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ABSTRACT OF DISSERTATION

MINIMALITY AND DUALITY OF TAIL-BITING TRELLISES FOR LINEAR
CODES

Codes can be represented by edge-labeled directed graphs called trellises, which are
used in decoding with the Viterbi algorithm. We will first examine the well-known
product construction for trellises and present an algorithm for recovering the factors
of a given trellis. To maximize efficiency, trellises that are minimal in a certain sense
are desired. It was shown by Koetter and Vardy that one can produce all minimal
tail-biting trellises for a code by looking at a special set of generators for a code.
These generators along with a set of spans comprise what is called a characteristic
pair, and we will discuss how to determine the number of these pairs for a given
code. Finally, we will look at trellis dualization, in which a trellis for a code is used
to produce a trellis representing the dual code. The first method we discuss comes
naturally with the known BCJR construction. The second, introduced by Forney, is
a very general procedure that works for many different types of graphs and is based
on dualizing the edge set in a natural way. We call this construction the local dual,
and we show the necessary conditions needed for these two different procedures to
result in the same dual trellis.

KEYWORDS: linear block codes, tail-biting trellises, characteristic generators, du-
alization, BCJR-construction.
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This is dedicated to the RandomMatrix() command in Maple, a source of
countless useful examples.
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Chapter 1 Introduction

An important aspect of coding theory lies in finding efficient decoding algorithms.
While there are many algebraic approaches to this matter, much interest has arisen in
the area of search decoding algorithms based on graphical representations for codes,
called trellises. These are graphs where the vertices are sorted along a time axis and
the codewords appear as paths through the graph. Trellis representations and trellis
decoding algorithms were widely used for convolutional codes, but it wasn’t until a
paper by Bahl, Cocke, Jelinek, and Raviv in 1974, see [1], that their use spread to
linear block codes. Because the efficiency of such a search algorithm depends on the
complexity of the trellis, constructions that produce trellises that are minimal in a
certain sense are desired. In the case of conventional trellises, it has been shown
that there exists a unique conventional trellis, up to isomorphism, that simultane-
ously minimizes every conceivable complexity measure, see [4], [14], and [13]. Many
constructions for this trellis exist, and Vardy provides a thorough overview of con-
ventional trellises and their minimal constructions in [16].

Recently, tail-biting trellises, which are trellises that have a circular structure,
have gained interest due to the fact that the complexity of a tail-biting trellis for
a code may be lower than that of the minimal conventional trellis; however, the
situation is much more complicated than that of conventional trellises. Most notably,
for a given complexity measure, there may be many non-isomorphic minimal trellises
for a code.

In this thesis, we will study various constructions of tail-biting trellises. Through-
out we will mainly consider simultaneously minimizing the number of vertices at every
time in our trellis. Additionally, we will discuss the relationship between trellises and
the dual of a code.

We begin by considering a method for constructing tail-biting trellises called the
product construction. This construction was introduced in the context of conventional
trellises by Kschischang and Sorokine in [12] and extended to tail-biting trellises by
Koetter and Vardy in [11]. To create a trellis for a given code, we begin with a set
of generators for the code, and then choose a support-containing interval, called a
span, for each of these generators. An elementary trellis is then constructed for each
generator, and the structure of this trellis is completely dependent on the chosen span.
These elementary trellises are then combined using a direct product-like construction
to obtain a trellis for the given code.

The product construction results in trellises that are linear in structure, and in
[10], Koetter and Vardy present the very important result that every trellis with such
a linear structure is in fact a product trellis. This result prompts the question, if
we have a linear trellis, how can we recover the elementary trellis factors used in its
construction? In chapter 4, we show that the spans of the elementary trellis factors
completely determine the structural isomorphism class of a trellis. A similar result
has been derived independently and at the same time by Conti and Boston in [3].
Additionally, the spans of the elementary trellis factors determine the structure of the
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cycles of all of the codewords represented by the trellis. Using this fact, we present
an algorithm that returns the spans of the elementary factors for a given linear trellis
and discuss how one can recover a set of generating codewords for the trellis as well.

Because these generating spans play such a large role in the complexity of a
product trellis, it is natural to turn attention to them in the search for minimal
tail-biting trellises. In [11], Koetter and Vardy show that every code has a set of
shortest spans, which along with corresponding codewords, form what they call a
characteristic pair for a code. They go on to prove that every minimal tail-biting
trellis for a code is a product of elementary trellises based on these generators and
characteristic spans. It is important to note, however, that not every product trellis
based on these generators and spans is minimal. Despite this fact, this class of
trellises, which we refer to as KV-trellises, has many nice properties that we will
investigate in the remainder of the thesis.

While Koetter and Vardy show that the set of characteristic spans for a code is
unique, there may be many different sets of corresponding codewords that we can
take to form a characteristic pair for a code. In Chapter 6, we show that the total
number of characteristic pairs for a code is dependent on the number of containments
between the characteristic spans themselves. This leads to many useful results. For
example, using a lemma by Koetter and Vardy, we prove that a code and its dual
have the same number of characteristic pairs. We also discuss under what condition
a code has a unique characteristic matrix, and show that the class of MDS codes has
this property. Finally, we illustrate that a single characteristic pair may not generate
every minimal tail-biting trellis for a code. We conclude this chapter by showing
that a single characteristic pair will produce every minimal trellis, up to structural
isomorphism. All of this clarifies some subtle inconsistencies contained in [11].

Another construction of tail-biting trellises is provided in [15]. It is an extension of
the well-known BCJR-construction for conventional trellises. We introduce both gen-
eral and span-based versions of the tail-biting BCJR construction, as well as discuss
several important properties of these trellises. For instance, a KV-trellis is isomorphic
to its corresponding span-based BCJR-trellis, see also [8]. This construction is also a
very important tool for trellis dualization in the following chapter.

Next we examine the process of trellis dualization, that is a process by which
a trellis for a code is transformed into a trellis that represents the dual code. We
first present a dualization that comes naturally with the BCJR construction. We
also introduce a procedure we call local dualization, which is a specialization of the
local dualization introduced by Forney in [5] in the case of general normal graphs.
Often these dual trellises possess undesirable properties, and many times these two
dualization procedures result in non-isomorphic trellises. For a reasonably nice class
of trellises, we provide a list of necessary and sufficient conditions for the two du-
alizations being isomorphic. One of these conditions is an easy-to-check criterion in
terms of the primal trellis; the other conditions show in essence that the local dual
behaves well if and only if it is isomorphic to the BCJR-dual. Our examples of local
duals lacking certain basic properties, which first appeared in [7], sparked the interest
of Forney. In a joint collaboration, he and Gluesing-Luerssen studied how intrinsic
graph realization properties behave under local dualization, see [6].

2



We close the thesis by showing that in the case of KV-trellises, not only do these
dualizations lead to isomorphic trellises, but the dual trellis is a KV-trellis for the
dual code. While this is also a consequence of the main result in [7, Chapter IV], we
arrive at this conclusion in a much simpler fashion.

Copyright c© Elizabeth A. Weaver, 2012.
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Chapter 2 Basic Notions

In this section we will introduce the basic definitions and properties for tail-biting
trellises. Throughout, let F = Fq be a finite field.

A tail-biting trellis T = (V,E) of depth n over F is an edge-labeled directed
graph where E is the edge set, and the vertex set V can be decomposed into a
union of n disjoint subsets V = V0 ∪ . . . ∪ Vn−1 such that every edge that begins
at a vertex in Vi ends at a vertex in V(i+1) mod n for i = 0, 1, . . . , n − 1. The edges
are labeled with elements from F, and the edge set E can also be partitioned into
E = E0∪ . . .∪En−1 where Ei contains the edges between vertices in Vi and vertices in
Vi+1. We will denote edges in Ei as triples consisting of the starting vertex, the edge
label, and the ending vertex. Thus, for i = 0, 1, . . . , n − 1 we have Ei := {(v, a, v̂) :
there exists an edge in T from v ∈ Vi to v̂ ∈ Vi+1 with label a} ⊆ Vi× F× Vi+1. We

will identify the time axis I := {0, 1, . . . , n− 1} with Zn. We will often refer to Vi as
the state space of T at time i, and Ei as the transition space at time i.

A cycle in T is a closed path of length n, that is, it begins and ends at the same
vertex in V0 = Vn. When |V0| = 1, we call the trellis T conventional. (We will not
deal with conventional trellises where |V0| > 1 in this thesis.) We say that T is trim
if every vertex in T lies on a cycle, T is edge-reduced if every edge in T is part of a
cycle, and T is reduced if it is both trim and edge-reduced. If any two edges starting
or ending at the same vertex have distinct labels, we say that T is biproper.

We say that T is linear if each state space Vi is a vector space and each transition
space Ei is a subspace of Vi×F×Vi+1. The set S(T ) := {(v0, c0, v1, . . . , vn−1, cn−1, v0) :
(vi, ci, vi+1) ∈ Ei for i ∈ I} is called the label code of T . If T is linear and reduced,
then S(T ) is a subspace of V0 × F × V1 × . . . × Vn−1 × F × V0. The set C(T ) :=
{(c0, c1, . . . , cn−1) : ∃(v0, c0, v1, . . . , vn−1, cn−1, v0) ∈ S(T )} is called the edge-label
code of T . We say that T represents the code C if C(T ) = C. In the case that there
is a bijection between the cycles of T and the codewords in C(T ), we say that T is
one-to-one. The state complexity profile, or SCP, of a linear trellis T is defined
as SCP(T ) = (ξ0, ..., ξn−1) where ξi = dimVi for i = 0, . . . , n− 1. Similarly, the edge
complexity profile, or ECP, of a linear trellis T is ECP(T ) = (ε0, . . . , εn−1) where
εi = dimEi for i = 0, . . . , n− 1.

Two trellises T = (V,E) and T ′ = (V ′, E ′) are isomorphic if there exists a
bijection φ : V → V ′ such that φ(Vi) = V ′i for i ∈ I and if (v, a, u) ∈ Ei then
(φ(v), a, φ(u)) ∈ E ′i for i ∈ I. If T and T ′ are linear, we also require φ|Vi to be
isomorphisms. We say that two trellises T and T ′ are structurally isomorphic,
denoted by ∼=S, if there exists a bijection φ : V → V ′ such that φ(Vi) = V ′i for i ∈ I
and if the number of edges from v ∈ Vi to u ∈ Vi+1 equals the number of edges from
φ(v) ∈ V ′i to φ(u) ∈ V ′i+1.

A trellis T = (V,E) is said to be mergeable if there exist u, v ∈ Vi for some
i ∈ I that can be merged, that is replaced by a single vertex that inherits the edges
incident to both u and v, without changing C(T ). If no vertices in T can be merged,
we say that T is nonmergeable.
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Example 2.1. Throughout the thesis, we will use the convention that when trellises
represent binary codes, we use dashed lines to represent edges with label 0 and solid
edges to represent edges with label 1. Trellis T , shown in Figure 2.1, is reduced,
biproper, and linear. It has an SCP of (1,1,2) and an ECP of (2,2,2) and represents
the code C = {000, 011, 110, 101}. This trellis is mergeable at time i = 2 since merging
the vertices 01 and 10 does not change the trellis code of T . The vertices 00 and 11
in V2 may also be merged. The trellis T ′ shows the original trellis after these merges.
Also note that while the trellis T is one-to-one, the trellis T ′ is not since there are
two cycles that represent the codeword 000.

[T ] [T ′]

Figure 2.1: A mergeable trellis T over F2, and the trellis T ′ obtained after merging.

A trellis T is weakly connected if there exists a path (possibly undirected)
between any two vertices in T . In other words, T is weakly connected if the underlying
undirected graph of T is connected. For tail-biting trellises, the characterization of
weak connectedness in the following proposition is very useful.

Proposition 2.2. For a linear and trim trellis T , the following are equivalent.

(i) T is weakly connected.

(ii) For all i ∈ I, the trellis T has the property that for all v ∈ Vi there exists a path
of length n starting at v and ending at 0 ∈ Vi.

(iii) For some i ∈ I, the trellis T has the property that for all v ∈ Vi there exists a
path of length n starting at v and ending at 0 ∈ Vi.

Proof. “(i) ⇒ (ii)” Suppose that T is weakly connected. Because a tail-biting trellis
is a circular object, we can cyclically shift the trellis without changing the structual
properties. Thus, without loss of generality, we will consider i = 0. Let v ∈ V0. By
assumption, there exists an undirected path from v to 0 ∈ V0. Since T is trim, every
vertex in T lies on a cycle. Therefore, whenever this undirected path wraps around
the trellis at time 0, we may insert a suitable cycle. In this way the undirected path
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from v to 0 can be made to zigzag through the trellis without ever wrapping around
the circular structure of the tail-biting trellis. Then by [10, Lemma 6.8] there exists
a directed path of length n from v to 0 ∈ V0 = Vn. “(ii)⇒ (iii)” is clear. “(iii)⇒ (i)”
As above, without loss of generality, we can assume that T has the property given in
(iii) for i = 0. Thus V0 is a subset of one of the connected components of T . Since
T is trim, every vertex in T lies on a cycle. Since every cycle passes through V0, the
trellis T has one connected component.

While there are many notions of trellis minimality in use, in this thesis we will
focus on the following definition.

Definition 2.3. Let C ⊆ Fn be a linear block code and T = (V,E) be a linear trellis
for C. Then T is called minimal if there exists no linear trellis T ′ = (V ′, E ′) for C
such that |V ′i | ≤ |Vi| for all i ∈ I and |V ′j | < |Vj| for some j ∈ I.

It is well established that for conventional trellises, there is a unique minimal
conventional trellis, up to isomorphism. More specifically a linear and reduced con-
ventional trellis is biproper if and only if it is nonmergeable if and only if it is minimal
(see [16]); however, the situation for tail-biting trellises is more complicated. In [11],
Koetter and Vardy provide the following chain of inclusions

{minimal trellises} ( {nonmergeable trellises} ( {biproper trellises}. (2.1)

Finally, we fix the following notation pertaining to the code under consideration
and its representation. Throughout, let

C = imG = kerH> ⊆ Fn be a k-dimensional code with support I = {0, . . . , n− 1},
(2.2)

where the latter means that for each j ∈ I there exists a codeword (c0, . . . , cn−1) ∈ C
such that cj 6= 0. Here, imM := {αM |α ∈ Fm} and kerM := {α ∈ Fm |αM = 0}
denote the row space and left kernel of the matrix M ∈ Fm×n, respectively. We
assume G ∈ Fr×n, hence rkG = k ≤ r, and will explicitly state when r = k and
thus G is a full row rank encoder matrix. Throughout, H ∈ F(n−k)×n is a full row
rank parity check matrix. Furthermore, we fix the notation

G = (glj) l=1,...,r
j=0,...,n−1

=
(
G>0 . . . G>n−1

)
∈ Fr×n and H> =

 H0
...

Hn−1

 ∈ Fn×(n−k),

(2.3)
where G>j ∈ Fr and H>j ∈ Fn−k are the columns of G and H, respectively. As for
the matrices G and H above, we will use the notation M>

j for the j-th column of
the matrix M and we will employ the (Maple) notation row(M, l) for the l-th row
of M . It will also be convenient to have a notion for the indicator function of a subset
A ⊆ I. Thus, we define IA ∈ Fn as the vector with entries IAj = 1 if j ∈ A and
IAj = 0 otherwise.

Copyright c© Elizabeth A. Weaver, 2012.
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Chapter 3 The Product Construction and Product Trellises

In this chapter we will discuss a method of creating trellises known as the product
construction. This was introduced in the case of conventional trellises in [12] and
extended to tail-biting trellises in [2] and [11]. We will begin by defining elementary
trellises, which represent one-dimensional codes and have a structure based on a
given parameter called a span. We then combine these trellises through a type of
direct product type construction to obtain a trellis representing a larger code. After
investigating properties of these product trellises, we conclude with the important
result by Koetter and Vardy, introduced in [10], that every linear and reduced trellis
is a product trellis.

Throughout we will make use of the following interval notation. For a, b ∈ I we
define

[a, b] :=

{
{a, a+ 1, . . . , b}, if a≤ b,

{a, a+ 1, . . . , n− 1, 0, 1, . . . , b}, if a> b,

and (a, b] := [a, b]\{a}. In the case where a ≤ b, we say that the interval is conven-
tional, and if a > b, the interval is called circular.

Definition 3.1. For a vector c = (c0, . . . , cn−1) ∈ Fn\{0} we call the interval (a, b]
a span of c if cj = 0 for j 6∈ [a, b] (that, is [a, b] contains the support of c). We call
(a, b] a proper span of c if (a, b] is a span of c and ca 6= 0 6= cb. Although the entire
time axis cannot be expressed as a half-open interval, we also allow I to be a span (but
not a proper span) of c. We will take the closure of a span (a, b] to be (a, b] = [a, b].
Note that I = I.

While a vector can have many different spans, it will always have a unique con-
ventional proper span.

As we will see in the next definition, a span for a given vector can be used to
construct a trellis for the code represented by the image of the vector.

Definition 3.2. [11, p. 2089] Let s be a span of the nonzero vector c = (c0, . . . , cn−1)
∈ Fn. The elementary trellis for the pair

(
c, s
)

is defined as Tc,s := (V,E), where
the state spaces and transition spaces are given by Vi = im(Isi ) ⊆ F and Ei =
im(Isi , ci, I

s
i+1) ⊆ Vi × F × Vi+1. Recall that Is is the indicator function of the set

s, and thus Isj = 1 if j ∈ s and Isj = 0 otherwise. Precisely, if s = (a, b] and a = b,
then

Vi := {0} for all i ∈ I,

Ei :=

{
{(0, 0, 0)}, if i 6= a,

{(0, αci, 0) | α ∈ F}, if i = a;

7



If s = (a, b] and a 6= b, then

Vi :=

{
0, if i 6∈ (a, b],

F, if i ∈ (a, b],

Ei :=


{(0, 0, 0)}, if i 6∈ [a, b],

{(0, αci, α) | α ∈ F}, if i = a,

{(α, αci, 0) | α ∈ F}, if i = b,

{(α, αci, α) | α ∈ F}, if i ∈ (a, b− 1].

Finally, if s = I, then

Vi := F for all i ∈ I,
Ei := {(α, αci, α) | α ∈ F} for all i ∈ I.

Remark 3.3. Let s be a span of c ∈ Fn\{0}. Then Tc,s is a one-to-one, linear, and
reduced trellis with SCP(Tc,s) = Is and ECP(Tc,s) = Is. The trellis is conventional
if and only if s is a conventional span, and the trellis is nonmergeable (and hence
biproper) if and only if s is a proper span of c.
Moreover, the trellis is weakly connected if and only if the chosen span for c is not I.
This follows immediately from the definition of the transition spaces Ei and the fact
that when s 6= I we know that Vi = {0} for at least one time index i.

[Tc,(0,3]]

[Tc,(3,1]]

[Tc,(0,4]]

[Tc,I ]

Figure 3.1: Elementary trellises for the vector c = (1, 1, 0, 1, 0).

Example 3.4. Consider the vector c = (1, 1, 0, 1, 0) ⊆ F5
2. It has two possible conven-

tional spans, (0, 3] and (0, 4], and of these only (0, 3] is a proper span. This vector also
has many possible circular spans, including (1, 0], (3, 1], and (3, 2]. Of these spans,
the first two are proper. Any of these spans, as well as I, can be used to construct an
elementary trellis for the code generated by c, and several of these elementary trellises
are pictured in Fig.3.1. From Fig. 3.1, one can see that SCP(Tc,(0,4]) = (0, 1, 1, 1, 1)
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which agrees with I(0,4], and ECP(Tc,(0,4]) = (1, 1, 1, 1, 1) = I(0,4] as well. It is also
worth noting that since (0, 4] is a conventional interval, Tc,(0,4] is a conventional trel-
lis; however, since (0, 4] is not a proper span for c, this trellis is mergeable at time
i = 4, and one can see that it is not biproper at time i = 4.

An important trellis construction is the product construction, described in the
following proposition. We can use this procedure to take smaller trellises and use
them to construct trellises for larger codes. Most often, we will construct elementary
trellises for the generators of a code and take their product to get a trellis that
represents the entire code.

Proposition 3.5. Let T = (V,E) and T ′= (V ′, E ′) be linear and reduced trellises of
depth n over F, and let C = C(T ) and C ′ = C(T ′). Then the product T̂ := T × T ′
is defined as the trellis T̂ = (V̂ , Ê), where V̂i := Vi × V ′i and Êi =

{(
(v, v′), a +

a′, (w,w′)
) ∣∣ (v, a, w) ∈ Ei, (v

′, a′, w′) ∈ E ′i
}

for all i ∈ I. The product trellis T̂ is

linear and reduced and satisfies C(T̂ ) = C + C ′. Moreover,

(a) dim V̂i = dimVi + dimV ′i for all i ∈ I.

(b) If C ∩ C ′ does not contain a codeword of weight 1, then dim Êi = dimEi + dimE ′i
for all i ∈ I.

(c) If T̂ is one-to-one, then T and T ′ are one-to-one. The converse is true when
C ∩ C ′ = {0}.

(d) T̂ is weakly connected if and only if T and T ′ are weakly connected.

(e) If T̂ is nonmergeable, then T and T ′ are nonmergeable.

(f) If T̂ is biproper, then T and T ′ are biproper.

Proof. (a) This follows directly from the product construction.

(b) The statement dim Êi = dimEi + dimE ′i follows easily from the construction as
long as we verify that no two products of edges from Ei and E ′i result in the same
edge in Êi. Suppose that ((v1, v

′
1), a+a′, (v2, v

′
2)) = ((w1, w

′
1), b+b

′, (w2, w
′
2)) ∈ Êi.

Then we must have that vi = wi and v′i = w′i for i = 1, 2. Thus there exist edges
(0, a−b, 0) ∈ Ei and (0, a′−b′, 0) ∈ E ′i. Therefore, both T and T ′ have cycles that
represent multiples of the i-th standard basis vector. By linearity, this implies
that C ∩ C ′ contains a codeword of weight 1.

(c) We will prove the first statement by showing that the contrapositive is true. Sup-
pose that T is not one-to-one. Since T is linear, we may assume without loss of
generality that there are two distinct cycles in T that correspond to the zero code-
word, say (v0, 0, v1, . . . , vn−1, 0, v0) and the all-zero cycle. Note that the all-zero
cycle is also a cycle in T ′. Thus the product construction yields the all-zero cycle
in T̂ as well as the cycle ((v0, 0), 0, (v1, 0), . . . , (vn−1, 0), 0, (v0, 0)). This implies
that T̂ is not one-to-one. For the second statement we will also employ the con-
trapositive. Suppose that T and T ′ are both one-to-one, but T̂ is not one-to-one.
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Then, without loss of generality, there are two distinct cycles in T̂ that correspond
to the zero codeword, say ((v0, v

′
0), 0, (v1, v

′
1), . . . , (vn−1, v

′
n−1), 0, (v0, v

′
0)) and the

all-zero cycle. Thus, there must exist cycles (v0, a0, v1, ..., vn−1, an−1, v0) in T and
(v′0, a

′
0, v
′
1, ..., v

′
n−1, a

′
n−1, v

′
0) in T ′ such that ai + a′i = 0 and vi and v′i are not both

zero for all i ∈ I. Hence, we have (a0, ..., an−1) = (−a′0, ...,−a′n−1) ∈ C ∩C ′. Since
T is one-to-one, and at least one vi is non-zero, we know that (a0, ..., an−1) 6= 0
and therefore C ∩ C ′ 6= {0}.

(d) This follows easily from Proposition 2.2 and the fact that every path in T̂ is the
product of a path in T and a path in T ′.

(e) We will use the contrapositive to prove this statement. Suppose that T is merge-
able, that is there exist u, v ∈ Vj for some j ∈ I such that merging u and v does

not create any codewords that are not in C(T ). Since every cycle in T̂ is the prod-
uct of a cycle in T and a cycle in T ′, it follows that the vertices (u,w′), (v, w′) ∈ V̂j,
for all w′ ∈ V ′j , can be merged without creating codewords that are not in C(T̂ ).

(f) We will prove this statement by showing that the contrapositive is true. Suppose
that T is not biproper. Then there exist edges (v, a, w), (v, a, w′) ∈ Ej for some
j ∈ I. Taking the product of these edges with (0, 0, 0) ∈ E ′j results in the edges

((v, 0), a, (w, 0)), ((v, 0), a, (w′, 0)) ∈ Êj. Hence T̂ is not biproper.

Example 3.6. Let C = im

(
1 0 1
1 1 0

)
= im

(
c1
c2

)
⊆ F3

2. We can construct a trellis

that represents C by taking the product of elementary trellises representing c1 and c2.
Specifically, if we take Tc1,(0,2] and Tc2,(1,0] as in Figure 3.2, we can use the product
construction to build the trellis T for C. As in Proposition 3.5, the figure shows that
SCP(T ) = SCP(Tc1,(0,2]) + SCP(Tc2,(1,0]) = (1, 1, 2). Also, since the codes generated
by c1 and c2 have a trivial intersection, we can obtain the ECP(T ) = (2, 2, 2) by
adding up the ECPs of Tc1,(0,2] and Tc2,(1,0]. It is also important to note that while
the product of two one-to-one trellises is again one-to-one when the intersection of
the represented codes is trivial, the same cannot be said for nonmergeability. In this
case, both of the elementary trellises are nonmergeable since they are based on proper
spans for the given codewords; however, the resulting product trellis is mergeable at
time i = 2, and this merging results in a trellis that is not one-to-one.

For convenience, we will use the following notation.

Definition 3.7. Let C = imG, where G ∈ Fr×n has no zero rows, and let S :=[
sl, l = 1, . . . , r

]
be a span list for G, that is, sl is a span for the row gl, l = 1, . . . , r.

Then the product trellis Tg1,s1 × . . .× Tgr,sr is denoted by TG,S .

Remark 3.8. (a) Suppose that a product trellis T has factors Tg1,s1 and Tg2,s2 where
s1 and s2 are the same empty span, that is a span of the form (a, a]. It is
easy to show that the removal of either one (but not both) of these factors leaves
T unchanged. Thus throughout the thesis, we will always assume that no two
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[Tc1,(0,2]]

[Tc2,(1,0]]

[T = Tc1,(0,2] × Tc2,(1,0]]

Figure 3.2: An example of the product construction.

elementary trellises in a given product trellis will be based on the same empty
span.

(b) Since the elementary trellis Tg,s is biproper if and only if s is a proper span of g,
it follows from Proposition 3.5, that if TG,S is biproper, then S consists of proper
spans for the rows of G. Similarly, TG,S is weakly connected if and only if none of
the spans in S is the time axis I. It is also easy to check that if TG,S is biproper,
then the starting points of the spans not equal to I in S are distinct and the same
is true for the ending points.

Theorem 3.9. [8, Thm. III.6], [7, Prop. 11.2] Let T := TG,S be as in Definition 3.7.
Then T is a linear and reduced trellis representing the code C, that is, C(T ) = C.
Moreover, we have the following.

1. The state spaces of T are given by Vi = imMi, where

Mi =

µ
1
i

. . .

µri

 ∈ Fr×r,

µli =

{
1, if i ∈ sl,
0, if i 6∈ sl.


(3.1)

The transition spaces are given by Ei = im(Mi, G
>
i ,Mi+1) for i ∈ I.

2. T is one-to-one if and only if rkG = r.

3. SCP(T )=
∑r

l=1 I
sl and ECP(T )=

∑r
l=1 I

sl.

4. Suppose sl = (al, bl] for l = 1, ..., r, that is, no span in S is I, and define
A = {a1, . . . , ar} and B = {b1, . . . , br}.

11



(a) If a1, . . . , ar are distinct, then ECP(T ) = SCP(T ) + IA.

(b) If b1, . . . , br are distinct, then ECP(T ) = σ(SCP(T )) + IB, where
σ(s0, . . . , sn−1) := (s1, . . . , sn−1, s0).

(c) Let a1, . . . , ar be distinct and b1, . . . , br be distinct. Then

si+1 =


si, if i ∈ A ∩ B or i 6∈ A ∪ B,
si + 1, if i ∈ A\B,
si − 1, if i ∈ B \A,

and if each sl is a proper span, the trellis T is biproper.

Proof. Everything, with the exception of the biproperness, follows directly from the
properties of elementary trellises and product trellises found in Remark 3.3 and Propo-
sition 3.5.
For the biproperness, first observe that rk(Mi, G

>
i ) ≤ rk(Mi) + 1. Now, by (3.1) and

the fact that sl is proper, we know that gl,al 6= 0 and µlal = 0. We also have that
gl,j = µljgl,j for j 6= al. Thus, we obtain that G>i is not in the column space of Mi ex-

actly when i ∈ A, and we have the equivalence
[
i ∈ A ⇐⇒ rk(Mi, G

>
i ) = rkMi + 1

]
.

Similarly,
[
i ∈ B ⇐⇒ rk(G>i ,Mi+1) = rkMi+1+1

]
. Combining this with the formulas

for the ECP, we obtain rk(Mi, G
>
i ) = rk(G>i ,Mi+1) = rk(Mi, G

>
i ,Mi+1) for all i ∈ I.

This in turn implies the identities ker(Mi, G
>
i ) = ker(G>i ,Mi+1) = ker(Mi, G

>
i ,Mi+1),

from which the biproperness follows.

Throughout the following shift property will be useful.

Remark 3.10. [8, Rem. III.7] Let σ : Fn −→ Fn, (c0, . . . , cn−1) 7−→ (c1, . . . , cn−1, c0)
be the left cyclic shift on Fn, and let G∗ ∈ Fr×n be the matrix consisting of the shifted
rows σ(gl), l = 1, . . . , r. If the list S =

[
sl, l = 1, . . . , r

]
is a span list for G, then

S∗ =
[
s∗l , l = 1, . . . , r

]
where s∗l = I if sl = I and s∗l = (al − 1, bl − 1] if sl = (al, bl],

forms a span list for G∗. Furthermore, with the notation as in (3.1), the state spaces
of the product trellis TG∗,S∗ are given by V ∗i = imMi+1, and the transition spaces are
E∗i = im(Mi+1, G

>
i+1,Mi+2).

We close this section with the following factorization theorem by Koetter and
Vardy.

Theorem 3.11. [10, Thm. 6.2] Every linear and reduced tail-biting trellis is a product
trellis of the form TG,S .

While we may not know how a given trellis was constructed, the above theorem
allows us to easily determine whether the trellis follows from the product construc-
tion. In the next section, we will determine how to recover the factors used in the
construction of a given trellis.

Copyright c© Elizabeth A. Weaver, 2012.
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Chapter 4 Identifying the Factors of Product Trellises

In this section we will look at how the factors used to construct a product trellis affect
the cycles of the codewords in the trellis as well as the structure of the entire trellis.
In Proposition 4.7, we will show that the underlying structure of a linear trellis is
solely dependent on the spans used in the elementary factors. Finally, we will present
an algorithm to recover the elementary factors used to construct a given one-to-one
product trellis.

Definition 4.1. Let T be a linear and reduced trellis, and let c = (v0, c0, . . . , cn−1, v0)
∈ S(T )\{0}.

(a) The trellis span of c in T is the set tspan(c) := {i : vi 6= 0}.

(b) We say that c diverges at time i if i 6∈ tspan(c) and i+ 1 ∈ tspan(c).

(c) We say that c converges at time i if i ∈ tspan(c) and i+ 1 6∈ tspan(c).

Note that the concept of divergence and convergence has been introduced for
conventional trellises by Kschischang and Sorokine in [12].

Now consider the product trellis T in Figure 3.2. The cycle (00, 1, 10, 0, 10, 1, 00)
in T has a trellis span of (0, 2], diverges at time 0, and converges at time 2. Note that
this is the unique cycle representing c1 = (1, 0, 1), and c1 along with the span (0, 2]
is used in the construction of T . It is not a coincidence that this chosen span for c1
is equal to the trellis span of the cycle representing c1. This will always be the case
for codewords that are generators of the trellis as we will see in the next proposition.

Note that in the case that the generating codewords are linearly independent, one
has a one-to-one trellis. Therefore every codeword will be represented by a unique
cycle, and thus every codeword will be associated with exactly one trellis span. In
this case, we will refer to the trellis span of the cycle representing a codeword as the
trellis span of the codeword itself.

Now, consider the following proposition.

Proposition 4.2. Let T = Tg1,s1 × . . . × Tgr,sr where g1, . . . , gr are possibly linearly
dependent, no gl is the zero codeword, and no two spans are the same empty span.
Define the matrix L = (M0|G>0 |M1| . . . |Mn−1|G>n−1|M0), where each Mi is as in The-
orem 3.9 and each G>i represents the i-th column of the matrix with rows g1, ..., gr.
Then the rows of L form a basis for S(T ).

Proof. We will first show that the matrix L has full row rank. To begin, we will define
the following useful set, Li = {l ∈ {1, . . . , r} : i ∈ sl}. Now assume that αL = 0 for
some α ∈ Fr. Then α ∈ kerMi for all i. Because the nonzero rows of Mi are linearly
independent, we have that αl = 0 for l ∈ ∪n−1i=0 Li. Now, suppose l 6∈ ∪n−1i=0 Li. In this
case, l 6∈ Li for all i, and thus sl must be the empty set. Since no two empty spans
in our span set are equal, each gl with an empty span is a multiple of a different
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standard basis vector. Therefore, since αG = 0, we have that αl = 0 in this case as
well. Thus α = 0 and rkL = r.
As a consequence of the product construction, we have that imL ⊆ S(T ), so it
remains to show that every cycle in S(T ) is in the image of L.
Let c = (v0, c0, . . . , cn−1, v0)
∈ S(T ). By Theorem 3.9, we know that (vi, ci, vi+1) = α(i)(Mi, G

>
i ,Mi+1) for all i,

where α(i) ∈ Fr. Since c is a cycle, we also have that α(i+1) − α(i) ∈ kerMi+1 for

all i. Thus α
(i+1)
l = α

(i)
l when l ∈ Li+1. If sl is of the form (al, bl], this implies

α
(al)
l = ... = α

(bl)
l . Similarly, for a span of the form I we have that α

(0)
l = ... = α

(n−1)
l .

We will now construct the vector β = (β1, ..., βr) ∈ Fr in the following way: if

sl = (al, bl], set βl = α
(bl)
l , and if sl = I, set βl = α

(0)
l . We claim that c = βL.

Now, when i 6∈ [al, bl], we know that gl,i = 0, and hence α
(i)
l gl,i = βlgl,i. On the other

hand, when i ∈ [al, bl] we have α
(i)
l = βl and hence α

(i)
l gl,i = βlgl,i. Thus, we get that

βG>i =
∑r

l=1 βlgl,i =
∑r

l=1 α
(i)
l gl,i = α(i)G>i = ci. By a similar argument, one can also

show that βMi = α(i)Mi = vi. Therefore, c = βL ∈ imL.

Recall from Remark 3.8(a) that Tg,(a,a] ∼= Tg,(a,a]×Tg′,(a,a], and thus the restriction
on the spans of the generators in the previous proposition does not limit our choice
of linear trellises. Also, notice that the l-th row of L is a cycle in T representing gl
with trellis span sl. Thus we can think of these cycles as generating cycles of our
trellis. We will use this idea in the following proposition.

Proposition 4.3. Let T = Tg1,s1 × . . .× Tgr,sr , where g1, . . . , gr are possibly linearly
dependent, no gl is the zero codeword, and no two spans are the same empty span.
Let c ∈ S(T )\{0}. By Proposition 4.2, we can express c as

c =
r∑
l=1

αl(v
(l)
0 , gl,0, v

(l)
1 , . . . , v

(l)
n−1, gl,n−1, v

(l)
0 )

where αl ∈ F for l = 1, . . . , r and (v
(l)
0 , gl,0, v

(l)
1 , . . . , v

(l)
n−1, gl,n−1, v

(l)
0 ) is the l-th row

of the matrix L. Then tspan(c) =
⋃

l∈{1,...,r}
αl 6=0

sl.

Proof. Note that c = (
∑r

l=1 αlv
(l)
0 , c0, . . . ,

∑r
l=1 αlv

(l)
n−1, cn−1,

∑r
l=1 αlv

(l)
0 ), where

(c0, . . . , cn) = (α0, . . . , αr)G. It is also important to notice that by Theorem 3.9 (1)
that at every time i, the nonzero vli’s are standard basis vectors and thus are linearly
independent. Therefore we have the following equivalences.

i ∈ tspan(c) ⇐⇒
r∑
l=1

αlv
(l)
i 6= 0 ⇐⇒ ∃l s.t. αl 6= 0 and i ∈ sl ⇐⇒ i ∈

⋃
l∈{1,...,r}
αl 6=0

sl.

Remark 4.4. As a consequence of Proposition 4.3, cycles in a trellis T can only
diverge at the starting points of the generating cycles’ spans and can only converge
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[T1100,(0,1] × T0011,(2,3] × T1011,(3,2]]

Figure 4.1: A product trellis with three generators.

at the cycles’ ending points. If we also consider part (3) of 3.9, we can see that
ECP(T )-SCP(T )=(δ0, ..., δn−1) where δj is the number of generating spans that diverge
at j ∈ I. This enables one to read these starting and ending points of the generating
spans directly from the trellis. It is also worth noting that this formula is true even
when the same span appears several times in the list of generating spans.

Example 4.5. Let C = im

1 1 0 0
0 0 1 1
1 0 1 1

 ⊆ F4
2, and consider the trellis T for C shown

in Figure 4.1. Note that T is constructed by taking the product of the elementary
trellises of the rows of the above generator matrix based on the spans (0,1], (2,3], and
(3,2] respectively. Now, the cycle representing the codeword 0111 results from adding
together the cycles representing the generators 1100 and 1011. Thus by Proposition
4.3 we should obtain the trellis span associated with 0111 by taking the union of the
intervals (0,1] and (3,2]. One can see that the cycle in T corresponding to the vector
0111 does indeed have a trellis span of (3, 2]. While trellis spans can be expressed as
unions of intervals, not every trellis span can be expressed as a single interval. For
instance, the cycle corresponding to the codeword 1111 has a trellis span of (0, 1] ∪
(2, 3]. Some cycles, such as the one representing 1000, never pass through the zero
state and have a trellis span of I.

In a particular sense, the spans of the generators used to construct a product trellis
are minimal among all trellis spans. A specific result illustrating this is presented for
one-to-one trellises in the following proposition.

Proposition 4.6. Let T = Tg1,s1×. . .×Tgk,sk where g1, ..., gk are linearly independent.

Then
∑k

l=1 |sl| = min{
∑k

l=1 |tspan(cl)|} where the minimum is taken over all sets
of k linearly independent codewords. Furthermore, only s1, ..., sk give this minimum.

Proof. Suppose c1, .., ck ∈ C(T ) are linearly independent. Since g1, ..., gk also form a
basis for C(T ), there exists a bijection ψ from {c1, ..., ck} to {g1, ..., gk} where each
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cj = Σk
l=1αlgl is mapped to a gl where αl 6= 0. Without loss of generality, let ψ(cl) = gl

for l = 1, ..., k. Thus by Proposition 4.3, we have | tspan(cl)| ≥ |sl| for l = 1, ..., k, and
this gives

∑k
l=1 |sl| ≤

∑k
l=1 | tspan(cl)|. Therefore, if we have equality in the previous

statement, that is
∑k

l=1 |sl| =
∑k

l=1 | tspan(cl)|, we must have | tspan(cl)| = |sl| for all
l. Since sl ⊆ tspan(cl) for l = 1, ..., k, we get that sl = tspan(cl) for l = 1, ..., k.

At this point in the section, we will take a quick diversion from trellis spans to
introduce the following result about structurally isomorphic trellises. The notation
developed in the proof of this result will be used in Algorithm 4.8 to recover the spans
of the elementary factors from a product trellis.

This result was also proved independently by Conti and Boston (see [3]). Orig-
inally our result was for one-to-one trellises, and upon discussion with Conti, we
realized that this was an unnecessary restriction.

Proposition 4.7. Suppose T = Tg1,s1 × . . .× Tgr,sr and T ′ = Tg′1,s′1 × . . .× Tg′r′ ,s′r′ are

two trellises for C. Let S = [sl : l = 1, ..., r] and S ′ = [s′l : l = 1, ..., r′]. Then T and
T ′ are structurally isomorphic if and only if S = S ′ (up to ordering).

Proof. “⇐′′ If S = S ′ (up to ordering), it is clear from the product construction that
T ∼=S T

′.
“ ⇒′′ Suppose T ∼=S T ′. Since T = (V,E) and T ′ = (V ′, E ′) are linear trellises,
the structural isomorphism maps 0 ∈ Vi to 0 ∈ V ′i for i = 0, ..., n − 1. Thus we
have S = [tspan(c) : c ∈ S(T )] = [tspan(c) : c ∈ S(T ′)] = S ′. Since T and T ′ are
structurally isomorphic, they have the same SCP and the same ECP. Thus Remark
4.4 implies that r = r′. Now suppose that S 6= S ′. Then there exists a span s ∈ S\S ′.
Without loss of generality, let s be a span of shortest length in S\S ′. Now, let N
equal the number of times that s appears in S, and let α equal the number of times
that s appears in S. By Proposition 4.3, a cycle in T can have the trellis span s in
one of three ways. It can be a linear combination of generators with spans equal to s,
which can occur in A = qα−1 ways. It can be a linear combination of generators with
spans strictly contained in s. Say this occurs in B ways. Finally it could be a linear
combination of both generators with spans strictly contained in s and generators with
spans equal to s. If we let C equal the number of unions of spans in S such that
the union is strictly contained in s, this occurs in AB +AC ways. Thus we get that
N = A+B+AB+AC. We can similarly define the quantities N ′, A′, B′, and C ′ for
trellis T ′. Because s is the span of shortest length in S\S ′, we know that B = B′,
C = C ′, and A > A′. This implies that N > N ′, which contradicts the fact that
S = S ′. Thus we must have that S = S ′.

Now that we have introduced the notation in the previous proof, we will proceed
with the main result of this section. Let T be a linear, reduced, and connected
trellis. From Theorem 3.11 and Proposition 3.5, we know that T is of the form
Tg1,(a1,b1] × . . .× Tgr,(ar,br]. Using the following algorithm we can recover the spans of
the elementary factors that can be used in the construction of T .
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Algorithm 4.8. Given a linear, reduced, and connected trellis T of depth n,
set S := [tspan(c) : c ∈ S(T )] and A := [a1, ..., ar], the list of indices of the diver-
gences.
(Note that A and S can be read directly from the trellis T .)
Set Ŝ = ∅.
For i = 0 to n− 1

For j = 1 to r
If (aj, aj + i] ∈ S, then calculate

N = the number of times (aj, aj + i] appears in S

B̂ = the number of ways (aj, aj+ i] occurs as a union of strictly smaller

spans in Ŝ
Ĉ = the number of unions of spans in Ŝ such that the union is strictly

contained in (aj, aj + i]

α̂ = logq
(
N+1+Ĉ

1+B̂+Ĉ

)
and add α̂ copies of (aj, aj + i] to Ŝ.

When |Ŝ| = r, stop. Output Ŝ.

Proposition 4.9. For a linear, reduced, and connected trellis Tg1,(a1,b1]×. . .×Tgr,(ar,br],
the output Ŝ of Algorithm 4.8 equals S = [(al, bl] : l = 1, . . . , r].

Proof. For a given trellis span (a, b], we have N = A + B + AB + AC, where N , A,
B, and C are as in the proof of Proposition 4.7. Recall that α equals the number of
times that (a, b] appears in S. Since A = qα−1, we get that α = logq

(
N+1+C
1+B+C

)
. Thus

we must show that at every step in the algorithm, B = B̂ and C = Ĉ so that α = α̂.
When i = 0, the algorithm is only adding spans of length zero to Ŝ. Since no span
of length zero can be written as a union of strictly shorter spans or contain shorter
spans, B = C = 0 for all trellis spans of this type. Similarly, B̂ = Ĉ = 0.
Suppose the algorithm has run correctly for i = 0 to i = m − 1. This means that
the list Ŝ consists of all spans in S up to length m − 1. Now if a span of length m
contains or can be written as a union of strictly shorter spans in S, these spans will
be in Ŝ as well. Thus B = B̂ and C = Ĉ.

Note that with an additional step, this algorithm can also be used when l of the
generating spans are I. In this case, the trellis is disconnected and has ql components
with identical structure. The remaining spans can be determined by running the
algorithm on the trellis component containing the zero cycle, which is a linear trellis
itself.
We will now limit our focus to one-to-one trellises as we explore how to recover the
generating codewords for a trellis. While the spans used in the elementary factors
of a given product trellis determine the structure, the codewords used (up to scalar
multiples) determine the isomorphism class of the trellis. One would like to simply
be able to use the trellis to read the label-sequences of cycles with the desired trellis
spans in order to determine the generating codewords. However, there is no guarantee
that a generating span corresponds to the trellis span of only one codeword. We will
show that in a particular case switching one generating codeword of a product trellis
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for another codeword with the same trellis span does lead to an isomorphic trellis. In
order to do so, we will need the following result.

Theorem 4.10. Let G and G′ be matrices in Fk×n of rank k with rows g1, g2, ..., gk
and g′1, g2, ..., gk, respectively, where sj is a span for gj, j = 1, ..., k, and s1 is a span
for both g1 and g′1. If imG = imG′ and g′1 ∈ spanF{gl : sl ⊆ s1}, then TG,S ∼= TG′,S
where S := [sj : j = 1, ..., k].

Proof. We will begin by setting up the following notation. Since imG = imG′, there
exists an invertible matrix T ∈ Fk×k such that G′ = TG. It is easy to see that T is
of the form ( a b0 I ) where a ∈ F\{0}, b = (b2, ..., bk) ∈ Fk−1, and I ∈ F(k−1)×(k−1). It is
easy to see that T−1 is of the form

(
a−1 −a−1b
0 I

)
.

Now, let TG,S = (V,E) and TG′,S = (V ′, E ′) where Vi = V ′i = imMi and Mi is
defined as in Theorem 3.9. We claim that ϕ : Ei → E ′i where α(Mi, G

>
i ,Mi+1) 7→

αT−1(Mi, G
′
i
>,Mi+1) for all α ∈ Fk is the desired trellis isomorphism. To show that

ϕ is in fact well-defined, as well as one-to-one, we will prove that kerMi = kerT−1Mi

for all i. In this proof it will be helpful to view Mi as the following block matrix,

Mi =
(
µ1i 0

0 M̂i

)
where M̂i =

(
µ2i

...
µki

)
. Thus, T−1Mi =

(
a−1µ1i −a−1bM̂i

0 M̂i

)
.

We will now consider two cases. First, if µ1
i 6= 0, then we have the following equiva-

lences.

α = (α1, ..., αk) ∈ kerT−1Mi ⇐⇒ [α1 = 0 and (α2, ..., αk) ∈ ker M̂i]

⇐⇒ α ∈ kerMi

Thus kerMi = kerT−1Mi as desired.
Second, suppose that µ1

i = 0. Since G′ = TG, we have g′1 = ag1 +
∑k

i=2 bigi. Now
consider the set L := {l : bl 6= 0}. We then have that bl = 0 for l 6∈ L. Because
µ1
i = 0, we know that i 6∈ s1. Since the spans sl where l ∈ L are contained in s1, we

also know that i 6∈ sl for l ∈ L, and therefore µli = 0 for l ∈ L . Thus we get that
bM̂i = 0, and it follows that Mi = T−1Mi. Again, we have kerMi = kerT−1Mi.
Thus ϕ is indeed well-defined, and it easily follows that ϕ is an isomorphism.

It is worth noting that Theorem 4.10 extends Proposition III.14 in [8] to a much
larger class of trellises.

This now brings us to another main result of this section.

Theorem 4.11. Let TG,S be a product trellis where rkG = k, the rows of G are given
by g1, ..., gk, and S := [s1, ..., sk]. Suppose that g′1, ..., g

′
k is a linearly independent

set of codewords in C(T ) whose trellis spans are s1, ..., sk respectively, and where
g′j ∈ spanF{gl : sl ⊆ sj} for all j. Then TG,S ∼= TG′,S , where the rows of G′ are
g′1, ..., g

′
k.

Proof. Note that if g has trellis span s, then s is also a span of g. Therefore, since
g′1 ∈ spanF{gl : sl ⊆ s1}, Theorem 4.10 gives that TG,S ∼= Tg′1,s1 × Tg2,s2 × ...× Tgk,sk .
By repeating the above argument we obtain the desired result.
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Figure 4.2: A connected one-to-one product trellis representing a code over F2.

We can now revisit the problem of identifying the generating codewords of a one-
to-one trellis by following cycles in the trellis. Let TG,S be a one-to-one product
trellis where the rows of G are given by g1, ..., gk, and S := [s1, ..., sk]. Suppose that
a codeword c =

∑k
l=1 αlgl ∈ C(T ) where αl ∈ F has trellis span s1. Since

tspan(c) =
⋃

l∈{1,...,k}
αl 6=0

sl

by Proposition 4.3, we know that c must be a linear combination of codewords in C(T )
with trellis spans contained in s1. Thus by the above theorem, Tc,s1×Tg2,s2×. . . Tgk,sk is
isomorphic to T . Therefore, once the generating spans of a trellis have been recovered,
one can simply use any set of linearly independent codewords whose trellis spans are
the generating spans in order to find a set of elementary factors for the trellis.

Example 4.12. We will now use Algorithm 4.8 and Theorem 4.11 to find the el-
ementary factors of the trellis shown in Figure 4.2. From the trellis we can see
that A = [0, 2, 3], C(T ) = {0000, 1000, 0100, 1100, 0011, 1011, 0111, 1111}, and S =
[I, I, (0, 1], (3, 2], (2, 0], (2, 1], (3, 2]].
To begin the algorithm, we will set Ŝ = ∅, let i = 0, and first consider the spans
(0, 0], (2, 2], and (3, 3]. Since none of these spans are in S, we will move on to i = 1.
While (2, 3] and (3, 0] are not in S, the span (0, 1] is, so we must carry out the fol-
lowing computations. We can observe that for the span (0, 1] we have N = 1 and
B̂ = Ĉ = 0. Thus we calculate that α = 1, and we now set Ŝ = [(0, 1]]. Moving
on to the considered spans of length 2, we see that only (2, 0] is in S. The calcula-
tion is identical to the one in the previous step, so we again obtain α = 1 and set
Ŝ = [(0, 1], (2, 0]]. When i = 3, we see that (0, 3] 6∈ S, but (2, 1] and (3, 2] are trellis
spans of the given trellis. For (2, 1] we get that N = B̂ = 1 and Ĉ = 2 which gives
α = 0, and thus Ŝ remains unchanged. However, for the span (3, 2], we obtain N = 2,
B̂ = 0, and Ĉ = 1, which gives α = 1. Thus we now have Ŝ = [(0, 1], (2, 0], (3, 2]],
and since |Ŝ| = k = 3, we can end the algorithm because we now have the full set
of generating spans. For this particular trellis, we see that this set of generating
spans leads to two sets of codewords, {1100, 1011, 1111} and {1100, 1011, 0011}, both
of which are linearly independent. Note that 0011=1111+1100, and the trellis span of
1100 is (3,2], which is contained in the trellis span of 1111. By Theorem 4.11, these
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two sets of codewords will result in isomorphic trellises, and either set along with the
generating spans can be used to construct the given trellis.

Copyright c© Elizabeth A. Weaver, 2012.
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Chapter 5 Characteristic Generators and KV-trellises

For conventional trellises, it is well-known that for a given code there is a unique
minimal trellis, up to isomorphism, in the sense of Definition 2.3. In [12], it is
shown that the minimal conventional trellis can be constructed by taking the product
of elementary trellises of generators with conventional spans that are minimal in a
certain sense. Although there is not a unique minimal trellis in the tail-biting case,
this idea can be naturally extended to produce a set of generators from which all
minimal tail-biting trellises can be constructed. This extension was introduced by
Koetter and Vardy in [11]; however, they introduced this set of generators as the
product of a procedure. In this chapter, we will present the characteristic generators
as a more natural extension of the situation for conventional trellises and then follow
the approach taken in Section III of [7]. Throughout this chapter, we will assume
that C has support I.

In [4], Forney remarks on the concept of trellis oriented generator matrices for a
code, and McEliece provides an excellent discussion on this topic in [13, Chapter IV].
Because of the importance of these matrices in the case of the minimal conventional
trellis and the role they play in the results of Koetter and Vardy, we will begin this
chapter by introducing some relevant properties of these matrices. The following
results can be found in [12] and [13].

Remark 5.1. A minimal-span generator matrix (or MSGM) for a code C is a
generator matrix G such that G and its conventional proper span list S =

[
(al, bl], l =

1, . . . , k
]

have the following properties.

(i) Among all generator matrices for C where the rows are taken to have proper
conventional spans, the sum

∑k
l=1 |(al, bl]| is minimal.

(ii) If c ∈ C has a proper conventional span (al, b̂] where l ∈ {1, . . . , k}, then (al, bl] ⊆
(al, b̂].

(iii) The spans in S have distinct starting points and distinct ending points.

(iv) The spans in S have the predictable span property. That is, a codeword c =
α1g1 + . . . αkgk ∈ C has the proper conventional span given by (min al,max bl]
where the minimum and the maximum are taken over all l ∈ {1, . . . , k} such
that αl 6= 0.

(v) The product trellis T = Tg1,(a1,b1] × . . . × Tg1,(ak,bk] is the minimal conventional
trellis for C.

Every code C has a minimal-span generator matrix, and such a matrix has full rank.

In the following definition, we will extend property (ii) to include circular intervals.
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Definition 5.2. A codeword x ∈ C with proper span (a, b] is defined to be a charac-
teristic generator of C if for any c ∈ C with proper span (a, b̂] we have (a, b] ⊆ (a, b̂].
We say that (a, b] is a characteristic span of C.

In this definition, one could easily use the ending points of the spans instead of the
starting points as the two definitions are equivalent. This follows from an argument
similar to that found in the proof of Proposition 5.3 (a).

Just like the spans of the MSGM, the characteristic spans of a code possess several
nice properties outlined below.

Proposition 5.3. Let C ⊆ Fn be a k-dimensional code with support I.

(a) No two distinct characteristic spans of C start or end at the same position.

(b) C has exactly n distinct characteristic spans.

(c) For all j ∈ I, there exist exactly n− k characteristic spans of C that contain j.

Proof. (a) From Definition 5.2 it is clear that no two distinct characteristic spans
start at the same position. Suppose there exist distinct characteristic spans of C
with the same endpoint, say (a, b] and (â, b]. Without loss of generality, assume
that (â, b] ( (a, b]. By definition, we know that there exist codewords in C with
proper spans (a, b] and (â, b], say c and ĉ respectively. Now, c− cb(ĉb)−1ĉ ∈ C has
a proper span that starts at a and is properly contained in (a, b]. Since (a, b] is a
characteristic span of C, this is a contradiction.

(b) Since C has full support, for every i ∈ I there exists a codeword with a proper
span starting at i. Thus C has at least n characteristic spans, and by part (a), C
must have exactly n characteristic spans.

(c) The basic arguments found in the proof of Theorem 5.10 in [11] still apply in this
setting. Let T = TG,S be the minimal conventional trellis of C. Thus by Remark
5.1, the set S must consist of k proper conventional characteristic spans, and
these k spans in S do not contain 0. On the other hand, we will now show that
the remaining n− k characteristic spans of C do contain 0. Suppose there exists
a characteristic generator x of C with a characteristic span (a, b] that is not in
S and does not contain 0. Then (a, b] must be a conventional interval, and thus
a ≤ b. Since G generates C we can write x as a linear combination of the rows of
G. Hence, Remark 5.1 (v) implies that (a, b] must have the same starting point
as a span in S, but this contradicts part (a). Thus 0 is contained in exactly n−k
characteristic spans. By a similar argument applied to the cyclic shifts of C, part
(c) follows.

Following the approach of [7], we will now present the definition for a characteristic
matrix, first introduced by Koetter and Vardy, in terms of the important properties
that it possesses.
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Definition 5.4. Let C ⊆ Fn be a k-dimensional code with support I. A characteristic
pair of C is defined to be a pair (X, T ), where

X =

x1...
xn

 ∈ Fn×n and T =
[
(al, bl], l = 1, . . . , n

]
(5.1)

have the following properties.

(i) xl ∈ C for l = 1, . . . , n

(ii) T is the list of characteristic spans of C.

(iii) (al, bl] is a span of xl for l = 1, . . . , n.

We call X a characteristic matrix of C and T the characteristic span list.

Remark 5.5. (a) Let σ be the left cyclic shift on Fn as in Remark 3.10. If (X, T )
as in (5.1) is a characteristic pair of C, then

(
X∗, T ∗

)
is a characteristic pair

of σ(C), where

X∗ :=

σ(x1)
...

σ(xn)

 , T ∗ :=
[
(al − 1, bl − 1], l = 1, . . . , n

]
.

(b) Note that every characteristic matrix of C contains an MSGM of C, and thus every
characteristic matrix of C contains a generating set of C. Every characteristic
matrix also contains a shifted MSGM for the code σj(C) for each j = 0, . . . , n−1.
This is how Koetter and Vardy originally defined the characteristic pair in [11].

We will now focus on a particular class of trellises built by taking products of
elementary trellises based on characteristic generators. These trellises are relevant
because they possess many useful properties which we will explore in the remainder
of the thesis.

Definition 5.6 ([8, Def.III.1]). Let C ⊆ Fn be a k-dimensional code with support I,
and let (X, T ) be a characteristic pair of C as in (5.1). Any trellis of the form
Txl1 ,(al1 , bl1 ] × . . .× Txlk ,(alk , blk ], where xl1 , . . . , xlk are linearly independent rows of X,
is called a KV(X,T )-trellis of C. Every trellis that is a KV(X,T )-trellis for some char-
acteristic pair (X, T ) of C is called a KV-trellis.

Just as the minimal conventional trellis is built from the product of the rows of
the MSGM, Koetter and Vardy showed that minimal tail-biting trellises are all, in
fact, KV-trellises.

Theorem 5.7. [11, Thm. 5.5] Let C ⊆ Fn be a k-dimensional code with support I,
and let T be a minimal trellis of C in the sense of Definition 2.3. Then T is one-to-
one, and there exists a characteristic pair (X, T ) such that T is a KV(X,T )-trellis.
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It is important to note that while all minimal trellises are KV-trellises, not every
KV-trellis is minimal.

Example 5.8. Let C = im

0 1 0 1 0 1
1 1 1 1 0 1
1 0 0 1 1 1

 ⊆ F3×6
2 . It is easy to verify that

X =


1 0 1 0 0 0
0 1 1 0 1 0
0 0 1 1 1 1
1 0 0 1 1 1
1 1 0 0 1 0
0 1 0 1 0 1

 , T = [(0, 2], (1, 4], (2, 5], (3, 0], (4, 1], (5, 3]]

is a characteristic pair for C. The trellis generated by the first three rows of X leads to
the minimal conventional trellis for C, which has an SCP of (0,1,2,2,2,1). Consider
the trellis T generated by the rows of X with spans (1, 4],(3, 0], and (5, 3]. While this
trellis is a KV-trellis for C, it has an SCP of (2,1,2,2,2,1) and comparison with the
minimal conventional trellis shows that T is not minimal.

It is also important to note that we do not get the same set of KV-trellises from
each characteristic pair (X, T ) of C, hence the distinction in Definition 5.6. In fact,
the set of minimal trellises generated by a particular characteristic pair of C may not
contain all of the minimal trellises for C, as we will see in the next example.

Example 5.9. Let F = F2 and consider the code C = im

0 1 1 0 1 1
1 0 1 0 0 0
0 1 1 1 0 1

 ⊆ F6
2.

The two pairs (X, T ) and (X ′, T ), where

X =


1 0 1 0 0 0
0 1 1 0 1 1
1 0 1 1 1 0
0 0 0 1 1 0
1 1 0 0 1 1
1 1 0 1 0 1

 , X ′ =


1 0 1 0 0 0
0 1 1 0 1 1
1 0 1 1 1 0
0 0 0 1 1 0
1 1 0 0 1 1
0 1 1 1 0 1

 , (5.2)

and T =
[
(0, 2], (1, 5], (2, 0], (3, 4], (4, 1], (5, 3]

]
, are both characteristic pairs of C.

Notice that while the last three rows of X are linearly dependent and thus do not
lead to a KV-trellis for C, the last three rows of X ′ do in fact generate a KV-trellis
for C. By Proposition 4.7, this trellis cannot occur as the product of generators with
spans other than (3,4], (4,1], and (5,3], and thus this trellis is not a KV(X,T )-trellis.
Now, consider the following matrices and span list taken from the characteristic pairs
above.

G =

1 0 1 1 1 0
0 0 0 1 1 0
1 1 0 1 0 1

 , G′ =

1 0 1 1 1 0
0 0 0 1 1 0
0 1 1 1 0 1

 (5.3)
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and S =
[
(2, 0], (3, 4], (5, 3]

]
. The product trellises TG,S and TG′,S , shown in Figure

5.1 are both minimal KV-trellises for C based on the same choice of spans. However,
these two trellises, while structurally isomorphic, are not isomorphic. One can check
that the cycle representing 110101 in TG,S passes through the zero state at times i = 4
and i = 5, while the cycle representing 110101 in TG′,S never passes through the zero
state.

Note that Theorem 4.10 is not applicable to these trellises. The codeword 011101
with span (5,3] in G′ is equal to the sum of all three of the rows of G; however, the
spans (2,0] and (3,4] are not contained in (5,3].

[TG,S ] [TG′,S ]

Figure 5.1: Nonisomorphic product trellises TG,S and TG′,S

This example became a major turning point in our investigation of characteristic
matrices and KV-trellises because it detected a subtle oversight in [11].

We will see later that while we do not get every minimal trellis from a characteristic
pair, we will get every minimal SCP from any characteristic pair. Furthermore,
although we have seen in Example 5.9 that two KV-trellises based on the same span
set are not necessarily isomorphic, they are structurally isomorphic by Proposition
4.7.

Copyright c© Elizabeth A. Weaver, 2012.
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Chapter 6 Counting Characteristic Matrices

In this section, we will look at how the relationships between the characteristic spans
for a given code affect the number of characteristic matrices for that code. Using a
result of Koetter and Vardy, we can easily count the number of characteristic matrices
for the dual code as well. In the case where a code has a unique characteristic matrix,
we are able to determine the characteristic span list and show that all KV-trellises
for the code are minimal. We conclude by addressing an issue from the previous
section. Although, in general, we cannot obtain all KV-trellises for a code from one
characteristic matrix, we can achieve all of the minimal SCPs for a code with any
characteristic pair. Throughout this chapter, let C ⊆ Fn be a k-dimensional code
with support I.

Because counting containments between characteristic spans plays a pivotal role
in the upcoming results, we will introduce the following notation.

Definition 6.1. Let T = [(a1, b1],. . . ,(an, bn]] be the characteristic span list of C.
Then, for l = 1, . . . , n, the set Sl is defined as follows

Sl := {r : (ar, br] ( (al, bl]}.

Since generators that differ by only a scalar multiple lead to isomorphic trellises,
it will simplify the counting process if we restrict ourselves to normalized generators,
defined below.

Definition 6.2. A characteristic generator x of C with characteristic span (a, b] is
normalized if xa = 1. A characteristic matrix X of C is normalized if X consists of
normalized characteristic generators.

An important aspect in counting the number of characteristic matrices for a given
code is first determining how many codewords in the code fit each characteristic
span, and we carry out this calculation in the next few lemmas. We can then use
the multiplication principle to find the total number of characteristic matrices for a
given code, and using a result by Koetter and Vardy, we can show that a code and
its dual have the same number of characteristic matrices.

Lemma 6.3. Let T = [(a1, b1],. . . ,(an, bn]] be the characteristic span list of C, and
for l ∈ {1, . . . , n}. Then there exist linearly independent codewords v1, . . . , v|Sl| in C
such that (arj , brj ] is a span of vj for j = 1, . . . , |Sl|.

Proof. Let (al, bl] ∈ T . Since no characteristic span of C is the entire time axis
I, there exists i ∈ {0, . . . , n − 1} such that i 6∈ (al, bl]. Then, (al − i, bl − i] is a
conventional span and each (arj − i, brj − i] is a conventional span for rj ∈ Sl. Thus,
without loss of generality, we will assume that (al, bl] is a conventional span. Since
each (arj , brj ] where rj ∈ Sl is a characteristic span of C, we can find a codeword
vj ∈ C with span (arj , brj ] for each rj ∈ Sl. Since the spans (arj , brj ] where rj ∈ Sl are
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distinct conventional characteristic spans, we get that the codewords vj where rj ∈ Sl
are linearly independent.

Lemma 6.4. Given (al, bl], a characteristic span of C, there exist q|Sl| normalized
characteristic generators of C having this span.

Proof. As in the previous proof, without loss of generality, we may assume that (al, bl]
is a conventional span. Since (al, bl] is a characteristic span there exists a characteristic
generator of C, say xl, with this span. Let v1, . . . , v|Sl| be as in Lemma 6.3. Let c
be any codeword. We claim that c is a normalized characteristic generator of C with
span (al, bl] if and only if c ∈ xl + spanF{vr|r = 1, . . . , |Sl|}.

Now, if c ∈ xl + spanF{vr|r = 1, . . . , |Sl|}, then c has the conventional span (al, bl]
since the span of each vr is properly contained in (al, bl] and no two characteristic spans
have the same endpoints. Since xl is normalized and vr,al = 0 for all r = 1, . . . , |Sl|,
we get that c is normalized.

On the other hand, suppose that c is a normalized characteristic generator of C
with span (al, bl]. Consider the codeword c−xl. Since (c−xl)al = 0, it follows that c−
xl has a conventional span that is properly contained in (al, bl]. Since v1, . . . , v|Sl| are
linearly independent characteristic generators of C with conventional spans, they can
be expanded to an MSGM for C, say v1, . . . , vk. Then, c−xl = α1v1+ . . .+αkvk where
αi ∈ F for i = 1, .., k. By Remark 5.1, we get αi = 0 for vi’s with conventional spans
that are not properly contained in (al, bl]. Thus c − xl ∈ spanF{vr|r = 1, . . . , |Sl|}
and the claim follows.

Once we know how many codewords in C fit a particular characteristic span, it is
simple to calculate the total number of different normalized characteristic matrices
for the code. We simply use the multiplication principle of counting to obtain that
if there exist q|Sl| normalized characteristic generators with span (al, bl], then C has∏n

l=1 q
|Sl| = q

∑n
l=1 |Sl| normalized characteristic matrices. A Maple procedure is in-

cluded in the appendix that will return the set of normalized codewords that fit each
characteristic span and the number of normalized characteristic matrices for a given
code.

Additionally, the following result by Koetter and Vardy makes it very simple to
determine the set of characteristic spans for the dual of a given code, that is, the set
C⊥ = {w ∈ Fn : wv> = 0 for all v ∈ C}.

Lemma 6.5. [11, Lem. 5.11] Let C ⊆ Fn and C⊥ both be codes with support I, and
let the characteristic span list of C be given by T =

[
(al, bl], l = 1, . . . , n]. Then the

characteristic span list of C⊥ is given by
[
(bl, al], l = 1, . . . , n].

Theorem 6.6. If C and C⊥ both have full support, then C and C⊥ have the same
number of normalized characteristic matrices.

Proof. Let T = [(a1, b1], . . . , (an, bn]] be the characteristic span list of C. Thus, by
Lemma 6.5, [(b1, a1], . . . , (bn, an]] is the characteristic span list of C⊥. Define the set
Ŝl := {r|(br, ar] ( (bl, al]}. Now, by Lemma 6.4, for each characteristic span (al, bl] in
C there are q|Sl| codewords that fit the span as a normalized characteristic generator.
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Thus, C has q
∑n

l=1 |Sl| normalized characteristic matrices. Because C and C⊥ have full
support, no characteristic span of C is empty. Thus, we have (ar, br] ( (al, bl] if and
only if (bl, al] ( (br, ar]. Hence, r ∈ Sl if and only if l ∈ Ŝr. Therefore,

∑n
l=1 |Sl| =∑n

l=1 |Ŝl|, and C and C⊥ have the same number of normalized characteristic matrices.

Since the number of characteristic matrices for a given code is solely dependent
on the number of containments between the characteristic spans, there is only one
set of characteristic spans that will result in a unique characteristic matrix.

Corollary 6.7. The code C has a unique normalized characteristic matrix if and
only if all of the characteristic spans for C are of length n − k. In this case, the
characteristic spans of C are (0, n− k],. . . ,(k − 1, n− 1],(k, 0],. . . ,(n− 1, n− k − 1].

Proof. Since C has q
∑n

l=1 |Sl| normalized characteristic matrices, it is clear that C
has a unique normalized characteristic matrix if and only if no characteristic span
of C contains any other characteristic span of C. Thus in the case that all of the
characteristic spans of C are of length n−k, it is easy to see that they must be of the
form stated above, and thus no characteristic span of C contains any other.

Assume that C has a unique normalized characteristic matrix. We will first show
that |(aj, bj]| ≤ n − k for all j. By way of contradiction, suppose there is a char-
acteristic span (aj, bj] of C, where |(aj, bj]| > n − k. Then, we can shift all of the
spans so that aj = 0. Without loss of generality, let (a1, b1],. . . ,(ak, bk] be conven-
tional spans where a1 < a2 < . . . < ak, and let (ak+1, bk+1],. . . ,(an, bn] be circular
spans. Thus, j = 1 and (0, b1] is a characteristic span where b1 > n − k. Since no
characteristic span of C contains any other characteristic span of C, we know that
b1 < b2 < . . . < bk. So, k endpoints of characteristic spans must lie in the interval
[n− k+ 1, n− 1], which only contains k− 1 integers. Thus, we must have b1 ≤ n− k
and |(al, bl]| ≤ n− k for all l = 1, . . . , n. Now, suppose there is a characteristic span
(aj, bj], where |(aj, bj]| < n− k. Since no characteristic span of C contains any other
characteristic span of C, no characteristic span of C is empty. Thus, |χ(C⊥)| = n,
and (bj, aj] is a characteristic span of C⊥ such that |(bj, aj]| > k. Hence, we get a
contradiction by the above argument since C⊥ also has a unique characteristic matrix
by Theorem 6.6. Therefore, |(al, bl]| = n− k for all l = 1, . . . , n.

In [9, Cor. 3], Kan and Shen show that cyclic codes have characteristic spans of
the above type and thus have unique normalized characteristic matrices. This is true
for the class of MDS codes as well. Recall that an [n, k, d] code is MDS (or maximum
distance separable) if d = n− k + 1. This is equivalent to the statement for any set
of d indices D = {i1, ..., id} there exists a codeword in C with support D. Moreover,
the dual of an MDS code is again MDS.

Corollary 6.8. If C is an MDS code, then C has a unique normalized characteristic
matrix.

Proof. Since C is an MDS code, we know that the distance of C is d = n − k + 1,
and for all 0 ≤ i1 < i2 < . . . < id ≤ n − 1 there exists a codeword c ∈ C such that
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ci 6= 0 if and only if i ∈ {i1, . . . , id}. Now, consider the set {0, . . . , n − k}. This
set has cardinality d, so by the above, there exists c ∈ C with this support and thus
proper span (0, n − k]. Because d = n − k + 1, no codeword in C can have a proper
span with length less than n − k. Thus the characteristic spans of C must have a
length of at least n − k. Since C⊥ is also an MDS code, Lemma 6.5 gives that no
characteristic span can have length greater than n− k. Thus all characteristic spans
of C have length n−k, and by Corollary 6.7, C has a unique normalized characteristic
matrix.

Additionally, Corollary 6.7 leads to an interesting result regarding minimality.
In [11], Koetter and Vardy also address other notions of minimality with regard to
KV-trellises in particular. In their Theorem 5.6, they prove that trellises that are
minimal under several other minimality orders are also KV-trellises. One such order
is the product order.

Definition 6.9. Let C ⊂ Fn be a linear block code and T = (V,E) and T ′ = (V ′, E ′)
be two trellises for C. We define the product order, denoted ≤∏, where T ≤∏ T ′ if∏n−1

i=0 |Vi| ≤
∏n−1

i=0 |V ′i |.

Note that for a linear trellis T , we have that
∏n−1

i=0 |V ′i | =
∏n−1

i=0 q
ξi where SCP(T )=

(ξ0, ..., ξn−1). Additionally, if a linear trellis is minimal under the product order, it is
also minimal in the sense of Definition 2.3. With this new notion of minimality, we
can now prove the following result.

Theorem 6.10. Let T = [(a1, b1],. . . ,(an, bn]] be the characteristic span list of the
code C. If C has a unique normalized characteristic matrix, then every KV-trellis of
C is product-minimal and thus minimal.

Proof. By Corollary 6.7 we have |(al, bl]| = n−k for all l = 1, . . . , n. Let T = (V,E) be
a KV-trellis for C based on characteristic generators with spans (al1 , bl1 ],. . . ,(alk , blk ]

and SCP (T ) = (s0, . . . , sn−1). Then
n−1∏
i=0

|Vi| =
n−1∏
i=0

qsi = q
∑n−1

i=0 si = q
∑k

i=1 |(ali ,bli ]|.

Therefore, since C has a unique characteristic matrix Corollary 6.7 implies that∑k
i=1 |(ali , bli ]| = k(n−k), and we get that for every KV-trellis of C we have

n−1∏
i=0

|Vi| =

qk(n−k). Thus, every KV-trellis for C is product-minimal. Since product-minimality
implies minimality in the sense of Definition 2.3, every KV-trellis for C is minimal.

In Section 5 we addressed the fact that not all KV-trellises for C come from a
single characteristic pair of C. Since we are often looking for the minimal trellises
for a given code, we might wonder if one has to look at every KV characteristic pair
for a code to find all of the minimal tail-biting trellises. If we are only looking at
the size and structure of the minimal trellises, the answer is no. The following result
shows that if certain characteristic spans generate a minimal trellis for C using one
characteristic matrix, then each set of generators corresponding to these spans will
be linearly independent. While these minimal trellises may not be isomorphic, they
will be structurally isomorphic by Proposition 4.7.
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Theorem 6.11. If the characteristic generators x1,. . . ,xk for the code C with the
spans (a1, b1], . . . , (ak, bk], respectively, create a minimal trellis, T for C then any set
of characteristic generators for C with spans (a1, b1],. . . (ak, bk] is linearly independent.

Proof. If x1, . . . , xk are linearly independent, then x−11,a1
x1, . . . , x

−1
1,a1

xk are also lin-
early independent. Thus, without loss of generality, suppose that x1 is normalized.
Let x′1 be a characteristic generator for C with span (a1, b1], where x′1 6= x1. Sup-
pose x′1, x2, . . . , xk are linearly dependent. Then, α1x

′
1 + α2x2 + . . . + αkxk = 0

for some α1, . . . , αk ∈ F. Since x2,. . . ,xk are linearly independent, α1 6= 0. Then,
x′1 = β2x2 + . . . βkxk for some β2, . . . , βk ∈ F. Without loss of generality, assume that
x′1 is normalized. Since x1 and x′1 have the same characteristic span and are both
normalized with respect to that span, the proof of Lemma 6.4 gives that x′1 = x1 + c,
where c ∈ spanF{xr|r ∈ S1}. Thus, it follows that x1 + c = β2x2 + . . . + βkxk.
Since x1 + c ∈ spanF{x2, . . . , xk} and x1 6∈ spanF{x2, . . . , xk}, we also have that
c 6∈ spanF{x2, . . . , xk}. Since c ∈ spanF{xr|r ∈ S1}, there is a span of c, say (a′, b′]
that is properly contained in (a1, b1], the characteristic span of x1. Thus, the product
trellis generated by c, x2, . . . , xk with the spans (a′, b′], (a2, b2], . . . , (ak, bk], respec-
tively, represents C and is strictly smaller than T . This contradicts the fact that T
is minimal, and thus x′1, x2, . . . , xk are linearly independent. Hence, if x′1,. . . ,x′k are
characteristic generators for C with spans (a1, b1], . . . , (ak, bk], respectively, the gener-
ators x1,. . . ,xk can be switched to x′1,. . . ,x′k one at a time as above to maintain a set
of linearly independent characteristic generators.

Copyright c© Elizabeth A. Weaver, 2012.
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Chapter 7 The BCJR-Construction

In addition to the product construction, we will make use of the tail-biting BCJR-
construction introduced by Nori and Shankar in [15]. It is an extension of the con-
struction for conventional trellises introduced by Bahl, Cocke, Jelinek, and Raviv in
[1], hence the name BCJR. We will begin with a general definition, and later introduce
a specific type of BCJR-trellis.

Definition/Theorem 7.1. [15, Lem. 2, Lem. 3] Let the code C and the matrices G ∈
Fr×n, H ∈ F(n−k)×n be as in (2.2) and (2.3). Let D ∈ Fr×(n−k) be any matrix. For
i ∈ I define the matrices

N0 = D and Ni = Ni−1 +G>i−1Hi−1 for i > 0. (7.1)

Then Nn = N0. We define T(G,H,D) to be the trellis with state spaces Vi := imNi ⊆
Fn−k and transition spaces Ei = im(Ni, G

>
i , Ni+1). Then, T(G,H,D) is a linear, reduced,

and biproper trellis representing the code C. We call D the displacement matrix for
the trellis T(G,H,D), and the trellis T(G,H,D) is called a general (tail-biting) BCJR-trellis
of C.

All statements in this result can easily be proven. Notice, in particular, that
Nn = N0 simply follows from Ni = N0 +

∑i−1
j=0G

>
j Hj, i = 1, . . . , n, along with

0 = GH> =
∑n−1

j=0 G
>
j Hj. The identity C(T(G,H,D)) = C will also be a consequence of

Proposition 7.2 below. In the above definition if one chooses the displacement matrix
D to be the zero matrix, then the resulting general BCJR-trellis is conventional and
is in fact the conventional BCJR-trellis introduced in [1].

A useful property of general BCJR-trellises is stated in the proposition below. It
is important to note that this result does not hold for all classes of trellises. Product
trellises do not always possess this attribute. For example, the product trellis shown
in Figure 4.2 has a path whose edge-label sequence is the zero codeword.

Proposition 7.2. [8, Prop. IV.2] Let T = T(G,H,D) be as in Definition/Theorem 7.1.
Then the edge-label sequence of a path of length n starting at time 0 is a codeword if
and only if the path is a cycle.

Proof. Let (α(i)Ni, α
(i)G>i , α

(i)Ni+1), i ∈ I where α(i) ∈ Fr be a path through T .
Thus α(i)Ni+1 = α(i+1)Ni+1 for i = 0, . . . , n − 2. By induction and the recursive
definition of the Ni matrices, we obtain α(i+1)Ni+1 = α(0)N0 +

∑i
j=0 α

(j)G>j Hj for
i = 0, . . . , n− 2. This implies

α(n−1)N0 = α(n−1)Nn = α(n−1)Nn−1 + α(n−1)G>n−1Hn−1 = α(0)N0 +
n−1∑
j=0

α(j)G>j Hj.
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Hence we have the equivalences

α(n−1)N0 = α(0)N0 ⇐⇒
n−1∑
i=0

α(i)G>i Hi = 0

⇐⇒ (α(0)G>0 , . . . , α
(n−1)G>n−1) ∈ kerH> = C.

This shows that the path is a cycle if and only if its edge-label sequence is a codeword.

This proposition leads to a useful result regarding nonmergeability. Recall that a
trellis T = (V,E) is said to be mergeable if there exist u, v ∈ Vi for some i ∈ I that can
be merged, that is replaced by a single vertex that inherits the edges incident to both u
and v, without changing C(T ). It is often difficult to check a trellis for mergeability;
however, in the case of general BCJR-trellises connectedness and mergeability are
equivalent.

Proposition 7.3. Let T = T(G,H,D) be a general BCJR-trellis. Then T is weakly
connected if and only T is nonmergeable.

Proof. “⇒” Assume that T is connected. Suppose that u, v ∈ Vi can be merged.
Without loss of generality, we may also assume that i = 0. Since T is linear, we can
assume that one of the vertices, say u, is 0. Thus, every path from v to 0 represents a
codeword. Such a path exists by Proposition 2.2 since T is connected. By Proposition
7.2, since this path represents a codeword, this path must be a cycle, and thus v = 0.
Hence, T is nonmergeable.
“⇐” Suppose that T is not connected. Then T has at least two connected compo-
nents, say T1 and T2. Let v1, v2 ∈ Vi, where vi ∈ Ti, i = 1, 2. Suppose we merge v1
and v2 into a single vertex v. This will not create any new cycles in T . For example,
if a path starts in T1 and crosses over to T2 at v, there is no way for the path to
return to T1 to complete the cycle. Therefore T is mergeable.

While some general BCJR-trellises have nice features, as we will see in the next
example, they are not always well-behaved.

Example 7.4. (a) Consider the code C = imG = kerH> ⊆ F3
2 where

G =

(
1 1 0
0 0 1

)
, H =

(
1 1 0

)
.

Let D =

(
0
1

)
. The general BCJR-trellis T(G,H,D) representing C is shown in

Figure 7.1. It has state and transition spaces given by Vj = imNj and Ej =
im(Nj, G

>
j , Nj+1), where

(N0|G>0 |N1|G>1 |N2|G>2 |N0)

=

(
0 1 1 1 0 0 0
1 0 1 0 1 1 1

)
.
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We have staggered the Nj matrices with the columns of G in order to easily show
all of the transition spaces Ej.

(b) Let C ′ = imG′ = kerH ′> ⊆ F4
2 where

G′ =

(
1 0 0 1
0 1 1 0

)
= H ′.

Let D′ =

(
0 1
1 1

)
. The trellis T(G′,H′,D′) has state and transition spaces given by

V ′j = imN ′j and E ′j = im(N ′j, G
′>
j , N

′
j+1), where

(N ′0|G′0
>|N ′1|G′1

>|N ′2|G′2
>|N ′3|G′3

>|N ′0) =(
0 1 1 1 1 0 1 1 0 1 1 1 0 1
1 1 0 1 1 1 1 0 1 1 1 0 1 1

)
.

As one can see in Figure 7.1, the trellis T(G′,H′,D′) is not connected and hence is
also mergeable. It is also not one-to-one.

[T(G,H,D)] [T(G′,H′,D′)]

Figure 7.1: Two general BCJR-trellises

We will now move from the general BCJR-construction from Definition/Theorem
7.1 to one based on spans for the generators. This type of trellis possesses more useful
properties than its general counterpart, and later in this section we will discuss the
relationship between these trellises and product trellises.

Definition 7.5. Let the code C and the matrices G ∈ Fr×n, H ∈ F(n−k)×n be as
in (2.2) and (2.3). Let S := [(al, bl], l = 1, . . . , r] be a span list of G. Then the trellis
T(G,H,S) is defined as T(G,H,D), where

D =

d1...
dr

 ∈ Fr×(n−k) is such that dl = row(D, l) =
n−1∑
j=al

gljHj for j = 1, . . . , r.

(7.2)
The trellis T(G,H,S) is called a span-based (tail-biting) BCJR-trellis of C.
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Note that in [8] and [7], only proper spans are considered; however, in the case
of span-based BCJR-trellises the use of non-proper spans does not create a problem.
If (a, b] is a non-proper span for gl, then it is easy to check that

∑n−1
j=a gljHj =∑n−1

j=a′ gljHj where a′ is the first index past a where gl,a is nonzero. We will, however,
not include any spans of the form I.

Example 7.6. (a) By inspection, one can see that for both parts (a) and (b) of Ex-
ample 7.4, there are no spans that will generate the given displacement matrix as
per Definition 7.5. These trellises are general BCJR-trellises, but they are not
span-based BCJR-trellises.

(b) Let C ′ = imG′ = kerH ′> ⊆ F4
2 where

G′ =

(
1 0 0 1
0 1 1 0

)
= H ′,

as in 7.4(b). Let S := [(3, 0], (1, 2]] be a span list of G′. Thus the trellis T(G′,H′,S)
has state and transition spaces given by V ′j = imN ′j and E ′j = im(N ′j, G

′
j
>
j
, N ′j+1),

where
(N ′0|G′0

>|N ′1|G′1
>|N ′2|G′2

>|N ′3|G′3
>|N ′0)

=

(
1 0 1 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 1 0 1 1 0 0 0 0 0

)
.

As one can see in Figure 7.2, the trellis T(G′,H′,S) consists of the connected com-
ponent of T(G′,H′,D′) from Figure 7.1 that contains the zero cycle.

[T(G′,H′,S)]

Figure 7.2: A span-based BCJR-trellis

Remark 7.7. [8, Rem. IV.4] Span-based BCJR-trellises do not depend on the choice
of the parity check matrix. Precisely, for any U ∈ GLn−k(F) the trellises T(G,H,S)
and T(G,UH,S) are isomorphic. Indeed, if D is as in (7.2) then DUT is the corre-
sponding displacement matrix for T(G,UH,S). As a consequence, UT restricted to all
state spaces furnishes an isomorphism between the two trellises. However, if G and
UG ∈ Fr×n, U ∈ GLr(F), are two generator matrices with the same span list S, then
the BCJR-trellises T(G,H,S) and T(UG,H,S) need not be isomorphic.

We saw in Remark 3.10 that product trellises behave well with cyclic shifting. We
now present a similar remark regarding BCJR-trellises.
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Remark 7.8. (a) Let the code C and the matrices G ∈ Fr×n, H ∈ F(n−k)×n be as
in (2.2) and (2.3). Let D ∈ Fr×(n−k) be any matrix. As in Remark 3.10, let
G∗ ∈ Fr×n be the matrix consisting of the shifted rows σ(gl), l = 1, . . . , r, and
define H∗ accordingly. Let Ni, i ∈ I, be the state space matrices as in (7.1)
for the BCJR-trellis T(G,H,D). Then the state space matrices for the BCJR-trellis
T(G∗,H∗,S∗) are given by N∗i = Ni+1 for i ∈ I. This follows inductively due to
(7.1).

(b) Let S and D be as in Definition 7.5. Then S∗ :=
[
(al − 1, bl − 1], l = 1, . . . , r

]
is a span list for the rows of G∗. Also, by (7.2) the l-th row of N∗0 is defined as∑n−1

j=al−1 g
∗
ljH

∗
j =

∑n−1
j=al−1 gl,j+1Hj+1 =

∑n−1
j=al

gljHj + gl0H0, and the latter is the
l-th row of N1. This way we obtain again that N∗i = Ni+1 for all i ∈ I.

We will close this section with some important results regarding span-based BCJR-
trellises. The first states a nice property of the state space matrices of span-based
BCJR-trellises that allows for easy comparison to the state space matrices of a prod-
uct trellis. The second gives the property that all span-based BCJR-trellises are
nonmergeable, and presents a relationship between the BCJR and KV-trellises for a
given G with span set S.

Proposition 7.9. Let T(G,H,S) be a span-based BCJR-trellis with state space matrices
Ni, i ∈ I and where S = [(al, bl] : l = 1, . . . , r]. Then row(Nj, l) = 0 for all l such
that j 6∈ (al, bl].

Proof. If (al, bl] is conventional, then all nonzero entries of gl are in the interval
[al, n − 1]. Therefore dl =

∑n−1
j=al

gljHj =
∑n−1

j=0 gljHj = 0, due to GH> = 0. This
proves the statement for j = 0. Suppose that j 6∈ (al, bl], and apply the left cyclic
shift σ, as in Remark 7.8, to our data j times to obtain the trellis T ′ with state space
matrices N ′i . Then, by the above argument we have that row(N ′0, l) = 0 for all l such
that 0 6∈ (al − j, bl − j]. Shifting back gives that row(Nj, l) = 0 for all l such that
j 6∈ (al, bl].

Theorem 7.10. [8, Cor. IV.7, Thm. IV.9, Rem. IV.13] Let G, H, and the span
list S be as in Definition 7.5.

(a) The BCJR-trellis T(G,H,S) is non-mergeable.

(b) If the product trellis TG,S is non-mergeable, then TG,S is isomorphic to T(G,H,S).

(c) If the product trellis TG,S has the same SCP as the BCJR-trellis T(G,H,S), then
these two trellises are isomorphic.

Proof. Let Vi be the i-th state space of T(G,H,S). Due to the shift property of T(G,H,S)
as described in Remark 7.8, it suffices to show that T(G,H,S) is non-mergeable at
i = 0. Furthermore, by linearity of the trellis, it is enough to show that no state
v ∈ V0\{0} can be merged with 0 ∈ V0. Thus, let v ∈ V0\{0}. If we can show that
there exists a path of length n from v to 0 ∈ V0, then Proposition 7.2 implies that
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the corresponding edge-label sequence is not a codeword. Hence v and 0 ∈ V0 cannot
be merged (because after merging this path would be a cycle).

Thus, it remains to establish the existence of a path of length n from v to 0.
In order to do so, consider the product trellis TG,S . Let Ni and Mi as in (7.2)
and (3.1) be the state space matrices for T(G,H,S) and TG,S , respectively. Moreover,
let v = α(0)N0, where α(0) ∈ Fk. Then, w := α(0)M0 is a state at time zero in the
product trellis TG,S . Hence Remark 3.3(b) and Proposition 3.5 imply that TG,S is
weakly connected. Thus by Proposition 2.2 there exists a path in TG,S from w to
0 ∈ V0. Precisely, there exist vectors α(1), . . . , α(n−1) ∈ Fk such that

α(i) − α(i+1) ∈ kerMi+1, i = 0, . . . , n− 2,

α(n−1)M0 = 0.

}
(7.3)

This also gives rise to a path in the BCJR-trellis T(G,H,S). Indeed, Proposition 7.9
and the definition of Mi in (3.1) show that kerMi ⊆ kerNi. Then (7.3) implies
α(i) − α(i+1) ∈ kerNi+1 for i = 0, . . . , n − 2, and α(n−1)N0 = 0. In other words, we
obtain a path from v = α(0)N0 to 0 in the trellis T(G,H,S). This concludes the proof
of part (a). Proofs of the statements (b) and (c) may be found in [8], see results
Corollary IV.7, Theorem IV.9, and Remark IV.13.

As a consequence of Theorem 7.10, the nonmergeability of a product trellis TG,S
can easily be tested by comparing the data sets SCP(TG,S) and SCP(T(G,H,S)). In
the case where TG,S is not isomorphic to the corresponding BCJR-trellis, and thus
is mergeable, Theorem IV.9 in [8] shows that the product trellis can be merged to
T(G,H,S).

Example 7.11. (a) Let C = imG = kerH> ⊆ F3
2, where

G =

(
1 0 1
1 1 0

)
, H =

(
1 1 1

)
.

Consider the span list S = [(0, 2], (1, 0]] for G. Then the span-based BCJR-
trellis T = T(G,H,S) has state and transition spaces given by Vj = imNj and
Ej = im(Nj, G

>
j , Nj+1), where

(N0|G>0 |N1|G>1 |N2|G>2 |N0) =

(
0 1 1 0 1 1 0
1 1 0 1 1 0 1

)
.

The trellis T is shown in Figure 7.3. The product trellis TG,S is shown in Figure
2.1. While this trellis is not isomorphic to its BCJR-counterpart, the merging
in Figure 2.1, shows that the merging results in a trellis that is isomorphic to
T(G,H,S).

(b) Consider the code C ′ = imG′ = kerH ′> ⊆ F5
2, where

G′ =

0 1 1 1 0
1 0 0 1 0
0 1 1 0 1

 , H ′ =

(
1 0 1 1 1
0 1 1 0 0

)
.
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Then S ′ :=
[
(1, 3], (3, 0], (2, 1]

]
is a span list for G′. Note that S ′ is not a set of

characteristic spans since the codeword 00011 has a proper conventional span of
(3, 4]. Using the product construction, we obtain the following state space matrices
for the trellis T ′ = T(G′,S′).

(M0|M1|M2|M3|M4) =0 0 0 0 0 0 1 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 1 0 0 1 0 0 0 0 0 1 0 0 1


Hence the SCP of T ′ is given by (2, 1, 1, 2, 2). The BCJR-construction for the
trellis T(G,H,S) yields the following state space matrices.

(N0|N1|N2|N3|N4) =

0 0 0 0 0 1 1 0 0 0
1 0 0 0 0 0 0 0 1 0
0 1 0 1 0 0 1 1 1 1


Thus, the SCP of T(G′,H′,S) is also given by (2, 1, 1, 2, 2). Thus by Theorem 7.10,
we have that T ′ = TG′,S′ ∼= T(G′,H′,S′). Hence, TG′,S′ is nonmergeable.

[T(G,H,S)] [TG′,S′ ∼= T(G′,H′,S′)]

Figure 7.3: Two span-based BCJR-trellises.

Finally we show that KV-trellises are always isomorphic to their corresponding
BCJR-trellises and thus are also nonmergeable. This result is very useful as we will
see in the following chapter.

Theorem 7.12. [7, Thm. II.12] Assume that C and C⊥ have support I, and let X
be a characteristic matrix of C. Let G ∈ Fr×n be a selection of r rows of X with
corresponding list of characteristic spans S := [(al, bl] : l = 1, . . . , r]. Consider the
BCJR-trellis T(G,H,S) with state space matrices Nj ∈ Fr×(n−k). Then for all j ∈ I

1. row(Nj, l) = 0 for all l such that j 6∈ (al, bl],

2. the set {row(Nj, l) : l such that j ∈ (al, bl]} is linearly independent.
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3. j ∈ {b1, . . . , br} ⇐⇒ Hj ∈ imNj.

As a consequence, the trellis T(G,H,S) is isomorphic to the corresponding product trel-
lis TG,S , and if r = k = rkG we may call T(G,H,S) a KV-trellis.

Proof. (1) This statement has been proven in 7.9. Part (2) and the consequence have
been shown in [8, Thm. IV.11] for the case where G ∈ Fr×n has rank r. It can easily
be checked that the same proof applies to this more general case.
(3) Using Remark 7.8 we may assume without loss of generality that j = 0.
“⇒” Let 0 = bl. Then (7.2) and the identity GH> = 0 along with the fact that
(al, bl] = (al, 0] is the span of the l-th row of G imply row(N0, l) = −gl0H0, proving
the desired result.
“⇐” Let 0 6∈ {b1, . . . , bk} and assume H0 = βN0 for some β ∈ Fk. Then H0 6=
0, due to our assumption that the dual code C⊥ has support I. Define the set
L := {l : 0 ∈ (al, bl], βl 6= 0}. Using the definition of N0 in (7.2) along with (1),
we may write H0 =

∑
l∈L βl

∑n−1
j=al

gljHj =
∑

l∈L βlĝlH
T, where the vectors ĝl =

(ĝl0, . . . , ĝl,n−1) ∈ Fn are defined via ĝlj = glj if j ≥ al and ĝlj = 0 if j < al. As a
consequence, c :=

∑
l∈L βlĝl − e0 ∈ kerHT = C, where e0 ∈ Fn is the first standard

basis vector. The definition of ĝl shows that the codeword c has span (as, 0], where
as := min{al : l ∈ L}. Notice that as > 0 due to the very definition of the set L. Now
we are in a position to invoke the characteristic spans. Indeed, Definition 5.2 implies
(as, bs] ⊆ (as, 0], and since (as, bs] is circular, this in turn yields bs = 0, contradicting
our assumption that 0 6∈ {b1, . . . , bk}. This proves (3).

Copyright c© Elizabeth A. Weaver, 2012.
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Chapter 8 Dualizing Trellises

We will begin this chapter by discussing several methods for dualizing trellises to pro-
duce a trellis for the dual of a code. One follows easily from the BCJR-construction.
Another, called the local dual, was introduced by Forney and is a very general pro-
cedure that works for many different types of graphs. It is based on dualizing the
transition spaces in a natural way. Often the BCJR-dual and the local dual of a given
trellis are non-isomorphic. In Theorem 8.10, we present conditions for a large class
of well-behaved trellises under which the BCJR-dual and the local dual coincide. For
KV-trellises, not only are these two dual trellises isomorphic, but we will show that
the dual of a KV-trellis of C is a KV-trellis of C⊥. This proves and even extends a
conjecture made by Koetter and Vardy, see [11, p. 2097]. We conclude the section by
considering which types of minimality are preserved under the dualization process.

Throughout this section, we will only consider codes C where both C and C⊥ have
full support.

We begin with the natural dualization that comes with the BCJR-construction.
This was introduced by Nori and Shankar in [15].

Definition/Theorem 8.1. Let T = T(G,H,D) be a general BCJR-trellis. Then the
trellis T⊥ = T(H,G,D>) is called the BCJR-dual trellis of T and represents the dual
code C⊥. Its state spaces are given by imNi

T, i ∈ I. Thus, T(G,H,D) and T(H,G,D>)
have the same SCP, given by (s0, . . . , sn−1), where si = rkNi. Therefore, if T(G,H,D)

is a minimal trellis for C, then T⊥ is a minimal trellis for C⊥.

The statements in this result can be easily verified, and a formal proof appears
in [15]. Note that the BCJR-dual of a span-based BCJR-trellis is not guaranteed
to be span-based. There may not be any suitable spans for H that will lead to the
displacement matrix N>0 as in Definition 7.5.

Example 8.2. (a) Let C = imG = kerH> ⊆ F4
2, where

G =

(
1 1 0 1
0 1 1 0

)
, H =

(
1 0 0 1
0 1 1 1

)
.

Let S be the span list S = [(3, 1], (1, 2]] for G. Let T = T(G,H,S) with state space
matrices Ni. Then the BCJR-dual trellis T⊥ = T(H,G,N0

⊥) has state and transition

spaces given by Vj = imNj
> and

Ej = im(Nj
>, H>j , Nj+1

>), where

(N0
>|H>0 |N1

>|H>1 |N2
>|H>2 |N3

>|H>3 |N0
>) =(

1 0 1 0 0 0 0 0 0 0 0 1 1 0
1 0 0 1 0 1 0 1 1 0 0 1 1 0

)
.

The trellis is shown in Figure 8.1. It is also easy to see that the span list Ŝ =
(2, 0], (3, 2]] for H results in T⊥ ∼= T(H,G,Ŝ), and thus T⊥ is a span-based BCJR-
trellis.
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(b) Let C ′ = imG′ = kerH ′T ⊆ F5
2, where

G′ =

0 1 1 1 0
1 0 0 1 0
0 1 1 0 1

 , H ′ =

(
1 0 1 1 1
0 1 1 0 0

)
,

and let S ′ :=
[
(1, 3], (3, 0], (2, 1]

]
be a span list for G′. Let T ′ = T(G′,H′,S′) with

state space matrices N ′i . Then the trellis T ′⊥ has state and transition spaces given
by V ′j = imN ′0

> and E ′j = im(N ′j
>, H ′>j , N

′
j+1
>), where

(N ′0
>|H ′0

>|N ′1
>|H ′1

>|N ′2
>|H ′2

>|N ′3
>|H ′3

>|N ′0
>

) =(
0 1 0 1 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 1 0 1 0
0 0 1 0 0 0 1 1 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1

)
.

As one can see in Figure 8.1, this trellis is not connected and hence is mergeable.
Therefore, this is not a span-based BCJR-trellis by Theorem 7.10.

[T⊥] [T ′⊥]

Figure 8.1: Two BCJR-dual trellises.

We will now consider the process of local dualization which, in the particular case
of tail-biting trellises, looks as follows.

Theorem 8.3. Let T = (V,E) be a linear trellis representing the code C ⊆ Fn.
Let V̂j, j ∈ I, be vector spaces such that dimVj = dim V̂j for all j ∈ I, and fix

non-degenerate bilinear forms 〈 · , · 〉 on Vj × V̂j, j ∈ I. For each transition space
Ej ⊆ Vj × F× Vj+1, define (Ej)

◦ as the dual space with respect to the bilinear form

(Vj×F×Vj+1)× (V̂j×F× V̂j+1) −→ F,
(
(v, a, w), (v̂, b, ŵ)

)
7−→ 〈v, v̂〉+ab−〈w, ŵ〉,

that is,

(Ej)
◦:=
{

(v̂, b, ŵ) ∈ V̂j × F× V̂j+1

∣∣ 〈v, v̂〉+ ab− 〈w, ŵ〉 = 0 for all (v, a, w) ∈ Ej
}
.

(8.1)
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Then the trellis T ◦ = (V̂ , E◦), where V̂ =
⋃n−1
j=0 V̂j and E◦ =

⋃n−1
j=0 (Ej)

◦, is linear

and represents C⊥. Furthermore, SCP(T ◦) = SCP(T ) := (s0, . . . , sn−1) and

dim(Ej)
◦ = sj + sj+1 + 1− dimEj for j ∈ I. (8.2)

We call T ◦ the local dual of T .

It is clear that SCP(T )=SCP(T ◦), and the formula for ECP(T ◦) comes from the
fact that Ej ⊆ Vj×F×Vj+1. It is also straight-forward to check that C(T ◦) ⊆ C⊥. Let
(v̂0, â0, . . . , ân−1, v̂0) be a cycle in T ◦. Then for any cycle (v0, a0, . . . , an−1, v0) in T , we
have 0 =

∑n−1
i=0 (〈vi, v̂i〉 + aiâi − 〈vi+1, v̂i+1〉) =

∑n−1
i=0 aiâi. Thus (â0, . . . , ân−1) ∈ C⊥.

Forney’s proof of this result can be found for a more general setting in [5, Sec. VII].
It should be noted that the isomorphism class of T ◦ is not dependent on the choice

of V̂j or the non-degenerate bilinear forms used in the construction. If 〈 · , · 〉1 and

〈 · , · 〉2 are two such forms on Vj × V̂j and Vj × Ṽj, then there exists an isomorphism

φj : V̂j → Ṽj such that 〈v, w〉1 = 〈v, φj(w)〉2 for all v ∈ Vj, w ∈ V̂j. As a consequence,
this isomorphism furnishes a trellis isomorphism between the two corresponding dual
trellises.

Example 8.4. (a) The BCJR-trellis T(G,H,S) used in Example 8.2 (a) has state and
transition spaces Vj = imNj and Ej = im(Nj, G

>
j , Nj+1) where

(N0|G>0 |N1|G>1 |N2|G>2 |N3|G>3 |N0) =(
1 1 1 0 1 1 0 0 0 0 0 1 1 1
0 0 0 0 0 1 0 1 1 0 0 0 0 0

)
.

For the local dual T ◦, we may use the standard inner product on F2
2 and V̂j = Vj

for j = 1, 2, 3; however, since the standard inner product on V0×V0 is degenerate,
we take V̂ = im(1 0). Then

(E0)
◦ = im

(
1 0 1 0 0
1 0 0 0 1

)
,

(E1)
◦ = im

(
0 1 1 0 1

)
,

(E2)
◦ = im

(
0 1 1 0 0

)
,

(E3)
◦ = im

(
0 0 1 1 0

)
.

Thus in this case the local dual trellis is isomorphic to the BCJR-trellis shown in
Figure 8.1.

(b) Consider Example 8.2(b). The BCJR-trellis T ′ := T(G′,H′,S′) given in that example

has state and transition spaces Vj = imN ′j and Ej = im(N ′j, G
′
j
>, N ′j+1) where

(N ′0|G′0
>|N ′1|G′1

>| . . . |N ′3|G′3
>|N ′0) =0 0 0 0 0 1 0 1 1 1 0 1 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 1 0
0 1 0 0 1 1 0 0 1 1 1 0 1 1 1 0 1

 .
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In order to compute the local dual T ′◦, we may again use the standard bilinear
form on F2

2 and let Vj be the dual state spaces. Then

(E0)
◦ = im

(
1 0 1 0 0
0 1 0 0 1

)
,

(E1)
◦ = im

(
0 1 1 0 1

)
,

(E2)
◦ = im

(
0 0 1 1 0
0 1 0 1 1

)
,

(E3)
◦ = im

(
1 0 1 1 0
0 1 0 0 1

)
,

(E4)
◦ = im

 1 0 0 1 1
0 1 0 0 1
0 1 1 0 0

 .

This leads to the trellis T ′◦ in Figure 8.2. The trellis T ′◦ is not edge-reduced
because not every edge appears in a cycle. Indeed, the four diagonals in (E4)

◦,
the last section of the trellis, are not part of any cycle in T ′◦. If we remove
these 4 edges, then we obtain the BCJR-trellis T ′⊥ shown in Figure 8.1 (up to
isomorphism).

(c) Consider the 2-dimensional code

Ĉ = im

(
0 1 1
1 0 1

)
⊆ F3

2

and choose the span list Ŝ = [(1, 2], (0, 2]]. Then the corresponding product trellis
T̂ = TĜ,Ŝ has SCP (0, 1, 2) and ECP (1, 2, 2) and is shown in Figure 8.2 below.

Notice that T̂ is a conventional trellis, but not biproper (and thus not minimal).
The transition spaces Êj of T̂ can be read off from the matrix

(M̂0|Ĝ>0 |M̂1|Ĝ>1 |M̂2|Ĝ>2 |M̂0)

=

(
0 0 0 0 0 1 1 0 1 0 0
0 0 1 0 1 0 0 1 1 0 0

)
;

see Definition 3.7 for the state space matrices M̂j of product trellises. According

to Theorem 8.3, the local dual T̂ ◦ has SCP (0, 1, 2) and ECP (1, 2, 1). In order
to compute T̂ ◦, we observe that the standard bilinear form on F2

2 induces a non-
degenerate form on each V̂j = im M̂j, and thus may be used for the computation

of the dual spaces (Êj)
◦. In particular, we will use V̂j for the dual state spaces as

well. Then we compute

(Ê0)
◦ = im

(
0 0 1 0 1

)
,

(Ê1)
◦ = im

(
0 0 1 1 0
0 1 0 0 1

)
,

(Ê2)
◦ = im

(
1 1 1 0 0

)
.
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This leads to the trellis T̂ ◦ shown in Figure 8.2. Obviously, not every vertex
appears in a cycle and thus the trellis T̂ ◦ is not reduced. As a consequence, T̂ ◦ is
not a product trellis in the sense of Definition 3.7. This phenomenon can easily
be explained. Indeed, it is straightforward to show that T is biproper if and only
if T̂ ◦ is state-trim (that is, each state lies on an edge in both the forward and
backward direction).

[T ′◦] [T̂ ] [T̂ ◦]

Figure 8.2: Examples of Local Dual Trellises.

The following proposition for connected product trellises will be useful in the
remainder of this chapter.

Proposition 8.5. Let TG,S = (V,E) be a product trellis where no span in S is I.
Then T ◦ is one-to-one.

Proof. Since T ◦ is linear, we must only show that any cycle in T ◦ representing the
zero codeword is the all-zero cycle. Let (v̂j, 0, v̂j+1)

n−1
j=0 be a cycle in T ◦. Since each

elementary trellis in the product of T is weakly connected, T is weakly connected as
well by Proposition 3.5. Thus for any v ∈ Vi, there exists a path of length n from
v to 0 ∈ Vi. Let (v, ai, vi+1, . . . , v0, a0, v1, . . . , vi−1, ai−1, 0) be such a path. Then by
(8.1), we have that 〈v, v̂i〉 = 〈vi+1, v̂i+1〉 = . . . = 〈0, v̂i〉 = 0. Thus v̂i is orthogonal to
every vertex in Vi. Since 〈 · , · 〉 is a non-degenerate bilinear form on Vi× V̂i, we must
have that v̂i = 0. Therefore our original cycle in T ◦ is indeed the all-zero cycle.

We have seen in the previous examples that while the local dual and the BCJR-
dual of a given trellis have the same state complexity profile, they are not always
isomorphic. However, the following proposition shows that for a trellis T , the BCJR-
dual T⊥ is always a subtrellis of the local dual T ◦.

Proposition 8.6. [7, Prop. III.4] Let T = T(G,H,D) be as in Definition/Theorem 7.1.

Let Êj and (Ej)
◦ be the transition spaces of the duals T⊥ and T ◦, respectively. Then

Êj ⊆ (Ej)
◦, up to trellis isomorphism.
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In the proof we will construct the local dual based on a suitable choice of dual
state space and inner form, which will then make T⊥ a true subtrellis of T ◦ and not
just an isomorphic copy.

Proof. Let Vj = imNj and Ej = im(Nj, G
>
j , Nj+1) be the state spaces and transition

spaces of T , where the matrices Nj are defined as in (7.1). By the very definition of

the BCJR-dual, the state spaces of T⊥ are given by V̂j = im N̂j, where N̂j = N>j .

Moreover, the transition spaces are given by Êj = im(N̂j, H
>
j , N̂j+1). Notice that the

bilinear form Vj× V̂j −→ F, defined as 〈αNj, βN̂j〉 := αNjβ
T, is well-defined and non-

degenerate. So we may construct the local dual T ◦ based on this form. Obviously,
dim V̂j = dimVj for all j ∈ I, and the transition spaces of T ◦ are

(Ej)
◦ =

{
(βN̂j, b, β̃N̂j+1) ∈ V̂j × F× V̂j+1

∣∣∣∣ αNjβ
T + αG>j b− αNj+1β̃

T = 0
for all α(Nj, G

>
j , Nj+1) ∈ Ej

}
.

Now we see that Êj = im(N̂j, H
>
j , N̂j+1) ⊆ (Ej)

◦ since for all β(N̂j, H
>
j , N̂j+1) ∈ Êj

and α ∈ Fk we have αNjβ
T + αG>j Hjβ

T − αNj+1β
T = α(Nj +G>j Hj −Nj+1)β

T = 0,
due to (7.1).

Recall from Proposition 8.5 that for a connected product trellis T = TG,S , the
local dual T ◦ is one-to-one. If T is also a BCJR-trellis, then the BCJR-dual T⊥ is
also one-to-one because T⊥ is a subtrellis of T ◦.

Remark 8.7. In [11, Sec. VII], Koetter and Vardy introduce another dual trellis
construction. This dualization process is similar to the product construction. First
elementary dual trellises for generators of the code are constructed based on specified
spans. The vertex spaces of these trellises are defined in the same way as those
of elementary trellises; however, the edge spaces, Ei, are constructed using one of
five cases determined by the relationship between i and the span of the generator.
These elementary dual trellises are then combined into a larger trellis representing
the entire code by taking what they call the intersection product. Through straight-
forward computations outlined below, one can show that for any linear and reduced
trellis (thus for any product trellis), Koetter and Vardy’s intersection dual yields the
same trellis as Forney’s local dual construction. To begin, one can prove that the local
dual and the elementary dual trellises coincide for any elementary trellis Tg,s. Next,
it is clear that the intersection dual and the local dual will have the same vertex space
since they both retain the vertex spaces of the original trellis. Thus, we only need to
show that their edge spaces coincide. Now consider a code with generators g1,. . . ,gr
and corresponding spans s1,. . . , sr. We can view the edge spaces, (Ei)

◦, of the local
dual as (Ei)

◦ = ∩rl=1(E
l
i)
◦
, where (El

i)
◦

is the i-th edge space of the local dual of Tgl,sl.
One can then show that the intersection dual is a subtrellis of the local dual. Thus,
for each time i, the i-th edge space of the intersection dual is a subspace of the i-th
edge space of the local dual. Finally, it is simple to prove that for each time i, the i-th
edge space of the intersection dual has the same dimension as that of the local dual,
and this completes the proof.
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We are now ready to present one of the main results of this section. We will
characterize the linear, reduced, nonmergeable, and one-to-one trellises whose BCJR-
duals and local duals coincide.

Lemma 8.8. Let T = T(G,H,S) be a BCJR-trellis where S = [(al, bl] : l = 1, . . . , r],
a1, . . . , ar are distinct and b1, . . . , br are distinct. Let A = {a1, . . . , ar} and B =
{b1, . . . , br}. If T ∼= TG,S , then SCP(T⊥) = (ξ0, . . . , ξn−1) and ECP(T⊥) =
(ε̂0, . . . , ε̂n−1) satisfy

(a) ξi ≤ ε̂i ≤ ξi + 1 for all i ∈ I and ε̂i = ξi if i ∈ B,

(b) ξi+1 ≤ ε̂i ≤ ξi+1 + 1 for all i ∈ I and ε̂i = ξi+1 if i ∈ A.

Proof. As usual, let Ni be the state space matrices of T . Recall that ξi = rkN>i and
ε̂i = rk(N>i , H

>
i , N

>
i+1). By the recursive definition of the Ni matrices, we also have

that ε̂i = rk(N>i , H
>
i ) = rk(H>i , N

>
i+1). Since H>i is a single column, the inequalities

in (a) and (b) follow.
Now let i ∈ A. Since T is a product trellis by assumption, we may use the for-
mulas in Theorem 3.9. Let ECP(T ) = (ε0, . . . , εn−1). Then εi = ξi + 1, and since
εi = im(Ni, G

>
i , Ni+1), this implies that G>i is not in the column space of Ni, equiv-

alently, Gi 6∈ im(Ni)
>. Taking duals gives that there exists α ∈ Fr such that

α ∈ kerNi\ kerG>i . Then αNi+1 = α(Ni + G>i Hi) gives that αNi+1 = αG>i Hi.
Since αG>i ∈ F\{0}, we have that Hi is in the column space of N>i+1. Thus ξi+1 = ε̂i
as desired. The case where i ∈ B is similar.

Lemma 8.9. Let T = T(G,H,S) be a BCJR-trellis where rkG = k, S = [(al, bl] : l =
1, . . . , k], a1, . . . , ak are distinct, and b1, ..., bk are distinct. Let Ni, i ∈ I be the state
space matrices of T . Assume that the following properties are satisfied.

1. row(Nj, l) = 0 for all l such that j 6∈ (al, bl],

2. for j ∈ I the set {row(Nj, l) : l such that j ∈ (al, bl]} is linearly independent.

3. j ∈ {b1, . . . , br} ⇐⇒ Hj ∈ imNj.

Then
⋂n−1
j=0 imNj = {0}.

Proof. The proof of Theorem II.13 in [7] proves this statement. It is easy to check
that the KV-requirement made in that theorem is not needed.

Theorem 8.10. Let T = T(G,H,S) ∼= TG,S where rkG = k, S := [(al, bl] : l = 1, . . . , k],
the starting points a1, . . . , ak are distinct, the ending points b1, . . . , bk are distinct,
and Ni are the state space matrices of T(G,H,S) where i ∈ I. Then, the following
statements are equivalent.

(a) T⊥ is nonmergeable.

(b) T⊥ is weakly connected.
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(c) T⊥ is the span-based BCJR-trellis T(Ĥ,G,Ŝ) where Ĥ is a parity check matrix for

C(T ) and Ŝ is a span set whose starting points are I\{b1, . . . , bk} and whose
ending points are I\{a1, . . . , ak}.

(d) T⊥ ∼= T ◦

(e) For all i ∈ I, [Hi ∈ imNi ⇐⇒ i ∈ {b1, . . . , bk}]

(f) ∩n−1i=0 imNi = {0}

(g) T ◦ is edge-reduced, that is, every edge in T ◦ lies on a cycle.

Proof. Let (ξ0, . . . , ξn−1) be the common SCP of the trellises T , T⊥, and T ◦. Further-
more, denote the ECP of T by (ε0, . . . , εn−1) and the ECP of T⊥ by (ε̂0, . . . , ε̂n−1).

“(a)⇔ (b)” Since the dual of a BCJR-trellis is a general BCJR-trellis, this follows
from Proposition 7.3.

“(a) ⇒ (c)” Since T⊥ is a subtrellis of T ◦, we have that T⊥ is one-to-one, and by
Definition/Theorem 7.1, we have that T⊥ is linear and reduced. Because Theorem
3.11 states that every linear and reduced trellis is a product trellis, we can also write
T⊥ as TĤ,Ŝ for some Ĥ such that C⊥ = im Ĥ and Ŝ is a span list for Ĥ. Since T⊥

is one-to-one, Ĥ has full row rank by Theorem 3.9. Since T⊥ is nonmergeable by as-
sumption, we know from (2.1) that T⊥ is biproper. Hence the spans in Ŝ are proper,
the starting points of the spans are distinct, and so are the ending points (see Remark
3.8). Let Â be the set of starting points of Ŝ, and let B̂ be the set of ending points. We

can now use the formulas in Theorem 3.9 on T⊥. Thus, ε̂i = ξi+IÂi = ξi+1+I B̂i for all
i ∈ I, and hence Lemma 8.8 implies that Â ⊆ I\{b1, . . . , bk} and B̂ ⊆ I\{a1, . . . , ak}.
Since |Â| = |B̂| = n − k, we have equality in both cases. Thus T⊥ = TĤ,Ŝ where

Ŝ has the desired properties. Since T⊥ is nonmergeable, we have T⊥ ∼= T(Ĥ,G,Ŝ) by
Theorem 7.10.

“(c) ⇒ (d)” By Theorem 3.9 and the fact that Â = I\{b1, . . . , bk} we obtain the
following.

ε̂i = ξi + IÂi = ξi + 1− IBi = ξi + 1 + ξi+1 − εi
Therefore, by Theorem 8.3, we get that ε̂i = dim(Ei)

◦ where (Ei)
◦ is the i-th transi-

tion space of T ◦. Hence, T⊥ ∼= T ◦ by Proposition 8.6.

“(d) ⇒ (e)” Since T⊥ ∼= T ◦ we know that ECP(T⊥)=ECP(T ◦) = (ε̂0, . . . , ε̂n−1).
Now, ε̂i = rk(N>i , H

>
i , N

>
i+1) = rk(N>i , H

>
i ) and thus

ε̂i =

{
ξi if H>i ∈ col(N>i )
ξi + 1 if H>i 6∈ col(N>i )

,

where col()̇ denotes the column space of the matrix. By recognizing that col(N>i ) =
imNi (up to transposition) and using (8.2), we obtain

εi =

{
ξi+1 + 1 if Hi ∈ im(Ni)
ξi+1 if Hi 6∈ im(Ni)
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Hence, by Theorem 3.9, we obtain the desired equivalence.

“(e) ⇒ (f)” Note that T satisfies the first property of Lemma 8.9 due to Propo-
sition 7.9. By Theorem 3.9, we know that for all i ∈ I, row(Mi, l) is zero exactly
when i 6∈ (al, bl] and the non-zero rows of Mi are linearly independent because they
are distinct standard basis vectors. Proposition 7.9 implies that if row(Mi, l) is zero,
then row(Ni, l) is also zero. Now TG,S ∼= T(G,H,S) gives that rkMi = rkNi for all i ∈ I.
Thus the nonzero rows of Ni are the rows for which i ∈ (al, bl], and they are linearly
independent for all i ∈ I. Since the third property of Lemma 8.9 is our assumption,
part (f) follows.

“(f) ⇒ (b)” Recall from Proposition 2.2 that T⊥ = (V̂ , Ê) is weakly connected
if for all v ∈ V̂0 there exists a path of length n from v to 0 ∈ V̂0. We will show the
existence of such a path. Let v ∈ im(N0)

> = V̂0. Then v = α(N0)
> for some

α ∈ Fn−k. Taking duals of the statement in (f) gives
∑n−1

i=0 ker(Ni)
> = Fn−k.

Thus we may write α =
∑n−1

i=0 α
(i) where α(i) ∈ ker(Ni)

> for all i ∈ I. Then∑n−1
i=r α

(i)(Nr)
> =

∑n−1
i=r+1 α

(i)(Nr)
> for all r = 0, ..., n − 1. Because v = (α −

α(0))(N0)
> =

∑n−1
i=1 α

(i)(N0)
> and α(n−1)(Nn−1)

> = 0, we get that the edges(
n−1∑
i=r

α(i)((Nr−1)
>, Hr−1

>, (Nr)
>)

)
r=1,...,n−1

form a path from v to 0 ∈ Vn−1. This path can then be extended to the desired path.

“(d) ⇒ (g)” This is clear since T⊥ is edge-reduced.

“(g) ⇒ (d)” Since Proposition 8.6 gives that Êj ⊆ (Ej)
◦ for j ∈ I, it remains to

show that every edge in T ◦ is an edge in T⊥. Consider a given edge in T ◦. Since
T ◦ is edge reduced, this edge in T ◦ is part of a cycle whose edge-label sequence is a
codeword in C⊥. This codeword is also represented by a cycle in T⊥. By Proposition
8.6, we know that this cycle also appears in T ◦. Since T ◦ is one-to-one, this implies
that these cycles coincide, and thus the given edge in T ◦ is also in T⊥.

Corollary 8.11. KV-trellises satisfy the properties (a)-(g) of Theorem 8.10. In par-
ticular, we have that the local dual and the BCJR-dual coincide.

Proof. Note that by Theorem 7.12, KV-trellises satisfy the hypothesis of Theorem
8.10 as well as part (e).

While Theorem 8.10 applies to KV-trellises, this theorem does indeed apply to a
larger class of trellises. Part (a) of the following example, which appears as Example
III.6 in [7], provides such a trellis.
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Example 8.12. (a) Let C = imG = kerH> ⊆ F6
2, where

G =

0 1 1 1 1 1
0 0 1 1 1 0
1 1 0 1 0 1

 , H =

0 0 1 0 1 0
1 0 0 1 1 0
1 1 1 1 0 1

 .

Consider the span list S = [(1, 5], (2, 4], (3, 1]] for G. One can easily verify that
(1, 5] and (2, 4] are characteristic spans of C, but (3, 1] is not (there exists a
codeword with span (3, 0]). Hence the product trellis TG,S is not a KV-trellis. By
straightforwardly computing the data for TG,S and the corresponding BCJR-trellis
T := T(G,H,S), one obtains that both trellises have SCP (1, 1, 1, 2, 3, 2). Hence
they are isomorphic due to Theorem 7.10. Their ECP is (1, 2, 2, 3, 3, 2). The
displacement matrix of T(G,H,S) is given by

N0 =

0 0 0
0 0 0
0 1 0

 .

Let us now consider the BCJR-trellis T(H,G,Ŝ) of C⊥, where Ŝ = [(2, 4], (3, 0], (0, 5]]
is the chosen span list for the rows of H. Its displacement matrix turns out to be
N>0 . As a consequence, T⊥ = T(G,H,S)

⊥ = T(G,H,N0)
⊥ = T(H,G,N>0 ) = T(H,G,Ŝ). One

can also easily verify that T(H,G,Ŝ)
∼= TH,Ŝ . Now it is easy to check that both T⊥

and T ◦ have ECP (2, 1, 2, 3, 3, 2). Thus Proposition 8.6 yields T⊥ ∼= T ◦.

(b) The condition that rkG = k is also a crucial assumption, and plays a part in the
proof of “(e) ⇒ (f)”, see the proof of Theorem II.13 in [7]. In the case where
rkG = r > k, the following example shows that we may have T⊥ ∼= T ◦ even if T⊥

is not connected. Let C be as in Example 7.11 (b), that is, C = imG = kerH> ⊆
F3
2, where

G =

(
1 0 1
1 1 0

)
, H =

(
1 1 1

)
.

Consider the span list S = [(0, 2], (1, 0]] for G. Then the span-based BCJR-
trellis T = T(G,H,S) has state and transition spaces given by Vj = imNj and
Ej = im(Nj, G

>
j , Nj+1), where

(N0|G>0 |N1|G>1 |N2|G>2 |N0) =

(
0 1 1 0 1 1 0
1 1 0 1 1 0 1

)
.

The trellises T and T⊥ are shown in Figure 8.3. Using (8.2), it is easy to see
that ECP(T ◦)=ECP(T⊥), and thus the two trellises are isomorphic. However,
one can see that this dual trellis is not connected. In this case, the trellis T is not
isomorphic to the product trellis TG,S (which is shown in Figure 3.2). The trellis
T is in fact isomorphic to the product trellis based on the matrix

G′ =

1 1 0
0 1 1
1 0 1


48



along with the span set S ′ = [(0, 1], (1, 2], (2, 0]]. It is easy to see that the matrix
G′ does not have full row rank.

[T = T(G,H,S)] [T⊥ ∼= T ◦]

Figure 8.3: A span-based BCJR-trellis and its dual

While Theorem 8.10 does apply to KV-trellises, we can get an even nicer result
for this class of trellises. Through the following lemma and theorem, we will show
that not only are the BCJR and local duals of a KV-trellis isomorphic, the resulting
trellis is also a KV-trellis of the dual code.

Lemma 8.13. Let Ŝ = [(âl, b̂l] : l = 1, . . . , k] be a set of k distinct characteristic
spans of C, and set Â = {â1, . . . , âk}, and B̂ = {b̂1, . . . , b̂k}. Suppose that T = TG,S
is a product trellis for C with S = [(al, bl] : l = 1, . . . , k] where the al’s are distinct
and the bl’s are distinct, and set A = {a1, . . . , ak}, and B = {b1, ..., bk}. If ECP(T )-

SCP(T )=IÂ, ECP(T )-σ(SCP(T ))=I B̂, and |{l | 0 ∈ (âl, b̂l]}| = |{l | 0 ∈ (al, bl]}|,
then S = Ŝ, and thus, T is a KV-trellis.

Proof. By Theorem 3.9, we have that IA = ECP(T )-SCP(T )=IÂ and IB = ECP(T )-

σ(SCP(T ))=I B̂. Thus, we obtain A = Â and B = B̂. Without loss of generality,
let al = âl for all l = 1, . . . , k. Then, there exists a permutation φ : {1, . . . , k} →
{1, . . . , k} such that [(al, bφ(l)] : l = 1, . . . , k] = Ŝ. If this permutation φ is not the
identity map, then bj < bφ(j) for some j ∈ {1, . . . , k}. Thus if (aj, bj] and (aj, bφ(j)] are
both conventional or both circular, we get that (aj, bj] ( (aj, bφ(j)]. Since (aj, bφ(j)] ∈
Ŝ is a characteristic span, this is a contradiction. Thus we must have bj < aj < bφ(j),
and the permutation φ takes the circular span (aj, bj] ∈ S to the conventional span

(aj, bφ(j)] ∈ Ŝ. Now, the condition |{l | 0 ∈ (âl, b̂l]}| = |{l | 0 ∈ (al, bl]}| implies that S
and Ŝ have the same number of circular spans, and hence they have the same number
of conventional spans as well. Thus, φ must also take a conventional span in S, say
(am, bm], to a circular span in Ŝ. In this case, we get that (am, bm] ( (am, bφ(m)],
which is a contradiction because (am, bφ(m)] is a characteristic span. Therefore, we

must have that φ is the identity map, and thus S = Ŝ.

Theorem 8.14. Suppose that T := [(al, bl] : l = 1, ..., n] is the set of characteristic
spans of C, and T = T(G,H,S) ∼= TG,S is a KV-trellis for the code C where S := [(al, bl] :
l = 1, ..., k]. Then the dual trellis T ′ = T⊥ ∼= T ◦ is a KV-trellis for C⊥ based on the
span set Ŝ = [(bl, al] : l = k + 1, . . . , n].
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Proof. By Corollary 8.11, T satisfies the hypothesis and (a)-(g) of Theorem 8.10.
Set [(bl, al] : l = k + 1, . . . , n] = [(âl, b̂l]; l = 1, . . . , n − k], A = {a1, . . . , ak}, and
B = {b1, . . . , bk}. Then Â = I − B̂ and B̂ = I − Â as in Theorem 8.10. Since T ′ is a
BCJR-trellis, we have that T ′ is linear, reduced, and biproper by Definition/Theorem
7.1. Since T is a KV-trellis, by Corollary 8.11, we also know that T ′ is connected.
Additionally, since T is connected, we have that T ′ is one-to-one by Proposition 8.5.
Thus, T ′ is a product trellis of the form TH′,S′ where C⊥ = imH ′, rkH ′ = n − k,
S ′ = [(a′l, b

′
l] : l = 1, ..., n− k], the starting points of the spans in S ′ are distinct, and

the ending points of the spans in S ′ are distinct.
Note that by Lemma 6.5, the set Ŝ consists of characteristic spans of C⊥. Because

T ′ = T⊥, the proof of “(a)⇒ (c)” in Theorem 8.10 gives that ECP(T ′)-SCP(T ′)=

IÂ and ECP(T ′)-σ(SCP(T ′))=I B̂. Now, let SCP(T )=(ξ0, . . . , ξn−1), and note that
by Theorem 3.9 we have that ξ0 is equal to the number of circular spans in S. By
Proposition 5.3, we know that the total number of circular spans in T is equal to
n−k. Thus, the number of circular spans in S plus the number of conventional spans
in Ŝ is equal to n − k. Since the total number of spans in Ŝ is also equal to n − k,
we have that the number of circular spans in S is equal to the number of circular
spans in Ŝ. Since we know that SCP(T ′)=SCP(T ), we obtain that S ′ and Ŝ contain
the same number of circular spans or |{l | 0 ∈ (a′l, b

′
l]}| = |{l | 0 ∈ (âl, b̂l]}|. Thus by

Lemma 8.13, we get that S ′ = Ŝ.

Theorem 8.14 settles a conjecture posed by Koetter and Vardy in Chapter V of
[11].

We conclude this thesis with a brief discussion of which types of minimality are
preserved under dualization. So far we have defined minimality in Definition 2.3 and
product minimality in Definition 6.9. We would like to introduce one more notion of
minimality, defined below.

Definition 8.15. A trellis T = (V,E) for a code C is called edge-minimal if there
does not exist a linear trellis T ′ = (V ′, E ′) for C such that |E ′i| ≤ |Ei| for all i ∈ I
and |E ′j| < |Ej| for some j ∈ I.

Now Koetter and Vardy showed in [11, Theorem 5.6] that all tail-biting trellises
that are minimal with respect to any of the orders we have introduced (as well as
several others) are KV-trellises. Thus, for these trellises, the local and BCJR-dual
trellises are isomorphic, and we will simply refer to the dual trellis. By Theorem 8.14,
this dual trellis is a KV-trellis. Since minimality and product-minimality are based
solely on the SCP of the trellis, it is clear that the dual of a (product-)minimal trellis
of C is a (product-)minimal trellis of C⊥. However, in the following example, we can
see that edge-minimality is not preserved under dualization.

Example 8.16. Let C := imG ⊆ F3×5
2 , where

G =

 1 0 1 1 0
0 1 1 0 0
0 0 0 1 1

 .
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The characteristic spans for C are (0, 3], (1, 2], (3, 4], (2, 0], and (4, 1]. We have 10110
and 11010 as the characteristic generators with the span (0, 3], 01100 with span (1, 2],
00011 with span (3, 4], 10110 and 10101 with span (2, 0], and 11001 with span (4, 1].
Thus, it is possible to construct a KV-trellis for C by choosing any three of these
spans and corresponding linearly independent characteristic generators. Out of the
10 possible KV-trellises (up to structural isomorphism) for C, five are edge-minimal.
For example, one can easily verify that the trellis TG1,S , where

G1 =

 1 0 1 0 1
0 0 0 1 1
1 1 0 0 1

 , and S = [(2, 0], (3, 4], (4, 1]]

is an edge-minimal trellis with ECP of (2,1,1,2,3).
Since we are dealing with KV-trellises, dualizing using either the local dual or the
BCJR-dual will result in a KV-trellis for C⊥. Thus there are also 10 KV-trellises (up
to structural isomorphism) for C⊥. However, it is easy to check that only three of the
KV-trellises for C⊥ are edge-minimal. For example, consider the dual of the trellis of
TG1,S . It has an ECP of (2,1,1,2,2); however, it is not an edge-minimal trellis for C⊥
since the KV-trellis for C with spans (1, 4] and (3, 0] has an ECP of (1,1,1,2,2).

Copyright c© Elizabeth A. Weaver, 2012.
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Appendix: Maple Procedure

The following code is a procedure for Maple that returns the number of normalized
characteristic matrices for a given code, C = imG, as well as the set of codewords
that fit each characteristic span as normalized characteristic generators. To run this
procedure, one must first load the package linalg. It also calls on several procedures
written by Heide Gluesing-Luerssen which are described below. Prior to running
the procedure the finite field Fp is computed and stored as F. This is then used in
the procedure VecSpace() to generate the subspace Fkp which is stored as Fk. The
procedure NormMat() ensures that the entries of a specified matrix are remain in our
finite field, CharMat() produces a characteristic pair for the given code, and SortA()
sorts the characteristic spans in increasing order by starting point.

NumCharMat:=proc(G)

global p, F;

local C, CM, A, B, i, j, l, Code, k, n, Fk, N;

k:=rowdim(G):

n:=coldim(G):

Fk:=VecSpace(F,k):

Code:=[]:

for i from 1 to nops(Fk) do

c||i:=NormMat(Fk[i]&*G):

Code:=[op(Code),evalm(c||i)]

od:

CM:=CharMat(G):

C:=SortA(CM):

A:=[seq(C[2][j,1],j=1..n)]:

B:=[seq(C[2][j,2],j=1..n)]:

for i from 1 to n do

C||(i-1):=[]:

if A[i]<=B[i] then

for j from 1 to nops(Code) do

if (Code[j][A[i]+1]=1 and Code[j][B[i]+1]<>0 and

seq(Code[j][l],l=1..A[i])=seq(0,l=1..A[i])

and seq(Code[j][l],l=B[i]+2..n)=seq(0,l=B[i]+2..n))

then C||(i-1):=[op(C||(i-1)),evalm(Code[j])]

else

fi:

od:

else

for j from 1 to nops(Code) do
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if (Code[j][A[i]+1]=1 and Code[j][B[i]+1]<>0 and

seq(Code[j][l],l=B[i]+2..A[i])=seq(0,l=B[i]+2..A[i]))

then C||(i-1):=[op(C||(i-1)),evalm(Code[j])]

else

fi:

od:

fi:

od:

for i from 1 to n do

N||(i-1):=nops(C||(i-1)) od:

N:=1:

for i from 1 to n do

N:=N*N||(i-1) od:

RETURN(N,transpose(matrix(2,n,[[seq([A[i],B[i]],i=1..n)],

[seq(C||(i-1),i=1..nn)]])));

end proc:

Copyright c© Elizabeth A. Weaver, 2012.
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