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ABSTRACT OF DISSERTATION 
 
 
 
 

CHANGES IN LONGITUDINALLY ASSESSED  
BIOMECHANICAL PARAMETERS RELATED TO INCREASED RISK OF 

ANTERIOR CRUCIATE LIGAMENT (ACL) INJURIES IN  
ADOLESCENT FEMALE AND MALE ATHLETES 

 
 
 
 
Females suffer anterior cruciate ligament (ACL) injuries at a 2 to 10-fold greater rate 
compared to male athletes participating in similar sports. Altered movement patterns and 
inadequate knee stiffness are two interrelated factors that may increase ACL injury risk. 
Onset of these neuromuscular risk factors may coincide with the rapid adolescent growth 
that results in the divergence of a multitude of neuromuscular parameters between sexes. 
The overall purpose of this dissertation was to determine if neuromuscular ACL injury 
risk factors in female athletes increase following rapid growth and development 
compared to males. Male and female athletes were tested with three-dimensional motion 
analysis techniques during a drop vertical jump over two consecutive years to determine 
if ACL injury risk factors increased. Pubertal females showed a significant longitudinal 
increase in knee abduction angle compared to post-pubertal females and both male 
groups. The increase in knee abduction angle appeared to remain consistent, as the post 
pubertal female cohort had greater overall knee abduction compared to post-pubertal 
males. Similar results were found with a greater magnitude of knee abduction moment in 
post-pubertal females compared to males. Males and females increased ankle, knee and 
hip active stiffness from the first to second year of testing. Ankle and hip stiffness were 
increased significantly more in the pubertal group compared to post-pubertal. Sex and 
maturational group differences were found in hip and ankle joint stiffness. Post-pubertal 
males had significantly greater hip stiffness than the other groups (even when normalized 
to body mass). This indicates that post-pubertal males utilized a different neuromuscular 
strategy during landing. Males had a significantly greater increase from year to year in 
vertical jump height compared to females. Vertical jump height is often related to a 
measure of whole body power and indicates that males had a significant neuromuscular 
spurt compared to females. Early puberty appears to be a critical phase related to the 
divergence of increased ACL injury risk factors. Injury prevention programs that focus 

 



on neuromuscular training may be beneficial to help address the development of ACL 
injury risk factors that occur in female athletes during maturation. 
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Chapter 1. Introduction 
 

 

Females in pivoting and jumping sports suffer anterior cruciate ligament (ACL) 

injuries at a 2 to 10-fold greater rate compared to male athletes participating in the same 

high-risk sports.1-6 The combination of this greater susceptibility and a 10-fold increase in 

the female sports population since the inception of Title IX has resulted in a dramatic 

increase in the number of ACL injuries in females.5 ACL injury conservatively costs 

between $17,000-$25,000 per injury for surgery and rehabilitation.7, 8 The high number 

and cost of these ACL injuries is accompanied by the potential loss of entire seasons of 

sports participation, scholarship funding, lowered academic performance, long term 

disability and significantly greater risk of osteoarthritis.9, 10 The mechanisms responsible 

for the sex differences in these debilitating sports injuries have been investigated with a 

variety of methodology.7, 11-18 

Factors underlying the injury rate disparity in females compared to males have 

been categorized into several general theories: anatomical, hormonal and neuromuscular. 

Anatomical risk factors that have been proposed include anthropometric differences, 

increased body mass index, increased Q-angle, narrower femoral notch and increased 

hypermobility or laxity in female athletes. Cyclic changes in hormone levels may be 

possible contributors to the increased injury rates in female athletes.19 The experimental 

findings regarding the influence of hormones on injury risk are limited and remain 

controversial.20 Biomechanical or neuromuscular differences between sexes have also 

been postulated to play a role in ACL injury risk. Neuromuscular control of a joint 

specifically relates to the activation of the dynamic restraints surrounding a joint in 
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response to sensory stimuli.20, 21 Neuromuscular mechanisms likely play a critical role in 

the sex differences found in ACL injuries.20 This is supported by evidence that injury 

prevention programs that focused on neuromuscular control of the lower extremity have 

reduced non-contact ACL injuries in female athletes.22-24  

Decreased neuromuscular control of the lower extremity may lead to increased 

knee abduction loads and strain on the knee ligaments.25-28 Though there likely are 

multiple factors that underlie the differences in ACL injury rates in male and female 

athletes, neuromuscular control may be the greatest contributor to injury risk and the 

most modifiable factor.29 There is currently no evidence to suggest that a sex difference 

in ACL injury rate is found in athletes prior to the adolescent growth spurt.30-33 However, 

following their growth spurt, female athletes have higher rates of knee sprains, which 

continues into maturity.34 Therefore, it appears that females may develop certain risk 

factors during maturation that may place them at greater risk of injury compared to 

males.  

  

Statement of the Problem  

Altered movement patterns and inadequate knee stiffness are two interrelated 

factors that may increase ACL injury risk.35 Onset of these neuromuscular risk factors 

may coincide with the rapid adolescent growth that results in the divergence of a 

multitude of neuromuscular parameters between sexes. Thus, it  has been hypothesized 

that following the adolescent growth spurt, increased body mass and height of the center 

of mass, in the absence of increases in strength and power, lead to altered movement 

patterns and inadequate muscle stiffness.36, 37 Therefore, the timing of adolescent growth 

 2



may be the critical phase of growth and development related to sex differences in ACL 

injury risk.  However, at this time the effect of rapid growth and development in females 

on ACL risk factors is unknown. 

 

Significance of the study 

This proposal will lead to advances in the understanding of the mechanisms and 

prevention of ACL injuries in female athletes. ACL injury prevention programs would be 

more effective if both the timing of the onset and the mechanisms that underlie the 

increased risk were identified. The Department of Health and Human Services 

recommends that women, both young and old, remain active to maintain optimal health.38 

Reduction of female injury rates would potentially allow thousands of females annually 

to continue the health benefits of sports participation and to avoid the long-term 

complications of osteoarthritis, which occurs with a 10 to 100-fold greater incidence in 

ACL-injured than in uninjured athletes.39, 40  

 

Purpose 

The overall purpose of this dissertation was to identify if neuromuscular ACL 

injury risk factors in female athletes increase following rapid growth and development 

compared to males. Specifically, the projects are directed towards answering the 

following research questions: 1) Does the onset of neuromuscular risk factors in female 

athletes occur during rapid adolescent growth?  2) Does an absence of increased 

neuromuscular performance measures correlate to the development of these risk factors? 
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Chapter 2 presents the theoretical rationale for how we designed the investigation 

to answer the previously stated research questions. Included is a detailed strategy that can 

be utilized for the development of sports injury prevention strategies. Injury mechanisms 

and risk factors are introduced and supported with the published literature. We 

specifically present three inter-related Specific Aims that relate to increased risk of 

female ACL knee injuries compared to males. The three specific aims are addressed in 

Chapters 3, 4 and 5.  

Chapter 3 is aimed at the determination of the specific timed onset of 

neuromuscular risk factors related to abnormal movement patterns increase in females, 

but not males, during the adolescent growth spurt. We first hypothesized that during 

adolescent growth, pubertal females would demonstrate longitudinal increases in knee 

abduction motion and moments compared to pubertal males. Secondly, we hypothesized 

that post-pubertal females, following pubertal growth, would have significantly greater 

knee abduction motion and moments compared to post-pubertal males.  

The fourth Chapter's specific aim is to determine if the neuromuscular risk factors 

related to inadequate knee stiffness diverge between the sexes during the adolescent 

growth spurt. The first hypothesis tested was that during the rapid adolescent growth 

spurt, pubertal males would have increases in knee stiffness while pubertal females 

would not. The second hypothesis was that post-pubertal females would have 

significantly lower knee joint stiffness compared to post-pubertal males.  

The specific aims of Chapter 5 were primarily to identify longitudinal 

neuromuscular performance differences between sex and maturational groups and 

secondly, to investigate the relationships between altered movement patterns, joint 
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stiffness and neuromuscular performance measures of strength and leg power in 

adolescent male and female athletes. Longitudinal increases in knee abduction moments 

and motion will significantly correlate with the absence of increased leg power in girls. 

Longitudinal decreases in knee stiffness during landing would significantly correlate with 

the absence of increased hamstrings strength in girls. 

A summary of the dissertation results with additional discussion and conclusions 

are presented in Chapter 6. In addition, practical implications related to female ACL 

injury prevention are presented.  

 

Delimitations 

 This study was delimited to male and female athletes within the Boone County, 

Kentucky School District. The athletes that were included in this study were soccer and 

basketball that participated in school sponsored teams. A total of 315 subjects were 

included in this study and were tested twice over the span of approximately one year. 

Subjects were excluded from this study if they had previous history of knee or ankle 

surgery. Two measures were used to identify the maturational development of each 

subject. The first measure was the modified Pubertal Maturational Observational Scale 

(PMOS).41 The second measure of maturation was an estimate of percent of adult stature.  

 We delimited the movement analyzed to a drop vertical jump (DVJ). This task 

was chosen because it has been used effectively to identify differences in female athletes 

that subsequently suffered an ACL injury compared to athletes that did not.27 Sex 

differences have been identified previously with the DVJ, in addition to greater 

magnitudes of knee abduction compared to single leg maneuvers.15, 42   
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Limitations 

The key feature of a longitudinal study is that the same subjects are tested 

multiple times.43 Beuenen and Malina44 reviewed the difficulties and limitations of 

longitudinally measured physical performance attributes. For example, a testing or 

learning effect may be observed when the same task is performed over multiple years. A 

learning effect could result in poor repeatability, as the subject may improve task 

performance over time. A repeatability study, with a subset sample of subjects, was 

undertaken to address this potential limitation.45 Measures of kinematic, kinetic and 

performance measures were excellent to good between sessions that were seven weeks 

apart.45 Specific techniques were systematically used during data collection in an effort to 

enhance reliability of the collected measures.  For example, in the current study, 

standardized camera and force plate locations were used during repeated measurement 

sessions. Verification and quality control of calibration procedures were also performed 

daily during data collection.46 Marker reapplication has been suggested to contribute to 

decreased reliability.47 Data collection via video based motion analysis systems is 

susceptible to kinematic cross-talk errors.48 Cross-talk errors result from the primary 

(flexion) calculations of the embedded axis “bleeding” into the calculations of secondary 

axes (abduction-adduction, internal-external). Ramakrishnan and Kadaba49 preformed a 

sensitivity analysis to estimate errors due to incorrectly defining the embedded axes at the 

hip and knee. During gait, the sagittal plane measures at the hip and knee were relatively 

unaffected by analytical displacement of the flexion-extension axes.49 In contrast, they 

reported large errors for hip and knee abduction-adduction and internal-external rotations 

that they attributed to cross-talk.49 Errors may be reduced by standardized marker 
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placement (single investigator placement) and through standardized reference static 

alignment (foot placement and posture). One well trained and experienced investigator to 

place markers on the subjects was used as marker reapplication has been attributed to 

lower reliability.47 A reference static alignment (neutral pose) was standardized with 

consistent foot placement and posture. In addition, standardized instructions and data 

collection procedures were employed during all testing sessions.  

Subject motivation is another factor that could alter the measured results due to 

variation in the willingness to perform the task.44 To address the concern of subject 

motivation, a suspended basketball was positioned at each subject's previously measured 

maximum vertical jump height. The use of an overhead goal has been shown to increase 

vertical jump height and to provide standardized extrinsic motivation to encourage 

maximal effort jumping during the task.50 

A primary advantage of longitudinal studies is that individual changes can be 

identified serially.44 A limitation in our study, however, was that group differences 

between pubertal groups were cross-sectional in nature, as we did not follow the subjects 

through pubertal and post-pubertal stages of development. Follow-up studies will be 

performed that follow individuals in a longitudinal nature throughout adolescent 

development. Longitudinal study designs are also sensitive to missing data points.43 We 

chose to use a repeated measures ANOVA and standard bivariate correlation on serial 

changes or deltas for the statistical tests that did not allow for the analysis of missing 

data. Therefore, if data were missing, they were excluded from the analysis. A more 

robust statistical analysis should be considered to increase the number of subjects with 

multiple visits. For example, a key feature of mixed effects regression is that missing 
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repeated measurements are handled appropriately (uneven number of repeated measures 

among subjects). 

 

Assumptions 

Several assumptions were made prior to the study. We assumed that the study 

instruments were valid and reliable in the population tested. Several previous reports 

have supported this assumption with validity and reliability studies. For example the 

PMOS scale (Appendix B) has shown high reliability and can be used to differentiate 

between pubertal stages based on indicators of adolescent growth, breast development, 

menstruation status, axillary and leg hair growth, muscular development, presence of 

acne and evidence of sweating during physical activities.36, 51-53 The motion analysis 

techniques were also assumed to be reliable in this study. As detailed above, previous 

reports have supported this claim in similar populations.45    

 

Definition of Terms 

 The following terms used in the study are defined below.   

Abduction: Abduction refers to the frontal plane rotation of the distal segment away from 

midline. For instance, knee abduction would be representative of the tibial 

segment, in reference to the thigh segment, rotating away from midline. Valgus 

and abduction are used interchangeably and denotes the same rotation. Negative 

values in our model represent increasing magnitudes of abduction. 

Active joint stiffness (also see stiffness): In the current study we estimate active joint 

stiffness based on the formula of rotational stiffness (k = applied joint 
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moment/angular displacement). This model takes advantage of the moment-angle 

relationship where angular displacement is regulated by the external moment. 

Active joint stiffness is specifically calculated as the slope of the moment-angle 

curve.54 Knee joint stiffness is used synonymously with active joint stiffness when 

discussing the knee joint.  

Adolescence: Malina & Bouchard (1991) state that adolescence is difficult to classify 

based on chronological age.55 However, the definition used in this study for 

female adolescence is 8 to 19 years and 10 to 22 years in males.55  

Leg stiffness (also see stiffness): The application of a linear spring model to represent the 

legs (spring) supporting the body mass. Specifically, leg stiffness (also called 

vertical stiffness) can be defined as the ratio of the force to the displacement 

(maximum force/Δ whole body center of mass displacement).56 

Maturation: Maturation is defined as the process of becoming mature. It describes the 

time and rate of moving towards a mature biological state.55  

Neuromuscular control: Neuromuscular control specifically relates to the activation of 

the dynamic restraints surrounding a joint in response to sensory stimuli.57 

Peak height velocity: Peak height velocity (PHV) is a commonly used indicator of 

maturity that represents the time of maximum rate of growth during adolescence. 

A mathematical or graphical curve fitting technique is often used to estimate age 

at PHV.  

Percent of adult stature: Percent of adult stature is used as a somatic indicator of 

maturity.55 In the current study, adult stature was estimated based on the Khamis-
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Roche method developed from the Fels Longitudinal Study which collected data 

on families residing in southwestern Ohio.58  

Puberty: Puberty is interrelated with adolescent development. Pubertal stages are based 

on sexual maturity and related to the development of secondary sex 

characteristics.55 These secondary sex characteristics are strongly associated with 

specific hormonal changes evident throughout adolescent growth. We used a non-

invasive scale, PMOS, to classify subjects as pubertal or post-pubertal.52   

Stiffness: Stiffness is the resistance to a mechanical stretch from an applied force.59 

Calculated stiffness, k, is equal to the ratio of applied force to change in length 

(displacement).  
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Chapter 2. Background and Methodological Review 

Theoretical rationale 

 A scientifically based approach is highly recommended for the development of a 

strategy to prevent sports injuries.60 The sequence of prevention model was described by 

van Mechelen60 that systematically organizes specific scientifically based principles that 

can be used to effectively develop injury prevention programs. The initial steps involve 

understanding and establishing the extent of the problem based on injury incidence and 

severity. ACL injuries are a significant and extensive problem in female athletes. 

Reduction of female injury rates would potentially allow thousands of females annually 

to continue the health benefits of sports participation based on the growing numbers of 

athletes who play high risk sports like soccer and basketball.  

Injury Mechanism 

The next step in the sequence of injury prevention is to establish the injury 

mechanism and etiology (Figure 2.1). The relative importance of each risk factor is 

difficult to evaluate for each individual athlete. However, a detailed description of the 

inciting event (injury mechanism) is suggested in order to identify the appropriate 

methods for injury prevention and to allow the theoretical development of potential 

intrinsic and extrinsic risk factors.60 Most ACL injuries in female sports occur during a 

non-contact episode, typically during deceleration, lateral pivoting, or landing tasks that 

are associated with high external knee joint loads.61, 62  

There is relative consensus in the literature that approximately 70% - 80% of 

ACL injuries are non-contact in nature.29, 62, 63 Video analysis techniques have confirmed, 
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that most non-contact ACL injuries occur during a sharp deceleration or landing 

maneuver with the knee close to extension at initial ground contact.62 Olsen et al. 

performed a videographic examination of ACL injury mechanisms in team handball.61  

They found that the ACL injury mechanism in women was a forceful valgus collapse 

with the knee close to full extension combined with tibial rotation. These analyses 

demonstrate relatively common mechanisms, including valgus, extended knee and 

widened stance, however they also highlight the difficulty of determination of the exact 

mechanism of injury from eye witness account or even slow motion video.29  

Risk Factors 

 Risk factors for most sports injuries are classified into internal (intrinsic) and 

external (extrinsic) to the athlete. Several typical internal risk factors which may play a 

role in an injury are listed in Figure 2.1. Risk factors such as age, maturation and 

neuromuscular performance may predispose the athlete to injury. External risk factors 

could be considered to interact with the athlete and potentially result in the athlete being 

susceptible to a certain injury. An inciting event, or mechanism, must occur that would be 

the actual underlying cause of the injury. The multi-factorial relationship between female 

athlete and ACL injury must be continually developed and tested with systematic and 

well defined research questions.  

This study tested the interaction between internal risk factors that relate to higher 

risk of ACL injury in females. Intrinsic (internal) variables associated with ACL injury 

are typically classified into of anatomic, hormonal, neuromuscular and biomechanical.29, 

35 Numerous ACL injury risk factor studies have focused on anatomic or anthropometric 

measures such as tibial length, thigh length and height.64, 65 Lower extremity bone length 
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may underlie increased risk of ACL injuries, however, anatomic measures often do not 

correlate with dynamic injury mechanisms.66 Anatomic measures are not typically 

modifiable, which limits the potential impact of injury prevention focused on these 

variables. However, a mechanistic relationship may exist between changes in anatomy 

and other modifiable risk factors.  

Rapid changes in anatomical variables (height, segment bone length) occur during 

pubertal maturation. During puberty the tibia and femur grow at a rapid rate in both boys 

and girls.67 This growth of the two longest bones in the human body may relate to greater 

joint torque and force.36 Increased height leads to a higher center of mass, and potentially 

decreased muscular control of mass. Growth and development are associated with 

hormonal, neuromuscular and biomechanical factors that may underlie the differences in 

ACL injury risk.36  

 

Altered movement patterns 

The potentially modifiable intrinsic variables of interest in this study are classified 

as neuromuscular. Specifically, altered movement patterns and inadequate knee stiffness 

are two interrelated factors that may increase ACL injury risk. Altered movement 

patterns can be described by the specific plane which the majority of the deficit occurs. 

For example, the sex-based disparity observed in ACL injury rates may be strongly 

influenced by differences in the frontal plane joint motions and moments. The link 

between frontal plane knee loading and resultant increases in ACL strain is demonstrated 

by cadaveric, in vivo and computer modeling experiments.28, 68-70 Physiologic dynamic 
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valgus torques on the knee can significantly increase anterior tibial translation and load 

on the ACL several-fold.69  

A prospective combined biomechanical-epidemiologic study showed that knee 

abduction moments (valgus torques) and angles were significant predictors of future ACL 

injury risk.  Knee abduction moments predicted ACL injury risk with 73% sensitivity and 

78% specificity.27  Knee abduction angles were 8 degrees greater in the ACL-injured than 

the uninjured groups. It is therefore likely that increases in knee abduction moment and 

motion in the injured group, were significant risk factors that predisposed each athlete to 

an ACL injury.  

Sex differences in knee abduction motion and moment have been investigated in 

numerous studies during landing maneuvers with three-dimensional analysis 

techniques.14, 15, 36, 42, 71-92 Table 2.1 summarizes the results of a systematic review of the 

literature that measured knee abduction during a landing task. A search of MEDLINE, 

CINAHL and SportDISCUS was performed with the following search keywords: "knee 

AND sport AND (abduction OR valgus OR frontal OR coronal) AND (sex OR gender)." 

The results were limited to studies that examined a landing maneuver (single or double 

leg), compared knee abduction (valgus) motion or moments between sexes and used 

three-dimensional analyses. The majority of the studies found an increased knee 

abduction (valgus) motion or moment in females compared to males. None of the studies, 

however, used longitudinal techniques to identify when the differences began to diverge 

between sexes.14, 15, 36, 42, 71-92    
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Inadequate knee stiffness 

Additional intrinsic risk factors are likely to modify or influence movement 

patterns (knee abduction motion and moments). Therefore, if we follow the theoretical 

sequence of prevention we should examine the cause of an altered movement pattern to 

further progress towards an effective injury prevention strategy. Figure 2.2 shows a 

theoretical example of a modifiable intrinsic risk factor that may play a role in altered 

movement patterns observed in female athletes that are predisposed to injury. The 

primary joint stabilizers of the knee are the flexor and extensor muscles and are utilized 

during dynamic loading conditions to protect against an injury.93 Active joint stiffness 

can be voluntarily controlled through muscular recruitment. The co-contraction of the 

flexor (hamstrings) and extensors (quadriceps) may protect the knee against altered 

movement patterns (knee abduction). Strength and activation deficits of the hamstrings 

may limit the potential for muscular co-contraction for the protection of knee ligaments. 

Similar mechanisms apply to muscular protection against torsional loading, in which sex 

differences have been identified.94 Wojtys et al. demonstrated that maximal rotations of 

the tibia were greater in women than in men in both the passive and the active muscle 

state.94 Females exhibited less muscular protection of the knee ligaments under internal 

rotation loading than did males.94   

The abilities to decelerate from a landing and to control knee abduction motion 

and moments could be related to a decreased imbalance in the hamstrings to quadriceps 

strength and recruitment that was observed in the females prior to neuromuscular 

training.11 Co-contraction of the knee flexors is required to balance active contraction of 

the quadriceps to compress the joint and to assist in the control of high knee abduction 
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torques and anterior tibial translation. Female athletes with decreased ability to 

adequately balance muscular recruitment through positions of high joint loading may be 

predisposed to increased risk of ACL injury. 

Motor control strategies that rely on feedback loops (reactive) alter muscle 

activation in response to situations that load the lower extremity joints.95 The 

electromechanical time delays that are inherent in feedback mechanisms likely limit the 

effectiveness of muscular joint protection during dynamic movements.57 Preparatory 

muscle activity, however, can stiffen joints prior to unexpected perturbations and can be 

learned and adjusted through integration of previous movement experiences or training.95-

98 Athletes can adopt or “pre-program” safer movement patterns that may reduce injury 

risk during landing or pivoting or unexpected loads or perturbations during sports 

movements. See Appendix A for a review of the associations between co-contraction and 

age.  

 

Effects of Maturation 

 Though there likely are multiple factors underlying the differences in ACL injury 

rates in male and female athletes, neuromuscular control may be the greatest contributor 

to injury risk and the most modifiable factor. While the focus should remain in areas that 

are modifiable, where effective interventions can be developed, investigations should 

continue into the relative contribution of less modifiable factors. This is especially 

important in the pubescent athlete, where significant developmental changes occur both 

anatomically and hormonally. The musculoskeletal changes that can alter both passive 

joint laxity and decrease dynamic joint stability in high-risk female athlete, and 
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potentially lead to higher injury rates in this population, could be modified if 

interventions were instituted in the right time. 

There is no evidence for a sex difference in ACL injury rates in pre-pubescent 

athletes, which is in direct contrast to injury rates in adolescent and adult populations.30, 

31, 99 Although ACL injuries increase with age in both males and females, females have 

higher rates immediately following the growth spurt.100 Insurance data shows that girls 

and boys separate in knee and ACL injury risk within the same time frame, after girls 

begin to mature (age 11 to 13).101 During, and immediately following the growth spurt, 

body mass and additional risk factors appear to increase in females. These risk factors 

with the cumulative effects of athletic exposures to injury likely lead to a higher 

probability of injury in mature females compared to pubertal females. Data from the 

American Academy of Orthopaedic Surgeons supports this with a peak in the prevalence 

of ACL reconstructive surgeries in girls at age 16.102 Therefore, if appears that girls may 

develop altered movement patterns and inadequate muscle stiffness during this stage of 

development.  

 Males demonstrate power, strength and coordination increases with chronological 

age that correlate to maturational stage, while females show little average change 

throughout puberty.44, 103 Correlations between height, weight and neuromuscular 

performance observed in males are absent in pubescent females. For example, vertical 

jump height (a measure of whole-body power) increases steadily in males during puberty, 

but not in females.103, 104 Musculoskeletal growth during puberty, in the absence of 

corresponding neuromuscular adaptation, may facilitate the development of certain 

intrinsic risk factors.36 These intrinsic risk factors, if not addressed at the proper time, 
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may continue through adolescence into maturity and predispose athletes to ACL injuries. 

The differences in neuromuscular performance between the sexes during and following 

puberty may be important contributors to forces on the knee and altered biomechanics 

that could potentially explain the increased risk of ACL injury in females following 

puberty and may help identify the optimal time to implement injury prevention 

programs.105    

 

Preventive Measures 

 Neuromuscular training in females has been shown to increase active knee 

stabilization in the laboratory and decrease the incidence of ACL injury on the field and 

court of play in athletic female populations.7, 11, 23, 66 Neuromuscular training facilitates 

neuromuscular adaptations that focus on joint stabilization and safe movement patterns. 

This training allows female athletes to adopt muscular recruitment strategies that 

decrease joint motion and protect the ACL from the high impulse loading.66, 106, 107 

However, a clearer identification of the putative modifiable mechanisms would increase 

the potential for both screening for high risk athletes and for targeting interventions to 

address the specific mechanisms that increase ACL injury risk in female athletes.  

Methodological review 

Motion Analysis Techniques 

Multidisciplinary approaches are typically used to define the potential 

mechanisms that underlie increased injury risk of musculoskeletal injury and to identify 

specific factors predictive of injury risk in sports. Specifically, motion analysis 
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techniques have been used to identify potential risk factors for knee injuries.15, 82, 108-110 

However, a majority of these investigations are limited to cross-sectional comparisons 

between groups (i.e. males versus females). Though cross-sectional comparisons may be 

important to the overall understanding of the potential biomechanical patterns that may 

be related to increased injury risk for subsets of athletes, the biomechanical findings are 

not typically coupled with repeated, longitudinal measures. However, a key component to 

the utilization of motion analysis techniques to define these problems, especially with 

longitudinal study designs, is the ability to reliably measure biomechanical variables in 

individuals both within and between testing sessions. 

 

Reliability 

Kadaba et al.47 conducted one of the first studies to investigate the reliability of 

quantitative motion analysis techniques. They examined kinematic and kinetic data 

during normal gait and found that most often the data was more reliable within session 

than between different testing sessions. Error in reapplication of reflective markers was 

cited as a potential factor for the lower reliability measures especially in the frontal and 

transverse planes. 47 Both Ferber et al.111 and Queen et al.112 found similar trends of 

improved within session reliability compared to between testing days during 3D motion 

analysis of running. These authors also cited marker placement as the most likely cause 

of decreased between session reliability. In addition, increased reliability has previously 

been found when comparing sagittal versus frontal and transverse motions.47, 111-113 

Typical out of plane rotations (frontal and transverse) may be more sensitive to 

reapplication of markers.49, 111 However, frontal and transverse plane variables may 
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provide essential information during maneuvers that may relate to an injury.15, 27, 29, 82, 108  

Reliability of biomechanical variables specifically during landing maneuvers is not as 

well defined in the literature. The examination of the reliability of these variables is 

important, since a rapid deceleration, such as occurs during landing from a jump, is 

frequently identified during ACL injuries.61 

 Studies involving serial measurements of young athletes throughout maturational 

development are contingent on reliable data acquisition. Quatman and colleagues 

evaluated young female and male athletes to determine if changes in maturational 

development status would affect kinetic patterns during a during a drop vertical jump.51 

They evaluated young athletes over a year time span and found that young females do not 

develop increased lower extremity power with maturation in a fashion similar to males. 

This indicates that incorporating additional motion analysis techniques in longitudinal 

evaluation of young athletes may be warranted if the measures are demonstrated to be 

reliable over time. 

 A recent study was performed to determine the reliability of 3D lower extremity 

kinematic and kinetic variables during landing in young athletes.45 Eleven athletes were 

identified who participated in two testing session 7 weeks apart because they played on 

both the soccer and basketball teams tested. These eleven subjects were used in the 

reliability study to determine the within and between session reliability of lower 

extremity biomechanical variables (3 female, 8 male;  height:1.64 ± 0.10 m to 1.64 ± 0.10 

m, Typical Error = 0.006 m; mass: 53.4 ± 13.0 kg to 54.5 ± 13.2 kg, Typical Error = 0.8 

kg; 6.7 ± 1.4 weeks between sessions). Kinematic and kinetic data were normalized to 

100% of the stance phase (between IC and TO). The following variables were calculated 
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during the stance phase for each trial: maximum VGRF, maximum joint moment and 

maximum and minimum joint angle for the hip, knee and ankle. These variables were 

chosen based on their frequent use in relation to possible injury risk and sex comparison 

studies.15, 27, 82, 108, 109 Coefficients of multiple correlations (CMC)47, intraclass correlation 

coefficients (ICC(3,k), ICC(3,1))114 and typical error (TE)115 (standard deviation of the 

individual's repeated measures) analyses were used to examine within and between 

session reliability.  

 Ford et al.45 found no differences in within session reliability for peak angular 

rotations between planes with all variables combined (sagittal ICC ≥ 0.933, frontal ICC ≥ 

0.955, transverse ICC ≥ 0.934) (Figure 2.3). Similarly, the between session reliability of 

kinematic measures (Figure 2.4) were not different between the three planes of motion, 

but were lower than the within session ICC’s. The within and between session reliability 

of discrete joint moment variables were excellent for all sagittal (within  ICC ≥ 0.925, 

between ICC ≥ 0.800) and frontal plane moment measures (within ICC ≥ 0.778, between  

ICC ≥ 0.748). CMC analysis revealed similar averaged within session (CMC = 0.830 ± 

0.119) and between session (CMC = 0.823 ± 0.124) waveform comparisons. A table of 

the results is presented in Table 2.2. 

The majority of the kinematic and kinetic variables in young athletes during 

landing have excellent to good reliability. The ability to reliably quantify lower extremity 

biomechanical variables of young athletes during dynamic tasks over extended intervals 

may aid in identifying potential mechanisms related to injury risk factors. 
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Knee stiffness 

Muscular co-contraction has been examined experimentally through joint moment 

analyses, electromyography, model-based estimation of muscle forces, and leg and joint 

stiffness calculations. Calculation of joint moments through inverse dynamics 

incorporates the net forces which act about the joint.116 One limitation of net joint 

moment analysis is that it does not indicate which muscles are active or the individual 

muscle forces generated at any specific point in time. Therefore, cautious interpretation 

of the relationship between the joint moment and the actual muscle forces generated is 

necessary.  

Electromyography has been used to calculate a co-contraction index or ratio. 

However this calculation can be complex and vary significantly among studies. 

Typically, surface EMG is utilized to obtain agonist and antagonist muscular activation 

patterns. The EMG signal is the electrical representation of neuromuscular activation 

focused at the neuromuscular endplate related to a contracting muscle.117 See Appendix 

A for a detailed systematic review focused on EMG co-contraction measures. 

Other techniques estimate individual muscle forces through computational 

models. The agonist and antagonist muscle groups can then be further investigated to 

address co-contraction during different movements. These computer models represent 

varying degrees of complexity and require detailed information regarding the muscle and 

skeletal systems.118  

Stiffness calculations involve the resistance to a mechanical stretch from an 

applied force.59 Muscle stiffness is a necessary component of joint stability and may 

relate to musculoskeletal injury potential.59 Padua et al.59 found that females had lower 
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leg stiffness values, in addition to higher quadriceps to hamstrings co-contraction, 

compared to males. Active joint stiffness is likely increased with hamstrings co-

contraction which has been shown to be protective of the ACL. This study focused on 

joint stiffness calculations as described below. Electromyography was not included in the 

initial data collection session and therefore could not be used in the analyses of the 

longitudinal data which was previously collected.   

Leg stiffness takes into account the entire lower extremity and has been estimated 

during jogging, sprinting, jumping, landing and hopping.54, 56, 59, 119, 120 Typically leg 

stiffness is calculated based on a simple spring-mass model.56, 119 Specifically, leg 

stiffness can be defined as the ratio of the force to the displacement (maximum force/Δ 

whole body center of mass displacement).56 Active joint stiffness is a related measure, 

however, it utilizes a rotational spring model (k = applied joint moment/angular 

displacement). This model takes advantage of the moment-angle relationship where 

angular displacement is regulated by the external moment. The stiffness calculation is 

based on the slope of the moment-angle curve.54 Figure 2.5 shows a typical stiffness plot 

comparing male and female subjects. Males had significantly greater knee joint stiffness 

compared to females during a single leg landing.37 

 

Maturational Assessment 

Maturation was operationally defined as the process of becoming mature.55 This 

definition, however, varies depending on which biological system is being described. 

Three common indicators of maturation are based on sexual, skeletal and somatic 

maturity. Sexual maturity is related to the development of secondary sex characteristics.55 
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These secondary sex characteristics are strongly associated with specific hormonal 

changes evident throughout adolescent growth. While the gold standard rating of 

secondary sex characteristics is typically performed based on a five-stage scale (criteria 

described by Tanner), these overlap and have been described as arbitrary.55  The ratings 

are typically performed by a physician through direct observation of the genitalia. This 

invasive method is often an area of privacy concerns among adolescents and adults alike. 

Non-invasive measures have been developed and compared to the traditional Tanner-

stages of sexual maturation. The modified Pubertal Maturational Observational Scale 

(PMOS) uses both parental questionnaires and investigator observations to classify 

subjects into the pubertal categories.52 The PMOS scale (Table B.1) has shown high 

intersession reliability and can be used to differentiate between pubertal stages based on 

indicators of adolescent growth, breast development, menstruation status, axillary and leg 

hair growth, muscular development, presence of acne and evidence of sweating during 

physical activities.36, 51-53  

Skeletal age assessments are typically considered one of the best means to 

estimate maturity status.55 However, invasive radiographic techniques are typically 

necessary to evaluate the developing skeleton during adolescent growth. Based on the 

method used, a skeletal age is calculated which is then related to chronological age.  

A somatic maturational assessment utilizes body measurements and often requires 

longitudinal measurements within each subject. Somatic maturational assessment is 

traditionally the best way to identify rapid adolescent growth.55 Anthropometric 

measurements, typically of stature, are used in several different techniques to estimate 

final adult stature or the age at peak height velocity (PHV). When annual, longitudinally 
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measured height is collected, the percentage of adult stature can be calculated from the 

final height. This is a useful indicator of somatic maturity and can be used to normalize a 

comparison group based on maturation. PHV is another useful indicator of maturity 

which is used mostly to identify the timing of growth. A mathematical or graphical curve 

fitting technique is typically used to estimate age at PHV. However, regression 

techniques have been developed to estimate both PHV and percentage of adult height 

based on additional measurements.58 The Khamis-Roche method of estimated adult 

stature was developed from the Fels Longitudinal Study that collected data on families 

residing in southwestern Ohio.58 The use of the subject's stature, mass, midparental 

stature and age was utilized to develop regression equations for boys and girls (Appendix 

C, Table C.1, Table C.2). This method was found to be comparable to estimates which 

included invasive measures of skeletal age.58  

 

 

Summary 

ACL injury risk factors may relate to altered movement patterns and inadequate 

knee stiffness.35 Experimental techniques were described that could be used to measure 

knee abduction motion, knee abduction moment and active joint stiffness in a large 

cohort of young athletes. The novel combination of detailed biomechanical analyses with 

maturational classifications was used in this longitudinal study. The three subsequent 

chapters detail the results and specifically identify the connection to increased ACL 

injury risk in mature females.  
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Figure 2.3. Reliability of joint kinematics. 
 

Representative subject (sub5r) kinematic data 7 weeks apart between sessions. Data is 

the mean (± standard deviation) of three trials.45 
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Figure 2.4. Reliability of joint moments. 
 

Representative subject (sub5r) kinetic data 7 weeks apart between sessions. Data is the 

mean (± standard deviation) of three trials. 45 
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Chapter 3. Altered Movement Patterns 

 

Introduction 

Neuromuscular risk factors may be critical components of the mechanisms 

underlying the higher rate of ACL injuries in female compared to male athletes. 

Specifically, altered movement patterns such as knee abduction (valgus) may relate to an 

increase ACL injury risk. Several studies have shown increased knee abduction motion 

and load in females compared to males during a variety of landing and pivoting 

movements.13-17, 36, 75, 82, 87, 122, 123 Similar lower extremity abduction posture has been 

reported in females at the time of injury.61, 62, 124 In addition, a prospective combined 

biomechanical-epidemiologic study showed that knee abduction moments (valgus 

torques) and angles were significant predictors of future ACL injury risk. Knee abduction 

moments predicted ACL injury risk with 73% sensitivity and 78% specificity.27 Knee 

abduction angles were 8 degrees greater in the ACL-injured than the uninjured groups. It 

is therefore likely that the increases in knee abduction moment and motion in the injured 

group were a significant risk factor that may have predisposed these athletes to an ACL 

injury.  

The onset of these neuromuscular risk factors may coincide with rapid adolescent 

growth that results in the divergence of a multitude of neuromuscular parameters between 

sexes. Following an adolescent growth spurt, increased body mass and height of the 

center of mass may lead to altered movement patterns.36 Therefore, the timing of 

adolescent growth may be the critical phase of growth and development related to sex 
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differences in ACL injury risk. However, at this time the effect of rapid growth and 

development in females on ACL risk factors is unknown. 

The purpose of this study was to determine if the specific timed onset of 

neuromuscular risk factors related to abnormal movement patterns increase in females, 

but not males, during the adolescent growth spurt. I hypothesized that during adolescent 

growth, pubertal females would have longitudinal increases in knee abduction moments 

and motion compared to pubertal males. I also hypothesized that following the adolescent 

growth spurt, post-pubertal females would have significantly greater knee abduction 

moments and motion compared to post-pubertal males.  

 

Methods 

Subjects 

A nested cohort design (total sample female n = 709; total sample male n = 250) 

was used to select a subset of 315 subjects that were included in this study and classified 

into two separate maturational groups. The maturational status, either pubertal (n = 182) 

or post-pubertal (n = 133), was based on the modified Pubertal Maturational 

Observational Scale (PMOS).41 If the subject met the pubertal criteria during the first or 

second year of testing they were operationally defined as pubertal in order to include all 

subjects that were close to this maturational stage. Subjects classified as post-pubertal 

had to meet the post-pubertal criteria on the first year of testing. The PMOS incorporates 

both parental questionnaires and investigator observations to classify subjects into the 

pubertal categories.52  The PMOS scale (Appendix B) has shown high reliability and can 

be used to differentiate between pubertal stages based on indicators of adolescent growth, 
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breast development, menstruation status, axillary and leg hair growth, muscular 

development, presence of acne and evidence of sweating during physical activities.36, 51-53 

Detailed demographics of both the male and female subjects are included in Table 

3.1. Each subject participated in the first testing session immediately prior to their 

basketball or soccer season. Approximately one year after the initial testing session 

(mean 365.7 ± 14.7 days) the subjects were retested using the same methods. Subjects 

were excluded from this study if they had previous history of knee or ankle surgery. The 

estimated percent of adult stature of pubertal subjects (female year 1: 87.8 ± 3.4%, 

female year 2: 91.8 ± 2.7%; male year 1: 87.7 ± 4.5%, male year 2: 91.7 ± 3.9%) and 

post-pubertal subjects (female year 1: 94.7 ± 3.4%, female year 2: 96.9 ± 3.0%; male year 

1: 96.7 ± 2.3%, male year 2: 98.4 ± 1.5%) was similar (p = 0.3) between sexes. 

Regression equations used to estimate adult stature are for female and males are 

presented in Appendix C.58 

The data collection procedures were approved by Cincinnati Children’s Hospital 

Institutional Review Board. Each parent or guardian reviewed and signed the Institutional 

Review Board approved consent to participate form prior to data collection. Child assent 

was also obtained from each subject prior to study participation. The database review and 

data analysis was certified exempt (Protocol No. 08-0928-X4B) under the University of 

Kentucky's Institutional Review Board based on federal regulation 45 CFR 46.101(b) for 

the protection of human subjects related to the study of existing data.   
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Procedures 

Height was measured with a stadiometer with the subject in bare feet. Mass was 

measured on a calibrated physician scale. Each subject was then instrumented with 37 

retroreflective markers placed bilaterally on the shoulder, elbow, wrist, ASIS, greater 

trochanter, thigh, medial and lateral knee, tibial tubercle, shank, distal shank, medial and 

lateral ankle, heel, dorsal surface of the midfoot, lateral foot (5th metarsal) and toe 

(between 2nd and 3rd metatarsals) in addition to the sacrum, left PSIS and sternum (Figure 

3.1). A static trial was first collected in which the subject was instructed to stand still in 

the anatomical position with foot placement standardized. This static measurement was 

used as each subject’s neutral (zero) alignment. Each subject performed three trials of the 

drop vertical jump (DVJ). The DVJ consisted of the subject starting on top of a 31 cm 

box with their feet positioned 35 cm apart. They were instructed to drop directly down off 

the box and immediately perform a maximum vertical jump, raising both arms as if they 

were jumping for a basketball rebound.15  

Trials were collected with EVaRT (Version 4, Motion Analysis Corporation, 

Santa Rosa, CA) using a motion analysis system consisting of eight digital cameras 

(Eagle cameras, Motion Analysis Corporation, Santa Rosa, CA) positioned in the 

laboratory and sampled at 240 Hz. Prior to data collection the motion analysis system 

was calibrated with a two-step process, first using a static calibration frame to orient the 

cameras with respect to the laboratory coordinate system and second using dynamic wand 

data to fine tune camera positions, calculate the lens distortion maps and calculate the 

lens focal length. Two force platforms (AMTI, Watertown, MA) were sampled at 1200 

Hz and time synchronized with the motion analysis system. The force platforms were 
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embedded into the floor and positioned 8 cm apart so that each foot would contact a 

different platform during the stance phase of the DVJ.  

 

Data Analysis 

Following data collection, 3D marker trajectories were examined for accurate 

marker identification within EVaRT (Version 4, Motion Analysis Corporation, Santa 

Rosa, CA) and exported to a C3D formatted file. The C3D files were then further 

analyzed in Visual3d (Version 4.0, C-Motion, Inc., Germantown, MD). The procedures 

within Visual3D first consisted of the development of a static model customized for each 

subject. The model's coordinate system convention was +X towards the subject's right 

(medial-lateral), +Y forward (posterior-anterior) and +Z up (distal-proximal).  

The pelvis, thigh, shank and foot segments were generated based on reflective 

markers from the static trial. Pelvis proximal joint center was assumed to be located at 

50% of the distance between left and right ASIS markers (mid-ASIS) (X direction) and 

50% of the distance from marker on the sacrum to the mid-ASIS (Y direction). The 

sacrum, right ASIS and left ASIS markers were used as tracking markers for the pelvis 

segment (Figure 3.1). The hip joint center was aligned in the anterior direction (Y) with 

greater trochanter marker. The hip joint center in the Y direction was positioned medially 

from the ASIS 14% of the inter-ASIS distance.125 In the Z direction, the hip joint center 

was located distally from the ASIS 30% of the inter-ASIS distance.125 Tracking markers 

for the thigh segment were placed on the greater trochanter, middle of the thigh and 

lateral knee (Figure 3.1). The knee and ankle joint centers were positioned 50% of the 

distance between the medial and lateral knee and ankle markers, respectively. Markers 
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placed on the tibial tubercle and middle and distal portions of the shank were used as 

tracking markers for the shank. The foot segment tracking markers were the heel, instep, 

lateral foot and toe (Figure 3.1).  

Segment lengths were estimated as the distance between the proximal and distal 

joint center (e.g. thigh segment distance was equal to the distance between the hip joint 

center to knee joint center). The subjects were positioned for the static trial in a 

standardized position in order to align the global coordinate system with each segment 

coordinate system. The pelvis coordinate system was considered aligned with the global 

lab. The Z axis for thigh segment coordinate system was calculated as the unit vector 

from the hip to knee joint center. The Y axis was then defined as the unit vector 

perpendicular to the Z axis and the anatomical plane formed based on the hip and knee 

joint centers and lab projected lateral hip marker. The X axis was orthogonal to the Y and 

Z axes based on the right hand rule. The local shank segment coordinate system Z axis 

was the unit vector from the knee to ankle joint center. The unit vector perpendicular to 

the shank Z axis and frontal plane (knee and ankle joint centers and lab projected lateral 

knee marker) formed the shank Y axis. The shank X axis was then defined orthogonal to 

the Y and Z axes. The foot local Y axis was calculated as the unit vector from the ankle 

joint center to the toe. The local Z axis was then defined as perpendicular to the Y axis 

and plane formed based on projected lateral ankle marker and toe and ankle center. The 

mass and inertial properties for each segment were based on sex-specific parameters from 

de Leva.126 and listed in detail in Table 3.2. The subject's height and mass were included 

in each model.  
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Custom MATLAB code (Appendix D) was used to batch process each subject 

through the Visual3D pipeline. The code generated a text file that the Visual3D pipeline 

engine could read and process the subject-specific model and kinematic and kinetic 

analyses. 3D marker trajectories from each trial were filtered at a cutoff frequency of 12 

Hz (low-pass fourth order Butterworth filter) determined based on residual analysis 

techniques (see Appendix D).116 3D knee joint angles were calculated according to the 

cardan rotation sequence (i.e. flexion/extension, abduction-adduction and internal-

external rotation).127 Kinematic data were combined with force data to calculate knee 

joint moments using inverse dynamics.128, 129 The ground reaction force was filtered 

through a low-pass fourth order Butterworth filter at a cutoff frequency of 12 Hz in order 

to minimize possible impact peak errors.130, 131 Net external knee moments are described 

in this paper and represent the external load on the joint. Knee abduction angle and knee 

external abduction moment are represented as negative values based on the analysis 

convention. The kinematic and kinetic data were exported to MATLAB (mat file) and the 

peak knee abduction angle and moment (negative) were calculated during the 

deceleration phase of the initial stance phase of the DVJ. The deceleration phase was 

operationally defined as being from initial contact (VGRF first exceeded 10 N) to the 

lowest vertical position of the body center of mass (Figure 3.2). The right side data were 

used for statistical analysis.  

   

Statistical Analysis 

Two between group independent variables of sex (female, male) and maturation 

level (pubertal, post-pubertal) in addition to the within subject independent variable 

 43



(repeated measure) of two consecutive year screening sessions were used in the statistical 

design. The dependent variables were peak knee abduction angle and moment. A 2X2X2 

ANOVA (maturation, sex, session) was used to test each hypothesis. Post-hoc analyses 

was used if significant interactions were observed between factors. An α ≤ 0.05 was used 

to indicate statistical significance. Analyses were conducted using SPSS v16.0 (SPSS 

Inc., Chicago, IL). 

 

Results 

Knee Abduction Angle 

  Mean knee abduction angle during the DVJ stance phase is presented in Figure 

3.3. There was a significant three-way interaction with peak knee abduction angle (p = 

0.029). Post hoc analysis, focusing on the pubertal group, identified a significant 

longitudinal increase in peak abduction angle in females (p < 0.001) but no change in 

males (p = 0.90). Figure 3.4 shows the longitudinal increase in knee abduction angle 

during one year of adolescent growth in pubertal females compared to pubertal males. 

The mean difference in stature during this year was 4.8 ± 2.4 cm in females and 6.6 ± 2.8 

cm in males.    

Increased stature in post-pubertal females was 1.0 ± 2.6 cm and 1.6 ± 2.2 cm in 

males. Within this cohort of post-pubertal athletes, females and males did not show 

significant longitudinal changes (p > 0.05) in peak knee abduction (Figure 3.4). However, 

females did have significantly greater overall peak abduction angle following adolescent 

growth compared to males (female -9.3 ± 5.7°; male -3.6 ± 4.6°; p < 0.001). 
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Knee Abduction Moment 

Figure 3.5 details the mean knee abduction moment for maturation and sex groups 

over each year. A three-way interaction was not significant for peak knee abduction 

moment (p = 0.07). There was a significant main effect of year (p <0.001) indicating 

longitudinal increases in peak knee abduction moment in the subjects overall (Figure 

3.6). A two-way interaction between sex and maturation group was identified (p = 0.013). 

Post-hoc analysis indicated that post-pubertal females had significantly greater peak knee 

abduction moment compared to post-pubertal males (female -21.9 ± 13.5 Nm; male -13.0 

± 12.0 Nm; p = 0.017). Sex differences in knee abduction moment were not found in 

pubertal subjects (p > 0.05).  

The results remained similar when knee abduction moment was normalized to 

body mass (three-way interaction p = 0.093, main effect of year p = 0.001). In addition, a 

two-way interaction between sex and maturation group was consistent with the un-

normalized moment (p = 0.016). Post-hoc analysis indicated that post-pubertal females 

landed with significantly greater body-mass normalized knee abduction moment 

compared to males (female -0.37 ± 0.23 Nm/kg; male -0.18 ± 0.16 Nm; p = 0.002). Sex 

differences in normalized knee abduction moment were not found in pubertal subjects (p 

> 0.05).  

    

Discussion 

The purpose of this investigation was to determine if the timed onset of specific 

neuromuscular risk factors related to abnormal movement patterns increase in females, 
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but not males, during the adolescent growth spurt. The pubertal group of male and female 

athletes showed an increase in stature that indicated they were going through rapid 

adolescent growth compared to the post-pubertal group. Within the pubertal athletes 

females exhibited an increase in peak knee abduction angle compared to the males. Both 

male and female athletes had increased knee abduction moments from the first to second 

testing session. These observed increases may partially be explained by the increased 

mass that also occurred between the testing sessions in all athletes. The increases in knee 

abduction, a potentially modifiable risk factor, may coincide with the increased risk of 

ACL injury in female athletes compared to males.36 While several studies have 

demonstrated that females land with greater knee abduction angles, the current study 

identifies, through longitudinal measures, a possible relationship between maturational 

group and increase in a proposed ACL injury risk factor. The combination of increased 

motion and torque in female athletes may predispose them to increased risk of injury as 

they develop and mature.  

Cross-sectional differences in knee abduction angle among maturational groups 

has been previously shown.36 Similar to our current study, Hewett et al. found significant 

differences in knee abduction angle in post pubertal but not pubertal athletes.36 The post-

pubertal females also had significantly greater knee abduction angle than pubertal 

females.36 In addition, a recent study showed similar results with maturing females 

exhibiting greater knee valgus posture during DVJ.132 Schmitz et al.132 found in a cross-

sectional study that females classified as Tanner Stage 1 or 2 had less knee valgus posture 

compared to females classified as Tanner Stage 4 or 5. The measure of knee valgus in the 

Schmitz et al.132 study incorporated a two-dimensional frontal plane angle calculated 
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from digital video. While this measure may involve additional rotations of the hip, knee 

and ankle, these authors did find similar results based on maturation within female 

subjects. In this study, I chose to examine pubertal compared to post-pubertal athletes 

with the hypothesis that increased knee abduction would be observed during puberty in 

females, but not in males. Yu et al.92 investigated the effects of age and gender on lower 

extremity movement in male and female soccer players between 11 and 16 years as they 

performed a stop jump task. They found that knee abduction angle was greater in female 

subjects that were older compared to the younger subjects.92  

The findings supported the first hypothesis that through longitudinal analyses 

pubertal female athletes increased peak knee abduction angle during a year of rapid 

adolescent growth. Knee abduction angle was not changed in post-pubertal females from 

the first to second year testing session. However, the post-pubertal females exhibited 

significantly greater knee abduction angle than post-pubertal males. These combined 

findings have not been previously identified and are likely important results which 

indicate that females may develop increased risk of injury during puberty. The pubertal 

group was estimated at approximately 88% to 92% of adult stature during the first and 

second year of testing, respectively. These percent adult stature values indicate that the 

male and female subjects were at similar stages of somatic growth. Peak height velocity 

occurs at approximately 91% of adult stature in both male and females, with the onset of 

the adolescent growth spurt near 81 - 84%.133 Therefore, the pubertal group appeared to 

be within the phase of rapid growth.   

Within subject increases in knee abduction motion and moments are of particular 

concern given previous cadaveric and modeling work that have linked these measures to 
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increased ACL strain.28, 68, 134-138 In a recent cadaveric study, Withrow et al. simulated 

landings in ten specimens with knee abduction angles at 15° and 0°(neutral).138 The 

impact with the knee in abduction led to a primary abduction (valgus) moment that 

increased ACL strain compared to the neutral landings. Shin et al. used a similar single 

leg landing impact that resulted in a knee abduction (valgus) moment to a three-

dimensional dynamic knee model and found a 35% increase in ACL strain compared to a 

"neutral-lander" (zero knee abduction moment).137 Based on incremental increase of the 

knee abduction moment, these authors showed that peak ACL strain increased rapidly 

between approximately 20 and 50 Nm.137 While direct comparisons are difficult between 

modeling and in vivo data, I did find that post-pubertal females (21.9 Nm) were within 

the steepest region of ACL strain curve,137 which indicates that slight increases in 

abduction moments would result in large increases in ligament strain. It is important to 

point out that all the knee loading conditions in this study were non-injurious (i.e. no 

injuries occurred during DVJ testing). However, it is likely that repeatedly performing a 

task with increased knee abduction moment and motion may place females at risk of an 

ACL injury when an unanticipated or unbalanced landing occurs. During unanticipated 

cutting, knee abduction-adduction and internal-external moments can be twice as high 

compared to pre-planned directional cutting.12   

Mechanisms of growth and development in females may underlie the increased 

risk of ACL injury through altered movement biomechanics such as knee abduction.36, 139 

ACL injuries do not appear to be different between male and female athletes prior to the 

onset of puberty and the adolescent growth spurt.30-33 However, following rapid pubertal 

growth, females have higher rates of knee sprains compared to males.100 The lower 
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extremity segments also go through rapid increases in length during adolescent growth 

and may potentially lead to increases in knee moments. Increased inertial properties of 

the segment (Table 3.2) could partially explain higher joint moments. Peak mass velocity 

for both sexes generally occurs after peak height velocity.44 It is interesting that both 

male and females had increases in knee abduction moment, but knee abduction motion 

changes were found only in pubertal females. Therefore, growth alone is not likely to be 

responsible for the increased abduction motion in females. An additional mechanism that 

differs between sexes as they mature likely plays a role in increased risk of ACL injury in 

females compared to males. Fat mass remains relatively consistent in males, with skeletal 

tissue and muscle mass gains being primarily responsible for the observed mass 

increase.44, 55 In contrast, females have less overall gains in skeletal tissue and muscle 

mass compared to males, in addition to a continuous rise in fat mass throughout 

puberty.44, 55 The higher center of mass, that results from skeletal growth, and subsequent 

mass gain during adolescence, makes muscular control of body position more difficult 

and may translate into larger joint forces at the knee.36  Males naturally demonstrate a 

“neuromuscular spurt” (increased strength and power during maturational growth and 

development) to match the increased demands of growth and development.36, 51, 55, 140, 141 

A recent longitudinal study concluded that males demonstrated a neuromuscular spurt as 

evidenced by increased vertical jump height and increased ability to attenuate landing 

force.51 The absence of similar adaptations in females during maturation may facilitate 

the mechanisms that lead to increased risk of ACL injury.101 

The timing of rapid growth may be the critical phase of development related to 

sex differences in ACL injury risk. As females reach maturity a variety of discrete sex 

 49



 50

differences in lower extremity measures have been shown in females compared to males 

performing landing and cutting maneuvers.13-16, 36, 75, 82, 87, 122, 123 Sex differences between 

post-pubertal athletes, combined with the timing of the onset of these variables, indicates 

that an appropriate time to implement an intervention program would be during early 

puberty. A prospective study that will investigate the timing of intervention is warranted. 

Prevention programs that incorporate plyometrics, technique biofeedback, and dynamic 

balance components appear to be effective and reducing measures of knee abduction and 

the occurrence of ACL injuries.27, 142, 143 

 

Conclusions 

Knee abduction angle was significantly increased in pubertal females during rapid 

adolescent growth compared to males. In addition, important reported risk factors of knee 

abduction motion and torque were significantly greater across consecutive years in young 

female athletes, following rapid adolescent growth, compared to males. Early puberty 

appears to be an important phase related to potential increase risk of ACL injury based on 

the results of this longitudinal study as well, as from previous epidemiologic and cross-

sectional studies. Future studies should focus on specific mechanisms that may limit or 

regulate dynamic abduction motion and torque, such as lower extremity strength, 

muscular co-contraction and joint stiffness parameters in young females that are at 

increased risk of ACL injury.   
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Chapter 4. Active Joint Stiffness 

 

Introduction 

Females suffer anterior cruciate ligament (ACL) injuries at a 2 to 10-fold greater 

rate compared to male athletes participating in the same high-risk sports.1-6 The 

combination of increased risk of injury and a 10-fold increase in the female sports 

population since the inception of Title IX has resulted in a dramatic increase in the 

number of ACL injuries in females.5 Active joint stiffness has been suggested to be a 

potential neuromuscular risk factor that may at least partially explain the gender bias in 

ACL injuries.35, 120, 144 Active joint stiffness can be voluntarily controlled through 

muscular recruitment and may increase dynamic joint stability.120, 144, 145 Co-contraction 

of the flexor (hamstrings) and extensors (quadriceps) may protect the knee against altered 

movement patterns such as excessive knee abduction motion and torque. The knee flexor 

and extensor muscles are the primary knee joint stabilizers and are utilized during 

dynamic loading conditions to protect against an injury.93 Strength and activation deficits 

of the hamstrings may limit the potential for muscular co-contraction to protect 

ligaments. Similar mechanisms apply to muscular protection against torsional loading, in 

which sex differences have been identified.94 Decreased active stiffness (leg and knee) 

has been shown in females compared to males.120, 146  

Hamstra-Wright et al.147 examined leg stiffness during the DVJ in prepubertal 

subjects and found no sex differences. The effect of age on stiffness has been examined 

in a group of 6 year olds compared to 18 year olds.148 As expected, they found increased 

stiffness at the ankle, knee and hip in the older group during countermovement vertical 
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jumps.148  They, however, did not include females in the study. In addition, the large gap 

in ages likely reflects multiple developmental, social and psychological factors that could 

influence the age differences found. Increased active joint stiffness may result in 

improved performance and possibly reduce the risk of ACL injury.54, 59, 94, 119, 120, 144 

However, it is important to realize that the optimal magnitude of joint stiffness is difficult 

to determine as either extreme (high or low) may result in poor performance or increased 

likelihood of load and injury. Joint stiffness variables are likely task specific, especially 

when considering a dynamic maneuver like a drop vertical jump that requires the athlete 

to immediately rebound from a drop to maximally jump.54, 119  

Identifying the potential changes in active joint stiffness within each subject over 

the time span of a year may help explain when neuromuscular sex differences begin to 

emerge that may relate to increased ACL injury risk. The purpose was to determine if the 

neuromuscular risk factors related to knee stiffness diverge between the sexes during the 

adolescent growth spurt. The first hypothesis tested was that during rapid adolescent 

growth, pubertal males would have increases in knee stiffness while pubertal females 

would not. The second hypothesis was that post-pubertal females would have 

significantly lower knee joint stiffness compared to post-pubertal males.  

 

Methods 

Subjects 

A nested cohort design (total sample female n = 709; total sample male n = 250) 

was used to select a subset of 315 subjects. The subjects were classified as either pubertal 

(n = 182) or post-pubertal (n = 133) based on the modified Pubertal Maturational 

 60



 

Observational Scale (PMOS) at each visit.41 The PMOS is a reliable instrument that 

combines a parental questionnaire and investigator observations to classify subjects into 

the pubertal categories.36, 51-53 Age, height and mass of the female and male subjects for 

two consecutive years are presented in Table 3.1. Each subject participated in the first 

testing session immediately before their basketball or soccer season. Two hundred and 

sixty one basketball players and 61 soccer players were tested.  Approximately one year 

after the initial testing session (mean 365.7 ± 14.7 days) the subjects were retested using 

the exact same methods. Subjects were excluded from this study if they had previous 

history of knee or ankle surgery.  

The data collection procedures were approved by Cincinnati Children’s Hospital 

Institutional Review Board. Each parent or guardian reviewed and signed the Institutional 

Review Board approved consent to participate form prior to data collection. Child assent 

was also obtained from each subject prior to study participation. The database review and 

data analysis was certified exempt (Protocol No. 08-0928-X4B) under the University of 

Kentucky's Institutional Review Board based on federal regulation 45 CFR 46.101(b) for 

the protection of human subjects related to the study of existing data.   

 

Procedures 

Thirty-seven retroreflective markers were placed on each subject as previously 

described (Figure 3.1).75 A static trial was collected in which the subject was instructed to 

stand still in the anatomical position with foot placement standardized. Three trials of the 

drop vertical jump (DVJ) were collected. The DVJ consisted of the subject starting on top 

of a 31 cm box with their feet positioned 35cm apart. They were instructed to drop 
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directly down off the box and immediately perform a maximum vertical jump, raising 

both arms as if they were jumping for a basketball rebound.15 Data trials were collected 

with EVaRT (Version 4, Motion Analysis Corporation, Santa Rosa, CA) using a motion 

analysis system with eight digital cameras (Eagle cameras, Motion Analysis Corporation, 

Santa Rosa, CA). The video data was collected at 240 Hz. The motion analysis system 

was calibrated based on manufacturer's recommendations. Two force platforms (AMTI, 

Watertown, MA) were embedded into the floor and positioned 8 cm apart so that each 

foot would contact a different platform during the stance phase of the DVJ. The force 

plate data were time synchronized with the motion analysis system and collected at 1200 

Hz.  

 

Data Analysis 

Three-dimensional marker trajectories were examined for accurate marker 

identification within EVaRT (Version 4, Motion Analysis Corporation, Santa Rosa, CA) 

and exported to a C3D file format. The C3D files were then further analyzed in Visual3d 

(Version 4.0, C-Motion, Inc.). The procedures within Visual3D were described in detail 

previously (Chapter 3). Briefly, a pelvis and bilateral thigh, shank and foot segments 

were created based on the reflective markers. The mass and inertial properties for each 

segment were based on sex-specific parameters from de Leva.126 and listed in detail in 

Table 3.2. The subject's height and mass were included in each model. Custom 

MATLAB code (Appendix D) was used to batch process each subject through the 

Visual3D pipeline. The code generated a text file that the Visual3D pipeline engine could 

read and process the subject-specific model and kinematic and kinetic analyses. 3D 
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marker trajectories from each trial were filtered at a cutoff frequency of 12 Hz (low-pass 

fourth order Butterworth filter). 3D knee joint angles were calculated according to the 

cardan rotation sequence.127 Kinematic data were combined with force data to calculate 

knee joint moments using inverse dynamics.128, 129 The ground reaction force was filtered 

through a low-pass fourth order Butterworth filter at a cutoff frequency of 12 Hz in order 

to minimize possible impact peak errors.130, 131 Net external knee moments are described 

in this paper and represent the external load on the joint. The kinematic and kinetic data 

were normalized to 101 points representing the stance phase of the DVJ. Data from initial 

contact (vertical ground reaction force first exceeded 10 N) to toe off (vertical ground 

reaction force fell below 10 N) was operationally defined as the stance phase (Figure 

4.1). The right side data were used for statistical analysis.  

Sagittal plane ankle, knee and hip angle and moments were used to calculate joint 

stiffness parameters.54, 119 Joint stiffness was modeled based on a rotational spring for 

each joint. Rotational spring plots (joint moment as a function of joint angle) were 

calculated for each trial within MATLAB.54, 149 Stiffness was calculated as the slope of 

the moment-angle curve from a least squares linear regression during the stance phase. 

Figure 4.2 shows an example of the variables calculated from the linear regression. In 

addition, the linearity of the curve was evaluated with the coefficient of determination 

(r²).119 Ankle dorsiflexion and knee and hip flexion were represented as positive values 

for consistent moment-angle curves. Ankle, knee and hip initial contact and peak flexion 

angles were calculated during the stance phase. Peak external flexion moments were also 

calculated during the DVJ stance.  
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 Statistical Analysis 

Two between group independent variables of sex (female, male) and maturation 

level (pubertal, post-pubertal) in addition to the within subject independent variable 

(repeated measure) of two consecutive year screening sessions were used in the statistical 

design. The dependent variables were ankle, knee and hip stiffness. A 2X2X2 ANOVA 

(maturation, sex, session) was used to test each hypothesis. Post-hoc analyses were used 

if significant interactions were found between factors. An α ≤ 0.05 was used to indicate 

statistical significance. Analyses were conducted using SPSS v16.0 (SPSS Inc., Chicago, 

IL). 

 

Results 

Stiffness 

Active joint stiffness variables are presented in Table 4.1. The coefficient of 

determination was high for each joint (Table 4.1). The linear regression fit ranged from r2 

= 0.74 ± 0.30 to r2 = 0.87 ± 0.14. Ankle, knee and hip stiffness increased from the first to 

the second year of testing in both male and females (main effect of year, ankle p = 0.001, 

knee p = 0.043, hip p < 0.001) (Figure 4.3). In addition, a significant interaction with year 

and maturation level was found at the ankle (p = 0.05) and hip (p = 0.006). Post-hoc 

analyses indicated that increased ankle and hip stiffness was evident in the pubertal group 

(p < 0.001) but not in the post-pubertal (p > 0.05) from the first to second year. 

Significant interaction (year * maturation) trended towards the same results with knee 

stiffness, but was not statistically significant (p = 0.085). However, when the joint 
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moments were normalized to body mass (Figure 4.4), the differences in ankle, knee and 

hip stiffness between years were not statistically different (p > 0.05).  

Figure 4.5 shows the calculated stiffness comparison of post-pubertal males and 

females. Males had significantly greater active stiffness at the ankle, knee and hip 

compared to females (p < 0.001, Table 4.1). However, when joint moments were 

normalized to body mass, knee stiffness was not significantly different between sexes 

(total female 0.029 ± 0.011 Nm/kg·°, total male 0.031 ± 0.013 Nm/kg·°, p = 0.223) 

(Figure 4.4). Body mass normalized ankle (total female 0.023 ± 0.008 Nm/kg·°, total 

male 0.028 ± 0.010 Nm/kg·°, p < 0.001) and hip (total female 0.033 ± 0.008 Nm/kg·°, 

total male 0.046 ± 0.013 Nm/kg·°, p < 0.001) stiffness were still significantly greater in 

males compared to females. In addition, an interaction with sex and maturational group 

was found with both normalized (p = 0.007) and non-normalized (p = 0.001) hip stiffness 

with the post-pubertal males exhibiting significantly greater hip stiffness than the other 

groups (Figure 4.3).  

 

Joint Angles and Moments 

Ankle, knee and hip kinematic and kinetic variables are displayed in Table 4.2 

and Table 4.3. All subjects combined demonstrated significantly increased peak knee and 

hip flexion angles from the first year of testing to the second (knee p = 0.034, hip p = 

0.015). The magnitude of the difference was small in both male and female subjects 

(knee: female 0.7 ± 7.1°, male 1.9 ± 5.4°; hip: female 1.9 ± 7.9°, male 1.7 ± 7.4°). No 

other kinematic variables at initial contact or peak were different between testing years (p 

> 0.05). Overall, females landed at initial contact with less hip flexion compared to males 
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(main effect of sex p = 0.035). In addition, females had significantly increased peak ankle 

dorsiflexion (main effect of sex p = 0.001) and knee flexion angle (main effect of sex p = 

0.001) compared to males (main effect of sex p = 0.001). No interactions or differences in 

kinematic variables were found among maturational groups (p >0.05).  

 Males had significantly increased ankle and hip peak moments from the first year 

of testing to the second compared to females (sex*year interaction: ankle p = 0.001, hip p 

= 0.01, Table 4.3). There was not a significant interaction of sex and consecutive tests 

with external knee flexion moment (p > 0.05). Both male and females increased external 

knee flexion moment during consecutive years (main effect of year, p < 0.001). 

Peak ankle and hip moments in post-pubertal males were significantly greater 

than post-pubertal females (sex*maturation interaction: ankle p = 0.025, hip p = 0.001, 

Table 4.3). When normalized to body mass the males had significantly greater ankle and 

hip moments while no differences were found in knee moments (Table 4.4, Figure 4.6). 

The ratio of peak knee to peak hip external moment was different between males and 

females (p < 0.001). Females utilized greater external knee flexion moment while males 

had more relative external hip flexion moments (Figure 4.7).   

 

Discussion 

Active joint stiffness was theorized as a possible regulatory mechanism to 

stabilize the joint and control dangerous movement patterns that may place females at 

higher risk of injury. Joint stiffness calculations involve the resistance of a mechanical 

stretch by an applied force.59 Knee flexor and extensor muscles are the primary knee joint 

stabilizers that may protect against an injury during dynamic loading conditions.93 Males 
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and females both had increases in DVJ active knee stiffness during the span of a year. 

Therefore, the present findings did not support the hypothesis that females would not 

increase knee stiffness during a year of pubertal growth. However, ankle and hip active 

stiffness was significantly increased from the first year of testing to the second year in 

males compared to females. Only one previous study was found that investigated active 

joint stiffness differences between maturational groups. Joint stiffness was increased in 

older male subjects (18 year old) compared to children (6 year old) during a 

countermovement vertical jump.148 In addition, Hamstra-Wright et al.147 examined leg 

stiffness during the DVJ in prepubertal subjects and found no sex differences.   

Similar to the previous work of Padua et al.59, we found that females had 

significantly reduced stiffness compared to males. This supports my hypothesis that knee 

stiffness would be lower in females. However, like Padua et al.59, when normalized to 

body mass the sex differences in active knee stiffness were no longer apparent. Changes 

to active joint stiffness can be accomplished, simplistically, through altering the joint 

moment magnitude and/or joint angular displacement. Although male and female athletes 

had similar normalized knee stiffness parameters, the maximum knee flexion angle was 

significantly greater in females compared to males. Increases in the normalized external 

net knee flexion moment may be responsible for the normalized stiffness parameters 

remaining similar in females. A quadriceps dominant recruitment pattern was supported 

in females that utilized this strategy to modulate stiffness parameters compared to males 

during hopping.59 While we did not measure muscular activation patterns, a similar 

quadriceps dominant pattern could be interpreted based on the relationship of external 

knee flexor to hip flexor moment. We found a significantly higher ratio of external knee 
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flexor moment (internal extensor) to external hip flexor moment (internal extensor) in 

females, while males were more balanced. Even when normalized to body mass, post-

pubertal males had significantly greater external hip flexor moments compared to 

females. It is particularly interesting that no sex differences were found in external knee 

flexor (quadriceps dominated) moment. During the DVJ the knee extensors are utilized to 

resist the external flexion moment. Internal ankle and hip extensor moments are 

dominated by bi-articular muscles that function as knee flexors. Two scenarios are likely 

to help interpret the absence of sex differences in knee flexion moment with greater ankle 

and hip moments in males: 1) females had increased knee extensor force or 2) males had 

increased knee flexor force. Therefore, even if males had larger overall knee extensor 

forces, compared to females, the net moment could be equal based on co-contraction of 

knee antagonist muscles.  

Adequate antagonist co-contraction (knee flexors) may balance quadriceps 

activation, compress the joint, and control high knee extension and abduction torques 

immediately after ground contact.11 Muscular co-contraction compresses the joint, due in 

part to the concavity of the medial tibial plateau, which may protect the ACL against 

anterior drawer.150 Increased balance in strength and recruitment of the flexor relative to 

the extensor musculature may protect the ACL.11 If hamstrings recruitment is high, the 

quadriceps can be activated to a greater extent while still allowing for a net flexor 

moment and similar mechanisms apply to activation strategies to protect sex differences 

that have been identified in torsional loading.94 Wojtys et al. demonstrated that maximal 

internal rotations of the tibia (transverse plane) were greater in females than in males in 

both the passive and the active muscle state.94 Females exhibited less muscular protection 
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of the knee ligaments under internal rotation loading than did males.94 Muscular 

activation patterns during landing has also shown an increased reliance on the quadriceps 

in female athltes.151 During single leg landing maneuvers females increased quadriceps 

while decreasing gluteus maximus activity compared to males.151 

The greater ankle and hip moments in post-pubertal males likely explain the 

greater ankle and hip stiffness compared to females. Post-pubertal males had significantly 

larger active ankle and hip stiffness compared to the other groups, in both normalized and 

un-normalized values. This may indicate that post-pubertal males landed with a different 

neuromuscular strategy to control the landing and push-off phase of DVJ than the other 

groups. Increased internal hip extensor moments have been shown previously during the 

DVJ in males compared to females.50 Decker et al.110 showed that during a drop landing 

males utilized the hip more for energy absorption compared to females. Significant sex 

differences in knee abduction motion and moments were found in the post-pubertal 

athletes as reported in Chapter 3. Post-pubertal males had lower normalized external knee 

abduction angles and moments compared to females. The relationship between increased 

ankle and hip stiffness and decreased knee abduction measures will be presented in 

Chapter 5.  

Females landed at initial contact with decreased hip flexion compared to males. 

This may play an important role in the mechanical efficiency of the hamstrings muscles 

in relation to the quadriceps.152 For example, the trunk may be positioned over the knee 

more with increased hip flexion, which has been indicated to increase activation of the 

hamstrings compared to a posterior trunk position.152, 153    
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Increased stiffness appears to coincide with increased performance.119, 148 Vertical 

jump height increased with increased stiffness in males performing the DVJ.119 However, 

there is likely an optimum level of stiffness for both performance and injury 

prevention.154 Decreased stiffness that may result in decreased performance, while 

stiffness too high may lead to excessive loading rates and possible injury.154 The 

relationship between stiffness and performance should be investigated further within 

female and male athletes. 

The torsional spring model appeared to be an appropriate representation during 

the DVJ, with high linear correlations of the moment-angle relationship throughout the 

stance phase. The correlations ranged from r = 0.86 to r = 0.93. These values are similar 

to Stefanyshyn and Nigg,54 who found average ankle stiffness linear correlations of r = 

0.86 during running and  r = 0.93 for sprinting. During single leg hopping at different 

frequencies, Granata et al. found correlations between vertical displacement and vertical 

ground reaction force that ranged between r = 0.92 and r = 0.96. In addition, during drop 

jumps, ankle stiffness models have reported linear correlations of r = 0.88 to r = 0.99 and 

knee stiffness correlations between r = 0.65 and r = 0.93.119  

Our measure of active joint stiffness is actually quasi-stiffness, defined by Latash 

and Zatsiorsky155 as the "…ability of the system to resist externally imposed 

displacements disregarding the time course of the displacement." A limitation of this 

simplistic model is that it ignores multiple components of the multi-joint system (i.e. 

viscosity, muscle reflex time delays, degrees of freedom, tendons, bones etc.). An 

additional and related limitation of modeling active joint stiffness based on the spring-

mass model is the use of external joint moments. Calculation of joint moments through 
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inverse dynamics incorporates the net forces that act about the joint.116 Net joint moments 

do not show which muscles are active or the magnitude of individual muscle forces 

generated at any specific point in time. Unfortunately, without sophisticated modeling of 

muscle forces, or possibly via electromyographical methods, we are unable to fully 

interpret the isolated net external knee flexion moment. Therefore, cautious interpretation 

of the joint moment relative to the actual muscle forces is necessary.  

 

Conclusions 

Males and females both showed increased active knee stiffness during the span of 

a year. However, ankle and hip active stiffness were significantly increased in males 

compared to females. Sex differences in ankle and hip stiffness may begin to occur 

slightly prior to the adolescent growth spurt. Follow-up studies should address 

prepubertal athletes to identify if sex differences exist prior to peak height velocity. 

When normalized to body mass, there were no differences between testing years. 

This indicates that progressive increases in body mass during adolescence may play a 

role in active joint stiffness. Despite the results of the longitudinal change, post-pubertal 

males exhibited greater hip stiffness than females. Sex differences in hip joint posture at 

initial contact and external hip flexion moment may indicate that males utilize a different 

hip strategy during drop vertical jumps compared to females. The impact of a hip focused 

intervention, and the relationship that active joint stiffness has on altered movement 

patterns, should be further explored in adolescent females and males.    
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a,b,c,d a,b,c,d 

a,b,c a,b,c 

a,b,c,d,f 
a,b,c,d,f 

Figure 4.3. Joint stiffness for the ankle, knee and hip 
aDenotes statistically significant effect of year (p < 0.05), bDenotes statistically significant effect of sex (p < 
0.05), cDenotes statistically significant effect of maturation (p < 0.05), dDenotes statistically significant 
interaction of year and maturation (p < 0.05), fDenotes statistically significant interaction of sex and 
maturation (p < 0.05) 
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b b 

b,f b,f 

Figure 4.4.  Normalized joint stiffness for the ankle, knee and hip 
bDenotes statistically significant effect of sex (p < 0.05), fDenotes statistically significant interaction of sex 
and maturation (p < 0.05) 
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Chapter 5. Absence of a Neuromuscular Performance Spurt 

 

Introduction 

Sex difference in anterior cruciate ligament (ACL) injury rates do not appear to be 

present in pre-pubescent athletes.30, 31, 99 In contrast, adolescent and adult females suffer 

ACL injuries at a 2 to 10-fold greater rate compared to male athletes participating in the 

same high-risk sports.1-6 Although the number of ACL injuries increase with age in both 

males and females, females have higher rates immediately following the growth spurt.100 

Insurance data show that girls and boys diverge in knee and ACL injury risk within the 

same time frame, after girls begin to mature (age 11 to 13).101 In addition, data from the 

American Academy of Orthopaedic Surgeons indicate that the prevalence of ACL 

surgeries peaks in girls at age 16, when they reach full maturity.102 

Longitudinal and cross sectional studies generally indicate that males have 

significantly greater increases in strength and power measures compared to females 

throughout adolescent growth (for summary see 44, 55). An increase in neuromuscular 

measures (strength and power) during adolescent growth is operationally defined as a 

neuromuscular spurt.51 Sex differences in strength and power during adolescent growth 

may help explain the increase of ACL injury risk in females during adolescent growth.36 

Angular measures of knee abduction increase in females during the same timing of 

maturation that strength and power measures increase in males.36 The absence of a 

neuromuscular performance spurt in females may relate to altered movement patterns that 

increase risk of ACL injury.   
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 In a longitudinal study, Quatman et al.51 showed that pubertal males increased 

vertical jump height in the span of a year 7.3% while females had no significant increase. 

Additional longitudinal44, 55, 156 and cross-sectional36, 141 studies have found similar results 

throughout maturation. For instance, Kellis et al.141 examined 379 basketball players and 

found that as age increased from 13 to 18 years the sex differences in vertical jump height 

also increased. Hamstrings and quadriceps peak torques at 300 °/sec were found to be 

greater in post-pubertal males compared to pubertal males.36 In addition, measures of 

peak torque in post-pubertal males were greater than post-pubertal females.   

While movement patterns may begin to differ between sexes during rapid 

adolescent growth, the relationship between this change and absence of a neuromuscular 

spurt has not been longitudinally investigated. The differences in neuromuscular 

performance between the genders during and following puberty may be important 

contributors to altered biomechanics. This could potentially explain the increased risk of 

ACL injury in females following puberty and may help to identify the optimal time to 

implement injury prevention programs.105  The objectives of this study were to identify 

longitudinal neuromuscular performance differences among sex and maturational groups 

and secondly to investigate the relationship of altered movement patterns, joint stiffness 

and neuromuscular performance measures of strength and leg power. The first hypothesis 

was that males would show significant increases in vertical jump and strength compared 

to females. I also hypothesized that longitudinal increases in knee abduction moments 

and motion would significantly correlate with the absence of increased leg power in girls. 

In addition, longitudinal decreases in knee stiffness during landing would significantly 

correlate with the absence of increased hamstrings strength in girls. 
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Methods 

Subjects 

The same subjects described in Chapter 3 were included in this study. The 

subjects were classified as pubertal or post-pubertal with the modified Pubertal 

Maturational Observational Scale (PMOS).41 Each subject participated in the first testing 

session immediately before their basketball or soccer season. Approximately one year 

after the initial testing session the subjects were retested using the exact same methods. 

Subjects were excluded from this study if they had previous history of knee or ankle 

surgery. The data collection procedures were approved by Cincinnati Children’s Hospital 

Institutional Review Board. Each parent or guardian reviewed and signed the Institutional 

Review Board approved consent to participate form prior to data collection. Child assent 

was also obtained from each subject prior to study participation. The database review and 

data analysis was certified exempt (Protocol No. 08-0928-X4B) under the University of 

Kentucky's Institutional Review Board based on federal regulation 45 CFR 46.101(b) for 

the protection of human subjects related to the study of existing data. 

 

Procedures 

Isokinetic knee extension/flexion strength was collected with the subject seated on 

a dynamometer (Biodex, Shirley, NY) and their trunk perpendicular to floor, hips flexed 

to 90° and knees flexed to 90° (Figure 5.1). A warm-up set of 5 knee flexion/extensions 

was performed for each leg at 300°/sec. The test session consisted of 10 knee 
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flexion/extension repetitions for each leg at 300°/second. Peak flexion and extension 

torques were recorded.  

Retroreflective markers were placed on each subject and a static trial was 

collected as previously described (Figure 3.1).75 Three trials of the drop vertical jump 

(DVJ) were collected with the subjects dropping from a 31 cm box. The subjects dropped 

directly down off the box and immediately perform a maximum vertical jump, raising 

both arms as if they were jumping for a basketball rebound.15 A suspended ball was 

placed above them as a target to reach during the vertical jump. The ball height was 

positioned based on each subject's previously measured maximum countermovement 

jump (Figure 5.2).  

Data trials were collected with EVaRT (Version 4, Motion Analysis Corporation, 

Santa Rosa, CA) using a motion analysis system with eight digital cameras (Eagle 

cameras, Motion Analysis Corporation, Santa Rosa, CA). The video data was collected at 

240 Hz. The motion analysis system was calibrated based on manufacturer's 

recommendations. Two force platforms (AMTI, Watertown, MA) were embedded into 

the floor and positioned 8 cm apart so that each foot would contact a different platform 

during the stance phase of the DVJ. The force plate data were time synchronized with the 

motion analysis system and collected at 1200 Hz.  

 

Data Analysis 

Following data collection, 3D marker trajectories were examined for accurate 

marker identification within EVaRT (Version 4, Motion Analysis Corporation, Santa 

Rosa, CA) and exported to a C3D file format. The C3D files were then further analyzed 
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in Visual3d (Version 4.0, C-Motion, Inc., Germantown, MD). The procedures within 

Visual3D were described in detail previously (Chapter 3, Chapter 4). Sagittal plane ankle, 

knee and hip angle and moments were used to calculate joint stiffness parameters.54, 119  

Joint stiffness was modeled based on a rotational spring for each joint. Rotational spring 

plots (joint moment as a function of joint angle) were calculated for each trial within 

MATLAB.54, 149 Stiffness was calculated as the slope of the moment-angle curve from a 

least squares linear regression during the stance phase. Maximum knee abduction angle 

and moment were calculated (Chapter 3) during the landing portion of the DVJ.  

Vertical jump height was calculated from the DVJ trials based on the vertical 

trajectory of the greater trochanter reflective marker.51 The difference between the 

maximum height and standing height was calculated as maximum vertical jump height. 

Figure 5.4 shows a related calculation with estimated center of mass during DVJ.  

The difference (Δ) between consecutive testing years was calculated of the 

variables described above (vertical jump, isokinetic torque, active joint stiffness, knee 

abduction moment and angle) and used in the analysis.  

  Δ = test2 – test1     

 

Statistical Analysis 

Two between group independent variables of sex (female, male) and maturation 

level (pubertal, post-pubertal), in addition to the within subject independent variable 

(repeated measure) of two consecutive year screening sessions, were used in the 

statistical design. The dependent variables were vertical jump height, knee extension and 

flexion peak torque at 300 °/sec. A 2X2X2 ANOVA (maturation, sex, session) was used to 

test each hypothesis. Pearson correlation coefficients were calculated to identify if changes in 
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the dependent variables related to change in the dependent variables from chapters 3 & 4. An 

α ≤ 0.05 was used to indicate statistical significance. Analyses were conducted using SPSS 

v16.0 (SPSS Inc., Chicago, IL). 

 

Results 

Vertical Jump 

Males had a significantly greater increase in vertical jump from the first to second 

year of testing compared to females (Figure 5.4, sex * session interaction, p = 0.006). 

Females increased their vertical jump by 4.2%(± 8.7). Males nearly doubled the yearly 

increase, in comparison to females, with a vertical jump height change of 8.2% (±8.3) (p 

= 0.003). Pubertal athletes also showed greater yearly increases in vertical jump height 

compared to post-pubertal (maturation * session interaction, p = 0.001).  As expected, the 

post-pubertal males had a higher vertical jump height compared to other groups (Figure 

5.4, sex * maturation interaction, p = 0.005).  

 

Isokinetic Quadriceps and Hamstrings Strength 

Both male and female pubertal athletes had increases in normalized peak 

quadriceps torque at 300 °/sec (maturation * session interaction, p = 0.016). Yearly 

quadriceps strength changes were not found in post-pubertal subjects (Figure 5.5). Post-

pubertal males had greater normalized quadriceps strength compared to other groups 

(Figure 5.5, sex * maturation interaction, p < 0.001).  

    There were no differences between testing years with normalized hamstrings peak 

torque (p > 0.05). However, males overall exhibited greater hamstrings peak torque at  

300 °/sec compared to females (Figure 5.6, sex main effect, p < 0.001).  
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Correlated Variables 

Changes across testing years of the dependent variables presented in Chapters 3-5 

were calculated. The primary variables of interest were knee abduction angle and 

moment, active joint stiffness, vertical jump height and hamstrings strength. Changes in 

active joint stiffness variables were significantly correlated to vertical jump height 

change in all the athletes combined (ankle r = 0.13, knee r = 0.12, hip r = 0.13; p < 0.05; 

Figure 5.7).  Hamstrings peak torque was not related to stiffness or knee abduction 

changes (p > 0.05) in all the athletes combined. However, in post-pubertal athletes, 

increased hamstrings peak torque was significantly correlated to increased hip stiffness (r 

= 0.18, p < 0.05). Vertical jump height was correlated to knee abduction motion (r = -

0.11, p < 0.05) and moment (r = -0.14, p < 0.05), which indicated that as vertical jump 

height increased, the knee abduction measures increased (became more negative). 

Knee abduction angle significantly correlated to knee (r = 0.17, p < 0.01) and hip 

stiffness (r = 0.16, p < 0.01). Interestingly, in females, increased knee stiffness (r = 0.21, 

p = 0.001) significantly correlated to decreased knee abduction angle (Figure 5.8). Hip 

stiffness changes were not related in females to changes in knee abduction angle (p > 

0.05). However, increased hip stiffness was related to decreased knee abduction angle (r 

= 0.35, p = 0.01) in male subjects (Figure 5.9). Increased stature was significantly related 

to increased knee abduction moment (r = -0.15, p = 0.02) in female but not male athletes. 
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Discussion 

The first purpose of this study was to identify longitudinal neuromuscular 

performance differences among sex and maturational groups. We supported our first 

hypothesis that males would demonstrate a significant increase in vertical jump height 

compared to females. Beunen et al.156 reviewed the literature relevant to sex and 

maturational differences in motor performance and suggested that boys had a "power 

spurt" in vertical jumping. The performance in girls matched boys up to about 13 years 

and then had little improvement.156  Others have shown similar differences during 

maturation when comparing vertical jump height between sexes. Kellis et al.141 tested 

four different types of vertical jump performance in a cohort of male and female 

basketball players. They compared the vertical jump height to age and sex and found that 

males had significant increases in performance compared to females.141 While the 

statistical results are similar, the overall jump heights appear to be slightly lower in the 

Kellis et al. study compared to the present findings. The difference is likely the result of 

the higher box height (40.0 cm) compared to the box height in our study (31.0 cm). For 

example, if we compare the 13 year old group141 to the second year of testing in the 

pubertal females (average age 13 years old), the DVJ performance was 25.6 ± 3.6 cm 

compared 32.0 ± 4.3 cm, respectively. In addition, differences in technique could also 

factor into the differences in absolute jump height as we used an overhead target and 

allowed arm swing which increase vertical jump performance.50, 157  

 Both male and female pubertal athletes increased quadriceps strength during the 

span of a year of rapid pubertal growth. Interestingly, no increases were found in 

hamstrings strength. However, males exhibited larger hamstrings strength overall 
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compared to females. The lower overall hamstrings strength in females may be related to 

increased risk of ACL injury. A previous study showed that female athletes, prior to 

suffering an ACL injury, had decreased hamstrings strength compared to males.158 

However, female athletes who did not go on to ACL injury had similar hamstrings 

strength compared to matched male athletes.158 Decreased hamstrings strength has been 

implicated as a potential mechanism related to lower extremity injuries and potentially 

ACL injury risk in female athletes.159 Joint stabilization can be accomplished through 

hamstrings and quadriceps co-contraction and may be necessary when the joint is 

subjected to high quadriceps activation or when the passive structures are 

compromised.160, 161 Withrow et al. reported that increased hamstrings force during the 

flexion phase of simulated landings decreased relative strain on the ACL.162 Muscular 

strength, as well as the joint position in which the muscle groups are activated, are 

important concepts related to joint stabilization.152 Males had significantly greater hip 

flexion than females at initial contact (Chapter 4) which theoretically would increase the 

activation of the hamstrings compared to an initial joint posture that is more extended, 

which would place the trunk and body center of mass in a more posterior position.153  

The functional significance of the hamstrings and quadriceps strength 

measurements is limited based on the isokinetic speed and joint positions. The current 

protocol collected isokinetic strength at a relatively high speed of 300 °/sec. Concentric 

muscle action was measured for both the hamstrings and quadriceps muscles. The 

difference in muscle action (concentric and eccentric) during an open kinetic chain test 

may also limit the relationship of the strength results to a closed kinetic chain landing 

exercise.  
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The second aim of this chapter was to relate the changes in performance variables 

to abduction motion and active joint stiffness. The strength of the relationship among all 

the variables was low. Even with this limitation, there were several significant 

correlations that were of interest. For example, we suggested in Error! Reference source 

not found. that active joint stiffness may be used to control knee abduction motion. 

There was a significant relationship between increased stiffness and decreased knee 

abduction. This indicates that as athletes matured between the two testing years, those 

that increased active joint stiffness at the knee and hip also had a tendency to reduce peak 

knee abduction angle. When the relationship between stiffness and altered movement was 

examined within males, increased hip stiffness appeared to be related. Whereas in 

females, hip stiffness was not significantly related to altered knee abduction. Males 

appear to utilize a different strategy during growth and development to control knee 

abduction based on increased hip stiffness. This relationship is strengthened by the results 

in Chapter 3 and Chapter 4, that show lower knee abduction motion and moments with 

greater hip extensor moment and hip stiffness, in males compared to females. It is 

important to consider that it is not appropriate to imply causation from these results. 

While there were significant correlations, the relationships could be coincidental and 

could be related to other growth and developmental factors. A randomized controlled trial 

with an intervention to increase active joint stiffness would be recommended to identify 

the casual relationship to knee abduction.  

Neuromuscular training programs have been successful at reducing knee 

abduction motion and moments.11, 142, 143, 163 A comprehensive review of ACL injury 

prevention programs indicates that neuromuscular training appears to decrease ACL 
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injury rates in female athletes.24 These programs typically incorporate plyometric training 

and technique analysis. Plyometric exercises, such as DVJ, focus on the body's ability to 

effectively use the stretch-shortening cycle (SSC). SSC is defined as a muscle stretch 

prior to a rapid shortening to accelerate the body or a limb.164 The SSC muscle action 

increases power and performance when compared to pure concentric actions.165-167 

Jumping is more powerful if an athlete initiates the movement with a countermovement 

or preparatory descent prior to the leap.166 These types of exercise may help prepare an 

athlete for demanding multidirectional sport maneuvers, by controlling the external 

forces and limiting potentially dangerous joint postures. In addition to changes with knee 

abduction, plyometric training has also been shown to positively alter hip kinematics and 

kinetics.168 Lehpart et al.168 found increased hip flexion at initial contact and increased 

peak external hip flexion moment following a plyometric training protocol. They 

suggested that the modifications at the hip likely increase the hamstrings forces that 

protect the ACL.168 Hip posture may play an important role in the mechanical efficiency 

of hamstrings in relation to quadriceps.152 In Chapter 4 we identified that females landed 

with less hip flexion at initial contact in addition to lower hip stiffness and hip flexion 

moment compared to males. Focused hip training that incorporates plyometric activities 

with technique feedback may be warranted in young female athletes prior to the 

development of these differences between sexes.  

Decreased hip strength (gluteus medius and gluteus maximus), measured from a 

hand-held dynamometer, has been previously related to greater knee abduction at initial 

contact and peak during landing.169 We did not measure hip strength in the current study, 

but further investigation is warranted. In addition, hip abduction motion and strength may 
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also play an important role in joint stabilization. Jacobs et al. evaluated isometric hip 

abduction peak torque and found that females demonstrated a relationship between 

decreased hip strength and increased knee abduction displacement and hip adduction 

during landing.81   

 

Conclusions 

Males had a significantly greater yearly increase in vertical jump height compared 

to females. Increased vertical jump height correlated with increased active joint stiffness. 

Quadriceps strength increased in both sexes while hamstrings strength did not change in 

females. Males exhibited greater strength in both the quadriceps and hamstrings muscle 

groups when compared to females. Post-pubertal athletes demonstrated a significant 

correlation between increased hamstrings peak torque and increased hip stiffness. These 

findings indicate that hamstrings focused training that increases isokinetic hamstrings 

strength may also increase active hip joint stiffness during a DVJ. Contrasting results 

between sexes were found to relate to the decreased knee abduction angle from the first 

year of testing to the second. Males showed a significant relationship between increased 

hip stiffness, while females had a significant relationship with knee stiffness, to decreased 

knee abduction angle. Focused hip training that incorporates plyometric activities with 

technique feedback may be warranted in young female athletes to address sex differences 

in development of ACL injury risk factors as they mature.    

  

 



 

 

95

Fi
gu

re
 5

.1
. I

so
ki

ne
tic

 k
ne

e 
fle

xi
on

 a
nd

 e
xt

en
si

on
 tr

ia
ls

 a
t 3

00
 °/

se
c.

 

 



 

 

 

Figure 5.2. MX-1 vertical jump test with a countermovement jump. 
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Figure 5.3. Calculation of vertical jump based on vertical trajectory of the body center of mass 
estimated from the motion analysis system. 
 



   

 

d,
e,

f 
d,

e,
f 

98

Fi
gu

re
 5

.4
. C

al
cu

la
te

d 
ju

m
p 

he
ig

ht
 fr

om
 D

V
J 

(m
ea

n 
an

d 
st

an
da

rd
 d

ev
ia

tio
n)

 
d D

en
ot

es
 st

at
is

tic
al

ly
 si

gn
ifi

ca
nt

 in
te

ra
ct

io
n 

of
 y

ea
r a

nd
 m

at
ur

at
io

n 
(p

 <
 0

.0
5)

, e D
en

ot
es

 st
at

is
tic

al
ly

 si
gn

ifi
ca

nt
 in

te
ra

ct
io

n 
of

 y
ea

r a
nd

 se
x 

(p
 <

 0
.0

5)
, f D

en
ot

es
 

st
at

is
tic

al
ly

 si
gn

ifi
ca

nt
 in

te
ra

ct
io

n 
of

 se
x 

an
d 

m
at

ur
at

io
n 

(p
 <

 0
.0

5)
 

     



    

 

d,
f 

d,
f 

99

Fi
gu

re
 5

.5
. N

or
m

al
iz

ed
 is

ok
in

et
ic

 q
ua

dr
ic

ep
s p

ea
k 

to
rq

ue
 (m

ea
n 

an
d 

st
an

da
rd

 d
ev

ia
tio

n)
 

d D
en

ot
es

 st
at

is
tic

al
ly

 si
gn

ifi
ca

nt
 in

te
ra

ct
io

n 
of

 y
ea

r a
nd

 m
at

ur
at

io
n 

(p
 <

 0
.0

5)
, f D

en
ot

es
 st

at
is

tic
al

ly
 si

gn
ifi

ca
nt

 in
te

ra
ct

io
n 

of
 se

x 
an

d 
m

at
ur

at
io

n 
(p

 <
 0

.0
5)

 
       



      

 

b 
b 

100

Fi
gu

re
 5

.6
. N

or
m

al
iz

ed
 is

ok
in

et
ic

 h
am

st
ri

ng
s p

ea
k 

to
rq

ue
 (m

ea
n 

an
d 

st
an

da
rd

 d
ev

ia
tio

n)
 

b D
en

ot
es

 st
at

is
tic

al
ly

 si
gn

ifi
ca

nt
 e

ff
ec

t o
f s

ex
 (p

 <
 0

.0
5)

 

 



 

 
 

 

101

Fi
gu

re
 5

.7
. S

ca
tt

er
pl

ot
 o

f y
ea

rl
y 

ch
an

ge
s i

n 
ve

rt
ic

al
 ju

m
p 

he
ig

ht
 a

nd
 a

nk
le

 (t
op

 le
ft

), 
kn

ee
 (t

op
 r

ig
ht

) a
nd

 h
ip

 (b
ot

to
m

) s
tif

fn
es

s 
  



  

 
 

102

Fi
gu

re
 5

.8
. F

em
al

e 
(le

ft
) a

nd
 m

al
e 

(r
ig

ht
) s

ca
tt

er
pl

ot
 o

f y
ea

rl
y 

ch
an

ge
s i

n 
kn

ee
 a

bd
uc

tio
n 

an
gl

e 
an

d 
kn

ee
 st

iff
ne

ss
 

        



  

103

 
 

Fi
gu

re
 5

.9
.  

Fe
m

al
e 

(le
ft

) a
nd

 m
al

e 
(r

ig
ht

) s
ca

tt
er

pl
ot

 o
f y

ea
rl

y 
ch

an
ge

s i
n 

kn
ee

 a
bd

uc
tio

n 
an

gl
e 

an
d 

hi
p 

st
iff

ne
ss

 
      



 

Chapter 6. Conclusions 

 

Summary of Results 

The overall purpose of this dissertation was to determine if neuromuscular ACL 

injury risk factors in female athletes increase following rapid growth and development 

compared to males. The first research questions were addressed in Chapter 3 and Chapter 

4. Specifically, I asked if the onset of neuromuscular risk factors in female athletes occur 

during rapid adolescent growth. Male and female athletes were tested over two 

consecutive years to determine if risk factors associated with ACL injury increased. 

Pubertal females showed a significant longitudinal increase in knee abduction angle 

compared to post-pubertal females and both male groups. The increase in knee abduction 

angle appeared to remain consistent, as the post pubertal female cohort had greater 

overall knee abduction compared to post-pubertal males. Similar results were found with 

a greater magnitude of knee abduction moment in post-pubertal females compared to 

males.  

Active joint stiffness was investigated as a potential risk factor that may be related 

to increased risk of ACL injury. Throughout maturation, males were hypothesized to 

develop increased active joint stiffness, which may help control frontal plane lower 

extremity motion. We found that males and females increased ankle, knee and hip active 

stiffness from the first to second year of testing. Ankle and hip stiffness was increased 

significantly more in the pubertal group compared to post-pubertal. However, when 

active joint stiffness was normalized to body mass, there were no significant differences 

between the testing years. Sex and maturational group differences were found in hip and 
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ankle joint stiffness. Post-pubertal males had significantly greater hip stiffness than the 

other groups (even when normalized to body mass). This indicates that post-pubertal 

males landed with a different neuromuscular strategy. Males preferred to utilize external 

hip flexion moment, as opposed to the knee flexion moment, as well as landing at initial 

contact with greater hip flexion, compared to females. The theoretical concept of a knee 

extensor dominant landing strategy in females compared to a hip extensor dominant 

strategy in males should be further explored.  

The second question that this dissertation addressed was the relationship between 

neuromuscular performance variables and purported risk factors. We first identified if a 

"neuromuscular spurt" was apparent in males, but not females. This hypothesis was 

supported, as males had a significantly greater increase from year to year in vertical jump 

height compared to females. Vertical jump height is often related to a measure of whole 

body power. Quadriceps strength increased in both sexes while hamstrings strength did 

not change. Males exhibited overall greater strength in both the quadriceps and 

hamstrings muscle groups when compared to females. The change from year to year was 

calculated for each of the variables of interest and correlated. Significant correlations 

were found in a few of the variables; however, they were relatively low in strength. An 

interesting correlation between hip stiffness and decreased knee abduction angle was 

found in males. This indicates that during a year of adolescent growth and development, 

males increased hip stiffness and decreased knee abduction angle. In contrast, females 

appeared to use a knee stiffness strategy as this was significantly correlated in females, 

but not males, to decreased knee abduction angle. Further interpretation would indicate 
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that females that did not increase knee stiffness during a year of adolescent growth had 

increased knee abduction angle.  

 

Practical Implications 

Neuromuscular training programs have been successful at reducing knee 

abduction motion and moments.11, 142, 143, 163 A comprehensive review of ACL injury 

prevention programs indicates that neuromuscular training appears to decrease ACL 

injury rates in female athletes.24 These programs typically incorporate plyometric training 

and technique analysis. Studies are ongoing that show that knee abduction measures may 

be useful at identifying those females that are at increased risk of ACL injury.27 We have 

shown in this study that pubertal females have increased knee abduction motion during a 

year of adolescent growth. Early puberty may be an appropriate time during maturation to 

institute an intervention program which aims to control knee abduction motion and torque 

as well to induce a neuromuscular spurt through focused hip extensor strength training. 

The pubertal female group in our study was approximately 12 years old and estimated to 

be at 88 percent of adult stature. Therefore, training programs may be most beneficial 

prior to peak height velocity, which occurs near 92 percent of adult stature, and 

represents the largest rate of growth during adolescence.  

 

Recommendations for Future Research 

A limitation in our study was that group differences between pubertal groups were 

cross-sectional in nature, as we did not follow the subjects through pubertal and 

postpubertal stages of development. Follow-up studies should be considered which 
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follow individuals in a longitudinal nature throughout adolescent development. Accurate 

and practical screening and identification of athletes at increased risk of ACL should be 

considered. Simpler methods have been investigated and could be used to collect 

valuable screening information on large cohorts of athletes. Two-dimensional frontal 

plane knee motion or angular displacement may prove valuable to include in standardized 

pre-participation physicals.15, 170, 171 It is likely that a large number of the female sports 

population would demonstrate decreased dynamic knee stability and require intervention. 

The utility of a screening and intervention program should be investigated with the 

highest level of evidence research design (randomized controlled trial). Reduction of 

female injury rates would potentially allow thousands of females annually to continue the 

health benefits of sports participation and avoid the long-term complications of 

osteoarthritis, which occurs with a 10 to 100-fold greater incidence in ACL-injured than 

in uninjured athletes.39, 40  

 

 

 

 

 



 

APPENDICES 
 

Appendix A. The effects of age and skill level on knee musculature co-contraction during 
functional activities: A systematic review172 
 
Kevin R. Ford, Antonie J. van den Bogert, Gregory D. Myer, Robert Shapiro and 
Timothy E. Hewett 

 
Introduction 

The development of sports related skills requires a complex coordination between 

the agonistic and antagonistic muscles at a joint to maximize the degrees of freedom and 

force output with the required dynamic restraints to maintain required local joint 

stability.173 During maturation and skill development, inhibition of antagonist muscle 

groups is thought to be progressively learned until an efficient movement pattern is 

obtained.117 A classic motor learning theory contends that excessive antagonistic 

contribution during dynamic tasks may decreases the system’s “degrees of freedom” 

during initial acquisition of a new skill.173-175 Accordingly, the degrees of freedom are 

gradually increased and optimized in order to execute the task in the most efficient 

manner in the skilled performer.174, 175 Prior investigations have evaluated this 

relationship between agonist and antagonistic muscles systems in attempts to define 

optimal motor control and learning patterns in numerous types of movements in various 

populations.147, 173, 176  

Muscular co-contraction is operationally defined as activation of both the agonist 

and antagonist muscle groups crossing the same joint.116 Mechanically, increased 

activation levels of the antagonist muscle group results in a higher joint stiffness, reduced 

agonist force output and reduced net joint moment.116 During activities that require 

maximum performance (e.g. push off phase of a jump) or throughout the entire stretch 
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shortening cycle, inhibition of antagonist muscles would often be considered an efficient 

adaptation. If antagonist muscle forces increase, more work is required and decreased 

efficiency results for any given movement. Thus when applying the theoretical model of 

motor performance, without consideration of the joint stability required to maintain the 

integrity of the joint, decreased co-contraction would be directly related to increased 

power output at a joint. 

 However, during dynamic human movement co-contraction is a potential motor 

control strategy used to dynamically stabilize and protect a joint. Joint stability through 

co-contraction may be necessary when the joint experiences high distraction or shear 

forces and/or when the passive structures are compromised. For example, hamstrings 

activation can decrease the load on the passive restraints of the knee,177 increase the knee 

joint compression force and stabilize the knee from external varus/valgus load.70 A panel 

of experts suggests that female athletes, who are at a higher risk of ACL injury than 

males,4 should focus on hamstrings strengthening exercises35 and appropriate dynamic 

co-contraction (without limiting joint motion). Increased strength and recruitment of the 

hamstrings musculature may help to decrease the coronal plane rotations and anterior 

shear forces on the ACL.70  Female athletes exhibit increased coronal plane motion and 

moments during a variety of athletic maneuvers compared to males.15, 17, 75, 82, 108, 123   

Decreased ability to control external coronal plane loads may be the symptom of 

decreased ability to recruit the hamstrings musculature, especially in response to 

increased quadriceps strength at high velocities.178 Decreased co-contraction and dynamic 

stabilization of the knee joint in response to excessive coronal plane loads may underlie 

the increased risk of ACL injury in female athletes.27 
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Co-contraction levels are high during normal dynamic joint loading movements 

such as landing.179 Considering that there is a potential conflict between joint stability 

and movement efficiency, important insights may be gained by comparing co-contraction 

levels among various movement tasks in relation to the mechanistic effects of age and 

skill development.  The purpose of the current report was to critically review the current 

literature relating the effects of age and skill level on motor control patterns of knee 

musculature co-contraction during functional movements. 

 

Methods 

A search of electronic databases, MEDLINE (1966 – October 2006) and CINAHL 

(1982 – June 2007), was performed with the search terms specifying co-contraction 

(cocontract*, co-contract*, coactive* or co-activ*). The search was focused on the effects 

age and/or skill level and were limited by the keywords of age or skill level (skill*) or 

experience (experi*). Articles were included in the review if they were a randomized 

controlled trial or cohort study and investigated co-contraction (index or ratio) with 

electromyographical analyses during functional activity. Articles were excluded that did 

not perform investigations on normal or athletic population (i.e. osteoarthritis and 

elderly). Abstracts and unpublished studies were also excluded.      

 

Results 

Six articles139, 147, 180-183 were identified that presented knee muscular co-

contraction patterns in relation to age or skill level. Each article is briefly described 
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below by publication date (Table B.1). Interpretations and possible limitations of each 

study are presented in detail in the discussion.  

Frost et al 181  

The stated purpose of this study was to assess co-contraction of three different age 

groups of children during walking and jogging and to compare the magnitude of co-

contraction among them. The investigation evaluated a total of 30 total healthy, active 

subjects with ten subjects in each age group (7-8 yrs, 10-12 yrs and 15-16 yrs). Five 

different treadmill speeds (2 walking and 3 jogging) were used for each age group, with 

one walking and 2 jogging speeds in common between adjacent age groups. Surface 

electromyography (EMG) electrodes (Ag/AgCl) were placed on the vastus lateralis and 

“middle of the hamstrings group” (no specific muscle was identified in the paper) with an 

inter-electrode distance of 4cm. Raw EMG was first normalized to the maximum value 

obtained during either the treadmill trials or maximum voluntary contraction (MVC) 

trials. A co-contraction index, dimensionless value, was calculated based on overlaying 

the linear envelopes of the vastus lateralis and hamstrings, calculating the area of overlap 

and dividing by the number of data points. Frost et al.181 found when comparing the 

running speeds at the same relative metabolic intensity (% VO2 max) the co-contraction 

index was higher in younger compared to older aged groups. They concluded that co-

contraction was an important component of age-related differences in VO2 which was 

used to possibly enhance joint stability at the younger age.  

Croce et al.139 

 This study examined the differences between pre-pubescent and post-pubescent 

male and female subjects. The authors stated that different stabilization patterns might be 
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a causative factor related to ACL injuries.  Two groups of subjects were studied based on 

age and were classified as pre-pubescent (7-10 year old females, and 8-11 year old males) 

or post-pubescent (19-29 year old male and female). A two foot, vertical jump (50% of 

maximum) and landing was analyzed with the subject landing with the dominant foot on 

a force platform. EMG surface electrodes (Ag/AgCl pre-gelled) were placed on the 

biceps femoris, semimembranosus/semitendinosus and vastus medialis. The electrodes 

were located 2.5cm apart, parallel to the muscle fibers and over the midline between the 

motor end plate and tendon. The data from the hamstrings muscle sites were averaged. 

Mean amplitude root mean square (RMS) was calculated at three different time intervals 

during the trials (100 ms prior to contact, 100 ms after contact and from contact to 

maximum knee flexion). The EMG signal was normalized to the highest signal during the 

landing phase of each trial. Co-contraction ratio was calculated by dividing hamstrings by 

quadriceps EMG activity. Co-contraction ratio was higher in the post-pubescent subjects 

prior to landing, however, after landing the co-contraction ratio was higher in pre-

pubescent subjects. No gender differences were found in co-contraction during the 

vertical jump. The authors concluded that post-pubescent subjects rely more on 

hamstrings activation prior to landing (pre-activation) while prepubescent subjects rely 

more on hamstrings activation during landing (reflexive activation pattern). This would 

seem to relate to a motor learning strategy throughout skill development of pre-activation 

to stabilize the joint prior to high ground reaction forces and joint load which exist during 

landing.     

Hamstra-Wright et al. 147 
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The purposes of this study were to assess dynamic neuromuscular restraint 

differences between high and low-skilled prepubescent children and to determine the 

contributions of sport experience and physical characteristics to motor skill. They 

hypothesized that high skilled and male subjects would have greater co-contraction 

(hamstrings and quadriceps) than low skilled and female subjects.  Thirty-six 

prepubescent children were enrolled in this study (19 female and 17 male). High skill and 

low skill subjects were determined based on performance of battery of 12 fundamental 

motor skills on the Test of Gross Motor Development, 2nd edition (TGMD-2). Subjects 

above the overall mean were classified as high skill, while subjects below the mean were 

classified as low skill. Surface EMG electrodes (bipolar Ag/AgCl) were placed on the 

vastus medialis and medial hamstring. EMG was normalized to the highest activity 

during each trial (150ms prior to ground contract through 250 ms after). Preparatory co-

contraction was determined as the medial hamstring area divided by vastus medialis area 

150ms prior to ground contact during a drop jump (24cm). Vertical leg stiffness was also 

determined during the drop jumps based on a simple spring-mass model from the vertical 

ground reaction force measures. Low-skilled subjects had significantly greater (48%) 

preparatory co-contraction during the drop jump compared to high-skilled subjects. No 

differences were found in vertical leg stiffness between skill or gender groups. The 

authors conclude based on the higher co-contraction in low-skilled subjects, in addition to 

the absence of gender differences, that skill level affects neuromuscular control. They 

further suggest that females may develop risk factors which predispose them to knee 

injuries between pre- and post-puberty. The authors state that this was an “unrefined 

motor skill” which may compromise knee joint stability. This conclusion is directly in 
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contrast to the study hypothesis that high-skilled athletes would exhibit greater 

preparatory co-contraction.    

da Fonseca et al.180  

This study compared muscular co-contraction levels during walking and landing 

from a jump (30cm) among male and female athletic and sedentary subjects. They 

hypothesized that females (athletic and sedentary) would have lower co-contraction 

levels than males. The hypothesis was based on both the higher ACL injury rates in 

females and the possible joint protective mechanism that co-contraction may have due to 

increased joint stiffness. Nine subjects in each group participated wtih their activity level 

classified based on the Cincinnati Knee Rating Scale (Level I, participate in sports 

activities 4-7 days a week; Level IV, do not participate in any sports activities). Surface 

EMG electrodes (bipolar Ag/AgCl)  were placed over the vastus lateralis and biceps 

femoris with co-contraction index calculated similar to Frost et al.181 during both walking 

and landing from a jump. EMG was filtered with a bandpass filter (10 and 500 Hz) and 

normalized to MVC collected from a dynamometer. Co-contraction index was only 

calculated for the 150ms time period prior to initial contact. There were no differences in 

preparatory co-contraction index during landing movements between genders or activity 

levels. However, during walking the sedentary females had higher co-contraction levels 

compared to athletic females. The authors suggest that sedentary women may compensate 

for weakness with higher co-contraction levels to generate appropriate joint stability.  

Sigward and Powers182 

Sigward and Powers182 evaluated the effect of soccer experience on knee 

kinematics, kinetics and muscle activation patterns during side step cuts. One hypothesis 
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of this study was that novice female athletes would exhibit increased quadriceps 

activation and decreased hamstring activation. Thirty young female athletes (14 – 16 

years old) were classified as experienced (N=15) or novice (N=15) based on years of 

experience playing soccer. Surface EMG electrodes were placed on the vastus lateralis, 

biceps femoris and semimembranousus. EMG was filtered with a band pass Butterworth 

filter (20-500Hz) and a 60 Hz notch filter. The data were processed with a RMS 

smoothing (75ms window) and normalized to maximum voluntary isometric contraction 

collected prior to the cutting trials. Co-contraction was calculated, based on Besier et 

al.184, by dividing the average hamstring activation by the average quadriceps activation 

during the initial 20% of the cutting maneuver stance phase (early deceleration). Knee 

joint kinematics and kinetics were also assessed during the same period. During early 

deceleration the novice athletes had a significantly larger co-contraction index than the 

experienced athletes. However, the internal knee flexor moment was significantly 

increased in the experienced athletes compared to the novice athletes. There was also a 

negative correlation (R = -0.32) between years of experience and co-contraction ratio. 

The authors conclude that with experience, the side-step cutting (kinetics and muscle co-

contraction) task is performed in a more at-risk pattern for a non-contact knee injury. The 

relationship between skill acquisition (increased co-contraction) and potential at-risk 

patterns (decreased co-contraction) is difficult to address in one study and should be 

investigated in conjunction with neuromuscular training programs.     

Russell et al. 183 

In a follow-up study to the previously reviewed, Russel et al.139 evaluated knee 

muscular activation differences in children and adults (male and female) during landing 
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from a normal and perturbed vertical jump. The authors hypothesized that co-contraction 

gender differences would be evident with the addition of a perturbed landing in contrast 

to their previous work139 which found no gender differences during vertical jump landing. 

They also hypothesized that adults would exhibit a higher co-contraction ratio during the 

preparatory landing phase and children would have higher co-contraction during the 

landing as previously found.139 EMG surface electrodes (Ag/AgCl pre-gelled) were placed 

on the biceps femoris, semimembranosus/semitendinosus and vastus medialis. The 

electrodes were located 2.5cm apart, parallel to the muscle fibers and over the midline 

between the motor end plate and tendon. The data from the hamstrings muscle sites were 

averaged. Mean amplitude root mean square (RMS) was calculated at three different time 

intervals during the trials (100 ms prior to contact, 100 ms after contact and from contact 

to maximum knee flexion). The EMG signal was normalized to the highest signal during 

the landing phase of each trial. Co-contraction ratio was calculated by dividing 

hamstrings by quadriceps EMG activity. A vertical jump was performed at 50% of the 

subject’s maximum jump height during a normal condition (ball placed at subject’s 

midline) and perturbed condition (ball offset 45.7 cm for adults and 30.5 cm for children 

from midline). The results of the study indicated that during the preparatory phase (100 

ms prior to initial contact) the co-contraction ratio was higher in adults compared to 

children. This was explained by higher hamstring activity relative to quadriceps in adults 

prior to landing. No gender differences were found with or without the landing 

perturbation. The authors suggest that increased co-contraction during the preparatory 

phase is likely a learned feed-forward mechanism as the children did not exhibit similar 

co-contraction levels.     Discussion 
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Motor control mechanisms, which may be utilized for joint stability involve 

feedback (reactive reflex) and feed forward (pre-activated) systems.57 The 

electromechanical time delays that are inherent in the feedback mechanism limit the 

effectiveness of muscular joint protection during dynamic movements, but are better 

suited for maintaining posture and slower movements.57 Feed forward mechanisms 

involves preparatory activation by anticipation of the load or movement.57 The 

preparatory activation can be learned and adjusted through integration of previous 

experiences of the skill or movement. As the individual becomes more experienced, 

inappropriate muscle co-contraction (decreasing the systems “degrees of freedom”) 

patterns may be replaced by more coordinated muscle firing patterns for the development 

of appropriate dynamic joint stability and efficient movements. The results from the 

studies above do not fully support or refute this theory. 

Of the six studies reviewed the differences in methodology and results make the 

synthesis of the author interpretations difficult. For example, three studies addressed co-

contraction in landing movements, each with different results. Subjects classified as 

sedentary180 did not have different preparatory co-contraction levels compared to active 

subjects. In another study, low skilled children147 had higher preparatory co-contraction 

levels compared to high-skilled children. In contrast, Croce et al.139  and Russell et al.183 

found that during a landing the preparatory co-contraction levels were higher in the older 

group compared to younger group. These conflicting results are likely due to differences 

in tested population and methodologies.  Differences in EMG normalization, calculation 

of co-contraction, electrode placement and signal processing are evident in these studies. 

A clear delineation of the effects of experience (age or skill level) on muscular co-
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contraction during a landing from a jump cannot be gleaned based on the differences 

among the studies. However, it would appear that during landings, co-contraction is 

generally considered an appropriate motor control strategy used to dynamically stabilize 

and protect the knee joint. It should also be noted that during landing, the role of hip 

flexion may complicate the interpretation of co-contraction at the knee based on the 

differences in uniarticular and biarticular muscles which cross the knee joint.  

 Sigward and Powers182, examined a side-step cutting maneuver in a group of 

female soccer players. They found higher co-contraction during the initial 20% of stance 

in a novice group compared to skilled group. The joint moment analysis did not appear to 

support the author interpretation of increased hamstrings contraction in the novice group. 

A higher internal flexor moment generated during the initial 20% of stance in the skilled 

group would seem to relate to a net joint moment that is more towards flexor activation in 

contrast to the presented co-contraction ratio (lower flexor/extensor ratio, co-contraction). 

The effects of normalization or additional muscle contributions (i.e. gastrocnemius) to the 

net joint moment may explain the differences. The results of the only study in the review 

which examined a side-step cut would support the classic motor learning theory which 

contends that excessive antagonistic contribution during dynamic tasks may decreases the 

system’s “degrees of freedom” during initial acquisition of a new skill.173-175 However, 

this may not be the most appropriate “learned” movement pattern in relation to a possible 

elevated risk of injury.     

 Walking and running were investigated in two studies. Frost et al.181 found when 

running speeds were matched among three age groups (7-8, 10-12, 15-16 years) the 

younger children had higher co-contraction throughout the trial compared to the mature 
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subjects. During walking, at matched treadmill speeds, the younger age groups also 

showed a trend toward higher co-contraction when compared to the older age groups. 

When walking was examined in sedentary and active males and females,180 the only 

difference found was a higher co-contraction index in the sedentary females compared to 

active females. A preparatory co-contraction period (150 ms prior to heel strike) was used 

in this study. The authors suggested that women with lower work producing capability 

(as measured on an isokinetic dynamometer at 60°/sec.) have higher preparatory co-

contraction.  In general, the studies related to walking and running appear to support the 

hypothesis that during maturation and skill development, inhibition of antagonist muscle 

groups is thought to be progressively learned until an efficient movement pattern is 

obtained.117  

However, multiple discrepancies exist among the studies and make comparisons 

and conclusions difficult to identify. Differences which may effect co-contraction 

include: movement, population, methods and interpretation of findings. In the studies that 

focused on the continuous, phasic nature of gait (walking and running), similar results 

were observed. For example, the less experienced individuals seemed to exhibit increased 

co-contraction of the hamstrings and quadriceps. In contrast, the results from different 

discrete movements (drop jump, vertical jump and side step cut) appear to differ and add 

complexity to the comparative analyses. Landing and cutting maneuvers are typically 

examined related to dynamic knee joint stability to protect the joint from excessive load 

that can cause injury, whereas gait may be more related to questions regarding movement 

efficiency.    
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Methodological and Technical Considerations 

Muscular co-contraction results vary among studies based on the population and 

movement task. However, it is clear that technically, the calculation of a co-contraction 

index or ratio can be extremely complex and vary significantly among studies. Typically, 

surface EMG is utilized to obtain agonist and antagonist muscular activation patterns.  

The EMG signal is the electrical representation of neuromuscular activation focused at 

the neuromuscular endplate related to a contracting muscle.117 Both extrinsic and intrinsic 

factors may influence the EMG signal that is detected and recorded.185  Extrinsic factors 

may include the electrode configuration, electrode location relative to motor points and 

lateral edge of muscle and electrode orientation with respect to muscle fibers, among 

other potential factors.185 Intrinsic factors, such as the number of active motor units, 

muscle fiber type, blood flow in the muscle, fiber diameter, depth and location of active 

muscle fibers, and the amount of tissue between surface of muscle and electrode are other 

important factors that can affect detectable signal intensity.185  

In addition to the number of anatomical, physiological and technical factors that 

may effects recorded EMG signal, the specific processing and analysis of the signal are 

also important to the reported index or ratio.186, 187 Kellis187 reviewed several factors 

specifically related to quantification of antagonist activation around the knee. The method 

of normalizing an EMG signal is an important factor that is often carried out differently 

among studies.186, 187 Antagonist EMG is typically normalized to reduce variability and/or 

to relate the signal contribution to the resultant joint moment.187 Kellis187 provided 

discussion in his review how the method of normalization can alter reported results and 
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suggested that standardized methods be considered and a careful interpretation of 

normalized EMG data was recommended.  

Alternative Methods 

Alternative methods of examining co-contraction have utilized joint moment 

analyses, leg and vertical stiffness calculations and model-based estimation of muscle 

forces. Calculation of joint moments through inverse dynamics incorporates the net 

forces which act about the joint.116 One limitation of net joint moment analysis is that it 

does not indicate which muscles are active or the individual muscle forces generated at 

any specific point in time. Therefore, cautious interpretation of the joint moment to the 

actual muscle forces is necessary. Joint stiffness calculations involves the resistance of a 

mechanical stretch by an applied force.59 Joint stability requires muscle stiffness and may 

relate to musculoskeletal injury potential.59 Padua et al.59 found that females had lower 

leg stiffness values, in addition to higher quadriceps to hamstrings co-contraction, 

compared to males. Although, once normalized to mass the stiffness values were not 

different, females exhibited greater quadriceps activation than males.        

Other techniques estimate individual muscle forces through computational 

models. The agonist and antagonist muscle groups can then be further investigated to 

address co-contraction during different movements. These computer models represent 

varying degrees of complexity and require detailed information regarding the muscle and 

skeletal systems118. Erdemir et al. reviewed the various techniques for this type of 

modeling and provided recommendations for clinical applications188 These authors 

suggest that when a clinical problem involves co-contraction and muscle forces cannot be 

adequately interpreted based on EMG or joint torques, that model-based estimation of 
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individual muscle forces may be necessary.188 A combination of methods is likely 

necessary to gain a better understanding of how the neuromuscular system utilizes co-

contraction for joint stabilization and coordinated movements in a timely manner.  

Conclusions and Further Recommendations 

Longitudinal study designs should be employed to address motor control and 

learning adaptations that may occur throughout development related to co-contraction of 

hamstrings and quadriceps musculature for both dynamic joint stability and efficient 

movement patterns. Neuromuscular injury prevention studies may also be beneficial to 

help address the changes that occur in co-contraction during dynamic activities. The 

relationship between adequate dynamic joint stability and efficient movement patterns is 

complex. In high joint force and torque motions, where the hamstrings are activated to 

increase joint stiffness and stabilize the knee, the effectiveness of the quadriceps may be 

decreased, requiring greater work and reduction of the efficiency of movement. If  

individual muscle forces can be estimated during these dynamic movements, then the 

movement control and loading on the ligaments may be better understood.188   
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Appendix B. Pubertal Maturation Observation Scale52 
 
 
 
Table B.1. Female and male PMOS form 
 
Female Characteristic Checklist 
_____ The adolescent has grown 3 to 3.5 inches in the past 6 months or is past this growth spurt. 
_____ The adolescent has begun breast development. 
_____ The adolescent has begun menarche. 
_____ The adolescent has evidence of darker underarm hair or shaves. 
_____ The adolescent has evidence of darker hair on her legs or shaves. 
_____ The adolescent’s calves are becoming defined. 
_____ The adolescent has evidence of acne. 
_____ There was evidence of sweating after physical activities. 
 

Male Characteristic Checklist 

_____ The adolescent has evidence of darkening of facial hair or shaves. 
_____ The adolescent’s voice has gotten deeper or is currently breaking. 
_____ The adolescent has grown 3 to 4 inches in the past 6 months or is past the growth spurt. 
_____ The adolescent has darker hair on his legs. 
_____ The adolescent’s biceps are becoming defined. 
_____ The adolescent’s calves are becoming defined. 
_____ The adolescent has evidence of acne. 
_____ There was evidence of sweating after physical activities. 
_____ There is darkened underarm hair. 
 
KEY: 
+ characteristic is present 
_ characteristic is absent 
 
SCORING CRITERIA FOR MALES AND FEMALES 
STAGES NUMBER OF ‘‘+’’ 
Prepuberty 1 or less 
Pubertal 2 - 5 
Postpubertal at least 6; growth spurt completed 
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Appendix C. Khamis-Roche Method Regression Equations58 
 
 
 
Table C.1. Female specific regression equations (Khamis-Roche). 
 

Age Β0 Stature-in Weight-lbs 
Midparent 
Stature-in 

4 -8.1325 1.24768 -0.019435 0.44774 
4.5 -6.47656 1.22177 -0.018519 0.41381 
5 -5.13582 1.19932 -0.01753 0.38467 

5.5 -4.13791 1.1788 -0.016484 0.36039 
6 -3.51039 1.15866 -0.0154 0.34105 

6.5 -3.14322 1.13737 -0.014294 0.32672 
7 -2.87645 1.11342 -0.013184 0.31748 

7.5 -2.66291 1.08525 -0.012086 0.3134 
8 -2.45559 1.05135 -0.011019 0.31457 

8.5 -2.20728 1.01018 -0.009999 0.32105 
9 -1.87098 0.9602 -0.009044 0.33291 

9.5 -1.0633 0.89989 -0.008171 0.35025 
10 0.33468 0.82771 -0.007397 0.37312 

10.5 1.97366 0.74213 -0.006739 0.40161 
11 3.50436 0.67173 -0.006136 0.42042 

11.5 4.57747 0.6415 -0.005518 0.41686 
12 4.84365 0.64452 -0.004894 0.3949 

12.5 4.27869 0.67386 -0.004272 0.3585 
13 3.21417 0.7226 -0.003661 0.31163 

13.5 1.83456 0.78383 -0.003067 0.25826 
14 0.32425 0.85062 -0.0025 0.20235 

14.5 -1.13224 0.91605 -0.001967 0.14787 
15 -2.35055 0.97319 -0.001477 0.0988 

15.5 -3.10326 1.01514 -0.001037 0.05909 
16 -3.17885 1.03496 -0.000655 0.03272 

16.5 -2.41657 1.02573 -0.00034 0.02364 
17 -0.65579 0.98054 -0.0001 0.03584 

17.5 2.26429 0.89246 -0.000057 0.07327 
Equations specific for girls.  
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Table C.2. Male specific regression equations (Khamis-Roche). 
 

Age Β0 Stature-in Weight-lbs 
Midparent 
Stature-in 

4 -10.2567 1.23812 -0.0087235 0.50286 
4.5 -10.719 1.15964 -0.0074454 0.52887 
5 -11.0213 1.10674 -0.0064778 0.53919 

5.5 -11.1556 1.0748 -0.005776 0.53691 
6 -11.1138 1.05923 -0.0052947 0.52513 

6.5 -11.0221 1.05542 -0.0049892 0.50692 
7 -10.9984 1.05877 -0.0048144 0.48538 

7.5 -11.0214 1.06467 -0.0047256 0.46361 
8 -11.0696 1.06853 -0.0046778 0.44469 

8.5 -11.122 1.06572 -0.0046261 0.43171 
9 -11.1571 1.05166 -0.0045254 0.42776 

9.5 -11.1405 1.02174 -0.0043311 0.43593 
10 -11.038 0.97135 -0.0039981 0.45932 

10.5 -10.8286 0.89589 -0.0034814 0.50101 
11 -10.4917 0.81239 -0.002905 0.54781 

11.5 -10.0065 0.74134 -0.0024167 0.58409 
12 -9.3522 0.68325 -0.0020076 0.60927 

12.5 -8.6055 0.63869 -0.0016681 0.62279 
13 -7.8632 0.60818 -0.0013895 0.62407 

13.5 -7.1378 0.59228 -0.0011624 0.61253 
14 -6.4299 0.59151 -0.0009776 0.58762 

14.5 -5.7578 0.60643 -0.0008261 0.54875 
15 -5.1282 0.63757 -0.0006988 0.49536 

15.5 -4.5092 0.68548 -0.0005863 0.42687 
16 -3.9292 0.75069 -0.0004795 0.34271 

16.5 -3.4873 0.83375 -0.0003695 0.24231 
17 -3.283 0.9352 -0.000247 0.1251 

17.5 -3.4156 1.05558 -0.0001027 -0.0095 
Equations specific for boys.  
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Appendix D. Matlab code  
 

Generate Visual3D pipeline script for each subject 

 
[num, txt]= xlsread('G:\Kevin\Visual3D\Code Development\Copy of … 
keyfile.xlsx','Sheet3','A2:F1693');  % load keyfile for all subjects 
 
fsize = length(txt);  
 
for a = 1:fsize; %a is the row from the KeyFile 
 
errorcheck = sum(isnan(num(a,1:3))); %sum = 0 if no NaN 

if errorcheck==0;   %continue or end  
     
subjectheight = num2str(num(a,2)); 
subjectweight = num2str(num(a,3)); 
 
subjectcode = ([txt{a,1}]);  
 
% Generate front end script with subject code, height, weight & gender 
% need male female switch 
 
datafolder='D:\3DMotion\C3D\'; 
v3dfile = ['D:\3DMotion\C3D\',subjectcode,'.v3s']; 
 
switch lower(txt{a,5}) 
   case {'female'} 
    mdhfile = 'G:\Kevin\Visual3D\Code Development\newNIHfemale_noUE.mdh'; 
    otherwise 
    mdhfile = 'G:\Kevin\Visual3D\Code Development\newNIHmale_noUE.mdh'; 
end     
 
staticfile = 'static1.c3d'; 
 
% writes a v3d script file for each subject, then calls visual3d program 
 
fid = fopen(v3dfile,'w'); 
 
    fprintf(fid,'File_New\r\n'); 
    fprintf(fid,';\r\n'); 
    fprintf(fid,'\r\n'); 
 
fprintf(fid,'%s\r\n',['Set_Pipeline_Parameter']); 
fprintf(fid,'%s\r\n',['/PARAMETER_NAME=DATA_FOLDER']); 
fprintf(fid,'%s\r\n',['/PARAMETER_VALUE=',datafolder]); 
fprintf(fid,'%s\r\n',['! /PARAMETER_VALUE_SEARCH_FOR=']); 
fprintf(fid,'%s\r\n',['! /PARAMETER_VALUE_REPLACE_WITH=']); 
fprintf(fid,'%s\r\n',['! /PARAMETER_VALUE_APPEND=']); 
fprintf(fid,'%s\r\n',[';']); 
fprintf(fid,'%s\r\n',['']); 
fprintf(fid,'%s\r\n',['Set_Pipeline_Parameter']); 
fprintf(fid,'%s\r\n',['/PARAMETER_NAME=SUBJECT']); 
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fprintf(fid,'%s\r\n',['/PARAMETER_VALUE=',subjectcode]); 
fprintf(fid,'%s\r\n',['! /PARAMETER_VALUE_SEARCH_FOR=']); 
fprintf(fid,'%s\r\n',['! /PARAMETER_VALUE_REPLACE_WITH=']); 
fprintf(fid,'%s\r\n',['! /PARAMETER_VALUE_APPEND=']); 
fprintf(fid,'%s\r\n',[';']); 
fprintf(fid,'%s\r\n',['']); 
fprintf(fid,'%s\r\n',['Set_Pipeline_Parameter']); 
fprintf(fid,'%s\r\n',['/PARAMETER_NAME=C3D_STATIC']); 
fprintf(fid,'%s\r\n',['/PARAMETER_VALUE=',staticfile]); 
fprintf(fid,'%s\r\n',['! /PARAMETER_VALUE_SEARCH_FOR=']); 
fprintf(fid,'%s\r\n',['! /PARAMETER_VALUE_REPLACE_WITH=']); 
fprintf(fid,'%s\r\n',['! /PARAMETER_VALUE_APPEND=']); 
fprintf(fid,'%s\r\n',[';']); 
fprintf(fid,'%s\r\n',['']); 
fprintf(fid,'%s\r\n',['Set_Pipeline_Parameter']); 
fprintf(fid,'%s\r\n',['/PARAMETER_NAME=C3D_FILES_BOX']); 
fprintf(fid,'%s\r\n',['/PARAMETER_VALUE=box*.c3d']); 
fprintf(fid,'%s\r\n',['! /PARAMETER_VALUE_SEARCH_FOR=']); 
fprintf(fid,'%s\r\n',['! /PARAMETER_VALUE_REPLACE_WITH=']); 
fprintf(fid,'%s\r\n',['! /PARAMETER_VALUE_APPEND=']); 
fprintf(fid,'%s\r\n',[';']); 
fprintf(fid,'%s\r\n',['']); 
fprintf(fid,'%s\r\n',['Open_File']); 
fprintf(fid,'%s\r\n',['/FILE_NAME=::DATA_FOLDER&::SUBJECT&::C3D_FILES_BOX']); 
fprintf(fid,'%s\r\n',[';']); 
fprintf(fid,'%s\r\n',['']); 
fprintf(fid,'%s\r\n',['Create_Hybrid_Model']); 
fprintf(fid,'%s\r\n',['/CALIBRATION_FILE=::DATA_FOLDER&::SUBJECT&::C3D_STATIC']); 
fprintf(fid,'%s\r\n',[';']); 
fprintf(fid,'%s\r\n',['']); 
fprintf(fid,'%s\r\n',['Apply_Model_Template']); 
fprintf(fid,'%s\r\n',['/MODEL_TEMPLATE=',mdhfile]); 
fprintf(fid,'%s\r\n',['/CALIBRATION_FILE=::DATA_FOLDER&::SUBJECT&::C3D_STATIC']); 
fprintf(fid,'%s\r\n',[';']); 
fprintf(fid,'%s\r\n',['']); 
fprintf(fid,'%s\r\n',['Set_Subject_Weight']); 
fprintf(fid,'%s\r\n',['/CALIBRATION_FILE=::DATA_FOLDER&::SUBJECT&::C3D_STATIC']); 
fprintf(fid,'%s\r\n',['/WEIGHT=',subjectweight]); 
fprintf(fid,'%s\r\n',[';']); 
fprintf(fid,'%s\r\n',['']); 
fprintf(fid,'%s\r\n',['Set_Subject_Height']); 
fprintf(fid,'%s\r\n',['/CALIBRATION_FILE=::DATA_FOLDER&::SUBJECT&::C3D_STATIC']); 
fprintf(fid,'%s\r\n',['/HEIGHT=',subjectheight]); 
fprintf(fid,'%s\r\n',[';']); 
fprintf(fid,'%s\r\n',['']); 
fprintf(fid,'%s\r\n',['Assign_Model_File']); 
fprintf(fid,'%s\r\n',['/CALIBRATION_FILE=::DATA_FOLDER&::SUBJECT&::C3D_STATIC']); 
fprintf(fid,'%s\r\n',['/MOTION_FILE_NAMES=::DATA_FOLDER&::SUBJECT&::C3D_FILES_BOX']); 
fprintf(fid,'%s\r\n',[';']); 
fprintf(fid,'%s\r\n',['']); 
fprintf(fid,'%s\r\n',['Call_Script']); 
fprintf(fid,'%s\r\n',['/SCRIPT_FILE_NAME=G:\Kevin\Visual3D\Code 
Development\new_process_all.v3s']); 
fprintf(fid,'%s\r\n',['! /SCRIPT_PATH=']); 
fprintf(fid,'%s\r\n',[';']); 
fprintf(fid,'%s\r\n',['']); 
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fprintf(fid,'%s\r\n',['!File_Save_As']); 
fprintf(fid,'%s\r\n',['!/FILE_NAME=::DATA_FOLDER&::SUBJECT&.cmo']); 
fprintf(fid,'%s\r\n',['!;']); 
fprintf(fid,'%s\r\n',['']); 
fprintf(fid,'%s\r\n',['Exit_Workspace']); 
fprintf(fid,'%s\r\n',['']); 
fprintf(fid,'%s\r\n',[';']); 
  
fclose(fid) 
 
[status,result] = dos(['"C:\Program Files\Visual 3D Beta\Visual3D.exe" /s ',v3dfile]); 
 
end 
end 
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Filtering example 
% Residual Analysis to determine cutoff frequency 
% Adapted filter properties from matfiltfilt.m : 
% Bogert, A.J. van den, and J.J. de Koning, "On optimal filtering for inverse dynamics analysis," Proc. 9th 
CSB Congress, Burnaby, B.C., pp. 214-215, 1996. 
% Contributed by: Ton van den Bogert (bogert@bme.ri.ccf.org). Please report problems and errors.  
% Residual Analysis Ref: Winter 2005, pg50. 
  
clear 
trcload=(['mv4_30_dvj_100_1.trc']);     
  
trcdatatmp=dlmread(trcload,'\t',6,0); %Read in the file 
trcdatatmp2=trcdatatmp(:,3:end)'; % reorganize to find the zero frames if trimmed 
t=[];t = find(sum(trcdatatmp2)~=0); 
% startframe=t(1); endframe=t(end); 
startframe=t(400); endframe=t(end); 
trcdataCUT=trcdatatmp(startframe:endframe,:); 
  
% sampling rate 
SFkin=240; 
CFkin=12; 
  
for CFkin=1:30; %filter data 1 thru 30 hz 
     
    butterorder = 2; 
    [b1,a1] = butter(butterorder,(CFkin/(sqrt(2)-1)^(0.5/butterorder))/(SFkin/2),'low'); %       
    filtKIN = filtfilt(b1,a1,trcdataCUT); 
     
    [nr nc] = size(filtKIN);   
  
    for j=1:nr; 
        tmp(j,:)=(trcdataCUT(j,:)-filtKIN(j,:)).^2; 
    end; 
     
    rms(CFkin,:)=sqrt((sum(tmp(:,:)))/nr); 
end 
figure(1)   
plot(rms(:,3:end-1)) 
  
figure(2); 
avgres2 = mean(rms(:,3:end-1),2); 
plot(avgres2(1:30,1), 'DisplayName', 'avgres(1:30,1)', 'YDataSource', 'avgres(1:30,1)'); figure(gcf) 
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