
University of Kentucky University of Kentucky

UKnowledge UKnowledge

Theses and Dissertations--Electrical and
Computer Engineering Electrical and Computer Engineering

2007

AN EFFECTIVE CACHE FOR THE ANYWHERE PIXEL ROUTER AN EFFECTIVE CACHE FOR THE ANYWHERE PIXEL ROUTER

Vijai Raghunathan
University of Kentucky

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Raghunathan, Vijai, "AN EFFECTIVE CACHE FOR THE ANYWHERE PIXEL ROUTER" (2007). Theses and
Dissertations--Electrical and Computer Engineering. 8.
https://uknowledge.uky.edu/ece_etds/8

This Master's Thesis is brought to you for free and open access by the Electrical and Computer Engineering at
UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Electrical and Computer Engineering by
an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/ece_etds
https://uknowledge.uky.edu/ece_etds
https://uknowledge.uky.edu/ece
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

STUDENT AGREEMENT: STUDENT AGREEMENT:

I represent that my thesis or dissertation and abstract are my original work. Proper attribution

has been given to all outside sources. I understand that I am solely responsible for obtaining

any needed copyright permissions. I have obtained and attached hereto needed written

permission statements(s) from the owner(s) of each third-party copyrighted matter to be

included in my work, allowing electronic distribution (if such use is not permitted by the fair use

doctrine).

I hereby grant to The University of Kentucky and its agents the non-exclusive license to archive

and make accessible my work in whole or in part in all forms of media, now or hereafter known.

I agree that the document mentioned above may be made available immediately for worldwide

access unless a preapproved embargo applies.

I retain all other ownership rights to the copyright of my work. I also retain the right to use in

future works (such as articles or books) all or part of my work. I understand that I am free to

register the copyright to my work.

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE

The document mentioned above has been reviewed and accepted by the student’s advisor, on

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of

the program; we verify that this is the final, approved version of the student’s dissertation

including all changes required by the advisory committee. The undersigned agree to abide by

the statements above.

Vijai Raghunathan, Student

Dr. William Dieter, Major Professor

Dr. Yuming Zhang, Director of Graduate Studies

ABSTRACT OF THESIS

AN EFFECTIVE CACHE FOR THE ANYWHERE PIXEL ROUTER

Designing hardware to output pixels for light field displays or multi-projector systems is

challenging owing to the memory bandwidth and speed of the application. A new

technique of hardware that implements ‗anywhere pixel routing‘ was designed earlier at

the University of Kentucky. This technique uses hardware to route pixels from input to

output based upon a Look up Table (LUT). The initial design suffered from high memory

latency due to random accesses to the DDR SDRAM input buffer. This thesis presents a

cache design that alleviates the memory latency issue by reducing the number of random

SDRAM accesses.

The cache is implemented in the block RAM of a field programmable gate array (FPGA).

A number of simulations are conducted to find an efficient cache. It is found that the

cache takes only a few kilobits, about 7% of the block RAM and on an average speeds up

the memory accesses by 20-30%.

Keywords: Pixel router, LUT, Memory latencies, Block RAM, Cache.

Vijai Raghunathan

(Author‘s signature)

____10/18/2007____

 (Date)

AN EFFECTIVE CACHE FOR THE ANYWHERE PIXEL ROUTER

By

Vijai Raghunathan

 Dr. William Dieter_____

 (Director of Thesis)

 Dr. Ruigang Yang_____

 (Co-Director of Thesis)

 Dr.Yuming Zhang_____

 (Director of Graduate Studies)

 10/18/2007_______

 (Date)

RULES FOR THE USE OF THESIS

Unpublished theses submitted for the Master‘s degree and deposited in the University of

Kentucky Library are as a rule open for inspection, but are to be used only with due

regard to the rights of the authors. Bibliographical references may be noted, but

quotations or summaries of parts may be published only with the permission of the

author, and with the usual scholarly acknowledgments.

Extensive copying or publication of the thesis in whole or in part also requires the

consent of the Dean of the Graduate School of the University of Kentucky.

A library that borrows this thesis for use by its patrons is expected to secure the signature

of each user.

Name Date

THESIS

Vijai Raghunathan

The Graduate School

University of Kentucky

2007

AN EFFECTIVE CACHE FOR THE ANYWHERE PIXEL ROUTER

THESIS

A thesis submitted in partial fulfillment of the

requirements for the degree of Master of Science in the

College of Engineering

at the University of Kentucky

By,

Vijai Raghunathan

Lexington, Kentucky

Director: Dr.William Dieter, Assistant Professor of Electrical & Computer Engineering

Lexington, Kentucky

2007

Copyright © Vijai Raghunathan 2007

Dedicated to

My friend, philosopher and guide unhsivaham

iii

ACKNOWLEDGEMENTS

I would like to thank Dr. Ruigang Yang for all his help. Without his constant motivation

and advice this thesis idea and research would not have materialized. I would like to

thank Dr. Bill Dieter for all his advice and guidance. He was in constant touch with the

happenings of the project and was a great advisor for my research. I would also like to

thank Dr. Robert Heath for putting away some of his valuable time and agreeing to be a

part of my thesis committee.

I am extremely thankful to my parents and family members for all their moral support.

Finally, I would like to thank all my friends who have been very helpful and supportive

during my research days at University of Kentucky.

iv

Table of Contents

ACKNOWLEDGEMENTS ... iii
Table of Contents ... iv
List of Tables ... vi
List of Figures ... vii
Chapter 1: Introduction ..1

1.1) Motivation ... 4
1.2) Choosing a Cache for the Design: ... 6
1.3) Parallel Execution .. 6
1.4) Basic Concepts of Cache Used in the Project .. 7
1.5) Calibration ... 7
1.6) Linear Interpolation ... 9
1.7) The LUT .. 10
Chapter 2: Previous Work ..11

2.1) Cache in General Purpose Processors ... 11
2.2) Graphics Related Work ... 12
Chapter 3: SDRAM Performance ..15

3.1) Design Values and Simulation Numbers ... 15
3.2) Simulation Results (RAM only) .. 16
Chapter 4: The Cache Design ..19

4.1) Cache Parameters .. 19
4.2) Hardware Design ... 20
4.3) Simulation Parameters ... 20
4.4) Caching Function ... 22
4.5) Simulation Results ... 23
Chapter 5: Concept of Memory Blocks ...25

5.1) Memory Blocks ... 27
5.2) Loading Block Sequences ... 31
5.3) Cache Simulations with Blocks ... 34
5.4) SDRAM with Blocks ... 43
Chapter 6: Set Associative Caches ..45

6.1) Set Associative Caches .. 45
6.2) Caching Function ... 45
6.3) Simulation Results ... 46
Chapter 7: Bilinear Interpolation ...50

7.1) Advantages of Bilinear Interpolation .. 51
7.2) SDRAM simulation with Bilinear Interpolation ... 56
Chapter 8: Finding the Input Access Pattern ...60

8.1) Determining the Access Pattern .. 60
8.2) Algorithm... 62
Chapter 9: SDRAM vs Cache Comparison ...64

9.1) Test LUTs .. 64
9.2) Simulation Results ... 64
9.3) Bilinear Interpolation ... 65
Chapter 10: Conclusion..67

v

Appendix A: Simulation Results ...68
Appendix B: Simulation Code ...82

B.1) SDRAM Simulation .. 82
B.2) Cache with Blocks .. 93
References ..109
VITA ..111

vi

List of Tables

Table 1.1: Address Bits split up .. 10

vii

List of Figures

Figure 1.1: Pixel Compositor [2] .. 2

Figure 1.2: Reverse Mapping Process .. 3

Figure 1.3: VGA Timing [3] ... 4

Figure 1.4: Projector Output [3].. 8

Figure 1.5: Sample Triangle ... 9

Figure 3.1: SDRAM Access Times .. 17

Figure 3.2: MER ... 18

Figure 4.1: Inclusion of Cache .. 20

Figure 4.2: Cache Logic Flow .. 21

Figure 4.3: Caching Function ... 22

Figure 4.4: Access Time Vs Cache Size (45 degrees) .. 23

Figure 4.5: Cache Size Vs Access Times (0 degrees) .. 24

Figure 5.1: LUT in memory .. 25

Figure 5.2: Input Frame Access .. 26

Figure 5.3: Division into Memory Blocks .. 28

Figure 5.4: LUT access using blocks .. 29

Figure 5.5: Input frame access in case of Blocks .. 30

Figure 5.6: Blocks Labeling .. 31

Figure 5.7: Hit rate for an access block size of 8x8 pixels as a function of a cache size for

a cache with l lines and w words per line. .. 35

Figure 5.8: Access Times for a block Size 8x8 pixels as a function of a cache size for a

cache with l lines and w words per line. ... 35

Figure 5.9: Hit rate for an access block size of 16x16 pixels as a function of a cache size

for a cache with l lines and w words per line. ... 36

Figure 5.10: Access Times for a block Size 16x16 pixels as a function of a cache size for

a cache with l lines and w words per line. .. 37

Figure 5.11: Hit rate for an access block size of 32x32 pixels as a function of a cache size

for a cache with l lines and w words per line. ... 38

Figure 5.12: Access Times for a block Size 32x32 pixels as a function of a cache size for

a cache with l lines and w words per line. .. 38

Figure 5.13: Hit rate for an access block size of 64x64 pixels as a function of a cache size

for a cache with l lines and w words per line. ... 39

Figure 5.14: Access Times for a block Size 64x64 pixels as a function of a cache size for

a cache with l lines and w words per line. .. 39

Figure 5.15: Hit rate for an access block size of 128x128 pixels as a function of a cache

size for a cache with l lines and w words per line. ... 40

Figure 5.16: Access Times for a block Size 128x128 pixels as a function of a cache size

for a cache with l lines and w words per line. ... 40

Figure 5.17: SDRAM vs Cache with Blocks .. 41

Figure 5.18: Cache 64x32, Block 64 Hit Rate .. 42

Figure 5.19: SDRAM vs SDRAM with Blocks vs Cache with Blocks 43

Figure 6.1: Hit Rate Comparison Direct vs Set Associative ... 46

Figure 6.2: Access time Comparison Direct vs Set Associative 47

Figure 7.1: Example for Bilinear .. 50

viii

Figure 7.2: Nearest Neighbor Method .. 51

Figure 7.3: Bilinear Interpolation Method .. 52

Figure 7.4: Bilinear Interpolation with 1 bit after radix point .. 53

Figure 7.5: Bilinear Interpolation with 2 bits after radix point ... 54

Figure 7.6: Bilinear Interpolation with 3 bits after radix point ... 55

Figure 7.7: Explanation of Bilinear .. 57

Figure 7.8: Plot SDRAM vs Cache (Bilinear) .. 58

Figure 8.1: Sample Input access ... 61

Figure 8.2: Possible LUT functions .. 61

Figure 8.3: Input Access Algorithm .. 63

Figure 9.1: SDRAM vs Cache (Overall) ... 65

Figure 9.2: SDRAM vs Cache Bilinear .. 66

1

Chapter 1: Introduction

Light field displays can render 3 dimensional (3D) images without the use of 3D glasses.

The light field display project‘s design uses a method of rendering through a cluster of

projectors. These projectors are first calibrated and then they project onto a projection

screen that has many micro-lenses. The projection of light rays onto these micro lenses

creates a light field such that a 3 dimensional view can be established for viewers without

any complex head tracking system or by using other mechanical devices [1].

The projection of light rays from different projectors means that these projectors have to

be calibrated in order to ensure that the overlapping region between projector outputs is

smooth. The calibration of these projectors is done using existing techniques [1].

Essentially, there needs to be a system that counters the distortions caused by multi-

projector systems, and this action is performed by doing a warping on the input images

[2]. The warping performed is dependent on the calibration results. Traditionally, the

warping and blending of pixels is done in software, but software has its own limitations.

Software depends on the graphics card used and the lower level device driver details are

not provided by the manufacturer. Graphics cards are limited by the number of input

signals. If there is a 16 input, 16 output projector system, the rendering of all the

projectors cannot be handled by a single graphics card. In this case, multiple graphics

cards are required to scale the system to higher number of inputs or outputs.

Dedicated hardware can do this warping and blending and routing the output pixels onto

the projection screen without the need to develop custom software for every kind of

graphics card. Thus, the ―Anywhere Pixel router‖ was designed. The first hardware

modules were designed for VGA (Video Graphics Array) outputs and the processors used

were older versions of FPGA (Field Programmable Gate Array) like Virtex2 or Spartan 3

[3]. An FPGA is a reprogrammable logic chip comprising of many digital gates and some

memory. In the current version of hardware, designed prior to the work presented here

and shown in Figure 1.1, the VGA signals are replaced with HDMI (High Definition

Multimedia Interface)/DVI (Digital Visual Interface) signals and a more advanced

2

Virtex-4 FPGA is used. Though the hardware is newer, the basic concept of warping and

routing remains the same.

The basic idea of an ―Anywhere Pixel Router‖ is to have series of input HDMI/DVI

signals from the graphics cards of different computers, and a series of output HDMI/DVI

signals connected to different projectors. An FPGA processor connects the transforms the

inputs into the warped outputs using a Look-Up Table (LUT) that is calculated offline.

The Anywhere Pixel Router uses memory for storing the input frames, the LUT and the

output frames. The block RAM (Random Access Memory) present in the FPGA is not

sufficient. For example, a 4-input and a 4-output multi-projector system needs 4 input

frames, 4 LUTs and 4 output frames. Assuming a 1024x768 display system and each

pixel having 32 bits of data then the amount of memory needed is 288 Megabits (Mb),

which is 17000 times larger than the memory available in the block RAM. Hence there is

a need for an external SDRAM (Synchronous Dynamic Random Access Memory) to

store and retrieve all the data [3].

Figure 1.1: Pixel Compositor [2]

3

The basic function of the memory controller present in the FPGA is shown in Figure 1.2.

The LUT is determined offline and loaded directly into the SDRAM by the FPGA before

the routing starts. An input frame from one of the input channels is loaded to the

SDRAM. The routing is done based on the technique of reverse mapping. The data in that

LUT pixel tells which address or pixel to look for in the input frame so that it can be

routed to the output frame. For example, if the controller is accessing pixel at location (x,

y) in the LUT and data present in that location (x, y) of the LUT is (a, b), then the value

in input frame pixel location (a, b) is routed to location (x, y) of the output frame.

Both the LUT and the output frame are accessed sequentially. Sequential access in the

SDRAM has the least possible access time—the cause of the performance problem in the

Anywhere Pixel Router (APR) is random access done on the input frame. The random

nature of the accesses depends on the LUT. The LUT might contain a simple rotation

about the center, might contain some geometric functions on different pixels. After the

routing is done, the output frame has to be transferred to the corresponding projector for

display.

Figure 1.2: Reverse Mapping Process

4

Daniel Rudolf, the hardware consultant for APR has successfully designed the memory

controller that does the warping and blending of input pixels to output for a 1024x768

system working at a frame rate of 60 Hz. The memory controller works for a 4 input, 4

output system which is shown in the Figure 1.1. Even though the memory controller

functions correctly, it is not fast enough to produce outputs at 60 Hz.

1.1) Motivation

The APR processes input pixels from a source, like a graphics card and outputs the result

onto a projector. The hardware uses the VGA timing (timing remains the same for

DVI/HDMI systems) shown in Figure 1.3. The pixel clock is the clock that is used to

time the horizontal and vertical scan times in a display system.

Figure 1.3: VGA Timing [3]

A frame of data has to be read from the input, processed, and sent to the output by the

hardware at 60 Hz which is approximately 16.6 ms for every frame. An important issue is

timing factor of the entire process. The volume of data that is to be handled is large.

Consider a 1-in, 1-out system with a resolution of 1024x768 pixels. The input frame

requires 24 Mb assuming each memory location has 32 bits of data. Similarly, the LUT

and the output each have 24 Mb. The memory controller in the FPGA has to fetch, look

up and load a total of 72 Mb of data within 16.6 ms in order to have no lag in the output.

For a 1-in1-out system, the throughput needed is approximately 4 Gb/s.

Another factor limiting the output is the external SDRAM. The SDRAM is a memory

storage unit capable of handling data up to several gigabits in size. A DRAM module is

an array of cells with each cell having a capacitor and a transistor to store 1 bit of data.

An array of cells is a memory row. To read a value from any cell in the DRAM module,

5

the row of that cell is first selected. Sense lines connect cells in a memory row to a latch,

after which a column address is used to multiplex the data to the output. The RAS (Row

Address Strobe) latency, tras, is the time taken to open a row after a request is sent to the

memory module to access values in that row. The RAS latency for the APR‘s memory

module running at 133 MHz is 7 cycles. The CAS (Column Address Strobe) latency, tcas,

is the time taken to receive a value stored in a memory column at the output after a

request is sent to the memory module to access that value. The CAS latency for the

APR‘s memory module running at 133 MHz is 2 cycles.

For an SDRAM operating at 133 MHz, the overhead due to CAS and RAS delays may

not seem to add significant delay. The APR requires a throughput of several Gb/second

and a delay of several clock cycles per access add substantial delay. Even with a fast

DDRRAM (Double Data Rate RAM), it is unlikely that the target of 16.6ms for one

frame could be achieved.

There is a possibility of having more memory modules interfaced to the FPGA to

increase the memory bandwidth, but the FPGA has a limited number of I/O

(Input/Output) pins. Having more than one FPGA might increase the possibility of

having more memory modules but such an implementation is beyond the scope of this

thesis.

There is a need for achieving faster frame rates given the requirements of SDRAM, the

FPGA. One of the simplest and most feasible methods is to design a cache for the

memory. Since the input frame pixels are the ones that are accessed randomly, the cache

is designed to store and retrieve the input pixels. The design of a cache depends on many

parameters like the number of cache lines, the number of pixels stored in each cache line,

and the replacement strategy if there is a cache miss. The cache represents only a small

portion of the memory space when compared to the memory present in SDRAM. A cache

can be designed to fit easily within the memory space present in the block RAM of the

FPGA. When implemented in the block RAM, the cache is present in the FPGA itself so

cache access takes only 1 cycle at the most. If there is a cache hit, a lot of cycles are

6

saved when compared to the normal SDRAM access of the input frame, especially if the

pixels are accessed in random order.

1.2) Choosing a Cache for the Design:

A stream of input pixel values cannot be loaded directly into any buffer from the

SDRAM. This is because during run time, it is not possible to predict what the LUT has

in store for the routing. Every value in the LUT must be looked up; the corresponding

value in input frame is fetched and placed in the output frame. The entire process works

by going through each pixel in the LUT. Even with a fast memory module such as a DDR

SDRAM, the full memory bandwidth cannot be utilized because of non-sequential

memory accesses. Double data rate ensures that on every clock cycle, two adjacent

memory location values are transferred [4]. The second value it transfers from the LUT

could correspond to a completely different row in the input frame. If this is the case, then

the process is slowed down. To fetch this value, one has to go through the process of

closing the existing row, opening a new one and then reading the value. The LUT access

and the output frame accesses (writing) are sequential. So the double data rate feature can

be used while reading from the LUT and writing to the output frame. Reading from input

frame is the biggest limiting factor in the application because input frame access order is

unknown. It could be random or it could be totally sequential. It is for this access that a

cache is necessary to speed up the process.

 1.3) Parallel Execution

For this application, memory accesses can happen in parallel. For example, the input

frames, the LUTs, and the output frames could all be stored in different memory chips,

but connected to the same master processor. The processor can access values from the

LUT, the input frame and the output frame at the same time. Accessing memories in

parallel will lead to speedup as the three different accesses could be made to run in

parallel. For instance, when the LUT value for pixel i is fetched, the input value of pixel

i-1 can be read from the input, and the value of pixel i-2 can be written to the output. If

the LUT, the inputs and the outputs are in the same memory unit, then each access must

wait for previous accesses to complete before doing the next access. Otherwise, the

current access will be interrupted.

7

1.4) Basic Concepts of Cache Used in the Project

There are different types of caches. Finding a suitable cache for this specific application

is the main goal of this research. There are different parameters for a cache, like the

number of cache lines, the number of locations per each cache line. Also, the cache could

be direct mapped cache or a set-associative cache. In a direct mapped cache the

ingredients needed to map a cache location to that of a memory address are the tag, the

offset and the index. Similarly, in a set associative cache, it is the block address and the

offset. Further in a set associative cache, a replacement policy is required to replace an

existing block in the cache. There could be different replacement strategies like Least

Recently Used (LRU), First In First Out (FIFO) [5].

All these ideas will be explained in detail in the later sections along with discussion of

how the parameters are chosen and how the cache locations are mapped to the memory

addresses.

1.5) Calibration

Since the APR involves multi-projector systems, there will be overlap between projector

outputs on the projection screen. This means that the projectors have to be calibrated to

remove all the distortions caused by overlapping and also due to curved surfaces. The

outputs have to be blended properly. A typical four projector system has outputs like the

one shown in Figure 1.4. The process of calibration seems independent of this project but

the LUT that is fed into the hardware is created by using the results of the calibration.

Though LUT design is not part of this project, knowledge of how the LUT is arranged

does affect the cache design and parameters that will be used in the application.

8

Figure 1.4: Projector Output [3]

The calibration results contain one output file each projector used, and one file for each

projector‘s blending values. For example a four projector system has four different output

files and four files containing the alpha blending values. The calibration results could be

different for different calibration algorithms, but the one used for this project had outputs

like described above. It is from these calibration results that the LUTs are created.

The calibration technique used for this work essentially created output files which

contained a number of triangle vertices and the values of the respective vertices. The

values at each triangle vertices basically were the row and column of the input frame

pixel the output frame pixel is being mapped to. Thus the relationship between the output

frame and the input frame was that of a reverse mapping [3]. The mapping function is

given by the LUT that is calculated offline from the calibration results.

But the calibration results contain only a limited set of triangle vertices with their

corresponding values. To obtain the entire set of values for creating the LUT, some kind

of interpolation has to done.

9

1.6) Linear Interpolation

The calibration results contain several triangle vertices. Based on the coordinate values

the triangle needs to be completely filled. Once all the triangles are filled, then the

desired LUT is obtained. Each LUT value contains other information and not just the row

and column value of the input frame. The LUT values and their corresponding

components will be discussed in Subsection 1.7.

There are a number of algorithms to fill in triangles. Methods could be obtained from

existing scan line conversion techniques, incremental algorithms, or midpoint algorithms.

Each of these techniques has its own advantages and disadvantages [7]. Most of these

methods adopt the basic linear interpolation with small variations in their approach.

Line AB

Line BC

A

B

C

(x1,y1)

(x2,y2)

(x3,y3)

Figure 1.5: Sample Triangle

In Figure 1.5, a sample triangle with vertices A, B and C is given and the corresponding

coordinates at A, B and C are (x1, y1), (x2, y2) and (x3, y3). First using linear

interpolation [8] the values along Line AB are obtained. Similarly values along Line BC

are obtained. Then, by interpolating between AB and BC the entire triangle can be filled.

The first few test LUTs in this research were all computed using simple linear

interpolation.

10

1.7) The LUT

As mentioned earlier, the LUT does not contain only row and column values. Based on

the calibration results, each LUT value also contains vital information regarding the alpha

blending associated with that pixel. In a multi-projector system, pixels from one input

frame could be routed to more than one output frame. Assume there are four input frames

x0, x1, x2 and x3 and four output frames y0, y1, y2 and y3. Frame y0 may have inputs

from any of x0, x1 ,x2 and x3. So having just row and column value in the LUT is not

enough, a channel ID (IDentifier) is required to identify the source of that pixel.

Sometimes certain pixels in the output could be blank and it will be a waste of time trying

to decode the address of these pixels. In that case, there is a flag indicating whether the

pixels are valid or can be ignored.

Thus depending upon the application and requirements a lot of parameters can be added

to the LUT value. After going through various hardware constraints and the requirements

of the application, the LUT used for this research had values which were 32 bits wide.

Table 1.1: Address Bits split up

BITS NAME

 31 IGNORE

30-23 ALPHA

 22-21 Channel ID

20-0 Memory Address

(10-0 Column)

(20-11 Row)

 Table 1.1 shows the exact layout of each LUT value. The IGNORE bit tells if the pixel is

ignored or not. The alpha value is an eight-bit value that is multiplied with the resulting

output pixel value once its value is fetched from the input frame through reverse

mapping. The channel ID tells the source of that pixel, whether the pixel has to be fetched

from input frame ‗x0‘ or ‗x1‘ or ‗x2‘ and so on. The row and column values that are

obtained from the linear interpolation form the lower twenty one bits. Currently there is

provision for a maximum resolution of 2048x1024 (11 column bits and 10 row bits or

vice versa). More bits can be added to the LUT values to contain more information.

11

Chapter 2: Previous Work

A description of some concepts involved in the caches of general purpose processors and

also on cache designs used in texture mapping applications is given in this section.

2.1) Cache in General Purpose Processors

Memory latencies have long been a problem in computer systems. Even though the

memory sizes have recently increased and the size of the chips has been reducing, there is

still the problem of latencies involved in accessing data from memory.

Often, a lot of CPU (Central Processing Unit) cycles are wasted while waiting for data

from memory modules. To alleviate this problem, the concept of cache was introduced. A

cache is basically a small memory which is accessed by the CPU first before searching in

other memory modules like RAM or storage devices like disks. For this reason the cache

is sometimes referred to as the first level of memory hierarchies in a computer system [5].

A cache is small in size when compared to the second level of memory hierarchies, like

RAM. Owing to its small size, a cache can reside where the processor takes fewer cycles

to access data from it. A cache primarily tries to exploit the principle of locality; that a

memory location accessed will be accessed soon or memory locations neighboring the

current memory location being accessed will be accessed in the near future.

Primarily, there are three kinds of cache designs, direct mapped, set associative, and fully

associative caches. In a direct mapped cache, a memory address is strictly mapped onto a

single location in the cache. If an address is not present in the cache, the old address is

immediately replaced by the new one.

In a fully associative cache, a memory address can be mapped to any location in the

cache. A cache location can be chosen from all the various possible locations to store a

value with a given memory address.

12

In a set associative cache, a memory address is mapped onto a particular cache set.

Within that set, the address can be mapped to any cache location. There is associativity

within a set.

 Direct mapped caches are the easiest to implement while fully associative are the most

difficult. A set associative cache design is in between the two in terms of advantages and

disadvantages.

In set associative caches, one of the blocks within a set has to be replaced when there is a

cache miss. This calls for a replacement strategy, which decides which block has to be

replaced. Some of the replacement schemes are Least Recently Used, Most Recently

Used, and First in first out.

AMD and Intel‘s computer processor datasheets provide information about their cache

architectures and also give details on their timing diagrams and state machines [12, 13].

Przybylski, Horowitz and Hennessy discuss the various trade offs one must consider

while designing caches [14]. They discuss how speed of the process varies with change in

size of the cache, how the number of sets in a set associative cache influences the miss

rate, how the size of the tag (part of the memory block address) influences the miss rate

of a cache. The concept of multi-level caches is also discussed. Their work simulates

several test benches for all the above mentioned criteria to get a proper understanding of

the cache design process.

2.2) Graphics Related Work

Hakura and Gupta have proposed cache architecture for texture mapping [10]. In

computer graphics, mip-mapping is the process of adding pre-calculated collection of

bitmap images to a main texture to increase rendering speed. Hakura and Gupta start their

design by considering existing mip-mapping ideas and provide two kinds of

implementations, one a ―base non-blocked representation‖ and the other a ―blocked

representation‖. The base non-blocked representation stores pixel values of RGB (Red

13

Green Blue) in contiguous memory locations so that addressing calculations are minimal.

The blocked representation is a technique where textures within a specific block of

square area are all placed in consecutive memory location and accessed sequentially. The

addressing schemes for the blocked representation are complicated and may result in

more than one step to map the memory address to a cache location. They try to find a

good design by varying block sizes and cache sizes and examining the miss rate.

The APR accesses memory in a way that is different from texture mapping, but the

calibration results (discussed in previous sections) yield a similar data set to work with,

with the concept of reverse mapping of pixels. Hakura and Gupta discuss a cache design

for real time rendering, but one of the ideas behind the APR‘s cache design is the

knowledge of the way the output pixels are mapped to the input pixels offline. Also,

Hakura and Gupta focus on both temporal and spatial localities, but a close examination

of the APR only exhibits spatial locality. Each pixel is accessed only once per frame. A

cache large enough to take advantage of temporal locality would have to hold the entire

input image. A unique feature of the cache design in the APR is that the cache

architecture is very simple. The order in which pixels are accessed is never modified,

unlike the memory address representations discussed by Hakura and Gupta.

Igehy, Eldridge and Proudfoot discuss an interesting prefetching technique for texture

caches [11]. They have extended the idea of Hakura and Gupta by adding the prefetching

feature to the texture cache. First, a robust texture prefetching architecture is proposed

(block diagrams see [11]). Then the textures are stored in ―super sized‖ blocks in memory

so that memory addressing is easier and yields higher cache hits. Some of their test

benches are interesting. They have also discussed the cache efficiency for various cases.

The design of Igehy, Eldridge, and Proudfoot is different from the APR design. There is

no implementation of a separate prefetching architecture or storage of textures in specific

memory blocks in the APR, but the previous work discussed above created many ideas

for this research.

14

Krishnan describes the performance of the memory controller using just SDRAM on an

older version of the Anywhere Pixel Router hardware in an earlier work [3]. Memory

performance on the current hardware provides a baseline against which to measure cache

performance.

15

Chapter 3: SDRAM Performance

The SDRAM is a memory storage unit capable of handling data up to several gigabits in

size. SDRAM modules have high bandwidth with the introduction of DDR SDRAM

modules. SDRAM access speeds of several hundred megahertz are possible. A SDRAM

module is usually limited by factors such as CAS latency, RAS latency, and latency

caused during periodical refreshing of SDRAM cells. These latencies make the accesses

to random locations slow. Even if a fast microprocessor is used for a particular

application, the microprocessor has to wait until it receives data from the SDRAM. There

is a big problem when dealing with time critical applications where a delay of a few

processor cycles could result in bad outputs.

The APR is time critical. If a frame cannot be processed within the desired time, that

frame has to be discarded. If the delay spans a few frames then the output is slow and

jerky. For example, in a system that outputs a resolution of 1024x768 at 60 Hz,

1024x768 pixels worth of data must be processed within 16.6 ms. If this is not done, then

the frame is discarded which is not desirable. The main motivation for this research is

overcoming the meager efficiency of the system when only the SDRAM module was

used in the memory controller [3].

3.1) Design Values and Simulation Numbers

Before the results of the simulation are studied, it is necessary to understand the

conditions under which the simulation is run. The Anywhere Pixel Router is implemented

using a Xilinx Virtex 4 model XC4VLX40 running at 133 MHz. It is connected to eight

16 bit wide 512 Mb MT46V32M16 modules running at 133 MHz.

For increasing the speed of the application by means of parallelism, the LUT, input

frame, and output frame are all stored in different RAM modules connected to the FPGA.

This ensures that values in the LUT and sometimes even in the input frame can be

pipelined to achieve speedup.

16

The MT46V32M16 RAM has only 16 bits of storage per every location, but the LUT and

the input/output frame have 32 bits of data currently. So two DDRRAM modules are

used for each LUT, input frame, and output frame by the FPGA so that 32 bits of data can

be stored and read. The LUT and output frame are accessed sequentially.

The access time is calculated based on the number of cycles taken to process one frame

of the image. The access time is the number of cycles divided by the frequency at which

the process is running. Thanks to parallel execution explained in Subsection 1.3, the time

taken to access a value in a column of an open row is 1 cycle, which is denoted as tsr. The

time taken to access a value in a column of a row that is not open involves opening the

new row and then accessing the desired column. This time is denoted as tcr, which

involves one RAS delay and one CAS delay, a total of 8 cycles.

If the pixel is a IGNORE pixel, then it takes one cycle to process it. The simulations were

conducted for frame resolution 1024x768 pixels outputted at 60 Hz. The multi-projector

system used was a four input, four output system, and the controller processes one frame

after the other in succession. All simulation results are in reference to outputting a single

frame.

3.2) Simulation Results (RAM only)

The simulations are run in C taking into account the number of cycles mentioned above.

In Section 2, the nature of LUT values could be predicted. In a multi-projector system,

the projectors could be aligned in any random fashion by the user. They could be straight

aligned exactly adjacent to each other, or perpendicular to each other or in an angle to

one another, so the LUT mapping function could be any rotation. The output can also be

skewed if the projectors are rotated around the vertical and horizontal axis. The anywhere

pixel router memory subsystem should be able to deliver output at the required rate no

matter what the LUT function is.

17

Ram Access

0

5

10

15

20

25

30

35

0 2 4 6 8

1
0

1
2

1
4

1
6

1
8

2
0

2
2

2
4

2
6

2
8

3
0

3
2

3
4

3
6

3
8

4
0

4
2

4
4

Angle (degrees)

T
im

e
 (

m
il

li
s
e
c
s
)

SDRAM

Access Times

Desired Frame

Time

Figure 3.1: SDRAM Access Times

Figure 3.1 shows the performance of the specified SDRAM unit for different angles in

the LUT ranging from 0-45 degrees. The access time in each case corresponds to the

average time the process takes to completely transfer one frame from the input to the

output based on the LUT. One frame corresponds to a single display frame of 1024x768

pixels. The actual LUT‘s function might not be just an angle of rotation, but in fact might

be a more complex function. These simulations are carried out to get an idea of how fast

the memory units are without cache.

In the above simulation, the process having the LUT for angle 0 degree (identity

transform) is the fastest, as the input frame access is completely sequential. As the angle

of rotation decreases, the number of sequential accesses to the current open row of the

input frames increases, and the time taken decreases. Figure 6 shows a plot of average

access time as a function of rotation angle. The behavior is in accordance with the

prediction. LUTs having higher angles take more time than the time allocated for one

frame which is 16.6 milliseconds. As soon as the angle is slightly greater than 14 degrees,

the access time becomes too long to support the required frame rate. Table A.1 in

Appendix A has the simulation results and numbers for this simulation. Figure 3.2 shows

the memory efficiency rate (MER) for the various angles. The MER is the ratio of the

number of pixels in the image to the total number of memory cycles needed to transfer all

18

the pixels from input to output, multiplied by 100%. The MER for angle 0 is close to

100% and the efficiency decreases as the angle increases.

Memory Efficiency Rate (MER)

0

10

20

30

40

50

60

70

80

90

100
0 2 4 6 8

1
0

1
2

1
4

1
6

1
8

2
0

2
2

2
4

2
6

2
8

3
0

3
2

3
4

3
6

3
8

4
0

4
2

4
4

Angle (degrees)

E
ff

e
c
ie

n
c
y
 R

a
te

 (
%

)

Figure 3.2: MER

19

Chapter 4: The Cache Design

Even for relatively small angles the SDRAM alone cannot keep up with the desired frame

rate of 60 fps (frames per second). Some form of cache can enhance performance enough

to make the Anywhere Pixel Router run in real time. This section discusses the usage of a

simple direct mapped cache and checks its efficiency. Later the set associative cache

design will be discussed in Section 6.

4.1) Cache Parameters

A cache is a small memory unit that comes in between the processor and the main

memory. When it wants to access memory, the processor first checks the cache for the

value. The processor uses the value stored in the cache if it is found. Otherwise, it must

fetch the data from main memory. In the APR, the cache is present in the block RAM of

the FPGA. The main parameters of the cache are:

1. ‗l‘ – number of cache lines.

2. ‗w‘ – width of each cache line in 32-bit words.

Together ‗l‘ and ‗w‘ determine the size of the cache. The capacity of the cache is ―l x w x

32‖ bits. A larger cache will improve the hit rate compared to a smaller cache for the

simple reason that it is able to store more SDRAM contents than the smaller cache.

In practice, the size of the cache is limited. For instance, in the APR the FPGA has a

limited amount of block RAM. Only a small portion of this block RAM can be used for

the cache because the FPGA is running a number of other controllers that portions of the

block RAM already. The size of cache in APR is restricted to a maximum of 4K memory

locations due to hardware resources constraints. Larger caches mean better performance,

but usage of more block RAM space. A cache having 4K memory locations uses 128Kb

(Kilobits) (4096 x 32) of block RAM. In the FPGA (Xilinx XC4VLX40) that is being

used, there is 1728 Kb of block RAM [6]. A 128 Kb cache would correspond to about

7.5% of the block RAM.

20

4.2) Hardware Design

Figure 4.1: Inclusion of Cache

Figure 4.1 shows the memory hardware structure for the APR. The FPGA reads from the

LUT, writes to the output frame, and these two are sequential. The FPGA reads from the

cache first to check if the desired value is present. If the value is found in the cache, it

means a cache hit. If not, the APR memory controller reads from the input frame to get

the desired value and also fill the entire row in the cache from the input frame (the dotted

line in figure).

4.3) Simulation Parameters

The simulation parameters used for the cache are all the same as those described in

Section 3 for the SDRAM. The only difference is the introduction of cache hit cycles and

cache miss cycles instead of same row access and change in row access. Figure 4.2 shows

the logic flow when incorporating a cache.

21

Figure 4.2: Cache Logic Flow

Note that the logic flow shown above corresponds to a direct mapped cache. The logic

flow is the same for a set associative cache except that the address bits are decoded into

offset and block only, not tag, offset and index like direct mapped.

A cache hit means only one cycle, while cache miss means w/2+tras+tcas+3 cycles, where

‗w‘ is the width of each cache line. For the APR, tras is 7 cycles, and tcas is 2 cycles. The

additional 3 cycle latency is the overhead for the memory controller in the FPGA to fill a

cache line. Basically, the cache miss means fetching the missed value, along with its

22

entire cache line from the main memory. Since the RAM used here is a DDR, it takes

only w/2 clock cycles for fetching the cache line.

4.4) Caching Function

A good caching function should match the structure of the LUT. This means that a proper

division of the address bits in the LUT into tag, offset and index is required. Assume a

cache with size ―l x w‖, where ―l‖ is the number of cache lines and ―w‖ is the width of

each cache line in words. The LUT/ input /frame and output frame have 20-bit addresses.

The upper 10 bits correspond to the memory row and lower 10 bits correspond to

memory column.

Figure 4.3: Caching Function

Figure 4.3 shows how address bits are allocated in a LUT address. From the nature of the

LUT, it is evident that adjacent RAM rows should map to adjacent cache lines so that hits

can be increased. A small increase in a RAM column should correspond to a small offset

in the cache. Hence the lower row bits of the address are chosen as index values, the

lower column bits of address are chosen as offset values and the remaining address is

chosen as the tag. This mapping guarantees that a pixel will never map to the same cache

index as the pixel with in the same image column, but one row above or below in the

image. The caching function is the same for a set associative cache, except that as the

number of sets in an associative cache increases, the number of index bits reduces and the

tag bits increase.

23

4.5) Simulation Results

The simulation was conducted for a sample LUT whose function was a 45 degree

rotation. The number of cache lines and width of each cache line were varied to show

how access times vary for different cache sizes with the same LUT function.

Cache Access Times (45 degrees)

0

20

40

60

80

100

120

140

160

8
x
8

8
x
1
6

8
x
3
2

8
x
6
4

1
6
x
8

1
6
x
1
6

1
6
x
3
2

1
6
x
6
4

3
2
x
8

3
2
x
1
6

3
2
x
3
2

3
2
x
6
4

6
4
x
8

6
4
x
1
6

6
4
x
3
2

6
4
x
6
4

Cache Type (l x w)

A
c
c
e
s
s
 T

im
e
 (

m
il

li
s
e
c
o

n
d

s
)

Figure 4.4: Access Time Vs Cache Size (45 degrees)

The minimum cache time obtained is around 58 milliseconds, which is far higher than the

access time of a system with no cache and just a SDRAM. This is not at all desirable as it

would be a waste designing the cache if the system is slower than the existing one

without cache. This problem is fixed in later sections. For a 45 degree angle of rotation,

every adjacent LUT value corresponds to a different row value in the input frame. Even

with cache, the APR will have cache misses on every cycle and the cache line will have

to be filled. Filling a cache line is a big penalty because of the number of cycles used

there. The main goal is to come up with some algorithm that increases the cache hit rate.

Complete data are included in Table A.2 in Appendix A.

24

In Figure 4.4, the access time increases as width of each cache line increases for a cache

with the same number of cache lines. This is in accordance with the fact that bigger width

means bigger penalty while filling up the cache line during a cache miss.

Cache Access Time (0 degrees)

0

2

4

6

8

10

12

14

16

18

8
x
8

8
x
1
6

8
x
3
2

8
x
6
4

1
6
x
8

1
6
x
1
6

1
6
x
3
2

1
6
x
6
4

3
2
x
8

3
2
x
1
6

3
2
x
3
2

3
2
x
6
4

6
4
x
8

6
4
x
1
6

6
4
x
3
2

6
4
x
6
4

Cache type (l x w)

A
c
c
e
s
s
 T

im
e
 (

m
il

li
s
e
c
s
)

Figure 4.5: Cache Size Vs Access Times (0 degrees)

Figure 4.5 shows how the cache performs with a 0 degree angle of rotation. Caches with

wider cache lines are better. Access times for the 0 degree rotation are better than those

for a 45 degree rotation. The design with no cache is better than the design with cache in

the case of 0 degree rotation. The 0 degree rotation is a special case, as most pixel

accesses in the input frame are sequential. As the angle increases the cache becomes less

efficient. The values plotted in Figure 4.5 are given in Table A.3 in Appendix A.

25

Chapter 5: Concept of Memory Blocks

In the previous section, the simulation results showed that the introduction of a cache to

the existing design does not improve the speed of the application by itself. In fact, the

memory system slows down due to overhead caused by fetching cache line data that are

never used. This section analyzes the problem and provides a solution.

The hit rate of the cache has to be improved in order to achieve faster access times. The

nature of the LUT is heavily dependent of the projector setup and this was seen in Section

1. For example, in case of a 45 degree rotation in the LUT, every adjacent LUT location

points to a different memory row in the input frame. In the case of a 25 degree rotation,

on average every third or fourth LUT location points to a different row in the input frame.

LUT in Memory

Figure 5.1: LUT in memory

26

Figure 5.1 shows the way the LUT values are accessed from the SDRAM. It can be seen

that the process is sequential. This implies that reading LUT values is not a constraint.

The LUT maps input pixels to output pixels through reverse mapping. When the input

pixels are fetched from the input frame, the process may not be sequential. It will be

sequential only if the LUT function is an identity transformation (0 degree rotation). Even

for small angles of rotation like 15 degrees, the input frame access will not be sequential.

Input Frame in Memory

Figure 5.2: Input Frame Access

Figure 5.2 shows how the input frame would be accessed in case the angle is 35 to 45

degrees. Each spot in the figure represents a memory location.

It can be seen that access is not at all sequential. In case of just using the SDRAM

module, this kind of access would result in a large access time, due to many row changes.

When a cache is present then every adjacent LUT access results in a cache miss and a

heavy penalty to fill the cache line. In the APR, the cache has to be designed keeping in

mind that there is a high chance of accessing memory locations neighboring the current

27

memory location being accessed; that is in the previous memory row or the next memory

row. The same memory location is never accessed twice in one frame unless there are

some rounding errors and approximation errors while interpolating the calibration values,

so the concept of temporal locality is not of much importance.

Even though the input frame access is not sequential, there is a pattern which describes

the access. This pattern is very useful for the analysis. Even if the LUT function is just

not an angle of rotation, it is still possible to find a particular pattern in which the input

frame is accessed for every LUT. This is because the LUT is obtained from calibration

results and the calibration results correspond to the way the projectors are positioned.

The entire LUT is calculated offline and then loaded into the memory. The LUT is not

processed during run time. This means that the pattern in which input frame accesses are

made can be predicted offline from the LUT values. This pattern could be useful for the

cache design. If LUT values are accessed in a different order then the input frame

accesses can be made more sequential. A proper balance between the LUT and input

frame accesses gives a faster access time.

5.1) Memory Blocks

Consider the case of a LUT having 45 degree rotation function and the pattern is

predicted offline before the LUT is loaded into memory. Now the entire LUT memory

space could be divided into small squares or memory blocks. As an example, consider a

64x64 pixel LUT, input frame and output frame. A block of 64x64 pixels would easily fit

inside a single bank of the memory currently being used.

28

Figure 5.3: Division into Memory Blocks

Assume that the 64x64 pixel LUT is divided into 16x16 pixel memory blocks. Figure 5.3

shows the division of the memory space into smaller blocks. The blocks are arbitrarily

labeled to demonstrate the concept behind these blocks. Now assume that this 64x64

LUT has a 45 degree rotation function in it.

29

0 1 2 3

4 5 6 7

8 9 11

12 13 14 15

10

Figure 5.4: LUT access using blocks

As shown in the Figure 5.4, assume that the LUT is accessed in blocks (3, 2, 7…….12).

A visible pattern is noticed in the access which is very simple to guess, it is following an

angle of rotation close to 45 degrees. If the LUT is accessed in blocks like this, the input

frame access would be something like in the Figure 5.5.

30

Input Frame Access in Memory

Figure 5.5: Input frame access in case of Blocks

A group of input frame rows are referred to repeatedly; that is, accesses will be sequential

in nature.

It can be seen that a set of 5-10 lines in the memory space where the input frame is stored

is continuously accessed if the LUT is accessed as shown in Figure 5.5. It is also easier to

store 5-10 lines of memory (or just part of the 5-10 lines) in the cache without the need to

replace them for a long time. The important part in this design is to predict the LUT

characteristics offline and then decide the sequence of blocks that have to be accessed.

When using blocks, the LUT and output frame accesses are not totally sequential, but

within a block it is almost sequential. Within a block, LUT values can be pre-fetched and

stored in some array for reducing the access time.

31

5.2) Loading Block Sequences

If the LUT has to be accessed in blocks like described above, then the FPGA should be

instructed to do so before the process begins executing. The sequence of blocks can be

stored in a file and loaded when the LUTs are loaded in the following manner. Consider

the example of a 45 degree rotation on a 64x64 pixels image. Divide the image into 16

16x16 pixels blocks.

Figure 5.6: Blocks Labeling

32

Any memory block can be identified if the ‗bi‘ and ‗bj‘ values (shown in Figure 5.6) are

given. For example if bi=2 and bj=3, then it refers to block number 14. The order in

which the blocks should be accessed can be calculated offline and stored in a file. This

file of sequence numbers can then be downloaded into the FPGA or SDRAM from where

the memory controller can access the information. This file is a few Kilobytes in size.

The block sequence can be obtained from this file and stored in the block RAM of the

FPGA. For an image occupying 1024 columns and 768 rows in memory, the sequencing

numbers for a 64x64 block system require 8 bits. The entire list occupies around 5 Kb of

block RAM which is a very small percentage of the block RAM present. Again, these

numbers are in reference to the simulations that were conducted and by studying the

FPGA datasheets. The format for a file containing the block sequence for LUT0

(projector 0 in a multi-projector system) is shown below.

Blocks0.txt

<channel id> <Block size>

<bi0> <bj0>

..

.

.

<bin><bjn>

********End of file*******

Figure 16‘s block sequencing would be:

Blocks0.txt

0 16

3 0

2 0

3 1

1 0

2 1

33

3 2

0 0

1 1

2 2

3 3

0 1

1 2

2 3

0 2

1 3

0 3

********End of file*******

Please note that the memory blocks always correspond to the division of the memory

space into blocks, not the actual image. The actual image could be 100,000x100,000

pixels, but it is stored only in a specific way in the SDRAM, depending on the number of

columns and rows present in the SDRAM. Whenever blocks are mentioned, it refers to

the breaking up of the memory space into blocks and not the actual image into blocks. A

45 degree rotation on the actual image could correspond to some other angle of rotation

in the actual SDRAM memory space. The numerical value of the angle is of less

importance than the memory pattern during input access, so that higher cache hits can be

achieved.

In the above example, since the image is only 64x64 pixels it will easily fit well inside

any modern SDRAM units. Assume a 16x16 block access. Given any bi, bj value, the

corresponding block in memory can be accessed as follows:

For (j=bj*16;j<((bj*16)+16);j++) {

For (i=bi*16;i<((bi*16)+16);i++) {

 J=row number of memory location,

 I=column number of memory location;

34

End

End

Of course, j and i might have to be multiplied by some scaling factor or an offset needs to

be added depending upon how the LUT is stored in the RAM. Block after block would be

accessed in the LUT, and loaded into the output buffer after retrieving pixels from the

input frame.

The example above deals with a very small image (64x64 pixels). The actual image could

be large (maybe 800x600 or 1024x768).

5.3) Cache Simulations with Blocks

A series of simulations were carried out to estimate cache performance for a variety of

inputs. The conditions and numerical values used for these cache simulations are all the

same as used in Section 4, except that the LUT access is arranged as memory blocks and

the angle of rotation is assumed to be 45 degrees. The system could behave differently for

a different LUT function. In Section 9, an actual LUT that was created from calibration

results and some sample LUTs will be simulated for results.

The simulation shows how the access times vary with block size and the size of the

cache.

35

Block Size 8x8 (Hit Rate)

0

10

20

30

40

50

60

70

80

90

100

8
x
8

8
x
1
6

8
x
3
2

8
x
6
4

1
6
x
8

1
6
x
1
6

1
6
x
3
2

1
6
x
6
4

3
2
x
8

3
2
x
1
6

3
2
x
3
2

3
2
x
6
4

6
4
x
8

6
4
x
1
6

6
4
x
3
2

6
4
x
6
4

Cache Type (l x w)

H
it

 R
a
te

 (
%

)

Figure 5.7: Hit rate for an access block size of 8x8 pixels as a function of a cache size for

a cache with l lines and w words per line.

Block Size 8x8 (Access Time)

0

5

10

15

20

25

30

35

40

8
x
8

8
x
1
6

8
x
3
2

8
x
6
4

1
6
x
8

1
6
x
1
6

1
6
x
3
2

1
6
x
6
4

3
2
x
8

3
2
x
1
6

3
2
x
3
2

3
2
x
6
4

6
4
x
8

6
4
x
1
6

6
4
x
3
2

6
4
x
6
4

Cache Type (l x w)

A
c
c
e
s
s
 T

im
e
 (

m
il

li
s
e
c
o

n
d

s
)

Figure 5.8: Access Times for a block Size 8x8 pixels as a function of a cache size for a

cache with l lines and w words per line.

36

Figure 5.7 shows the hit rate for various cache sizes, and Figure 5.8 shows the access

times for various cache sizes, when the LUT is accessed in 8x8 blocks. After the

introduction of memory blocks, the access times have considerably reduced (almost one

third the old access times). The access times decrease as the number of cache lines

increases. This is due to the fact that more cache lines mean storage of more adjacent

input frame rows. In Figure 5.7, the access times also decrease with increasing ‗w‘. This

decrease is because there are more cache hits with greater ‗w‘. Even though filling up the

cache line in case of a miss causes longer miss penalties, the block access ensures a

higher hit rate. Table A.4 in Appendix A contains detailed simulation results for this

experiment.

Figure 5.9: Hit rate for an access block size of 16x16 pixels as a function of a cache size

for a cache with l lines and w words per line.

37

Figure 5.10: Access Times for a block Size 16x16 pixels as a function of a cache size for

a cache with l lines and w words per line.

The simulation results shown in the Figures 5.9 and 5.10 are for block size 16x16. All the

results discussed above for 8x8 blocks are found even in this case. When ‗l‘ is less than

the block size, the access times are higher than desirable. This is because the cache does

not have enough cache lines to store all the input frame rows being accessed. This case is

similar to accessing the LUT sequentially using cache but without blocks.

As with the 8x8 block simulations, simulations were run for block sizes 32, 64 and 128.

The results are all similar to the ones discussed above. All the corresponding plots are

shown in figures 5.11-5.16.

38

Figure 5.11: Hit rate for an access block size of 32x32 pixels as a function of a cache size

for a cache with l lines and w words per line.

Figure 5.12: Access Times for a block Size 32x32 pixels as a function of a cache size for

a cache with l lines and w words per line.

39

Figure 5.13: Hit rate for an access block size of 64x64 pixels as a function of a cache size

for a cache with l lines and w words per line.

Figure 5.14: Access Times for a block Size 64x64 pixels as a function of a cache size for

a cache with l lines and w words per line.

40

Block Size 128x128 (Hit Rate)

0

10

20

30

40

50

60

70

80

90

100

8
x
8

8
x
1
6

8
x
3
2

8
x
6
4

1
6
x
8

1
6
x
1
6

1
6
x
3
2

1
6
x
6
4

3
2
x
8

3
2
x
1
6

3
2
x
3
2

3
2
x
6
4

6
4
x
8

6
4
x
1
6

6
4
x
3
2

6
4
x
6
4

Cache Type (l x w)

H
it

 R
a
te

 (
%

)

Figure 5.15: Hit rate for an access block size of 128x128 pixels as a function of a cache

size for a cache with l lines and w words per line.

Block Size 128x128 (Access Times)

0

20

40

60

80

100

120

140

160

8
x
8

8
x
1
6

8
x
3
2

8
x
6
4

1
6
x
8

1
6
x
1
6

1
6
x
3
2

1
6
x
6
4

3
2
x
8

3
2
x
1
6

3
2
x
3
2

3
2
x
6
4

6
4
x
8

6
4
x
1
6

6
4
x
3
2

6
4
x
6
4

Cache Type (l x w)

A
c
c
e
s
s
 t

im
e
 (

m
il

li
s
e
c
o

n
d

s
)

Figure 5.16: Access Times for a block Size 128x128 pixels as a function of a cache size

for a cache with l lines and w words per line.

41

The fastest access time is in the range of 13 milliseconds for a LUT with function 45

degrees. This is 2x times faster than the existing system which does not have a cache and

just accesses the SDRAM directly. The cache size for this speed is only 64x32, meaning

64x32x32 bits. This corresponds to 64 Kb of block RAM usage, which is small.

The design with only the SDRAM and no cache performed badly as was seen in Section

3. Consider the fastest cache 64x32 with block size 64x64 locations. This cache design

should be able to perform well with all the angles. The following simulation takes this

particular cache and blocks size and tests it against the various LUT functions ranging

from 0 degrees to 45 degrees.

Figure 5.17: SDRAM vs Cache with Blocks

Figure 5.17 shows how the access times vary with change in LUT function angle for the

cache under test. The fastest time is for the identity transformation, but the average access

times for most of the LUT functions is around 13-14 milliseconds. No matter how much

the value of the angle changes, the access time varies up and down only by a very small

margin within 1 millisecond. All LUT functions seem to give an access time near a

particular value (in this case around 11-14 milliseconds) for a particular cache size and

block size. Accessing the LUT according to the blocks makes every angle of rotation

42

similar in terms of the access time. Table A.5 in the appendix shows all the simulation

results for the cache that was the fastest when simulating for a 45 degree LUT function.

Cache 64x32 Block 64 Hit Rate

0

10

20

30

40

50

60

70

80

90

100

0 3 6 9

1
2

1
5

1
8

2
1

2
4

2
7

3
0

3
3

3
6

3
9

4
2

4
5

Angle (degrees)

H
it

 R
a
te

 (
%

)

Figure 5.18: Cache 64x32, Block 64 Hit Rate

Figure 5.18 shows the hit rate of the cache (64x32, block 64) for the various LUT

functions. The plot is in accordance with the theory that as the LUT function becomes

more complicated, the hit rate decreases. Thanks to the memory blocks and the

knowledge of the input frame access pattern, the hit rate does not decrease by a large

margin. Rather, it decreases a little bit for the first 10 degrees and then smoothes out.

Figure 5.17 shows the comparison between the access times of the design with only the

SDRAM and the design that has the cache along with memory blocks. For comparison

purposes, the cache 64x32 with block size 64 is chosen and compared against the

SDRAM. It is observed that the cache access times are slightly slower than the SDRAM

access times for 0 degrees through 11 degrees. This is true as an identity transformation

essentially needs no cache. As the angle starts increasing the SDRAM access times

increase significantly.

43

Clearly, the cache design improves access times substantially on average for a rotated

input image when compared with direct SDRAM access. Section 9 analyzes the benefits

of cache on other LUT functions.

5.4) SDRAM with Blocks

With the introduction of the blocks and the cache module, access times of the system

improved by a large margin. One of the design features of the APR‘s cache is that it

divides the memory space into blocks and then accesses these blocks in the LUT so that

reading values from the input frame is more sequential. We performed several

simulations to see if accessing SDRAM in a blocked fashion without the cache performs

comparably to a system with a cache.

The simulation was conducted for a 32x32 block size and for four different angles

namely 0, 5, 35 and 45 degrees of rotation. All the simulating conditions are exactly same

as in Section 3 except that the LUT is accessed according to the order of the blocks.

Figure 5.19: SDRAM vs SDRAM with Blocks vs Cache with Blocks

From Figure 5.19, it is observed that the access times are at least 5 ms slower than the

access times with just the SDRAM. Even if the results are compared to the cache using

44

block size 64x64 and angle of rotation 45 degrees, the blocked SDRAM access times are

slower.

Block access relies on the fact that the input frame access is faster for accesses with high

spatial locality in order to gain an overall speed up. Without a cache, the input frame will

take a large number of cycles even within a block. When the LUT values are read in

blocks, there is an attempt to change to a different row every time the end of each row in

a block is reached. For example, if the LUT is read in blocks of 32x32 memory locations

then once the 32 locations of the first line are read, a row change is initiated. The reason

why the average frame access time with blocks, but no cache is slightly higher than the

model with just the SDRAM is that changing rows introduces extra cycles. If a cache is

used for the input frame then the input frame access time is greatly reduced. This leads to

an overall speed up.

45

Chapter 6: Set Associative Caches

As we have seen, a direct mapped cache with blocked memory access patterns can

greatly improve the average access for the Pixel Anywhere Router. In microprocessors,

increased cache associativity often leads to better hit rates and faster access times.

Likewise, associativity can improve the average access time for the Pixel Anywhere

Router.

6.1) Set Associative Caches

In a direct mapped cache, each memory address maps to a single cache block. If there are

existing values in that block, it is immediately replaced by the new block. In a set

associative cache, the cache is broken down into sets and each set has a few blocks. A

particular memory address is mapped to a particular set in the cache, but within that set

the value could be in any block. If each set has two blocks, then it is a 2-way set

associative cache. If a memory address can map to any block in the cache, it is fully

associative cache. A direct mapped cache is basically a 1-way set associative cache [5].

Since there is a choice of which block to replace in set associative caches, some method

must be used to decide which block to replace. Two commonly used techniques are LRU

and FIFO. In LRU, the recently used values are kept while those that are not recently

used are replaced. In FIFO, the first block to enter the cache is replaced. In this section,

the simulation uses LRU while dealing with set associative caches.

6.2) Caching Function

The caching function is the same as that shown in Section 4, except that the number of

index bits decreases as the associativity increases, and correspondingly, the number of tag

bits increase. For the same cache size, a 2-way set associative cache has 1 bit fewer in its

index field and 1 bit more in its tag field compared with a direct mapped cache. A 4 way

set associative cache has 2 bits fewer in its index field, and so on.

For comparing the results with a direct mapped cache, the number of cycles during a

cache hit is assumed to be one for a 2-way set associative cache. In practice, the need to

46

test all the tags in a set may cause a set associative cache to require more clock cycles per

hit.

6.3) Simulation Results

The following simulation was conducted for a 2-way set associative cache with LRU as

its replacement policy.

For comparison, a block size with 32x32 locations is chosen and size is varied for both

direct mapped and 2-way set associative caches in the Figures 6.1-6.2. First the hit rate

and then the access times are compared.

Direct Mapped vs 2-way Set Associative for Block size

32 x 32, Hit Rate

0

10

20

30

40

50

60

70

80

90

8
x
8

8
x
1
6

8
x
3
2

8
x
6
4

1
6
x
8

1
6
x
1
6

1
6
x
3
2

1
6
x
6
4

3
2
x
8

3
2
x
1
6

3
2
x
3
2

3
2
x
6
4

6
4
x
8

6
4
x
1
6

6
4
x
3
2

6
4
x
6
4

Cache Type (l x w)

H
it

 R
a
te

 (
%

)

Direct Mapped

2-way Set Associative

Figure 6.1: Hit Rate Comparison Direct vs Set Associative

47

Direct Mapped vs 2-way Set Associative for Block Size

32 x 32, Access Time

0

20

40

60

80

100

120

140

160

180

8
x
8

8
x
1
6

8
x
3
2

8
x
6
4

1
6
x
8

1
6
x
1
6

1
6
x
3
2

1
6
x
6
4

3
2
x
8

3
2
x
1
6

3
2
x
3
2

3
2
x
6
4

6
4
x
8

6
4
x
1
6

6
4
x
3
2

6
4
x
6
4

Cache Type (l x w)

A
c
c
e
s
s
 T

im
e
 (

m
il

li
s
e
c
o

n
d

s
)

Direct Mapped

2-way Set Associative

Figure 6.2: Access time Comparison Direct vs Set Associative

The consistent fact in the Figures 6.1 and 6.2 is that if hit rate is higher, the access time is

lower for a particular cache size. There is not a significant difference in the access times

between the direct mapped and the 2-way set associative cache. For some cache sizes, the

direct mapped is better while for some cache sizes the set associative is slightly better.

The 2-way set associative cache is better in cases where the number of cache lines is very

small. For example, with eight cache lines, the 2-way set associative cache is slightly

better than the direct mapped cache. For a larger number of cache lines like 32 or 64, the

direct mapped is better. The 2-way set associative cache is a good choice if the space in

the block RAM present can store only a small number of cache lines.

Set associative caches perform better in many cases when compared to a direct mapped

cache. As an example, many personal computers like the AMD Athlon [8] have a set

associative cache between their main memory and processor. In the APR, there is no

great difference in access time between the direct mapped and 2-way set associative

cache, because the access pattern of the input frame is known before the application starts

48

to execute. With this pattern the block sequencing is determined and the LUT is accessed

according to this pattern. There is no significant difference in access times between the

two types of caches, because the values accessed in the input frame can be predicted

before run time. Due to rounding errors in the interpolation, the same pixel might be used

twice or thrice but usually not more than that. On the other hand, the likelihood of

accessing the neighboring pixels is very high. That is, the application depends more on

spatial locality than temporal locality. The access pattern of the input frame, computed

offline, ensures that there are no conflicts in the cache and hence the access times of a

direct mapped cache and 2-way set associative cache are not very different. For a 45

degree angle of rotation, every pixel accessed is a new line in the input frame and

invariably existing cache lines have to be replaced. Other than small changes in the

access times values, the 2-way set associative cache is not significantly more efficient

than the direct mapped cache.

A 2-way set associative cache requires more logic than a direct mapped cache. The

additional logic might increase the number of cycles required for a hit. The APR is highly

time critical and also is limited by hardware resources. The identity transformation using

only the SDRAM takes about 6 milliseconds and even with the best cache design, this

time cannot be beaten as every adjacent pixel in the LUT corresponds to the same line in

the input frame. The direct mapped cache for a 45 degree rotation is close to this value

and can be preferred over the 2-way set associative cache. The fastest access time given a

maximum cache size of 4K locations is produced by the direct mapped cache. The fastest

2-way set associative cache is obtained for block size 32x32 and the fastest direct mapped

cache is obtained for block size 64x64.

Simulations for 4-way associative caches were not conducted because the application is

using an FPGA with limited number of resources, and a 4-way associative cache would

demand more hardware logic and complexity.

The minimum time obtained for the fastest direct mapped cache is 11 ms, which occurs

for a rotation of zero degrees. The remaining times are close to 13 ms, which is still

49

below the minimum of 16.6 ms per frame. The access time without the cache and blocks

grew linearly from 6 ms to 30 ms as the angle goes from 0 degrees to 45 degrees. To

conclude, the usage of simple direct mapped cache with proper block sequencing is

recommended owing to its simple design and effective results.

50

Chapter 7: Bilinear Interpolation

The current APR implements reverse mapping by using the nearest neighbor method.

Bilinear interpolation yields more visually pleasing graphics than nearest neighbor

method, but requires more computational power. This section presents the concept of

bilinear interpolation, and how the hardware is affected. It also compares the performance

of an Anywhere Pixel Router with only SDRAM and the one with a cache, while dealing

with bilinear interpolation.

During the process of magnification in images, usually nearest neighboring pixel values

are used to determine the value of the current pixel. This technique can result in blocky

appearances. Bilinear interpolation reduces this effect by considering the values of all the

neighboring pixels when determining an output pixel‘s value [9].

In the future, bilinear interpolation will be performed by the hardware for the Anywhere

Pixel Router. In that case, all the LUT values will be fixed point and not rounded off to

the nearest integer value.

200

201

185 186

x

x

x

x

Consider Row Value, Column value as (200.1,185.8)
Figure 7.1: Example for Bilinear

51

As an example, consider Figure 7.1. The LUT will contain a value like (200.1, 185.8).

The black spot in the figure shows the approximate location of that pixel. Now instead of

just rounding off the value to (200,186), the hardware will now take the values of the four

neighboring pixels shown by ‗x‘ in the figure to determine the value of that pixel.

7.1) Advantages of Bilinear Interpolation

The current hardware implements the reverse mapping of pixels using nearest neighbor

method. The output is distorted such that the fonts in the screen are very blurred as shown

in Figure 7.2.

Figure 7.2: Nearest Neighbor Method

The output with bilinear interpolation is much better, as shown in Figure 7.3.

52

Figure 7.3: Bilinear Interpolation Method

The current hardware design supports only integer values for input frame row and

column. But in bilinear interpolation method, the row and column values are fractional. It

must be decided how many bits after the radix point to allocate for the row and column

values. Figures 7.4, 7.5, and 7.6 show the output images for bilinear interpolation with 1

bit, 2 bits, and 3 bits after the radix point.

53

Figure 7.4: Bilinear Interpolation with 1 bit after radix point

54

Figure 7.5: Bilinear Interpolation with 2 bits after radix point

55

Figure 7.6: Bilinear Interpolation with 3 bits after radix point

The bilinear interpolation was also done in software for 4 bits after the radix point, but

there was no significant change in the visual appearance of the output when compared to

the design that used 3 bits after the radix point. The idea is to have fewer bits and achieve

good image quality, as more bits take up more memory space. It was decided that the

system will have the 3 bits after the radix point, meaning that the row and column value

will each need 3 extra bits for their representation.

Every value in the LUT now accesses two distinct rows in the image. These distinct rows

in the image map to two distinct rows in the input frame memory unless the SDRAM has

an exceptionally large row length, which is not practical. So every LUT access now

would correspond to a definite change in row, adding more cycles to the process. With a

cache that pre-fetches data, the number of cycles should be reduced in case of bilinear

interpolation. The simulation in the following section estimates how performance

56

changes when LUT values are kept in fised point format. The results with and without the

direct mapped cache are compared.

7.2) SDRAM simulation with Bilinear Interpolation

The following simulation deals with accessing input frame in the SDRAM without using

any cache for the bilinear interpolation. All hardware and memory modules used are

same as in earlier sections. During bilinear interpolation, if the row in the input frame is

the same as that of the row in the LUT value, then the time taken is tcas + tras + tcas, which

is 11 cycles. It is only one tcas for accessing two values of the same row, because the

memory module used is DDR and two adjacent values of the same row are used in

bilinear interpolation. If the row in the input frame is not the same as that of the LUT

value, then it is tras + tcas + tras + tcas, which is 18 cycles. All the above mentioned values

are for the particular hardware and memory module used in the APR and might vary if

different modules are used.

Figure 7.8 shows the various access times in case bilinear interpolation is performed by

the hardware for various LUT function angles. Of course, the LUT would not be just

some angle of rotation, the input pattern might have in fact two or three distinct angles.

But this set of simulations gives an idea of how slow the system gets in case of bilinear

interpolation.

It can be observed that in contrary to expectation the 45 degree rotation function takes

slightly less time than the identity transformation.

57

Row 1

Row 2

Bilinear Interpolation for 0 degree function1)

Row 1

Row 2

2) Bilinear Interpolation for 45 degree function

Figure 7.7: Explanation of Bilinear

Figure 7.7 shows access patterns for 0 degree and 45 degree rotations. For some function,

like the identity transformation, bilinear interpolation takes about at least 3 memory row

changes in the input frame for adjacent LUT value access. On the other hand, a 45 degree

function with bilinear interpolation takes only at the most 2 memory row changes. That

explains why the 45 degree is slightly faster than the identity transformation.

For the given hardware space, the direct mapped cache producing the fastest access time

was 64x32 cache with block size being 64x64 locations. Simulations are conducted to see

how the system with that cache performs in case of bilinear interpolation.

The access times for different angles are plotted to compare the access times of the RAM

and the design with the 64x32 cache for bilinear interpolation in Figure 7.8. Block access

58

knowing the input access pattern makes sure that the access time for any LUT function

for a given cache and block size is nearly constant. The average access time for any LUT

function would be somewhere between 35-40 milliseconds. The cache access times are

much faster compared to SDRAM access times.

Figure 7.8: Plot SDRAM vs Cache (Bilinear)

For bilinear interpolation by hardware, even the cache with blocks does not meet the

requirement of 16.6 milliseconds for a frame. The average is around 35-40 ms which is at

least 20 ms greater than the target time. In the simulation, one output pixel location

depends on four memory locations, so the cache is accessed 4 times to check for a match,

meaning 4 cycles if all the cache accesses are hits. In most cases, two adjacent values in

bilinear interpolation would correspond to two adjacent locations in a cache line. The

only exceptions are at the boundaries of offset bits. For example, a 20-bit address of row

500 and column 768 and another address of row 500 and column 767 would have

different tag bits and hence would not map to the same cache line. In cases where two

pixels are adjacent in the cache line, the two values can be fetched from the same cache

line simultaneously in the same clock cycle. The structure of the FPGA allows parallel

59

computations in the same clock cycle. If this done, the access times will further reduce.

Table A.8 in Appendix A shows the various access times for bilinear interpolation when

the fastest cache is used and Table A.7 in Appendix A shows access times when only

SDRAM is used.

One more possibility in bilinear interpolation is there could a few lines of buffer for

memory access instead of a cache. For example, there could be a two row buffer for

memory access. If a new memory row has to replace an existing row in the buffer, LRU

could be used. Even in that case, the LUT memory will have to be accessed in blocks in

order to have a good hit rate. For large angles of rotation, the two row buffer system

would not be as efficient as the cache because the cache can store more lines than the

buffer. For smaller angles of rotation, the buffer system would be beneficial, as the same

two rows in memory might be accessed repeatedly.

60

Chapter 8: Finding the Input Access Pattern

Block access plays a major role in the overall speed of the design, so it is essential that

the order in which blocks are accessed is good enough to attain reasonable speeds. If a

proper access pattern is deciphered, then it is easy to order the way the memory blocks

are accessed in the LUT thereby leading to the overall increase in speed of the system

when using a cache. The access pattern is computed offline and depends on the LUT. The

order in which blocks are accessed is different for a 45 degree angle when compared to a

25 degree angle. It is essential to first find out the function in the LUT.

In all the simulations in previous sections, the LUT was generated synthetically by

rotating an identity LUT by a known amount. All the LUTs were generated just to test the

efficiency of the design. In a real implementation the LUT is created from the results of

the calibration. This section describes how to determine the access pattern for which the

best ordering is unknown.

8.1) Determining the Access Pattern

The LUT function is a result of the projector system, how the projectors are aligned, and

how the projector areas overlap one another. For a multi-projector system, the different

LUTs could contain different angles of rotation. It is also possible that one section of a

single LUT contains partly one angle of rotation and another section another angle of

rotation. An efficient algorithm to compute the nature of LUT is needed so that an

appropriate block access pattern can be passed to the hardware.

61

Input Frame Access 1 Input Frame Access 2

Figure 8.1: Sample Input access

Figure 8.1 shows the access patterns of normal LUTs that are created from calibration

results. The projectors could be tilted or kept perpendicular. The LUT‘s function is

unknown and it should be determined by examining the contents of the LUT.

Figure 8.2 shows some possible LUT functions. Figure 8.2(a) is a LUT in which one half

of the LUT accesses input frame pixels at 5 degrees while the other half accesses at 10

degrees. The function in figure 8.2(b) is a possible 4 function LUT split as shown. It is

evident that the orders in which blocks are accessed in the two cases are totally different.

A simple algorithm to decide the order in which the LUT memory blocks are accessed is

needed.

Figure 8.2: Possible LUT functions

62

8.2) Algorithm

The flow chart in Figure 8.3 shows a method to determine the access pattern of the input

frame. This technique was adopted to find the access pattern and then create a block order

so that the cache design is effective. The algorithm was tested on some synthetically

generated LUTs and also on LUTs obtained from calibration results. The algorithm was

effective in creating a block order for the cache design.

63

Figure 8.3: Input Access Algorithm

64

Chapter 9: SDRAM vs Cache Comparison

A few sample LUTs are taken as test inputs and simulations are run to compare the

design without cache to the design with the cache and blocks. The design with only

SDRAM is a failure in many cases. The cache design with block access pattern

overcomes this problem in all cases tested. The previous simulations were all based on

simple LUTs. Most of the cache simulations were restricted to a particular LUT function.

It is necessary to see how the design with the cache performs with measured LUTs. The

block ordering for the following simulations were obtained from the algorithm in Section

8. The fastest cache, 64x32 with block size 64x64 memory locations is taken and its

results are compared to the design with only the SDRAM module.

9.1) Test LUTs

Three test LUTs are taken for the comparison. The first is a LUT with a 90 degrees

rotation function. Often, it is possible for users to place the projectors perpendicular to

the surface and project onto the screen. This results in a 90 degree rotation in the input

access. This LUT is labeled as I. The second LUT is from a real calibration result whose

pattern is somewhat close to 5 to 6 degrees of rotation. This LUT is labeled II in the

simulation. The third LUT is also from a real calibration result whose pattern is slightly

more complicated than LUT II. The pattern in which the input frame pixels are accessed

is close to angle 10 degrees. This test LUT is labeled III. The calibration in the above

cases was done for a 4 projector system, and so 4 LUTs were generated. One of the four

LUTs is taken for test purposes in each case.

9.2) Simulation Results

Figure 9.1 shows the direct comparison in performance between the design with only the

SDRAM and the cache design with blocks while handling the test LUTs.

65

Ram vs Cache Design

0

5

10

15

20

25

30

35

40

I (90 degrees) II III

Test LUT

A
c
c
e
s
s
 T

im
e
 (

m
il

li
s
e
c
o

n
d

s
)

Cache 64x32, Block 64

SDRAM

Figure 9.1: SDRAM vs Cache (Overall)

For 90 degrees LUT function the SDRAM is definitely slow as every LUT access

corresponds to a change in row in the input frame memory. The LUT II was obtained

from calibration when the projectors were subjected to slight tilt. Hence the design with

SDRAM is not too slow but the cache is still faster. The LUT III is obtained by exposing

the projectors to more inclination than case II and the cache is faster than SDRAM by at

least a factor of 40%. There are a number of possible ways in which projectors could be

set up by users. Whenever the LUT function involves more rotation, the design with the

cache and memory blocks reduces access time. Even for less complicated functions, the

cache design is still faster than the SDRAM design. Table A.10 in Appendix A shows

details of the simulation results when the design with cache and blocks was made to

handle LUT I, II and III. Table A.11 in Appendix A shows the simulation results when

the design with only RAM is made to handle the test LUT I, II and III.

9.3) Bilinear Interpolation

One of the future goals of this research work is to implement bilinear interpolation in

hardware. The same LUTs I, II and III are taken and tested for bilinear interpolation.

66

Figure 9.2 shows the head-to-head comparison of cache design and the design with only

SDRAM with of bilinear interpolation.

Figure 9.2: SDRAM vs Cache Bilinear

As predicted the cache design with the memory blocks is much faster than the design

with SDRAM when bilinear interpolation is done in hardware. The access time with the

cache is at least 4 times faster than the access time with the SDRAM. Table A.13 in

Appendix A shows the results of the design with cache and blocks when doing bilinear

interpolation. Table A.14 in Appendix A shows the simulation results of the design with

only RAM when dealing with bilinear interpolation.

67

Chapter 10: Conclusion

The APR uses a memory controller that directly accesses the SDRAM. That design is not

fast enough to process video frames at the desired rate, and under test conditions it was

observed that many output frames were skipped when the LUT function had angles of

rotation greater than 14 degrees. A new robust design was required that can increase the

frame rate for all LUT functions, without requiring additional hardware. A blocked

access pattern calculated offline from the LUT, is key to efficient cache access. The new

cache algorithm improves performance for a wide variety of rotations, skewing angles,

and other forms of distortion.

The most important performance criterion for the APR is that it must process 60 input

frames per second. The design with cache and memory blocks processed the input frame

within the desired the frame time of 16.6 ms. The cache is faster than the SDRAM by

20% to 30% on an average for synthetic LUTs and 2 times faster for LUTs resulting from

actual projector calibration. Moreover, the cache occupies about 7% of the block RAM

memory space. Thus an effective cache was designed for the APR.

Bilinear interpolation is not being implemented currently, but it is a definite feature of the

APR in the near future Even though the cache is faster than the SDRAM design for

bilinear interpolation, the average access times produced by the simulation are above the

desired time allocated for every frame. Right now, it is assumed that the cache is invoked

4 times for every LUT value access, which can be reduced to fewer cycles considering

the adjacent access of memory locations during bilinear interpolation. If the number of

cycles is reduced, then the results will be significantly better.

68

Appendix A: Simulation Results

Table A.1: SDRAM Simulation

Angle Pixels Cycles

Same Row

(%)

Change in Row

(%)

Ignore

(%) Time(millisecs)

0 786432 797945 99.902473 0.097529 0 5.999587

1 786432 894090 97.317505 1.844025 0.83847 6.722481

2 786432 989094 94.726814 3.569794 1.70339 7.436797

3 786432 1078820 92.260361 5.199687 2.539953 8.111428

4 786432 1168287 89.826584 6.824875 3.348541 8.784113

5 786432 1257222 87.429298 8.440399 4.1303 9.452797

6 786432 1344379 85.090385 10.023625 4.885992 10.108112

7 786432 1429905 82.806648 11.577225 5.616125 10.751165

8 786432 1514367 80.567039 13.111496 6.321462 11.386218

9 786432 1597506 78.374992 14.621735 7.003275 12.011323

10 786432 1679259 76.232277 16.106796 7.660929 12.626007

11 786432 1759710 74.134575 17.568207 8.297221 13.230902

12 786432 1838894 72.083282 19.006601 8.910115 13.826271

13 786432 1916930 70.074463 20.424143 9.501393 14.413008

14 786432 1993748 68.110786 21.819559 10.06966 14.990587

15 786432 2069467 66.182961 23.195013 10.62203 15.559902

16 786432 2143996 64.299011 24.548849 11.15214 16.12027

17 786432 2217552 62.45219 25.88501 11.6628 16.673323

18 786432 2290065 60.643387 27.202225 12.15439 17.218534

19 786432 2361451 58.873749 28.498968 12.62728 17.75527

20 786432 2431948 57.138317 29.779562 13.08212 18.285323

21 786432 2501451 55.43874 31.042099 13.51916 18.807903

22 786432 2569988 53.773754 32.28709 13.93916 19.323219

23 786432 2637552 52.144367 33.514404 14.34123 19.831218

24 786432 2704360 50.544483 34.727985 14.72753 20.333534

25 786432 2770195 48.978043 35.923893 15.09806 20.828534

26 786432 2835176 47.444279 37.10429 15.45143 21.317113

27 786432 2899317 45.940525 38.269424 15.79005 21.799376

28 786432 2962709 44.465893 39.420956 16.11315 22.276007

29 786432 3025177 43.0233 40.555698 16.421 22.745691

30 786432 3086959 41.60741 41.677982 16.71461 23.210218

31 786432 3147908 40.220898 42.785137 16.99397 23.668481

69

32 786432 3208003 38.862484 43.876774 17.26074 24.120323

33 786432 3267426 37.533569 44.956207 17.51022 24.567112

34 786432 3326114 36.229706 46.022289 17.74801 25.008377

35 786432 3383997 34.95369 47.073746 17.97257 25.443586

36 786432 3441411 33.699036 48.116684 18.18428 25.87527

37 786432 3497516 32.480621 49.135845 18.38354 26.297113

38 786432 3553474 31.277466 50.152332 18.5702 26.717849

39 786432 3608711 30.099487 51.155727 18.74479 27.133165

40 786432 3663094 28.949102 52.143604 18.90729 27.54206

41 786432 3716826 27.821985 53.119659 19.05836 27.946061

42 786432 3769830 26.719412 54.082489 19.1981 28.344586

43 786432 3822155 25.639853 55.032986 19.32716 28.738007

44 786432 3873766 24.584326 55.970509 19.44517 29.126059

45 786432 3924740 23.563513 56.896465 19.54002 29.509323

Table A.1 shows the simulation results while running the anywhere pixel router with just

the DDRRAM module. The table has details about same row accesses, change in row

accesses, and the number of IGNORE pixels present. This simulation does not include

results for any blocks or cache designs.

Table A.2: Cache Access times (45 degrees)

Angle Cachetype Pixels Cycles

Hit Rate

(%)

Ignore

(%) Time(millsec)

45 8x8 786432 7748976 21.48984 19.54002 58.26298

45 8x16 786432 9448710 22.52922 19.54002 71.04293

45 8x32 786432 12982833 23.04993 19.54002 97.61529

45 8x64 786432 20118410 23.31098 19.54002 151.2662

45 16x8 786432 7748976 21.48984 19.54002 58.26298

45 16x16 786432 9448710 22.52922 19.54002 71.04293

45 16x32 786432 12982833 23.04993 19.54002 97.61529

45 16x64 786432 20118410 23.31098 19.54002 151.2662

45 32x8 786432 7748976 21.48984 19.54002 58.26298

45 32x16 786432 9448710 22.52922 19.54002 71.04293

45 32x32 786432 12982833 23.04993 19.54002 97.61529

45 32x64 786432 20118410 23.31098 19.54002 151.2662

45 64x8 786432 7748976 21.48984 19.54002 58.26298

45 64x16 786432 9448710 22.52922 19.54002 71.04293

45 64x32 786432 12982833 23.04993 19.54002 97.61529

70

45 64x64 786432 20118410 23.31098 19.54002 151.2662

Table A.3: Cache Access Times (0 degrees)

Angle Cachetype Pixels Cycles

Hit Rate

(%)

Ignore

(%) Time(millsec)

0 8x8 786432 2267136 87.5 0 17.04614

0 8x16 786432 1726464 93.75 0 12.98093

0 8x32 786432 1456128 96.875 0 10.94833

0 8x64 786432 1320960 98.4375 0 9.93203

0 16x8 786432 2267136 87.5 0 17.04614

0 16x16 786432 1726464 93.75 0 12.98093

0 16x32 786432 1456128 96.875 0 10.94833

0 16x64 786432 1320960 98.4375 0 9.93203

0 32x8 786432 2267136 87.5 0 17.04614

0 32x16 786432 1726464 93.75 0 12.98093

0 32x32 786432 1456128 96.875 0 10.94833

0 32x64 786432 1320960 98.4375 0 9.93203

0 64x8 786432 2267136 87.5 0 17.04614

0 64x16 786432 1726464 93.75 0 12.98093

0 64x32 786432 1456128 96.875 0 10.94833

0 64x64 786432 1320960 98.4375 0 9.93203

Table A.4: Cache with Blocks Simulation

Angle Blocksize Cachetype Pixels Cycles

Hit Rate

(%)

Ignore

(%)

Time

(milli-

seconds)

45 64 64x32 786432 1720845 76.52232 19.54002 12.93868

45 64 64x64 786432 1734158 77.94813 19.54002 13.03878

45 32 64x64 786432 1852801 77.88798 19.54002 13.93084

45 64 64x16 786432 1861184 73.92515 19.54002 13.99387

45 32 64x32 786432 1997781 75.68105 19.54002 15.02091

45 32 32x32 786432 2031720 75.52122 19.54002 15.27609

45 16 32x64 786432 2049237 77.88849 19.54002 15.4078

45 16 64x64 786432 2049237 77.88849 19.54002 15.4078

45 32 32x16 786432 2145650 72.67927 19.54002 16.13271

71

45 32 64x16 786432 2145650 72.67927 19.54002 16.13271

45 32 32x64 786432 2166056 76.96165 19.54002 16.28614

45 64 64x8 786432 2242686 68.94849 19.54002 16.8623

45 16 32x32 786432 2244312 75.44594 19.54002 16.87453

45 16 64x32 786432 2244312 75.44594 19.54002 16.87453

45 8 16x64 786432 2429553 77.92664 19.54002 18.26732

45 8 32x64 786432 2429553 77.92664 19.54002 18.26732

45 8 64x64 786432 2429553 77.92664 19.54002 18.26732

45 32 32x8 786432 2498910 67.60979 19.54002 18.7888

45 32 64x8 786432 2498910 67.60979 19.54002 18.7888

45 16 32x16 786432 2581582 71.0776 19.54002 19.41039

45 16 64x16 786432 2581582 71.0776 19.54002 19.41039

45 16 16x32 786432 2616939 73.69105 19.54002 19.67623

45 16 16x16 786432 2618233 70.83231 19.54002 19.68596

45 8 16x32 786432 2622489 75.51676 19.54002 19.71796

45 8 32x32 786432 2622489 75.51676 19.54002 19.71796

45 8 64x32 786432 2622489 75.51676 19.54002 19.71796

45 16 16x8 786432 2963853 65.33508 19.54002 22.28461

45 16 32x8 786432 2963853 65.33508 19.54002 22.28461

45 16 64x8 786432 2963853 65.33508 19.54002 22.28461

45 16 16x64 786432 2993775 75.09537 19.54002 22.50959

45 8 16x16 786432 3030430 70.70528 19.54002 22.78519

45 8 32x16 786432 3030430 70.70528 19.54002 22.78519

45 8 64x16 786432 3030430 70.70528 19.54002 22.78519

45 8 8x16 786432 3492282 67.61437 19.54002 26.25776

45 8 16x8 786432 3711024 62.33457 19.54002 27.90244

45 8 32x8 786432 3711024 62.33457 19.54002 27.90244

45 8 64x8 786432 3711024 62.33457 19.54002 27.90244

45 8 8x32 786432 3712938 70.38129 19.54002 27.91683

45 8 8x8 786432 3740979 62.08064 19.54002 28.12766

45 8 8x64 786432 4511441 71.77023 19.54002 33.92061

45 128 64x8 786432 5235924 43.15783 19.54002 39.36785

45 64 32x8 786432 5520786 41.1597 19.54002 41.50967

45 32 16x8 786432 5878440 38.96116 19.54002 44.1988

45 128 64x16 786432 5990626 45.96011 19.54002 45.0423

45 64 32x16 786432 6360422 43.81421 19.54002 47.82272

45 16 8x8 786432 6464598 35.6589 19.54002 48.606

72

45 32 16x16 786432 6812620 41.4458 19.54002 51.22271

45 16 8x16 786432 7541855 37.88121 19.54002 56.70568

45 128 32x8 786432 7674234 22.48802 19.54002 57.70101

45 128 16x8 786432 7782174 21.573 19.54002 58.51259

45 128 8x8 786432 7803594 21.39142 19.54002 58.67364

45 64 16x8 786432 7811091 21.74454 19.54002 58.73001

45 128 64x32 786432 7862874 47.36493 19.54002 59.11936

45 64 8x8 786432 7863141 21.30331 19.54002 59.12136

45 32 8x8 786432 7976400 21.17653 19.54002 59.97293

45 64 32x32 786432 8381340 45.1547 19.54002 63.01759

45 32 16x32 786432 9002823 42.69078 19.54002 67.6904

45 128 32x16 786432 9329895 23.61221 19.54002 70.14959

45 128 16x16 786432 9477829 22.62217 19.54002 71.26188

45 64 16x16 786432 9498196 22.81481 19.54002 71.41501

45 128 8x16 786432 9507336 22.4247 19.54002 71.48373

45 64 8x16 786432 9569750 22.33594 19.54002 71.95301

45 32 8x16 786432 9686655 22.21146 19.54002 72.832

45 16 8x32 786432 9982485 39.00299 19.54002 75.05628

45 128 64x64 786432 11789834 48.06684 19.54002 88.64537

45 64 32x64 786432 12600043 45.8163 19.54002 94.73717

45 128 32x32 786432 12786378 24.17768 19.54002 96.13818

45 128 16x32 786432 13005591 23.14529 19.54002 97.7864

45 64 16x32 786432 13012434 23.34455 19.54002 97.83785

45 128 8x32 786432 13048359 22.94388 19.54002 98.10796

45 64 8x32 786432 13116654 22.85372 19.54002 98.62146

45 32 8x32 786432 13240446 22.73369 19.54002 99.55223

45 32 16x64 786432 13543426 43.31729 19.54002 101.8303

45 16 8x64 786432 15011802 39.5565 19.54002 112.8707

45 128 32x64 786432 19774547 24.45501 19.54002 148.6808

45 64 16x64 786432 20109090 23.61107 19.54002 151.1962

45 128 16x64 786432 20129770 23.40457 19.54002 151.3517

45 128 8x64 786432 20198097 23.20252 19.54002 151.8654

45 64 8x64 786432 20277435 23.11325 19.54002 152.4619

45 32 8x64 786432 20416417 22.99296 19.54002 153.5069

Table A.5: 64x32 Cache with Block 64

73

Angle Blocksize Cachetype Pixels Cycles

Hit Rate

(%)

Ignore

(%)

Time

(milli-

seconds)

0 64 64x32 786432 1548288 96.875 0 11.64126

1 64 64x32 786432 1834245 94.68981 0.83847 13.79132

2 64 64x32 786432 1843425 93.78166 1.70339 13.86034

3 64 64x32 786432 1844532 92.93989 2.539953 13.86866

4 64 64x32 786432 1843749 92.13499 3.348541 13.86278

5 64 64x32 786432 1834380 91.39735 4.1303 13.79233

6 64 64x32 786432 1829952 90.66251 4.885992 13.75904

7 64 64x32 786432 1826955 89.9465 5.616125 13.7365

8 64 64x32 786432 1823445 89.25768 6.321462 13.71011

9 64 64x32 786432 1821474 88.58515 7.003275 13.69529

10 64 64x32 786432 1815507 87.95561 7.660929 13.65043

11 64 64x32 786432 1811403 87.33864 8.297221 13.61957

12 64 64x32 786432 1806516 86.74876 8.910115 13.58283

13 64 64x32 786432 1802169 86.17796 9.501393 13.55014

14 64 64x32 786432 1799064 85.62431 10.06966 13.5268

15 64 64x32 786432 1793745 85.09699 10.62203 13.4868

16 64 64x32 786432 1791369 84.57807 11.15214 13.46894

17 64 64x32 786432 1785942 84.09296 11.6628 13.42814

18 64 64x32 786432 1782432 83.61791 12.15439 13.40174

19 64 64x32 786432 1779408 83.15926 12.62728 13.37901

20 64 64x32 786432 1775277 82.72387 13.08212 13.34795

21 64 64x32 786432 1772442 82.30019 13.51916 13.32663

22 64 64x32 786432 1769877 81.89227 13.93916 13.30735

23 64 64x32 786432 1766502 81.5061 14.34123 13.28197

24 64 64x32 786432 1763721 81.13289 14.72753 13.26106

25 64 64x32 786432 1760319 80.77837 15.09806 13.23548

26 64 64x32 786432 1757457 80.43848 15.45143 13.21396

27 64 64x32 786432 1753542 80.11831 15.79005 13.18453

28 64 64x32 786432 1750356 79.8102 16.11315 13.16057

29 64 64x32 786432 1747170 79.51737 16.421 13.13662

30 64 64x32 786432 1746873 79.22516 16.71461 13.13438

31 64 64x32 786432 1746981 78.94529 16.99397 13.1352

32 64 64x32 786432 1744416 78.69059 17.26074 13.11591

33 64 64x32 786432 1741176 78.45637 17.51022 13.09155

74

34 64 64x32 786432 1737828 78.23435 17.74801 13.06638

35 64 64x32 786432 1736208 78.01743 17.97257 13.0542

36 64 64x32 786432 1735344 77.80978 18.18428 13.0477

37 64 64x32 786432 1733562 77.61892 18.38354 13.0343

38 64 64x32 786432 1731132 77.4437 18.5702 13.01603

39 64 64x32 786432 1729836 77.27522 18.74479 13.00629

40 64 64x32 786432 1728918 77.11703 18.90729 12.99938

41 64 64x32 786432 1727082 76.97462 19.05836 12.98558

42 64 64x32 786432 1724814 76.84555 19.1981 12.96853

43 64 64x32 786432 1723680 76.72183 19.32716 12.96

44 64 64x32 786432 1722897 76.60751 19.44517 12.95411

45 64 64x32 786432 1720845 76.52232 19.54002 12.93868

Table A.6: 2-way Set Associative Cache

Angle Blocksize Cachetype Pixels Cycles

Hit Rate

(%)

Ignore

(%)

Time (milli

-seconds)

45 32 64x8 786432 1550295 75.6513 19.54002 11.65635

45 32 64x16 786432 1701563 75.6513 19.54002 12.79371

45 16 64x8 786432 1771098 75.44619 19.54002 13.31653

45 16 64x16 786432 1928818 75.44619 19.54002 14.50239

45 32 64x32 786432 2004099 75.6513 19.54002 15.06841

45 64 64x8 786432 2007096 70.94561 19.54002 15.09095

45 8 64x8 786432 2155869 75.51778 19.54002 16.20954

45 16 64x32 786432 2244258 75.44619 19.54002 16.87412

45 16 32x8 786432 2297523 70.98364 19.54002 17.27461

45 64 64x16 786432 2306392 70.94561 19.54002 17.34129

45 8 64x16 786432 2311337 75.51778 19.54002 17.37847

45 32 64x64 786432 2409350 76.2422 19.54002 18.11541

45 32 32x8 786432 2500230 67.5986 19.54002 18.79872

45 16 32x16 786432 2595623 70.98364 19.54002 19.51596

45 8 64x32 786432 2622273 75.51778 19.54002 19.71634

45 8 32x8 786432 2723529 70.70567 19.54002 20.47766

45 32 32x32 786432 2828355 71.76946 19.54002 21.26583

45 16 64x64 786432 2875138 75.44619 19.54002 21.61758

45 64 64x64 786432 2889482 74.53169 19.54002 21.72543

45 32 32x16 786432 2904814 67.5986 19.54002 21.84071

45 64 64x32 786432 2904984 70.94561 19.54002 21.84198

75

45 16 32x32 786432 2958057 72.08456 19.54002 22.24103

45 8 32x16 786432 3030373 70.70567 19.54002 22.78476

45 32 32x64 786432 3229489 73.81693 19.54002 24.28187

45 8 64x64 786432 3244145 75.51778 19.54002 24.39207

45 16 16x16 786432 3605359 64.22602 19.54002 27.10796

45 8 32x32 786432 3644061 70.70567 19.54002 27.39896

45 8 16x8 786432 3734259 62.1376 19.54002 28.07714

45 16 16x32 786432 3825108 68.00118 19.54002 28.76021

45 16 32x64 786432 3825825 72.63489 19.54002 28.7656

45 16 16x8 786432 4027503 56.31841 19.54002 30.28198

45 8 16x16 786432 4043719 63.9239 19.54002 30.4039

45 16 16x64 786432 4737468 69.93904 19.54002 35.62006

45 8 32x64 786432 4871437 70.70567 19.54002 36.62735

45 8 16x32 786432 4892325 64.82697 19.54002 36.7844

45 8 8x8 786432 5086599 50.67368 19.54002 38.2451

45 8 8x16 786432 5159152 56.45892 19.54002 38.79062

45 128 64x8 786432 5299359 42.62009 19.54002 39.8448

45 64 32x8 786432 5464656 41.63551 19.54002 41.08764

45 8 8x32 786432 6047304 59.38759 19.54002 45.46845

45 32 16x8 786432 6161655 36.56031 19.54002 46.32823

45 128 64x16 786432 6489699 42.62009 19.54002 48.79473

45 16 8x8 786432 6517983 35.20635 19.54002 49.00739

45 64 32x16 786432 6685968 41.63551 19.54002 50.27043

45 8 16x64 786432 6706892 65.27799 19.54002 50.42776

45 32 16x16 786432 7042216 39.90924 19.54002 52.94899

45 16 8x16 786432 7338422 39.24268 19.54002 55.17611

45 128 32x8 786432 7459269 24.3103 19.54002 56.08473

45 64 16x8 786432 7588446 23.63192 19.54002 57.05598

45 32 8x8 786432 7722450 23.32929 19.54002 58.06353

45 128 16x8 786432 7733709 21.98385 19.54002 58.14819

45 128 8x8 786432 7758909 21.77022 19.54002 58.33766

45 64 8x8 786432 7824651 21.62959 19.54002 58.83196

45 8 8x64 786432 8201056 60.85955 19.54002 61.66207

45 64 32x32 786432 8681283 43.74212 19.54002 65.27281

45 128 64x32 786432 8870379 42.62009 19.54002 66.69458

45 32 16x32 786432 9170844 41.89949 19.54002 68.95372

45 64 16x16 786432 9211182 24.73564 19.54002 69.25701

76

45 128 32x16 786432 9225585 24.3103 19.54002 69.3653

45 32 8x16 786432 9421491 23.98605 19.54002 70.83828

45 128 8x16 786432 9424021 22.98228 19.54002 70.8573

45 128 16x16 786432 9464966 22.70826 19.54002 71.16516

45 64 8x16 786432 9500818 22.79727 19.54002 71.43472

45 16 8x32 786432 9536715 41.10235 19.54002 71.70463

45 128 64x64 786432 12563662 45.77853 19.54002 94.46362

45 128 32x32 786432 12586902 25.11711 19.54002 94.63836

45 64 16x32 786432 12621717 25.18463 19.54002 94.90013

45 32 8x32 786432 12891930 24.37503 19.54002 96.93181

45 128 8x32 786432 12911874 23.58666 19.54002 97.08176

45 64 32x64 786432 12973154 44.71296 19.54002 97.54251

45 128 16x32 786432 12995466 23.19298 19.54002 97.71027

45 64 8x32 786432 13005927 23.37519 19.54002 97.78892

45 32 16x64 786432 13726950 42.77458 19.54002 103.2102

45 16 8x64 786432 14163584 42.06479 19.54002 106.4931

45 128 32x64 786432 19459443 25.38681 19.54002 146.3116

45 64 16x64 786432 19505499 25.39597 19.54002 146.6579

45 32 8x64 786432 19882400 24.57212 19.54002 149.4917

45 128 8x64 786432 19961296 23.90277 19.54002 150.0849

45 64 8x64 786432 20086601 23.67757 19.54002 151.0271

45 128 16x64 786432 20118977 23.43648 19.54002 151.2705

Table A.6 lists all the access times and hit rates for various cache sizes and blocks sizes.

The table is arranged in the ascending order of access times. So the first value in the table

is the fastest access time produced by the 2-way set associative cache.

Table A.7: Bilinear Interpolation with SDRAM

Angle Pixels Cycles Ignore (%) Time(milliseconds)

0 786432 14149632 0 106.388211

1 786432 14042036 0.896708 105.57922

2 786432 13926589 1.760229 104.711197

3 786432 13814780 2.596537 103.870526

4 786432 13706830 3.403981 103.058875

5 786432 13602365 4.185359 102.273419

6 786432 13501419 4.940414 101.514429

77

7 786432 13403822 5.67042 100.780614

8 786432 13309574 6.375376 100.071982

9 786432 13218505 7.056554 99.387258

10 786432 13130581 7.714208 98.726176

11 786432 13045683 8.349228 98.08784

12 786432 12963692 8.962504 97.471371

13 786432 12884693 9.553401 96.877389

14 786432 12808805 10.121028 96.306801

15 786432 12734991 10.673141 95.751815

16 786432 12663999 11.204147 95.21804

17 786432 12595863 11.713791 94.705738

18 786432 12530226 12.204742 94.212227

19 786432 12466986 12.677765 93.736738

20 786432 12406211 13.13235 93.279779

21 786432 12347884 13.568624 92.84123

22 786432 12291784 13.98824 92.419431

23 786432 12237911 14.3912 92.014365

24 786432 12186401 14.776484 91.627076

25 786432 12136982 15.146129 91.255501

26 786432 12089586 15.500641 90.89914

27 786432 12044451 15.838242 90.559781

28 786432 12001254 16.161346 90.234995

29 786432 11960097 16.469193 89.925542

30 786432 11920844 16.762796 89.630403

31 786432 11883529 17.041906 89.349844

32 786432 11848424 17.304483 89.085892

33 786432 11814509 17.558161 88.830896

34 786432 11782719 17.795944 88.591874

35 786432 11752697 18.020502 88.366143

36 786432 11724324 18.232727 88.152811

37 786432 11697787 18.431219 87.953284

38 786432 11672865 18.61763 87.765902

39 786432 11649592 18.791708 87.590918

40 786432 11627849 18.95434 87.427437

41 786432 11607602 19.105783 87.2752

42 786432 11588936 19.245401 87.13486

43 786432 11571647 19.37472 87.004863

78

44 786432 11555973 19.491959 86.887017

45 786432 11544498 19.577789 86.800739

Table A.8: Cache 64x32, Block 64 Bilinear

Angle

(degrees)

Block

size

Cache

Type (l

x w) Pixels Cycles

Hit

Rate(%)

Access Time

(milliseconds)

0 64 64x32 786432 4928211 98.01709 37.05422

1 64 64x32 786432 5062248 96.99751 38.06201

2 64 64x32 786432 5193501 95.95404 39.04888

3 64 64x32 786432 5177490 95.11308 38.9285

4 64 64x32 786432 5164083 94.29782 38.82769

5 64 64x32 786432 5147151 93.51428 38.70038

6 64 64x32 786432 5124570 92.76419 38.5306

7 64 64x32 786432 5105346 92.03641 38.38606

8 64 64x32 786432 5088327 91.33151 38.2581

9 64 64x32 786432 5072106 90.64986 38.13614

10 64 64x32 786432 5056401 89.99243 38.01805

11 64 64x32 786432 5042064 89.35534 37.91026

12 64 64x32 786432 5025255 88.74521 37.78387

13 64 64x32 786432 5010657 88.15469 37.67411

14 64 64x32 786432 4996197 87.58768 37.56539

15 64 64x32 786432 4982004 87.03667 37.45868

16 64 64x32 786432 4970064 86.50589 37.3689

17 64 64x32 786432 4959663 85.99329 37.2907

18 64 64x32 786432 4947363 85.50253 37.19822

19 64 64x32 786432 4934748 85.03135 37.10337

20 64 64x32 786432 4923504 84.57712 37.01883

21 64 64x32 786432 4911222 84.1424 36.92648

22 64 64x32 786432 4903581 83.71973 36.86903

23 64 64x32 786432 4894014 83.31776 36.7971

24 64 64x32 786432 4884468 82.93196 36.72532

25 64 64x32 786432 4877049 82.55988 36.66954

26 64 64x32 786432 4866849 82.20869 36.59285

27 64 64x32 786432 4858482 81.87052 36.52994

79

28 64 64x32 786432 4852209 81.54583 36.48277

29 64 64x32 786432 4844460 81.23856 36.42451

30 64 64x32 786432 4838613 80.94368 36.38055

31 64 64x32 786432 4833777 80.66225 36.34419

32 64 64x32 786432 4823028 80.40072 36.26337

33 64 64x32 786432 4822029 80.14549 36.25586

34 64 64x32 786432 4816095 79.90808 36.21124

35 64 64x32 786432 4811769 79.68238 36.17872

36 64 64x32 786432 4807935 79.4693 36.14989

37 64 64x32 786432 4801803 79.27173 36.10378

38 64 64x32 786432 4792647 79.09066 36.03494

39 64 64x32 786432 4785072 78.92014 35.97799

40 64 64x32 786432 4779753 78.75938 35.93799

41 64 64x32 786432 4772544 78.61261 35.88379

42 64 64x32 786432 4765737 78.47701 35.83261

43 64 64x32 786432 4759344 78.35188 35.78454

44 64 64x32 786432 4755615 78.23499 35.7565

45 64 64x32 786432 4734099 78.16283 35.59473

Table A.9: SDRAM with blocks (comparison)

Angle Pixels Cycles

SDRAM with

Blocks(milliseconds)

SDRAM, no

blocks,no

cache

(milliseconds)

64x32

Cache,

BlockSize 64

(milliseconds)

0 786432 1155065 8.684699 5.999587 11.64126

5 786432 1595890 11.99917 9.452797 13.79233

35 786432 3667848 27.5778 24.56711 13.0542

45 786432 4199407 31.57449 29.50932 12.93868

Table A.10: Cache 64x32, Block 64 (Sample LUTs)

Test LUT Pixels Cycles Hit Rate (%) Ignore (%)

Access Time

(milliseconds)

I (90 786432 1382400 72.705208 24.951044 10.39399

80

degrees)

II 786432 863401 89.52726 7.719294 6.491737

III 786432 830897 85.397339 7.719294 6.247346

Table A.11: SDRAM (Sample LUTs)

Test LUT Pixels Cycles

Same Row

Access (%)

Change in

Row (%)

Ignore

(%)

Access

Time (milli-

seconds)

I (90

degrees) 786432 4921344 0.048955 75 24.95104 37.00259

II 786432 1320726 82.686745 9.593964 7.719294 9.930271

III 786432 1696220 75.865807 16.414896 7.719294 12.75353

Table A.12: SDRAM Vs Cache (Sample LUTs)

Test LUT

RAM Access

Time

(milliseconds)

Cache

Design

Access time

(milliseconds)

I (90

degrees) 37.00259 10.39399

II 9.930271 6.491737

III 12.75353 6.247346

Table A.13: Cache 64x32, Block 64 (Sample LUTs, Bilinear Interpolation)

Test LUT Pixels Cycles

Hit Rate

(%)

Access Time

(milliseconds)

I (90

degrees) 786432 2582695 72.738899 19.41876

II 786432 2977696 89.603584 22.38869

III 786432 2953412 88.831619 22.20611

81

Table A.14: SDRAM (Sample LUTs, Bilinear Interpolation)

Test LUT Pixels Cycles

Access Time

(milliseconds)

I (90

degrees) 786432 10826129 81.3994638

II 786432 12916800 97.1187958

III 786432 13127255 98.701164

Table A.15: SDRAM Vs Cache (Sample LUTs, Bilinear Interpolation)

Test LUT

RAM Access

Time

(milliseconds)

Cache

Design

Access time

(milliseconds)

I (90

degrees) 81.39946 19.41876

II 97.1188 22.38869

III 98.70116 22.20611

82

Appendix B: Simulation Code

B.1) SDRAM Simulation

The following C code was written to simulate what happens while accessing a test LUT

in case bilinear interpolation is performed. The ramaccess function is the main function

in the code and its logic is used by all simulations involving the SDRAM.

#include"stdafx.h"

#include<stdlib.h>

#include<conio.h>

#include<stdio.h>

#include<math.h>

//GETLUT FUNCTION DECLARATIONS

void getlut(void);

unsigned int convert(char *);

#define pi 3.1457

double * ptr;

int w=1024,l=768,*chid,*lineid,hexerr;

//RAM ACCESS

#define clk 133000000.0

void ramaccess(void);

int main(void) {

 printf("\nReading LUT...............");

 getlut();

 printf("Finished!");

 ramaccess();

 getch();

 return(0);

}

void getlut(void) {

 FILE *f1;

 char a[30];

83

 char b[6],*p;

 p=&b[0];

 int i,j;

 unsigned int u,v,value;

 ptr=new double [1024*768];

 chid=new int[1024*768];

 lineid=new int[8];

 f1=fopen("lut0.txt","r+");

 fscanf(f1,"%s",&a[0]);

 fscanf(f1,"%s",&a[0]);

 fscanf(f1,"%s",&a[0]);

 for (j=0;j<l;j++) {

 for (i=0;i<w;i++) {

 fscanf(f1,"%s",&a[0]);

 b[0]=a[3];

 b[1]=a[4];

 b[2]=a[5];

 b[3]=a[6];

 b[4]=a[7];

 b[5]=NULL;

 if(a[0]=='0' || a[0]=='1' || a[0]=='2' || a[0]=='3'

|| a[0]=='4' || a[0]=='5' || a[0]=='6' || a[0]=='7') {

 value=convert(p);

 ptr[j*1024+i]=value;

 }

 else {

 ptr[j*1024+i]=-1;

 }

 }

 }

 fclose(f1);

 f1=fopen("lut0.txt","r+");

 fscanf(f1,"%s",&a[0]);

 fscanf(f1,"%s",&a[0]);

 fscanf(f1,"%s",&a[0]);

 for (j=0;j<768;j++) {

 for (i=0;i<1024;i++) {

 fscanf(f1,"%s",&a[0]);

84

 b[0]='0';b[1]='0';b[2]='0';b[3]='0';

 b[4]=a[2];

 b[5]=NULL;

 if(a[0]=='0' || a[0]=='1' || a[0]=='2' || a[0]=='3'

|| a[0]=='4' || a[0]=='5' || a[0]=='6' || a[0]=='7') {

 value=convert(p);

 chid[j*1024+i]=(value&0x6)>>1;

 }

 else {

 chid[j*1024+i]=-1;

 }

 }

 }

 fclose(f1);

}

unsigned int convert(char * ppp) {

 unsigned int ret=0,i;

 double j=0,tt;

 unsigned int ttt;

 char dum[21];

 // Hexadecimal 1

 if(ppp[0]=='0') {

 dum[0]='0';dum[1]='0';dum[2]='0';dum[3]='0';

 }

 else if (ppp[0]=='1') {

 dum[0]='0';dum[1]='0';dum[2]='0';dum[3]='1';

 }

 else if (ppp[0]=='2') {

 dum[0]='0';dum[1]='0';dum[2]='1';dum[3]='0';

 }

 else if (ppp[0]=='3') {

 dum[0]='0';dum[1]='0';dum[2]='1';dum[3]='1';

 }

 else if (ppp[0]=='4') {

 dum[0]='0';dum[1]='1';dum[2]='0';dum[3]='0';

 }

 else if (ppp[0]=='5') {

85

 dum[0]='0';dum[1]='1';dum[2]='0';dum[3]='1';

 }

 else if (ppp[0]=='6') {

 dum[0]='0';dum[1]='1';dum[2]='1';dum[3]='0';

 }

 else if (ppp[0]=='7') {

 dum[0]='0';dum[1]='1';dum[2]='1';dum[3]='1';

 }

 else if (ppp[0]=='8') {

 dum[0]='1';dum[1]='0';dum[2]='0';dum[3]='0';

 }

 else if (ppp[0]=='9') {

 dum[0]='1';dum[1]='0';dum[2]='0';dum[3]='1';

 }

 else if (ppp[0]=='A' || ppp[0]=='a') {

 dum[0]='1';dum[1]='0';dum[2]='1';dum[3]='0';

 }

 else if (ppp[0]=='B' || ppp[0]=='b') {

 dum[0]='1';dum[1]='0';dum[2]='1';dum[3]='1';

 }

 else if (ppp[0]=='C' || ppp[0]=='c') {

 dum[0]='1';dum[1]='1';dum[2]='0';dum[3]='0';

 }

 else if (ppp[0]=='D' || ppp[0]=='d') {

 dum[0]='1';dum[1]='1';dum[2]='0';dum[3]='1';

 }

 else if (ppp[0]=='E' || ppp[0]=='e') {

 dum[0]='1';dum[1]='1';dum[2]='1';dum[3]='0';

 }

 else if (ppp[0]=='F' || ppp[0]=='f') {

 dum[0]='1';dum[1]='1';dum[2]='1';dum[3]='1';

 }

 else {

 hexerr=-1;

 }

 //hexadecimal 2

 if(ppp[1]=='0') {

 dum[4]='0';dum[5]='0';dum[6]='0';dum[7]='0';

86

 }

 else if (ppp[1]=='1') {

 dum[4]='0';dum[5]='0';dum[6]='0';dum[7]='1';

 }

 else if (ppp[1]=='2') {

 dum[4]='0';dum[5]='0';dum[6]='1';dum[7]='0';

 }

 else if (ppp[1]=='3') {

 dum[4]='0';dum[5]='0';dum[6]='1';dum[7]='1';

 }

 else if (ppp[1]=='4') {

 dum[4]='0';dum[5]='1';dum[6]='0';dum[7]='0';

 }

 else if (ppp[1]=='5') {

 dum[4]='0';dum[5]='1';dum[6]='0';dum[7]='1';

 }

 else if (ppp[1]=='6') {

 dum[4]='0';dum[5]='1';dum[6]='1';dum[7]='0';

 }

 else if (ppp[1]=='7') {

 dum[4]='0';dum[5]='1';dum[6]='1';dum[7]='1';

 }

 else if (ppp[1]=='8') {

 dum[4]='1';dum[5]='0';dum[6]='0';dum[7]='0';

 }

 else if (ppp[1]=='9') {

 dum[4]='1';dum[5]='0';dum[6]='0';dum[7]='1';

 }

 else if (ppp[1]=='A' || ppp[1]=='a') {

 dum[4]='1';dum[5]='0';dum[6]='1';dum[7]='0';

 }

 else if (ppp[1]=='B' || ppp[1]=='b') {

 dum[4]='1';dum[5]='0';dum[6]='1';dum[7]='1';

 }

 else if (ppp[1]=='C' || ppp[1]=='c') {

 dum[4]='1';dum[5]='1';dum[6]='0';dum[7]='0';

 }

 else if (ppp[1]=='D' || ppp[1]=='d') {

87

 dum[4]='1';dum[5]='1';dum[6]='0';dum[7]='1';

 }

 else if (ppp[1]=='E' || ppp[1]=='e') {

 dum[4]='1';dum[5]='1';dum[6]='1';dum[7]='0';

 }

 else if (ppp[1]=='F' || ppp[1]=='f') {

 dum[4]='1';dum[5]='1';dum[6]='1';dum[7]='1';

 }

 else {

 hexerr=-1;

 }

 //hexadecimal 3

 if(ppp[2]=='0') {

 dum[8]='0';dum[9]='0';dum[10]='0';dum[11]='0';

 }

 else if (ppp[2]=='1') {

 dum[8]='0';dum[9]='0';dum[10]='0';dum[11]='1';

 }

 else if (ppp[2]=='2') {

 dum[8]='0';dum[9]='0';dum[10]='1';dum[11]='0';

 }

 else if (ppp[2]=='3') {

 dum[8]='0';dum[9]='0';dum[10]='1';dum[11]='1';

 }

 else if (ppp[2]=='4') {

 dum[8]='0';dum[9]='1';dum[10]='0';dum[11]='0';

 }

 else if (ppp[2]=='5') {

 dum[8]='0';dum[9]='1';dum[10]='0';dum[11]='1';

 }

 else if (ppp[2]=='6') {

 dum[8]='0';dum[9]='1';dum[10]='1';dum[11]='0';

 }

 else if (ppp[2]=='7') {

 dum[8]='0';dum[9]='1';dum[10]='1';dum[11]='1';

 }

 else if (ppp[2]=='8') {

 dum[8]='1';dum[9]='0';dum[10]='0';dum[11]='0';

88

 }

 else if (ppp[2]=='9') {

 dum[8]='1';dum[9]='0';dum[10]='0';dum[11]='1';

 }

 else if (ppp[2]=='A' || ppp[2]=='a') {

 dum[8]='1';dum[9]='0';dum[10]='1';dum[11]='0';

 }

 else if (ppp[2]=='B' || ppp[2]=='b') {

 dum[8]='1';dum[9]='0';dum[10]='1';dum[11]='1';

 }

 else if (ppp[2]=='C' || ppp[2]=='c') {

 dum[8]='1';dum[9]='1';dum[10]='0';dum[11]='0';

 }

 else if (ppp[2]=='D' || ppp[2]=='d') {

 dum[8]='1';dum[9]='1';dum[10]='0';dum[11]='1';

 }

 else if (ppp[2]=='E' || ppp[2]=='e') {

 dum[8]='1';dum[9]='1';dum[10]='1';dum[11]='0';

 }

 else if (ppp[2]=='F' || ppp[2]=='f') {

 dum[8]='1';dum[9]='1';dum[10]='1';dum[11]='1';

 }

 else {

 hexerr=-1;

 }

 //hexadecimal 4

 if(ppp[3]=='0') {

 dum[12]='0';dum[13]='0';dum[14]='0';dum[15]='0';

 }

 else if (ppp[3]=='1') {

 dum[12]='0';dum[13]='0';dum[14]='0';dum[15]='1';

 }

 else if (ppp[3]=='2') {

 dum[12]='0';dum[13]='0';dum[14]='1';dum[15]='0';

 }

 else if (ppp[3]=='3') {

 dum[12]='0';dum[13]='0';dum[14]='1';dum[15]='1';

 }

89

 else if (ppp[3]=='4') {

 dum[12]='0';dum[13]='1';dum[14]='0';dum[15]='0';

 }

 else if (ppp[3]=='5') {

 dum[12]='0';dum[13]='1';dum[14]='0';dum[15]='1';

 }

 else if (ppp[3]=='6') {

 dum[12]='0';dum[13]='1';dum[14]='1';dum[15]='0';

 }

 else if (ppp[3]=='7') {

 dum[12]='0';dum[13]='1';dum[14]='1';dum[15]='1';

 }

 else if (ppp[3]=='8') {

 dum[12]='1';dum[13]='0';dum[14]='0';dum[15]='0';

 }

 else if (ppp[3]=='9') {

 dum[12]='1';dum[13]='0';dum[14]='0';dum[15]='1';

 }

 else if (ppp[3]=='A' || ppp[3]=='a') {

 dum[12]='1';dum[13]='0';dum[14]='1';dum[15]='0';

 }

 else if (ppp[3]=='B' || ppp[3]=='b') {

 dum[12]='1';dum[13]='0';dum[14]='1';dum[15]='1';

 }

 else if (ppp[3]=='C' || ppp[3]=='c') {

 dum[12]='1';dum[13]='1';dum[14]='0';dum[15]='0';

 }

 else if (ppp[3]=='D' || ppp[3]=='d') {

 dum[12]='1';dum[13]='1';dum[14]='0';dum[15]='1';

 }

 else if (ppp[3]=='E' || ppp[3]=='e') {

 dum[12]='1';dum[13]='1';dum[14]='1';dum[15]='0';

 }

 else if (ppp[3]=='F' || ppp[3]=='f') {

 dum[12]='1';dum[13]='1';dum[14]='1';dum[15]='1';

 }

 else {

 hexerr=-1;

90

 }

 //hexadecimal 5

 if(ppp[4]=='0') {

 dum[16]='0';dum[17]='0';dum[18]='0';dum[19]='0';

 }

 else if (ppp[4]=='1') {

 dum[16]='0';dum[17]='0';dum[18]='0';dum[19]='1';

 }

 else if (ppp[4]=='2') {

 dum[16]='0';dum[17]='0';dum[18]='1';dum[19]='0';

 }

 else if (ppp[4]=='3') {

 dum[16]='0';dum[17]='0';dum[18]='1';dum[19]='1';

 }

 else if (ppp[4]=='4') {

 dum[16]='0';dum[17]='1';dum[18]='0';dum[19]='0';

 }

 else if (ppp[4]=='5') {

 dum[16]='0';dum[17]='1';dum[18]='0';dum[19]='1';

 }

 else if (ppp[4]=='6') {

 dum[16]='0';dum[17]='1';dum[18]='1';dum[19]='0';

 }

 else if (ppp[4]=='7') {

 dum[16]='0';dum[17]='1';dum[18]='1';dum[19]='1';

 }

 else if (ppp[4]=='8') {

 dum[16]='1';dum[17]='0';dum[18]='0';dum[19]='0';

 }

 else if (ppp[4]=='9') {

 dum[16]='1';dum[17]='0';dum[18]='0';dum[19]='1';

 }

 else if (ppp[4]=='A' || ppp[4]=='a') {

 dum[16]='1';dum[17]='0';dum[18]='1';dum[19]='0';

 }

 else if (ppp[4]=='B' || ppp[4]=='b') {

 dum[16]='1';dum[17]='0';dum[18]='1';dum[19]='1';

91

 }

 else if (ppp[4]=='C' || ppp[4]=='c') {

 dum[16]='1';dum[17]='1';dum[18]='0';dum[19]='0';

 }

 else if (ppp[3]=='D' || ppp[4]=='d') {

 dum[16]='1';dum[17]='1';dum[18]='0';dum[19]='1';

 }

 else if (ppp[4]=='E' || ppp[4]=='e') {

 dum[16]='1';dum[17]='1';dum[18]='1';dum[19]='0';

 }

 else if (ppp[4]=='F' || ppp[4]=='f') {

 dum[16]='1';dum[17]='1';dum[18]='1';dum[19]='1';

 }

 else {

 hexerr=-1;

 }

 dum[20]=NULL;

 j=19.0;

 for(i=0;i<20;i++) {

 tt=pow(2.0,j);

 ttt=(unsigned int)tt;

 if(dum[i]=='0') {

 ret=ret+(0*ttt);

 }

 else {

 ret=ret+(1*ttt);

 }

 j=j-1.0;

 }

 return(ret);

}

void ramaccess(void) {

 FILE *f2;

 f2=fopen("ramaccessbilinear.csv","a+");

 int i,j,currow=0;

92

 long int cycles=0,pixels=0;

 float timee,p_cir,p_sr,same_row=0.0,change_in_row=0.0,ignore=0.0;

 int x1,x2,y1,y2;

 for(j=0;j<l;j++) {

 for(i=0;i<w;i++) {

 pixels=pixels+1;

 if(ptr[j*w+i]<0) {

 cycles=cycles+1;

 ignore=ignore+4.0;

 }

 else {

 y1=floor((ptr[j*w+i]/w));

 y2=ceil((ptr[j*w+i]/w));

 if(currow==y1) {

 cycles=cycles+11;

 same_row=same_row+3;

 change_in_row=change_in_row+1;

 currow=y2;

 }

 else {

 cycles=cycles+18;

 change_in_row=change_in_row+2;

 same_row=same_row+2;

 currow=y2;

 }

 }

 }

 cycles=cycles+8;

 }

 timee=cycles/clk;

 p_sr=(same_row*100)/(w*l*4);

 p_cir=(change_in_row*100)/(w*l*4);

 ignore=(ignore*100)/(w*l*4);

 printf("\n%d\t%d\t%4.6f\t%4.6f\t%4.6f\t%4.6f\n",pixels,cycles,p_s

r,p_cir,ignore,timee);

 fprintf(f2,"%d,%d,%4.6f,%4.6f,%4.6f,%4.6f",pixels,cycles,p_sr,p_c

ir,ignore,timee*1000);

 fclose(f2);

93

}

B.2) Cache with Blocks

The following code was written to simulate what happens when there is cache with

blocks while accessing test LUTs. The cache and caloit functions contain the main logic

for the cache simulations. All the simulations involving the cache (even without blocks)

use these two functions.

#include<stdafx.h>

#include<stdio.h>

#include<stdlib.h>

#include<conio.h>

#include<math.h>

//GETLUT FUNCTION DECLARATIONS

void getlut(void);

unsigned int convert(char *);

#define pi 3.1457

int * ptr;

int w=1024,l=768,*chid,*lineid,hexerr;

//GET BLOCKS DECLARATIONS

void getblocks(void);

int *ii,*jj,bwid=-1,blen=-1;

//CACHE ALGORITHM DECLARATIONS

#define clk 133000000.0

void cache(void);

int * caloit(int,int,int,int);

int l1=64,w1=32; // CACHE SIZE

struct cache {

 int jtag;

} cachevar[512];

int main(void) {

 int i;

 for(i=0;i<512;i++) {

94

 cachevar[i].jtag=-1;

 }

 printf("\nGetting LUT Values.........");

 getlut();

 printf("Finished!");

 printf("\nGetting Blocks............");

 getblocks();

 printf(". Finished!");

 cache();

 printf("\nFinished Process!");

 getch();

 delete(ptr);

 delete(chid);

 delete(lineid);

 delete(ii);

 delete(jj);

 return(0);

}

void getlut(void) {

 FILE *f1;

 char a[30];

 char b[6],*p;

 p=&b[0];

 int i,j;

 unsigned int u,v,value;

 ptr=new int [w*l];

 chid=new int[w*l];

 lineid=new int[8];

 f1=fopen("lut0.txt","r+");

 fscanf(f1,"%s",&a[0]);

 fscanf(f1,"%s",&a[0]);

 fscanf(f1,"%s",&a[0]);

 for (j=0;j<l;j++) {

 for (i=0;i<w;i++) {

 fscanf(f1,"%s",&a[0]);

 b[0]=a[3];

 b[1]=a[4];

95

 b[2]=a[5];

 b[3]=a[6];

 b[4]=a[7];

 b[5]=NULL;

 if(a[0]=='0' || a[0]=='1' || a[0]=='2' || a[0]=='3'

|| a[0]=='4' || a[0]=='5' || a[0]=='6' || a[0]=='7') {

 value=convert(p);

 ptr[j*w+i]=value;

 }

 else {

 ptr[j*w+i]=-1;

 }

 }

 }

 fclose(f1);

 f1=fopen("lut0.txt","r+");

 fscanf(f1,"%s",&a[0]);

 fscanf(f1,"%s",&a[0]);

 fscanf(f1,"%s",&a[0]);

 for (j=0;j<l;j++) {

 for (i=0;i<w;i++) {

 fscanf(f1,"%s",&a[0]);

 b[0]='0';b[1]='0';b[2]='0';b[3]='0';

 b[4]=a[2];

 b[5]=NULL;

 if(a[0]=='0' || a[0]=='1' || a[0]=='2' || a[0]=='3'

|| a[0]=='4' || a[0]=='5' || a[0]=='6' || a[0]=='7') {

 value=convert(p);

 chid[j*w+i]=(value&0x6)>>1;

 }

 else {

 chid[j*w+i]=-1;

 }

 }

 }

 fclose(f1);

}

96

unsigned int convert(char * ppp) {

 unsigned int ret=0,i;

 double j=0,tt;

 unsigned int ttt;

 char dum[21];

 // Hexadecimal 1

 if(ppp[0]=='0') {

 dum[0]='0';dum[1]='0';dum[2]='0';dum[3]='0';

 }

 else if (ppp[0]=='1') {

 dum[0]='0';dum[1]='0';dum[2]='0';dum[3]='1';

 }

 else if (ppp[0]=='2') {

 dum[0]='0';dum[1]='0';dum[2]='1';dum[3]='0';

 }

 else if (ppp[0]=='3') {

 dum[0]='0';dum[1]='0';dum[2]='1';dum[3]='1';

 }

 else if (ppp[0]=='4') {

 dum[0]='0';dum[1]='1';dum[2]='0';dum[3]='0';

 }

 else if (ppp[0]=='5') {

 dum[0]='0';dum[1]='1';dum[2]='0';dum[3]='1';

 }

 else if (ppp[0]=='6') {

 dum[0]='0';dum[1]='1';dum[2]='1';dum[3]='0';

 }

 else if (ppp[0]=='7') {

 dum[0]='0';dum[1]='1';dum[2]='1';dum[3]='1';

 }

 else if (ppp[0]=='8') {

 dum[0]='1';dum[1]='0';dum[2]='0';dum[3]='0';

 }

 else if (ppp[0]=='9') {

 dum[0]='1';dum[1]='0';dum[2]='0';dum[3]='1';

 }

 else if (ppp[0]=='A' || ppp[0]=='a') {

 dum[0]='1';dum[1]='0';dum[2]='1';dum[3]='0';

97

 }

 else if (ppp[0]=='B' || ppp[0]=='b') {

 dum[0]='1';dum[1]='0';dum[2]='1';dum[3]='1';

 }

 else if (ppp[0]=='C' || ppp[0]=='c') {

 dum[0]='1';dum[1]='1';dum[2]='0';dum[3]='0';

 }

 else if (ppp[0]=='D' || ppp[0]=='d') {

 dum[0]='1';dum[1]='1';dum[2]='0';dum[3]='1';

 }

 else if (ppp[0]=='E' || ppp[0]=='e') {

 dum[0]='1';dum[1]='1';dum[2]='1';dum[3]='0';

 }

 else if (ppp[0]=='F' || ppp[0]=='f') {

 dum[0]='1';dum[1]='1';dum[2]='1';dum[3]='1';

 }

 else {

 hexerr=-1;

 }

 //hexadecimal 2

 if(ppp[1]=='0') {

 dum[4]='0';dum[5]='0';dum[6]='0';dum[7]='0';

 }

 else if (ppp[1]=='1') {

 dum[4]='0';dum[5]='0';dum[6]='0';dum[7]='1';

 }

 else if (ppp[1]=='2') {

 dum[4]='0';dum[5]='0';dum[6]='1';dum[7]='0';

 }

 else if (ppp[1]=='3') {

 dum[4]='0';dum[5]='0';dum[6]='1';dum[7]='1';

 }

 else if (ppp[1]=='4') {

 dum[4]='0';dum[5]='1';dum[6]='0';dum[7]='0';

 }

 else if (ppp[1]=='5') {

 dum[4]='0';dum[5]='1';dum[6]='0';dum[7]='1';

 }

98

 else if (ppp[1]=='6') {

 dum[4]='0';dum[5]='1';dum[6]='1';dum[7]='0';

 }

 else if (ppp[1]=='7') {

 dum[4]='0';dum[5]='1';dum[6]='1';dum[7]='1';

 }

 else if (ppp[1]=='8') {

 dum[4]='1';dum[5]='0';dum[6]='0';dum[7]='0';

 }

 else if (ppp[1]=='9') {

 dum[4]='1';dum[5]='0';dum[6]='0';dum[7]='1';

 }

 else if (ppp[1]=='A' || ppp[1]=='a') {

 dum[4]='1';dum[5]='0';dum[6]='1';dum[7]='0';

 }

 else if (ppp[1]=='B' || ppp[1]=='b') {

 dum[4]='1';dum[5]='0';dum[6]='1';dum[7]='1';

 }

 else if (ppp[1]=='C' || ppp[1]=='c') {

 dum[4]='1';dum[5]='1';dum[6]='0';dum[7]='0';

 }

 else if (ppp[1]=='D' || ppp[1]=='d') {

 dum[4]='1';dum[5]='1';dum[6]='0';dum[7]='1';

 }

 else if (ppp[1]=='E' || ppp[1]=='e') {

 dum[4]='1';dum[5]='1';dum[6]='1';dum[7]='0';

 }

 else if (ppp[1]=='F' || ppp[1]=='f') {

 dum[4]='1';dum[5]='1';dum[6]='1';dum[7]='1';

 }

 else {

 hexerr=-1;

 }

 //hexadecimal 3

 if(ppp[2]=='0') {

 dum[8]='0';dum[9]='0';dum[10]='0';dum[11]='0';

 }

 else if (ppp[2]=='1') {

99

 dum[8]='0';dum[9]='0';dum[10]='0';dum[11]='1';

 }

 else if (ppp[2]=='2') {

 dum[8]='0';dum[9]='0';dum[10]='1';dum[11]='0';

 }

 else if (ppp[2]=='3') {

 dum[8]='0';dum[9]='0';dum[10]='1';dum[11]='1';

 }

 else if (ppp[2]=='4') {

 dum[8]='0';dum[9]='1';dum[10]='0';dum[11]='0';

 }

 else if (ppp[2]=='5') {

 dum[8]='0';dum[9]='1';dum[10]='0';dum[11]='1';

 }

 else if (ppp[2]=='6') {

 dum[8]='0';dum[9]='1';dum[10]='1';dum[11]='0';

 }

 else if (ppp[2]=='7') {

 dum[8]='0';dum[9]='1';dum[10]='1';dum[11]='1';

 }

 else if (ppp[2]=='8') {

 dum[8]='1';dum[9]='0';dum[10]='0';dum[11]='0';

 }

 else if (ppp[2]=='9') {

 dum[8]='1';dum[9]='0';dum[10]='0';dum[11]='1';

 }

 else if (ppp[2]=='A' || ppp[2]=='a') {

 dum[8]='1';dum[9]='0';dum[10]='1';dum[11]='0';

 }

 else if (ppp[2]=='B' || ppp[2]=='b') {

 dum[8]='1';dum[9]='0';dum[10]='1';dum[11]='1';

 }

 else if (ppp[2]=='C' || ppp[2]=='c') {

 dum[8]='1';dum[9]='1';dum[10]='0';dum[11]='0';

 }

 else if (ppp[2]=='D' || ppp[2]=='d') {

 dum[8]='1';dum[9]='1';dum[10]='0';dum[11]='1';

 }

100

 else if (ppp[2]=='E' || ppp[2]=='e') {

 dum[8]='1';dum[9]='1';dum[10]='1';dum[11]='0';

 }

 else if (ppp[2]=='F' || ppp[2]=='f') {

 dum[8]='1';dum[9]='1';dum[10]='1';dum[11]='1';

 }

 else {

 hexerr=-1;

 }

 //hexadecimal 4

 if(ppp[3]=='0') {

 dum[12]='0';dum[13]='0';dum[14]='0';dum[15]='0';

 }

 else if (ppp[3]=='1') {

 dum[12]='0';dum[13]='0';dum[14]='0';dum[15]='1';

 }

 else if (ppp[3]=='2') {

 dum[12]='0';dum[13]='0';dum[14]='1';dum[15]='0';

 }

 else if (ppp[3]=='3') {

 dum[12]='0';dum[13]='0';dum[14]='1';dum[15]='1';

 }

 else if (ppp[3]=='4') {

 dum[12]='0';dum[13]='1';dum[14]='0';dum[15]='0';

 }

 else if (ppp[3]=='5') {

 dum[12]='0';dum[13]='1';dum[14]='0';dum[15]='1';

 }

 else if (ppp[3]=='6') {

 dum[12]='0';dum[13]='1';dum[14]='1';dum[15]='0';

 }

 else if (ppp[3]=='7') {

 dum[12]='0';dum[13]='1';dum[14]='1';dum[15]='1';

 }

 else if (ppp[3]=='8') {

 dum[12]='1';dum[13]='0';dum[14]='0';dum[15]='0';

 }

 else if (ppp[3]=='9') {

101

 dum[12]='1';dum[13]='0';dum[14]='0';dum[15]='1';

 }

 else if (ppp[3]=='A' || ppp[3]=='a') {

 dum[12]='1';dum[13]='0';dum[14]='1';dum[15]='0';

 }

 else if (ppp[3]=='B' || ppp[3]=='b') {

 dum[12]='1';dum[13]='0';dum[14]='1';dum[15]='1';

 }

 else if (ppp[3]=='C' || ppp[3]=='c') {

 dum[12]='1';dum[13]='1';dum[14]='0';dum[15]='0';

 }

 else if (ppp[3]=='D' || ppp[3]=='d') {

 dum[12]='1';dum[13]='1';dum[14]='0';dum[15]='1';

 }

 else if (ppp[3]=='E' || ppp[3]=='e') {

 dum[12]='1';dum[13]='1';dum[14]='1';dum[15]='0';

 }

 else if (ppp[3]=='F' || ppp[3]=='f') {

 dum[12]='1';dum[13]='1';dum[14]='1';dum[15]='1';

 }

 else {

 hexerr=-1;

 }

 //hexadecimal 5

 if(ppp[4]=='0') {

 dum[16]='0';dum[17]='0';dum[18]='0';dum[19]='0';

 }

 else if (ppp[4]=='1') {

 dum[16]='0';dum[17]='0';dum[18]='0';dum[19]='1';

 }

 else if (ppp[4]=='2') {

 dum[16]='0';dum[17]='0';dum[18]='1';dum[19]='0';

 }

 else if (ppp[4]=='3') {

 dum[16]='0';dum[17]='0';dum[18]='1';dum[19]='1';

 }

 else if (ppp[4]=='4') {

102

 dum[16]='0';dum[17]='1';dum[18]='0';dum[19]='0';

 }

 else if (ppp[4]=='5') {

 dum[16]='0';dum[17]='1';dum[18]='0';dum[19]='1';

 }

 else if (ppp[4]=='6') {

 dum[16]='0';dum[17]='1';dum[18]='1';dum[19]='0';

 }

 else if (ppp[4]=='7') {

 dum[16]='0';dum[17]='1';dum[18]='1';dum[19]='1';

 }

 else if (ppp[4]=='8') {

 dum[16]='1';dum[17]='0';dum[18]='0';dum[19]='0';

 }

 else if (ppp[4]=='9') {

 dum[16]='1';dum[17]='0';dum[18]='0';dum[19]='1';

 }

 else if (ppp[4]=='A' || ppp[4]=='a') {

 dum[16]='1';dum[17]='0';dum[18]='1';dum[19]='0';

 }

 else if (ppp[4]=='B' || ppp[4]=='b') {

 dum[16]='1';dum[17]='0';dum[18]='1';dum[19]='1';

 }

 else if (ppp[4]=='C' || ppp[4]=='c') {

 dum[16]='1';dum[17]='1';dum[18]='0';dum[19]='0';

 }

 else if (ppp[3]=='D' || ppp[4]=='d') {

 dum[16]='1';dum[17]='1';dum[18]='0';dum[19]='1';

 }

 else if (ppp[4]=='E' || ppp[4]=='e') {

 dum[16]='1';dum[17]='1';dum[18]='1';dum[19]='0';

 }

 else if (ppp[4]=='F' || ppp[4]=='f') {

 dum[16]='1';dum[17]='1';dum[18]='1';dum[19]='1';

 }

 else {

 hexerr=-1;

 }

103

 dum[20]=NULL;

 j=19.0;

 for(i=0;i<20;i++) {

 tt=pow(2.0,j);

 ttt=(unsigned int)tt;

 if(dum[i]=='0') {

 ret=ret+(0*ttt);

 }

 else {

 ret=ret+(1*ttt);

 }

 j=j-1.0;

 }

 return(ret);

}

void getblocks(void) {

 FILE *f1;

 char a[30];

 int no_blocks,i;

 f1=fopen("blocks0.txt","r+");

 fscanf(f1,"%s",&a[0]);

 fscanf(f1,"%s",&a[0]);

 bwid=blen=atoi(a);

 no_blocks=(w*l)/(bwid*blen);

 printf("\nNum of blocks....%d",no_blocks);

 ii=new int[no_blocks];

 jj=new int[no_blocks];

 for(i=0;i<no_blocks;i++) {

 fscanf(f1,"%s",&a[0]);

 ii[i]=atoi(a);

 fscanf(f1,"%s",&a[0]);

 jj[i]=atoi(a);

 }

 fclose(f1);

// printf("\nLast i:%d Last j:%d",ii[no_blocks-1],jj[no_blocks-1]);

}

104

int * caloit (int tl,int tw, int tcr,int tcc) {

 int *oitt, oit[3];

 int lbits,wbits;

 int col_index_bits,row_index_bits,row_tag_bits,col_tag_bits;

 int

ampt_row_no=0,ampi_col_no=0,ampi_tag_no=0,degree_ct,degree_ci,degree_rt

,tcib,trtb,tctb;

 oit[0]=0,oit[1]=0,oit[2]=0;

 lbits=(int)(log(tl*1.0)/log(2.0));

 wbits=(int)(log(tw*1.0)/log(2.0));

 row_tag_bits=10-lbits;

 col_tag_bits=10-wbits;

 oit[0]=tcc&(((int)pow(2.0,wbits*1.0))-1);

 oit[1]=tcr&(((int)pow(2.0,lbits*1.0))-1);

 oit[2]=(((tcr>>lbits)&(((int)pow(2.0,row_tag_bits))-

1))<<col_tag_bits)|((tcc>>wbits)&(((int)pow(2.0,col_tag_bits))-1));

// printf("\n%d",oit[0]);

// getch();

/* if((lbits+wbits)<=10) {

 row_index_bits=0;

 col_tag_bits=10-(wbits+lbits);

 col_index_bits=lbits;

 row_tag_bits=10-row_index_bits;

 degree_ct=9;

 degree_rt=9;

 degree_ci=lbits+wbits-1;

 }

 else {

 col_tag_bits=0;

 col_index_bits=10-wbits;

 row_index_bits=lbits-col_index_bits;

 row_tag_bits=10-row_index_bits;

 degree_ct=0;

 degree_rt=9;

 degree_ci=9;

 }

 tcib=col_index_bits;trtb=row_tag_bits;tctb=col_tag_bits;

105

 while(tctb>0) {

 ampi_tag_no=ampi_tag_no+ (int) (pow(2.0,(degree_ct*1.0)));

 tctb=tctb-1;

 degree_ct=degree_ct-1;

 }

 while(tcib>0) {

 ampi_col_no=ampi_col_no+ (int) (pow(2.0,(degree_ci*1.0)));

 tcib=tcib-1;

 degree_ci=degree_ci-1;

 }

 while(trtb>0) {

 ampt_row_no=ampt_row_no+ (int) (pow(2.0,(degree_rt*1.0)));

 trtb=trtb-1;

 degree_rt=degree_rt-1;

 }

 oit[0]=tcc& ((int)(pow(2.0,(wbits*1.0))-1));

 oit[1]= ((tcr& ((int)(pow(2.0,(row_index_bits*1.0))-

1)))<<col_index_bits) | ((tcc&i_col_no)>>wbits);

 if((wbits+lbits)<=10) {

 oit[2]=((tcr&t_row_no)<<(10-(wbits+lbits))) | (

(tcc&i_tag_no)>>(10-(wbits+lbits)));

 }

 else {

 oit[2]=((tcr&t_row_no)>>row_index_bits);

 }*/

 oitt=oit;

 return(oitt);

}

void cache(void) {

 FILE *f2;

 f2=fopen("cachebilinear.csv","a+");

 long int cycles=0,pixels=0;

 int k,j1,i1,currow,curcol,cachelookup;

 int tag=0,offset=0,index=0;

106

 int x1,x2,y1,y2;

 float timee,hits=0.0,ignore=0.0;

 int *tttt,bilinear=0;

 for(k=0;k<((w*l)/(blen*bwid));k++) {

 for(j1=(jj[k]*bwid);j1<((jj[k]*bwid)+bwid);j1++) {

 for(i1=(ii[k]*blen);i1<((ii[k]*blen)+blen);i1++){

 pixels=pixels+1;

 if(ptr[j1*1024+i1]>=0) {

 bilinear=0;

 y1=ptr[j1*1024+i1]/1024;

 x1=ptr[j1*1024+i1]-y1*1024;

 y2=y1+1;

 x2=x1+1;

 //

 printf("\nx1:%d,x2:%d,y1:%d,y2:%d",x1,x2,y1,y2);

 // printf("\n%d",cachevar[16].jtag);

 currow=y1;curcol=x1;

 // while(bilinear<4){ // INCLUDE THIS LINE

FOR BILINEAR INTERPOLATION

 tttt=caloit(l1,w1,currow,curcol);

 offset=tttt[0];

 index=tttt[1];

 tag=tttt[2];

 // printf("\n%d",cachevar[index].jtag);

 if(tag==cachevar[index].jtag) {

 cycles=cycles+1;

 hits=hits+1;

 //

 printf("\n%d,%d,%d,%d,%d,Hit",currow,curcol,index,tag,offset);

 // getch();

 }

 else {

 cachevar[index].jtag=tag;

 //

 printf("\n%d,%d,%d,%d,%d,Miss",currow,curcol,index,tag,offset);

 // getch();

 if(w==8) {

 cycles=cycles+16;

107

 }

 if(w==16) {

 cycles=cycles+20;

 }

 if(w==32) {

 cycles=cycles+28;

 }

 if(w==64) {

 cycles=cycles+44;

 }

 if(w==128) {

 cycles=cycles+76;

 }

 if(w==256) {

 cycles=cycles+140;

 }

 if(w==512) {

 cycles=cycles+266;

 }

 }

 // bilinear=bilinear+1;

 offset=0;index=0;tag=0;

 if(currow==y1 && curcol==x1) {

 currow=y1;curcol=x2;

 }

 else if (currow==y1 && curcol==x2) {

 currow=y2,curcol=x1;

 }

 else {

 currow=y2;curcol=x2;

 }

 // }

 }

 else {

 // printf("\nIgnore");

 cycles=cycles+1;

 ignore=ignore+4;

 }

108

 }

 cycles=cycles+8;

 }

 }

 timee=cycles/clk;

 hits=(hits*100)/(w*l*4);

 ignore=(ignore*100)/(w*l*4);

 printf("\n%d\t%dx%d\t%d\t%d\t%4.6f\t%4.6f\t%4.6f\n",bwid,l,w,pixe

ls,cycles,hits,ignore,timee);

 fprintf(f2,"%d,%dx%d,%d,%d,%4.6f,%4.6f,%4.6f",bwid,l,w,pixels,cyc

les,hits,ignore,timee*1000);

 fclose(f2);

}

109

References

[1] Ruigang Yang, Xinyu Huang, Subhasri Krishnan, Christopher Jaynes, ―Toward the

Light Field Display: Autostereoscopic Rendering via a Cluster of Projectors‖,

Eurographics 2006. (For abstract see at:

http://vis.uky.edu/~gravity/Research/lddisplay/LightFieldDisplay.html

For paper see at:

http://www.vis.uky.edu/~xhuan4/LFDisplay/LFdisplay-short-sub.pdf)

[2] Ruigang Yang, Daniel R. Rudolf, Vijai Raghunathan, ―Flexible Pixel Compositor for

Plug-and-Play Multi-Projector Displays‖, PROCAMS 2007, Minneapolis, Minnesota .

 [3] Subhasri Krishnan, ―A Control Mechanism To The Anywhere Pixel Router‖,

University of Kentucky 2007. (See at:

http://lib.uky.edu/ETD/ukyelen2007t00594/Subhasri_Thesis.pdf)

[4] DDR-RAM datasheet from Micron Devices. (See at:

http://download.micron.com/pdf/datasheets/dram/ddr/512MBDDRx4x8x16.pdf)

[5] John L. Hennessy, David A. Patterson, ―Computer Architecture: A Quantitative

Approach‖, third edition [p390-p448].

[6] Virtex-4 FPGA datasheet from Xilinx. (See at:

http://direct.xilinx.com/bvdocs/publications/ds112.pdf)

[7] James D. Foley, Andries van Dam, Steven K. Feiner, John F. Hughes, ―Computer

Graphics Principles and Practice‖, Second Edition in C.

[8] Wikipedia Reference:

Interpolation: http://en.wikipedia.org/wiki/Interpolation

CPU cache: http://en.wikipedia.org/wiki/CPU_cache

[9] Tomas Akenin-Moller, Eric Haines, ―Real Time Rendering‖, Second Edition [Chapter

5 on Texturing].

[10] Ziyad S. Hakura, Anoop Gupta, ―The Design and Analysis of a Cache Architecture

for Texture Mapping‖. [24th International Symposium on Computer Architecture 1997]

(See at:

http://graphics.stanford.edu/papers/texture_cache/)

http://vis.uky.edu/~gravity/Research/lddisplay/LightFieldDisplay.html
http://www.vis.uky.edu/~xhuan4/LFDisplay/LFdisplay-short-sub.pdf
http://lib.uky.edu/ETD/ukyelen2007t00594/Subhasri_Thesis.pdf
http://download.micron.com/pdf/datasheets/dram/ddr/512MBDDRx4x8x16.pdf
http://direct.xilinx.com/bvdocs/publications/ds112.pdf
http://en.wikipedia.org/wiki/Interpolation
http://en.wikipedia.org/wiki/CPU_cache
http://graphics.stanford.edu/papers/texture_cache/

110

[11] Homan Igehy, Matthew Eldridge, Kekoa Proudfoot, ―Prefetching in a Texture Cache

Architecture‖. [Proceedings of the 1998 Eurographics/SIGGRAPH Workshop on

Graphics Hardware] (See at:

http://graphics.stanford.edu/papers/texture_prefetch/)

[12] AMD Athlon 64 X2 Dual Processor Datasheet. (See at:

http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/33425.pdf)

[13] Intel Pentium 4 Datasheets (See at:

http://download.intel.com/design/Pentium4/datashts/31030802.pdf)

[14] Steven Przybylski, Mark Horowitz, John Hennessy, ―Performance Tradeoffs in

Cache Design‖. Proceedings of the 15th Annual International Symposium on Computer

architecture (See at:

http://delivery.acm.org/10.1145/60000/52433/p290-

przybylski.pdf?key1=52433&key2=0187849811&coll=portal&dl=ACM&CFID=346567

54&CFTOKEN=82692607)

[15] Steven Przybylski, ―Cache Design: A Performance-Directed Approach‖, Morgan

Kaufmann Publications 1990.

http://graphics.stanford.edu/papers/texture_prefetch/
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/33425.pdf
http://download.intel.com/design/Pentium4/datashts/31030802.pdf
http://delivery.acm.org/10.1145/60000/52433/p290-przybylski.pdf?key1=52433&key2=0187849811&coll=portal&dl=ACM&CFID=34656754&CFTOKEN=82692607
http://delivery.acm.org/10.1145/60000/52433/p290-przybylski.pdf?key1=52433&key2=0187849811&coll=portal&dl=ACM&CFID=34656754&CFTOKEN=82692607
http://delivery.acm.org/10.1145/60000/52433/p290-przybylski.pdf?key1=52433&key2=0187849811&coll=portal&dl=ACM&CFID=34656754&CFTOKEN=82692607

111

VITA

Vijai Raghunathan was born on June 1
st
 1984 in Madras, India. He received his Bachelor

of Technology from SASTRA University in Tanjore, India. He was in the Dean‘s Merit

list and received scholarship on all four years of his undergraduate study from 2001-

2005. He has completed many projects successfully as an intern at TCS (Tata

Consultancy Services, India), BSNL Telephones, India and NASA (Goddard Space

Flight Center, Greenbelt MD). He joined the University of Kentucky on August 2005.

	AN EFFECTIVE CACHE FOR THE ANYWHERE PIXEL ROUTER
	Recommended Citation

	ABSTRACT OF THESIS
	AN EFFECTIVE CACHE FOR THE ANYWHERE PIXEL ROUTER
	ACKNOWLEDGEMENTS
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1: Introduction
	1.1) Motivation
	1.2) Choosing a Cache for the Design:
	1.3) Parallel Execution
	1.4) Basic Concepts of Cache Used in the Project
	1.5) Calibration
	1.6) Linear Interpolation
	1.7) The LUT

	Chapter 2: Previous Work
	2.1) Cache in General Purpose Processors
	2.2) Graphics Related Work

	Chapter 3: SDRAM Performance
	3.1) Design Values and Simulation Numbers
	3.2) Simulation Results (RAM only)

	Chapter 4: The Cache Design
	4.1) Cache Parameters
	4.2) Hardware Design
	4.3) Simulation Parameters
	4.4) Caching Function
	4.5) Simulation Results

	Chapter 5: Concept of Memory Blocks
	5.1) Memory Blocks
	5.2) Loading Block Sequences
	5.3) Cache Simulations with Blocks
	5.4) SDRAM with Blocks

	Chapter 6: Set Associative Caches
	6.1) Set Associative Caches
	6.2) Caching Function
	6.3) Simulation Results

	Chapter 7: Bilinear Interpolation
	7.1) Advantages of Bilinear Interpolation
	7.2) SDRAM simulation with Bilinear Interpolation

	Chapter 8: Finding the Input Access Pattern
	8.1) Determining the Access Pattern
	8.2) Algorithm

	Chapter 9: SDRAM vs Cache Comparison
	9.1) Test LUTs
	9.2) Simulation Results
	9.3) Bilinear Interpolation

	Chapter 10: Conclusion
	Appendix A: Simulation Results
	Appendix B: Simulation Code
	B.1) SDRAM Simulation
	B.2) Cache with Blocks

	References
	VITA

