

In this work, solid polymer filters were used that were composed of non-alcoholic 

functional groups.   

 

 Speech Detection.  Determination of BrAC using speech is based on changes in 

phonemes that occur after consumption of alcohol.  It has been shown that an individual’s 

speaking fundamental frequency changes with alcohol consumption
89

.  Language 

comprises various sounds—the smallest units that define spoken word are known as 

phonemes
90

.  In the United States, the English language consists of approximately 44 

phonemes
90

. While the number of phonemes in other languages is different from English, 
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some speech changes would still be expected to be associated with alcohol consumption.  

Speech can be recorded surreptitiously and remotely, and there are various instruments 

made for this purpose, such as parabolic microphones (Dan Gibson Parabolic 

Microphone, Electromax International, Inc. Houston, Texas) used in television and 

broadcasting.  However, there are other less obtrusive methods available for monitoring 

speech.  A laser microphone-listening device outside of a building, such as the one 

offered by Brinkhouse Security (New York, NY), could be used to remotely monitor 

conversations inside a building, as long as glass windows are present in the building 

walls.  Using a laser microphone method, law enforcement personnel could monitor 

conversation inside a restaurant, bar, or car, making determinations of which patrons are 

over the legal limit for BAC. As the patrons went to their car and left, they could be 

stopped by police. 

 The following work describes preliminary research to determine which remote-

sensing modalities can provide sensitive and specific detection of BrAC. 

 

Materials and Methods 

 

Patient Screening.  The unobtrusive remote-sensing of human breath alcohol content 

study was conducted under IRB-approved (approval number 07-0417-F1V) protocols.  

Many individuals were screened for the study.  However, due to inclusion criteria, only 5 

subjects were allowed to participate. At screening potential subjects were asked to 

provide a complete medical history and were questioned about the use of concomitant 

medications.  Inclusion criteria were male or female subjects between the ages of 21 and 

45 who were not alcohol naïve, testing zero BrAC at the screening prior to the 
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commencement of the experiment, consuming no more than one standard drink of 

alcohol a day over the past 30 days, passing a physical examination and laboratory 

assessment at the initial screening, and having a body mass index (BMI) between 20 – 30 

and total body mass no more than 100 kg. Criteria for exclusion from the study included 

subjects under the age of 21, consuming two or more standard drinks of alcohol a day 

over the past 30 days or have never consumed alcohol, recovering addicts, pregnant or 

breastfeeding women, liver disease or impairment, diagnosis of diabetes, present at 

screening with black or blue marks on their skin, present at screening with evidence of 

intoxication, withdrawal, confusion, severe depression or anxiety, immediate family 

members of subjects with a history of alcoholism or alcohol abuse, using other drugs that 

interact with alcohol, subject history of or current abuse of illicit drug or prescription 

drugs, smoking, or subject enrollment in another investigational device or investigational 

new drug study that had not been completed by the subjects’ required follow-up period. 

Subjects were asked to complete the Alcohol Use Disorders Identification Test (AUDIT) 

and to fast the night before testing
93

. 

 

 Clinical Trial Procedure.  Subjects were administered pharmaceutical grade ethyl 

alcohol (195 proof) diluted in lemon soda according to total body mass based on the 

following dosing equations
94

:    

     (3.4) 

 (3.5) 

Generally, this resulted in a dose of 50 to 60 mL of ethyl alcohol to the patients. Subjects 

arrived the morning after fasting overnight and were given a breathalyzer test to insure an 
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initial reading of 0.00 % BrAC. Reference measurements were made at this time with the 

remote speech and NIR MFC devices. The subjects were given 20 minutes to consume 

the alcohol mixture at which time the patients rinsed their mouth twice with water 

(required for the initial measurement of BrAC). BrAC measurements were taken 30 

minutes after administration (20 minute consumption period + 10 minute delay) of the 

alcohol dose. Remote speech and NIR MFC video measurements followed and were 

acquired at 10-minute intervals. Standard BrAC reference measurements were taken at 

the beginning of each 10-minute interval using a Breathalyzer (Draeger AlcoTest 7410 

Plus).  The test subjects agreed not to leave the testing room until they scored two 

consecutive BrAC measurements of zero.  The protocol design and consent stipulations 

have followed all IRB regulations, guidelines, and local policies. 

 NIRS MFC Hyperspectral Imaging. An IRC-160 InSb focal plane array video 

camera (Cincinnati Electronics, Mason, OH) with molecular factor component (MFC) 

filters was used for imaging of the patients. The camera integration time was 12.96 ms, 

and the photon energy response was 1800-10,000 cm
-1

. A rotating disk was fabricated to 

allow the different MFC filters to be rotated in front of the camera lens. Six filter 

materials were used for the study: polyvinyl chloride (PVC, Unbranded, McMaster-Carr), 

polycarbonate (PC, Lexan, Plaskolite, Inc.), Acrylic (AC, Unbranded), polymethyl-

methacrylate (PMA, Optix, Plaskolite, Inc.), combined gel filters CC20B and CC40G 

(BG, Kodak), and Gel A2 Pale Yellow (A2, Kodak). The light source was two 250W 

PC37771 lamps (General Electric, Cleveland, OH).  Chemicals for the MFC filters were 

chosen using a genetic algorithm library search. In previous work, liquid filters were 

selected with the algorithm from a library of NIR transmission spectra containing 1,923 
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compounds (Wiley)
66

.  The genetic algorithm simply searched the database for up to ten 

compounds that provided a combined transmission spectrum that closely resembled a 

factor loading.  The spectral library available for this research was composed of liquids, 

which would be harder than polymer filters to deploy in a clinical trial.  For this reason, a 

smaller list of available polymers was ultimately used to create the MFC filters.  

Selecting from a smaller database of available filters limits the performance of the MFC 

hyperspectral imager somewhat.  However, solid polymer filters make the system more 

rugged and easier to use in the field. 

 Subjects were never in exactly the same position for measurements.  To 

compensate for changes in image contrast and intensity resulting from subject position 

changes and variable illumination over the acquisition period, pictures of two spherical 

silicon dioxide reflectance standards
77

 (one high reflectance and one low reflectance) 

were captured in each image. Images in the video stream were made comparable by 

multiplicative scatter correction
92, 87

 based on the reflectance standards, so that the 

standards appeared identical throughout all images.  A flat image reference standard 

(Kodak Gray Card, Rochester, NY) was also used to correct for temporal and spatial 

inconsistencies in detector response across the pixels of the detector array. Two light 

sources were employed during image acquisition to reduce shadowing and increase the 

signal-to-noise ratio of the data.  The lights were placed on each side of the camera and 

approximately 135 degrees relative to an orthogonal line connecting the patient and 

camera lens. Images were obtained with each MFC filter with the light sources turned off 

and with them on (12 total spectral images) to correct for ambient lighting from the room 
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and blackbody radiation from the patient.  The entire video acquisition process took only 

2 minutes.  

 

 Laser Speech Instrumentation.  The remote speech detection instrumentation was 

fabricated in-house and was based on Michelson interferometry.  The interferometer 

utilized a battery-powered laser pointer (635 nm) as the source to simplify aiming. 

(Production versions will use an invisible laser wavelength within the range of the NIR 

camera to enable aiming.)  The interference fringe pattern was detected with a 

phototransistor and amplifier using a soundcard (M-Audio, Avid Technology Inc) and 

was recorded into Cool Edit Pro (Syntrillium Software Corp.) at a sample rate of 44.1 

kHz.  The laser beam was aimed at a glass target positioned 2 to 3 feet from each patient. 

The sound from patients' speech induced vibrations in the glass causing constructive and 

destructive interference patterns at the phototransistor, which were amplified and 

recorded.  The changes in the interference patterns were stronger at frequencies where the 

glass target had resonances.  A unidirectional microphone (ECM-330, Sony) that lacked 

the resonances of the glass was also used as a reference and placed next to the reflecting 

glass. This reference was used ad hoc to estimate the resonances of the remote glass. The 

test subjects were given a list of 13 words to read (table, flat, feet, pet, light, bit, bone, 

hot, future, thumb, boot, soil, saw) containing common phonemes in the English 

language. 

 

 Data Analysis.  Analytical software was written in MatLab 7.1 (The Mathworks, 

Inc.).  Principal component analysis (PCA)
15

 was used to analyze all data except for MFC 
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voltage data.  The multivariate regression method was cross-validated in predicting BrAC 

using both NIR MFC images and speech data.   The F test and the standard error of 

performance (SEP) were calculated from the validation samples
95-96

.   

 The NIRS video consisted of indexed color images with a resolution of 72 

pixels/inch and dimensions of 720x480 pixels (width by height).  The images were 

imported into MatLab 7.1 where they created a matrix of intensity levels with a size of 

720x480x3 (rows by columns by dimensions).  The dimensions corresponded to the red, 

green, and blue (RGB) color space where the color intensities for a specific pixel were 

combined to give 1 of 256 possible colors
97

.  The subject’s face fit the vertical length of 

the image and was constant. However, horizontal movement of the subject’s face 

throughout the testing period could not be avoided.  Therefore it was necessary to crop 

portions of the subject’s face because of movement, dead areas in the frame, and areas 

where the signal-to-noise ratio was very low due to highly reflecting materials such as 

hair.  Each subject’s face was cropped in four areas: forehead, under the eyes, and lower 

face as depicted in figure 3.  In some cases the use of lower face data was prevented by 

facial hair, and forehead data was limited where the subject had low hanging hair.  The 

cropped images were separated into three layers representing RGB, then gray and 

multiplicative scatter correction was performed.   To determine if the voltage 

corresponded to a PC score, each color layer of the cropped images was averaged to 

produce a single voltage score. Multivariate regression was performed on the voltage data 

from each cropped facial region.  All possible combinations of three, four, and five MFC 

filters of the total six were used to determine if a correlation existed. Because the MFC 

filters were not perfectly weighted functions of the ethanol in humans, PCA and 
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multivariate regression was also performed on the filter data. Leave-one-out cross-

validation was used to determine the prediction ability of the model for BrAC values 

from NIRS imaging.  

 Cool Edit Pro was used to apply noise reduction to the microphone speech data 

only.  This was done by creating a noise profile for each patient. The noise profile was 

created by sampling the background noise in the audio track (i.e. before the subject began 

speaking).  The background noise sample was applied to the full waveform with the noise 

reduction option using a FFT size of 12000 and a precision factor of ten
98

. The data were 

imported into MatLab following noise reduction. The speech data was analyzed in two 

ways: analysis was completed on full phrases (i.e. all words together in sequence) and on 

individual words. To accomplish this, the time domain data was cropped so that there was 

one data set for all combined words and one data set for each of the 13 words spoken by 

each subject. All time domain data was Fourier transformed into the frequency domain. 

PCA was applied to all data sets and multivariate analysis was used to determine if 

correlations between speech and BrAC existed.  All multivariate models were validated 

using leave-one-out cross-validation. 

 

Results and Discussion 

 

NIR Image Data.  The purpose of the MFC filter is to increase S/N and reduce the 

numeric processing associated with an analytical method. In theory, if the MFC filters 

had been perfectly weighted functions of the ethanol in humans, the resulting intensity 

signals at each pixel of the images would be proportional to ethanol concentration in 

blood and no other calculations would need to be made.  In this case there were six MFC 
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filters that yielded six pseudo PC scores (voltage scores).  Calculation of the voltage 

scores from the MFC filters required sampling several pixels at different facial regions, as 

described previously.  The pixels were averaged together for each image and used as the 

single voltage score for the corresponding filter.  This produced one data point per image 

per filter. In the end there were six voltage scores for each sample concentration. 

However, this analysis did not produce highly correlated results probably due to the 

imperfect nature of the filters as factor loadings and the introduction of noise from patient 

movement. For example, as described in figure 3.2, two filters are required for each PC 

loading used. The MFC filters used in this experiment represented only the positive 

loadings. Figure 3.4 indicates the r2 values from each subject using multivariate 

regression and leave-one-out cross validation for MFC image data.  The standard error of 

prediction (SEP) for the correlations in figure 4 can be found in figure 3.5.  Information 

on the facial regions used in the calibrations reported in figures 3.4 and 3.5 can be found 

in the technical report from reference 99. 

 Principal components and multivariate regression was performed combining all 

combinations of colors (RGB) and MFC filters together to find the best correlation.  The 

regression correlations and cross-validation statistics for each subject from a full facial 

profile that mathematically describe the fitness of the model and the prediction ability of 

the model for BrAC values from PCA of MFC NIR imaging is indicated in figures 3.4 

and 3.5.  Post-processing factor scores (i.e., 6 scores instead of ca. 1000 wavelengths) by 

PCA gave the best results.  Information on the color space and MFC filters in the PCA 

regression model can be found in reference 99.  Image data were assembled together 

from all patients to make a pooled global calibration for testing the prediction ability 
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when the subject is unknown (i.e., not previously calibrated).  Figure 3.6 A. indicates the 

global model predicted BrAC with r
2
 = 0.987 and SEP = 0.0081 % BrAC.    

 

 Speech Spectral Data.  The time domain data was Fourier transformed (FT) into a 

frequency domain.  The FT was performed such that every frequency represented a data 

point (sample rate = 44.1 kHz, therefore each sample was a 1x22050 matrix). All spaces 

in the time domain data not containing speech were removed by editing so that the FT 

was a combination of all frequencies.  Due to the large volume of data, PCs were 

calculated over a limited frequency interval where speech was expected to be found.  

Frequency differences were observed among the different phonemes associated with the 

words used in this study. Figure 3.7 illustrates the speech spectra from patient 5 obtained 

from the interferometer and microphone for words ―boot‖ and ―light‖.  The 

interferometer produced lower frequencies similarly to that of the microphone. However, 

it was found that the microphone captured higher frequency signals with a much better 

S/N ratio.   The laser interferometer produced speech spectra that showed BrAC 

correlations with frequencies lower than those observed in the microphone spectra. This 

was likely attributed to resonance with the reflecting glass.  Due to the nature of the 

recording device and room noise, the signal to noise (S/N) ratio of the laser 

interferometer was low. As a result of the laser interferometer detecting lower 

frequencies than the microphone, correlations with BrAC were found at much lower 

frequencies.  The average frequency range associated with BrAC correlations to 

interferometer-recorded speech was 150 to 900Hz.  The laser interferometer-recorded 

speech spectra produced individual correlations with r
2
 > 0.91 and SEP < 0.017 % BAC.  
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Figures 3.8 and 3.9 depict the r-square and SEP statistics respectively, from multivariate 

regression and leave-one-out cross-validation observed for each word.  An r
2
 = 0.806 and 

SEP = 0.017 % BAC was found for the average pooled interferometer spectral data.  The 

relatively poor performance of the global model is most likely due to the small sample 

size (n=5) and may be attributed to the differences in individual vocal clarity and ability.  

Hollien et al noted that differences in fundamental frequency are found between men and 

women
89

. 

 The microphone-recorded speech spectra produced individual correlations to 

BrAC of r
2
 > 0.95 and SEPs < 0.015 % BrAC.  Figures 3.10 and 3.11 illustrate the 

microphone-recorded r-square and SEP statistics respectively, from multivariate 

regression and leave-one-out cross-validation.   The average frequency range associated 

with BrAC correlations to microphone-recorded speech was 150 to 1050 Hz.  A global 

model was calculated by pooling the microphone speech spectra for each word.  An r
2
 = 

0.805 and SEP = 0.016 % BrAC was found for the average pooled microphone spectral 

data. Figure 3.6 B and C illustrates the prediction capability for the global speech model 

for spoken words bit (interferometer recorded) and boot (microphone recorded), 

respectively. Again, the relatively poor performance of the global model is most likely 

due to the small sample size (n=5) and because of differences in vocal characteristics of 

each patient.    

 

Conclusion 

 

MFC-NIR hyperspectral imaging and speech are shown to correlate with BrAC. MFC-

NIRS imaging returned a global correlation much higher (r2 = 0.987, SEP = 0.0081%) 
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than that of the speech detection method.  Although the predictions made from principal 

component regression of the MFC filter data were somewhat better than predictions made 

from the voltage data alone, the results suggest that MFC may be capable of producing a 

more robust prediction. The MFC filters used in this research were selected from a small 

database of available materials.  The number of filter materials available for MFC is high 

and better methods of filter selection may be needed for MFC to be a more useful 

technique.  There may also be a market for production of solid state filters for MFC-NIR 

hyperspectral imaging. The advantages of MFC-NIR hyperspectral imaging over 

traditional NIR hyperspectral imaging include a decrease in the computational demand, 

shorter acquisition and analysis times, and higher signal-to-noise ratio.  MFC also has the 

advantage of increased optical throughput because many wavelengths are acquired at the 

same time.   

 Problems with determining the portions of the patient’s face to analyze increased 

measurement noise lead to a less accurate prediction model.  This problem may be fixed 

by incorporating an algorithm to distinguish between exposed skin and hair (hair is 

highly reflective in the NIR). 

 Speech results for individual calibrations were shown to correlate well with 

BrAC.  Although laser microphone-listening devices can be expensive, but we have 

shown it is possible to build a device for much less (under $100).  The global model for 

speech determination of BrAC is more difficult to find. However, the results of this study 

suggest that individual calibrations of speech can allow for its use in commercial 

industries.   
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 MFC-NIR hyperspectral imaging and laser speech detection may be of use to law 

enforcement for noninvasive alcohol monitoring of subjects.  Although, due to the ethical 

and constitutional dilemmas posed by this research, noninvasive alcohol monitoring may 

find better use in the pharmacology and alcohol treatment industries.   
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Chapter Three Figures 

 

 

 

Figure 3.1:  Remote alcohol sensing: a hypothetical situation where NIR laser beam is 

used to monitor speech from the glass on the table.  MFC-NIR hyperspectral imaging is 

used for laser positioning and to determine the subject’s BAC.  
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Figure 3.2: A set of training spectra is collected over many wavelengths.  Loadings 

correspond to spectral regions where variation in analyte concentration is greatest.  

Molecular factor (MF) filters are selected to closely match a loading profile.  Because 

MF filters cannot have negative responses, two MF filters are required. A broadband 

source is used to illuminate a target and the reflected light is passed through the MF filter.   

Only wavelengths corresponding to regions where spectral variability is greatest can pass 

through the filter.  Because the MF filter is chemometrically weighted, the voltage 

response at the detector is proportional to the analyte sought. 
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Figure 3.3:  Due to movement of the subject over the acquisition period, each subject 

image was cropped in four areas:  forehead, under the eyes, and lower face with 

horizontal and vertical areas indicated. The lower face region also included a portion of 

the subject’s neck. 
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Figure 3.4:  Comparison of MFC and PCA image calibration results from leave-one-out 

cross-validation of actual versus predicted % BrAC. P5 – P9 indicate patient ID.    

  

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

P5 P6 P7 P8 P9

R
2

MFC PCA



70 
 

 

 

 

Figure 3.5:  Comparison of PCA and MFC image calibration SEP values for leave-one-

out cross-validation of actual versus predicted % BrAC.  P5 – P9 indicate patient ID. 
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Figure 3.6:  Global calibration plots of predicted % BrAC versus the actual % BrAC 

using leave-one-out cross validation based on A: PCA of MFC NIR image data: r2 = 

0.987 and SEP = 0.0081 % BrAC.  B:  Interferometer recorded speech for word ―bit‖: r2 

= 0.852 and SEP = 0.0153 % BrAC. C: Microphone recoded speech for word ―boot‖: r2 

= 0.8432 and SEP = 0.0151 % BrAC. 
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Figure 3.7:  Speech spectra from patient 5 showing frequency differences between words 

and response of the interferometer compared to the microphone.  A and B show the 

microphone-detected frequency spectra of words ―boot‖ and ―light‖, respectively.  C and 

D show the interferometer-detected frequency spectra of words ―boot‖ and ―light‖, 

respectively. 
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Figure 3.8:  Comparison of leave-one-out cross-validation correlations for predicted 

versus actual %BrAC from analysis of interferometer-recorded speech.  Individual 

correlations were found with R
2
 > 91%. 
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Figure 3.9:  Comparison of SEP from leave-one-out cross-validation for predicted versus 

actual %BrAC analysis of interferometer-recorded speech.  The SEP for individual 

measurements was < 0.020 % BrAC. 
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Figure 3.10:  Comparison of leave-one-out cross-validation correlations for predicted 

versus actual %BrAC from analysis of microphone-recorded speech.  Individual 

correlations were found with R
2
 > 94%. 
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Figure 3.11:  Comparison of SEP from leave-one-out cross-validation for predicted 

versus actual %BrAC analysis of microphone-recorded speech.  The SEP for individual 

measurements was < 0.016 % BrAC. 
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Chapter Four-Bootstrap Error-adjusted Single-sample Technique Molecular Factor 

Computing (BEST-MFC) Near Infrared Hyperspectral Imaging: Classification of False 

Samples 

 

 

Introduction 

One problem with conventional alcohol monitoring modalities is that the subject is aware 

that he or she is being monitored. A noninvasive and surreptitious measurement of breath 

alcohol content (BrAC, known to be highly correlated to blood alcohol content 
73

) is of 

interest because of the many problems regarding the existing real-time and more intrusive 

methods. The previous chapter detailed research on the use of molecular factor 

computing (MFC) Near-Infrared hyperspectral imaging for noninvasive and surreptitious 

monitoring of BrAC.  Near-IR hyperspectral imaging is a useful tool for quantitative 

analysis of biological samples because it can provide rapid measurements with little or no 

sample preparation
100-102

.  MFC near-IR hyperspectral imaging is of interest for remote 

alcohol sensing because of the advantages associated with integrating sensing and 

processing (ISP).  In ISP the chemometrics associated with post-processing are integrated 

into the sensing process.  With MFC near-IR imaging, measurements of BrAC can be 

made without the subject being aware and yield an immediate result.  The basic theory of 

MFC has been illustrated by Myrick et al. in UV-visible, NIR, and Raman 

spectroscopy
103-111

.  The method of MFC was detailed in the previous chapter.  In short, 

MFC filters are selected to model the positive and negative portions of a PC loading 

vector.  The PC loading vectors used to predict an unknown (in this case, ethanol 

concentration) are calculated from a calibration set comprising a wide range of 
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concentrations. Therefore, the training set is used to define a pattern that the MFC filter 

system will detect.  Thus the MFC filter system is a pattern recognition algorithm that is 

performed optically.  Our laboratory has demonstrated the use of MFC filters for spectral 

encoding in several publications
5,66,112

.  The applicability of the MFC method is limited 

by the fact that it is a pattern recognition algorithm.  Problems arise in pattern recognition 

when the pattern-recognition algorithm encounters a sample unlike any in the original 

calibration set.  This is termed the false sample problem.  The false sample problem is not 

an issue if the calibration set used to select the MFC filter contains every substance in the 

known universe.  Figure 4.1 depicts the absorption regions from overtones and 

combinations of common functional groups in the near-IR region of the electromagnetic 

spectrum.  Consider the construction of a MFC filter for ethanol detection.  If a sample 

contains nothing but ethanol, theoretically, a perfect MFC filter for hyperspectral imaging 

could be composed from molecules containing all functional groups except –OH.  All 

light would be blocked by the MFC filter except light that reveals ethanol concentration.  

The MFC filter would be immune to false samples as long as functional groups absorbed 

light completely and only where indicated in a spectra-structure correlation chart.  

However, in real life everything absorbs and scatters light to some degree at all 

wavelengths in the near-IR.  Different chemicals just absorb light in slightly different 

amounts at all wavelengths.  It is this property of differential absorption and scattering 

that creates a need for multivariate analysis and can lead to false-sample problems.     

 Hyperspectral images contain both spatial and spectral information.  In MFC the 

output voltage of the detector is a single dimension that corresponds to analyte 

concentration.  However, in MFC imaging each pixel output of the detector array 
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becomes a matrix of voltages corresponding to analyte concentration at many points in 

space.  An erroneous prediction can be made if portions of the pixels in an MFC 

hyperspectral image comprise signals from false samples.   To this end, it becomes 

necessary to assign statistical significance to the voltage output class.  While there are 

many classification techniques available most are computationally demanding. One 

classification method is the Bootstrap error-adjusted single-sample technique (BEST).   

The BEST method is more computationally efficient than other techniques (e.g. 

Mahalanobis = O(n
3
), BEST = O(n)).  However, because bootstrap replicates are 

calculated to estimate a population density, it becomes more difficult to perform on-line.  

One of the advantages of integrating sensing and processing is the speed of the method.  

In order to utilize the advantage of speed in ISP a fast validation method is needed.   

 The BEST-MFC method utilizes BEST distances calculated from a bootstrap 

distribution off-line.  BEST multi-dimensional standard deviations (MSDs) are calculated 

for each point of a bootstrap distribution.  The bootstrap MSDs are normalized to one 

BEST MSD and stored in a hash table.  BEST distances are estimated for a new sample 

by calculating the dot product between the sample and hash table.  The BEST hashing 

method is faster on a digital computer than the full BEST algorithm, illustrating utility for 

classification of MFC image data.  The following research illustrates the application of 

the BEST-MFC hash method for classification of false sample data in MFC hyperspectral 

images.     

Materials and Methods 

The experimental and clinical trial procedures for the surreptitious remote sensing of 

blood alcohol concentration were described in the previous chapter.   
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MFC near-IR image data for a single subject were used in this study.  The images 

were selected because the subject had facial hair.  Image pixels comprising reflectance 

data corresponding to facial hair were used as false samples.  All six filters used in our 

previous ethanol experiment were employed in this study and were as follows: 

polycarbonate (F1; Lexan, Plaskolite, Inc.), Acrylic (F2; Unbranded), polyvinyl chloride 

(F3; Unbranded, McMaster-Carr), combined gel filters CC20B and CC40G (F4; Kodak), 

gel filter Pale Yellow (F5; Kodak A2), and polymethyl-methacrylate (F6; Optix, 

Plaskolite, Inc.).   

 Image data corresponding to subject P9 were loaded into MatLab (R2008a) where 

they created a matrix of intensity values with a size of 720x480x3 (rows by columns by 

layers).  The layers corresponded to red, green, and blue colors spaced such that the 

combination of the intensities at a pixel produced 1 of 256 possible colors.  For each 

measurement corresponding to an ethanol concentration, six images (one for each MFC 

filter) were acquired.  The total data for each concentration measurement comprised a 

matrix with a size of 720x480x18 (rows by columns by dimensions). The dimensions 

correspond to the red, blue, and green color data for each MFC filter image.  In total, 37 

concentration measurements of subject P9 were analyzed.  Each image pixel represented 

a spectrum containing 18 predictor variables (dimensions).  In total, there were 

12,787,200 spectra (720 x 480 pixels x 37 measurements) that could have been examined.  

Because of the high volume of data to be analyzed a small subset was used for this study.  

Each image was sampled at different pixels to generate 2000 skin (intensity values to 

correspond to BAC) and 2000 facial hair (false sample) spectra.  The spectral sets were 

averaged to yield 500 spectra for each class.   
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 The skin spectra were used to construct a BEST hash table comprising 2000 

points. For each concentration measurement BEST multidimensional standard deviations 

(MSDs) were estimated for both the skin and facial hair spectra.  MSDs greater than 3 are 

considered to be from false samples. 

Results and Discussion 

Figure 4.2 illustrates the spectra for pixels corresponding to skin and facial hair.  The 

figure demonstrates the differences in reflectance between areas of skin and hair.  The 

signals from facial hair were at higher intensities than those from skin, illustrating the 

high reflectivity of hair.  Inclusion of pixel data illustrated in Figure 4.2 corresponding to 

facial hair into the prediction model will result in one of two possible responses.  Either 

the prediction model will predict a reasonable estimate of BrAC or an estimate that is 

obviously wrong.  When image data from facial hair was included into the prediction 

model there were three instances where a reasonable prediction was given.  Table 4.1 lists 

the actual percent BrAC values versus the predicted values.  In these three cases the 

subject would have been predicted well above or below the actual BrAC level. 

The BEST-MFC method operates on the assumption that like samples cluster 

together in multidimensional space.  Training set samples corresponding to skin were 

used to calculate a standardized MSD contour based off of BEST distances.  The points 

comprising the contour were stored in a hash table.  BEST MSDs were estimated for each 

spectrum from both skin and facial hair regions by comparing spectra from each to the 

hash table.  Figure 4.3 illustrates a 3 MSD contour in three dimensions calculated using 

the BEST-MFC hash method. It is evident from the figure that the skin and facial hair 

spectra are well separated.  Table 4.2 indicates the classification statistics for both skin 
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and facial hair using the full BEST algorithm and the BEST hash metric, respectively.  

The statistics listed in Tables 4.2 were calculated using all 18 dimensions (6 filters x 3 

color layers).  In all cases facial hair was always identified as a false sample.   

To determine if the performance of the classification model changes with respect 

to the number of filters used, the BEST-hash method was performed on the image data 

with varying dimensions.  Table 4.3 lists the specificity and sensitivity for identifying 

500 false sample (facial hair) spectra from 500 skin spectra using a 2000 variable BEST 

table for a given number of dimensions.  While skin and facial hair spectra were well 

separated in multidimensional space, Table 5.3 indicates that the performance of the 

BEST-MFC metric degrades somewhat as the number of dimensions increases with 

respect to specificity.  The change in specificity indicates that some skin spectra are 

identified as false samples.  Because the BEST MSD between skin and facial hair spectra 

is so large the standard deviation cutoff could be increased to account for more variation 

in the skin spectra.  In the previous chapter it was found that for most cases all filter data 

were needed to predict BrAC.  For qualification, however, only a few filters are needed to 

accurately identify facial hair as a false sample due to the variation between spectra.  It is 

conceivable that image data from a small number of filters could be used to determine 

whether to load all image data into a calibration.  The same filters used to identify false 

samples can also be used to determine which image pixels to use in a prediction.  Figure 

4.4 illustrates the estimated BEST MSDs calculated with image data from 3 filters (F2, 

F4, and F5).  The figure indicates only the subject‟s lower left face because of IRB 

regulations on patient privacy.  The subjects‟ facial hair is clearly identifiable in the 
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figure.  Use of the estimated BEST MSDs to classify pixel regions in the image permits 

automation of the system.    

With BEST-MFC the statistical significance of the classification is also output 

with the measurement value.  The BEST-MFC method is a much faster method of 

classification than the full BEST algorithm on a digital computer.  The results in Table 

4.2 required on average 1.8 seconds to complete with the BEST hash method compared 

to an average of 18 minutes for the full BEST algorithm.  Table 4.3 also indicates the 

difference in run times for the BEST hash method for a given number of dimensions.   

The BEST hash method also permits the identification of inactive pixels.  

Software for correction of dead pixels is commonly included with most modern near-IR 

imaging equipment.  Software corrections generally use an interpolation process to 

replace dead pixels.  The replacement procedure is automatic and is carried out without 

the user being informed.  This can become problematic when many different samples are 

imaged.  When there are a limited number of pixels on the detector array available for 

each analyte, interpolated values can cause erroneous estimates of some analytes.  Figure 

4.5 illustrates a group of bad pixels on the InSb focal plane array used in the study.  The 

standard deviation image clearly indicates the bad pixel region.  Removal of the data 

from bad pixel regions is necessary for accurate analysis of multiple samples.  

Conclusion 

BEST-MFC near-IR hyperspectral imaging has been investigated as a method of 

identifying false samples.  Near-IR hyperspectral imaging offers the ability for 

noninvasive and surreptitious monitoring of samples.  MFC near-IR hyperspectral 
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imaging has the advantage of speed by integrating the sensing and processing in the 

physical design of the collection process.  BEST-MFC offers the advantage of applying 

statistical significance to the class output from the detector at speeds faster than the full 

BEST algorithm.  The BEST-MFC method classified 1000 spectra in only 1.8 s which 

required over 18 minutes with the full BEST method.  In all cases the accuracy, precision, 

sensitivity, and specificity were equal to or better than the full BEST method. The fast 

false sample detection ability gives BEST-MFC hyperspectral imaging utility as an 

automated sensor system.   
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Chapter Four Tables 

 

 

Table 4.1:  Erroneous predictions resulting from inclusion of facial hair spectra into the 

prediction model. 

True concentration 

% BrAC 

False Prediction 

% BrAC 

0.060 0.010 

0.047 0.088 

0.019 0.094 
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Table 4.2:  Performance statistics for BEST classification of skin and facial hair spectra 

using the full BEST algorithm and the BEST hash method.  The BEST-MFC method 

classified 500 skin and 500 facial hair spectra in only 1.8 s which required 18 minutes for 

the full BEST algorithm. 

Method Full BEST BEST-MFC 

Group Skin Hair Skin Hair 

Accuracy (%) 99.3 100 99.8 100 

Precision (%) 100 100 100 100 

Correct 493 500 498 500 

Specificity 1 1 1 1 

Sensitivity 0.986 1 0.996 1 
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Table 4.3:  Performance results of the BEST-MFC method for identifying 500 false 

sample spectra from 500 skin spectra with varying degrees of dimensionality.   

# Dimensions 3 5 7 9 11 15 18 

Specificity 1 1 0.996 0.996 0.996 0.996 0.996 

Sensitivity 1 1 1 1 1 1 1 

Run Time (s) 0.401 0.500 0.617 0.791 0.939 1.291 1.502 
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Chapter Four Figures 

 

 

 

Figure 4.1: Near-infrared correlation chart for common functional groups.  This chart is 

only an approximate guide for near-IR band assignment by functional group. 
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Figure 4.2:  Reflectance data for selected pixel regions comprising skin (bottom) and 

facial hair (top).  Reflectance intensity is indicated by color, increasing from blue (low 

intensity) to red (high intensity). 
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Figure 4.3:  Estimated BEST MSD contour at 3 SDs for filters F2, F4, and F5. The 

BEST contour represents 100 points taken from a 2000 point BEST Hashtable. 

 

  



91 
 

 

 

Figure 4.4:  Estimated BEST MSD plot of subject 9.  Subjects‟ full face is not shown 

due to IRB- approved protocols regarding patient privacy (approval number 07-0417-

F1V).  BEST MSDs are indicated by color increasing from blue (low MSD) to red (high 

MSD).  MSDs greater than 3 are considered to be different from the training set. 
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Figure 4.5:  Estimated BEST standard deviation plot illustrating a bad pixel area on the 

InSb focal plane array.  BEST MSDs are indicated by color increasing from blue (low 

MSD) to red (high MSD). 
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Section IV: Astrobiology 

 

Astrobiology is the study of the origin, distribution and evolution of life in the 

Universe
113

.  As a multidisciplinary science astrobiology, combines fields such as 

chemistry, biology, computer science, geology and many others.  A key aspect of the 

NASA astrobiology program is the detection of extinct or extant life on Mars
114

.  NASA 

has sent several robotic probes
115-117

 and is in the process of planning future missions
118

 

to Mars with the purpose of detecting past or present life or searching for suitable 

environments for life.  Mars is typically at the center of astrobiology research because it 

is thought to have had a similar geological history to Earth
119-120

.  Organisms, termed 

extremophiles can be found on Earth in remote and harsh environments and are some of 

the oldest life forms known.  If life exists or ever did exist on Mars it is likely that it 

would resemble the extremophilic organisms found on Earth.  The geological and 

environmental strategies that extremophiles must take to adapt to such harsh planetary 

environments make them useful models to derive remote detection schemes.     

Optical spectroscopy is well suited for the identification of both geo- and 

biomarkers associated with extremophilic organisms.  Ultra violet (UV), visible and near-

Infrared (IR) methods coupled with chemometric techniques can be used to identify 

complex organic and inorganic compounds associated with life.  Near-IR spectroscopy is 

a useful tool for the identification of biological samples because it can penetrate samples 

well and excellent signal-to-noise ratios can be obtained
121-123

.  Raman spectroscopy has 

been previously used for the identification of astrobiologically significant organic and 

inorganic compounds
124-126

.   These methods are suitable for sensing in remote 

environments because sample preparation and manipulation is not needed.   
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Raman spectroscopy is considered to be a viable tool for the search of 

extraterrestrial life. However, Raman scatter is very weak (~10
-9

 photons may be Raman 

scattered) making measurements of low concentrations more difficult compared to near-

IR (one in 10 photons may be scattered). Many of the drawbacks of optical techniques are 

in the instrument design.  Optics and moving parts can be problematic in remote sensing 

applications.  Any movement of the internal spectrometer parts can have a drastic effect 

on the resulting spectra.  An ideal spectrometer for the identification of bio- and 

geomarkers associated with extraterrestrial life would be robust, small and lightweight.   

The following chapters describe research conducted with a novel solid state 

spectral imager (SSSI).  The SSSI is a small and lightweight imager that is expected to 

use laser diodes at wavelengths ranging from UV to near-IR.  The use of a pseudorandom 

pulse sequence allows for multiple diode illumination which results in an increased 

signal-to-noise ratio.  The SSSI has no moving parts or optics normally associated with 

traditional spectrometers and imagers, making it a useful choice for remote sensing 

applications.  Chapter six describes research for the development of an ISP routine for the 

SSSI.  In this chapter copper sulfate solution was quantified based on the voltage output 

of the detector.  The ISP algorithms described in the following chapters were based on a 

training set of discrete samples.  In chapter seven an on-line BEST-ISP method was 

investigated for the determination of samples not included in the original training set 

(false samples).  The final chapter is a hypothetical study and the author fully admits that 

the line between reality and fiction has been closely drawn.  However, the reader should 

keep in mind that the theoretical approach investigated for the exploration of other worlds 
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is based on real and developing technologies and remember that science is only limited 

by the imagination.   
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Chapter 5- Complementary Integrated Sensing and Processing Solid State Spectroscopy 

(CRISP-SSSI) for Rapid Detection of Copper Sulfate 

 

 

Introduction 

Copper sulfate pentahydrate (CuSO4·5H2O) is commonly used in agriculture but has a 

broad range of other non-agricultural uses.  In the United States CuSO4·5H2O is used for 

bacteria and fungus control in food crops.  Copper is toxic to microorganisms because of 

its ability to denature cellular proteins and deactivate enzyme systems
127

.  CuSO4·5H2O is 

found naturally in the soil however, accumulation of toxic levels is problematic because it 

is difficult to remove.  Furthermore, the accumulation of copper in soils may be harmful 

to microbes, which have an active role in nutrient cycling and decomposition of organic 

matter
128

.  The toxicity of copper to cyanobacteria
129

 and other organic life on Earth is 

likely to exist on other planets as well.   

During the Phoenix mission on Mars, perchlorates were discovered in the Martian soil.  

This recent discover led to a debate of whether it was possible for organic life to exist 

under such conditions
130-131

. Perchlorate is a strong oxidizer and is used as a main 

ingredient in some rocket fuels. In high concentrations, perchlorates are harmful to 

organic life due to their oxidizing nature. However, perchlorates are also found naturally 

in low concentrations on Earth in places such as Chile‟s Atacama Desert, where 

extremophilic organisms are also known to exist.   

 Both copper and perchlorate are toxic to many microorganisms however; there are 

some that have the ability to tolerate low levels of these substances
132-133

.   For both 

copper and perchlorate, the concentration in the surrounding environment will likely 
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determine whether organisms can be found.  Many experiments that are designed to 

search for extant and extinct life intrinsically look for biosignatures (molecules associated 

with UV pigments, etc.).  If the environment is not likely to support life then it may be 

useful to save valuable resources time by searching for life in places where the chances 

are considerably better.  A method of rapid identification and quantification of toxic 

substances would allow a rover to spend more time searching for life in places where it is 

more apt to find it. 

 Solid State Spectroscopy The Solid-State Spectral Imager (SSSI) is a new 

device for acquiring hyperspectral images and spectroscopic data.  A light emitting diode 

array is used to acquire ultraviolet (UV), visible and near-IR data of biological and 

geological samples.  The SSSI comprises three main parts: a light emitting diode array, 

an on-board processor and a single photodetector.  The use of a single photodetector is 

possible because of the unique data-analysis algorithm.  The SSSI utilizes an orthogonal 

pseudo-random (e.g., a Hadamard) pulsing sequence
134

.  The Hadamard pulse sequence 

progresses stepwise in such a way that the signal from a single detector can be 

demultiplexed to determine the contribution of each LED wavelength to the total 

observed reflection spectrum.  Hadamard encoding has the benefit of multiple (parallel) 

diode illumination rather than illuminating with diodes sequentially.  Multiple diode 

illumination allows more energy to reach the detector increasing the signal.  The 

Hadamard weighting provides equal covariance and duty cycles on all diodes, reducing 

premature hardware failures.  Figure 5.1 illustrates the utility of Hadamard encoding for a 

3-diode system.  In Figure 5.1, each diode can be turned on and off separately, producing 

three equations with three unknowns representing the contribution of each diode 
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wavelength to a sample spectrum.  The equations could be solved with brute force, but as 

the number of diodes increases the computational burden of solving a system of 

equations increases sharply. The Hadamard transform (HT) is an elegant solution to the 

problem of increasing complexity.    

 The SSSI is unique because it does not require moving parts or lenses so it can be 

reduced in size very easily (see Figure 5.2).   The SSSI is rugged, giving it the ability to 

operate in extreme environments
135

 making it a useful choice for the study of 

extremophilic organisms in remote places like Mars
136

.  In remote locations, the sensor 

system needs to have the ability to make decisions on its own.  One method of 

accomplishing this is by integrating the sensing and processing directly into the detector.  

Integrated sensing and processing (ISP) incorporates information about the sample 

directly into the physical design of the data collection process.   In traditional 

spectroscopy, sampling is performed to obtain data which is then analyzed to reveal 

information about the sample.  The statistics gained from the analysis can be applied to 

future data sets but computation will always follow sampling.  The computational 

processes following sampling in traditional methods are applied with ISP during the 

sampling process at the speed of light.  Incorporating chemometrics into the detection 

process virtually eliminates the computations that normally follow the data acquisition 

process. This technique works well for situations where there is more than enough time 

for calibration before data collection, but limited time after.  Advantages of using ISP 

include a decrease in computational and data storage demands by integrating the sensing 

and processing directly into the transducer (the integrated sensing and processing, or ISP, 

advantage), the Fellgett advantage (acquisition of all wavelengths simultaneously permits 
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higher signal-to-noise ratio for a given acquisition time) and the Jacquinot advantage (the 

absence of monochromator slits allows higher optical throughput).  The SSSI is capable 

of operating in a form of ISP, complementary randomized integrated sensing and 

processing (CRISP) scanning mode.  In this mode, information that is gained from 

Hadamard scanning is applied to produce a real-time analysis technique. 

 

Theory 

In CRISP scanning mode, factor-based analysis techniques such as principal component 

analysis (PCA) are used to maximize the sample variation in a defined bandpass. PCA is 

a common tool used for preprocessing multivariate data, but PCA can be computationally 

expensive, requiring an O(n3) matrix factorization 
15

.  In PCA a linear transformation of 

the data from one coordinate system to another of reduced dimensionality is performed. 

Calculation of PCs can be accomplished by performing the singular value decomposition 

(SVD) on a matrix, A (the spectra) of dimension m × n, according to Equation 5.1:  

       (5.1) 

where  ( ) is an orthonormal matrix representing PC scores,  ( ) is a matrix 

of singular values,  ( ) is an orthogonal matrix of eigenvalues (loadings).  The 

dimensions of the matrices are dependent on the number of samples,  and the number 

of predictor variables, .  The decomposition of  is calculated such that the maximum 

variation of the data set is found in the first PC.  Each successive PC contains a lesser 

percent of the variation and is orthogonal to the previous one.  In a pure two-component 

system only a single PC is needed to describe the sample. However, spectroscopic data is 
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not as straightforward. Interferences, detector noise, spectral overlap and other 

inconsistencies complicate the sample and the number of PCs needed to describe the 

variation increases.  Generally, the number of PCs needed to describe a sample is taken to 

be less than half of  and in practice is usually far less. 

 In PCA, spectra are transformed into spectral scores.  Each signal, a recorded with 

a narrow bandpass is weighted at each wavelength, λ with a coefficient, f over n 

wavelengths. 

 (5.2) 

In PCA, the factors calculated by SVD are based on the linear variation in the spectral 

data set.  In CRISP optical representations of the factors (f in Eq. 5.2) are created to 

weight the signal (a in Eq. 5.2) by programming pulse sequences to match the loading 

vectors generated in PCA.  However, LEDs can only be in one of two states, represented 

as a binary one (on) or zero (off).  In equation 5.2,  is the loading coefficient between 

zero and one quantifying the contribution of the  wavelength (LED) to the score.  For 

a CRISP sequence to match the loading vector, the on and off states with varying duty 

cycles must be integrated over time so that the summed values correspond to a factor 

score.  In this implementation of CRISP, more pulses are used per integration frame at 

wavelengths with higher loading values (see Figure 5.3).  The CRISP modulation bit rate 

(bandwidth) controls the intensity resolution of the factor result. 

 CRISP pulse sequences are randomized to produce as little covariance between 

the sequences as possible.  The length of sequences used for each loading depends on the 

desired resolution.  At the lowest resolution, a CRISP sequence would encode all loading 
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values as a binary one or zero.  As the number of pulses and integration frames is 

increased, the intensity resolution can become quite high, allowing the loading 

coefficients from PCA to be closely simulated.  Together, the encoding of spatial and 

intensity information on the LEDs permits the simultaneous identification, quantification, 

and location of specific analytes. 

 

Materials and Methods 

Materials.  Copper sulfate pentahydrate (CuSO4 •5 H2O) (J.T. Baker Chemical co.) was 

massed and diluted to 500 mL to create a series of solutions ranging from 480 to 7604 

ppm.   The solutions were scanned with the SSSI in Hadamard scanning mode. A cuvette 

was constructed in-house with a path length of 10cm.   

 Data Collection.  Solutions were scanned in triplicate and in random order.  The 

SSSI was set to acquire 50 replicate scans per each scan acquired, which resulted in 150 

scans for each solution.  All solutions were scanned in ambient light and in random order.  

The prototype SSSI was controlled via a serial connection to a laptop computer.  A 

graphical user interface (GUI) was created in MatLab 7.0.1 (The Mathworks Company, 

Natick, MA, USA) to send commands to the SSSI CPU and transfer all data.  Data were 

imported into MatLab for analysis.  The spectra were scatter corrected and replicates 

were averaged before PCA was performed.  Leave-one-out cross validation was used to 

validate the multivariate PC regression model.  The loading vectors corresponding to the 

PCs used in the regression model were used to build CRISP sequences. 
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 CRISP Sequence Construction.  Loadings corresponding to the three PCs used in 

the validation set were required to derive the CRISP codes.  The positive and negative 

loading data was separated. The absolute value of the negative loading data values were 

used because optical intensities cannot be negative.  The loading values were normalized 

to one by dividing each loading vector by the maximum vector value.  Because CRISP 

can only be implemented with simple 0- or 1-emission pulses the detector signal must be 

integrated for one pulse sequence length.  However, the length of a CRISP code is 

determined by the number of bits of intensity resolution used.  For a simple CRISP code, 

the intensity resolution is set to one.  The normalized loading vectors were multiplied by 

one and rounded to the nearest whole number.  This produced an intensity resolution of 

one.  Table 5.1 illustrates how the CRISP sequence resolution is constructed.  Clearly, an 

iterative approach could be used to generate a perfectly matched CRISP sequence to a 

loading vector, however the sequence may require more bits than are available in the 

processors memory.  A binary representation matrix was constructed from each 

resolution vector, which resulted in a 1x25 matrix corresponding to LED on and off states 

for each positive and negative loading used.  In total, three PCs were used to validate the 

training set which resulted in six 1x25 CRISP sequences.  For higher resolution 

sequences the on and off states were randomized so that covariance within the sequences 

was minimized.  Two separate CRISP codes were constructed at two different 

resolutions, 1 and 10 (R1 and R10, respectively). The CRISP codes for R10 were 

constructed from the loadings corresponding to the top 3 PCs. This resulted in six 

sequences that were 10 x 25 each. In total, CRISP for R10 was a 60x25 matrix.   
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Results and Discussion 

Copper sulfate solutions were investigated with the SSSI in the visible region of the 

electromagnetic spectrum.  Figure 5.4 is a depiction of the mean transmittance spectra 

from Hadamard scans.  The mean transmission spectra in Figure 5.4 are characteristic of 

various concentrations of CuSO4 solutions because the transmitted light is representative 

of the color of the solution. The spectra show a high transmittance for the solutions at 565 

nm (green LED), which is due to the cuvette used in these experiments.  The cuvette was 

constructed from glass that had a slight green tint.  While the solutions should 

characteristically transmit blue light, the solutions in the cuvette transmitted blue-green 

light.  The change in concentration adhered closely to Beer‟s law.     

 Principal component analysis (PCA) was performed on the transmittance spectra 

to determine the contribution of each diode in quantifying CuSO4.  Three PCs were 

needed to cross validate the data.  Figure 5.5A indicates the leave-one-out cross 

validation plot of measured CuSO4 versus predicted CuSO4 for the Hadamard scans, r
2
 = 

0.989, SEP = 423 ppm. 

 The loadings corresponding to the PCs used in cross validation were used in 

construction of the CRISP pulse sequences.  The CRISP sequences were prepared with 

intensity resolutions of one and ten. Figure 5.6 and 5.7 indicates the pulse sequences for 

the positive and negative loading sequences for R1 and R10, respectively.  For R1 the 

resolution was as low as possible.  A low intensity resolution was investigated to save 

memory space on the processor.  As the intensity resolution increases the amount of 

space available to store the codes can decrease drastically.  As described previously 

loading values for the CRISP pulse sequences can only be set as binary one or zero (i.e. 
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on or off).  Some values were set to zero when rounding the normalized loading vectors 

which.  This was not considered problematic because the low loading values represent 

small contributions to the correlation of CuSO4.  Figure 5.5B and C are leave-one-out 

cross validation plots of measured CuSO4 versus predicted CuSO4 for CRISP scans R1, r
2
 

= 0.997, SEP = 296 ppm and R10, r
2
 = 0.992, SEP = 416 ppm.  Comparison between the 

Hadamard and CRISP correlation data support a clear ISP advantage.  The CRISP pulse 

sequences at R1and R10 both outperformed the conventional method; however, R1 

unexpectedly outperformed R10. The outperformance of the higher resolution CRISP 

scans by the lower resolution may be due to the simplicity of the system. 

Figures of Merit. The signal-to-noise ratio (S/N) was calculated as the mean 

intensity of the signal divided by the standard deviation of replicate measurements.  The 

S/N ratio for the Hadamard scans was 20.5 but was much higher for CRISP scans at 60.4 

and 45.0 for resolution equal to 1 and 10 respectively indicating a multiplex advantage.  

The limits of detection (LOD) were calculated by assuming a linear scale between the 

lowest concentration data point and the zero-concentration baseline and taking the 

concentration value corresponding to an S/N ratio of three.  The LOD for the CRISP 

method was much lower than the Hadamard (Hadamard = 69 ppm, CRISP = 19.8 and 

25.3 ppm for R1 and R10, respectively) also supporting a clear ISP advantage.  

Conclusion 

Complementary randomized integrated sensing and processing has been explored as a 

real-time analysis for the quantification of copper sulfate in solution.  A SSSI with 

preloaded codes could be used to identify specific analytes in remote environments.  The 

SSSI is a low cost and rugged spectrometer. The SSSI has potential uses in remote 
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environments such as Mars where it could be deployed in mass to identify areas of 

interest.  The CRISP scanning method has been shown to outperform Hadamard scanning 

indicating ISP, Fellgett, and Jacquinot advantages.   
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Chapter Five Tables 

 

Table 5.1: CRISP resolution calculation for the first seven terms of a positive loading 

vector.  The desired CRISP resolution is acquired by first normalizing the loading 

coefficients.  The normalized loading values are multiplied by the desired resolution then 

rounded.  The length of the CRISP code is determined by the largest rounded variable.   

Loading Values 0.4378 0.6369 0.1798 0.0196 0.9936 0.5974 0.2855 

Normalized Loading Values 0.4406 0.6410 0.1810 0.0198 1.0000 0.6012 0.2873 

Intensity Resolution   (x1) 0.4406 0.6410 0.1810 0.0198 1.0000 0.6012 0.2873 

Rounded Values 0 1 0 0 1 1 0 
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Chapter Five Figures 

 

 

 

Figure 5.1: Hadamard encoding allows for multiple diode illumination and detection 

using a single diode.  Multiple diode illumination has the benefit of increased signal at 

the detector. 

  



108 
 

 

 

 

Figure 5.2: The current SSSI prototype comprises a 5x5 LED array in the visible 

wavelength region and measures 70x70x35mm.  Inset is a SSSI with a collimator 

installed over the diodes.  The collimator provides better spatial resolution.     

  



109 
 

 

 

 

Figure 5.3: CRISP is employed by varying the duty cycle of the pulses (pulses 

represented by blocks in loadings graph) at each diode wavelength, so that in each 

integration frame, the most pulses are delivered at the wavelengths where the most light 

is needed to make the integration sum to the analyte value sought. 
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Figure 5.4:  Mean transmission spectra of copper sulfate solutions.  Each wavelength 

intensity value is the mean response of five LEDs. 
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Figure 5.5: Leave-one-out cross validation plot of measured CuSO4 versus predicted 

CuSO4 for A: Hadamard data r
2
 = 0.989, SEP = 423 ppm. B: CRISP resolution =1, r

2
 = 

0.997, SEP = 296 ppm. C: CRISP resolution = 10, r
2
 = 0.992, SEP = 416 ppm.  

Prediction errors were lower for CRISP scans indicating a clear advantage. 
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Figure 5.6: Positive pulse sequence duty cycles for CRISP scans at resolution equal to 

ten (R10) and one (R1).  Each sequence corresponds to 25 LEDs.  The value of a loading 

coefficient determines the number of pulses over the duty cycle and must be rounded to 

the nearest whole number corresponding to the scan resolution.  PC loading vectors can 

be modeled more closely by increasing the scan resolution.  For scan resolutions greater 

than 1, pulses are randomized over the duty cycle to produce as little correlation between 

LED pulse sequences as possible. 
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Figure 5.7: Negative pulse sequence duty cycles for CRISP scans at resolution equal 

to ten (R10) and one (R1).  Each sequence corresponds to 25 LEDs.  The value of a 

loading coefficient determines the number of pulses over the duty cycle and must be 

rounded to the nearest whole number corresponding to the scan resolution.  PC loading 

vectors can be modeled more closely by increasing the scan resolution.  For scan 

resolutions greater than 1, pulses are randomized over the duty cycle to produce as little 

correlation between LED pulse sequences as possible. 
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Chapter Six- BEST‐CRISP for Classification of Common Martian Minerals and 

Identification of False Samples 

 

 

Introduction 

Modern analytical instrumentation increasingly employs more and more degrees of 

freedom in a single measurement process.  The increased dimensionality of modern data 

sets makes them difficult to analyze and fosters a need for methods to extract useful 

information from the data.  For example, Hyperspectral imaging (HSI) is capable of 

creating large volumes of data because images are acquired over many discrete 

wavelengths where the analyte is expected to have signals.  Most images also contain a 

substantial number of pixels, and many images are often collected to form a video stream.  

HSI measures both physical and chemical properties.  Data are represented as a cube of 3 

or more dimensions, where two or three dimensions represent space and another 

dimension (or more) represents spectral intensities.  HSI has been used throughout the 

space, pharmaceutical and defense industries. The Airborne Vis/IR imaging spectrometer 

(AVIRIS) was one of the first hyperspectral airborne systems launched in the late 1980s 

137
.  AVIRIS collected imagery in 224 spectral bands over a range of 400 to 2500 nm.  

The use of hyperspectral sensors in satellite and aerial surveillance systems has motivated 

the streamlining of such units, reducing their form factor and increasing the efficiency 

and flexibility of the sensors.  However, a significant amount of research has been and is 

still being undertaken in the development of efficient methods for interpretation of 

chemical signals and feature extraction
138

. 
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Many post-data collection analysis methods have been developed for reducing 

high dimensional data into usable relationships between spectral features and physical 

properties. Principal component analysis (PCA) is a common tool used for preprocessing 

multivariate data, but PCA can be computationally expensive, requiring an O(n
3
) matrix 

factorization 
15

. There exists a need for the development of real-time analysis techniques.  

Incorporating real-time methods that are computationally efficient are desirable for HSI 

and other spectroscopic methods to become more widely used.  The development of rapid 

and efficient image analysis techniques, for example, will improve future HSI systems by 

eliminating post-collection data processing and limiting data storage needs.   The 

reduction of HSI data to high-level information is an essential part of rapid analysis.  One 

such method of reducing data to high-level useful information is by integrating the 

sensing and processing directly into the detector.  ISP incorporates information about the 

sample directly into the physical design of the data collection process.  A number of ISP 

techniques have been investigated for rapid quantification and qualification of analytes
59, 

107, 112
.    ISP is accomplished by weighting an incoming signal so that the detector 

performs post-collection calculations.  Performing calculations at the detector results in a 

signal that contains only high level information.  This reduces the time spent for analysis 

because post-collection calculations are essentially done at the “speed of light”.   

The Mars Science Laboratory (MSL) which is slated for a 2011 launch is expected to 

cost well over $2 billion
139

. The MSL mission is expected to generate a wealth of 

scientific data over its two year life.  However at over $2 billion the cost per analysis is 

very high. MSL has incorporated the ChemCam spectrometer which is capable of 

analyzing a target at a distance and will be used to guide the rover to “interesting” 
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locations where other onboard instruments can be used
140

.  The ChemCam is one step in 

maximizing the cost per analysis. However data generated by the ChemCam must be first 

analyzed before the rover can make the decision of whether to investigate further or not.  

In situations such as this where there is more than enough time for calibration before data 

collection but limited time after ISP can be especially useful.  A rover utilizing ISP could 

make decisions in real-time thus maximizing the cost per analysis and minimizing time 

spent on calculations.    

Astrobiology is the study of the origin, distribution and detection of life. Detection 

and identification of minerals such as hematites, calcites, feldspars, plagioclase and many 

others are of significant importance to astrobiologists
141-143

.  It is noted that geology plays 

a significant role in the survival of biological organisms
125

.  Endoliths are a type of 

extremophilic organisms that are capable of surviving in harsh environments because of 

their symbiotic relationship with the geologic environment.  There is evidence that 

suggests Cyanobacteria organisms (which form phototrophic endolithic biofilms) existed 

earlier than 2.6 billion years ago and that these organisms may have played a role in 

converting the early atmosphere into an oxidizing one 
144

.  If extant or extinct life exists 

on other solar bodies it is likely that it will resemble the extremophilic life found on 

Earth.  UV/Visible to NIR reflectance spectroscopy is an ideal method for the detection 

of both inorganic and organic substances associated with extremeophiles.  UV/Vis, NIR 

spectroscopy has been used for mineral identification, assessment of soil properties, 

biological and medical applications 
145-149, 77

.   The use of UV/Vis to NIR wavelength 

spectroscopy combined with integrated sensing and processing would allow for the rapid 

identification of astrobiologically important materials.   
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This research describes an ISP algorithm which was developed for use with our 

solid state spectral imager (SSSI).  The SSSI is a new device for acquiring hyperspectral 

images and spectroscopic data
135-136, 150

.  The current SSSI prototype comprises a 5x5 

array of light emitting diodes (LEDs), single photodetector and on-board processor.  The 

LEDs are sequenced according to the Hadamard transform
151

. Hadamard sequencing 

provides equal covariance and duty cycles on all diodes, reducing early diode failure.  

The Hadamard sequence progresses stepwise such that the decoded signal can be used to 

determine the contribution of each diode to the total spectrum. The SSSI contains no 

moving parts or lenses which facilitates the sizing down of the device. The current 

prototype constructed entirely from off-the-shelf parts is only 70 x 70 x 35mm in size 

(see Figure 6.1).  Although the current prototype contains LEDs in the visible wavelength 

range, the SSSI can be used with diodes ranging from UV to NIR wavelengths. 

CRISP scanning mode was developed for use with the SSSI.  In CRISP scanning 

mode pulse sequences are varied over time to correspond to PC loading values.  The 

loadings from PC analysis are selected to maximize the sample variation in a defined 

bandpass.  The result of the integrated signal from a CRISP scan is a pseudo PC that 

directly corresponds to a specific analyte concentration or identity.  The pseudo PC score 

is simply read as a voltage from the detector which can be accomplished with simplistic 

circuitry.  The SSSI utilizing CRISP scanning mode has been show to successfully 

quantify copper sulfate concentrations
152

.   

ISP is essentially a pattern recognition algorithm. Problems arise in pattern 

recognition when the pattern-recognition algorithm encounters a sample unlike any in the 

original calibration set.  This is termed the false sample problem.  The false sample 
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problem is only an issue if the calibration set used to construct the ISP weights at the 

detector contained every substance in the known universe.  An ISP routine is constructed 

from a training set of available materials which are expected to be encountered. For 

example an ISP routine for identifying Martian minerals would be constructed from 

minerals known to be found on Mars.  It is possible however, that a new mineral 

composition or some other unexpected material might be encountered and identified as a 

training set sample. Calibration of an ISP algorithm would not have considered the new 

composition in the training set.  

In order to deal with the false sample issues associated with the pattern 

recognition algorithm an ISP method that utilizes BEST distances has been developed.  

The BEST is a nonparametric method for estimating the distribution of a sample
25-27

.  

The BEST metric provides advantages over other methods because it does not assume 

equal covariance for all spectral groups and that each group is drawn from a normally 

distributed population.  The BEST-CRISP algorithm calculates multidimensional 

standard deviations (MSDs) by converting the BEST model into a hash table.  A training 

set is used to calculate a standardized set of distances and their centers which are stored.  

When a new sample is scanned its BEST distances is estimated by dividing the Euclidian 

distance of the stored center to the new sample by the Euclidian distance of the stored 

table value to the new sample.  The on-line BEST-CRISP method is capable of 

estimating the BEST MSDs of a new substance at speeds orders of magnitude faster than 

the full BEST algorithm. The BEST-CRISP method allows for rapid determination of 

group classification and identification of false samples.    
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Theory 

The motivation behind ISP is the reduction of complex data to high order information.  

BEST-CRISP begins with full spectrum analysis of a training set.  Principal component 

analysis is employed to reduce the dimensionality of the training set data.   In PCA a 

linear transformation of the data from one coordinate system to another of reduced 

dimensionality is performed. Calculation of PCs can be accomplished by performing the 

singular value decomposition (SVD) of a  matrix  (the spectra) according to 

Equation 6.1. 

         (6.1) 

where  ( ) is an orthonormal matrix representing PC scores,  ( ) is a matrix 

of singular values,  ( ) is an orthogonal matrix of eigenvalues (loadings).  The 

dimensions of the matrices are dependent on the number of samples,  and the number 

of predictor variables, .  The decomposition of  is calculated such that the maximum 

variation of the data set is found in the first PC.  Each successive PC contains a lesser 

percent of the variation and is orthogonal to the previous one.  Figure 6.2 illustrates the 

principal component scores of multidimensional spectra obtained from the USGS digital 

spectral library.  In PCA spectra are transformed into spectral scores.  Each signal, a 

recorded with a narrow bandpass is weighted at each wavelength, λ with a coefficient, f 

over n wavelengths. 

    (6.2) 

In PCA, the factors calculated by SVD are based on the linear variation in the spectral 

data set.  In CRISP optical representations of the factors (f in Eq. 6.2) are created to 
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weight the signal (a in Eq. 6.2) by programming pulse sequences to match the loading 

vectors generated in PCA.  LEDs can only occupy one of two states, on or off.  In 

equation 6.2, the magnitude of the loading coefficient fi, signifies the contribution of the 

i
th

 wavelength (LED) to the score.  The on and off states of a CRISP sequence with 

varying duty cycles must be integrated over time so that the summed value corresponds 

to a factor score.  In this implementation of CRISP, more pulses are used per integration 

frame at wavelengths with higher loading values (see Fig. 6.3).  The CRISP modulation 

bit rate (bandwidth) controls the intensity resolution of the factor result.  CRISP pulse 

sequences are randomized to produce as little covariance between the sequences as 

possible.  The length of sequences used for each loading depends on the desired 

resolution.  At the lowest resolution, a CRISP sequence would encode all loading values 

as a binary one or zero. To generate the binary sequences the loading values, f in Eq. 6.2 

are first normalized according to Equation 6.3. 

          (6.3) 

Each normalized loading value corresponding to an LED is multiplied by the desired 

resolution. The resolution simply describes the number of pulses that will be used per an 

integration sequence.  If for example, the desired loading resolution is 100 and fnorm at i = 

1 in Eq. 6.3 is equal to 0.5 then the LED corresponding to i = 1 will have a 50% duty 

cycle over 100 pulses.  As the number of pulses and integration frames is increased, the 

intensity resolution can become quite high, allowing the loading coefficients from PCA 

to be closely simulated. The binary representations are randomized for each diode duty 

cycle to produce as little covariance as possible between the duty cycles. 
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  In CRISP mode the emitted light resembles the desired loading spectrum.   Each 

loading vector contains positive and negative values.  Because negative intensities are 

impossible the loadings are divided into positive and negative vectors. Therefore for each 

PC used in classification there are two CRISP pulse sequences (one + and one -).  The 

CRISP pulse sequences can be used to classify a new spectrum.  A second training set is 

used to generate pseudo PCs (voltage scores).  The voltage scores are obtained from the 

summed signal over each CRISP pulse sequence according to equation 6.4. 

           (6.4) 

where fj is the loading at wavelength j, aij is the spectral amplitude of the i
th

 mixture at 

wavelength j, V is the detector voltage and j is an index over J frequencies.   In this 

situation V corresponds to a PC and is directly proportional to sample identity.  Negative 

pulse sequences are inverted and summed with the positive counterpart to generate a 

single voltage score.  Just as PC scores of same samples cluster together in hyperspace 

the voltage scores will also cluster together.   

To determine the class of each new spectrum a bootstrap distribution is created 

for each group in the training set of voltage scores.  Each bootstrap replicate is 

standardized to the calculated BEST MSD according to Equations 6.5. 

         (6.5) 

Where is the Euclidian distance from the center C, (1 x n) of the bootstrap 

distribution to the bootstrap point, B (m x n), BESTSD (m x n) is a vector of BEST 

standard deviations for each B to C, and D (m x 1) is vector of standardized distances for 
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each bootstrap point B.  The dimensions of the matrices are dependent on m the number 

of bootstrap replicates and n the number of PCs used to classify the samples.  The BEST 

method is a nonparametric classification technique. BEST draws probability density 

contours around each sample population.  Each normalized bootstrap, BN (m x n) is 

calculated according to Equation 6.6. 

      (6.6) 

The normalized bootstraps, BN are stored in a hashtable along with the centers of each 

distribution.  For each new CRISP scan, the resulting voltage V is centered to a 

distribution and normalized according to Equation 6.7. 

         (6.7) 

The hash table is searched for the bootstrap point BN, closest to the test sample VN by 

calculating the dot product of VN and BN.  The largest dot product of BN and VN indicates 

the bootstrap, BN, is closest to the test sample V.  The BEST SD of V is estimated 

according to Equation 8. 

          (6.8) 

Where  and  are Euclidian distances. 

Materials and Methods 

Materials.  Mineral spectra used in simulations were obtained from the USGS digital 

spectral library
153

. The following spectra were used: calcite, hematite, olivine, bytownite, 

and orthoclase. Real mineral samples were obtained from the University of Kentucky 
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geology department. Samples were selected to closely match the description in the USGS 

database as much as possible.  Three false samples were used for identification.  The 

false samples were seashell, moss and wet hematite.  The false samples were chosen to 

demonstrate components that would be of considerable interest if found but that were not 

included in a training set.    

 Simulated Data.  Simulations were performed in order to determine how the 

modified BEST algorithm performed compared with the original, and the efficiency gains 

afforded by the modification.  Simulated mineral spectra were replicated and random 

noise was added to produce spectra with signal-to-noise ratios with respect to peak height 

between 20 and 45.  Simulated false sample spectra were constructed by randomly 

sorting the sample spectra at each wavelength. For m samples at n wavelengths the 

intensity values of n were randomly sorted on m.  This was done so that the false sample 

spectra would contain the same spectral variation between samples at each wavelength.     

 Data Collection. Five replicate scans of each mineral sample were acquired 

in random order.  Each replicate was scanned 45 times, rotating the sample three times.  

This produced 225 spectra for each sample.  The scans were averaged to give 5 spectra 

for each sample. The data was scatter corrected and blank scans were subtracted. All 

samples were scanned in ambient light.  The prototype SSSI comprised 25 LEDs with 

five each of the following wavelengths: 470, 565, 595, 609, and 635 nm. A fiber optic 

probe was attached to the SSSI and positioned approximately 1cm from the sample 

target.  The target area was approximately 1 cm
2
.  The SSSI was controlled via a serial 

connection to a laptop computer.  A graphical user interface (GUI) was created in 

MatLab 7.0.1 (The Mathworks Company, Natick, MA, USA) to send commands to the 
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SSSI CPU and transfer all data.  Data was imported into MatLab for analysis.  PCA was 

performed on all data. The PCs that showed the best separation between groups were 

used for construction of the CRISP codes.     

 CRISP Sequence Construction. Only three PCs were used to classify the 

samples; therefore, their corresponding loadings were used to generate the CRISP codes. 

For each loading the positive and negative loading intensities were separated.  The 

absolute value of the negative loading data values were used because optical intensities 

cannot be negative.  Each loading vector was normalized separately according to Eq. 6.3.  

The length of a CRISP code is determined by the number of bits of intensity resolution 

used.  The CRISP code resolution was set to 10; therefore, for each LED (wavelength) 

the maximum number of pulses used to emulate a loading value was 10.   Figure 6.4 

indicates the duty cycle for each diode over the pulse period. 

Results and Discussion 

Simulation. In BEST-CRISP, BEST MSDs are estimated by comparing the voltage 

output from a CRISP scan to a hash table of standardized distances.  The BEST MSD 

computation using a hash table significantly reduces the computational requirement 

because the bootstrap distribution and BEST MSDs of each bootstrap are pre-computed.  

  As a comparison running BEST-CRISP in 3 dimensions with 5 groups (150 samples per 

group) and a hash table comprising 10,000 values (5 groups x 2000 bootstrap points 

each) required less than 2 seconds to perform. The full cross-validated BEST 

computation for all 5 groups took over 230 seconds.  The calculations were done on a 

laptop computer with a 1.58GHz processor and 2GB of RAM.  The intra- and inter 

cluster distances for the simulated data were compared to determine how well the BEST-
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CRISP method modeled BEST MSDs.  Figure 6.5 is a comparison of the inter-cluster 

distances for the full BEST algorithm and the BEST-CRISP method.  The average inter-

cluster distances for the BEST-CRISP and the full BEST methods were 50.21 and 50.71, 

respectively.  Average intra-cluster distances were 0.79 and 0.80 for the BEST-CRISP 

and BEST methods, respectively. 

The BEST-CRISP method performed comparably with the full BEST method.  

The sensitivity and specificity for classification with each method were both 100 and 

97.5%, respectively.  Sensitivity and specificity were calculated as: 

  

  

Where TP = True Positive, TN = True Negative, FP = False Positive, and FN = False 

Negative. 

A simulated scan was performed with false sample spectra included to determine 

the ability of the BEST-CRISP method to identify samples not included in the original 

CRISP training set.  In total 1500 spectra were simulated (750 true samples + 750 false 

samples) and their BEST MSDs were approximated using a hash table comprising 10,000 

values.    The BEST-CRISP method successfully identified all false samples with 

sensitivity and specificity of 100%.    

Hadamard Scans.  Data from actual mineral samples was acquired with the SSSI.  

Three PCs containing 97.6% of the variation were used to separate the training set 

samples.  Figure 6.6 illustrates the variation among the sample groups.  The BEST 
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method was used to classify the data.  The sensitivity and specificity for classification 

was 100 and 99%, respectively.  The SSSI prototype comprised 5, wavelengths; therefore 

the mineral samples were selected to maximize the variations of the SSSI wavelengths.  

Figure 6.7 indicates the between group separation achieved with the SSSI at 5 

wavelengths.  CRISP codes were generated for the mineral samples using the PC 

loadings corresponding to the top three PCs.  The resulting CRISP sequences comprised 

three positive followed by three negative pulse sequences.  The sequences were 

constructed to have scanning resolution of 10.  Therefore the duty cycle for each SSSI 

diode varied over six sequences consisting of 10 pulses each. 

CRISP Scans. Voltage data from mineral scans were acquired with the SSSI in 

CRISP scanning mode.  Because CRISP utilizes pulse sequences that are weighted 

functions of the training set data the resulting intensity signals should correspond to a 

specific sample in the training set.  The sensitivity and specificity for the classification of 

minerals using the full BEST algorithm was 100 and 95%, respectively.  The specificity 

was slightly worse for CRISP scans compared to Hadamard scans because hematite was 

classified as olivine indicating a false positive for olivine.  This can be attributed to the 

small number of training samples (5 samples) and wavelengths used.  Minerals are not 

uniform in nature, and it is expected that a larger number of training samples and 

excitation energies would be needed to maximize the variations that exist between 

samples.  However, all samples were correctly identified.  Figure 6.8 illustrates the BEST 

MSDs between groups for CRISP scans.  Inspection of Figures 6.7 and 6.8 illustrates the 

difference between full wavelength (Hadamard) and CRISP scans. The average inter-

cluster distances for Hadamard and CRISP scans were 12.9 and 27.1, respectively. 
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Average intra-cluster distances for Hadamard and CRISP scans were 1.25 and 1.01, 

respectively.  The intra-cluster distances are minimized, and the inter-cluster distances 

are maximized with CRISP scanning indicating a clear advantage over Hadamard 

scanning.  The CRISP scan data were used to construct a hash table to be used in 

subsequence BEST-CRISP analysis.   

BEST-CRISP Scans.   The purpose of the BEST-CRISP hashing metric is to 

identify when a false sample situation is likely to exist.  BEST MSDs are estimated by 

comparing each intensity value from a CRISP scan to a hash table of precomputed 

distances.  Figure 6.9 illustrates the BEST-CRISP calculated MSDs between groups from 

BEST-CRISP scans.  BEST MSDs are calculated on-line using the hash method.  The 

sensitivity and specificity for the classification of minerals using the BEST-CRISP 

method was 96 and 93%, respectively.  The specificity of the method to classify samples 

decreased because the intra-cluster distances increased yielding a higher number of false 

positives.    The average inter-cluster distances were greater for both the CRISP and 

BEST-CRISP methods (27.1 and 18.55, respectively) indicating a clear advantage of the 

methods over Hadamard scanning (average inter-cluster distance of 12.9).  The 

Hadamard mode resulted in an average intra-cluster distances of 1.25 while CRISP and 

BEST-CRISP resulted in a distance of 1.01 and 1.74 respectively.  Because MSDs are 

estimated from a set table when variations in test samples increase from the training set it 

is more difficult to determine class.  It is not surprising that non-uniform samples such as 

minerals would be difficult to classify this way. A larger training set encompassing a 

larger amount of variation can be used to increase the accuracy of the method.  However, 

the lower sensitivity calculated with this method would seem as a disadvantage, but 
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because BEST-CRISP is very sensitive to variations in the sample it is very sensitive to 

false samples.     

 To determine the ability of the BEST-CRISP metric to identify false samples 

three new sample sets were introduced. In total 15 false sample scans were acquired with 

the true minerals.  Figure 6.10 indicates the separation achieved between the mineral and 

false samples.  Table 6.1 indicates the accuracy, precision and sensitivity for identifying 

false samples from actual minerals.  Accuracy and precision were calculated as follows:  

  

  

All false samples were correctly identified yielding sensitivity of the method at 100%.  

Specificity was calculated to be 96% because some actual mineral samples were 

classified as false samples.  However, no false sample was ever identified as belonging to 

the training set.  

Conclusion 

Bootstrap error estimated single sample technique complementary randomized integrated 

sensing and processing has been explored as a real-time analysis for the classification of 

mineral samples and the identification of false samples.  A SSSI with preloaded codes 

could be used to identify specific analytes in remote environments.  The SSSI is a low 

cost and rugged spectrometer. The SSSI has potential uses in remote environments such 

as Mars where it could be deployed on a rover to help guide to areas of interest.  Night 

time measurements are also possible with the SSSI because it is not dependent on 
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ambient lighting.  In addition, fluorescence imaging at night can also be performed with 

appropriate UV emitting diodes. 
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Chapter Six Tables 

 

Table 6.1: BEST-CRISP analysis of 15 false samples included into the mineral 

sample set.  Samples were classified to any group within three standard deviations in 

hyperspace. Samples with SDs greater than 3 to any group were considered false 

samples. 

Group Correct 

Classification 

of False 

sample 

Accuracy 

(%) 

Precision 

(%) 

Sensitivity 

(%) 

Orthoclase 15 100 100 100 

Calcite 15 100 100 100 

Hematite 15 95 93.75 100 

Bytownite 15 100 100 100 

Olivine 15 100 100 100 

Average 15 99 98.75 100 
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Chapter Six Figures 

 

 

 

Figure 6.1: The small size of the SSSI allow it to be easily mounted to a robot. The 

current SSSI prototype comprises a 5x5 LED array in the visible wavelength region and 

measures 70x70x35mm.  The SSSI diodes must be collimated (inset) to for increased 

spatial resolution.  The free roving robot can be directed to interesting locations indicated 

by the SSSI. 
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Figure 6.2:  The PCs that captured the largest variation between groups were plotted 

against each other. The ellipsoids represent a 3SD contour for each mineral type. Each 

ellipse contains 150 points with a S/N ratio of 20 – 45. 
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Figure 6.3: CRISP is employed by varying the duty cycle of the pulses (pulses 

represented by blocks in loadings graph) at each diode wavelength, so that in each 

integration frame, the most pulses are delivered at the wavelengths where the most light 

is needed to make the integration sum to the analyte value sought. 
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Figure 6.4:  Positive (A) and negative (B) loading pulse sequences for a CRISP code 

with resolution of 10.  Pulses are randomized over the duty cycle to produce as little 

correlation between LED pulse sequences as possible. Each loading sequence 

corresponds to 25 LEDs. 
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Figure 6.5:  Comparison of BEST-CRISP to the full BEST algorithm calculated MSDs 

for inter-cluster distances.  Average inter-cluster distances between groups were 50.21 

and 50.71 MSDs for BEST-CRISP and BEST, respectively.  Average intra-cluster 

distances (not shown on the diagonal) for the BEST-CRISP and BEST methods were 

0.79 and 0.80, respectively. 
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Figure 6.6: The variation between mineral groups can be viewed by projection of the 

top three PCs into three-dimensional space.  The ellipses indicate a one standard 

deviation contour level for each group. 
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Figure 6.7:  Dendrogram plot indicating BEST MSDs between groups for Hadamard 

scan data.  Groups are linked according to their largest BEST MSD.   
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Figure 6.8:  Dendrogram plot indicating BEST MSDs between groups for CRISP scan 

data.  Groups are linked according to their largest BEST MSD.   
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Figure 6.9:  Dendrogram plot indicating BEST MSDs between groups for BEST-CRISP 

scan data.  BEST MSDs are calculated on-line.  Groups are linked according to their 

largest BEST MSD.   
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Figure 6.10:  The variation between mineral groups and false samples can be viewed by 

projection of the acquired voltage into three-dimensional space.  The ellipses indicate a 

one standard deviation contour level for each group. 
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Chapter Seven- Size Does Matter: Solid State Spectral Imager (SSSI) on a Chip and the 

Search for Extraterrestrial Life 

 

 

Introduction 

 

It is likely that no human will ever physically explore the outer reaches of the Galaxy, 

barring the actual invention of some sort of warp or wormhole technology like that which 

exists in science fiction
155

.  It would take an explorer traveling at the speed of light over 

95,000 years just to traverse the Milky Way. While we may never physically venture out 

of our Galaxy we may however, extend ourselves into the far reaches of space through 

technology. Any science mission that attempts to explore other solar systems will no 

doubt search for life.  It is not the purpose of this paper to debate the notion that life may 

exist elsewhere in the universe; however, if we consider that there are on the order of 10
21

 

stars in the universe then the statistical probability that Earth is the only life-containing 

planet is likely low.  The Drake equation is often used to estimate the probability of 

finding extraterrestrial life. 

Drake equation.  The Drake equation was named after its creator Dr. Frank 

Drake, who conceived it in 1961. The equation  

     (7.1) 

where, N is the number of communicative civilizations, R is the rate of formation of Sun-

like stars, fp is the fraction of stars with planets, ne is the number of Earth-like worlds per 

planetary system, fl is the fraction of Earth-like planets where life develops, fi represents 

the fraction of planets where intelligence develops, fc is the fraction of planets in which 
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Earth-like communications technology develops, and L represents the lifetime of 

communicating civilizations, estimates the number of advanced communicative 

civilizations in a Galaxy.  Current estimates using the Drake equation suggest that 

approximately 10,000 communicative civilizations may exist in the Milky Way
156

.  

Unfortunately, there has been no way yet to prove the Drake equation. However, the 

possibility of life on other planets in the Galaxy cannot be ignored.  Furthermore, if 

Drake‟s equation estimates so many communicative civilizations in a single galaxy, then 

the number of life forms without the ability to communicative is probably much higher. 

Contact.  It has been hypothesized that if intelligent civilizations exist, then they 

too would search for life elsewhere in the universe
154,157

.  However, the vastness of space 

and the technological barriers that complicate exploration of it may equate the search for 

intelligent life to finding a needle in a cosmic haystack.  Any contact with a more 

advanced civilization may occur long after that civilization has become extinct.  For 

example, in 76,000 years the Voyager probes will emerge in the Alpha Centauri star 

system.  Any contact with an advanced civilization, extant or extinct, would have an 

astounding impact on humanity.  However, until contact is established the search for any 

form of life will be ongoing. If humanity can establish the presence of life elsewhere in 

the solar system, then perhaps the Fermi question
158

 can be partially put to rest.    

The Barrier.  Special relativity indicates that a mass cannot travel at speeds that 

meet or exceed that of light.  This limitation arises because the mass of the object 

increases to infinity as the speed of the object approaches the speed of light.  Simply put, 

the larger the mass the more energy is required to move it. Therefore physics benefits the 
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small when it comes to the energy required to move an object through space, and the 

smaller the object is the faster it can be moved given the energy available.     

 The closest star system to the Sun is Alpha Centauri (approximately 4.2 light 

years)
159

.   If a ship could travel at one third the speed of light a trip to Alpha Centauri 

would only take 12.6 years.   The amount of energy required to propel a space craft at one 

third the speed of light is tremendous, however, if the space craft were sufficiently small 

enough it might be feasible to do so with current and future technologies
160,161

.   

Micro- and Nanotechnologies 

 

Micro- and nanoelectronics are technologies in which the control or manipulation of 

electronics is accomplished on the microscale (100 – 0.1 µm) and nanoscale (100 -1 nm), 

respectively.  The advantages of operating in these small-scales are in the efficiency (the 

amount of power dissipated in a circuit is proportional to its size) and speed (propagation 

delay is reduced as size is reduced) of the electronic circuitry.  While there are still many 

technological barriers that must be overcome before these technologies are totally 

realized, many advancements in this area are taking place.  Carbon nanotubes for 

example, have been used as AM demodulators, RF detectors and RF mixers
162,163

.   

Solid State Spectral Imager.  The Solid-State Spectral Imager (SSSI) is a new 

instrument for gathering hyperspectral images and spectroscopic data of biological and 

geological samples. Using a laser-diode array, photodetector, and on-board processing, 

the SSSI combines innovative spectroscopic integrated sensing and processing with a 

hyperspace data-analysis algorithm. Ultraviolet (UV), visible, and near- infrared laser 

(NIR) diodes in the current SSSI illuminate target points using a precomputed sequence, 
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and a photodetector records the amount of reflected light. For each point illuminated, the 

resulting reflectance data are processed to separate the contribution of each wavelength of 

light and classify the substances present.  The SSSI has the ability to operate for extended 

periods of time and in extreme environments. 

 The SSSI can be used to search for extremophilic organisms. Extremophilic 

organisms are organisms that live and thrive in extreme conditions; commonly identified 

as poor-oxygen, extreme heat and extreme cold.  Such organisms are found in various 

regions on Earth such as the Antarctic, Atacama Desert; Chile, and deep ocean heat vents 

to name a few
164

.   In order to identify such compounds common to extremophilic 

organisms, laser diodes with wavelengths ranging from the UV to NIR could be used
135

.  

 The current SSSI prototype comprises a 5x5 light emitting diode (LED) array, a 

photodetector circuit, and a microcontroller. A PC running MatLab utilizes a serial 

connection to send scan commands to the unit.  The SSSI can operate in normal scanning 

or complementary randomized integrated sensing and processing (CRISP) scanning 

mode. In normal scanning operation the LEDs are pulsed in an orthogonal pseudorandom 

(Hadamard) sequence. The orthogonal pseudorandom sequence progresses step wise such 

that the demultiplexed signal can be used to determine the contribution of each LED 

wavelength.  The entire sequence takes less than 5 ms. Using normal scanning mode 

would require each scanned sample to be analyzed and compared to a database which 

would require transmitting large amounts of data back to Earth or the ability of the device 

to determine the identification of the analyte itself.  In CRISP scanning mode the duty 

cycle of the orthogonal pseudorandom code is varied for different target analytes to 

produce a situation in which the integrated signal at the detector is directly proportional 
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to the concentration of one specific analyte. In this manner the energy and time needed to 

process the data are eliminated and the analog signal at the detector corresponds directly 

to the analyte concentration. CRISP codes are compiled into a table on Earth using the 

Hadamard sequence to perform calibration by scanning substances that might be 

encountered on other planets, such as biological or geological specimens. Once the 

spectral data are acquired, principal component analysis (PCA) or a similar factor 

analytic method are used to examine the spectral variances among the data set. PCA is a 

multivariate analysis technique used commonly for data reduction in spectroscopic 

analysis
57,167

. The PCs are generated from the wavelength data such that the first PC 

contains most of the variation of the original data set.  The PCs that correspond to the 

most significant spectral variances are used to create the CRISP codes.  The loadings 

associated with the PCs are used to indicate the wavelength regions that show the greatest 

variance (see Fig. 7.1).  These wavelengths are the most important in creating a 

prediction equation for concentrations that is linear.  More pulses are used per integration 

frame at wavelengths with higher loadings (see Fig. 7.2).  The CRISP scanning sequence 

incorporates the chemometric analysis into the transducer, which significantly reduces 

the processing time and power needed to make a unique identification.  All that is needed 

is to classify the output voltage of the detector, which can be accomplished using 

anything from a voltmeter (one PC) to the Bootstrap Error-adjusted Single-sample 

Technique (BEST, for multiple PCs). (The BEST method of sample classification 

calculates the distance between data clusters in multidimensional standard deviations
27

.)  

 Instead of using the Hadamard scanning mode, a SSSI loaded with CRISP codes 

could be used to detect life forms by their chemistry, shape, and motion on far away 
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planets.  Water is simple to detect using its strong near-infrared absorption spectrum as 

the basis for a CRISP code.  If CRISP sequences are used (which identify expected 

compounds using a library) and unexpected response is recorded, the Hadamard scanning 

mode can be reactivated to collect raw spectral data and transmit the information back to 

Earth for human analysis.  

SSSI Downsizing.  Unlike other spectrometers the SSSI has no moving parts or 

lenses, so it can be reduced in size very easily.  The SSSI consists of three main parts that 

could be integrated onto a single chip: microcontroller, laser diodes with electronic 

switches, and detector. The current SSSI prototype is assembled with COTS (commercial 

off the shelf) parts and weighs approximately 70 g.  Most of the mass of the prototype 

comprises the printed circuit board and connections.  It should be possible with existing 

technology to create a SSSI such that all of the components are integrated with 

microelectronic products
168

.  At present time the microcontroller chip currently measures 

16 x 16 x 1.2 mm; integration of the SSSI to a single chip would greatly reduce the mass 

and the size of the device.  

Communicating with the SSSI 

 

Typical communication systems operating at X- and Ka-band frequencies require large 

power sources, receivers and transmitters.  The transmitting and receiving antennas 

require a significant amount of space because their optimum size increases with 

wavelength.  Antenna size is not a substantial concern when the space craft is itself very 

large; however, power consumption is always a concern in space.  One advantage of 

microwave frequencies is the ability to propagate through most dielectric materials, 
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which can be a disadvantage when using higher frequencies associated with optics. 

However, optical frequencies comprise a much larger bandwidth.   To meet the 

bandwidth and size requirement of a microprobe, high telecommunication frequencies 

will need to be used.   Optical (Infrared, Visible and UV) and terahertz (Far-IR) 

frequencies offer the high bandwidth and gain in a small antenna needed for deep space 

communications. 

Optical Communications.  Optical frequencies have significant advantages over 

the typically used X- and Ka-bands, as optical communication systems are shown to have 

lower mass and DC power usage
169

. Optical frequencies however, generally require line 

of sight and suffer from scattering effects by dust and particulates in the atmosphere.  In 

order to utilize optical communications systems for deep space missions it may be 

necessary to employ an Earth orbiting monitoring system which would transmit optical 

data received to Earth via traditional radio frequencies.  Optical communications used 

onboard a small probe sent into another planetary system may have difficulty sending 

transmissions as the signal-to-noise (s/n) ratio would be lowered by the system's star 

(unless the transmission distances are shortened by deploying a network of small probes 

for communication).  Near-infrared laser wavelengths will likely be more useful than 

visible laser wavelengths because there is less scattering and absorption of the longer 

wavelengths as they cross the galaxy. 

Terahertz Communications.  Terahertz (THz) energy is considered to be at the 

boundary between optical and electric sources because it lies in the region near the far-

IR.  THz wavelengths are in the micrometer range and thus do not require a large antenna 
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size and also do not suffer from atmospheric scattering due to dust and other particulates.  

However, THz frequencies do suffer from attenuation of atmospheric water vapor
170

.     

 Companies like Virginia Diode already offer solid-state devices for generating 

THz light.  Furthermore, optical rectification and the electro-optic effect are reciprocal 

processes in a nonlinear optical crystal, so a single small crystal can potentially serve as 

an electro-optic transceiver to alternately transmit pulsed electromagnetic radiation 

(optical rectification) and detect the return signal (electro-optic effect) in the same 

crystal.  Such devices might be manufactured easily for use as communication devices in 

micro and nanoscale space probes
171

.  Under shock some crystals also emit terahertz 

light
172

, and may some serve as small sources of electromagnetic waves. 

 Optical and THz communications strategies still require significant technological 

developments before they can be used on a mission to another planetary system. Due to 

problems with atmospheric scattering either strategy alone may not work. Optical and 

THz strategies may provide a synergistic solution to communications aboard interstellar 

missions and have potential due to their small size and lower power consumption. 

       

NASA and Microtechnology 

 

NASA's New Millennium Program (NMP) was begun in 1995 to speed the development 

of new technologies.  A few of the missions flown and envisioned under the NMP 

entailed the use of small satellites and probes.  Among the smallest probes used were 

those of Deep Space 2 in which two probes weighing less than 1.2 kg were sent to Mars.  
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While the probes where completely passive and ultimately failed in their mission, they 

illustrate a growing ability to use small-scale technology in planetary missions
173

.  

 Physically small probes will likely also be small in power reserves.  Networks of 

minute probes communicating digitally with light pulses may have to be set up to enable 

galactic communication.  Where networks are not practical, the small size of the devices 

may permit them to be moved through space, carrying their data onboard until they reach 

their destination and are able to download their data.  For all of these reasons, the 

spectroscopic and chemical analysis ability of single-chip SSSIs using near-IR laser 

communication networks may make them useful as probes for extraterrestrial life. 

Conclusion 

 

It is clear that due to our physical limitations humans may never venture beyond Earth.  

While further developments in micro- and nanotechnologies are still needed, we are 

entering an era in which the exploration of the galaxy beyond our own solar system is 

looking increasingly possible. 
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Chapter Seven Figures 

 

 

 

Figure 7.1.  The Hadamard sequence is used to obtain the spectral information from a 

sample set.  PCA is used to determine the wavelength regions that show the greatest 

sample variation. The CRISP sequence is generated from the wavelength regions that 

show the greatest variance among the sample set. In Hadamard scanning mode chemical 

quantification requires that each spectrum be analyzed by a computer.  In CRISP 

scanning mode, the quantification of the sample constituents is instantaneous because the 

analysis has been integrated into the detector.  
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Figure 7.2.  CRISP is employed by varying the duty cycle of the pulses (pulses 

represented by blocks in loadings graph) at each diode wavelength, so that in each 

integration frame, the most pulses are delivered at the wavelengths where the most light 

is needed to make the integration sum to the analyte value sought 
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Section V: Conclusion of Dissertation 

 

The work contained in this dissertation demonstrates the clear advantage of PRISMs for 

data and processing reduction in sensing systems through implementation of 

chemometrics into the physical design of the detector.  The demand for PRISMs is 

motivated by different goals.  In the pharmaceutical industry the move from cGMP to 

PAT calls for alternative techniques that are cost effective, rapid, and nondestructive.  

The ability of the manufacturing process to be self-guided by real-time measurements can 

lead to better use of materials and increased savings in both time and cost.  To this end, 

the potential application of SCARS for differentiating formulations of a first-in-class 

diabetes drug was demonstrated.  BEST-SCARS successfully identify false samples with 

sensitivity and specificity of 92.0 and 100%, respectively.  Near-IR HSI also has potential 

for use in the pharmaceutical and biotech industries.  The problems with existing alcohol 

monitoring treatments make a noninvasive and surreptitious system of interest.  MFC 

near-IR HSI was demonstrated as a method for noninvasive monitoring of BAC.  BEST-

MFC NIR HSI successfully indicated facial regions which corresponded to erroneous 

BAC values with sensitivity and specificity of 99.8 and 100%, respectively.  A near-IR 

imaging system comprising solid MFC filters is a robust and inexpensive solution to 

traditional HSI methods.   

 In astrobiology small, inexpensive, and robust sensors are needed for space and 

terrestrial applications.  Exploration of terrestrial environments is one such area where 

conventional spectroscopic methods suffer in terms of efficiency.  To address this 

problem CRISP-SSSI was investigated for the quantification of copper sulfate solutions 
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and identification of mineral samples.  BEST-CRISP successfully identified false 

samples with sensitivity and specificity of 100 and 96.0%, respectively.   

 In this dissertation PRISMs were applied to both acoustic and optical 

spectroscopy.  The application of PRISMs indicated a clear advantage of time, cost, and 

efficiency over the existing traditional techniques.  The development of a BEST-ISP 

algorithm makes the use of PRISMs possible.    In every case the BEST-ISP method was 

shown to detect false samples with sensitivity > 90% and specificity > 90% on categorical 

data. 

 

 

 

 

 

 

 

 

 

 

 

Copyright© Thaddaeus Hannel 2009 
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Appendix A:  MatLab Code 

 

 

A.1 BEST-ISP Code 

 

function [Hashtable, cnter] = GenHash(data,numBreplicates,ngroups) 

  

%A Bootstrap distribution with size equal to numBreplicates is created for each group 

(ngroups) %in data. The Hashtable is created from the normalized distances to each 

bootstrap replicate %from the center (Cnter) of the distribution. 

  

% :: Copyright 2008 :: Thad Hannel & Dr. Robert Lodder, ASRG, University of 

% Kentucky 

  

  

[nrows ncols] = size(data); 

incr = nrows/ngroups; 

cnter = zeros([ngroups ncols]); 

  

  

cnt = 1; 

cnt2 = 1; 

for i = 1:incr:nrows 

    [NBdist(cnt:cnt+(numBreplicates-1),:),cnter(cnt2,:)] = NormBestDist(data(i:i+(incr-

1),:), numBreplicates,1); 

    [Hashtable(cnt:cnt+(numBreplicates-1),:)] = 

SortDistance(NBdist(cnt:cnt+(numBreplicates-1),:), cnter(cnt2,:), numBreplicates); 

    cnt = cnt+numBreplicates; 

    cnt2 = cnt2+1; 

end  
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function [NBdist,cnter] = NormBestDist(train, numreps,SDs) 

  

%Generates nomalized BEST distances from the training set train. numreps 

%is the desired size of the bootstrap. SDs is the standard deviation of the 

%normalized distances. This option is only for plotting NBdist contours. 

%SDs should always be set to 1. cnter is the center of NBdist. 

  

% :: Copyright 2008 :: Thad Hannel & Dr. Robert Lodder, ASRG, University of 

% Kentucky 

  

[r c] = size(train); 

[btrain,cnter]=replica(train,numreps); 

  

eucdis = zeros([1,numreps]); 

for i =1:numreps 

eucdis(i) = sqrt(sum((cnter-btrain(i,:)).^2)); 

end 

  

sd = zeros([1,numreps]); 

sds = zeros([1,numreps]); 

sdskew = zeros([1,numreps]); 

for i = 1:numreps 

[sd(i),sds(i),sdskew(i)] = qb(train,btrain,btrain(i,:),cnter,1,0); 

end 

  

Distances = (eucdis./sdskew); 

  

NBdist = zeros(size(btrain,1),c); 

for i = 1:numreps 

NBdist(i,:) = cnter+ (btrain(i,:)-cnter)*(Distances(:,i)*SDs)/norm(btrain(i,:)-cnter); 

end 
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function [Sdist] = SortDistance(NBdist, cnter, numBreplicates) 

  

%This function sorts a set of normalized BEST distances NBdist with center, %cnter. 

%The size of NBdist for a single group in NBdist is numBreplicates. A smaller  

%set of the sorted distances Sdist can be selected by taking every 5, 50,  

%or 100 distance for example. Because the distances 

%are sorted, when taking a specified number of the distances an equal 

%distribution of the distances will be selected. This is done when the full 

%distribution is not required.   

  

% :: Copyright 2009 :: Thad Hannel & Dr. Robert Lodder, ASRG, University of 

% Kentucky 

  

[nrows ncols] = size(NBdist); 

nDist = zeros(nrows,ncols); 

  

for i = 1:numBreplicates 

nDist(i,:) = NBdist(i,:) - cnter; 

end 

  

theta = zeros(1,nrows); 

  

for i = 1:numBreplicates 

theta(i) = acosd((dot(nDist(1,:),nDist(i,:)))/(norm(nDist(1,:))*norm(nDist(i,:)))); 

end 

theta = theta'; 

[s ind] = sort(theta); 

Sdist = NBdist(ind,:); 
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function [BEST] = BEST_Hashloop(newspec,cnter,hashtable,numgroups) 

  

%This function uses a set of stored normalized BEST distances (hashtable) 

%to estimate the BEST SD of the test data newspec. The input cnter is a table of 

%centers from the hashtable distributions for each group. The number of 

%groups are defined by the input numgroups. The output BEST contains the estimated 

%BEST SDs. 

  

% :: Copyright 2009 :: Thad Hannel & Dr. Robert Lodder, ASRG, University of 

% Kentucky 

  

l = size(hashtable,1)/numgroups; 

  

for i = 1:numgroups 

[pick(i)] = hashdotprod(newspec,cnter(i,:),hashtable(i*l - (l-1):l*i,:)); 

temphash = hashtable(i*l - (l-1): l*i,:); 

[BEST(i)] = Bestcalc(temphash, pick(i), cnter(i,:), newspec); 

end 
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function [pick] = hashdotprod(newspec,cnter,hashtable) 

  

%This function centers the newspec to the cnter of the normalized bootstrap 

%distributions in hashtable. newspec is normalized (standardized)  

%according to the center of the bootstrap distribution with which it is being compared. 

  

% :: Copyright 2008 :: Thad Hannel, Aaron Urbas & Dr. Robert Lodder, ASRG, 

University of 

% Kentucky 

  

newspec = newspec - cnter; 

%unit vector 

normspec = newspec/norm(newspec); 

  

%For the operation dot A=B so multiplication is used instead. 

%when u and v are column vectors dot(uv) = u'*v 

%When u and v are row vectors dot(uv) = u*v' 

dotprods = (hashtable*normspec'); 

  

%The maximum dot product indicates the bootstrap that is in the direction 

%of the sample spectrum. 

pick = find(dotprods == max(dotprods)); 

  

%Because the sample spec has been normalized to the center of the bootstrap 

%distribution the closest bootstrap point will now have the maximum inner space 

%between the point. Pick selects this point from the HashTable 

pick = pick(1); 
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function [BEST] = Bestcalc(Vdist, pick, cnter, testspec) 

%The BEST SD is estimated by calulating by the following procedure.  

%Calculate the Euclidian distance between the closest Bootstrap replicate (Vdist),  

%difined by pick, and the test spectrum, testspec d(B,X). Calculate the Euclidian 

%distance between the center of the bootstrap distribution, cnter and the  

%test spectrum, testspec d(C,X). The BEST SD can be estimated by d(C,X)/d(B,X). 

  

% :: Copyright 2009 :: Thad Hannel & Dr. Robert Lodder, ASRG, University of 

% Kentucky 

  

BX = pdist([Vdist(pick,:);cnter]); 

CX =  sqrt(sum((cnter(1,:)-testspec).^2)); 

BEST = CX./BX; 
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function [CVstat] = CVstatsBEST(BESTSDs,ids,FStot) 

  

%Claculaes sensitivity and specificity for identifying false samples. 

%BESTSDs are BEST SDs calculated from the Hashtable output from BEST_Hashloop 

%ids are according to true samples. FStot is the total number of false sample spectra. 

  

% :: Copyright 2008 :: Thad Hannel & Dr. Robert Lodder, ASRG, University of 

% Kentucky 

  

% Calculates accuracy, precision and recall in percent according to: 

% 

% Accuracy = (TP + TN) / (TP + TN + FP + FN) 

% Precision = TP / (TP + FP) 

% Recall = TP / (TP + FN) 

  

if min(ids) == 0 

    ids = ids+1; 

end 

  

uids = unique(ids); 

nids = length(uids); 

[r c] = size(ids); 

  

  

% accuracy = zeros(nids,1); 

% precision = accuracy; 

% recall = accuracy; 

% tcorrect = accuracy; 

% sensitivity = accuracy; 

% specificity = accuracy; 

  

% correct = zeros(r,1); 

% for i = 1:r 

%     correct(i) = classes(i,ids(i)); 

% end 

%TN = True sample identified as true BESTSD < 3 

%FP = True sample identified as false BESTSD > 3 

correctA = BESTSDs(1:r,:); 

correctA(correctA<3)=1; 

correctA(correctA>3)=0; 

  

%TP = False sample correctly identified: BESTSD >3 

%FN = False Sample not identified: BESTSD <3 

correctB = BESTSDs(r+1:end,:); 

correctB(correctB<3)=0; 

correctB(correctB>3)=1; 
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for i = 1:nids 

    tot = length(ids(ids==uids(i))); 

    TP = sum(correctB(:,i)); 

    FN = FStot - TP; 

    TN = sum(correctA(ids==uids(i),i)); 

    FP = tot - TN; 

  

    accuracy(i,:) = ((TP+TN)/(TP+TN+FP+FN))*100; 

    precision(i,:) = (TP/(TP+FP))*100; 

    recall(i,:) = (TP/(TP+FN))*100; 

    tcorrect(i,:) = TP; 

    sensitivity(i,:) = (TP/(TP+FN))*100; 

    specificity(i,:) = (TN/(FP+TN))*100; 

    tp(:,i) = TP; 

    tn(:,i) = TN; 

    fp(:,i) = FP; 

    fn(:,i) = FN; 

end 

  

CVstat.accuracy = accuracy'; 

CVstat.precision = precision'; 

CVstat.recall = recall'; 

CVstat.correct = tcorrect'; 

CVstat.specificity = specificity'; 

CVstat.sensitivity = sensitivity'; 

CVstat.sensT = sum(tp)/(sum(tp)+sum(fn)); 

CVstat.specT = sum(tn)/(sum(fp)+sum(tn)); 
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A.2 SSSI MatLab Code 

 

function [CLP,CLN,CRISPp, CRISPn] = generateCRISP(loads, resolution) 

%Generates CRISP sequences from PCA loading data 

%loadings correspond to the PCs used in cross validation 

%resolution sets the number of pulses for each CRISP sequences 

% :: Copyright 2008 :: Thad Hannel & Dr. Robert Lodder, ASRG, University of  

Kentucky 

 

[r c] = size(loads); 

LP = loads; 

LN = loads; 

LP(LP<0)=0; 

LN(LN>0)=0; 

LN = -LN; 

CLP = zeros([r c]); 

CLN = zeros([r c]); 

for i = 1:r 

        if max(LP(i,:))==0 

        CLP(i,:) = LP(i,:); 

        end 

    if max(LP(i,:))~=0 

    CLP(i,:) = (LP(i,:)./max(LP(i,:)))*resolution; 

    end 

        if max(LN(i,:))==0  

        CLN(i,:) = LN(i,:); 

        end 

    if max(LN(i,:))~=0  

    CLN(i,:) = (LN(i,:)./max(LN(i,:)))*resolution; 

    end 

end 

  

  

CLN = round(CLN); 

CLP = round(CLP); 

CLP = reshape(CLP',1,r*c); 

CLN = reshape(CLN',1,r*c); 

  

outp = zeros(max(CLP),length(CLP)); 

outn = zeros(max(CLN),length(CLN)); 

    for j = 1:length(CLP) 

        outp(1: CLP (j),j) = 1; 

        outn(1: CLN (j),j) = 1; 

    end 
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%Randomize on/off states 

[r2 c2] = size(outp); 

    for i = 1:c2  

        random = rand(resolution,1); 

        [r ind] = sort(random); 

        outpR(:,i) = outp(ind,i); 

        outnR(:,i) = outn(ind,i); 

    end     

CRISPp = outpR; 

CRISPn = outnR;     
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function [Sig] = simulateCRISP(CRISPp, CRISPn, Data, numisp) 

 

%This function simulates a CRISP scan on Data 

% CRISPp and CRISPn are generated from generateCRISP.m 

%numisp = numloadings used to create the crisp codes 

% :: Copyright 2008 :: Thad Hannel & Dr. Robert Lodder, ASRG, University of  

Kentucky 

 

[r c] = size(CRISPp); 

[rd cd] = size(Data); 

l = size(CRISPp,2)/numisp; 

cnt = 1; 

for k = 1:l:c  % for wavelengths over the number of loadings 

    for j = 1:r  % resolution of the CRISP code 

        for i = 1:rd % number of samples 

            SigP(i,j,cnt) = dot(CRISPp(j,k:(l-1)+k),Data(i,:)); 

            SigN(i,j,cnt) = dot(CRISPn(j,k:(l-1)+k),Data(i,:)); 

        end 

    end 

    cnt=cnt+1; 

end 

  

SigP = sum(SigP,2); 

SigP = squeeze(SigP); 

SigN = sum(SigN,2); 

SigN = squeeze(SigN); 

Sig = SigP - SigN; 
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function [Hexoutp, Hexoutn] = genhex(CRISPp, CRISPn) 
 

%This function generates the 2 bit hex code for the SSSI processor 

% CRISPp and CRISPn are generated from generateCRISP.m 

%Hexoutp and Hexoutn are the hex code corresponding to the positive and negative 

loading 

%data, respectively. 

% :: Copyright 2008 :: Thad Hannel & Dr. Robert Lodder, ASRG, University of  

Kentucky  
  
[r c] = size(CRISPp); 
Seqs = c/25; 

  

  
for i = 1:Seqs 
Cp((i*5)-4:i*5,:) = reshape(CRISPp(:,(i*25)-24:i*25)',[5 r*5]); 
end 

  
for i = 1:Seqs 
Cn((i*5)-4:i*5,:) = reshape(CRISPn(:,(i*25)-24:i*25)',[5 r*5]); 
end 

  
for i = 1:Seqs 
Cdatap((i*(r*5))-((r*5)-1):i*(r*5),:) = Cp((i*5)-4:i*5,:)'; 
end 

  
for i = 1:Seqs 
Cdatan((i*(r*5))-((r*5)-1):i*(r*5),:) = Cn((i*5)-4:i*5,:)'; 
end 
CdatanNum = num2str(Cdatan); 
CdatapNum = num2str(Cdatap); 

  
Hexoutp = dec2hex(bin2dec(CdatapNum),2); 
Hexoutn = dec2hex(bin2dec(CdatanNum),2); 
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SSSI_GUI_Hadamard.ini File 

BAUDRATE= 115200 

HADAMARDLEDS= 31 

HADAMARDSEQS= 31 

SATURATION= 16777216 

XVALS= 0.8 0.9 1 1.1 1.2 1.8 1.9 2 2.1 2.2 2.8 2.9 3 3.1 

3.2 3.8 3.9 4 4.1 4.2 4.8 4.9 5 5.1 5.2 

SEQS= 
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 

0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 

1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 

0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 

1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 

1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 

0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 

1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 

0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 

1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 

0 1 1 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1 

1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 

0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 

0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 

1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 

0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 

1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 

1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 

0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1 

1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 

0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 
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1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 

0 1 1 1 1 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0 

1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 
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SSSI_GUI_CRISP.ini File 

 

BAUDRATE= 115200 

CRISPLEDS= 25 

CRISPSEQS= 6 

SATURATION= 16777216 

XVALS= 1 2 3 4 5 6 

SEQS= 

% SEQS are user defined. See Appendix B for details. 
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function varargout = SSSI2_H_C_GUI(varargin) 

 

% This GUI is used to run the SSSI in Hadamard or CRISP 

Modes 

 

%      SSSI2_H_C_GUI, by itself, creates a new 

SSSI2_H_C_GUI or raises the existing 

%      singleton*. 

% 

%      H = SSSI2_H_C_GUI returns the handle to a new 

SSSI2_H_C_GUI or the handle to 

%      the existing singleton*. 

% 

%      

SSSI2_H_C_GUI('CALLBACK',hObject,eventData,handles,...) 

calls the local 

%      function named CALLBACK in SSSI2_H_C_GUI.M with the 

given input 

%      arguments. 

% 

%      SSSI2_H_C_GUI('Property','Value',...) creates a new 

SSSI2_H_C_GUI or raises the 

%      existing singleton*.  Starting from the left, 

property value pairs are 

%      applied to the GUI before 

SSSI2_H_C_GUI_OpeningFunction gets called.  An 

%      unrecognized property name or invalid value makes 

property application 

%      stop.  All inputs are passed to 

SSSI2_H_C_GUI_OpeningFcn via varargin. 

% 

%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI 

allows only one 

%      instance to run (singleton)". 

% 

% See also: GUIDE, GUIDATA, GUIHANDLES 

  

% Edit the above text to modify the response to help 

SSSI2_H_C_GUI 

  

% Last Modified by GUIDE v2.5 17-Aug-2008 03:21:34 

  

% Begin initialization code - DO NOT EDIT 

gui_Singleton = 1; 

gui_State = struct('gui_Name',       mfilename, ... 

                   'gui_Singleton',  gui_Singleton, ... 
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                   'gui_OpeningFcn', 

@SSSI2_H_C_GUI_OpeningFcn, ... 

                   'gui_OutputFcn',  

@SSSI2_H_C_GUI_OutputFcn, ... 

                   'gui_LayoutFcn',  [] , ... 

                   'gui_Callback',   []); 

if nargin && ischar(varargin{1}) 

    gui_State.gui_Callback = str2func(varargin{1}); 

end 

  

if nargout 

    [varargout{1:nargout}] = gui_mainfcn(gui_State, 

varargin{:}); 

else 

    gui_mainfcn(gui_State, varargin{:}); 

end 

end 

% End initialization code - DO NOT EDIT 

  

  

% --- Executes just before SSSI2_H_C_GUI is made visible. 

function SSSI2_H_C_GUI_OpeningFcn(hObject, eventdata, 

handles, varargin) 

% This function has no output args, see OutputFcn. 

% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version 

of MATLAB 

% handles    structure with handles and user data (see 

GUIDATA) 

% varargin   command line arguments to SSSI2_H_C_GUI (see 

VARARGIN) 

  

% Choose default command line output for SSSI2_H_C_GUI 

handles.output = hObject; 

  

% initial Flags for GUI 

handles.SSSI_open=0; 

handles.choice=0; 

handles.cr_scount=1; 

handles.hd_scount=1; 

handles.cr_scan(1,60)=0; % needs to be more versatile in 

future 

handles.hd_scan(1,25)=0; % needs to be more versatile in 

future 

  

set(handles.reset,'Enable','off'); 

set(handles.com_port,'Enable','off'); 
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set(handles.com_open,'Enable','off'); 

set(handles.bar_graph,'Visible','off'); 

set(handles.s_no,'Enable','off'); 

set(handles.s_no_v,'Enable','off'); 

set(handles.model,'Enable','off'); 

set(handles.model_v,'Enable','off'); 

set(handles.firmware,'Enable','off'); 

set(handles.firmware_v,'Enable','off'); 

set(handles.num_leds,'Enable','off'); 

set(handles.num_leds_v,'Enable','off'); 

set(handles.num_seq,'Enable','off'); 

set(handles.num_seq_v,'Enable','off'); 

  

reset_gui(hObject, eventdata, handles); 

% Update handles structure 

guidata(hObject, handles); 

  

% UIWAIT makes SSSI2_H_C_GUI wait for user response (see 

UIRESUME) 

% uiwait(handles.figure1); 

end 

  

% --- Outputs from this function are returned to the 

command line. 

function varargout = SSSI2_H_C_GUI_OutputFcn(hObject, 

eventdata, handles)  %#ok<INUSL> 

% varargout  cell array for returning output args (see 

VARARGOUT); 

% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version 

of MATLAB 

% handles    structure with handles and user data (see 

GUIDATA) 

  

% Get default command line output from handles structure 

varargout{1} = handles.output; 

end 

  

%----------------------------------------------------------

----------------------------------------% 

%-----------------------------------Object creation 

functions--------------------------------------%  

%----------------------------------------------------------

----------------------------------------% 

  

% --- Executes during object creation, after setting all 

properties. 
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function experiment_choice_CreateFcn(hObject, eventdata, 

handles) %#ok<INUSD> 

% hObject    handle to experiment_choice (see GCBO) 

% eventdata  reserved - to be defined in a future version 

of MATLAB 

% handles    empty - handles not created until after all 

CreateFcns called 

  

% Hint: popupmenu controls usually have a white background 

on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

  

end 

  

%----------------------------------------------------------

----------------------------------------% 

%-----------------------------------Object Call Back 

functions-------------------------------------%  

%----------------------------------------------------------

----------------------------------------% 

  

  

% --- Executes on selection change in experiment_choice. 

function experiment_choice_Callback(hObject, eventdata, 

handles) 

% hObject    handle to experiment_choice (see GCBO) 

% eventdata  reserved - to be defined in a future version 

of MATLAB 

% handles    structure with handles and user data (see 

GUIDATA) 

  

% Hints: contents = get(hObject,'String') returns 

experiment_choice contents as cell array 

%        contents{get(hObject,'Value')} returns selected 

item from experiment_choice 

end 

  

% --- Executes on button press in load_config_button. 

function load_config_button_Callback(hObject, eventdata, 

handles) 

% hObject    handle to load_config_button (see GCBO) 

% eventdata  reserved - to be defined in a future version 

of MATLAB 
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% handles    structure with handles and user data (see 

GUIDATA) 

  

    handles.experiment = 

get(handles.experiment_choice,'String'); 

    handles.experiment = 

handles.experiment{get(handles.experiment_choice,'Value')}; 

    display(handles.experiment); 

     

    set(handles.load_config_button,'Enable','off'); 

    set(handles.experiment_choice,'Enable','off');     

    set(handles.reset,'Enable','on'); 

    set(handles.com_port,'Enable','on'); 

    set(handles.com_open,'Enable','on'); 

    set(handles.bar_graph,'Visible','on'); 

    set(handles.s_no,'Enable','on'); 

    set(handles.s_no_v,'Enable','on'); 

    set(handles.model,'Enable','on'); 

    set(handles.model_v,'Enable','on'); 

    set(handles.firmware,'Enable','on'); 

    set(handles.firmware_v,'Enable','on'); 

    set(handles.num_leds,'Enable','on'); 

    set(handles.num_leds_v,'Enable','on'); 

    set(handles.num_seq,'Enable','on'); 

    set(handles.num_seq_v,'Enable','on'); 

     

       

    if strcmp(handles.experiment,'CRISP') == 1  

        display('Hey You reached the CRISP colony 

correctly');   

         

        handles.choice=1; 

         

        fid = fopen('SSSI_CRISP60.ini','rt'); 

        if(fid == -1) 

            error(['ERROR - Could not open GUI 

initialization file ','SSSI_CRISP60.ini']); 

        end 

        try 

            %Get baud rate for serial communications 

            nextline = fgetl(fid); 

            if(findstr(nextline,'BAUDRATE') ~= 1) 

                error('ERROR - Improper format in 

initialization file'); 

            end 

            loc = findstr(nextline,'='); 
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            handles.SSSI_baud = 

str2num(nextline(loc+1:length(nextline))); 

             

            %Get number of leds 

            nextline = fgetl(fid); 

            if(findstr(nextline,'CRISPLEDS') ~= 1) 

                error('ERROR - Improper format in 

initialization file'); 

            end 

            loc = findstr(nextline,'='); 

            handles.num_led = 

str2num(nextline(loc+1:length(nextline))); 

             

            %Get number of CRISP sequences 

            nextline = fgetl(fid); 

            if(findstr(nextline,'CRISPSEQS') ~= 1) 

                error('ERROR - Improper format in 

initialization file'); 

            end 

            loc = findstr(nextline,'='); 

            handles.num_seqs_cr = 

str2num(nextline(loc+1:length(nextline))); 

%             display(handles.num_seqs_cr); 

%             handles.num_seqs_cr=60; 

             

            %Get saturation value for detector system 

            nextline = fgetl(fid); 

            if(findstr(nextline,'SATURATION') ~= 1) 

                error('ERROR - Improper format in 

initialization file'); 

            end 

            loc = findstr(nextline,'='); 

            handles.saturation_value = 

str2num(nextline(loc+1:length(nextline))); 

             

            %Get x-axis values corresponding to each 

sequence 

            nextline = fgetl(fid); 

            if(findstr(nextline,'XVALS') ~= 1) 

                error('ERROR - Improper format in 

initialization file'); 

            end 

            loc = findstr(nextline,'='); 

            handles.xvals = 

str2num(nextline(loc+1:length(nextline))); 

%             display(handles.xvals); 
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            if(length(handles.xvals) ~= 

handles.num_seqs_cr) 

                error('ERROR - Length of XVALS does not 

match number of CRISP sequences'); 

            end 

             

            %Get CRISP sequences 

            nextline = fgetl(fid); 

            if(findstr(nextline,'SEQS') ~= 1) 

                error('ERROR - Improper format in 

initialization file'); 

            end 

            handles.seqs_cr = 

zeros(handles.num_seqs_cr,handles.num_led); 

            for i=1:handles.num_seqs_cr 

                handles.seqs_cr(i,:) = str2num(fgetl(fid)); 

%#ok<ST2NM> 

            end 

            fclose(fid); 

             

            axes(handles.bar_graph); 

  

            handles.bar_handles = zeros(5,1);%no reason for 

having 5 handles 

            handles.bar_handles(1) = 

bar(handles.xvals,ones(handles.num_seqs_cr,1)); 

            set(handles.bar_handles(1), 'FaceColor',[0 0 

1]) %blue 

%             hold; 

%             display(handles.seqs_cr); 

            display('Hey exiting the CRISP colony 

correctly'); 

             

        catch 

            fclose(fid); 

            error(lasterr,'modal');% need to see what this 

statement does 

        end 

handles.hinv = pinv(handles.seqs_cr); 

         

         

    elseif strcmp(handles.experiment,'HADAMARD') == 1 

        display('Hey you reached the HADAMARD colony 

correctly'); 

         

        handles.choice=2; 
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        fid = fopen('SSSIgui31.ini','rt'); 

        if(fid == -1) 

            error(['ERROR - Could not open GUI 

initialization file ','searchgui2.ini']); 

        end 

        try 

            %Get baud rate for serial communications 

            nextline = fgetl(fid); 

            if(findstr(nextline,'BAUDRATE') ~= 1) 

                error('ERROR - Improper format in 

initialization file'); 

            end 

            loc = findstr(nextline,'='); 

            handles.SSSI_baud = 

str2num(nextline(loc+1:length(nextline))); 

             

            %Get number of leds 

            nextline = fgetl(fid); 

            if(findstr(nextline,'HADAMARDLEDS') ~= 1) 

                error('ERROR - Improper format in 

initialization file'); 

            end 

            loc = findstr(nextline,'='); 

            handles.num_led = 

str2num(nextline(loc+1:length(nextline))); 

             

            %Get number of hadamard sequences 

            nextline = fgetl(fid); 

            if(findstr(nextline,'HADAMARDSEQS') ~= 1) 

                error('ERROR - Improper format in 

initialization file'); 

            end 

            loc = findstr(nextline,'='); 

            handles.num_seqs = 

str2num(nextline(loc+1:length(nextline))); 

             

            %Get saturation value for detector system 

            nextline = fgetl(fid); 

            if(findstr(nextline,'SATURATION') ~= 1) 

                error('ERROR - Improper format in 

initialization file'); 

            end 

            loc = findstr(nextline,'='); 

            handles.saturation_value = 

str2num(nextline(loc+1:length(nextline))); 

             

            %Get x-axis values corresponding to each led 
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            nextline = fgetl(fid); 

            if(findstr(nextline,'XVALS') ~= 1) 

                error('ERROR - Improper format in 

initialization file'); 

            end 

            loc = findstr(nextline,'='); 

            handles.xvals = 

str2num(nextline(loc+1:length(nextline))); 

          

             

            %Get hadamard sequences 

            nextline = fgetl(fid); 

            if(findstr(nextline,'SEQS') ~= 1) 

                error('ERROR - Improper format in 

initialization file'); 

            end 

            handles.seqs = 

zeros(handles.num_seqs,handles.num_led); 

            for i=1:handles.num_seqs 

                handles.seqs(i,:) = str2num(fgetl(fid)); 

            end 

             

             

            fclose(fid); 

             

        catch 

            fclose(fid); 

            error(lasterr,'modal');% need to see what this 

statement does 

        end 

  

        % Find pseudo-inverse of hadamard transform 

        handles.hinv = pinv(handles.seqs); 

        display(handles.hinv); 

%         display(handles.xvals); 

         

        axes(handles.bar_graph); 

  

        %hold on; 

         

        handles.bar_handles = zeros(5,1); 

        handles.bar_handles(1) = 

bar(handles.xvals(1:5),ones(5,1)); 

        set(handles.bar_handles(1), 'FaceColor',[0 0 1]) 

%blue 

        hold on; 
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        handles.bar_handles(2) = 

bar(handles.xvals(6:10),ones(5,1)); 

        set(handles.bar_handles(2), 'FaceColor', [0 1 0]) 

%green 

        handles.bar_handles(3) = 

bar(handles.xvals(11:15),ones(5,1)); 

        set(handles.bar_handles(3), 'FaceColor', [1 1 0]) 

%yellow 

        handles.bar_handles(4) = 

bar(handles.xvals(16:20),ones(5,1)); 

        set(handles.bar_handles(4), 'FaceColor', [1 0.5 0]) 

%orange 

        handles.bar_handles(5) = 

bar(handles.xvals(21:25),ones(5,1)); 

        set(handles.bar_handles(5), 'FaceColor', [1 0 0]) 

%red 

  

        set(gca,'xtick',[1,2,3,4,5]); 

         

        hold off; 

  

        display('Hey I am exiting the HADAMARD choice'); 

    else 

        display('Hey something went wrong... find out 

what!!!'); 

    end 

     

    guidata(hObject,handles); 

            

end 

  

  

% --- Executes on selection change in com_port. 

function com_port_Callback(hObject, eventdata, handles) 

% hObject    handle to com_port (see GCBO) 

% eventdata  reserved - to be defined in a future version 

of MATLAB 

% handles    structure with handles and user data (see 

GUIDATA) 

  

% Hints: contents = get(hObject,'String') returns com_port 

contents as cell array 

%        contents{get(hObject,'Value')} returns selected 

item from com_port 

end 

  



179 
 

% --- Executes during object creation, after setting all 

properties. 

function com_port_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to com_port (see GCBO) 

% eventdata  reserved - to be defined in a future version 

of MATLAB 

% handles    empty - handles not created until after all 

CreateFcns called 

  

% Hint: popupmenu controls usually have a white background 

on Windows. 

%       See ISPC and COMPUTER. 

    if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

        set(hObject,'BackgroundColor','white'); 

    end 

  

end 

  

% --- Executes on button press in com_open. 

function com_open_Callback(hObject, eventdata, handles) 

% hObject    handle to com_open (see GCBO) 

% eventdata  reserved - to be defined in a future version 

of MATLAB 

% handles    structure with handles and user data (see 

GUIDATA) 

  

% Get specified serial port from popup menu 

com_port = get(handles.com_port,'String'); 

handles.SSSI_port = 

com_port{get(handles.com_port,'Value')}; 

% Create serial object and open communications 

handles.SSSI = 

serial(handles.SSSI_port,'BaudRate',9600,'Timeout',10); 

try 

    fopen(handles.SSSI); 

catch 

    errordlg(['ERROR - Could not open communications on 

',handles.SSSI_port, '. Matlab returned error: 

',lasterr],'modal'); 

    delete(handles.SSSI); 

    return; 

end     

  

set(handles.SSSI,'Terminator',59); 

  

handles.SSSI_open = 1; 
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set(handles.com_close,'Enable','on'); 

set(handles.com_open,'Enable','off'); 

  

% Test communications to see if SSSI is connected & ready 

to start from the 

% begining or needs to be reset 

  

fwrite(handles.SSSI,'s'); 

comm = 0; 

while(handles.SSSI.BytesAvailable < 25) 

    pause(0.01); 

    comm=comm+1; 

    if comm == 500, 

        display(handles.SSSI.BytesAvailable); 

%         reset_gui(hObject, eventdata, handles) 

        errordlg('Communication Error - Please verify that 

SSSI is connected properly and turned on.It might also need 

to be reset','Communication Error'); 

        return 

    end 

end 

  

SSSI_reply = fscanf(handles.SSSI,'%s'); 

display(SSSI_reply); 

  

%get the Serial number of SSSI device connected  

handles.sno = str2num(SSSI_reply(2:5));  

%display(handles.sno); 

set(handles.s_no_v,'String',handles.sno); 

  

%get the Model Version of SSSI device connected  

handles.mv = (SSSI_reply(6:7));  

%display(handles.mv); 

set(handles.model_v,'String',handles.mv); 

  

%get the Firmware version of SSSI device connected  

handles.fv = (SSSI_reply(8:10));  

%display(handles.fv); 

set(handles.firmware_v,'String',handles.fv); 

  

%get the number of LEDs in the SSSI device connected  

handles.snled = str2num(SSSI_reply(11:14));  

%display(handles.snled); 

set(handles.num_leds_v,'String',handles.snled); 

  

%get the number of Sequences in the SSSI device connected  

handles.snseq = str2num(SSSI_reply(15:18));   
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%display(handles.snseq); 

set(handles.num_seq_v,'String',handles.snseq); 

  

%get the Ready 'r' or 'R' signal the SSSI device connected  

handles.SSSI_status = (SSSI_reply(19));  

display(handles.SSSI_status); 

 %display(SSSI_reply(25)); 

%display('Now close the connection'); 

  

set(handles.single_scan,'Enable','on'); 

set(handles.r_n_scans,'Enable','on'); 

set(handles.file_name,'Enable','on'); 

set(handles.save_scan,'Enable','on'); 

  

  

guidata(hObject,handles); 

  

end 

  

% --- Executes on button press in com_close. 

function com_close_Callback(hObject, eventdata, handles) 

% hObject    handle to com_close (see GCBO) 

% eventdata  reserved - to be defined in a future version 

of MATLAB 

% handles    structure with handles and user data (see 

GUIDATA) 

  

    fclose(handles.SSSI); 

    set(handles.com_open,'Enable','on'); 

    set(handles.com_close,'Enable','off'); 

  

    % display('total count is'); 

    % display(handles.hd_scount); 

  

    hfid = fopen('hadamard_scans.txt' , 'wt'); 

    if(hfid == -1) 

        error(['ERROR - Could not create output file 

','scan.txt']); 

    end 

  

    for i=1:(handles.hd_scount-1) 

        fprintf(hfid,' scan %d', i); 

    %     display('i wrote the scan number'); 

        for j=1:handles.num_leds 

            fprintf(hfid,' %d', handles.hd_scan(i,j)); 

        end 

    %     display('i wrote the scan values'); 
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        fprintf(hfid,' \n \n'); 

    end 

  

    fclose(hfid); 

     

    cfid = fopen('CRISP_scans.txt' , 'wt'); 

    if(cfid == -1) 

        error(['ERROR - Could not create output file 

','scan.txt']); 

    end 

%     fprintf(cfid,' CRISP scans will eventually be stored 

here!!!'); 

    for i=1:(handles.cr_scount-1) 

        fprintf(hfid,' scan %d', i); 

    %     display('i wrote the scan number'); 

        for j=1:60 

            fprintf(hfid,' %d', handles.cr_scan(i,j)); 

        end 

    %     display('i wrote the scan values'); 

        fprintf(hfid,' \n \n'); 

    end 

    fclose(cfid); 

  

    set(handles.single_scan,'Enable','off'); 

    set(handles.r_n_scans,'Enable','off'); 

    set(handles.file_name,'Enable','off'); 

    set(handles.save_scan,'Enable','off'); 

  

  

end 

  

  

  

% --- Executes on button press in single_scan. 

function single_scan_Callback(hObject, eventdata, handles) 

% hObject    handle to single_scan (see GCBO) 

% eventdata  reserved - to be defined in a future version 

of MATLAB 

% handles    structure with handles and user data (see 

GUIDATA) 

    handles.totscans = 1; 

     

    set(handles.single_scan,'Enable','off'); 

    set(handles.r_n_scans,'Enable','off'); 

    scan(hObject, eventdata, handles); 

    set(handles.single_scan,'Enable','on'); 

    set(handles.r_n_scans,'Enable','on'); 
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end 

  

% --- Executes on button press in n_scans. 

function n_scans_Callback(hObject, eventdata, handles) 

% hObject    handle to n_scans (see GCBO) 

% eventdata  reserved - to be defined in a future version 

of MATLAB 

% handles    structure with handles and user data (see 

GUIDATA) 

  

  

    %set(handles.single_scan,'Enable','off'); 

    set(handles.r_n_scans,'Enable','off'); 

    set(handles.num_scans,'Enable','off'); 

    set(handles.n_scans,'Enable','off');     

    handles.totscans = 

str2num(get(handles.num_scans,'String')); 

%    handles.totscans = 

str2num(sc_num{get(handles.num_scans,'Value')});str2double(

get(hObject,'String')) 

     

%     display(handles.totscans); 

     

    if handles.totscans > 0 

         

%         for i = 1 : handles.totscans 

%             scan(hObject, eventdata, handles); 

%         end 

        scan(hObject, eventdata, handles); 

    else 

        display('Put in a valid number please'); 

    end 

  

    set(handles.r_n_scans,'Enable','on'); 

    set(handles.num_scans,'Enable','on'); 

    set(handles.n_scans,'Enable','on');     

  

end 

  

  

function file_name_Callback(hObject, eventdata, handles) 

% hObject    handle to file_name (see GCBO) 

% eventdata  reserved - to be defined in a future version 

of MATLAB 

% handles    structure with handles and user data (see 

GUIDATA) 
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% Hints: get(hObject,'String') returns contents of 

file_name as text 

%        str2double(get(hObject,'String')) returns contents 

of file_name as a double 

end 

  

% --- Executes during object creation, after setting all 

properties. 

function file_name_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to file_name (see GCBO) 

% eventdata  reserved - to be defined in a future version 

of MATLAB 

% handles    empty - handles not created until after all 

CreateFcns called 

  

% Hint: edit controls usually have a white background on 

Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

end 

  

% --- Executes on button press in save_scan. 

function save_scan_Callback(hObject, eventdata, handles) 

% hObject    handle to save_scan (see GCBO) 

% eventdata  reserved - to be defined in a future version 

of MATLAB 

% handles    structure with handles and user data (see 

GUIDATA) 

end 

  

  

function num_scans_Callback(hObject, eventdata, handles) 

% hObject    handle to num_scans (see GCBO) 

% eventdata  reserved - to be defined in a future version 

of MATLAB 

% handles    structure with handles and user data (see 

GUIDATA) 

  

% Hints: get(hObject,'String') returns contents of 

num_scans as text 

%        str2double(get(hObject,'String')) returns contents 

of num_scans as a double 

end 
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% --- Executes during object creation, after setting all 

properties. 

function num_scans_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to num_scans (see GCBO) 

% eventdata  reserved - to be defined in a future version 

of MATLAB 

% handles    empty - handles not created until after all 

CreateFcns called 

  

% Hint: edit controls usually have a white background on 

Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

end 

  

% --- Executes on button press in r_n_scans. 

function r_n_scans_Callback(hObject, eventdata, handles) 

% hObject    handle to r_n_scans (see GCBO) 

% eventdata  reserved - to be defined in a future version 

of MATLAB 

% handles    structure with handles and user data (see 

GUIDATA) 

  

% Hint: get(hObject,'Value') returns toggle state of 

r_n_scans 

  

    r_button = get(handles.r_n_scans,'Value'); 

  

    display(r_button); 

  

    if r_button==1 

        set(handles.single_scan,'Enable','off') 

        set(handles.num_scans,'Enable','on'); 

        set(handles.n_scans,'Enable','on'); 

    else 

        set(handles.single_scan,'Enable','on') 

        set(handles.num_scans,'Enable','off'); 

        set(handles.n_scans,'Enable','off'); 

    end     

  

end 

  

% --- Executes on button press in reset. 
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function reset_Callback(hObject, eventdata, handles) 

% hObject    handle to reset (see GCBO) 

% eventdata  reserved - to be defined in a future version 

of MATLAB 

% handles    structure with handles and user data (see 

GUIDATA) 

  

% initial Flags for GUI 

  

  

    handles.SSSI_open=0; 

    handles.choice=0; 

  

    axes(handles.bar_graph); 

    bar(0,0); 

         

    set(handles.load_config_button,'Enable','on'); 

    set(handles.experiment_choice,'Enable','on'); 

    set(handles.reset,'Enable','off'); 

    set(handles.com_port,'Enable','off'); 

    set(handles.com_open,'Enable','off'); 

    set(handles.bar_graph,'Visible','off'); 

    set(handles.s_no,'Enable','off'); 

    set(handles.s_no_v,'Enable','off'); 

    set(handles.model,'Enable','off'); 

    set(handles.model_v,'Enable','off'); 

    set(handles.firmware,'Enable','off'); 

    set(handles.firmware_v,'Enable','off'); 

    set(handles.num_leds,'Enable','off'); 

    set(handles.num_leds_v,'Enable','off'); 

    set(handles.num_seq,'Enable','off'); 

    set(handles.num_seq_v,'Enable','off'); 

     

  

    reset_gui(hObject, eventdata, handles); 

  

end 

  

%----------------------------------------------------------

----------------------------------------% 

%------------------------------------------USER functions--

----------------------------------------%  

%----------------------------------------------------------

----------------------------------------% 

  

% ---------------------------------------------------------

----------- 
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% --- Reset GUI variables and controls 

function reset_gui(hObject, eventdata, handles) 

% ---------------------------------------------------------

----------- 

% Check if search is open and close  

 if(handles.SSSI_open) 

     fclose(handles.SSSI); 

     delete(handles.SSSI); 

 end 

% if(handles.saving_data) 

%     fclose(handles.savefile_id); 

%     delete(handles.savefile_id); 

% end 

% handles.search_id = []; 

% handles.savefile_id = []; 

handles.SSSI_open = 0; 

% handles.saving_data = 0; 

% handles.scans_saved = 1; 

% Set GUI control defaults 

set(handles.com_close,'Enable','off'); 

set(handles.single_scan,'Enable','off'); 

set(handles.n_scans,'Enable','off'); 

set(handles.file_name,'Enable','off'); 

set(handles.save_scan,'Enable','off'); 

set(handles.r_n_scans,'Enable','off'); 

set(handles.num_scans,'Enable','off'); 

set(handles.details_sssi,'ForegroundColor',[1 0 0]); 

  

% set(handles.statustxt,'String','Closed'); 

% set(handles.statustxt,'ForegroundColor',[1 0 0]); 

% set(handles.fstatustxt,'String','Closed'); 

% set(handles.fstatustxt,'ForegroundColor',[1 0 0]); 

% set(handles.scansedit,'String','0'); 

% Update handles structure 

guidata(hObject,handles); 

  

end 

  

  

% ---------------------------------------------------------

----------- 

% --- instructs the SSSI to scan the compound sample with 

sequences based 

% on experiment choice - CRISP or HADAMARD 

function scan(hObject, eventdata, handles) 

% ---------------------------------------------------------

----------- 
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    if strcmp(handles.experiment,'HADAMARD') == 1 

         

        try 

     

            display('going to perform the HAD exp'); 

            numscans = handles.totscans; 

  

            choice = '1'; 

  

            data = zeros(handles.num_seqs,numscans); 

            vals = zeros(handles.num_seqs); 

%             display(numscans); 

  

            for n = 1:numscans 

                fwrite(handles.SSSI,choice); 

                comm = 0; 

                while(handles.SSSI.BytesAvailable <5) 

                    pause(0.01); 

                    comm=comm+1; 

                    if comm == 500, 

                        

display(handles.SSSI.BytesAvailable); 

                        %reset_gui(hObject, eventdata, 

handles) 

                        errordlg('Communication Error - 

Please verify that SSSI is connected properly and turned 

on.It might also need to be reset','Communication Error'); 

                    return 

                    end 

                end 

                display('Bytes available are:');                 

                display(handles.SSSI.BytesAvailable); 

  

                for i=1:handles.num_seqs 

                    SSSI_val = fscanf(handles.SSSI,'%s'); 

%                     display(SSSI_val); 

                    if(i==1) 

                        temp = 

str2num(SSSI_val(2:(length(SSSI_val)-1))); %#ok<ST2NM> 

                    else 

                        temp = 

str2num(SSSI_val(1:(length(SSSI_val)-1))); %#ok<ST2NM> 

                    end 

%                     display(temp);             

                    if(temp ~= i) 
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                        error('1','ERROR - Invalid sequence 

order output from SSSI.'); %#ok<CTPCT> 

                    end 

  

                    SSSI_val = fscanf(handles.SSSI,'%s'); 

                    temp = 

str2num(SSSI_val(1:(length(SSSI_val)-1))); %#ok<ST2NM> 

%                     display(temp); 

  

                    data(i,n) = double(temp); 

                end 

            end 

%             display(data); 

display(data); 

             

             

            datatoworkspace =handles.hinv*data; 

            datatoworkspace = datatoworkspace'; 

 assignin('base','data',datatoworkspace); 

  

  

            % Average 

            for i = 1:handles.num_seqs 

                for n = 1:numscans 

                    vals(i) = vals(i) + data(i,n); 

                end 

                vals(i) = vals(i)/numscans; 

            end 

        %    display(vals); 

            if(handles.SSSI.BytesAvailable > 0) 

                dummy = 

fread(handles.SSSI,handles.SSSI.BytesAvailable); 

                display('Dude there is still stuff in the 

buffer!!!!! wierd!!!!!!'); 

                display(dummy); 

            end 

        catch 

            errordlg(lasterr,'modal'); 

            return; 

        end 

  

        if(~isempty(find(vals >= 

handles.saturation_value))) %#ok<EFIND> 

            errordlg('ERROR - Signal saturation 

encountered','modal'); 

            return; 

        end 
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        % if (handles.saving_data) 

        %     handles.scans_saved = handles.scans_saved + 

1; 

        % end 

  

        vals = handles.hinv*vals; 

        % display(vals); 

        for i = 1:handles.num_leds 

            if vals(i,1) < 0 

                vals(i,1) = 0; 

            end 

            %handles.yvals(handles.scans_saved, i) = 

vals(i,1); 

        end 

  

        axes(handles.bar_graph); 

  

        for i=1:5 

            set(handles.bar_handles(i),'YData',vals(((i-

1)*5+1):(i*5))); 

        end 

        tempvals = vals(:,1); 

        tempvals = tempvals'; 

        

handles.hd_scan(handles.hd_scount,:)=tempvals(1,1:25); 

        handles.hd_scount=handles.hd_scount+1; 

        

%set(handles.scansedit,'String',num2str(handles.scans_saved

)); 

        guidata(hObject,handles); 

         

    else 

        display('Scanning'); 

         

        try 

     

            display('going to perform the CRISP exp'); 

            numscans = handles.totscans; 

  

            choice = '2'; 

  

            data = zeros(handles.num_seqs_cr,numscans); 

            vals = zeros(handles.num_seqs_cr); 

%             display(numscans); 

  

            for n = 1:numscans 
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                fwrite(handles.SSSI,choice); 

                comm = 0; 

                while(handles.SSSI.BytesAvailable <5) 

                    pause(0.01); 

                    comm=comm+1; 

                    if comm == 500, 

                        

display(handles.SSSI.BytesAvailable); 

                        %reset_gui(hObject, eventdata, 

handles) 

                        errordlg('Communication Error - 

Please verify that SSSI is connected properly and turned 

on.It might also need to be reset','Communication Error'); 

                    return 

                    end 

                end 

%                 display('Bytes available are:');                 

%                 display(handles.SSSI.BytesAvailable); 

  

                for i=1:handles.num_seqs_cr 

                    SSSI_val = fscanf(handles.SSSI,'%s'); 

%                     display(SSSI_val); 

  

                    if(i==1) 

                        temp = 

str2num(SSSI_val(2:(length(SSSI_val)-1))); 

                    else 

                        temp = 

str2num(SSSI_val(1:(length(SSSI_val)-1))); 

                    end 

%                     display(temp);             

                    if(temp ~= i) 

                        error('1','ERROR - Invalid sequence 

order output from SSSI.'); %#ok<CTPCT> 

                    end 

  

                    SSSI_val = fscanf(handles.SSSI,'%s'); 

                    temp = 

str2num(SSSI_val(1:(length(SSSI_val)-1))); 

%                     display(temp); 

  

                    data(i,n) = double(temp); 

                     

                end 

            end 

            display(handles.num_seqs_cr); 

% handles.hinv = pinv(handles.seqs_cr); 
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            display(data); 

 

assignin('base','data',data'); 

  

            % Average 

            for i = 1:handles.num_seqs_cr 

                for n = 1:numscans 

                    vals(i) = vals(i) + data(i,n); 

                end 

                vals(i) = vals(i)/numscans; 

            end 

%             display(vals); 

            if(handles.SSSI.BytesAvailable > 0) 

                dummy = 

fread(handles.SSSI,handles.SSSI.BytesAvailable); 

                display('Dude there is still stuff in the 

buffer!!!!! wierd!!!!!!'); 

                display(dummy); 

            end 

        catch 

            errordlg(lasterr,'modal'); 

            return; 

        end 

  

        if(~isempty(find(vals >= 

handles.saturation_value))) %#ok<EFIND> 

            errordlg('ERROR - Signal saturation 

encountered','modal'); 

            return; 

        end 

  

        % if (handles.saving_data) 

        %     handles.scans_saved = handles.scans_saved + 

1; 

        % end 

  

        axes(handles.bar_graph); 

  

        

set(handles.bar_handles(1),'YData',vals(1:handles.num_seqs_

cr)); 

         

        tempvals = vals(:,1); 

        tempvals = tempvals'; 

        handles.cr_scan(handles.cr_scount,:)=tempvals(1,:); 

        handles.cr_scount=handles.cr_scount+1; 
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%set(handles.scansedit,'String',num2str(handles.scans_saved

)); 

        guidata(hObject,handles); 

         

    end 

end 
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Appendix B:  Solid State Spectral Imager User Manual 

 

 

B.1 Instillation 

Software Installation 

The following software is needed to run the SSSI: 

 MatLab version 7.0.1 or greater 

The following software packages are needed for updating the SSSI user code: 

 Kiel μVision3 V3.33 

 Silicon Labs Integrated Development Environment. Version 3.10 

Follow the recommended installation instructions provided with you software package.   

Hardware Setup 

The SSSI consists of three separate boards: emitter, controller, and detector.  The three 

components combine to make a single unit. Figure B.1 illustrates the connection of the 

three boards.  The SSSI requires a 12VDC battery for operation.  Voltage regulators on 

each board are used to control the voltage for each component.  The current prototype is 

powered on when connected to a 12VDC battery via power cables from each board.  Care 

must be taken not to mix up the positive (red) and negative (green) power wires. 

The SSSI is controlled via a serial connection made with a USB-serial adaptor to a 

computer.  In order to update the C8051F processor (Silicon Laboratories Inc.) a 

JTAG/DEBUG cable is needed. The debug adaptor connects to the SSSI with the JTAG 

connector and to a computer using a USB connection.   
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B.2 Operation 

SSSI GUI 

 Connect the power cables to a 12VDC battery. 

 Connect the SSSI to a computer running MatLab. 

 Start MatLab 

 Initialize the SSSI GUI 

o Find the MatLab directory containing the “SSSI_GUI.m” file and double 

click it. 

o The MatLab editor will display the GUI code.  The GUI can be activated 

by pressing F5.  

  When the SSSI GUI is active it will automatically be set for Hadamard scanning 

(see Figure B.2). 

 Select the desired scanning mode using the drop down menu and load the 

configuration by pressing “load config”. 

 Select the COM port that is connected to the SSSI using the drop-down menu in 

the GUI and press the “open” button.  The SSSI should now be ready to scan. 

 The SSSI can be operated in single scanning or multiple scanning modes. For 

single scanning press the single scan button.  For multiple scanning select the n 

Scans radial button and enter the number of scans to acquire in the scans box. 

Press the n Scans button to begin acquiring multiple scan data. 

 After each scan the data can be saved by entering a file name and clicking the 

“save scan” button.  The data will be saved in a .txt file in the current directory. 
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 Data is automatically imported to the MatLab workspace after each scan.  The 

variable “data” will contain the spectral data in the MatLab workspace.   

Hadamard Scanning 

Hadamard scanning is used to generate a sample spectrum and or multispectral image.  

The SSSI may be used to acquire spectroscopic images of a target via push broom 

scanning.  However, this technique is not demonstrated in this manual.   

 Initialize the SSSI GUI. 

 Load the Hadamard configuration. 

 The detector position is dependent on the scanning method.  For 

transmission/absorption measurements the detector should be place 30cm in front 

of the collimator.  Reflectance measurements can be made by placing the detector 

at a 45 degree angle from the target.  

 Begin scanning. 

 The SSSI GUI window will indicate the spectral response for each LED 

wavelength in the form of a bar graph (Figure B.3).   

 

CRISP Scanning 

CRISP scanning mode operation is the same for Hadamard scanning.  Prior to initializing 

the SSSI GUI the CRISP sequence must be constructed.  CRISP binary sequences can be 

generated with the “generateCRISP.m” file listed in Appendix A. The binary code 
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generated in MatLab must be converted to Hex before updating the processor code on the 

SSSI.  This can be done using the “genhex.m” MatLab file.  

 

CRISP Programming 

 

 Start Kiel uVision software. 

 Under the project tab press “open project”. 

 Navigate to the directory containing the SSSI code and open HC602.uv2. 

 The C-code (SSSI_v3.c) contains both the Hadamard and CRISP sequences. 

Scroll down to the CRISP SCAN Function routine.  Currently there are 60 

patterns which correspond to a CRISP scanning resolution of 10.  The Hex code 

generated in MatLab must be copied to the C-code file.  The MatLab generated 

Hex code is ordered according to its placement in the C-code file (see Figure B.4).   

 Once the C-code is updated it must be saved. 

 Under the project tab select “Rebuild All Target Files”.  If the rebuild is 

successful the output window should indicate 0 Errors and 0 Warnings (Figure 

B.5). 

 The code can now be uploaded to the SSSI. 

 Connect the serial-USB and JTAG-USB cables to the SSSI and connect to a 

computer. 

 Power the SSSI. 

 Start Silicon Labs Integrated Development Environment. Version 3.10 for 

C8051xxxx processors. 
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 Connect to the SSSI by pressing the connect button and update the processor by 

pressing the “download code” key (see Figure B.6). 

 After the code had been successfully updated, disconnect the SSSI by pressing the 

disconnect button (same as the connect button). 

 Power the SSSI down and remove the JTAG cable. 

 The final step is to update the SSSI.ini file in MatLab. 

 Open MatLab and go to the directory that contains the SSSI GUI. 

 Locate the SSSI_CRISP.ini file and open it in the MatLab editor. 

 Paste the binary code into the .ini file under “SEQS”.   

 Save the .ini file. 

 Initialize the GUI and power the SSSI.  CRISP data can now be acquired. 

 

B.3 Troubleshooting 

 

The SSSI GUI will not open: 

 Check that the SSSI has power.  Ensure there are no lose wires or connections 

 An incorrect COM port is selected. The computer device manager in the system 

control panel will list all used ports.  Ensure the proper COM port is selected 

 Battery power is low. Check and replace battery if needed 

The SSSI locked-up during a multiple scan: 

 Close the SSSI GUI and reset 
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 MatLab may be restarted if a GUI reset does not work 

The SSSI GUI does not respond: 

 Close the GUI and restart 

 Restart MatLab 

 Close MatLab, power off the SSSI and disconnect it from the computer 
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Appendix B Figures 

 

 

Figure B.1:  Diagram of the connection sequence for the SSSI emitter, controller and 

detector boards. 
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Figure B.2:  Screen shot of the SSSI GUI. 
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Figure B.3:  SSSI GUI in Hadamard scanning mode. 
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Figure B.4: Hex code must be copied into the C-code file for the SSSI. Each line of the 

Hex code corresponds to P3 to P7 for patterns 1 to 60. 
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Figure B.5:  The error and warning messages will indicate a successful rebuild of the 

target files.  
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Figure B.6:  The SSSI processor code is updated using Silicon Labs IDE software. 

 

 

 

  



206 
 

References 

 

1. T. Hirschfeld, Anal. Chem.1980, 52, 297A-303A. 

2. Sweedler, J.V. Anal. Bioanal. Chem. 2002, 373, 321–322.   

3. Ian D. Wilson, Udo A.Th. Brinkman, Trends in Analytical Chemistry, 2007, 

26(9), 847-854. 

4. Su May Hsu, Hsiao-hua K. Burke, Lincoln Laboratory Journal, 2003, 14(1), 145-

159. 

5. Lisa A. Cassis et al., Proc. SPIE-Int. Soc. Opt. Eng. 2004, 5329, 239-253. 

6. DARPA Defense Sciences Office, 

http://www.darpa.mil/dso/thrusts/math/appliedcompmath/isp/index.htm. Checked 

9/26/2009 

7. “Pattern recognition”, http://dictionary.oed.com. Checked 9/26/2009 

8. Food and Drug Administration, 

http://www.fda.gov/AboutFDA/CentersOffices/CDER/ucm088828.htm. Checked 

10/2/2009 

9. Hurricane Hunters Association, http://www.hurricanehunters.com/. Checked 

9/26/2009. 

10. D. Scott. Multivariate Density Estimation: Theory, Practice, and Visualization. 

Wiley, New York, 1992. 

11. S.J. Raudys and V. Pikelis, IEEE Trans. Pattern Analysis and Machine 

Intelligence, 1980, 2, 243-251. 

12. S.J. Raudys and A.K. Jain, IEEE Trans. Pattern Analysis and Machine 

Intelligence, 1991, 13(3), 252-264. 

http://www.darpa.mil/dso/thrusts/math/appliedcompmath/isp/index.htm
http://www.fda.gov/AboutFDA/CentersOffices/CDER/ucm088828.htm
http://www.hurricanehunters.com/


207 
 

13. Anil K. Jain et al. IEE Transactions on Pattern Analysis and Machine 

Intelligence, 2000, 22(1), 4-37. 

14. Edward Jackson, A Users Guide to Principal Components, John Wiley & Sons, 

New York, 2003 

15. Miller, James N., Miller, Jane C., Statistics and Chemometrics for Analytical 

Chemistry 4th ed., Person Education Limited. 2000, 217-221. 

16. Trevor Hastie, et al. The Elements of Statistical Learning: Data Mining, 

Inference, and Prediction, 2
nd

 Ed.  Springer, New York, 2009. 

17. David M. Haaland, Edward V. Thomas, Anal. Chem., 1988, 60(11), 1193–1202. 

18. Tristrom Cooke, IEEE Transactions on Pattern Analysis and Machine 

Intelligence, 2002, 24(2), 268-273. 

19. Food and Drug Administration, 

http://www.fda.gov/bbs/topics/NEWS/2006/NEW01507.html. Checked 9/3/2007. 

20. Sharaf, M. A.; Illman, D. L.; Kowalski, B. R., Chemometrics. Wiley: New York, 

1986. 

21. Kowalski, B. R., Chemometrics: Mathematics and Statistics in Chemistry. 

Springer: New York, 2001.  

22. Brereton, R. G., Chemometrics: Data Analysis for the Laboratory and Chemical 

Plant. John Wiley & Sons, Inc.: Chichester, UK, 2003. 

23. Daniel P. Berrar, Werner Dubitzky, Martin Granzow, A Practical Approach to 

Microarray Data Analysis, Kluwer Academic Publishers, MA, 2003. 

24. Richard Hill, Elementary Linear Algebra with Applications, 3
rd

 ED. Thomson, 

New York, 1996.    

http://www.fda.gov/bbs/topics/NEWS/2006/NEW01507.html


208 
 

25. Lodder, R. A.; Selby, M.; Hieftje, G. A., Anal Chem 1987, 59, (15), 1921-1930. 

26. Lodder, R. A.; Hieftje, G. A., Applied Spectroscopy 1988, 42, (8), 1351-1365. 

27. Lodder, R. A.; Hieftje, G. A., Spectroscopy 1988, 42, (8), 1500-1512. 

28. Zou, Y.; Xia, Y.; Jones, A. R.; Lodder, R. A., Analytical Chemistry 1993, 65, (9), 

A434-A439. 

29. Nair, Prakash; Lodder, Robert A., Applied Spectroscopy 1993, 47(3), 287-291.  

30. Efron, B., Journal of the American Statistical Association 2000, 95(452), 1293-

1296. 

31. Efron, B., Journal of the American Statistical Association 1987, 82(397), 171-

185.  

32. Diaconis, P.; Efron, B., Scientific American 1983, 248(5), 116-121.  

33. Efron, B.; Gong, G., American Statistician 1983, 37(1), 36-48. 

34. Food and Drug Administration, Guidance for Industry, Process Validation: 

General Principles and Practices, 2008. 

35. ICH, Pharmaceutical Quality System Q10, 

http://www.ich.org/LOB/media/MEDIA3917.pdf. Checked 9/6/2009. 

36. Food and Drug Administration, 

http://www.fda.gov/Safety/Recalls/ucm177321.htm. Checked 9/6/2009. 

37. Wild S, Roglic G, Green A, Sicree R, King H. Diabetes Care, 2004 27, 1047–

1053. 

38. American Diabetes Association, Diabetes Care, 2008 31, 596–615. 

http://www.ich.org/LOB/media/MEDIA3917.pdf
http://www.fda.gov/Safety/Recalls/ucm177321.htm


209 
 

39. Agency for Health and Research Quality, Economic and Health Costs of 

Diabetes, http://www.ahrq.gov/data/hcup/highlight1/high1.htm. Checked 

9/6/2009. 

40. World Health Organization, http://www.who.int/mediacentre/factsheets/fs312/en/. 

Checked 9/6/2009. 

41. UK Prospective Diabetes Study Group, Lancet, 1998, 352, 837–853. 

42. American Diabetes Association, Diabetes Care, 2003, 26, S28 – S32. 

43. Y. Lu, G. V. Levin and T. W. Donner, Diabetes, Obesity and Metabolism, 2008, 

10, 109–134. 

44. Moore MC. Curr Opin Invest Drugs, 2006, 7(10) 924–5.  

45. Sara B. Police1, J. Clay Harris, Robert A. Lodder and Lisa A. Cassis, Obesity, 

2008, doi:10.1038/oby.2008.508. 

46. Spherix Inc., Spherix Incorporated Announces Positive Phase 2 Study Results. 

Press Release June 24, 2009. 

47. Baur, J. A. et al. Nature, 2006, 444, 337–342. 

48. Jang M. et al. Science, 1997, 275, 218–220. 

49. Jang DS. et al. Biochem Pharmacol, 1999, 57, 705–712. 

50. Rotondo S. et al. Br J Pharmacol , 1998, 123, 1691–1699. 

51. Bertelli A.A. et al. Int J Tissue React, 1995, 17, 1–3. 

52. Zang, M. et al. Diabetes, 2006, 55, 2180–2191. 

53. Hui-Chen Su, Li-Man Hung and Jan-Kan Chen. Am. J. Physiol Endocrinol Metab, 

2006, 290, 1339-1346. 

54. Szkudelski, T.  Life Sciences, 2008, 82, 430–435. 

http://www.ahrq.gov/data/hcup/highlight1/high1.htm
http://www.who.int/mediacentre/factsheets/fs312/en/


210 
 

55. L. Pari, M.A. Satheesh  Life Sciences, 2006,  79, 641–645. 

56. M. Manickam et al.  J. Nat. Prod. 1997, 60, 609-610. 

57. Buice Jr., R.G.; Pinkston, P.; Lodder, RA. App. Spec. 1994, 48(4), 517-524. 

58. Medendorp, J.P.; Lodder, R.A. AAPS PharmSciTech. 2006, 7(1), Article 25. 

59. Hannel, T.; Link,D.; Lodder, R. J. Pharm Innov. 2008, 3 (3), 152-160. 

60. Martin, L.; Poret, J.; Danon, A.; Rosen, M. Mat. Sci. Eng. 1998, A252, 27-35. 

61. Bolotnikov, M.; Neruchev, Y. J. Chem. Eng. Data. 2003, 48, 411-415. 

62. Medendorp, J.P.; Buice Jr., R.G.; Lodder, R.A. AAPSPharmSciTech.2006, 7(3), 

Article 59. 

63. Medendorp J., Lodder, R.  J. Chemometrics 2005; 19: 533–542 

64. O. Soyemi, et al.  Anal. Chem. 2001, 73, 1069-1079.  

65. Olusola O. et al. Applied Spectroscopy. 2002, 56(4). 

66. Bin Dai, et al. Pharmaceutical Research, 2007, 24(8), 1441-1449. 

67. Cassia, L.A.; Lodder, R. A., Analytical Chemistry, 1993, 65, (9), 1247-1256. 

68. Substance Abuse and Mental Health Services Administration,  

http://www.drugabusestatistics.samhsa.gov/NSDUH/2k6NSDUH/2k6results.cfm#

Ch3. Checked 2/29/2008. 

69. Alcohol Epidemiologic Data System. Yi, H., Chen, C.M., and Williams, G.D. 

Surveillance Report #76: Trends in Alcohol-Related Fatal Traffic Crashes, United 

States, 1982–2004. Bethesda, MD: National Institute on Alcohol Abuse and 

Alcoholism, Division of Epidemiology and Prevention Research (August 2006), 

http://www.niaaa.nih.gov/Resources/DatabaseResources/QuickFacts/TrafficCrash

es/crash01.htm.  Checked 2/29/2008. 

http://www.drugabusestatistics.samhsa.gov/NSDUH/2k6NSDUH/2k6results.cfm#Ch3
http://www.drugabusestatistics.samhsa.gov/NSDUH/2k6NSDUH/2k6results.cfm#Ch3
http://www.niaaa.nih.gov/Resources/DatabaseResources/QuickFacts/TrafficCrashes/crash01.htm
http://www.niaaa.nih.gov/Resources/DatabaseResources/QuickFacts/TrafficCrashes/crash01.htm


211 
 

70. NIH Publication No. 07-5010, 

http://www.collegedrinkingprevention.gov/1College_Bulletin-508_361C4E.pdf, 

Checked 2/29/2008. 

71. NIH, http://pubs.niaaa.nih.gov/publications/economic-2000/index.htm#updated. 

Checked 2/29/2008. 

72. Substance Abuse and Mental Health Services Administration, 

http://www.oas.samhsa.gov/2k5/alcTX/alcTX.htm.  Checked 2/29/2008.  

73. AW Jones, et.al. Clinical Chemistry, 1992, 38, 743-747. 

74. Rouen, David; Dolan, Kate. A Review of Drug Detection Testing and an 

Examination of Urine, Hair, Saliva and Sweat. National Drug and Alcohol 

Research Centre. ISBN 0-7334-1790-6, 2001. 

75. Katz, N. Fanciullo, GJ. Clin. J. Pain., 2002, 18(4), s76-82.   

76. Hlastala, M.  J. of Appl. Physiol., 1998, 84, 402-408. 

77. R. J. Dempsey, D. G. Davis, R. G. Buice, Jr., R. A. Lodder; Appl. 

Spectrosc.,1996, 50(2), 18A-34A. 

78. J. K. Drennen and R. A. Lodder. J. Pharm. Sci. 1990, 79, 622–627. 

79. A. S. El-Hagrasy, et al., J. Pharm. Sci. 2001, 90, 1298–1307. 

80. A. Urbas, M. W. Manning, A. Daugherty, L. A. Cassis, and R. A. Lodder. Anal. 

Chem., 2003, 75, 3318–3323. 

81. T. D. Ridder, S. P. Hendee, and C. D. Brown. Appl. Spectrosc., 2005, 59, 181–

189. 

82. J. C. Soto, C. P. Meza, W. Caraballo, C. Conde, T. Li, K. R. Morris, and R. J. 

Romanach. Journal of Process Analytical Technology, 2005, 2(5), 8–14. 

http://www.collegedrinkingprevention.gov/1College_Bulletin-508_361C4E.pdf
http://pubs.niaaa.nih.gov/publications/economic-2000/index.htm#updated
http://www.oas.samhsa.gov/2k5/alcTX/alcTX.htm


212 
 

83. G Ingram, N Munro; Br. J. Gen. Pract., 2005, 55(516), 501–502. 

84. Stephen F. Malin, Timothy L. Ruchti, Thomas B. Blank, Suresh N. Thennadil and 

Stephen L. Monfre, Clinical Chemistry, 1999, 45, 1651-1658. 

85. MR Robinson, RP Eaton, DM Haaland, GW Koepp, EV Thomas, BR Stallard and 

PL Robinson, Clinical Chemistry, 1992, 38, 1618-1622. 

86. Robbe C. Lyon, David S. Lester, E. Neil Lewis, Eunah Lee, Lawrence X. Yu, 

Everett H. Jefferson
 
and Ajaz S. Hussain,

 
AAPS PharmSciTech, 2002, 3(3) article 

17. 

87. Burger J.; Geladi P., J. Chemometrics, 2005, 19, 355–363. 

88. Lisa A Cassis, Aaron Urbas, Robert A Lodder; Analytical and Bioanalytical 

Chemistry, Trends, 2004,  DOI: 10.1007/s00216-004-2979-1 

89. H Hollien, G DeJong, C. A.  Martin, R. Schwartz, K. Liljegren; J. Acoust. Soc. 

Am., 2001, 110(6), 3198-3206. 

90. David A. Sousa, How the Brain Learns to Read, Corwin Press, 2005. 

91. J. C. Hill, G.Toffolon, J. Stud. Alcohol, 1990, 51, 108–113. 

92. Isaksson T, Kowalski B., Appl. Spectrosc. 1993, 47(6), 702-709. 

93. T F. Babor, J C. Higgins-Biddle, J B. Saunders, M G. Monteiro, The Alcohol Use 

Disorders Identification Test 2
nd

 ED. World Health Organization, 2001 

94. Widmark, E.M.P. Die theoretischen Grundlagen und die praktische 

verwendbarkeit der gerichtlich-medizinischen alkoholbestimmung(The theoretical 

bases and the practical usability of the judicial-medical alcohol regulation). 

Berlin; Urban & Schwarzenburg; 1932). 

95. Thomas, E. V.; Haaland, A. C. Anal. Chem., 1990, 62, 1091-1099. 



213 
 

96. Beebe, K. R.; Kowalski, B. R. Anal. Chem., 1987, 59, 1007A-1017A. 

97. Pratt, James. Digital Image Processing. 4
th

 Ed. ISBN 978-0-471-76777-0, John 

Wiley & Sons, 2007. 

98. Adobe, 

http://kb.adobe.com/selfservice/viewContent.do?externalId=332261&sliceId=1. 

Checked 11/2/2008. 

99. Hannel T, Lodder R.A., ASRG Technical report, 2009. 

100. Cassis, L. A.; Lodder, R. A., Near-IR imaging of atheromas in living arterial 

tissue. Anal Chem 1993, 65, (9), 1247-56.  

101. Dempsey, R. J.; Cassis, L. A.; Davis, D. G.; Lodder, R. A., Near-infrared imaging 

and spectroscopy in stroke research: lipoprotein distribution and disease. Ann N Y 

Acad. Sci. 1997, 820, 149-69.  

102. Moreno, P. R.; Lodder, R. A.; Purushothaman, K. R.; Charash, W. E.; O'Connor, 

W. N.; Muller, J. E., Circulation 2002, 105, (8), 923-927.   

103. F. G. Haibach, A. E. Greer, M. V. Schiza, R. J. Priore, O. O. Soysmi, and M. L. 

Myrick. Applied optics, 2003, 42, 1833-1838. 

104. F. G. Haibachand M. L. Myrick. Applied optics, 2004, 43: 2130-2140. 

105. M. L. Myrick, O. Soyemi, J. Karunamuni, D. Eastwood, H. Li, L. Zhang, A. E., 

Greer, and P. Gemperline. Vibrational Spectroscopy, 2002, 28, 73-8. 

106. M. L. Myrick, O. Soyemi, H. Li, L. Zhang, and D. Eastwood. Fresenius' Journal 

of Analytical Chemistry, 2001, 369: 351-355. 

http://kb.adobe.com/selfservice/viewContent.do?externalId=332261&sliceId=1


214 
 

107. M. L. Myrick, O. O. Soyemi, F. Haibach, L. Zhang, A. Greer, H. Li, R. Priore, M. 

V. Schiza, and J. R. Farr. Proceedings of SPIE-The International Society for 

Optical Engineering, 2002, 4577, 148-157. 

108. M. L. Myrick, O. O. Soyemi, M. V. Schiza, J. R. Farr, F. Haibach, A. Greer, H. 

Li, and R. Priore. Proceedings of SPIE-The International Society for Optical 

Engineering, 2002, 4574, 208-215. 

109. O. O. Soyemi, F. G. Haibach, P. J. Gemperline, and M. L. Myrick. Applied 

Spectroscopy, 2002, 56, 477-487. 

110. O. O. Soyemi, F. G. Haibach, P. J. Gemperline, and M. L. Myrick. Applied 

Optics, 2002, 41, 1936-1941. 

111. M.P. Nelson, J.F. Aust, J.A. Dobrowolski, P.G. Verly, M.L. Myrick, Anal. Chem., 

1998, 70, 73-82. 

112. L. A. Cassis, A. Urbas, and R. A. Lodder. Anal. Bioanal. Chem. 2005, 382: 868–

872. 

113. NASA, http://astrobiology.nasa.gov/about-astrobiology/, 10/2/2009. 

114. David J. Des Marais, et. al., Astrobiology, 2008, 8(4), 715-730. 

115. Klein H.P., Icarus, 1978, 34, 666-674. 

116. Bell J.F., J. Geophys. Res., 2000, 105, 1721–1756.5.  

117. Sizemore H.G., et al., Icarus, 2009, 199, 303-309. 

118. A. Deanne Rogers, Joshua L. Bandfield, Icarus, 2009, 203, 437-453.  

119. C. P. McKay, Origins Life Evol. Biosphere, 1997, 27, 263-289. 

120. Victor R. Baker, Nature 2001, 412, 228-236. 

http://astrobiology.nasa.gov/about-astrobiology/


215 
 

121. R.J. Dempsey, D.G. Davis, R.G. Buice, Jr., R.A. Lodder, Appl. Spectrosc., 1996, 

50(2), 18A-34A.  

122. Urbas A., et al, Anal. Chem. 2003, 75, 3650-3655.  

123. Carney J.M, et al., Anal. Chem. 1993, 65, 1305-1313. 

124. Edwards HGM, Wynn-Williams DD, Villar SEJ, J. Raman Spectroscopy, 2004 

35(6), 470–474. 

125. Villar SEJ, Edwards HGM, Cockell CS, Analyst, 2005, 130(2), 156–162. 

126. Villar SEJ, Edwards HGM , Anal. Bioana.l Chem., 2006, 384, 100–113.  

127. Organic Materials Review Institute, http://www.omri.org/coppersulfate.pdf, 

9/17/2009 

128. Stehouwer, R., Roth, G., Field Crop News, 2004, 4(1). 

129. Kamrin, M. A. Pesticide Profiles - Toxicity Environmental Impact, and Fate. 

CRC- Lewis Publishers, Boca Raton FL. 1997, 421-578. 

130. E. Hand, Nature News. 2008, 10, 16. 

131. M. H. Hecht, et.al. Science, 2009, 325 (5936) 64-67. 

132. Noriko Takamura, Fumie Kasai & Makoto M. Watanabe; Journal of Applied 

Phycology, 1989, 1, 39-52. 

133. J. D. Coates, L. A. Achenbach, Nat. Rev. Microbiol. 2004, 2, 569-580. 

134. Treado, P. J.; Morris, M. D. Anal Chem 1989; 61, 723A-734A. 

135. Dieter, W., Lodder, R., Lumpp, J., IEEEAC paper #1439, 2004, 3. 

136. T. Hannel, R. Lodder, Society of Amateur Radio Astronomers, Conference 

Proceedings, 2008, 95-104. 

http://www.omri.org/coppersulfate.pdf


216 
 

137. Green, R. O., Conel, J. E., and Chrien, T. G.,  Airborne Visible-Infrared Imaging 

Spectrometer (AVIRIS): Sensor System, In-flight Calibration and Reflection 

Calculation, Jet Propulsion Laboratory. ISSSR'92 Proceedings, 1992, 1, pp198. 

138. Clark, R. N., G. A. Swayze, K. E. Livo, R. F. Kokaly, S. J. Sutley, J. B. Dalton, R. 

R. McDougal, and C. A. Gent. J. Geophys. Res., 2003, 108(E12), 5131, 

doi:10.1029/2002JE001847. 

139. Andrew Lawler, Science, 2009, 324. (5923), 34 – 35. 

140. Roger C. Wiens, Sylvestre Maurice, CHEMCAM  Laser-Induced Remote Sensing 

for Chemistry and Micro-Imaging, 

http://libs.lanl.gov/CHEMCAM_1_pg_web.pdf checked August 20, 2009. 

141. Harald Furnes, Neil R. Banerjee, Karlis Muehlenbachs, Hubert Staudigel, 

Maarten de Wit, Early Life Recorded in Archean Pillow Lavas, Science, 2004, 

304 (5670), 578-581. 

142. Gernot Arp, Andreas Reimer, Joachim Reitner. Science 2001, 292, 1701-1704. 

143. D.C. Catling, Nature, 2004, 429, 707-708. 

144. Olson JM. Photosyn. Res. 2006, 88(2), 109–17. 

145. Robert A. Ryerson, Andrew N. Rencz, Manual of Remote Sensing: Remote 

sensing for the earth sciences, John Wiley & Sons Inc. 1999. 

146. McFadden L.A. et al., Meteorites and Planetary Science, 2001, 36, 1711-1726 

147.  R.A. Viscarra Rossel et al.  Geoderma, 2006, 131, 59–75. 

148.  Junfeng, J. I. et al. Clays and Clay Minerals, 2002, 50(2), 208–216. 

149. Lucey, P. G. et al. J. Geophys Res, 1986, 91, D344-D354 

http://libs.lanl.gov/CHEMCAM_1_pg_web.pdf


217 
 

150. Douglas, C. C.; et.al, In ICCS, Part III, LNCS 3993; V.NAlexandrov et al. (Eds.); 

Springer-Verlag: Berlin Heidelberg, 2006; pp 393-400. 

151. Sergios Theodoridis, Konstantinos Koutroumbas, Pattern Recognition, 3
rd

 ED., 

Academic Press. 2006, 290 

152. Hannel, T.S.; Sridhar, S.M.; Lodder, R.A. Complementary Integrated Sensing and 

Processing Solid State Spectroscopy (CRISP-SSSI) for Rapid Copper Sulfate 

Detection. In preparation for submission to Applied Spectroscopy. 

153. USGS, http://pubs.usgs.gov/of/2003/ofr-03-395/datatable.html. Checked 9/1/2008. 

154. John R. Rice, Contact in Context, 2001. See also: 

http://cic.setileague.org/cic/v1i1/etcomeandgone.htm. 

155. Sabine C. Bauer, Stargate SG-1: Trial by Fire: SG1-1, Fandemonium Books; Mti 

edition 2007. 

156. SETI, http://www.setileague.org/general/drake.htm. Checked 1/2/2008. 

157. Allen Tough, Contact in Context, 2002. 

158. Stephen Webb, If the Universe Is Teeming with Aliens... Where Is Everybody? 

Fifty Solutions to Fermi's Paradox and the Problem of Extraterrestrial Life, 

Springer; 1st ed., 2002 

 

159. NASA, http://heasarc.gsfc.nasa.gov/docs/cosmic/nearest_star.html. Checked 

3/4/2008 

160. General Atomics, Nuclear Pulse Space Vehicle Study, Volume I -- Summary, 

September 19, 1964. 

http://pubs.usgs.gov/of/2003/ofr-03-395/datatable.html
http://cic.setileague.org/cic/v1i1/etcomeandgone.htm
http://heasarc.gsfc.nasa.gov/docs/cosmic/nearest_star.html


218 
 

161. Kirby J. Meyer, http://www.engr.psu.edu/antimatter/documents.html. Checked 

3/4/2008. 

162. Rutherglen; C, Burke; P, Nano Lett., 7, (11), 2007) (Appenzeller, J.; Frank, D. J. 

Appl. Phys. Lett. 2004, 84(10), 1771-1773. 

163. Rosenblatt, S.; Lin, H.; Sazonova, V.; Tiwari, S.; McEuen, P. Appl. Phys. Lett. 

2005, 87, 15311.        

164. F. Garcia-Pichel and R. W. Castenholz, Occurrence of UV-Absorbing, 

Mycosporine-Like Compounds among Cyanobacterial Isolates and an Estimate of 

Their Screening Capacity, Appl. Environ. Microbiol., 1993, 59(1), 163-169. 

165. Dieter, W., Lodder, R., Lumpp, J., IEEEAC paper #1439, Version 3, December 

10, 2004 

166. Buice R, Pinkston P, Lodder R. Appl Spectrosc. 1994, 48, 517-524. 

167. Medendorp J, Lodder RA. Applications of Integrated Sensing and Processing 

(ISP) in Acoustic and Optical Sceptroscopy. Pittsburgh Conference on Analytical 

Chemistry and Applied Spectroscopy; February 27-March 4, 2005; Orlando, FL 

168. Sandia Corporation, http://www.sandia.gov/mstc/. Checked 3/3/2008 

169. Keith Wilson, Michael Enoch, IEEE Communications Magazine, August 2000 

170. Kleine-Ostmann, T., Pierz, K., Hein, G., Dawson, P., and Koch, M. Electron. Lett. 

2004, 40, 124–126. 

171. Q. Chen, M. Tani, Zhiping Jiang, and X.-C. Zhang.  J. Opt. Soc. Am. B. 

2001,18(6), 823-831. 

172. Evan Reed. Physical Review Letters, January 11, 2006 (abstract) 

(http://link.aps.org/abstract/PRL/v96/e013904) 

http://www.engr.psu.edu/antimatter/documents.html
http://www.sandia.gov/mstc/
http://link.aps.org/abstract/PRL/v96/e013904


219 
 

173. NASA, http://nmp.jpl.nasa.gov/, 2008 

 

  



220 
 

Vita 

 

Thaddaeus Hannel 

Born: June 29, 1975 

Louisville, KY 

 

EDUCATION 

 Indiana University Southeast, Bachelor of Science in Chemistry, Minor in 

Mathematics, May 2005 

PROFESSIONAL 

 Teaching Assistant, University of Kentucky Department of Chemistry, 2008-2009 

 Research Assistant, University of Kentucky Department of Chemistry, 2007-2008 

 Teaching Assistant, University of Kentucky Department of Chemistry, 2006-2007 

HONORS 

 

 First place in the Ohio Valley Affiliates of Life Sciences (OVALS) poster 

competition 2009 

 

PUBLICATIONS 

 

Thaddaeus Hannel, Robert A. Lodder, “BEST-SCARS for Process Validation of 

Experimental Formulations of a Novel Diabetes Drug”, 2009. Submitted to JPI 

 

Thaddaeus Hannel, Robert A. Lodder. "Bootstrap Error‐Adjusted Single‐Sample 

Technique Complementary Randomized Integrated Sensing and Processing 

(BEST‐CRISP) for Classification of Common Martian Minerals and Identification of 

False Samples" 2009. In preparation for submission to Anal. Chem.  

 

Thaddaeus Hannel, David Link, Robert A. Lodder, "Surreptitious Remote Sensing of 

Blood Alcohol Content: Near-Infrared Spectroscopic (NIRS) Imaging and Laser Speech 

Detection", 2009. Submitted to Anal.Chem. 

 

Thaddaeus Hannel, Subash Marri Sridhar, Robert A. Lodder, “Complementary Integrated 

Sensing and Processing Solid State Spectroscopy (CRISP-SSSI) for Rapid Copper 

Sulfate Detection” 2009. Submitted to Applied Spectroscopy. 

 

Link, D., Hannel, T., Lodder, R.A. “ARS with BENDS to Quantify D-tagatose 

Concentrations in 

Resveratrol Tablets”, 2009. Submitted to AAPS PharmaSciTech 



221 
 

 

Link, D; Hannel, T; Lodder, R.A. “Bootstrap Enhanced N-dimensional Deformation of 

Space (BENDS) for Calibration of Nonlinear Responses in Acoustic Resonance 

Spectroscopy (ARS)”, 2009, Submitted to Algorithms. 

 

Craig C. Douglas, Gundolf Haase,Thad Hannel,  David Link, and Robert A. Lodder, 

Deng Li. “A Prototype for Detecting Defective Pills during Manufacturing”, 

International Symposium on Distributed Computing and Applications to Business, 

Engineering and Science,2009 

 

Thaddaeus Hannel, Robert Lodder, “Size Does Matter: Solid State Spectral Imager 

(SSSI) on a Chip and the Search for Extraterrestrial Life”, The Society of Amateur Radio 

Astronomers, 2008 Conference Proceedings, 95-104, 2008. 

 

Thaddaeus Hannel, David Link, Robert Lodder, “Integrated Sensing and Processing - 

Acoustic Resonance Spectrometry (ISP-ARS) in Differentiating D-Tagatose and Other 

Toll Manufactured Drugs”, Journal of Pharmaceutical Innovation, 3 (3), 152-160, 2008. 

DOI 10.1007/s12247-008-9038-y 

 

C. C. Douglas, T. Hannel, D. J. Link, R. A. Lodder. Incorrect or Defective Pill Detection 

Using a Dynamic Data-Driven Application System Paradigm, Workshop of Cyber 

Physical Systems. 2008. 

 

Thaddaeus S. Hannel, Emmanuel O. Out, Mark P. Jensen, “Thermochemistry of the 

Extraction of Bismuth(III) with Bis(2-ethylhexyl) Phosphoric and 2-

Ethyhexylphenylphosphonic Acids”, Solvent Extraction and Ion Exchange, 25(2): 241-

256, 2007. DOI: 10.1080/07366290601169493 

 

Presentations 

 

T. Hannel, R. Lodder. "Bootstrap Error-adjusted Single-sample Technique Integrated 

Sensing and Processing (BEST-ISP) for False Sample Identification" The Federation of 

Analytical Chemistry and Spectroscopy Societies: FACSS, 22 Oct. 2009, Louisville, KY.  

 

T. Hannel, D. Link, R. Lodder."Naturlose: A New Diabetes and Obesity Control Drug", 

Ohio Valley Affiliates for Life Sciences (OVALS) conference. 2-3 April 2009, Dayton, 

OH.  

 

T. Hannel, D. Link, R. Lodder. “Integrated Sensing and Processing Acoustic Resonance 

Spectroscopy (ISP-ARS) versus Near-Infrared Spectroscopy (NIRS) for the 

Quantification of D-Tagatose in Resveratrol Tablets”, 60th Pittsburgh Conference on 

Analytical and Applied Spectroscopy (Pittcon). 8-13 March 2009, Chicago, IL.  

 

T. Hannel, R. Lodder. “Solid State Spectral Imager (SSSI) for the Detection of Dissolved 

Solids in Diverse Aqueous Environments”. 60th Pittsburgh Conference on Analytical and 

Applied Spectroscopy (Pittcon). 8-13 March 2009, Chicago, IL.  



222 
 

 

T. Hannel, D. Link, R. Lodder. “Acoustic Resonance Spectroscopy for the Quantitative 

Determination of D-Tagatose in Resveratrol Tablets” AAPS Annual Meeting and 

Exposition.  19 November 2008, Atlanta, GA.  

 

 

T. Hannel, D. Link, R. Lodder. "Surreptitious Remote Sensing of Blood Alcohol Content: 

Molecular Factor Computing (MFC) Near-Infrared Spectroscopic (NIRS) Imaging and 

Laser Speech Detection" The Federation of Analytical Chemistry and Spectroscopy 

Societies: FACSS, 30 Sept. 2008, Reno, NV.  

 

Thaddaeus Hannel, Robert Lodder, “Size Does Matter: Solid State Spectral Imager 

(SSSI) on a Chip and the Search for Extraterrestrial Life”. The Society of Amateur Radio 

Astronomers, 1 July 2008, Green Bank, WV.  

 

T. Hannel, D. Link, R. Lodder. "Surreptitious Sensing of Blood Alcohol Content: Remote 

Near-Infrared Spectroscopic (NIRS) Imaging and Laser Speech Detection", Clinical and 

Translational Science Spring Conference (CCTS) 3 June 2008, Lexington, KY.  

 

Thaddaeus Hannel, David Link and Robert A. Lodder, “Surreptitious Sensing of Blood 

Alcohol Content: Remote Near-Infrared Spectroscopic (NIRS) Imaging and Laser Speech 

Detection”, 4
th

 Kentucky Innovation and Enterprise Conference (KIEC), 17 April 2008, 

Lexington, KY.  

 

Thaddaeus Hannel, David Link, Robert Lodder; Integrated Sensing and Processing-

Acoustic Resonance Spectroscopy (ISP-ARS) in Tablet Identification" Ohio Valley 

Affiliates for Life Sciences (OVALS). 14 April 2008, Louisville, KY.  

 

Thaddaeus Hannel, David Link, and Robert A. Lodder, Integrated Sensing and 

Processing-Acoustic Resonance Spectrometry (ISP-ARS) in Differentiating D-Tagatose 

and other Toll Manufactured Drugs. 34th Annual Naff Symposium on Chemistry and 

Molecular Biology, 4 April, 2008, Lexington, KY.  

 

M. Kokorowski, C. Neish, J. Benson, S. Desiano, C. Gifford, T. Hannel, W. Huang, B. 

Johns, K. Lichtenberg, R. Macke, G. Minelli, A. Poppe, B. Schmidt, S. Taniguchi, D. 

Thompson, and T. Balint (2007), VEIL: A New Frontiers Class Mission Concept for 

Exploring Venus, American Geophysical Union (AGU) Fall Meeting, Poster P53A-0993, 

December 14, 2007. 

 

C. Neish, J. Benson, S. Desiano, C. Gifford, T. Hannel, W. Huang, B. Johns, M. 

Kokorowski, K. Lichtenberg, R. Macke, G, Minelli, A.Poppe, B. Schmidt,S. Taniguchi, 

D. Thompson, T.Balint. VEIL (Venus Exploration In-Situ Landers): A New Frontiers 

Class Mission Design Concept. 39th Meeting of the AAS Division of Planetary Sciences, 

Orlando, FL., 7-12 October 2007 

 



223 
 

C. Neish, J. Benson, S. Desiano, C. Gifford, T. Hannel, W. Huang, B. Johns, M. 

Kokorowski, K. Lichtenberg, R. Macke, G, Minelli, A.Poppe, B. Schmidt,S. Taniguchi, 

D. Thompson, T.Balint. Venus In-Situ Mission , NASA Planetary Science Summer 

School, August 6 – 10, 2007, Pasadina CA. 

 

Thaddaeus S. Hannel, Emmanuel O. Otu, Thermodynamics of the Extraction of Bismuth 

with Organophosphorus Acids, Presented at the19
th

 National Conference on 

Undergraduate Research, April 21-23, 2005, Lexington, Virginia 

 

Thaddaeus S. Hannel, Emmanuel O. Otu. EFFECT OF TEMPERATURE ON THE 

EXTRACTION OF BISMUTH WITH ORGANOPHOSPHORUS ACIDS, Presented at 

the 10
th 

Annual Indiana University Undergraduate Research Conference Friday, February 

11, 2005, Indianapolis. IN. 
 

 


	PATTERN RECOGNITION INTEGRATED SENSING METHODOLOGIES (PRISMS) IN PHARMACEUTICAL PROCESS VALIDATION, REMOTE SENSING AND ASTROBIOLOGY
	Recommended Citation

	Title Page
	Abstract of Dissertation
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Files
	Section I: Background
	Chapter One- Pattern Recognition, Integrated Sensing and Processing and Chemometrics
	Introduction
	Pattern Recognition
	Integrated Sensing and Processing
	Chemometrics
	Chapter One Figures


	Section II: Pharmaceutical Process Validation
	Chapter Two-BEST-SCARS for Process Validation of Experimental Formulations of a Novel Diabetes Drug
	Introduction
	Theory
	Materials and Methods
	Results and Discussion
	Conclusion
	Chapter Two Tables
	Chapter Two Figures


	Section III: Remote Alcohol Sensing
	Chapter Three- Surreptitious Remote Sensing of Blood Alcohol Concentration: Integrated Near-Infrared Spectral Imaging and Laser Speech Detection
	Introduction
	Materials and Methods
	Results and Discussion
	Conclusion
	Chapter Three Figures

	Chapter Four-Bootstrap Error-adjusted Single-sample Technique Molecular Factor Computing (BEST-MFC) Near Infrared Hyperspectral Imaging: Classification of False Samples
	Introduction
	Materials and Methods
	Results and Discussion
	Conclusion
	Chapter Four Tables
	Chapter Four Figures


	Section IV: Astrobiology
	Chapter 5- Complementary Integrated Sensing and Processing Solid State Spectroscopy (CRISP-SSSI) for Rapid Detection of Copper Sulfate
	Introduction
	Theory
	Materials and Methods
	Results and Discussion
	Conclusion
	Chapter Five Tables
	Chapter Five Figures

	Chapter Six- BEST‐CRISP for Classification of Common Martian Minerals and Identification of False Samples
	Introduction
	Theory
	Materials and Methods
	Results and Discussion
	Conclusion
	Chapter Six Tables
	Chapter Six Figures

	Chapter Seven- Size Does Matter: Solid State Spectral Imager (SSSI) on a Chip and the Search for Extraterrestrial Life
	Introduction
	Micro- and Nanotechnologies
	Communicating with the SSSI
	NASA and Microtechnology
	Conclusion
	Chapter Seven Figures


	Section V: Conclusion of Dissertation
	Appendix A:  MatLab Code
	A.1 BEST-ISP Code
	A.2 SSSI MatLab Code

	Appendix B:  Solid State Spectral Imager User Manual
	B.1 Instillation
	B.2 Operation
	B.3 Troubleshooting
	Appendix B Figures

	References
	Vita

