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Chapter 1 Introduction

The topic of this dissertation lies within the subject of algebraic topology. In a

broad sense of the field, algebraic topology is concerned with studying invariants of

topological spaces up to homeomorphism using algebraic tools; thus it is a bridge

between the larger disciplines of algebra and topology. Some of these invariants of

interest are ordinary homology and cohomology theories, extraordinary homology and

cohomology theories, and homotopy theory. In addition these theories can be used to

study differing types of topological spaces, ranging from CW, simplicial, or singular

complexes to manifolds and Lie groups.

We have restricted ourselves to a problem concerned with CW-complexes. It turns

out this is not a significant restriction as many of the interesting topological spaces

considered in mathematics are in fact CW-complexes such as a sphere or the com-

plex projective plane. In particular we are concerned with the specific CW-complex

known as the classifying space BG whose existence was given by J. Milnor [12, 13].

By studying the geometry of vector bundles over BG, we introduce the generalized

cohomology theory known as K-theory and associate to BG the ring K∗(BG). In

the case G is a Lie group, Atiyah also showed [4] we can replace K∗(BG) with a

completion of the ring of complex representations RC(G). Another generalized coho-

mology theory, stable cohomotopy, can be defined by considering [BG, pt.], the stable

homotopy classes of maps from BG to a point. Analogously [BG, pt] can be replaced

by a completion of the Burnside ring A(G) [11].

The Burnside ring A(G) of a group G is the free abelian group generated by

conjugacy classes of subgroups L < G with the product given by a double coset

formula. The representation ring R(G) of the same group is the free abelian group

generated by isomorphism classes of minimal left ideal of kG, the group ring of G

over a base field k and the product is given by the tensor product. There is a

linearlization map A(G) → R(G) by sending a subgroup L < G to the permutation

representation kG/L, the vector space on the cosets of L with G permuting the basis.

The image of this linearlization map is the virtual permutation representations of G.

A classical result is that any representation of a finite p-group G is such a virtual

permutation representation of k = Q. In this dissertation we compute the kernel of

the linearization map associated with generalized versions of A(G) and R(G) where

G is an elementary abelian or cyclic p-group and k = Q. The motivation for studying

A(G) and R(G) and their generalizations comes from the topological considerations

1



explained above. These algebraic objects occur as important invariants in algebraic

topology.

Chapter 2 is primarily concerned in Section 2.1 and Section 2.2 with developing

the functorial tools necessary to construct the Burnside and rational representation

rings. We then explicitly define these rings developing examples of each. In particular,

Section 2.5 describes a ring homomorphism between these spaces and contains the

main classical results of Ritter and Segal [17, 20] and Tornehave [23].

The main concerns of our work is to generalize the results of Tornehave. Sec-

tion 3.2 develops the necessary algebraic structures, the generalized Burnside module

A′ and representation module R′ and describes a homomorphism f ′ from A′ to R′.

An analogue of the Ritter-Segal result due to Anton [1], Theorem 3.2.7 is at the end

of this section. Section 3.3 is concerned with the situation for a prime p, G is an

elementary abelian p-group and H = Zp. Calculations of the ranks of the generalized

Burnside and representation modules occur in Proposition 3.3.1 and Proposition 3.3.2.

The main result of this dissertation, Theorem 3.3.7 gives a description of the kernel

of the map f ′ through the visual tool of a commutative diagram. An example and

illustration follows in Section 3.3.4

In Chapter 4 we states a conjecture of how to generalize Tornhave’s results for

arbitrary p-groups G, Conjecture 1. We prove the conjecture for elementary abelian

groups in Theorem 4.1.1 using the main theorem of Chapter 3. Additionally we show

the conjecture holds for all cyclic p-groups in Theorem 4.1.2.

We conclude with Chapter 5 where we return to the construction of classical

Burnside ring and examine a functorial property of the construction. In particular

we want to view the Burnside ring as a Bredon functor. Some basic calculations are

carried out in Theorem 5.2.2 to demonstrate the necessary techniques.

As an appendix, we offer the essential background knowledge to understand where

this problems fits into algebraic topology. References for further reading concerning

the general theory are also given here.

Copyright c© Eric B. Kahn, 2009.
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Chapter 2 Preliminaries

2.1 Grothendieck Construction

The Grothendieck construction is a method used to enhance some predetermined

structure on a given set. Depending on the original makeup, the resulting new set

contains differing amounts of increased structure. One basic type of set to consider

is that of an abelian semi-group which is a set endowed with an associative and

commutative bilinear operation. Given an abelian semi-group X, the Grothendieck

construction creates a specific group G(X) containingX and an artificial zero element.

In this case the zero element was not part of the original set and thus had to be

created as part of the construction. If on the other hand the abelian semi-group

under consideration has a natural zero element it is commonly referred to as an

abelian monoid and the resulting group G(X) will have a natural zero element. In

the scenario that an abelian monoid has a second bilinear operation with unit that

distributes over the first one, then we call the set a semi-ring. Upon performing the

Grothendieck construction on a semi-ring, the resulting object G(X) is in fact a ring.

We begin our concern of the subject with the case of an abelian monoid and our

constructions will agree with those of Lang [10, p. 39-40]. Given an abelian monoid

M with operation *, let F be the free abelian group generated by M , and B be the

subgroup generated by all elements of the type

[x ∗ y]− [x]− [y]

for x, y ∈ M . Then forming the quotient group G(M) = F/B there is a canonical

map γ : M → F/B which preserves the operation * in the sense:

γ(x ∗ y) = γ(x) + γ(y).

Suppose f is any other map from M into an abelian group A preserving the ∗ oper-

ation. Then there is a unique homomorphism f∗ : G(M) → A which extends f such

that f∗ ◦γ = f . If particular, the Grothendieck construction G(M) is universal in the

above sense.

To show that G is a functor we need to assign to each operation preserving map

g : X → Y between abelian monoids, a group homomorphism G(g) : GX → GY .

Since GY is an abelian group we naturally gain a map γ ◦ g from X to GY which

preserves the operations. We thus define G(g) = (γ ◦ g)∗ and see that G is in fact a

functor from the category of abelian monoids to the category of abelian groups.

3



Definition 2.1.1. We say G is the Grothendieck construction assigning to each

abelian moniod X an abelian group GX in the above universal manner.

If in fact an abelian monoid M is a semiring with two binary operations * and

#, we can perform the Grothendieck construction relative to the first operation of

the monoid (M, ∗) to gain an abelian group G(M). In this case the left distributivity

property

x#(y ∗ z) = (x#y) ∗ (x#z)

of the semiring induces a distributive property on G(M). Thus G(M) is an abelian

group with a left distributive binary operation induced by #. Similarly this induced

operation in G(M) is right distributive. As the operation # is also associative in the

semiring M , we gain an associative ring structure on G(M).

One common example of the Grothendieck construction is that of the integers.

The natural numbers N form an abelian monoid under standard addition with 0 as a

zero element. The Grothendieck construction then artificially introduces the additive

inverses of the natural numbers to form the integers Z. Many of the rings and modules

that will be discussed are Grothendieck constructions.

2.2 Homological Algebra

In a vast oversimplification, homological algebra is the study of categories and func-

tors. The definition of a functor and many examples with applications will become

present throughout this text and thus it may be expected that a framework of basic

and necessary results be laid. The basic definitions described in this section agree

with those by Vermani [25].

By a category C we mean a collection of objects denoted objC and for every pair

of objects A,B ∈ C, a set of morphisms Mor(A,B) such that Mor(A,A) �= ∅ and

together with a law of composition of morphisms. One example of a category is the

category of abelian groups denoted Ab. As expected, the objects of this category are

abelian groups and the morphisms are group homomorphisms. Another example of a

category is for a ring R, the category of left R-modules denoted RM with the objects

be all left R-modules and for modules A,B, the set of morphisms from A to B is

the set of all R-homomorphisms, HomR(A,B). In RM, a module M with no proper

R-submodules is call simple.

Definition 2.2.1. An R-module M is called a finitely generated free R-module if

there is a finite subset of elements X ⊂ M and a map α from X to M such that

4



for any map f and left R-module A where f : X → A, there exists a unique R-

homomorphism g : M → A such that f = gα.

We say R is semisimple if any finitely generated R-module M is R-isomorphic

to a direct sum of simple R-modules. If I is a maximal left ideal of a semisimple

ring R, then the factor module R/I is isomorphic to a minimal left ideal of R. This

factor module will contain no non-trivial submodules and so it is a simple module.

Two minimal left ideals are said to be equivalent if and only if they are isomorphic

as left R-modules. The isomorphism classes of finitely generated R-modules form a

set T with a binary operation ∗ induced by the direct sum. We come to the following

conclusion concerning the structure of R-modules for semisimple rings R.

Proposition 2.2.2. If R is a semisimple ring then the Grothendieck construction

G(T ) is the free abelian group on the set of isomorphism classes of minimal left ideals

I < R.

Given two R-modules A and B and an R-homomorphism α from A to B, the

cokernel of α is defined by coker(α) = B/α(A) and the kernel of α is defined to be

the module ker(α) which is all elements of A which map to 0 under α. Given a second

R-homomorphism β from B into another R-module C, we form what is known as a

sequence of R-modules:

A
α→ B

β→ C.

The sequence is said to be exact if the composition β ◦ α is zero. A sequence of

R-modules may be extended to include any finite number of modules and homomor-

phisms or may be extending infinitely to the left, the right, or both directions to form

a sequence:

· · ·Ai−1
fi→ Ai

fi+1→ Ai+1 · · · .
We say the sequence is exact at Ai if the composition fi+1◦fi = 0. An exact sequence

of the form

0→ A
α→ B

β→ C → 0

is called a short exact sequence. The following lemma will be necessary later in this

text.

Lemma 2.2.3. Consider the short sequence of finitely generated free Z-modules

0→ A
α→ B

β→ C → 0

with α injective and β surjective. If the cokernel of α is a free module and the rank

of the image of α equals the rank of the kernel of β, then the sequence is exact.

5



Proof. Since Im(α) ⊂ Ker(β) and Coker(α) is free, we have the free Z-submodule

Ker(β)/Im(α) ⊂ B/Im(α). But the rank of the image of α equals the rank of the

kernel of β so that Ker(β)/Im(α) is torsion. Therefore Ker(β)/Im(α) = 0.

In addition to Lemma 2.2.3 which is used explicitly, the notion of a functor is

fundamental to the concepts addressed. Given two categories C&D, we want a

functor to associate objects and morphisms between them. Denote by F : C →
D a map which takes objects and morphisms of C to objects and morphisms of

D respectively such that F (IA) = IF (A) and for morphisms f ∈ Mor(A,B) and

g ∈ Mor(B,C) in C, the associated unique morphisms in D, F (f) ∈ Mor(A,B)

and F (g) ∈ Mor(B,C) are such that the unique morphism F (gf) = F (g)F (f) ∈
Mor(F (A), F (C)) is well defined. In other words, the mapping F of morphisms must

respect compositions.

Definition 2.2.4. A map F between two categories satisfying the conditions above

is called a covariant functor. If rather than the above composition, to morphisms

f ∈Mor(A,B) and g ∈Mor(B,C) the functor F associates maps F (f) ∈ Mor(B,A)

and F (g) ∈Mor(C,B), and the composition to the unique map F (fg) = F (f)F (g) ∈
Mor(C,A), then we say F is a contravariant functor.

For example, suppose X is a left R-module and for every left R-module A define

T (A) = HomR(X,A). Thus to every object A of RM, T associates an abelian

group. In addition if A,B are R-modules and f ∈ HomR(A,B), define for all R-

homomorphisms α from X to A, the group homomorphism:

T (f) = Hom(1, f) : HomR(X,A)→ HomR(X,B)

by T (f)(α) = fα. It is immediate that T is a covariant functor from the category of

left R-modules to the category of abelian groups.

2.3 Burnside Ring

If a group G acts on a finite set X by permutations, we call X a G-set. A G-orbit of

a set X, denoted Gx, is the subset of X generated by the single element x ∈ X under

the G-action. Any G-set can be decomposed into G-orbits of the form G/L where L

is the stabilizer subgroup of that particular orbit. Such a decomposition is unique up

to G-isomorphism.

Given two G-sets X and Y , we can form the disjoint union X
∐
Y . The G-

actions from X and Y induce an action on X
∐
Y making it into a G-set. Since

6



the disjoint union of two sets is trivially a closed and associative binary operation,

the set of finite G-sets forms an abelian monoid. In addition, the group G acts on

the Cartesian product X × Y diagonally. Thus the Cartesian product is a second

closed, associative binary operation which distributes over the disjoint union thus

turning the set of finite G-sets into a semi-ring. In particular, define S to be the set

of isomorphism classes of finite G-sets with the semiring operations:

[X] + [Y ] = [X
∐

Y ] and [X][Y ] = [X × Y ].

Definition 2.3.1. The Burnside ring, A(G), is the Grothendieck construction of the

above semiring S.

Suppose in A(G), we have a sum
∑±[G/Li] = 0. Collecting terms with positive

coefficients together and those with negative coefficients together we see∑
[G/Lj ] =

∑
[G/Lk].

Thus in S we have
∐
G/Lj ∼=

∐
G/Lk. However the decomposition of any G-set

into G-orbits is unique up to isomorphism so the original sum must be empty after a

cancelation of terms. Thus the set of isomorphism classes of left coset spaces {[G/Li]}
forms a linearly independent set in A(G). In addition since any G-set is decomposable

into orbits, these left cosets span A(G).

In fact, A(G) is a free Z-module with a basis given by the set of isomorphism

classes of left coset spaces [G/L]. First note that [G/L] = [G/K] if and only if L is

conjugate to K. Indeed, if [G/L] = [G/K] then there is a map G/L → G/K given

by L 
→ gK which is a G-isomorphism. If l ∈ L then lgK = gK so L ⊂ gKg−1 and

thus equal as cardinalities are equal. For the other direction, if L = gKg−1, then the

map sending H to Lg = gK is a G-isomorphism.

The multiplicative ring structure of A(G) can be expressed in terms of the above

basis by the formula:

[G/L][G/K] =
∑
g

[G/(L ∩ gKg−1)]

where the sum runs over representatives g of double cosets LgK of G. This is due

to the fact that a group element x ∈ G is in the stabilizer of an element (eL, gK) ∈
G/L×G/K if and only if x ∈ L ∩ gKg−1.

For each subgroup L of G we define an induction map L ↑: A(L) → A(G) by

sending an L-set X to the G-set G ×L X where gl × x = g × lx for all (g, l, x) in

G× L×X. This definition extends to induction maps L/C ↑: A(L/C)→ A(G) via

7



the pullback map A(L/C)→ A(L) where L/C is a subquotient of G. The induction

maps are Z-linear but do not preserve the product.

Example 2.3.2. For a prime number p, the Burnside ring A(Zp) is easily computed.

The only subgroups of Zp are Zp and 0 so a basis of A(Zp) is {[Zp/0] = [Zp], [Zp/Zp] =

[0]}. For the multiplicative structure, [0] acts as the multiplicative identity and:

[Zp][Zp] =
∑
m∈Zp

[
Zp

0 ∩ (m+ 0−m)

]
= p[Zp].

Thus we gain a natural map Z[x] → A(Zp) which takes 1 to [0] and x to [Zp]. The

map is clearly surjective with kernel (x2 − px) so we have the isomorphism:

Z[x]

(x2 − px)
∼= A(Zp).

2.4 Representation Ring

Representation theory is concerned with studying abstract groups as groups of ma-

trices. This can be done both by looking at homomorphisms from an abstract group

into a general linear group or by studying characters. Many results from fields differ-

ent from representation theory have elegant proofs using its techniques; thus making

representation theory an indispensable tool to mathematicians of varied fields. We

primarily concern ourselves with permutation representations and the associated ring

that they generate. Although we begin with an arbitrary field of characteristic 0, we

will mainly work with the field of rational numbers, K = Q. The construction of

representations and definition of the representation ring will agree with the standard

texts, one written by Serre [21] and the other written by Curtis and Reiner [6].

For a finite group G and field K of characteristic 0, we say V is a G-module

over K if G acts on a finite dimensional K-vector space V by K-automorphisms. In

particular, given a G-set X define K[X] to be the K-vector space spanned by the

elements of X. Then the G action on X extends by linearity to a G-module structure

on K[X] over K. Letting G act by left translations on itself, K[G] is a G module

over K. We call K[G] with this action the regular representation of G over K. The

group multiplication on G induces a ring structure on K[G], the group ring of G over

K, and any G-module over K is simply a K[G]-module. The following result is due

to Maschke [6, page 88].

Theorem 2.4.1. The ring KG is semisimple if the order of G is invertible in K.
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The proof is essentially the following. SinceK is taken to be a field of characteristic

zero, the order of a finite group G is always invertible. Given a submodule W of a

KG-module V , we can always form a subvector space U over K such that W⊕U ∼= V .

The function

p(x) =
1

|G|
∑
g∈G

g−1f(gx)

defines a G-homomorphism from V onto U where f is the projection of V onto W .

The kernel of p is a G-submodule of V and KG-modules, V ∼= W ⊕ ker(p). If we

repeat the process we can decompose V into a direct sum of simple modules.

Given two K[G]-modules U and V , we can form the direct sum X ⊕ Y . The

G-actions from X and Y induce an action on X ⊕ Y that is commutative with the

scalar product of K, making it into a K[G]-module. Since the direct sum of two

K[G]-modules is trivially a closed and associative binary operation, the set of finitely

generated K[G]-modules forms an abelian monoid. In addition, the group G acts on

the tensor product X ⊗ Y diagonally. Thus the tensor product is a second closed,

associative binary operation which distributes over the direct sum thus turning the

set of finitely generated K[G]-modules into a semi-ring. In particular, let T be the

semiring of isomorphism classes of finitely generated Q[G]-modules with respect to

the semiring operations:

[M ] + [N ] = [M ⊕N ] and [M ][N ] = [M ⊗N ].

Definition 2.4.2. The rational representation ring of G, R(G), is the Grothendieck

construction of the above semiring T .

We say that a Q-linear map f : V → W between two G-modules over Q is a G-

map if f commutates with the G-action. A corollary of Maschke is that any G-module

V over Q is decomposable into a direct sum of irreducible G-modules and that this

decomposition is unique up to G-isomorphism. With this in mind the following result

defines a group structure on the representation ring that reflects the G-isomorphism

classes of non-zero minimal left ideals of Q[G]. Thus choosing a set of representatives

for these classes is equivalent to finding a decomposition of Q[G].

Theorem 2.4.3. The representation ring R(G) is the free abelian group with basis

the G-isomorphism classes of non-zero minimal left ideals of Q[G].

Proof. Suppose V is an irreducible G-module. Then there is a maximal left ideal of

the group ring Q[G] such that V ∼= Q[G]/I. By Maschke’s Theorem, there is also a left
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ideal J of Q[G] such that Q[G] isG-isomorphic with the direct sum I⊕J . In particular

J isG-isomorphic to V and thus J is a minimal left ideal by the irreducibility of V .

To explicitly define the multiplicative structure of the representation ring R(G) it

is convenient to introduce the notion of characters. However the additional informa-

tion of a basis decomposition for products is not necessary for our work and we will

simply use the tensor product of Q[G]-modules as the multiplicative structure.

For each subgroup L of G we define an induction map L ↑: R(L) → R(G) by

sending an Q[L]-module M to the Q[G]-module Q[G] ×Q[L] X. This map extends to

subquotients in the same manner as in the Burnside ring scenario.

Example 2.4.4. Again if we consider G = Zp for p a prime then the additive

structure of the representation ring R(G) is easily determined. Let ξp be a primitive

p-root of unity. To determine a representative set of irreducible Zp-modules over Q,

define V0 = Q with trivial Zp-action and V1 = Q(ξp) with the action of 1 ∈ Zp defined

by the square matrix:

A = (ai,j) where ai,i+1 = 1, ap−1,j = −1, and ai,j = 0 otherwise.

It is clear these modules are irreducible and by a dimension argument, Q[Zp] =

Q⊕Q(ξp) is a complete decomposition into minimal left ideals. Thus V0, V1 generate

RQ(Zp) as a free abelian group.

2.5 Linearization Map

At this point there are some obvious similarities and connections between the Burn-

side ring and the representation ring. Both rings occur naturally through the Grothendieck

construction and there is an external group G whose possible actions on sets or vector

spaces effects their structure. Particularly the induction maps are defined in identical

manners with respect to subgroups L < G. We thus are led to prove the following

result concerning both induction maps.

Proposition 2.5.1. Both induction maps are injective.

Proof. Let N be the Grothendieck construction of either of the monoids S or T

defining the Burnside and representation rings for a group G. For a subquotient L/C

of G, let M be the Grothendieck construction of the same monoid S or T and the

induction map is defined by a homomorphism L/C ↑: M → N . The Grothendieck
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construction of M consists of formal differences [X]− [Y ] of elements in M such that

[X]− [Y ] = [X ′]− [Y ′] if and only if

[X + Y ′ + Z] = [X ′ + Y + Z]

for some [Z] in M . In particular, if L/C ↑ [X]− L/C ↑ [Y ] = 0 then

[L/C ↑ X + V ] = [L/C ↑ Y + V ]

for some [V ] in N . By restricting the G-structure to an L-structure we have a

restriction map L ↓ such that L ↓ (L/C ↑ [X]) = [G̃ : L][X]. In particular,

[G̃ : L][X] + L ↓ [V ] = [G̃ : L][Y ] + L ↓ [V ].

Since each element of M has a unique decomposition into a sum of irreducible ele-

ments, we conclude that [X] = [Y ] proving the injectivity of the induction map.

In addition, the Burnside and representation rings are related by a natural ring

homomorphism f : A(G)→ R(G) sending aG-setX to the permutation Q[G]-module

Q[X]. This map f is a linearization map and it is immediate that f commutes with

the inductions.

Definition 2.5.2. The Burnside kernel N(G) is the kernel of the linearization map

f between A(G) and R(G).

In the case G is a finite p-group, the map f is well understood. In this instance the

follow property of the linearization map f was proven by Ritter [17] and Segal [20].

Theorem 2.5.3. If G is a finite p-group for any prime p, then the map f : A(G)→
R(G) is surjective.

Proof. Take V to be an irreducible, nontrivial QG-module. Since by passing to

G/ker(V ) we can assume V is also faithful, it is a theorem of Roquette [18] that all

abelian normal subgroups of G are cyclic. Using this fact Tornehave [23] showed we

have a subquotient B/C of G, a B/C representation W over Q where V =↑B/C W .

Since our induction process is natural, figure 2.1 commutes. Thus V is in the image

of f . As f is a ring homomorphism, we extend the argument linearly and see that f

is surjective.

The above proof for Theorem 2.5.3 is a sketch of the argument from Tornehave [23].

In particular when G is an elementary abelian p-group of rank 2, Laitenan explicitly

described the kernel in [9].
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Figure 2.1: Surjectivity of f for p-groups

A(G)
f �� R(G)

A(B/C)

B/C↑
��

f �� �� R(B/C)

B/C↑
��

Theorem 2.5.4. If p is a prime and G = Zp × Zp then N(G) is infinite cyclic

generated by:

[G/0]−
∑

[G/C] + p[G/G]

where C runs through the non-trivial cyclic subgroups.

Following Laitenan’s work, Tornehave attempted to describe the kernel for arbi-

trary p-groups. Although we do not see the generators of the kernel directly, he did

prove the following theorem in [23] that describes the kernel in terms of inductions

from subquotients L/K of G.

Theorem 2.5.5. If p is a prime and G is a finite p-group then:

N(G) =
∑
L/K

G ↑ N(L/K)

where the sum is taken over all subquotients L/K of G isomorphic to one of the

following groups:

Zp × Zp

D2n for p = 2

M(p) for p �= 2.

Combining the Ritter-Segal and Tornehave results we have a well understood short

exact sequence:

0→ N(G)→ A(G)
f−→ R(G)→ 0. (2.1)

Copyright c© Eric B. Kahn, 2009.
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Chapter 3 The Relative Version

3.1 Introduction

Our stated goal is to develop analogous results to Tornehave [23] in a more general

setting. We first develop the objects of interest in section 3.2.1 and section 3.2.2.

Instead of considering sets with a single group action on the left to form the Burnside

ring, we will consider sets with group actions on both the left and the right to form

a new algebraic object. For finite groups G and H , the Grothendieck construction of

the set of isomorphism class of finite H-free, G × H-sets is denoted A(G,H). This

set A(G,H) is a free abelian group in addition to being endowed with an A(G)-

module structure. Additionally rather than consider Q[G]-modules and forming the

representation ring, we will consider bimodules to create another algebraic object

denoted R(G,H). In the case where H is the trivial group we regain the classical

Burnside and classical representation rings. We finish section 3.2 by constructing a

relative version of the linearization map from the classical case.

The main result, Theorem 3.3.7, is found in section 3.3.3 and for a prime p,

describes the kernel of the relative linearization map in terms of induced subquotients

in the case where G is an elementary abelian p-group and H is the cyclic group of

order p. Section 3.3.2 develops algorithms to determine the ranks of the classical

Burnside and representation rings and also the relative analogues. We then proceed

to prove the main result in section 3.3.3 based on the prior rank calculations. We

conclude the chapter by calculating the kernel for the example G = Z2×Z2 and offer

diagrams that illustrate the methods.

3.2 The Relative Burnside and Representation Modules

3.2.1 The Relative Burnside Module

If G̃ = G × H is a direct product of two finite groups then a G̃-set can be thought

of with G acting on the left and H on the right. Given two G̃-sets X and Y , we can

form the disjoint union X
∐
Y , and the G̃-actions from X and Y induce an action

on X
∐
Y making it into a G̃-set. Since the disjoint union of two sets is trivially

a closed and associative binary operation, the set of finite G̃-sets forms a monoid.

Unlike the classical case of Section 2.3, there is no natural product between G̃-sets.

However given given a G-set X and a G̃-set Y we can form the set X × Y where G
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acts diagonally on the left and H acts on only Y on the right. Let S ′ be the set of

isomorphism classes of finite H-free G̃-sets with respect to disjoint union. Since the

disjoint union is commutative for isomorphism class of G̃-sets, S ′ is an abelian monoid.

The Grothendieck construction of S ′ gives an abelian group G(S ′). In addition to the

group structure, G(S ′) is an A(G)-module where as sets:

[X][Y ] = [X × Y ]

and the G-action is diagonal on the left while the H-action affects only Y on the

right.

Definition 3.2.1. The relative Burnside module A(G,H) is the Grothendieck con-

struction of the monoid S ′.

The relative Burnside module A(G,H) is clearly a subgroup of the classical Burn-

side ring A(G̃) with respect to the common additive operation. A natural question

to ask is whether or not A(G,H) is a natural free subgroup of A(G̃)?

Proposition 3.2.2. If G and H are finite groups then A(G,H) is the free abelian

group with a basis given by the twisted products [G×ρH ] where the pairs (K, ρ) runs

through conjugacy class representatives of subgroups K in G and homomorphisms

ρ : K → H.

Proof. Let K < G and ρ be a homomorphism from K to H . Consider the G̃-set

Sρ = G×ρ H =
G×H

(gk, h) ∼ (g, ρ(k)h)

for g ∈ G, h ∈ H , and k ∈ K and let (x, y) ∈ Sρ. If (x, y) is fixed by H then for all

h′ ∈ H we have:

(x, y) = (x, y)h′ = (x, yh′)

with the identification (gk, h) = (g, ρ(k)h). This is equivalent to hh′ = h for all h ∈ H
which implies h′ = e and so Sρ ∈ A(G;H). It is clear that such a set is completely

determined by the pair (K, ρ).

Choose an element of A(G,H) with a single G̃-orbit, say (G̃)x0 and define the set

K = {k ∈ G|∃h ∈ H such that kx0 = x0h}

and the map

ρ : K → H by ρ(k) = h if kx0 = x0h.
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Now ρ is well defined as H acts freely on the orbit and is a group homomorphism.

Using our relations we see that G ×ρ H = G̃x0. Extending this argument linearly

we gain H-free, G̃ sets with multiple orbits. Hence the twisted products Sρ span the

A(G,H).

In addition, note that for each K < G and ρ : K → H we have:

G×ρ H =
G×H
W

where W = {(k, ρ(k−1)) : k ∈ K}. Since this set of elements is a subset of the basis

for the classical Burnside ring, two elements:

G×ρ H =
G×H
W

and G×ψ H =
G×H
U

are in the same isomorphism class if T and K (the domains of ρ and ψ respectively)

are conjugate and the maps ρ and ψ commute with the conjugation. In other words,

K = T g and ψ = ρ◦ cg and so we have one representative for each isomorphism class.

Also if
∑

[G/Wk] = 0 then:∑
[G×H/Wi] =

∑
[G×H/Wj] so

[∏
G×H/Wi

] ∼= [∏
G×H/Wj

]
.

Since the decomposition into orbits is unique, the original sum must be empty and

the set of all Sρ is linearly independent.

Example 3.2.3. Let p be a prime number, G = Zp, and H = Zp, then the relative

Burnside module A(G;H) is easily computable. Since G is abelian, for any subgroup

K < G we have Kg = K and thus each conjugacy class of subgroups consists of a

single element. Also, the only possibilities for K are 0 or G. In the case of K = 0,

the only homomorphism ρ : K → H is the zero homomorphism. In this situation,

G×ρ H = G×H/0 = G×H.

If K = G, then either ρ ≡ 0 or ρ(1) = m for m �≡ 0 mod p. In these cases,

G×0 H = G×H/G = H

and

G×m H = G×H/ < (1,−m) >

where < (1,−m) > is the cyclic subgroup of G×H generated by the element (1,−m).

So a basis of twisted products for A(G;H) is given by the set:

{[G×H ], [G×H/ < (1, m) >]|m �≡ 0 ∈ Zp}.
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To conclude this section on the construction of the relative Burnside module we

develop induction maps similar to the classical case. The relative induction maps

L/C ↑: Ã(L/C) → A(G,H) are defined by the usual induction L/C ↑ restricted

to the submodule Ã(L/C) made of those elements of A(L/C) that land in A(G,H)

where L/C is a subquotient of G̃. The abuse of notation concerning the induction

map is made irrelevant as the target space will indicate whether we are dealing with

the classical or relative case.

3.2.2 The Relative Representation Module

Similarly, we construct a relative representation module. If G̃ = G × H is a direct

product of two finite groups then a Q[G̃]-module can be thought of as a Q[G]−Q[H ]

bimodule. Given two Q[G̃]-modules M and N , we can form the direct sum M ⊕N .

The Q[G̃]-module structure fromX and Y induce a module structure onX⊕Y making

it into a Q[G̃]-module. Since the direct sum of two modules is trivially a closed and

associative binary operation, the set of finite Q[G̃]-modules forms a monoid. Unlike

the classical case of Section 2.4, there is no natural product between Q[G̃]-modules.

However given given a Q[G]-module M and a Q[G̃]-module N we can form the set

X × Y where Q[G] acts diagonally on the left and Q[H ] acts on only N from the

right. Let T ′ be the monoid of isomorphism classes of finite Q[H ]-free Q[G̃]-modules

with respect to direct sum. Since we are only concerned with the isomorphism classes

of Q[G̃]-modules, the direct sum is a commutative operation and and T ′ is in fact an

abelian monoid. The Grothendieck construction of T ′ gives an abelian group G(T ′).

In addition to the group structure, G(T ′) is an R(G)-module where as sets:

[M ][N ] = [M ×N ]

and the Q[G]-module structure is diagonal on the left while the Q[H ]-structure affects

only N on the right.

Definition 3.2.4. The relative rational representation moduleR(G,H) is the Grothendieck

construction of the monoid T ′.

The relative induction maps L/C ↑: R̃(L/C)→ R(G,H) are defined in the same

manner as the relative induction maps for the relative Burnside modules. We do this

by the usual induction L/C ↑ restricted to the submodule R̃(L/C) made of those

elements of R(L/C) that land in R(G,H) where L/C is a subquotient of G̃. Again

the abuse of notation is easily overcome by looking at the context of the induction

maps.
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3.2.3 The Relative Linearization Map

We again see some immediate similarities both between the relative Burnside and

relative representation modules and also between the classical and relative cases. Both

modules occur naturally through the Grothendieck construction and their structure

is completely determined by the possible actions of an external group G×H where H

acts freely on sets or vector spaces. In particular we notice that the induction maps

for the relative Burnside and representation modules are defined to be restrictions of

the classical inductions.

Proposition 3.2.5. Both relative induction maps are injective.

The proof of Proposition 3.2.5 is nearly identical to the argument in the classical

case of Proposition 2.5.1. The only difference is we now take M to be either the

monoid S ′ or T ′.

In addition, the natural ring homomorphism f : A(G̃) → R(G̃) restricts to a

module homomorphism f ′ from the relative Burnside module A(G,H) to the relative

representation module R(G̃). The map f ′ sends an isomorphism class of an H-free,

G̃ set X to the Q[G̃]-module Q[X].

Definition 3.2.6. We call the map f ′ the relative linearization map and call its

kernel the relative Burnside kernel denoted N(G,H).

In the instance that p is a prime, G is a finite p-group and H = Zp, the map f ′

can again be described by generators and relations. In particular Theorem 3.2.7 was

proven by Anton [1].

Theorem 3.2.7. If p is a prime number, G is a finite p-group and H a group of

order p, then the image of f ′ agrees with R(G,H).

Thus we can now view f ′ as a group homomorphism between the relative Burnside

and representation modules. Again it is immediate that the map f ′ commutes with

the relative inductions. Theorem 3.2.7 also implies that we have an analogous result

to Ritter and Segal’s Theorem 2.5.3. Thus if we can understand the generators of

N(G,H) for particular p-groups G, it is possible to gain a complete understanding

of the short exact sequence:

0→ N(G,H)→ A(G,H)
f ′−→ R(G,H)→ 0. (3.1)
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3.3 The Relative Burnside Kernel for Elementary Abelian Groups

3.3.1 Notations

For the remainder of Chapter 3, we will take the following notational conventions

to simplify notation. For a prime p, let G be the elementary abelian p-group of

dimension n and H the group of order p so that G̃ = G×H = Zn+1
p . In the classical

setting we denote the Burnside ring, representation ring, and Burnside kernel by

A = A(G̃), R = R(G̃), N = N(G̃).

Defining Ak ⊂ A to be the set generated by all [G̃/L] with L ⊂ G̃ of dimension k, we

gain the following decomposition of the Burnside ring

A = A0 ⊕A1 ⊕ ...⊕ An+1.

Likewise we denote the relative Burnside and representation modules and the

relative kernel by

A′ = A(G,H), R′ = R(G,H), N ′ = N(G,H).

Defining A′
k = Ak ∩A′, we gain a decomposition of A′ similar to that of A.

3.3.2 Rank calculations

LetG(k, n) denote the number of k-dimensional subspaces of the n-dimensional vector

space Zn
p . Then as a consequence from Stanley [22, p. 28], we gain the following

formula.

G(k, n) =

k∏
j=1

pn−j+1 − 1

pj − 1

Proposition 3.3.1. The ranks ak and a′k of Ak and A′
k are given by the formulas

ak = G(k, n+ 1), a′k = pkG(k, n).

Proof. The basis elements [G̃/L] for Ak are in one-to-one correspondence with the

k-dimensional subspaces L < G̃ = Zn+1
p . Hence, we get the first formula.

The basis elements [G ×ρ H ] for A′
k are in one-to-one correspondence with pairs

(K, ρ) with K < G a k-dimensional subspace and ρ : K → H a homomorphism.

Given K, ρ is uniquely determined by its kernel and an automorphism of its image.

If K is k-dimensional, the kernel of ρ is either K or some (k−1)-dimensional subspace

of K. In the later case the image admits (p− 1) automorphisms. Hence, for a given
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k-dimensional K there are (p− 1)G(k− 1, k) + 1 different ρ’s. For a given dimension

k the number of pairs (K, ρ) is thus given by the calculation:

G(k, n)[(p− 1)G(k − 1, k) + 1] = G(k, n)[(p− 1)
k−1∑
i=0

pi + 1] = pkG(k, n)

and we have the second formula.

Let ξ denote a primitive p-root of unity and F = Q(ξ) be the associated cyclotomic

field. For each s ∈ Zn+1
p let Fs be the Q[G̃]-module F obtained by letting the ith

canonical generator of G̃ act on F via the automorphism sending ξ to ξsi where si is

the ith coordinate of s.

Proposition 3.3.2. The ranks r and r′ of R and R′ are given by the formulas

r = G(1, n+ 1) + 1, r′ = G(1, n+ 1).

Proof. With the above notations, two isomorphism classes are equal [Fs] = [Ft] if and

only if t = s = 0 or t = us for some unit u in Zp. In the later case we say that s and

t represent the same point [s] = [t] in the projective n-space P n over Zp. With this

observation [Fs] indexed by [s] ∈ P n and the trivial module [Q] form a basis for R.

Thus we get the first formula.

For the second formula we claim that a basis for R′ is given by the elements

[Fs′×1] + [Q], [Ft×0]− (p− 1)[Q]

indexed by s′ ∈ Zn
p and [t] ∈ P n−1. Let B denote the set of these elements and M

the Z-module generated by B. Since F0×1 + Q = Q[H ] it follows that by forgetting

the G-action, the elements:

[Fs′×1] + [Q], [Ft×0] + (p− 1)[F0×1], and (p− 1)[F0×1] + (p− 1)[Q]

are all represented by the Q[H ]-free modules Q[H ] or (p − 1)Q[H ]. Thus M ⊂ R′

and it is immediate that B is a linearly independent set. Now by inspection R/M is

the free module generated by [Q] and m[Q] ∈ R′ implies m = 0. Thus the rank of R′

equals the rank ofM. In particular Lemma 2.2.3 applies to the sequence:

0→M→R→R/R′ → 0

implying that R′ =M.

From the Propositions 3.3.1 and 3.3.2 and the short exact sequence (2.1) we deduce

the following result.
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Corollary 3.3.3. The ranks b and b′ of N and N ′ are given by the formulas

b =

n−1∑
k=0

G(k, n+ 1), b′ =

n∑
k=0

pkG(k, n)−G(1, n+ 1).

3.3.3 The main theorem

It is convenient to identify each basis element [G̃/L] of A where L < G̃ with the

projective subspace (L) ⊂ P n generated by L. Also, let e denote the distinguished

vector (0, ..., 0, 1) ∈ Zn+1
p . Then we have the following characterization for the basis

elements of A′
k in terms of projective subspaces.

Lemma 3.3.4. The submodule A′
k ⊂ A′ is the free abelian group on the set of pro-

jective subspaces (L) ⊂ P n with L < G̃ of dimension k not containing e.

Proof. It is easy to see that the basis elements [G×ρ H ] of A′ associated with a pair

(K, ρ) is of the form [G̃/L] where K < G, ρ : K → H is a homomorphism, and

L = {(k, ρ(k))|k ∈ K} is a linear subspace of G̃ not containing e.

Conversely, let (L) ⊂ P n with L < G̃ of dimension k not containing e and define

K to be the image of the canonical projection G̃ → G. If (g, h) is an element in

L which maps to 0 under the projection, then g = 0. This would imply he ∈ L so

h = 0. Thus the projection induces an isomorphism L ∼= K. Let α : K → L be the

inverse and define ρ : K → H by composing α with the canonical projection G̃→ H .

We can then check that [G̃/L] = [G×ρ H ].

Given L a subspace of codimension at least 2 in G̃ we define L∗ < G̃ to be a

distinguished subspace such that the following two conditions are both satisfied:

1. L∗ contains L and L∗/L has rank 2.

2. If L does not contain the distinguished vector e and has codimension at least 3

then L∗ also does not contain e.

Now we observe that L∗ always exists subject to the two conditions. In particular,

if L has codimension exactly 2 then L∗ = G̃ is the only choice without violating

condition 2.

Definition 3.3.5. For each such L define

t(L) = (L)−
∑

(C) + p(L∗)

where the sum is over all proper subspaces L < C < L∗.
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In particular, define Mn−1 to be the set of all (L) with L < G̃ an (n − 1)-

dimensional subpace where e �∈ L. By Lemma 3.3.4, this set is also a basis for A′
n−1.

Definition 3.3.6. Let A′′
n−1 be the submodule of A′

n−1 generated by all those differ-

ences (L)− (L′) of elements in Mn−1 that are subject to the relation

(L+ Zpe) = (L′ + Zpe).

Theorem 3.3.7. The rank of A′′
n−1 is G(1, n)(pn−1 − 1) and we have the following

commutative diagram of short exact sequences:

0 −−−→ A′
0 ⊕ A′

1 ⊕ ...⊕ A′
n−2 ⊕ A′′

n−1
t′−−−→ A′ f ′−−−→ R′ −−−→ 0⏐⏐� ⏐⏐� ⏐⏐�

0 −−−→ A0 ⊕ A1 ⊕ ...⊕ An−2 ⊕ An−1
t−−−→ A

f−−−→ R −−−→ 0

where the vertical arrows are all inclusions and t′, f ′ are the restrictions of t, f .

Proof. Given (L) in Mn−1 we can write t(L) in the form:

t(L) = (L)− (C0)−
∑

(C) + p(G̃)

where C0 = L + Zpe and the sum is taken over all L < C < G̃ not containing e. By

Definition 3.3.6, if (L)− (L′) is a generator of A′′
n−1 then

(L+ Zpe) = (L′ + Zpe) = (C0)

and we deduce that t((L)− (L′)) is in A′ so all maps in the diagram are well defined.

Also Theorem 2.5.5 and Theorem 3.2.7 prove that f and f ′ are surjective.

From Section 2.5 we know that the kernel of f is generated by the induced kernels

L/C ↑ N(L/C) where L/C ∼= Zp × Zp. In particular, by applying L/C ↑ to the

generator of Theorem 2.5.4 with G = L/C we deduce that N(G̃) is generated by

elements of the form

[G̃/C]−
∑

[G̃/D] + p[G̃/L]

where L/C is any subquotient of G̃ isomorphic to Zp × Zp and the sum runs over

all proper subgroups C < D < L. By Definition 3.3.5 the above elements with L/C

replaced by L∗/L generate the image of t so that the composition f ◦ t and f ′ ◦ t′ are

both zero.

We are left to prove the injectivity of the map t and the inclusions of the kernels of

f and f ′ inside the images of t and t′ respectively. Under the map t, each basis element

21



(L) of Ai is mapped to an element inside Ai ⊕Ai+1 ⊕ Ai+2 whose first component is

again (L). Therefore the matrix representation of t is upper triangular with cokernel

An ⊕ An+1 which is free. Hence t, and therefore t′, are injective.

Regarding the exactness at A observe that by Proposition 3.3.1 and the injectivity

of t it follows that the rank of t is the sum G(k, n + 1) for k = 0, 1, ..., n − 1. The

same sum by Corollary 3.3.3 is the rank of the kernel of f . Since the cokernel of t is

a free module we conclude by Lemma 2.2.3 that the bottom sequence is exact at A.

To determine exactness at A′ we must first determine the rank of A′′
n−1. As

calculated in Proposition 3.3.1, the rank of A′
n−1 which is also the order of Mn−1 is

equal to a′n−1 = pn−1G(n − 1, n). We observe that Mn−1 breaks into G(n − 1, n)

equivalence classes relative to the equivalence relation (L) ∼ (L′) if and only if

L+ Zpe = L′ + Zpe.

By Lemma 3.3.4 and Proposition 3.3.1 with n replaced by n − 1, each n-subspace

containing e contains pn−1G(n−1, n−1) subspaces of dimension n−1 not containing

e. This product gives the number of elements in any of the equivalence classes. Hence,

since each equivalence class produces exactly pn−1 − 1 basis elements for A′′
n−1 and

there are a′n−1p
n−1 equivalence classes, we conclude that the rank of A′′

n−1 is given by

the following formula:

a′n−1p
n−1(pn−1 − 1) = G(1, n)(pn−1 − 1).

Combining this with the fact that t′ is injective it follows that the image of t′ has

rank equal to the kernel of f ′. Moreover when considering the generators of A′′
n−1, if

we allow any given basis element (K) ∈ A(n − 1) to play the role of an (L) in the

difference (L) − (L′) at most once, then we see that the matrix of t′ will be upper

triangular as t′ maps a difference (L)− (L′) to an element inside An−1 ⊕ An ⊕ An+1

with first component (L)− (L′). Therefore the cokernel of t′ is a free module and by

Lemma 2.2.3, the top row is exact.

3.3.4 An illustration for n = 2 and p = 2

Order Z2 such that 0 < 1 and order Z3
2 lexicographically. Then for n = p = 2 we

gain a labeling of the basis, {ei}, of A(Z3
2) such that e1 < e2 < ... < e16. With this

labeling of the basis of A(Z3
2), the subgroup lattice of G̃ can be represented by the

graph E in figure 3.1 and offers a visual description of the relationship between basis

elements ei and ej .
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Figure 3.1: Basis lattice for a classical Burnside ring.

Theorem 3.3.7 implies that we have the following commutative diagram of short

exact sequences:

0 −−−→ A′
0 ⊕ A′′

1
t′−−−→ A′ f ′−−−→ R′ −−−→ 0⏐⏐� ⏐⏐� ⏐⏐�

0 −−−→ A0 ⊕A1
t−−−→ A

f−−−→ R −−−→ 0

We see using our basis that

A0 = A′
0 = Ze1, A1 =

8∑
i=2

Zei and A′
1 = Z(e3 − e4) + Z(e5 − e6) + Z(e7 − e8).

Hence t is well defined on A1 while we define:

t(e1) = e1 − e3 − e5 − e7 + 2e12.

Define the subgraph Ei to be the full subgraph of E where the vertices are the terms

occurring in t(ei). Then the image t′(ei− ej) is associated with the subgraph Ei−Ej
whose vertices are those in Ei and Ej. For example, if i = 3 and j = 4 these subgraphs

are described in figure 3.2.

Conversely, given a subgraph Ei the image t(ei) is uniquely determined by taking

a weighted sum of the vertices of Ei. Moreover, given a subgraph Ei−Ej , the image
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Figure 3.2: Construction of a basis element for a relative Burnside module.

t(ei − ej) is also uniquely determined by the vertices of Ei − Ej . It follows that the

kernel of f is generated by all of the subgraphs Ei for i = 1, 2, ..., 8 and the kernel of

f ′ is generated by all the non-singular subgraphs E1, E3 − E4, E5 − E6, E7 −E8.

Copyright c© Eric B. Kahn, 2009.
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Chapter 4 Applications

4.1 A Conjecture for Arbitrary p-Groups

We would like to develop a description for the kernel N(G,H) in certain cases anal-

ogous to that given by Tornehave in [23] for N(G) where G was an arbitrary finite

p-group. One possible situation where this should be possible is the case for a prime

p, we consider H = Zp and G to be any finite p-group. We thus want to build the

kernel N(G,H) using induced kernels whose basis elements maintain free H-actions.

To accomplish this construction, define Ñ(L/C) for L/C a subquotient of G̃ = G×H
to be the intersection of N(L/C) with the submodule Ã(L/C) of A(L/C) that lands

inside A(G,H) under the induction L/C ↑ of Section 3.2.1.

Conjecture 1. Let p be a prime, G any finite p-group, and H ∼= Zp. Then

N(G,H) =
∑

L/C ↑ Ñ(L/C)

where the sum is taken over subquotients L/C of G̃ isomorphic to T ×H where T is

the elementary abelian group Zp × Zp, the dihedral group, or the nonabelian group of

order p3 and exponent p.

In the case that H is a point, we recover the classical Tornehave result. As the

relative kernel is an additive subgroup of the classical one, if N(G,H) is going to be

induced from subquotients their only possible forms are Zp × Zp, Dn, or M(p). For

G elementary abelian or cyclic this conjecture can readily be checked using Theo-

rem 3.3.7 and rank arguments.

Theorem 4.1.1. Let p be any prime, G be an elementary abelian p-group, and H ∼=
Zp. Then

N(G,H) =
∑

L/C ↑ Ñ(L/C)

with the sum taken over all subquotients L/C ∼= Z3
p.

Proof. From Theorem 3.3.7 we know that the image of t generates the kernel N(G,H).

If (L) ∈ A′
i with 0 ≤ i ≤ n−2, then there exists subgroups L < L∗ < B < G̃ such that

B/L ∼= Z3
p where L∗ is the distinguished element used to define t in Definition 3.3.5.

In addition, regardless of our choice of B,

t((L)) ∈ B/L ↑ Ñ(B/L).
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If (L)− (L′) ∈ Ãn−1, let

C = L+ Zpe = L′ + Zpe, D = L ∩ L′.

We see immediately that G̃/D ∼= Z3
p and also that t((L) − (L′)) is an element of

G̃/D ↑ Ñ(G̃/D). Hence we conclude that

N(G,H) ⊂
∑

L/C ↑ Ñ(L/C).

The converse is immediate.

Theorem 4.1.2. Let p be any prime, G the cyclic p-group with order pk, and H ∼= Zp.

Then f ′ is an isomorphism between A(G,H) and R(G,H).

Proof. Let G̃ = G × H and ξ be the primitive pk-root of unity. Since G is cyclic,

easily the rank of A(G,H) is equal to kp + 1 as G has k + 1 subgroups and for a

nontrivial subgroup K < G, there are p homomorphisms ρ : K → H .

To determine the rank of R(G,H), let Fν,φ = Q(ξp
k−ν
, ξφp

k−1
) be the Q[G̃]-module

with the generators of G and H acting by multiplication by ξp
k−ν

and ξφp
k−1

respec-

tively where ν = 0, 1, ..., k and φ = 0, 1, ..., p− 1. Then the irreducible Q[G̃]-modules

as seen from the decomposition of the group ring Q[G̃] are listed in Table 4.1 and we

conclude that the rank of R(G̃) is kp+ 2.

Table 4.1: Irreducible QG-modules

F0,0 = Q

F0,1 = Q(ξp
k−1

)
Fν,φ with ν = 1, ..., k and φ = 0, 1, ..., p− 1.

For [M ], [M ′] ∈ R(G̃), define [M ] ≡ [M ′] if we have [M ] − [M ′] ∈ R(G,H).

Using this relation, from [1] we immediately gain the following equivalences found in

Table 4.2.

Table 4.2: Equivalence relationships for R(G,H)

[Fν,φ] ≡ −pν−1[Q] for ν = 1, ..., k and φ = 1, ..., p− 1
[F0,1] ≡ −[Q]
[Fν,0] ≡ pν−1(p− 1)[Q] for ν = 1, ..., k.

The equivalences from Table 4.2 imply that the rank of R(G̃)/R(G,H) is less than

or equal to 1. In addition, the facts f ′ is surjective, the rank of A(G,H) is kp+1, and

the rank of R(G̃) is kp+ 2, imply that the rank of R(G̃)/R(G,H) is at least 1. Thus
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the rank of R(G̃)/R(G,H) is exactly 1 which implies the rank of R(G,H) = kp+ 1.

As A(G,H) is a free module, the rank of A(G,H) is equal to the rank of R(G,H),

and f ′ is a surjection, we see that f ′ is an isomorphism.

As a corollary, Conjecture 1 is true for G a cyclic p-group.

Copyright c© Eric B. Kahn, 2009.
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Chapter 5 A Bredon Homology Theory

For this chapter we let G denote an arbitrary discrete group and we return to the

study of the classical Burnside ring. One can view the Burnside ring as a functor

between categories in multiple ways. In particular, we discussed in Chapter 2 the

effects A has on the objects of the category of groups and thus only need to construct

a map A(φ) between Burnside rings. Suppose we have an H-set X and a group

homomorphism φ between groups G and H . Using the induction maps, A can be

viewed as a covariant functor by defining the image of [X] to be [G×φ X]. However

the inductions do not commute with the multiplicative structure so A is a functor

from the category of finite groups to that of abelian groups. A more straight forward

construction is to view A as a contravariant functor from the category of finite groups

in to the category of rings. This viewpoint is more natural as we immediately gain a

G-action on X via g ·x = φ(g)x which induces a homomorphism from A(H) to A(G).

When we discuss the Burnside functor A, it is with this contravariant viewpoint.

Section 5.1 focuses on defining the necessary tools to construct a specific Bredon

homology theory. We discuss the definition for a model of the classifying space EG

where G is a finite group and construct an example of such a model. We also discuss

an alternative definition in Proposition 5.1.3 and offer a proof of the equivalence.

Section 5.2 focuses on constructing the specific Bredon homology groups for G =

Z2 which we do in Theorem 5.2.2. The proof of this theorem displays the general

techniques that will be helpful in future calculations.

5.1 Classifying Spaces

Definition 5.1.1. A G-CW -complex is a CW -complex with a continuous left action.

Such a space is called proper if all of the point stabilizers are finite.

Definition 5.1.2. A model for EG is a proper G-CW complex X such that for

any proper G-CW complex Y there is a unique G-map Y → X, up to G-homotopy

equivalence.

In other words, we say X is a model if it is a terminal object in the homotopy

category of proper G-spaces. To show the existence of such a space we will construct

a model given an arbitrary discrete group G following the method of Valette [24, page

88]. Let M be the zero dimensional G-CW complex given by the disjoint union of all
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left cosets G/H for H < G and where H is finite. Define M(n) = ∗nM by the n-fold

join and let X = ∪nM(n) with the obvious inclusions M(n)→M(n + 1).

We must show that our constructed space is the desired terminal object, to do

this we follow the argument on [14, page 6]. Let H < G be finite. We want to show

that

XH = (∪nM(n))H = ∪nM(n)H � pt.

Now M(n) = ∗nM so M(n)H = (∗nM)H = ∗n(MH) which is n− 2 connected due to

the fact that for any two spaces Y and Z, Y ∗ Z = S(Y ∧Z) and to the Freudenthal

Suspension theorem. So given a map Sj → XH , Sj is compact so it’s image under

the map is contained in some M(n)H which is j-connected for n > j + 2. Thus for

i ≤ j, πi(X
H) = 0 so XH is contractible.

The following proposition is well known. However we offer a different proof as

both Valette [24] and Mislin [14] refer to using obstruction theory.

Proposition 5.1.3. A proper G-CW complex X is a model for EG if and only if

every subcomplex of fixed points XH is contractible for each finite H < G.

Proof. We begin with the sufficient direction. Let X be a proper G-space such that

XH � pt for all finite H < G and Y be a G-CW complex. Then the 0-cells of Y can

be collected into orbits G/Hi × e0i . Since XH is contractible, for each orbit we can

define an H-map e0i 
→ e0
′
i and this map gives us a G-map on each orbit and thus on

the 0-skeleton of Y .

Assume we have a G-map Y n−1 → X and we want to extend this map to Y n.

Collect the n-cells of Y into orbits G/Hi × eni = G/H × en. On the boundary of en

we have a G−map
∂en → XH .

Since XH is contractible there is a nullhomotopy ∂en × I → XH which is constant

on ∂en × 1. Therefore it factorizes through the cone:

C = ∂en × I/∂en × 1

and since C is homeomorphic to en we gain a map en → XH . This map can be

extended to a G-map by:

G/H × en → XH ⊂ X.

Since the maps G/H × en → XH and Y n−1 → X agree on the boundary, we gain a

G-map Y n → X so by definition, X is a model of EG. This direction of the proof in
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conjunction with the construction of ∪nM(n) also proves the existence of a terminal

object in our category.

To prove the necessary condition suppose X is a terminal object in the homotopy

category of proper G-spaces and H < G is finite. We know there exists a G-map

f : G/H → X since X is terminal and H acts trivially on the image of f . So Im(f)

is nonempty.

Consider the G-maps G/H ×XH → X defined by:

φ1 : (gH, x) 
→ gx

φ2 : (gH, x) 
→ gx0

where x0 ∈ XH and the G-structure on the domain is d(gH, x) = (dgH, x). Upon

restriction to H/H × XH we see that φ1 = I and φ2 = cx0. However the maps φ1

and φ2 are homotopic in X since up to homotopy there must be a unique G-map

G/H×XH → X. Thus upon restriction to H we see I � c in XH since the maps are

now H/H ×XH → XH and thus, XH is contractible.

5.2 Bredon Homology

We now discuss the definition for the Bredon homology of a G-CW -complex X found

in [19] using the Burnside functor to give the coefficient groups. A Bredon module A
is a covariant functor from the orbit space of a group G into the category of abelian

groups. If we define A(G/L) = A(L) where A(L) represents the Burnside ring for the

group L, then we see immediately that A is a Bredon module. To define a homology

theory we must now specify the chain complexes and the differential maps.

For chain complexes define

Cd = ⊕(A(G/Sα)⊗ eα) = ⊕(A(Sα)⊗ eα)

where the sum is over the stabilizer subgroups Sα of d-cell orbit representatives eα.

If ge′ is a (d− 1)-cell in the boundary of e then Sgα ⊂ S ′ which defines a map φ from

G/Sα to G/S ′. As A is a contravariant functor, this induces a map A(φ) between

Burnside rings yielding a differential δd from Cd to Cd−1. In particular the map agrees

with the classical induction maps from the Burnside ring of a stabilizer subgroup of

a d-cell A(Sα) to the Burnside ring of a stabilizer subgroup of a boundary cell of

dimension d − 1 A(SS′). Then the differential map sends m ⊗ eα ∈ A(Sα) to the

alternating sum of S ′ ↑ m ⊗ eα ∈ A(S ′) where the inductions are taken over the

different stabilizing subgroups of the (d− 1)-boundary cells.
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Definition 5.2.1. The Bredon homology groups Hi(X;A) are the homology groups

associated to (C∗, δ∗).

Theorem 5.2.2. Let G = Z2, X = EG, and denote the Burnside functor by A.

Then the first two Bredon homology groups of G are:

H0(X,A) = Z

H1(X,A) = Z2

Proof. To first compute H0(X;A) we need the chain complexes C0 and C1. For the

0-cells let e1 and e3 be the orbit representative with stabilizer subgroups S1 = e and

S3 = Z2. We then see that the 1-cell representative are e11, e12, e13, e31, and e33 with

stabilizer subgroups

S11 = S12 = S13 = S31 = e, and S33 = Z2.

We define the chains by the formula

Cd = ⊕αA(G/Sα)⊗ eα.

Therefore using the Burnside functor we have:

C0 = A(G/S1)⊗ e1 ⊕A(G/S3)⊗ e3
= A(S1)⊗ e1 ⊕A(S3)⊗ e3
= Z[e/e]⊗ e1 ⊕ Z[Z2/e]⊗ e3 ⊕ Z[Z2/Z2]⊗ e3
= Z3

and

C1 = A(S11)⊗ e11 ⊕ A(S12)⊗ e12 ⊕A(S13)⊗ e13 ⊕A(S31)⊗ e31 ⊕ A(S33)⊗ e33
= Z[e/e]⊗ e11 ⊕ Z[e/e]⊗ e12 ⊕ Z[e/e]⊗ e13 ⊕ Z[e/e]⊗ e31 ⊕ Z[Z2/Z2]⊗ e33
⊕Z[Z2/e]⊗ e33

= Z6.

So d1 : Z6 → Z3 and we want to compute the image of d1. We will do this by looking

at the image of the generators of each component of C1.

If i = j = 1 then

d([e/e]⊗ e11) =↑ [e/e]⊗ e1− ↑ [e/e]⊗ e1 = 0.
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If i = 1 and j = 2 then

d([e/e])⊗ e12 = S12 ↑ [e/e]⊗ e1 − S12 ↑ [e/e]⊗ e2
= S1 ⊗S12 ([e/e]⊗ e1)− S2 ⊗S12 ([e/e]⊗ e2)
= [e/e]⊗ e1 − [e/e]⊗ ge1
= 0.

If i = 1 and j = 3 then

d([e/e])⊗ e13 = S13 ↑ [e/e]⊗ e1 − S13 ↑ [e/e]⊗ e3
= e⊗e ([e/e]⊗ e1)− Z2 ⊗e ([e/e]⊗ e3)
= [e/e]⊗ e1 − [Z2/e]⊗ e3.

If i = 3 and j = 1 then

d([e/e])⊗ e31 = S31 ↑ [e/e]⊗ e3 − S31 ↑ [e/e]⊗ e1
= [Z2/e]⊗ e3 − [e/e]⊗ e1.

And lastly if i = j = 3 we for H < G

d([G/H ]⊗ e33) = S33 ↑ [G/H ]⊗ e3 − S33 ↑ [G/H ]⊗ e3 = 0.

So d1 maps the generators of A(S11), A(S12), and A(S33) to zero, it maps the

generator of A(S13) to (1,−1, 0) and the generator of A(S31) to (−1, 1, 0). Thus we

see the Bredon homology to be:

H0(X,M) = Z3/ < (1,−1, 0) >∼= Z2.

To determine d2 we need the 2-cells representatives and their stabilizer subgroups.

The representative 2-cells will be:

e111, e112, e113, e121, e131, e211, e311, e123, e132, e312, e331, e313, e133, e333

with stabilizer subgroups S333 = Z2 and all other stabilizers Sijk = e.

If i = j = k = 3 then

d(m⊗ e333) = S333 ↑ m⊗ e33 − S333 ↑ m⊗ e33 + S333 ↑ m⊗ e33
= S333 ↑ m⊗ e33
= (Z2 ⊗Z2 m)⊗ e33
= m⊗ e33.
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If i = j = 3 and k �= 3 then

d(m⊗ e33k) = S33k ↑ m⊗ e3k − S33k ↑ m⊗ e3k + S33k ↑ m⊗ e33
= (Z2 ⊗e m)⊗ e33.

If i = 3 and j, k �= 3 then

d(m⊗ e3jk) = S3jk ↑ m⊗ ejk − S3jk ↑ m⊗ e3k + S3jk ↑ m⊗ e3j
This breaks into two case. If j = k then the last two terms cancel and we see:

d(m⊗ e3jk) = m⊗ ejk.

If j �= k then

d(m⊗ e3jk) = m⊗ ejk −m⊗ ge3k +m⊗ e3k = m⊗ ejk.

Lastly if i, j, k �= 3 then

d(m⊗ eijk) = Sijk ↑ m⊗ ejk − Sijk ↑ m⊗ eik + Sijk ↑ m⊗ eij
= m⊗ ejk −m⊗ eik +m⊗ eij.

Again this breaks into two cases. If i = j then the first two terms cancel and

d(m⊗ eijk) = m⊗ eik.

If i = k then no terms cancel and

d(m⊗ eijk) = −m⊗ eii + 2m⊗ eij .

So the image of d2 is

Im(d2) = A(S33)⊕A(S12)⊕ A(S11) =< (a, b, 0, 0, c) >

and the kernel of d1 is

ker(d1) =< (a, b, d, d, c) > .

Thus we gain the following Bredon homology group:

H1(X;M) =
< (a, b, d, d, c) >

< (a, b, 0, 0, c) >
∼= Z.

Copyright c© Eric B. Kahn, 2009.
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Appendix: Generalized Cohomology Theories and Ω Spectra

This appendix is meant to give the background information necessary to understand

the geometric motivation to this problem. It will be broken down into five parts:

what are generalized cohomology theories and Ω-spectra, how does a cohomology

theory induce an Ω spectra, how does an Ω spectra induce a cohomology theory, and

how these objects directly relate to our studies.

Generalized Cohomology Theory

A generalized cohomology theory, Hq, is a sequence of contravariant functors which

associates to a pair of CW -complexes (X, Y ), abelian groups while satisfying certain

axioms. In addition to the axioms, there must also be a group homomorphism δ from

the group Hq−1(Y, ∅) to Hq(X, Y ); the function δ is called the coboundary operator.

An original set of six axioms describing a generalized cohomology theory was worked

out by Eilenberg and Steenrod [7], however the following three axioms of Hatcher [8,

page 202] are equivalent.

To be precise, a contravariant functor Hq from pairs of CW -complexes to abelian

groups is a generalized cohomology theory if it has a coboundary homomorphism δ

from Hn(A, pt) to Hn+1(X,A) satisfying the following three axioms.

1. If f and g are homotopic maps between pairs (X, Y ) and (A,B) then f ∗ = g∗.

2. If i and j are the inclusion maps, then we have a long exact sequence:

· · · →i∗ Hq−1(Y )→δ Hq(X, Y )→j∗ Hq(X)→i∗ Hq(Y )→ · · ·

3. For a wedge sum X = ∨αXα and inclusion maps iα fromXα to X, every induced

map:

i∗α : Hq(X)→
∏

Hn(Xα)

is an isomorphism.

Ω Spectra

A CW -spectrum E is composed of a sequence of CW -spaces En and cellular maps

εn :
∑
En → En+1. Often it is said in the case where the adjoint map ε′ : En → ΩEn+1

are weak homotopy equivalences, E is an Ω-spectrum. These definitions of both CW
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and Ω spectra agree with those of Petrović [16]. In addition if we require the spaces

En of an Ω-spectra to be connected we see the adjoint maps ε′ are in fact homotopy

equivalences due to Whitehead [26]. For our purposes we define an Ω-spectra to be

a sequence of connected CW -spaces En and cellular homotopy equivalences

εn : En → ΩEn+1.

For a common example consider the Eilenberg-Mac Lane spaces K(G, n) and

define En = K(G, n). Then since the only nonzero homotopy group is πk(En) = G

for k = n, it follows En � ΩEn+1 and the sequence of K(G, n) forms an Ω-spectra.

Cohomology to Ω-Specrtum

If h∗ is a generalized cohomology theory, then we can define what is called a reduced

cohomology theory by h̃∗(X) = h∗(X, pt). Using Brown representability [5] we then

have h̃n(X) = [X,En] where the En are connected, basepointed, CW -spaces. This

allows us to construct the following sequence of cohomology groups:

hn(X, pt) ∼= hn+1(CX,X) ∼= hn+1(SX,C ′X) ∼= hn+1(SX, pt).

The first isomorphism is a consequence of the long exact sequence of the pair (CX,X)

and the homotopy invariance axiom while the second isomorphism is due to excision

on the pair (SX,C ′X) where C ′X represents the lower cone of the suspension. The

last isomorphism follows from the long exact sequence of the pair (SX,C ′X) and the

fact C ′X is contractible. This composition of isomorphisms shows the cohomology

theory is stable under suspension and

[X,En] ∼= [SX,En+1] ∼= [X,Ω0En+1]

when X is connected. Since En form an Ω-spectrum and En are all connected spaces,

the above composition of isomorphisms is induced by a homotopy equivalence ε′ :

En → Ω0En+1.

In the case X is not connected, the suspension SX is and so:

h̃n(X) ∼= h̃n+1(SX) = [SX,En+1] ∼= [X,ΩEn+1].

It was shown by Milnor that ΩEn+1 is weakly equivalent to a CW -complex Fn+1 so

we can conclude h̃n(X) ∼= [X,Fn+1]. In addition,

[X,Fn] ∼= h̃n(X) ∼= h̃n+1(SX) ∼= [X,ΩFn+1]

which is induced by the homotopy equivalence ε from Fn to ΩFn+1. Thus h is de-

scribed by the Ω-spectrum Fn.
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Ω-Specrtum to Cohomology

Suppose En is an Ω-spectrum and we want to demonstrate that [X,En] satisfies the

axioms for a cohomology theory. The main difficulties arises in proving the long exact

sequence of the CW -pair (X,A).

A basepointed map f from X to Y defines a class in [X, Y ] and through compo-

sition induces a map f ∗ from [Y,En] to [X,En]. Since [Y,En] is defined on homotopy

classes of maps, f ∗ depends only on the basepoint of Y and the homotopy class of f

which shows the homotopy axiom holds.

To see the wedge axiom holds, we note that a map f ∈ [∨Xα, En] is defined by

component maps fα with domain Xα. This implies [∨Xα, En] ∼=
∏

[Xα, En].

Lastly, consider the long exact sequence

A→ X → X/A→ ΣA→ ΣX → · · ·

If we fix a space K then we gain a sequences:

[A,K]← [X,K]← [X/A,K]← [ΣA,K]← [ΣX,K]← · · · (1)

with the maps defined by composition. The spaces [ΣiY, Z] are groups for i > 0 and

abelian for i > 1 with the maps between groups all group homomorphisms.

We claim this sequence is exact since we can view [X/A,K] ∼= [X ∪ CA,K] and

see a map f from X to K goes to 0 if and only if it extends to X ∪ CA. Thus if

we replace K with the space En we can extend sequence 1 to the left to form the

following long exact sequence.

[A,En+1]← [X,En+1]← [X/A,En+1]← [A,En]← [X,En]← · · ·

Thus we gain a long exact sequence of abelian groups and homomorphisms with

the naturality of a map (X,A)→ (Y,B) coming from the naturality of a cofibration.

Connections to the Burnside Kernel

The Stable Transfer Map

Given a CW-complex X, define a spectrum with the nth space equal to SnX for n ≥ 0

with the obvious maps φn from SEn to En+1. For n ≤ 0 we take En to equal a point.

Then the maps φn are homotopy equivalences for all n and we say such a spectrum

is the suspension spectrum of X. We denote such a spectra by Σ∞X. In particular,
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the sphere spectrum S has as its nth term the sphere Sn. Given a CW -complex X,

the stable cohomotopy groups of X are defined by:

πis(X) = lim
→

< X,Sn+i >=< X,ΩnSn+i > .

In general these groups are difficult to compute. However if X is the 1-sphere

then πis(S
1) = πsn+1(S

n+i). Thus in the case i = 1, we have π1
s(X) is in fact the stable

homotopy group πsi (S
i) = Z. Also if i > 1, then πis(X) = 0.

Given any finite G-set T , one can form the covering space:

T → T ×G EG→ BG.

For any cell σ in BG we can associate the disjoint union of cells,
∑

i σi, that map to σ

under the projection. This induces the transfer map τ from H∗(BG) to H∗(T ×GEG)

by taking a homology class [z] to the element
∑

[zi]. We want to form a similar map

between H̃∗(Σ∞BG) and H̃∗(Σ∞(T ×G EG)). By Mayer-Vietoris and the definition

of the suspension spectrum, we see H̃∗(BG) ∼= H̃∗(Σ∞BG) and H̃∗(T ×G EG) ∼=
H̃∗(Σ∞(T×GEG)). Thus we now have a map from H̃∗(Σ∞BG) to H̃∗(Σ∞(T×GEG))

which is induced by a map at the level of spectra.

Thus given our finite G-set T , we have the composition of maps:

Σ∞BG→ Σ∞(T ×G EG)→ Σ∞point

which defines a map α(T ) from BG to Ω∞Σ∞. Thus we in fact have a homomorphism

α : A(G)→ [BG,Ω∞Σ∞] = π0
s(BG).

The map α extends to an isomorphism

α̂ : Â(G)→ π0
s(BG)

where Â(G) is the completion of the Burnside ring with respect to the IG-adic topol-

ogy. This isomorphism is known as the Segal Conjecture and was proven by Lewis,

McClure, and May [11].

Complex K-theory

Let X be a topological space. A family of vector spaces over X is a triple (V, π,X)

often denoted by just V , where V is a topological space and π is a continuous surjec-

tion from V to X where π−1(x) = Vx is a vector space for all x ∈ X. If a family has

the property that for each x ∈ X there is an open neighborhood U ⊂ X containing
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X such that V |U ∼= U ×Cn for some n, then we call the family V a vector bundle. A

homomorphism between vector bundles V and W is a map γ that restricts to a linear

transformation between all vector spaces Vx → Wx. The Grothendieck completion of

the set of isomorphism classes of vector bundles over a compact Hausdorff, topological

space X is denoted K0(X) and the assignment from X to K0(X) is a contravariant

functor. The ring structure on K0(X) is given by internal Whitney sum and tensor

products. Another K group, K1 can be defined as the kernel of the homomorphism

from K0(X × S1) to K0(X) induced by the inclusion map. These constructions of

the rings K0 and K1 agree those of Park [15] and the higher K-groups are defined

via the Bott periodicity theorem.

The analogous definition of Atiyah [2] for complex K-theory quickly defines func-

tors Kn for any natural number n. For a compact Hausdorff X and n ≥ 1, define

K−n(X) to be the set of homotopy classes of maps [X,ΩnBU ]. This implies that K is

in fact a homotopy invariant functor. Given a map f : X → Y , we gain a map Kn(f)

from Kn(Y ) to Kn(X) via composition. In addition we can define the relative groups

K−n(X, Y ) to be K̃−n(X/Y ) = K̃0(Sn(X/Y )) where K̃(Z) is the kernel of the map

from K(Z) to K(z0) induced by the inclusion. Finally there is an exact sequence, of

the form:

· · ·K−2(Y )→ K−1(X, Y )→ K−1(X)→ K−1(Y )→ K0(X, Y )→ K0(X)→ K0(Y ).

Thus it is easy to check that the sequence Kn forms a generalized cohomology theory

as described in Section 5.2. In addition, Bott periodicity states that Ω2U ∼ U and

so Kn(X) ∼= Kn+2(X) for all integers n which takes our long exact sequence and

turns it into a commutative square. In the case X is locally compact, we easily gain

identical results by taking the compactification of X and defining K(X) = K̃(X+).

In the case we are working with a G-space X, we say X is free if every element x

has a trivial stabilizer subgroup. When X is a free G-space we can form the space X∗

of all pairs (x, sx) and the function τ from X∗ to G such that τ(x, x′)x = x′ is called

the translation function. A G-space X is called principal if the action is free and the

translation function is continuous. A principal G-bundle is a G-bundle (X, π,B) with

X a principal G-space.

In particular let G be a topological group, the Milnor construction yields the

classifying space BG = (G ∗ G ∗ · · · )/G. Then we gain a principal G-bundle ξ =

(EG, π,BG) with fibers equal to G. In addition, given a G-module M over C we can

define a vector bundle M ×G ξ = (M ×G EG, π,BG) with fiber M . This induces a

map β between the representation ring of complex G-modules and the ring of complex
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vector bundles with the inverse limit topology, K0(BG).

In the case G is a compact Lie group, the map β extends to an isomorphism

β̂ : R̂C(G)→ K0(BG)

where R̂C(G) is the completion of the complex representation ring with respect to the

IG-adic topology. The fact that β extends to an isomorphism was originally proven

by Atiyah in [4] to be true for finite groups G and later for all compact Lie groups

by Atiyah and Segal [3].
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