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ABSTRACT OF DISSERTATION 
 
 
 
 

MOLECULAR MECHANISMS OF  
THROMBOXANE A2 RECEPTOR-MEDIATED INVASION  

IN LUNG CANCER CELLS 
 

        Thromboxane A2 receptor (TP) has been shown to play important roles in multiple 
aspects of cancer development including regulation of tumor growth, survival and 
metastasis. Molecular mechanisms of TP mediated cancer cell invasion remain to be 
identified. TP agonist, I-BOP, significantly elevated several matrix metalloproteinases 
(MMPs) including MMP-1, MMP-3, MMP-9 and MMP-10 in A549 human lung 
adenocarcinoma cells overexpressing TPα (A549-TPα) or TPβ (A549-TPβ).  Signaling 
pathways of I-BOP-induced MMP-1 expression were examined in further detail as a 
model system for MMPs induction.  Signaling molecules involved in I-BOP-induced 
MMP-1 expression were identified by using specific inhibitors including small interfering 
(si)-RNAs of signaling molecules and promoter reporter assay. The results indicate that I-
BOP-induced MMP-1 expression is mediated by protein kinase C (PKC), extracellular 

signal-regulated kinase (ERK)-activator protein-1(AP-1) and ERK-CCAAT/enhancer-
binding protein β (C/EBPβ) pathways.  I-BOP-induced cellular invasiveness of A549-
TPα cells was blocked by, GM6001, a general inhibitor of MMPs.  Knockdown of MMP-
1 and MMP-9 by their respective siRNA partially reduced I-BOP-stimulated A549-TPα 
cells invasion suggesting that other MMPs induced by I-BOP were also involved.   

        Furthermore, secreted MMP-1 in conditioned media from I-BOP-treated A549-TPα 
cells (CM-I-BOP) autocrinely induced monocyte chemoattractant protein-1 (MCP-1) 
expression. The induction of MCP-1 by MMP-1 in A549 cells was via activation of 
protease-activated receptor 2 (PAR2) instead of commonly assumed PAR1. This 
conclusion was reached from the following findings: (1) expression of MCP-1 induced by 
trypsin, a PAR2 agonist, was inhibited by a PAR2 antagonist.  (2) expression of MCP-1 
induced by MMP-1 and by CM-I-BOP was blocked by a PAR2 antagonist but not by 
other PAR antagonists; (3) expression of MCP-1 induced by MMP-1 and by CM-I-BOP 
was attenuated significantly by pretreatment of cells with PAR2-siRNA. 

        Finally, MCP-1 also can be induced by direct activation of TP in a SP1 involved 
mechanism. CM-I-BOP enhanced MCP-1-dependent migration of RAW 264.7 



 
 

macrophages.  Co-culture of A549 cells with RAW 264.7 macrophages induced 
expression of MMPs, VEGF and MCP-1 genes, and increased the invasive potential in 
A549 cells. 

        My studies provide molecular mechanisms by which TP-mediated cancer cell 
invasion and suggest that TP is a potential anti-cancer drug target.  

Key words: Thromboxane A2 Receptor, Invasion, Matrix Metalloproteinases,      
                    Monocyte Chemoattractant Protein-1, Protease-Activated Receptor 
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1. Introduction 

1.1 Thromboxane A2 (TXA2) and its biological function 

1.1.1 Discovery of TXA2 and its biosynthesis 

        Thromboxane A2 (TXA2) was originally discovered by Piper and Vane as a rabbit 

aorta contracting substance (RCS) in 1969 [1]. The release of RCS was reduced by 

steroidal and non-steroidal anti-inflammatory drugs suggesting the association of RCS 

with prostaglandins [2]. In 1975, Hamberg et al. reported that RCS actually was TXA2 

derived from arachidonic acid (AA) and prostaglandin G2 (PGG2) [3]. Because TXA2 has 

a very short half-life of only 34 seconds in aqueous solution, they proposed a chemical 

structure of TXA2 from indirect experiments by trapping it with nucleophiles such as 

CH3O-. This structure was finally confirmed by Bhagwat et al. in 1985 [4]. 

        TXA2 is one of the five primary prostanoids generated from AA through 

cyclooxygenase (COX) pathway. The biosynthesis of TXA2 and other prostaglandins 

involves three sequential steps (Figure 1): 

(1) Release of AA from cell membrane phospholipids by phospholipase A2 (PLA2). 

(2) Conversion of AA to prostaglandin H2 (PGH2) by COX-1 and COX-2.  

(3) Isomerization of PGH2 to TXA2 and other PGs by their specific synthases or 

isomerases.  

The second step is believed to be the rate-limiting step for generation of TXA2 and other 

PGs. Two isoforms of COX have been described. COX-1 is constitutively expressed and 

is involved in normal physiological functions, such as platelet aggregation, gastric 

mucosa protection and renal functions, whereas, COX-2 is an inducible isoform 
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associated with pathological functions such as inflammation, cardiovascular disease and 

cancer.  

        The enzyme converted PGH2 to TXA2 is thromboxane A2 synthase (TXAS), which 

was first found in platelet microsomes [5], then was reported to express in many other 

tissues such as lung, platelets, kidney, stomach, duodenum, colon and spleen [6, 7].   

        As mentioned above, TXA2 is very unstable and rapidly, non-enzymatically 

degraded into a stable but inactive thromboxane B2 (TXB2) form. 

 

 

 

                               

 

 

 

 

 

 
 
Figure 1. Schematic presentation of thromboxane A2 synthesis 

PLA2 catalyzes phospholipids to form arachidonic acid (AA). Then AA is metabolized by 

COX-1 and COX-2 to form prostaglandin H2 (PGH2), which is converted into PGs by 

specific synthases.   
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1.1.2 Physiology and pathophysiology of TXA2  
 
        TXA2 has a broad range of bioactivities. It induces vascular smooth muscles 

contraction, revealing its contribution to hypertension. It also causes contraction of 

bronchial smooth muscles, which may result in asthma. TXA2 is a potent platelet 

activator, leading to platelet shape change, secretion and aggregation, thus promoting 

thrombus formation and thrombosis. In addition, it has been shown that TXA2 stimulates 

the proliferation of several types of cells including oligodendrocytes [8], smooth muscle 

cells [9] and lung cancer cells [10]. Moreover, TXA2 is implicated to be involved in 

allergies, inflammation, acquired immunity modulation, atherogenesis, angiogenesis, and 

metastasis of cancer [11].  

1.2 Thromboxane A2 receptor (TP) and its signal transduction 
 
        TXA2 exerts its biological activities through its cell surface receptor, the T-

prostanoid (TP) receptor. TP is widely distributed in many tissues and organs, including 

brain, eye, thymus, heart, lung, aorta, liver, uterus, intestine, kidney, placenta, and 

platelets [11]. TP belongs to G-protein-coupled-receptor (GPCR) superfamily and is 

expressed as two isoforms in human, named TPα and TPβ. These TP isoforms arise from 

a single gene via alternative splicing of mRNA and share the first 328 amino acids, but 

differ in their C-terminal tails with TPβ longer than TPα (Figure 2) [12]. The ligand 

binding domain of TP resides mainly in the extracellular region of the protein, therefore 

no differences were observed in the ligand binding between TPα and TPβ, whereas there 

are some variances in the G-protein coupling of these two isoforms. TPα is coupled to Gs 

and TPβ is coupled to Gi. 
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 Figure 2. Structures of thromboxane A2 receptor α and β proteins 
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         Due to the very unstable property of TXA2, its mimetics instead of TXA2 itself are 

used by researchers to study TP-mediated events.  U46619 and I-BOP are two synthetic 

TP specific agonists and SQ29584 is a specific TP antagonist.   

                    

 

 

 

 

 

 

 

Figure 3. Structures of thromboxane A2 receptor agonists and antagonist 

 

 

        TP-mediated signal transduction is mostly achieved through activation of its coupled 

G proteins. Gq was the first found trimeric G protein coupled to TP to activate 

phospholiase C-β (PLC-β) [13], resulting in the accumulation of inositol triphosphate 

(IP3)/diacylglycerol (DAG), subsequent mobilization of intracellular calcium and 

activation of PKC. In addition to Gq, TP has been shown to be coupled with other G 

proteins, including G12 family G proteins (G12 and G13) [14], Gi [15], Gs [16] and Gh 

[17], thus activating multiple signaling pathways. G12 and G13 have been shown to 
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activate RhoGEF, following the activation of Rho-mediated signaling [18]. TP-mediated 

contraction of rat caudal arterial smooth muscle and migration of prostate cancer cells 

were reported to depend on RhoA/ROCK pathway [19, 20]. Both Gi and Gs regulate 

cyclic AMP (cAMP) levels but in opposite directions. Gi inhibits adenylyl cyclase (AC), 

thus decreasing cAMP levels, and Gs stimulates AC, thus increasing cAMP levels. The 

activity of protein kinase A (PKA) is regulated by the levels of cAMP. It has been shown 

that TPα couples to Gs, TPβ couples to Gi, and elevation of cAMP were observed in 

HEK or CHO cells expressing TPα but not TPβ [21, 22]. Therefore, TPα and TPβ may 

have distinct signal pathways to regulate cellular events. Using CHO cells stably 

expressing  TPα or TPβ, Miyosawa et al. found that TPα not TPβ-mediated activation of 

the extracellular signal regulated kinase1/2 (ERK1/2) was dependent on PKA activation 

[23]. This contradicted with an earlier report that PKA was involved in ERK activation in 

both HEK cells stably expressing TPα or TPβ [24]. This might be explained by the 

assumption that the levels of signaling molecules downstream of TP vary in different cell 

types [23].  Moreover, many studies indicated that TP-mediated signaling evens differ in 

different cell types and tissues [25]. Gh, which is a dimeric G protein, activates 

phospholipase C-δ (PLC-δ), subsequent production of IP3 and DAG, a similar response 

to that mediated by Gq. Although Gh couples to both TPα and TPβ, only TPα-Gh 

association results in a PLC-dependent IP3 signaling [17]. Dissociated from Gα subunit, 

the activated Gβγ can also mediate signaling transduction through activation of class IB 

phosphatidylinositol 3-kinase (PI3K) and ERK1/2. Although there is evidence that PI3K 

inhibitor blocked TP-mediated activation of ERK, Gβγ subunits did not seem to be 

involved in this regulation, suggesting the existence of other mechanisms than activating 
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G proteins for TP-mediated signal transduction. Further studies showed that TPα and TPβ 

directly interact with PI3K class 1A p85 adaptor subunit to regulate ERK1/2 activation 

[24]. Furthermore, activation of TP may transactivate epidermal growth factor receptor 

(EGFR) through a src-dependent mechanism, leading to the activation of ERK1/2 [24, 

26]. Moreover, it was reported that 14-3-3ζ as a scaffold protein to associate with TP and 

raf-1, therefore, mediates TP signal-regulated ERK1/2 activation [27]. G protein coupling 

of TP and signal transduction is summarized in Figure 4 [11]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. G protein coupling of thromboxane A2 receptor and signal transduction 
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1.3 TXA2 signaling in cancer progression 

        Early in 1981, TXA2 has already been reported to stimulate melanoma tumor cells 

proliferation, suggesting its potential role in tumor progression [28]. Then, over the past 

three decades, more and more evidence indicated the important role of TXA2 signaling in 

malignancy.    

1.3.1 Thromboxane A2 synthase (TXAS), TP and cancer prognosis 

        TXAS and TP are two main components of TXA2 pathway, and both were observed 

to increase in tumor tissues from 46 patients with prostate cancer [29].  The levels of 

TXAS and TP were significantly associated with higher Gleason scores and pathologic 

stages of the tumors [29].  A large study employing 120 human breast tumor tissues 

found that TP was highly expressed in aggressive tumors (grade 3 and above) and linked 

with higher mortality and worse prognosis [30].  In addition, TXAS and TP were 

expressed at significantly higher levels in human colorectal carcinoma compared with 

normal tissues [31, 32].  Furthermore, Watson and his colleagues reported that the 

expression of TXAS was significantly elevated in invasive bladder cancer, and negatively 

correlated with patient survival. TP protein not mRNA expression was also increased in 

invasive bladder cancer tissues compared to paired normal tissues [33].  One following 

study from the same group further identified that it was the TPβ isoform highly expressed 

in bladder cancer tissues and correlated well with poor prognosis for patients [34].  

Moreover, high levels of TXB2, the stable nonenzymatic hydrolysis product of TXA2, 

were detected  in lung cancer tissues compared to normal lung tissues, suggesting the 

increased TXAS activity in lung cancer [35].  More recently, Cathart et al. examined the 

expression profile of TXAS in non-small cell lung cancer (NSCLC) in 204 patients, and 
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confirmed that TXAS and TXB2 were significantly higher in tumor tissues than the 

matched normal tissues [36].  Although TXAS was not a prognostic factor, this study 

indicated that TXAS could promote tumor progression and serve as a potential 

therapeutic target for treatment of NSCLC [36].  

 1.3.2 Mechanisms of TXA2 signaling in carcinogenesis  

         To understand the mechanisms underlying the effects of TXA2 signaling on cancer 

progression, both in vitro and in vivo studies were conducted by many researchers to 

investigate the role of TXA2 pathway in cancer biology. The results showed that TXA2 

signaling can modulate cancer progression in many aspects including tumor cells 

proliferation, apoptosis, migration, invasion, angiogenesis and the metastatic process.  

1.3.2.1 Cell survive, proliferation and apoptosis 

        TXA2 has been found to contribute to survival, proliferation and growth of several 

types of cancer cells including lung cancer, colorectal cancer, brain cancer and bladder 

cancer cells. It was reported that in nude mice tumor xenograft model, tumors from A549 

cells with ectopic TPα expression exhibited faster growth rate than those tumors from the 

control A549 cells [37]. Using another lung cancer cell line H157 which expressed 

endogenous TP, we identified that Nurr1 is a target gene of TXA2 signaling. The 

expression of Nurr1 is critical for TP-mediated H157 cell proliferation [10].   Huang et 

al. recently reported that carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone 

(NNK) increased the production of TXAS and TXA2 in vivo and in lung cancer cells in 

vitro. The increased TXA2 may subsequently activate CREB via PI3K/Akt and ERK 

pathways, thereby contributing to the NNK-induced survival and growth of lung cancer 

cells [38]. TXAS was found highly expressed in human colonic cancer cell lines. 
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Proliferation of these cells was inhibited by antisense oligonucleotide for TXAS as well 

as TP antagonists, indicating a critic role of TXA2 in colon cancer growth [31]. 

Furegrelate, a specific TXAS inhibitor, significantly inhibited glioblastoma growth 

through inducing proapoptotic, antiproliferative, and anti-angiogenic effects. Further, the 

inhibition of TXAS also increased the sensitivity to conventional alkylation 

chemotherapy in vivo [39]. Moreover, TXAS inhibitors and TP antagonists-induced 

apoptosis and increased sensitivity to chemotherapeutic agents were also found in bladder 

cancers [34, 40].   

1.3.2.2 Cell migration, invasion and metastasis  

        The most important difference between benign and malignant tumors is that the 

malignant tumors spread to other parts of the body through the lymphatic system or 

bloodstream (a process called metastasis), while benign tumors do not. Tumor cells 

migration and invasion are initial steps in metastasis. Within prostate cancer tissues, 

TXAS and TP were found highly expressed in the areas of perineural invasion which is a 

major mechanism by which tumor spread outside the prostate, indicating the involvement 

of TXA2 signaling in metastasis of prostate cancer [29, 41]. Further studies showed that 

TXAS and TXA2 signaling mediated migration and invasion in prostate cancer cells [20, 

41]. The mechanism by which TXA2 drives these processes is related to Rho signaling. 

TP is known to couple to G12 family of heterotrimeric G proteins (Gα12 and Gα13).  Kelly 

et al. reported that expression of activated G12 and G13 promoted prostate cancer cells 

invasion through activation of the RhoA family of G proteins [42].  They further 

observed that inhibition of G12 signaling blocked TXA2-induced invasion of prostate 

cancer cells suggesting the G12-RhoA signaling is involved in TP-mediated cell invasion 

http://en.wikipedia.org/wiki/Lymph
http://en.wikipedia.org/wiki/Blood
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[42].  Later, Nie and colleagues demonstrated that activation of TP regulated prostate 

cancer cell motility and cytoskeleton reorganization through inducing cell contraction via 

activation of RhoA [20].  A recent study revealed that in prostate cancer cells PC3 and 

LNCaP, both TPα and TPβ constitutively interact with protein kinase C-related kinases 

(PRK1), which is a RhoA effector.  Activation of TPs enhanced PRK1 activation and 

disruption of PRK1 impaired TP-mediated cell migration [43]. In addition to prostate 

cancer, expression levels of TXAS were highly elevated in selected migration-

advantaged glioma cells. TXAS inhibitors, dazmegrel and furegrelate, reduced the 

migration rate of these cells to the rate of the parental cells, suggesting TXAS may 

influence the motility of glioma cells [44].  Further, TXB2 was detected in a wide range 

of glioma cell lines and the relative expression of which correlated with migration of 

these cell lines. Treatment with TXAS specific inhibitors resulted in decreased migration 

rate and intercellular adhesion, indicating TXA2 signaling may represent a novel strategy 

for anti-invasive therapies for glial tumors [45]. As mentioned above, TXAS and TP 

especially TPβ were highly expressed in invasive bladder cancer tissues compared with 

their normal paired tissues and correlated with poor prognosis [33, 34]. Ectopic 

expression of TPβ in normal bladder epithelial cell line significantly increased migration 

and invasion [34]. The mechanistic study revealed that TP receptor agonist stimulated 

bladder cancer cell migration through both β-arrestin 2 and Gα12 signaling [34]. 

Moreover, TXAS was also implied to be involved in lung cancer metastasis since TXAS 

inhibitor significantly inhibited pulmonary metastasis in mice intravenously injected 

Lewis lung carcinoma [46].    
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1.3.2.3 Angiogenesis 

        In order to grow beyond a certain size and to metastasize, tumors need to recruit 

blood vessels to supply oxygen and nutrients. Angiogenesis is the growth of new blood 

vessels from the existing vasculature and is critical for tumor growth and progression.  

TXA2 modulates angiogenesis at different levels.    

        The expression of TXAS was reported to positively correlate to the production of 

angiogenic factors, vascular endothelial growth factor (VEGF) and basic fibroblast 

growth factor (bFGF) in NSCLC [47], indicating TXA2 may enhance angiogenesis, 

thereby accelerating cancer progression. It was demonstrated that TXA2 induced 

expression of VEGF at both mRNA and protein levels in human lung cancer cells. 

Xenografts of A549-TPα cells increased tumor growth rate and vascularization in nude 

mice [37]. Similar results were also obtained from mice inoculated with C26-TXAS cells, 

which are colon adenocarcinoma cells overexpressing exogenous TXAS [48].   

        TXA2 not only has an autocrine effect on tumor cells to release pro-angiogenic 

factors but also directly act on endothelial cells to promote angiogenesis. The pro-

angiogenic factor bFGF and VEGF stimulated the release of TXA2 from endothelial cells 

up to five-fold [46].  TXA2 mimetic U46619 increased endothelial cells migration and the 

inhibitors of TXAS or antagonist of TP blocked bFGF-induced endothelial cells 

migration in vitro and angiogenesis in vivo [46, 49].  Furthermore, treatment of rat aortic 

explants with U46619 significantly enhanced vessel sprouting whereas treatment with 

TXA2 inhibitors showed a significant decrease in vessel sprouting [50], which was not 

rescued by adding VEGF indicating the essential contribution of TXA2 to angiogenesis.  
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         There are numerous studies indicating the role of TXAS, TXA2 and TP in cancer 

progression, and some mechanisms were also revealed in these studies. However, 

regarding the relationship between TXA2 and cancer invasion and metastasis, most of 

these reports are focused on TXAS.  As shown in Figure 1, prostaglandins and 

thromboxane synthetic pathways are complex and influenced by each other. Inhibition of 

TXAS will increase the production of other PGs which either as tumor suppressor (PGI2) 

or promoter (PGE2). Therefore the approach of inhibiting TXAS will result in other 

effects related with the generation of other PGs.  In this dissertation, I used approaches 

that only interfere with TXA2/TP and no other PGs pathways to identify the key 

components of TXA2/TP signaling-promoted cancer invasion, and thus providing 

additional mechanisms for validating TP as a target of intervention to block cancer 

invasion and metastasis.  

1.4 Cancer invasion and metastasis  

        Prevention of cancer metastasis is the major goal of cancer therapy as metastasis is 

account for 90% of death in patients with malignancy. The process that cancer cells break 

off from a primary tumor and spread to other parts of the body is metastasis. Metastasis is 

a very complicated process still not well understood. The classic view of cancer 

metastasis consists a complex succession of cell-biological events starting from epithelial 

cells in primary tumors: (1) invade locally into surrounding extracellular matrix (ECM) 

and the host stroma, (2) intravasate into blood and lymph vessels, (3) survive in the 

circulation and transport through the vasculature, (4) arrest in the capillary beds of distant 

organs, (5) extravasate from vessels into the parenchyma of distant tissues, (6) survive in 

the new microenvironment and establish micrometastases, and (7) proliferate within the 
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organ parenchyma, therefore generating the metastatic colonization and clinically 

detectable macroscopic metastases (Figure 5) [51]. To complete all the metastatic 

processes, cancer cells have to overcome the physiological barriers in each step. This is 

regulated by molecular pathways operating within cancer cells and also the cooperation 

between stroma cells and cancer cells. Each step in the metastatic cascade can be rate 

limiting. Here, we only focus on the initial step of metastasis, local invasion.  

         

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. The metastatic cascade 
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        Invasion is a process that cancer cells break away from a primary tumor and enter 

the surrounding tissues. During this process, cancer cells lose cell-cell adhesion, acquire a 

migratory phenotype, penetrate the basement membrane, and invade the interstitial matrix 

(Figure 6) [52].  

        Most solid tumors are derived from epithelial cells which are closely attached to 

each other to form a rigid cell sheets. Cadherins, a family of intercellular adhesion 

molecules, play important roles in keeping cells together.  E-cadherin, one subtype in this 

family, has been demonstrated to play a crucial role in epithelial cell-cell adhesion.  It has 

been implicated in carcinogenesis due to its partially or entirely missing in human 

epithelial cancers [53]. Loss of E-cadherin resulting in tumor cells invasion has been 

shown in E-cadherin knockout mouse models [54].  Indeed, repression of E-cadherin is a 

critical molecular feature of epithelial-mesenchymal transition (EMT), which is a 

biological program defined by the loss of epithelial characteristics and the acquisition of 

a mesenchymal phenotype. Cells that have undergone EMT often disassemble their 

adherens junctions, lose polarity, acquire spindle-shaped morphology, enhance migration, 

induce mesenchymal proteins, as well as various proteinases. Therefore, EMT is a critical 

early event in cancer invasion and metastasis [55].   
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Figure 6. Cancer cell invasion process 

At the onset of invasion process, cancer cells lose E-cadherin-dependent cell-cell 

adhesion, acquire a migratory phenotype, penetrate the basement membrane, and invade 

the interstitial matrix.  

 

 

        Loss of adhesion enables cells to move, whereas loss of the basement membrane 

ultimately allows the invasion of cancer cells into the stromal compartment. Basement 

membrane is a thin ECM layer which separates the epithelium from the interstitial 

stroma. In addition to the structural function, basement membrane also plays an important 

role in signal transduction through integrin-mediated cell-marix interaction, leading to the 

alterations in cell polarity, proliferation, survival, invasion and metastasis[52]. To breach 

the basement membrane and invade the interstitial matrix cancer cells release a variety of 

proteolytic enzymes such as collagenases, cathepsins, and plasminogen activators. 

Among these enzymes, matrix metalloproteinases (MMPs) play major roles in proteolytic 

degradation of basement membrane and ECM remodeling due to their ability to degrade a 
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multitude of substrates. MMPs also release growth factors sequestered in the ECM to 

stimulate cancer cell proliferation and angiogenesis [56, 57].   

        Once cancer cells have dissolved basement membrane, they invade the stroma where 

they encounter a variety of stromal cells including fibroblasts, endothelial cells, and 

various bone marrow-derived cells (BMDCs) such as myeloid cell-derived suppressor 

cells, mesenchymal stem cells, macrophages, as well as other immune cells [58]. These 

stromal cells in tumor microenvironment secrete growth factors or proteases that further 

enhance tumor cells proliferation, invasion and metastasis.  For example, tumor 

associated macrophages (TAMs) produced EGF to activate EGFR signaling in the 

malignant epithelial cells, thereby enhancing their invasive potential [59]. Similarly, the 

expression of cathepsin and MMP-9 proteases by TAMs further augments carcinoma 

cells invasion [60, 61].  More detailed background about TAMs and the roles they played 

in cancer invasion will be introduced later.   

1.5 Matrix metalloproteinases (MMPs) in cancer invasion and metastasis 

        As mentioned above, MMPs are the major players in degrading basement membrane 

and ECM, the physiological barriers that must be overcome by cancer cells for successful 

invasion and metastasis. MMPs are a family of zinc-dependent proteases which contain 

24 members in human, and collectively, they are capable of degrading all known ECM 

components.  Elevation of MMPs has been found in various cancer types and considered 

as biomarkers for poor prognosis [62]. Therefore, understanding molecular pathways 

leading to upregulation of MMPs in cancer is important for the treatment of cancer 

invasion and metastasis.   
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1.5.1 Association of COX -2 and MMPs in cancer invasion and metastasis    

        COX-2, the key enzyme in TXA2 synthetic pathway, was found to be associated 

with MMPs expression to increase metastasis of several types of cancer.  Byun et al. 

reported that there was a positive correlation between COX-2 and MMP-2 expression, 

and the latter might contribute to cancer progression and reduced survival in NSCLC 

patients [63].  COX-2 inhibitor blocked liver metastasis of colorectal cancer cells due to 

suppression of MMP-9 activity [64].  Moreover, inhibition of COX-2 decreased invasion 

and metastasis in breast cancer via decrease in multiple MMPs [65].  In light of these 

findings, no reports were found to describe the relationship between TP and MMPs in 

cancer progression.  Since TXA2 is one of the major prostanoids downstream of COX-2 

pathway, it is proposed that TXA2 may also mediate cancer cell invasion through 

upregulation of MMPs.   

        MMP-1, the first member of MMPs family to be identified, was found to be 

associated with poor prognosis in a wide variety of advanced cancers including lung 

cancer [66, 67]. Low levels of both MMP-1 and COX-2 were positively correlated with 

survival in NSCLC [68].   Most recently, protease-activated receptor 1(PAR1) was 

identified as a novel substrate for MMP-1[69]. MMP-1/PAR1 axis has been shown to 

mediate invasion of breast cancer and melanoma cells [69, 70] providing further evidence 

for the role of MMP-1 in cancer invasion and metastasis.  

        In this dissertation, I mainly focused on the role of MMP-1 in TP-mediated cancer 

cell invasion, and further to identify the signaling pathways involved in TP-mediated 

MMP-1 expression which serve as a model for TP-mediated regulation of other MMPs.   
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1.5.2 MMPs regulation 

        MMPs are synthesized as pro-zymogens which are either secreted into extracellular 

space or in membrane-bound form.  MMPs activity can be regulated at multiple levels 

such as activation by cell surface proteins [71] and inhibition by tissue inhibitors of 

metalloproteinases (TIMPs) [72]. However, aberrantly high expression of MMPs has 

major impact on ECM turnover, thereby contributing to the pathology of diverse diseases 

including cancer, and this is predominantly controlled at the levels of MMPs gene 

expression.   

        Based on the compositions of cis-acting elements in their promoters, MMPs have 

been roughly grouped into three categories [73]. Group 1 consists of the majority of the 

MMPs: MMP-1, 3, 7, 9, 10, 12, 13 and 19 which contain a TATA box and an AP-1 site 

in the proximal region of their promoters. Group 2 consists of MMP-8 and MMP-11, 

which contain a TATA box but lack the AP-1 site. Group 3 consists of MMP-2 and 

MMP-14 which lack both the TATA box and the AP-1 site. This classification indicates 

the types of extracellular signaling that activate them.  

        Indeed, a variety of signal transduction pathways are involved in MMPs gene 

regulation [74]. The mitogen activated protein kinase (MAPK) pathways including ERK 

pathway as well as the p38 MAPK and c-Jun N-terminal kinase (JNK ) pathways regulate 

expression of several MMPs genes such as MMP-1[75-77], MMP-3[78, 79], MMP-9 [80, 

81] and MMP-13[82]. Nuclear factor-kappaB (NF-κB) pathway can impact MMPs gene 

expression through direct transactivation or induction of intermediary genes. For 

example, RelA, A subfamily of NF-κB proteins, may activate NF-κB co-factor Bcl-3 

expression [83], and that Bcl-3 in turn activates MMP-1 gene expression [84]. MMP-9 
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promoter contains a canonical NF-κB binding site that could directly bind RelA to 

activate gene transcription [85].  Other signaling pathways such as Smad and STAT 

regulate MMPs gene expression via interaction with other transcription factors.  Smad3 

interacted with JunB and Runx-2 for TGF-β-induced MMP-13 expression is an example 

of this mechanism [86].  STAT3 does not directly bind the MMP-1 promoter, but it can 

augment MMP-1 transcription through induction of AP-1 proteins such as c-fos [87]. In 

contrast to STAT3, STAT1 mediates interferon (INF)-γ -repressed IL-1β induction of 

MMP-13 via sequestration of the transcriptional co-activator CBP/p300 [88]. In 

summary, MMPs gene regulation is a complex process which involves the integration of 

multiple signaling pathways and transcriptional factors.         

1.6 Protease-activated receptors (PARs) and cancer progression and invasion 

1.6.1 PARs and their activation 

         Protease-activated receptor (PAR) is a unique family of GPCR, which consists of 

four members: PAR1, PAR2, PAR3 and PAR4. Each PAR carries its own ligand, which 

is in a masked state until exposed by receptor cleavage. The exposed ligand binds 

intramolecularly to the receptor to trigger multiple signaling cascades. A certain proteases 

can activate PARs. Thrombin can cleave and activate PAR1, PAR3 and PAR4. PAR2 is 

cleaved by trypsin, mast cell tryptase, tissue factor/factor VIIa/factor Xa but not by 

thrombin. Small synthetic peptides corresponding to the tethered ligand domain are 

developed as PAR agonist peptides (PAR-APs), which activate PARs without receptor 

cleavage [89, 90] (Figure 7).   
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         PARs mediate a wide variety of physiological and pathophysiological responses 

including coagulation, inflammatory responses, repair, mucosal protection, neurogenic 

inflammation and pain transmission, etc.  The role of PARs in cancer progression has 

also been revealed [91].  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Mechanism of activation of proteinase-activated receptors by proteinases 

Four members of the family: PAR1, PAR2, PAR3 and PAR4, proteinases responsible for 

PARs activation (in blue) and tethered ligand peptidic sequences (red boxes) that can be 

used to activate each receptor.   
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1.6.2 PAR1 and cancer progression and invasion  

        PAR1 is overexpressed in a wide range of cancers, such as melanoma, high-grade 

gliomas, colon cancer, prostate cancer and invasive breast cancer. The contributions of 

PAR1 to cancer invasion and metastasis have been demonstrated in many studies. Even-

Ram et al. showed a direct correlation between the levels of PAR1 expression and the 

degree of invasiveness in established breast cancer cell lines as well as in human breast 

tissue specimens [92]. Transfection of functional PAR1 is sufficient to promote the 

invasion of MCF-7 cells, which are normally noninvasive breast carcinoma cells without 

PAR1 expression, both in vitro and in a xenograft nude mouse model [69]. In addition, 

antisense of PAR1 reduced the invasiveness of aggressively metastatic breast cancer cells 

[69, 92].   

        Recently, the identification of novel PAR1 activating protease, MMP-1, connects 

the extracellular proteolytic activity with membrane receptor-mediated signal in cancer 

progression.  MMP-1/PAR1 axis has been identified to mediate invasion and metastasis 

of breast cancer [69, 93], melanoma [70] and ovarian cancer [94, 95]. Whether MMP1 

targets other PARs or other MMPs cleave PARs remains open for further investigation.  

1.6.3 PAR2 and cancer progression and invasion  

        PAR2 is another dominant PAR mediating protease signaling in tumor cells. Factor 

VIIa and Xa-induced migration and invasion of invasive breast cancer cells is mediated 

by PAR2 [96, 97]. Using mouse mammary tumor virus-polyoma middle T (PyMT) 

mouse model which mimics important aspects of human breast cancer pathology, 

Versteeg et al. demonstrated that PAR2, not PAR1, plays a critical role for spontaneous 

breast cancer development [98].   
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        PAR2 promotes cancer progression through various mechanisms.  Activation of 

PAR2 induces proliferation of gastric and colon cancer cells through trans-activation of 

EGFR and ERK1/2 activation mechanisms [99, 100]. PAR2 mediates migration of breast 

cancer cells through β-arrestin-dependent ERK1/2 activation [101]. TF-VIIa-PAR2 

signaling in breast cancer cells induced a broad array of pro-angiogenic factors and 

immune regulators such as VEGF [102], Cyr61, VEGF-C, CTGF, CXCL1, IL-8, CSF1 

and CSF2 [103]. Upregulation of IL-8 by TF-VIIa-PAR2 signaling resulted in breast 

cancer cell migration and invasion [97].  PAR2 agonist-triggered IL-8 release may also 

promote pancreatic cancer progression [104].  

        Since PARs participate in regulation of inflammatory cytokines and related genes, 

which are important for cancer progression. The question that whether PARs signaling 

could recruit inflammatory cells, such as monocyte/macrophages, neutrophils, and T cells 

to modulate cancer growth and metastasis needs to be addressed. PAR1-mediated 

production of chemokine monocyte chemoattractant protein 1(MCP-1) is critical for 

natural killer cells and macrophages recruitments in a mouse heart-to-rat transplant model 

[105]. Activation of PAR1or PAR2 induces MCP-1 expression was also reported in 

human lung carcinoma cell line A549 [106].  These studies suggest that MCP-1 may link 

PARs and inflammatory cells in caner progression.  
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1.7 Monocyte chemoattractant protein 1(MCP-1) and cancer progression and 

metastasis 

1.7.1 MCP-1 discovery 

        MCP-1(nomenclature name is chemokine (C-C motif) ligand 2, CCL2; alternative 

name are MCAF, JE, SMC-CF, HC-11) is a small cytokine belonging to CC chemokine 

family. MCP-1 was initially discovered as the product of the JE gene from murine 

fibroblasts treated with PDGF [107, 108]. Human MCP-1 protein was isolated and 

purified by two groups in 1989 [109-111], they identified this novel cytokine as the 

product of human JE gene [112, 113].  Human MCP-1 is produced as a protein precursor 

which contains a 23 amino acid of signal peptide. The mature MCP-1 comprises 76 

amino acids corresponding for a predicted molecular weight of 8.7 kDa. However, SDS-

PAGE analysis showed that MCP-1 secreted by human cells migrated as 13 and 15 kDa 

proteins [110]. This may be due to the post-translational modification of MCP-1with O-

linked carbohydrate processing [114]. Nearly half of murine MCP-1 protein displays a 

molecular weight of 30-35 kDa due to high glycosylation.  

1.7.2 MCP-1 regulation  

       MCP-1 is a small inducible chemokine encoded by CCL2 gene, which located on 

human chromosome 17.  A variety of cytokines, such as platelet-derived growth factor 

(PDGF) [115], tumor necrosis factor alpha (TNFα) [116], interferon gamma (IFN-γ) 

[117], and IL-1β [118, 119] can induce MCP-1 expression at transcriptional level.  

        Several cis-acting transcription regulatory elements binding sites on MCP-1 

promoter have been mapped (Figure 8). The distal part of MCP-1 promoter contains two 

NF-κB binding sites, which are required for TNFα-induced MCP-1 expression, but not 
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essential for PDGF-stimulated expression [115]. The proximal part of MCP-1 promoter is 

essential for all aspects of MCP-1 gene regulation and is sufficient for PDGF- and INF-γ-

induced expression [115, 117]. The proximal region contains a GC box, which binds 

transcription factor SP1 to regulate both constitutive and stimulus-induced transcriptional 

activity. Two AP-1 and one NF-κB sites also sit in the proximal region. They are 

responsible for endothelin-1-mediated MCP-1 regulation in human airway smooth 

muscle cells [120].  

 

 

 

 

 

Figure 8. Transcription factors in MCP-1 promoter 

 

 

1.7.3 MCP-1/CCR2 expression and activity 

        MCP-1 is expressed by many cell types and organs either constitutively or after 

stimulation by cytokines or growth factors.  Both in vitro and in vivo studies 

demonstrated that MCP-1 is a potent chemoattractant for monocytes, T lymphocytes, 

nature killer (NK) cells, basophils, and dendritic cells [121].  MCP-1 exerts its effects 

through its receptor CCR2. There are two isoforms of CCR2, named CCR2A and 

CCR2B, which differ only in their C-terminal tails. CCR2 expression is not as broad as 

MCP-1. CCR2A mainly expresses by mononuclear cells and vascular smooth muscle 

cells. CCR2B is the predominant isoform expressed by monocytes and activated NK 
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cells.  MCP-1 is very specific and binds only to CCR2 with a high binding affinity (Kd ˂ 

1nM). The other MCPs (MCP-2, MCP-3, and MCP-4 in human, MCP-2, MCP-3, and 

MCP-5 in mouse) also bind CCR2 with high affinity leading to the uncertainty of 

whether MCP-1 is essential in recruitment of monocytes in vivo.  A study using MCP-1-

deficient mice showed that loss of MCP-1 alone is sufficient for impairment of monocyte 

trafficking in vivo and other MCPs do not increase to compensate for MCP-1’s absence 

[122] suggesting the critical role of MCP-1 in monocytes recruitment.  

1.7.4 MCP-1 and cancer progression and metastasis 

        MCP-1 is expressed by a variety of cancer types suggesting its role in cancer 

progression. MCP-1 promotes tumorigenesis and metastasis through two mechanisms: (1) 

directly acts on tumor cells to influence cancer behavior, and (2) indirectly acts on tumor 

microenvironment by recruiting macrophage to tumor cells, therefore promoting tumor 

growth, angiogenesis and metastasis.   

1.7.4.1 Direct effects 

        Direct effects of MCP-1on tumor cell physiology have been demonstrated in 

prostate cancer cells. Both MCP-1 and CCR2 were found to be expressed by prostate 

cancer cell lines, including LNCaP, C4-2B and PC3 cells.  MCP-1 induces proliferation 

and invasion of PC3 and LNCaP cells in both autocrine and paracrine manners [123, 

124]. Suppression of tumor- and host-derived MCP-1 by its neutralizing antibody 

attenuates prostate tumor growth and metastasis in vivo [124].  Moreover, CCR2 

expression is correlated with the malignant state of prostate cancer.  The more aggressive 

the cancer cells, the higher levels the CCR2 expression [125].  In addition to prostate 

cancer, MCP-1 also induces migration of breast cancer cell MCF-7 and malignant glioma 
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cells in vitro [126, 127].  Multiple myeloma (MM) cells, malignant plasma cells in bone 

marrow, express a high level of CCR2 compared with normal plasma cells [128]. CCR2 

mediates migration of MM cells to osteoclasts which generate high levels of MCP-1 and 

several other MCPs. Osteoclasts in turn produce various growth factors, such as insulin-

like growth factor1 (IGF-1), interleukin-6 (IL-6) and a proliferation-inducing ligand ( 

APRIL) to support MM cells survival, growth and drug resistance [129].  

1.7.4.2 Indirect effects  

        A large body of research has indicated the indirect effects of MCP-1 on cancer 

progression. Actually, MCP-1 is originally isolated from tumor-derived chemoattractants 

[111] which mediate the infiltration of macrophage into tumors to either suppress or 

enhance tumor growth. MCP-1 associated with mononuclear cell infiltrate inhibiting 

tumor growth has been reported [130, 131]. However, the anti-tumor effect of MCP-1 is 

unlikely to be its major influence on tumor regulation based on the biological and 

epidemiological considerations [132].  

        There is growing evidence supported the notion that MCP-1-mediated macrophage 

infiltration promotes tumor progression.  In a clinical study, the levels of MCP-1 in 

primary breast cancers were found to be correlated significantly with the accumulation of 

tumor associated macrophages (TAMs) [133], which are capable of affecting tumor 

progression in a variety of aspects.  After 6 years of follow up, those breast cancer 

patients with high levels of MCP-1 had a significantly shorter relapse free survival.  This 

clinical association might be explained by mechanistic studies using mouse model that 

MCP-1 secreted by breast tumor cells recruits inflammatory monocytes which produce 

VEGF to promote tumor cells extravasation and lung metastasis [134, 135]. MCP-1 was 
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reported to directly influence prostate cancer growth and metastasis [123].  It also can 

enhance prostate tumor growth and angiogenesis indirectly by recruitment of monocytes 

and TAMs into the tumor microenvironment [136].  Moreover, tumor cells derived from 

renal cancer recruit tumor-infiltrating lymphocytes (TIL) by secreting MCP-1 and IL-8, 

which suggests MCP-1’s indirect effect on renal cancer progression [137]. CC 

chemokines including MCP-1 and MIP-1b were found to be associated with macrophage 

infiltration in human NSCLC tumors. Those patients with recurrence of disease had 

higher macrophage infiltration in their initial tumors [138].  In addition to tumor cells 

themselves, tumor associated stromal cells such as endothelial cells, fibroblasts and 

macrophages also produced a significant amount of MCP-1 to increase TAM infiltration 

and maintain inflammation, therefore promoting tumor progression [139, 140]. The two 

mechanisms of MCP-1 on caner progression is summarized in Figure 9 [132]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Mechanisms of MCP-1 on cancer progression 
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1.8 Tumor associated macrophages (TAMs) and cancer invasion 

        Solid tumors are comprised of not only malignant cells but also many other non-

malignant cell types including fibroblasts, endothelial cells, and immune cells such as 

neutrophils, dendritic cells, macrophages, eosinophils and mast cells [141, 142]. 

Macrophages are the most abundant immune infiltrates in tumors and these macrophages 

are termed as tumor associated macrophages (TAMs). TAMs are mostly derived from the 

peripheral blood monocytes and recruited by tumor cells secreted chemokines and growth 

factors such as CCL2 (MCP-1), CCL3, CCL4, CCL5, CSF-1 and VEGF [143, 144].  

1.8.1 TAMs as prognostic marker for human cancer  

        A large body of clinical evidence showed that increased accumulation of TAMs are 

associated with poor prognosis for a variety of cancer types including prostate, breast, 

ovarian, cervical, bladder, endometrial, and esophageal cancers [133, 145-149].  For lung 

cancer, the data obtained from clinical studies seem controversial.  Two groups reported 

that higher levels of macrophages were significantly correlated with lower survival rates 

for patients with NSCLC [138, 150]. However, the results reported by Toomey et al. 

showed that there was no association between macrophages infiltration and prognosis of 

NSCLC [151]. These conflicting observations may derive from the different methods 

used to assess macrophage infiltration, or the different tumor grades and stages in these 

studies.  In addition, macrophages within different locations of tumor may have different 

effects on the outcome of patients.  Welsh et al. found that the numbers of stroma 

macrophages were negatively associated with NSCLC patient’s survival time, whereas 

the numbers of tumor islet macrophages were positively associated with patient’s 

survival time [152].  Indeed, the impact of macrophages on tumor is more complicated.  
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Macrophages have been classified into two major groups: M1 and M2 macrophages. M1 

macrophages possess pro-inflammatory properties, whereas M2 macrophages have anti-

inflammatory phenotype and promote tumor progression [153].  TAMs have been 

identified as M2 macrophages [154].  Within the tumor islet, both M1 and M2 

macrophages could be present. Those macrophages associated with favorable outcome in 

NSCLC patients were identified as M1 macrophages [155] . M2 macrophages may 

function the opposite way. Zeni et al. [156] reported that the percentage of IL-10-positive 

macrophages within tumor islet was higher in patients with late stage of NSCLC and 

lymph node metastasis compared with those patients with lower stage of NSCLC and 

without metastasis, and these macrophages also predicted the worse overall survival rate. 

High expression of IL-10 is one of the characteristic of M2 phenotype [157], thus this 

study suggested that these macrophages behaved as M2-polarized TAMs, and thereafter 

promoted progression of NSCLC.   

1.8.2 TAMs enhance invasiveness of cancer cells 

        TAMs promote cancer progression in many aspects, including stimulation of tumor 

growth, induction of angiogenesis, and promotion of tumor cells migration and invasion.  

TAMs enhancement of cancer cells invasion through several mechanisms.  First, 

macrophages-derived proteases could disrupt the extracellular matrix, and therefore allow 

cancer cells to invade the surrounding tissues.  For example, TAMs secreted cathepsin B, 

one of cysteine-type lysosomal proteases, to promote lung metastasis of breast cancer as 

well as the invasion of pancreatic tumor in vivo [60, 158].  Other proteases such as MMP-

9 [61, 159] and urokinase-type plasminogen activator [160], a serine protease, are also 

secreted by TAMs, and both of them are involved in TAM-enhanced cancer cells 
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invasion.  In addition to proteases, TAMs also produce growth factors such as EGF and 

TGFβ which directly act on carcinoma cells to promote their invasion [59, 161]. 

Furthermore, TAMs could increase invasion of cancer cells by inducing the epithelial-

mesenchymal transition (EMT). Lin et al. reported that activated macrophages may 

stimulate the migration and invasion of HepG2 human hepatocellular carcinoma cells via 

c-Src and EGFR-dependent downregulation of E-cadherin and β-catenin at the adherens 

junctions [162]. Moreover, TAMs interact with cancer cells to upregulate a wide array of 

genes in cancer cells, such as IL-6, NF-κB, ICAM-1, MMP-1, MMP-9, VEGF-A, VEGF-

C, etc. and these genes are involved in angiogenesis, growth, adhesion, invasion, and 

metastasis [163].   In return, macrophages could also be activated by cancer cells to 

secrete growth factors, cytokines and proteases, subsequently enhanced cancer invasion 

and progression [164, 165].   
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2. Purpose of this dissertation 

        TXA2-TP signaling axis is involved in multiple steps of cancer progression 

including cancer invasion and metastasis.  Therefore, the purpose of this dissertation is to 

identify novel cellular and molecular mechanisms by which TP mediates cancer cell 

invasion.  I am particularly interested in identifying key molecular mediators associated 

with TP-mediated invasion of lung cancer cells and with specific focus on the 

investigation of TP-mediated signal transduction pathways leading to the expression of 

some of these molecules.  Another purpose is to explore the interactions and relationship 

among these mediators and how they exert their functions in facilitating TP-mediated 

cancer cell invasion.     
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3. Materials and methods 

3.1 Reagents and antibodies 

        I-BOP, SQ29548, PGD2, PGE2 and PGF2α were from Cayman Chemical (Ann 

Arbor, MI). LY294002, GF109203X and SP600125 were from Calbiochem (San Diego, 

CA). Phorbol-12-Myristate-13-Acetate (PMA), U0126, SB203580 and MG132 were 

from Alexis Biochemicals (San Diego, CA). SCH79797 was from Tocris Bioscience 

(Ellisville, MO).  ENMD-1068 was from Enzo Life Sciences (Farmingdale, NY).  

Agonist peptides of PARs: PAR1, TFLLR-NH2; PAR2, SLIGRL-NH2; PAR3, TFRGAP-

NH2; PAR4, GYPGQV-NH2, as well as antagonist peptide of PAR4, trans-cinnamoyl-

YPGKF (tc-Y-NH2) were supplied by Peptides International (Louisville, KY).  

Recombinant human MMP-1 and MMP-3 were purchased from PeproTech (Rocky Hill, 

NJ).  MMP-1-siRNA, MMP-9-siRNA, C/EBPβ-siRNA, PAR2-siRNA and control-

siRNA were from Santa Cruz Biotechnology (Santa Cruz, CA).  Cell culture medium, 

heat-inactivated fetal bovine serum (FBS), restriction enzymes, SuperScript II reverse 

transcriptase, penicillin G and Lipofectamine 2000 were supplied by Invitrogen or Gibco 

(Carlsbad, CA). TransIT-2020 Transfection Reagent was from Mirus Bio LLC (Madison, 

WI). Site-directed mutagenesis kit was from Stragene (La Jolla, CA). Centrifugal filter 

devices were purchased from Millipore (Billerica, MA). CytoSelect 96-well cell 

migration and invasion assay kits were supplied by Cell Biolabs (San Diego, CA). TRI 

Reagent, trypsin, soybean trypsin inhibitor, RS-102895, mithramycin A, geldanamycin 

and other biochemicals and chemicals were from Sigma-Aldrich (St. Louis, MO).  

pcDNA3-MMP-9 expression plasmid was a kind gift of Dr. R. Fridman of the Wayne 

State University (Detroit, MI).  All lentivirus related plasmids were kind gifts of Dr. 
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Louis Hersh of the University of Kentucky (Lexington, KY). Human MMP-1 promoter 

/luciferase reporter plasmids pGL3-2942 and pGL3-2942∆CEBP were kindly supplied by 

Dr. Matthew P. Vincent of Dartmouth Medical School (Hanover, NH).  Human MCP-1-

CAT reporter plasmid was kindly provided by Dr. Bassel E. Sawaya of Temple 

University (Philadelphia, PA). 

        The primary antibodies used in this study were MMP-1, MMP-3, MMP-9 

(NeoMarkers, Fremont, CA), PAR-2, SP1, E-cadherin, Phospho-ERK1/2, C/EBPβ (Santa 

Cruz Biotechnology, Santa Cruz, CA),  Phospho-c-Jun (Ser73), Phospho-C/EBPβ 

(Thr235), ERK1/2 (Cell Signaling Technology, Danvers, MA), MCP-1 (PeproTech, 

Rocky Hill, NJ), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (generated in 

house). Horseradish peroxidase (HRP)-linked goat anti-mouse and rabbit secondary 

antibodies were supplied by Invitrogen (Carlsbad, CA).  

3.2 Cell lines and culture 

3.2.1 Wild-type cell lines  

        A549, H460 and H157 non-small cell lung cancer cells were maintained in RPMI 

1640 medium. Mouse RAW 264.7 macrophages were cultured in Dulbecco’s modified 

Eagle’s medium (DMEM).  293 FT cells were used for lentivirus production and 

maintained in DMEM supplemented with 0.1mM non-essential amino acids.  All these 

cells lines were from American Type Culture Collection (Manassas, VA ) and grown in 

their corresponding cell culture media with supplemented 10% FBS, 100 U/ml penicillin 

G and 0.1 mg/ml streptomycin at 37°C in a humidified atmosphere of 95% air and 5% 

CO2.  
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3.2.2 Establishment of A549-TPα and A549-TPβ cell lines 

        TPα and TPβ were cloned into pCSC-SP-PW lentiviral vector, transfected into 293 

FT cells with packaging plasmids, pMDL-gp.RRE, pRSV.Rev and pVSVG using 

Lipofectamine 2000 following the manufacture’s protocol. Similarly, GFP was cloned 

into pCSC-SP-PW vector and used as a control plasmid. The medium was replaced with 

fresh DMEM medium containing 10% FBS after 12 h transfection.  Supernatants 

containing virus particles were collected 36 h after the start of transfection, filtered 

through 0.45 µm filter, and then were used to infect A549 cell line. A549 cells infected 

with virus particles encoding GFP, TPα or TPβ were harvested in three separate pools 

and designated as control A549 cells, A549-TPα and A549-TPβ cells accordingly.  These 

infected cells were cultured until stably expressing the encoding genes.  All these cells 

were maintained in RPMI1640 medium supplement with 10% FBS, 0.1 mg/mL 

streptomycin and 100U/mL of penicillin G at 37°C in a humidified atmosphere of 95% 

air and 5% CO2.   

3.3 Cell treatment and Western blot analysis  

        Cells were plated in 12-well plates to achieve ~ 80% confluence, and then were 

starved in RPMI 1640 medium without FBS for 24 h before stimulation.  For inhibitor 

study, cells were pretreated with the respective inhibitors at working concentrations or 

control (0.1% DMSO) for 30 min in serum-free medium prior to stimulation. After a 

certain time of treatment, cells were collected and lysed with lysis buffer (50 mM N-2-

hydroxyethylpiperazine-N'-2-ethanesulfonic acid, pH 7.4, 150 mM NaCl, 1% Nonidet P-

40, 5 mM NaF, 5 mM pyrophosphate, 1 mM sodium orthovanadate, 10 µg/ml aprotinin, 

10 µg/ml leupeptin and 1 mM phenylmethylsulfonyl fluoride). Conditioned media were 
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collected and concentrated via trichloroacetic acid (TCA)-acetone method.  Western blot 

analysis was carried out as described previously [166].  Briefly, proteins were separated 

in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and 

transferred onto polyvinylidene difluoride (PVDF) membrane. Membranes were blocked 

with 5% non-fat milk in Tris-buffered saline at room temperature for 1 h and incubated 

with primary antibodies overnight at 4°C. The membranes were then incubated with 

horseradish peroxidase-linked goat anti-mouse or rabbit secondary antibodies for 1 h at 

room temperature and developed using enhanced chemiluminescence Western blotting 

detection system (Amersham Pharmacia Biotech, Cardiff, UK). All membranes were 

stripped using stripping buffer before reprobing with anti-glyceraldehyde-3-phosphate 

dehydrogenase or anti-ERK1/2 antibodies to ensure equal protein loading.  Band 

intensities were quantified using NIH Image J software and normalized to those of 

GAPDH.  

3.4 Protein precipitation  

        Proteins in media samples were precipitated by using trichloroacetic acid (TCA)-

acetone method.  Briefly, TCA was added to media at a final concentration of 10%. 

Proteins were precipitated for 4 h on ice.  Precipitated protein was centrifuged at 5,000 x 

g for 30 min, washed three times in cold acetone, and air dried. Pellets were frozen at -

80°C until analyzed.  

3.5 Reverse transcription-polymerase chain reaction (RT-PCR) 

Total RNA was isolated from cells using the TRI Reagent and reverse-transcribed 

using the SuperScript II reverse transcriptase following the manufacturer’s instructions.   

PCR conditions were 2 min at 95°C followed by 35 cycles (23 cycles for MCP-1 and β-
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actin) of 95°C for 1 min, 50-55°C for 30s, 72°C for 30s. The PCR product of each sample 

was analyzed by electrophoresis in a 1.5% agarose gel and visualized by ethidium 

bromide staining. The primers used in the PCR reactions are summarized in Table1.  

 

 Table 1. Primers used for RT-PCR 

 

 

NAME SEQUENCE 

TPα            

                   

5’-GAGATGATGGCTCAGCTCCT-3’ (forward) 

5’-CTACTGCAGCCCGGAGCG-3’  (reverse) 

TPβ            

                   

5’-CTCAGCTCCTGGGGATCAT-3’(forward) 

5’-GTCAAATTCAGGGTCAAAGAGCA-3’(reverse) 

MMP-1      
5’-CATTGATGGCATCCAAGC-3’(forward) 

5’-CCGGACTTCATCTCTGT-3’(reverse) 

MMP-3 
5’-GTTAGGAGAAAGGACAGTGGTCCTG-3’(forward) 

5’-GGCATAGGCATGGGCCAAAACATT-3’(reverse) 

MMP-9 
5’-GGCGCTCATGTACCCTATGT-3’(forward) 

5’-TCAAAGACCGAGTCCAGCTT-3’(reverse) 

MMP-10 
5’-GTCACTTCAGCTCCTTTCCT-3’(forward) 

5’-ATCTTGCGAAAGGCGGAACT-3’(reverse) 

MMP-13 
5’-AGTGGTAAGAATAGTAGATGTG-3’ (forward) 

5’-GGCCGATCATATATTCAATAAGT-3’ (reverse) 

MCP-1 
5’-ATAGCAGCCACCTTCATTCC-3’ (forward) 

5’-TTCCCCAAGTCTCTGTATCT-3’ (reverse) 

VEGF 
5’-GGATGTCTATCAGCGCAGCTAC-3’ (forward) 

5’-TCACCGCCTCGGCTTGTCACATC-3’ (reverse) 

β-actin 
5’-GGCATGGGTCAGAAGGATTCC-3’(forward) 

5’-AGCACAGCCTGGATAGCAACG-3’ (reverse) 
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3.6 Zymographic assay 

Media samples were concentrated 20-fold using the centrifugal filter devices, then 

applied to 10% polyacrylamide gel containing 0.1% gelatin (detecting MMP-2, 9) or 12% 

polyacrylamide gel containing 0.1% casein (detecting MMP-1, 3). Samples were 

electrophoresed at 4°C under a non-reducing condition. The gel was washed with 2.5% 

Triton X-100 for 30 min twice at room temperature to remove the SDS and incubated in 

the developing buffer [100 mM Tris-HCl (pH 8.0), 5 mM CaCl2, 0.05% 23 lauryl ether 

(Brij-35)] at 37°C for 36 h. Gelatinolytic and caseinolytic proteinase activities were 

revealed by coomassie blue staining.  

3.7 Conditioned media and activation of MMPs 

        A549-TPα cells were plated into 10 cm dishes to achieve ~ 80% confluence next 

day, then media were switched to 10 ml serum-free RPMI1640. After 24 h starving, cells 

were treated with vehicle (0.1% ethanol) or 50 nM I-BOP for another 24 h. Then, 

conditioned media were collected and passed through 30 kDa and 10 kDa centrifugal 

filters sequentially to separate MMPs and MCP-1(MCP-1 molecular weight is 13-15 

kDa). The remains on each filter were resolved in 1.5 mL serum-free medium and stored 

at -80°C until used. MMPs in conditioned media were activated using 10 µg/mL trypsin 

for 1 h at 37°C, followed by adding 40 µg/mL soybean trypsin inhibitor to neutralize the 

trypsin.  

3.8 Transient transfection   

         A549-TPα cells were transfected with pcDNA3 or pcDNA3-MMP-9 expression 

plasmid using Lipofectamine 2000 (Invitrogen) according to manufacturer’s instruction. 

Media were collected for further use after transfection for 48 h.   
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3.9 Small interfering (si)-RNA treatment 

         A549-TPα cells were transiently transfected with control siRNA or C/EBPβ, MMP-

1, MMP-9 siRNA at concentration of 50 nM using Lipofectamine 2000.  Cells were 

treated with siRNA for 24 h prior to stimulation by 50 nM I-BOP for another 24 h. For 

PAR-2 knockdown experiment, control A549 cells were transiently transfected with 

control siRNA or PAR2-siRNA at concentration of 100 nM using Lipofectamine 2000. 

Cells were treated with the siRNA for 72 h prior to stimulation by MMP-1 or conditioned 

media for another 16 h.  

3.10 Real-time PCR analysis of MCP-1 mRNA 

        The real-time PCR was performed with human MCP-1 and β-actin (as an internal 

standard)-specific primers (Table 2).  All real-time PCR reactions were carried out in a 

final volume of 50 μL and were performed in duplicate for each cDNA sample in the ABI 

PRISM 7700 Sequence Detection System according to the manufacturer’s protocol. The 

optimized reaction consisted of 25 μL of iTaq SYBRGreen Supermix with ROX, 

0.02 U/μL of Uracil-N-glycosylase, 3 μL of diluted cDNA templates, and 200 nM of each 

specific forward and reverse primer. The PCR protocol was 95 °C for 5 min, followed by 

45 cycles of 95 °C for 15 s and 60 °C for 1 min. Specificity of the amplification was 

checked by melt-curve analysis.  Relative levels of mRNA expression were calculated 

according to Pfaffl method [167].  Individual expression values were normalized by 

comparison with β-actin mRNA expression. 
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Table 2. Primers used for real-time PCR 

NAME SEQUENCE 

MCP-1 
5’- ATAGCAGCCACCTTCATTCC-3’(forward) 

5’- ATCCTGAACCCACTTCTGCT-3’ (reverse) 

β-actin 
5’- AGAAAATCTGGCACCACACC-3’ (forward) 

5’- AGAGGCGTACAGGGATAGCA-3’ (reverse) 

 

  

3.11 Promoter constructs and site-directed mutagenesis 

        The MMP-1 promoter construct pGL3-512 was generated from pGL3-2942 by KpnI 

digestion. A site-directed mutagenesis kit was used to mutate the core sequences of three 

AP-1 sites in the pGL3-512 construct: -429m: 5’-TCAGTCA-3’ to 5’-ggAGTCA-3’; -

181m: 5’-TTAATCA-3’ to 5’-ggAATCA-3’; -73m: 5’-TGAGTCA-3’ to 5’-ggAGTCA-

3’.  Human MCP-1-CAT reporter plasmid was reconstructed into pGL3 luciferase 

reporter vector. A site-directed mutagenesis kit was used to mutate the core sequence of 

SP1 binding site in the reconstructed luciferase reporter plasmid: SP1 wild-type (SP1wt), 

5'-CCGCCC-3' to SP1 mutant (SP1m), 5'-CCGggg-3'.  Primers used for generation of 

these mutants were list in Table 3.   
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Table 3. Primers used for generation of site-directed mutagenesis 

NAME SEQUENCE 

-429m forward GCTGGGGGAGCTGAACTGGAGTCAGTACAGGAGCCGAACAGCC 

-429m reverse GGCTGTTCGGCTCCTGTACTGACTCCAGTTCAGCTCCCCCAGC 

-181m forward CGCACACATCTTGTTTGAAGGGAATCATGACATTGCAACACC 

-181m reverse GGTGTTGCAATGTCATGATTCCCTTCAAACAAGATGTGTGCG 

-73 forward GGATGTTATAAAGCAGGAGTCAGACACCTCTGGCTTTCTGG 

-73 reverse CCAGAAAGCCAGAGGTGTCTGACTCCTGCTTTATAACATCC 

SP1m forward CCCTCCTCCTGCTTGACTCCGGGGTCTCTCCCTCTGCCCGC 

SP1m reverse GCGGGCAGAGGGAGAGACCCCGGAGTCAAGCAGGAGGAGGG 

 

 

 3.12 Luciferase assay  

Cells were seeded in 12-well plate and transfected with pGL3-MMP-1 or pGL3-

MCP-1 reporter plasmids using TransIT-2020 Transfection Reagent. After 24 h of 

transfection, cells were incubated with I-BOP or vehicle control (0.1% ethanol) for 

additional 18 h.  Thereafter, cells were collected and further detected by using a 

microplate luminometer (MTX lab systems, Vienna, VA).  The luciferase activity in cell 

lysate was determined as described previously [166].     
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3.13 Preparation of nuclear extract 

        Nuclear proteins were prepared as described previously [168]. In brief, A549-TPα 

cells were scraped into cold phosphate buffered saline (PBS) and centrifuged at 1000 rpm 

for 2 min. Pellets were resuspended in buffer A [10 mM HEPES-KOH pH 7.9, 1.5 mM 

MgCl2, 10 mM KCl, 0.5 mM dithiothreitol (DTT) and 0.2 mM phenylmethylsulfonyl 

fluoride (PMSF)] and incubated on ice for 15 min, then centrifuged at full speed in a 

tabletop centrifuge. The nuclear pellets were lysed for 20 min on ice in buffer B (20 mM 

HEPES-KOH, 1.5 mM MgCl2, 420 mM NaCl, 25% glycerol, 0.2 mM EDTA, 0.5 mM 

DTT and 0.2 mM PMSF), and centrifuged for 2 min as above. The supernatant 

containing nuclear proteins was frozen at -80°C until analyzed.  

3.14 Macrophage migration assay 

        RAW 264.7 macrophages migration was assessed by using CytoSelect 96-well cell 

migration assay kit (Cell Biolabs, San Diego, CA) following the manufacturer’s 

instruction.  In brief, ~ 1.0 ×105 cells in serum free medium were seeded onto the top well 

of a Trans-well insert (8 µm polycarbonate nucleopore filters), and the bottom well was 

supplemented with 150 µL  serum free medium or A549-TPα conditioned medium 

through a10 kDa cut-off membrane prepared in 2.7. After 12 h of stimulation, cells that 

had migrated through the filter were detached and dyed with CyQuant GR dye solution. 

The fluorescence was measured at 480/520 nm.  For antibody neutralization study, 150 

µL serum free medium or conditioned medium was incubated with MCP-1 neutralizing 

antibody (5 µg) or isotype control antibody (5 µg) for 2 h at 37°C before added to the 

lower chamber.  For inhibition study, RAW 264.7 cells were incubated with MCP-1 
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receptor (CCR2) antagonist RS-102895 (10 µM) for 30 min before stimulation with the 

conditioned medium. 

3.15 Co-culture experiments 

        For transwell co-culture system, control A549 or A549-TPα cells were plated into a 

six-well culture plate, and RAW 264.7 cells were seeded onto transwell inserts (with a 

0.4 µm pore size) top on another six-well plate. After 24 h, replace the medium of A549 

and RAW cells with fresh serum free medium and move the RAW 264.7 transwell inserts 

onto the six-well plate where A549 cells were seeded.  After 12 h of co-culture, A549 

cells were pictured and collected for RT-PCR analysis.  For direct co-culture, control 

A549 cells which express GFP were plated with or without RAW 264.7 cells into a 12-

well plate and cells were pictured after a certain periods.  Diagrams of two co-culture 

systems were given in Figure 38 and Figure 42. The images of cells were captured using a 

Kodak digital camera under Olympus Tokyo CK inverted microscope. 

 3.16 Invasion assay 

        For I-BOP-induced invasion of A549-TPα and TPβ cells, the invasion assay was 

assessed by using CytoSelect 96-well cell invasion assay kit following the manufacturer’s 

instruction.  In brief, ~ 1.0 ×105 cells in serum free medium were seeded onto the ECM 

protein coated filters, and the lower wells were supplement with medium containing 0.1% 

FBS. I-BOP or GM6001 were directly added to the cell suspension. After incubation for 

24 h, cells that had penetrated through the filter were detached and dyed with CyQuant 

GR dye solution. The fluorescence was measured at 480/520 nM. 
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        For macrophages-promoted invasion of control A549 cells, the invasion assay was 

carried out following the instructions of Cultrex 24-well Transwell BME cell invasion 

assay (Trevigen). Briefly, a 24-well unit with 8 µm polycarbonate nucleopore filters 

(Corning) evenly coated with 100 µL basement membrane extract coating solution 

(Trevigen) at 37 °C for 4 h. Control A549 cells (2×105) expressing GFP and RAW 264.7 

macrophages (1×105) in serum free medium were placed in the upper compartment, and 

50% RPMI 1640 plus 50% DMEM medium supplied with 0.1-0.5% FBS was added to 

the lower compartment. After 24 h incubation, cells that had not invaded were removed 

with a cotton swab. Cells that had invaded the lower surface of the membrane were 

observed under a fluorescence microscope.  Invaded cells in three randomly selected 

fields were counted.  

3.17 Statistical analysis 

The differences between each group were expressed as mean ± SD. Statistical 

significance was assessed by Student’s t test. Differences were considered statistically 

significant when P values were ≤ 0.05.  
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4. Results 

4.1 Overexpression of TP increases invasion of human lung cancer cell A549 

4.1.1 Ectopic expression of TPα and TPβ in A549 cells by lentiviral approach 

        It has been reported that TP agonists can initiate signaling transductions by 

activating endogenously expressed TPα/β in some lung and prostate cancer cells [10, 20].  

In order to explore whether TPα and TPβ function differently we chose to overexpress 

each receptor in human lung A549 cells which express low levels of endogenous TP and 

were shown no response to TP agonist [166].  The approach of using liposome-mediated 

DNA transfection method to increase expression of TP in A549 cells encountered limited 

success.  The approach of using lentiviral vectors to deliver TPα and TPβ cDNAs into 

A549 cells was therefore attempted.  A lentiviral vector harboring GFP was used as a 

control.  Stably transduced clones and populations (cell pools) were collected and 

designated as control A549, A549-TPα, and A549-TPβ cells.  The cell pools were used in 

this study to avoid deriving from the specificity of a single clone.  The expression of TPα 

and TPβ in these cells were determined by RT-PCR.  As shown in Figure 10a, A549-TPα 

cells expressed a significantly higher level of TPα than A549-TPβ and control A549 cells.  

Similarly, A549-TPβ cells expressed highest level of TPβ.  Although there are low levels 

of endogenous expression of TPα and TPβ in A549 cells, their levels are not adequate to 

mediate ERK responses to TP agonist, I-BOP, stimulation.  As shown in Figure 10b, I-

BOP induced significant phosphorylation of ERK in both A549-TPα and A549-TPβ cells 

but not in control A549 cells.   
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(a) 

 

 

 

 

(b) 

 

 

 

 

 

 Figure 10. Characterization of A549-TPα and A549-TPβ cells   

(a) RT-PCR identification of over-expressed TPα and TPβ mRNA in A549-TPα and 

A549-TPβ cells. Cells total RNA was isolated.  RT-PCR was carried out as described in 

Materials and methods.   (b) I-BOP-induced phosphorylation of ERK1/2 in A549-TPα 

and A549-TPβ cells. Cells were starved for 24 h before treatment with 50 nM I-BOP at 

indicated time. Western blot was performed as described in Materials and methods. 

GAPDH was used as the protein loading control.  Data are representative of three 

independent experiments.  
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4.1.2 TP agonist induces decreases in E-cadherin levels in A549-TPα and TPβ cells 

        Tumor cell invasion is associated with the disruption of cell-cell adhesion and the 

movement of cells across the ECM. E-cadherin-catenin complex is critical for cell 

adhesiveness and maintenance of normal tissue architecture. Reduction of E-cadherin is 

tightly linked with cell invasion [169]. We examined the effects of TP agonists, I-BOP 

and U46619, on the expression of E-cadherin in our established A549-TPα and TPβ cells. 

Results showed that activation of TPα and TPβ significantly reduced E-cadherin 

expression (Figure11). 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Effects of TP activation on E-cadherin expression 

A549-TPα and TPβ cells were starved for 24 h before treated with 50 nM I-BOP or 1µM 

U46619 for another 48 h. The expression of E-cadherin was detected by Western blot 

analysis. Data are representative of three independent experiments. 
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4.1.3 TP agonist induces morphological changes of A549-TPα and TPβ cells  

        To acquire the invasive properties, tumor cells change their epithelial morphology to 

scattered spindle-shaped morphology which is usually associated with the loss of E-

cadherin. In this study, when stimulated with I-BOP, A549-TPα and TPβ cells became 

more scattered and exhibited elongated protrusions, indicating their invasive potential 

(Figure 12).  

 

 

       

 

 

 

 

  

 

 

Figure 12. Effects of TP activation on cell morphological changes 

A549 control, A549-TPα and A549-TPβ cells were treated with 10 nM I-BOP or vehicle 

control (0.1% ethanol) for 48h. Cells were visualized with Zeiss Axiovert S100 inverted 

microscope. The images were captured using a Kodak digital camera.  
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4.1.4 TP agonist induces invasion of A549-TPα and TPβ cells 

        Next, we sought to determine whether I-BOP affects A549-TPα and A549-TPβ cells 

invasion by using transwell invasion assay. As shown in Figure 13, I-BOP at 10 nM 

induced significant increase in both A549-TPα and A549-TPβ cellular invasiveness.  

Nonetheless, it has no effect on control A549 cells.   

 

 

 

 

 

 

 

 

Figure 13. Effects of TP activation on cell invasion 

The invasiveness of A549 control, A549-TPα and A549-TPβ cells under indicated 

concentrations of I-BOP was assayed as described in Materials and methods. Three 

separate experiments and triplicate wells each were performed.  Data are presented as 

invasion relative to the vehicle control-treated cells.  * P ˂ 0.05; ** P ˂ 0.01.                
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4.2 Increased expression of MMPs mediates TP agonist-induced invasion in A549-

TPα cells  

4.2.1 Induction of MMPs expression by TP agonist in both A549-TPα and TPβ cells 

        Induction of MMPs expression by I-BOP in A549-TPα, A549-TPβ and the control 

A549 cells was examined.  Using semi-quantitative RT-PCR, we found that transcription 

of MMP-1, MMP-3, MMP-9 and MMP-10 genes was significantly induced by I-BOP in 

A549-TPα and A549-TPβ cells but not in the control A549 cells (Figure 14a).  I-BOP-

induced increase in secretion of MMP-1 and MMP-9 in the media of A549-TPα and 

A549-TPβ cell cultures was determined by Western blot analysis and zymographic assay 

(Figure 14b. MMP-3 can also be detected by casein zymography and it has a similar 

molecular weight as MMP-1). The expression patterns were comparable for A549 cells 

expressing either TPα or TPβ. Therefore, A549 cells expressing TPα were primarily used 

for in depth study.  

        MMP-1 is the first member of the MMP family being identified and studied in 

greater detail. Many signaling pathways targeted to MMP-1 gene are conserved in other 

MMP genes. Therefore, subsequent studies were focused on TP-mediated MMP-1 

expression and regulation in A549-TPα cells.  I-BOP induced strong and sustained 

expression of MMP-1 mRNA as shown in Figure 15a.  MMP-1 mRNA level increased 

rapidly at 1 h and reached maximum by 8 h following I-BOP stimulation and remained 

high over a 24 h period. The levels of protein expression in conditioned media 

determined by Western blot analysis correlated well with the levels of mRNA analyzed 

by RT-PCR. Dose-dependent study indicated that I-BOP at 1 nM was sufficient to induce 

MMP-1 expression in A549-TPα cells. I-BOP at 50 nM induced the maximal expression 
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(Figure 15b).  The induction of MMP-1, MMP-3 and MMP-10 by I-BOP was also found 

in another lung cancer cell line H460 (Figure 15c) which expresses endogenous TP 

receptors, indicating the induction of MMPs was not simply due to the artificial 

expression of exogenous TP receptors.     

 

  (a) 

    

 

 

              

 

 

Figure 14. Effects of I-BOP on MMPs expression and activity  

(a) I-BOP-induced transcription of several MMPs in A549-TPα and A549-TPβ cells. 

Cells were starved for 24 h before treatment with 50 nM I-BOP for 2 h or 12 h and then 

total RNA was isolated. RT-PCR was carried out as described in Materials and methods.  

Data are representative of three independent experiments. 
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(b)                             

 

 

 

 

 

 

Figure14. Effects of I-BOP on MMPs expression and activity 

 (b) I-BOP-induced protein secretions of MMP-1and MMP-9 in A549-TPα and A549-

TPβ cells.  Cells were treated with 50 nM I-BOP for 24 h. Protein expression of MMP-1 

and MMP-9 in the conditioned media were detected by Western blot (upper panel) and 

zymography (lower panel) as described in Materials and methods. MMP-3 can also be 

detected by casein zymography and it has a similar molecular weight as MMP-1. Data are 

representative of three independent experiments. 
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(a) 

 

 

 

 

 

 

 

 

 

 

Figure 15. Effects of I-BOP on MMP-1 expression 

(a) Time-dependent effects of I-BOP on MMP-1 expression.  A549-TPα cells were 

treated with 50 nM I-BOP at indicated time. RT-PCR was carried out to identify mRNA 

levels of MMP-1. Densitometric analysis of each band was made. The ratio of MMP-1 to 

β-actin densities at 0 h was normalized to 1.0.  Protein expression of MMP-1in the 

conditioned medium was detected by Western blot analysis.  Data are representative of 

three independent experiments. 
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 (b)              

 

 

 

 

 

 

Figure 15. Effects of I-BOP on MMP-1 expression 

(b) Dose-dependent effects of I-BOP on MMP-1 expression.  A549-TPα cells were 

treated with indicated concentrations of I-BOP for 12 h. MMP-1 mRNA level was 

determined by RT-PCR. MMP-1 protein expression in the conditioned medium was 

detected by Western blot analysis.  Data are representative of three independent 

experiments. 
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(c)            

 

 

 

 

 

 

 

Figure 15. Effects of I-BOP on MMP-1 expression 

 (c) I-BOP-induced MMPs expression in H460 cells. H460 cells were treated with 

indicated concentrations of I-BOP for 8 h. MMP-1, MMP-3 and MMP-10 mRNA levels 

and MMP-1 protein expression were determined as described above.  Data are 

representative of three independent experiments. 
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4.2.2 Upregulation of MMP-1 is dependent on PKC and MAPK/ERK signaling 

         Signal transduction pathways leading to the expression of MMP-1 were 

investigated using specific inhibitors of signaling molecules. As shown in Figure 16, 

SQ29548, a TP antagonist, blocked totally I-BOP-induced MMP-1 expression at both 

mRNA and protein levels as expected. GF109203X, a PKC inhibitor, attenuated almost 

completely MMP-1 expression at both mRNA and protein levels. LY294002, a 

phosphoinositide-3-kinase (PI-3K) inhibitor, had no inhibitory effect on MMP-1 

induction.    

        Downstream signaling pathway, mitogen-activated protein kinase (MAPK) pathway 

was also examined.  A549-TPα cells were treated with MAPK/ERK inhibitor (U0126), 

stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) inhibitor 

(SP600125) and p38 MAPK inhibitor (SB203580) at previously established inhibitory 

concentrations[166].  Only U0126 completely blocked I-BOP-induced MMP-1 

expression.  Other inhibitors exhibited no effects as shown in Figure 16.  These data 

indicate that upregulation of MMP-1by I-BOP is PKC involved, MAPK/ERK dependent, 

SAPK/JNK and p38 MAPK independent process.  
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Figure 16. Effects of different inhibitors on I-BOP-induced MMP-1 expression   

A549-TPα cells were treated with various inhibitors for 30 min before incubation with 50 

nM I-BOP for 12 h.  RT-PCR (upper panel) and Western blot (lower panel) were 

performed to determine MMP-1 mRNA level in cells and protein secretion in the 

conditioned medium, respectively. Data are representative of three independent 

experiments.  Inhibitor concentration used: 10 µM SQ29548 (SQ), 10 µM LY294002 

(LY), 0.5 µM GF109203X (GF), 10 µM U0126, 10 µM SB203580 (SB), or 10 µM 

SP600125 (SP).  
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4.2.3 AP-1 as a downstream signal of PKC and MAPK/ERK pathways 

        AP-1, composed of c-Jun and c-Fos families, is a known transcriptional regulator of 

MMP-1 expression[73]. We sought to determine whether PKC and MAPK/ERK 

signaling pathways mediate its activation and therefore regulate TP-induced MMP-1 

expression.  

         Time course studies indicated that c-Jun was strongly activated by I-BOP within 10 

min. The phosphorylation of c-Jun maintained at a maximal level from 30 min to 1 h, and 

remained high even at 2 h (Figure 17a upper panel). The protein expression of c-Fos was 

significantly induced by I-BOP at 1 h and reached a peak level at 2 h (Figure 17a lower 

panel). The rapid activation of c-Jun and c-Fos is consistent with the rapid induction of 

MMP-1 mRNA as shown in Figure 15a. These data suggest that there is a positive 

correlation between I-BOP-induced AP-1 activation and MMP-1 expression. 

        Cells were further treated with PKC and ERK inhibitors to test if they inhibit I-BOP-

induced c-Jun/c-Fos activation. The results showed that PKC inhibitor, GF109203X, 

attenuated significantly c-Jun/c-Fos activation.  ERK inhibitor, U0126, also significantly 

repressed c-Jun activation and totally blocked c-Fos expression (Figure 17b).  

GF109203X had no effect on I-BOP-induced ERK activation suggesting that PKC-

induced activation of c-Jun/c-Fos was not likely to be mediated by MAPK/ERK (Figure 

17b).  PMA, a PKC activator, stimulated the activation of c-Jun/c-Fos providing further 

evidence that PKC was involved in I-BOP-induced AP-1 activation (Figure 17c).  

Although JNK inhibitor partially blocked I-BOP-induced phosphorylation of c-Jun, it has 

no inhibitory effect on I-BOP-induced c-Fos expression (Figure 17d).   
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        To further confirm the involvement of PKC-AP-1 and ERK-AP-1 signal cascades in 

MMP-1 induction, luciferase reporter bearing a fragment of MMP-1 gene promoter which 

contains putative AP-1 sites was employed to examine their roles.  In addition to the 

common ~-70 bp AP-1 site in all Group 1 MMP promoters, the 512 bp length of MMP-1 

promoter construct contains two other putative AP-1 sites at -181 bp and -429 bp [170].  

I-BOP induced a significant increase in luciferase activity which was presumably due to 

the activation of AP-1 proteins.  Site-directed mutagenesis of AP-1 sites at -73 or -181 bp 

of MMP-1 promoter significantly decreased I-BOP-induced luciferase activity.  However, 

mutation of AP-1 site at -429 bp has no effect on I-BOP induction of MMP-1 promoter 

activity indicating that the -73 and -181 AP-1 sites in the proximal region of MMP-1 

promoter are more important for its transcription (Figure 17e).  Inhibitors of PKC and 

ERK significantly attenuated the increase in luciferase activity induced by I-BOP 

stimulation (Figure 17f) supporting the notion that PKC and MAPK/ERK signaling 

pathways may converge at the AP-1 elements to regulate I-BOP-induced MMP-1 gene 

expression.    
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 (a) 

 

 

 

 

 

 

 

 

Figure 17. AP-1 is a downstream signal of PKC and MAPK/ERK pathways 

(a) Time-dependent effect of I-BOP on phosphorylation of c-Jun and induction of c-Fos.  

A549-TPα cells were treated with 50 nM I-BOP at indicated time.  Western blot analysis 

was performed to detect p-c-Jun and c-Fos. Data are representative of three independent 

experiments. 
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(b) 

 

 

 

 

 

 

 

 

 

 

Figure 17. AP-1 is a downstream signal of PKC and MAPK/ERK pathways 

(b) Effect of PKC and ERK inhibitors on I-BOP-induced phosphorylation of c-Jun and 

the expression of c-Fos.  A549-TPα cells were treated with 0.5 µM GF109203X (GF) or 

10 µM U0126 for 30 min before incubation with 50 nM I-BOP for 30 min (detecting p-c-

Jun and p-ERK1/2) or 2 h (detecting c-Fos), followed by Western blot analysis with 

corresponding primary antibodies to detect  p-ERK1/2, p-c-Jun and c-Fos. Data are 

representative of three independent experiments. 
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(c)                                                                 (d) 

 

 

 

 

 

 

 

 

Figure 17. AP-1 is a downstream signal of PKC and MAPK/ERK pathways 

(c) Effect of PMA on phosphorylation of c-Jun and expression of c-Fos. Cells were 

treated with 0.5 µM GF109203X (GF) for 30 min before incubation with 100 nM PMA 

for 30 min (detecting p-c-Jun) or 2 h (detecting c-Fos), followed by Western blot analysis 

to detect p-c-Jun and c-Fos. Data are representative of three independent experiments. 

(d) Effect of JNK inhibitor on I-BOP-induced phosphorylation of c-Jun and expression of 

c-Fos. Cells were treated with 10 µM SP600125 (SP) for 30 min before incubation with 

50 nM I-BOP for 30 min (detecting p-c-Jun) or 2 h (detecting c-Fos), followed by 

Western blot analysis to detect p-c-Jun and c-Fos. Data are representative of three 

independent experiments. 
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(e) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. AP-1 is a downstream signal of PKC and MAPK/ERK pathways 

(e) AP-1 sites are important for MMP-1 gene activation. Luciferase reporter plasmids 

bearing 512 bp fragment of MMP-1 promoter with wild type or mutated AP-1 sites were 

transfected into A549-TPα cells. After 24 h of transfection, cells were treated with 50 nM 

I-BOP or vehicle control (0.1% ethanol) for additional 18 h. Cell lysates were then 

prepared. Luciferase activity was assayed as described in Materials and methods. Data 

were shown as fold change relative to the vehicle control. Values were means ± SD of 

three independent experiments. Statistical analysis was performed by Student’s t-test.  

 * P ˂ 0.05; ** P ˂ 0.01.  
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(f)  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. AP-1 is a downstream signal of PKC and MAPK/ERK pathways 

(f) Effect of PKC and ERK inhibitors on I-BOP-induced MMP-1 transcription.  

Luciferase reporter construct containing 512 bp of MMP-1 promoter was transfected into 

A549-TPα cells. After transfection for 24 h, cells were treated with 0.5 µM GF109203X 

(GF) or 10 µM U0126, followed by stimulation with 50 nM I-BOP or vehicle control 

(0.1% ethanol) for 18 h. Luciferase activity was assayed and data were presented as fold 

change relative to the vehicle control. Values were means ± SD of three independent 

experiments. Statistical analysis was performed by Student’s t-test.  ** P ˂ 0.01.  
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4.2.4 C/EBPβ contributes to I-BOP-induced MMP-1 expression  

        I-BOP-induced MMP-1 mRNA did not reach the maximal level until 8 h suggesting 

the possibility that other transcription factors activated later by I-BOP may participate in 

the regulation of MMP-1 transcription.  CCAAT/enhancer-binding protein β (C/EBPβ) 

was identified to contribute to the increase in MMP-1 transcription by IL-1β in 

chondrocytes and A549 cells [171, 172]. To establish whether C/EBPβ play a role in I-

BOP-mediated MMP-1 expression, we first set out to determine the activation of C/EBPβ 

by I-BOP using Western blot analysis. Both the expression and phosphorylation of 

C/EBPβ increased in response to I-BOP stimulation (Figure 18a). The maximal increase 

occurred at 8 h concurrent with the maximal level of MMP-1 mRNA in I-BOP treated 

cells (Figure 15a and Figure 18a), indicating the possibility that C/EBPβ may modulate 

MMP-1 gene expression.  The effect of C/EBPβ inhibition on I-BOP-mediated MMP-1 

expression was then examined. C/EBPβ siRNA at 50 nM significantly knocked down 

C/EBPβ protein expression and phosphorylation in I-BOP treated cells as compared with 

the control siRNA (Figure 18b). The knockdown of C/EBPβ partially blocked I-BOP-

induced MMP-1 mRNA and protein expression, indicating the involvement of C/EBPβ in 

MMP-1 regulation.  

        Furthermore, luciferase reporter assay was used to demonstrate the contribution of 

C/EBPβ to I-BOP-induced MMP-1 transcription. C/EBPβ-binding element is located at -

2,921 bp of human MMP-1 promoter. Deletion mutation of this binding site resulted in 

~70% reduction of basal promoter activity and ~40% decrease in relative fold of I-BOP-

induced promoter activity  compared with the wild type (Figure 18c) indicating that 

C/EBPβ is critical for constitutive and I-BOP-induced MMP-1 expression in A549-TPα 
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cells.  The upstream signaling pathways leading to the activation of C/EBPβ in I-BOP 

treated cells were further examined.  ERK has been reported to phosphorylate C/EBPβ at 

Thr-235 to increase its transcriptional activity [173]. Our Western blot results showed 

that ERK inhibitor, U0126, abrogated both I-BOP-induced expression and 

phosphorylation of C/EBPβ (Figure 18d) suggesting that C/EBPβ-mediated MMP-1 

regulation is ERK-dependent.   
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Figure 18. C/EBPβ contributes to I-BOP-induced MMP-1 expression 

(a) Time-dependent effect of I-BOP on expression and phosphorylation of C/EBPβ.  

A549-TPα cells were treated with 50 nM I-BOP at indicated time. Western blot analysis 

was performed to detect both the expression and phosphorylation of C/EBPβ. Data are 

representative of three separate experiments. 
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(b)    

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. C/EBPβ contributes to I-BOP-induced MMP-1 expression 

(b) Effect of C/EBPβ knockdown on I-BOP-induced MMP-1 expression. A549-TPα cells 

were transfected with 50 nM control siRNA or C/EBPβ siRNA. After transfection for 24 

h, cells were treated with vehicle or 50 nM I-BOP for 8 h (detecting C/EBPβ and p-

CEBP/β) or 12 h (detecting MMP-1). Western blot analysis was carried out to detect the 

expression of C/EBPβ, p-C/EBPβ in cell lysates and the secretion of MMP-1 in the 

conditioned medium. RT-PCR was performed to identify MMP-1 mRNA level as 

described in Materials and methods. Densitometric analysis of each band was made. The 

value of vehicle-treated control was normalized as 1.0.  
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Figure 18. C/EBPβ contributes to I-BOP-induced MMP-1 expression 

(c) C/EBPβ-mediated regulation of MMP-1 promoter activity. A549-TPα cells were 

transfected with luciferase reporter plasmids containing 2,942 bp of MMP-1 promoter 

sequence or same length promoter with an internal deletion of the CEBPβ site located at -

2,921bp. After transfection for 24 h, cells were treated with vehicle control or 50 nM I-

BOP for additional 18 h. Luciferase activity was assayed and data are presented as 

relative light unit (right panel). The relative fold of I-BOP inducibility of wild and mutant 

promoters was compared (left panel).  * P ˂ 0.05. 
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(d) 

 

 

 

 

 

 

 

 

 

 

Figure 18. C/EBPβ contributes to I-BOP-induced MMP-1 expression 

(d) I-BOP-induced C/EBPβ activation is ERK-dependent. A549-TPα cells were treated 

with 10 µM U0126 for 30 min before stimulation with vehicle control or 50 nM I-BOP 

for 8 h. CEBPβ and p-CEBPβ were assayed by Western blot analysis. Densitometric 

analysis of each band was made. The value of vehicle-treated control was normalized as 

1.0. Data are representative of three separate experiments. 
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4.2.5 Elevated MMPs promote TP-mediated cell invasion   

        It is believed that MMP family proteins are associated with cancer invasive potential 

[174]. To investigate whether I-BOP could increase cell invasion through upregulation of 

MMPs, in vitro invasion assay was performed.  As shown in Figure 14, I-BOP at 10 nM 

induced significant increase in both A549-TPα and A549-TPβ cellular invasiveness.  

Nonetheless, it has no effect on A549 control cells.  GM6001, a general MMPs inhibitor, 

blocked both basal and I-BOP-induced invasiveness of A549-TPα cells (Figure 19a).  To 

further validate the role of I-BOP-induced MMPs in cell invasion, A549-TPα cells were 

treated with siRNA of MMP-1 and MMP-9 and then analyzed for cellular invasiveness.  

Total inhibition of MMP-1 and MMP-9 expression resulted in ~40% and ~60% decrease 

in invasion, respectively (Figure 19b).  These findings suggest that TP-mediated A549 

cell invasion is at least partially dependent on MMP-1 and MMP-9 induction.  
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(a) 

 

 

 

 

 

 

Figure 19. Elevated MMPs promote I-BOP-induced cell invasion   

(a) Effect of MMPs inhibitor on I-BOP-induced invasion of A549-TPα cells. GM6001 at 

10 µM was added in cell suspension before treatment with vehicle control or 10 nM I-

BOP.  Invasion assay was performed as described in Materials and methods.  ** P ˂ 0.01. 
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(b) 

 

 

 

 

 

 

 

 

 

 

Figure 19. Elevated MMPs promote I-BOP-induced cell invasion   

(b) Effect of MMP-1 and MMP-9 knockdown on I-BOP-induced invasion.  A549-TPα 

cells were transfected with 50 nM control, MMP-1 or MMP-9 siRNA. After transfection 

for 24 h, cells were resuspended in serum-free media with vehicle control or 10 nM I-

BOP. The mRNA and protein levels of MMP-1 and MMP-9 were measured by RT-PCR 

and Western blot analysis.  Invasion assay was performed as described in Material and 

methods. Three separate experiments and triplicate wells each were performed.  Data are 

presented as invasion relative to the vehicle control-treated cells. * P ˂ 0.05.                
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4.3 MMP-1 released by activation of TP induces expression of MCP-1 from lung 

cancer cells by activation of PAR2           

        In addition to structural components of the ECM, MMPs can cleave non-ECM 

molecules. Protease-activated receptor 1(PAR1) was identified as a novel substrate for 

MMP-1[69].  MMP-1/PAR1 axis has been identified to mediate invasion and metastasis 

of various cancers including breast cancer [69, 93], melanoma [70] and ovarian cancer 

[94, 95].  MCP-1-mediated macrophage infiltration has been demonstrated to contribute 

to cancer metastasis too [132].   Increased release of MCP-1 from A549 cells by 

activation of PAR1 and PAR2 has been reported before [106].  Here we investigated 

whether MMPs released by TP activation may cleave and activate PARs to initiate other 

cascades that involved in cancer invasion and metastasis.  

4.3.1 Conditioned media from TP agonist-treated A549-TPα cells induces the release 

of MCP-1 from A549 cells 

        To determine if MMPs induced by TP agonist can exert autocrine influences on 

cancer cell behavior, we first measured MCP-1 levels in A549 cells treated with 

conditioned media (CM) from A549-TPα cells. As shown in Figure 20, the CM from I-

BOP-treated A549-TPα cells (CM-I-BOP) stimulated significantly the release of MCP-1 

from control A549 cells compared with the CM from vehicle-treated A549-TPα cells 

(CM-Control).  We found that activation of TP induced the expression and release of 

MCP-1 directly from A549-TPα cells (results are presented in 4.4).  To avoid the impact 

of TP on the induction of MCP-1, we used control A549 cells in the following studies.       
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Figure 20. CM-I-BOP induces release of MCP-1 from A549 cells  

A549 cells were incubated with 100 µL of concentrated conditioned media (CM) as 

described in Materials and methods for 16 h. CM-Control: CM from vehicle (0.1% 

ethanol)-treated A549-TPα cells; and CM-I-BOP: CM from I-BOP-treated A549-TPα 

cells.  Western blot was conducted to determine the release of MCP-1 from A549-GFP 

cells as described in Materials and methods. Densitometric analysis of each band was 

made and results shown as fold change, ** P < 0.01 compared with CM-Control.  
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4.3.2 MMP-1 mediates the release of MCP-1 by conditioned media from TP agonist-

treated A549-TPα cells 

         I-BOP induced an increase in protein levels of MMP-1, MMP-3 and MMP-9 in the 

media of A549-TPα cells (Figure 21a). Different approaches were used to examine which 

of these MMPs can induce MCP-1 expression. As shown in Figure 21b, the CM from 

A549-TPα cells over-expressing MMP-9 did not induce the release of MCP-1 from these 

cells. Recombinant human MMP-3 did not stimulate the expression of MCP-1 either.  

However, MMP-1 significantly increased the expression of MCP-1 (Figure 21c).  

Further, the CM from MMP-1-siRNA-treated A549-TPα cells, in which the induction of 

MMP-1 by I-BOP was significantly decreased, had less effect on MCP-1 release than 

those media from control siRNA-treated cells (Figure 21d). These data indicate that 

MMP-1 in the CM-I-BOP may be responsible for inducing the release of MCP-1.    

 

(a) 

 

 

 

Figure 21. MMP-1 mediates CM-I-BOP-induced MCP-1 from A549 cells 

(a) I-BOP induces MMP-1, MMP-3 and MMP-9 expression. The protein levels of MMP-

1, MMP-3 and MMP-9 in CM from A549-TPα cells treated with 0.1% ethanol (control) 

or I-BOP were determined by Western blot analysis. Data are representative of three 

independent experiments.  
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(b)                                                              (c) 

 

 

 

 

 

 

 

Figure 21. MMP-1 mediates CM-I-BOP-induced MCP-1 from A549 cells 

(b) The effects of MMP-9 on MCP-1 release. A549-TPα cells were transfected with 

pcDNA3 and pcDNA3-MMP-9 plasmids. After 48 h transfection, conditioned media 

were collected and MMP-9 protein levels were determined by Western blot (upper 

panel). A549 cells were treated for 16 h with above CM. MCP-1 protein levels were 

determined by Western blot (lower panel). Results are representative of three independent 

experiments.  (c) The effects of MMP-3 and MMP-1 on MCP-1 release. Control A549 

cells were treated with PBS (control), 5 nM MMP-1 or 5 nM MMP-3 for 16 h. The 

release of MCP-1 was determined by Western blot. Densitometric analysis of each band 

was made and results were shown as fold change, ** P < 0.01 compared with control.  
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(d) 

 

 

 

 

 

 

 

 

Figure 21. MMP-1 mediates CM-I-BOP-induced MCP-1 from A549 cells 

(d) The effects of MMP-1 knockdown in CM on MCP-1 release. A549-TPα cells were 

treated with either control or MMP-1 siRNA as indicated in Materials and methods. 

Conditioned media were collected and MMP-1 protein levels were determined by 

Western blot (upper panel). A549 cells were treated for 16 h with the above CM. MCP-1 

protein levels were determined by Western blot (lower panel). Densitometric analysis of 

each band was made and results were shown as fold change, ** P < 0.01 compared with 

siControl plus I-BOP. Results are representative of three individual experiments. 
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4.3.3 MMP-1-induced MCP-1 release is PAR2 dependent  

        To determine if MMP-1-induced MCP-1 expression in A549 cells was achieved by 

cleaving and activating PARs, PARs specific antagonists were employed in this study.  

Unexpectedly, PAR1 antagonist SCH79797 at 50 nM did not block MMP-1-induced 

MCP-1 expression. However, SCH79797 at the same concentration effectively inhibited 

TFLLR-NH2, a PAR1-AP, -induced MCP-1 expression (Figure 22 and 24b). Similar 

results were obtained from the treatment with tc-Y-NH2, a PAR4 antagonist peptide 

(Figure 22 and 24b).  Interestingly, PAR2 antagonist ENMD-1068 completely inhibited 

MMP-1-induced MCP-1 expression (Figure 22). Comparing all PAR-APs, we found 

SLIGKV-NH2, a PAR2-AP, induced the most effective release of MCP-1 and PAR3-AP 

showed no induction of MCP-1 from A549 cells (Figure 23). The concentration of each 

PAR-AP used here is all optimal for the maximum induction. Trypsin, a known PAR2 

activating protease, also induced the expression of MCP-1 at 0.1µg/mL. Both inductions 

can be blocked totally by PAR2 antagonist (Figure 24a).   

        We also compared the increase of MCP-1 mRNA level by MMP-1 and PAR2-AP. 

Our RT-PCR results showed that a PAR2-AP induced more rapid expression of MCP-1 

than did MMP-1. PAR2-AP already stimulated the expression of MCP-1 mRNA at 1 h, 

and the expression reached the peak at 2 h. Nonetheless, MMP-1-treated cells displayed a 

delayed increase in the expression of MCP-1 mRNA (Figure 25).   In addition, CM-I-

BOP-induced MCP-1 release was also blocked by antagonist of PAR2 but not those of 

other PARs, which is in consistent with the results obtained from MMP-1 treatment 

(Figure 26).  
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        To further demonstrate that MMP-1-induced MCP-1 expression is mediated by 

PAR2, the siRNA of PAR2 was used to knock down its expression in A549 cells. As 

shown in Figure 27a, PAR2 siRNA at 100 nM successfully knocked down greater than 

80% of PAR2 protein expression in A549 cells. The inductions of MCP-1 by MMP-1 and 

by CM-I-BOP in PAR2 knockdown cells were decreased by ~45% and ~40%, 

respectively (Figure 27b and 27c). These data indicate that MMP-1-induced release of 

MCP-1 from A549 cells is significantly mediated by PAR2.   
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Figure 22. PAR2 antagonist blocks MMP-1-induced MCP-1 release from A549 cells 

 Cells were treated with different PARs antagonists at optimized inhibitory 

concentrations for 30 min before stimulation with 5 nM MMP-1 for 16 h. PARs 

antagonists: PAR1, 50 nM SCH79797; PAR2, 150 µM ENMD-1068; PAR4, 300 µM tc-

Y-NH2.  MCP-1 protein levels were determined by Western blot. Densitometric analysis 

of each band was made and results were shown as fold change, ** P < 0.01 compared 

with MMP-1 alone.  
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Figure 23. PAR-APs induce MCP-1 release from A549 cells 

Cells were treated with different PAR-APs: PAR1, 300 µM TFLLR-NH2; PAR2, 300 µM 

SLIGRL-NH2; PAR3, 300 µM TFRGAP-NH2; PAR4, 300 µM GYPGQV-NH2, for 16 h. 

MCP-1 protein levels were determined by Western blot. Densitometric analysis of each 

band was made and results were shown as fold change, ** P < 0.01 compared with 

control.  
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(a)                                                                         (b) 

  

 

 

 

 

 

 

 

Figure 24. PARs antagonists block PARs agonists-induced MCP-1 release from 

A549 cells 

(a) Cells were treated with or without 150 µM PAR2 antagonist, ENMD-1068, for 30 

min before incubation with PAR2 agonist, 0.1µg/ml trypsin (optimized concentration for 

PAR2 activation) and 300 µM SLIGRL-NH2, for 16 h. MCP-1 protein levels were 

measured by Western blot. Densitometric analysis of each band was made and results 

were shown as fold change, ** P < 0.01 compared with trypsin or SLIGRL-NH2 alone.  

(b) Cells were treated with or without PAR1 or PAR4 antagonist (50 nM SCH79797 for 

PAR1, 300 µM tc-Y-NH2 for PAR4) for 30 min before stimulation with PAR1-AP, 300 

µM TFLLR-NH2 or PAR4-AP, 300 µM GYPGQV-NH2, for 16 h. MCP-1 protein levels 

were determined by Western blot. Densitometric analysis of each band was made and 

results were shown as fold change, ** P < 0.01 compared with TFLLR-NH2 or 

GYPGQV-NH2 alone.  
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Figure 25. MMP-1 and PAR2-AP induce the transcription of MCP-1 

Cells were treated with 300 µM PAR2-AP, SLIGRL-NH2 or 5 nM MMP-1 at indicated 

time.   RT-PCR was carried out to identify mRNA levels of MCP-1 in cells.  Data are 

representative of at least three individual experiments. 
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Figure 26. PAR2 antagonist blocks CM-I-BOP-induced MCP-1 release from A549 

cells 

Cells were treated with different PARs antagonists as described in Figure 23 for 30 min 

before stimulation with CM-I-BOP for 16 h. MCP-1 protein levels were determined by 

Western blot.  Densitometric analysis of each band was made and results were shown as 

fold change, ** P < 0.01 compared with CM-I-BOP alone.  
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(a) 

 

 

 

 

(b)                                                                 (c) 

 

 

 

 

 

 

 

 

 

 

Figure 27. PAR2 siRNA suppresses MMP-1 and CM-I-BOP-induced MCP-1 release 

from A549 cells 

(a) Cells were treated with control or PAR2-siRNA as described in Materials and 

methods.   After treatment for 72 h, PAR2 protein levels were determined by Western 

blot analysis. (b) and (c) Control or PAR2-siRNA-treated cells were incubated with 5 nM 

MMP-1 or CM for 16 h. MCP-1 release were determined by Western blot. Densitometric 

analysis of each band was made and results were shown as fold change, ** P < 0.01 

compared with siControl. 
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4.4 Activation of TP increases MCP-1 expression and recruits macrophages to 

promote invasion of lung cancer cells  

            In addition to stimulating MCP-1 expression through released MMP-1, activation 

of TP can directly induce a rapid and significant expression of MCP-1 in A549-TPα cells.    

4.4.1 Induction of MCP-1 expression by activation of TP 

        To examine the effects of activation of TPα on the expression of MCP-1, A549-TPα 

cells were treated with TP agonist I-BOP at different time points. RT-PCR results showed 

that I-BOP induced a rapid and sustained expression of MCP-1 mRNA (Figure 28a).  

Quantitative real-time PCR assay was utilized to further determine the kinetics of MCP-1 

induction.  As shown in Figure 28b, the MCP-1 mRNA levels peaked at 4 h and still 

maintained a significant increase at 16 h after I-BOP treatment.  The protein levels of I-

BOP-induced MCP-1 expression were analyzed by Western blot assay.  The 

accumulation of MCP-1 in conditioned medium reached the maximum level at 24 h 

following stimulation (Figure 28c). Further, the induction of MCP-1 by I-BOP was dose-

dependent and the effect was significant even at 1 nM of I-BOP (Figure 28d).  In 

addition, the induction of MCP-1 by I-BOP was also observed in H157 and H460 human 

lung cancer cells that express high endogenous levels of TP [10] (Figure 29). When 

compared with other prostanoids including PGD2, PGE2, and PGF2α, I-BOP induced the 

most significant expression of MCP-1 in A549-TPα and H460 cells (Figure 30). 

Moreover, other prostanoids induced the peak expression of MCP-1 at a higher 

concentration (1µM). These data show that TP plays an important role in the production 

of MCP-1 in lung cancer cells.  
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Figure 28. Effects of I-BOP on MCP-1 expression in A549-TPα cells 

(a) I-BOP induced transcription of MCP-1. Cells were serum-starved for 24 h before 

treated with 50 nM I-BOP for the indicated time periods.  RNAs were isolated and RT-

PCR was carried out as described in Materials and methods. (b) MCP-1 mRNA induction 

in (a) was confirmed by quantitative real-time PCR. ** P < 0.01 compared with untreated 

cells.  
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(c) 
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Figure 28. Effects of I-BOP on MCP-1 expression in A549-TPα cells 

(c) Time-dependent effects of I-BOP on MCP-1 protein expression.  After 24 h serum-

starvation, cells were treated with 50 nM I-BOP for the indicated time periods. Media 

were collected and proteins in each medium were concentrated by trichloroacetic acid 

(TCA) precipitation as described in Materials and methods. Concentrated samples were 

dissolved in SDS-PAGE sample loading buffer and analyzed by Western blot. (d) Dose-

dependent effects of I-BOP on MCP-1 protein expression.  After 24 h serum-starvation, 

cells were treated with indicated dose of I-BOP for further 24 h. Media were collected 

and assayed as described in (c).   
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Figure 29. I-BOP-induced MCP-1 protein expression in H157 and H460 cells 

After 24 h serum-starvation, cells were treated with indicated dose of I-BOP for further 

24 h. Media were collected and assayed as described in Figure 28c.  Data are 

representative of three independent experiments.   
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Figure 30. Comparison of I-BOP with other prostanoids on the induction of MCP-1 

in A549-TPα and H460 cells 

After 24 h serum-starvation, cells were treated with 50 nM I-BOP, 1µM PGD2, 1µM 

PGE2 or 1µM PGF2α for 24 h. Media were collected and assayed as described in Figure 

28c. Densitometric analysis of each band was made, and control untreated time point is 

normalized to 1.  Data are representative of three independent experiments.   
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4.4.2 SP1 is important for TPα-mediated MCP-1 expression 

        Upon ligand binding TP activates several downstream signal transduction cascades 

including PKC, ERK and NF-κB pathways that are involved in MCP-1 induction by 

several cytokines [118, 119, 175].  To investigate whether these pathways are responsible 

for I-BOP-induced MCP-1 expression, several specific inhibitors were used.  As shown 

in Figure 31, except TP antagonist, SQ29548, none of other inhibitors (GF109203X for 

PKC, U0126 for MEK/ERK, and MG132 for NF-κB pathways) has an effect on I-BOP-

induced MCP-1 expression indicating these pathways are not involved in the induction.  

In the proximal region of MCP-1 promoter, there is a GC rich element, which can bind 

nuclear factor SP1 to activate transcription (Figure 8) [115].  To elucidate whether SP1 is 

critical for MCP-1 induction by I-BOP, we employed mithramycin A (MTM), a specific 

SP1inhibitor preventing SP1 from binding to its consensus GC rich sites [176], and 

geldanamycin (GA), an inhibitor of Hsp90 which was also reported to affect binding of 

SP1 to gene promoter [177].  Both inhibitors significantly suppressed the induction of 

MCP-1 by I-BOP at protein and mRNA levels (Figure 32 and 33).  We further 

investigated the effects of I-BOP on SP1 translocation and expression.  As shown in 

Figure 34, SP1 protein started to accumulate in nucleus after incubation with I-BOP for 

30 min, and remained elevated at 4 h. I-BOP also induced the expression of SP1 at 2 h.  

Moreover, promoter-luciferase reporter bearing a fragment of 500 bp of human MCP-1 

gene promoter was used to evaluate the contribution of SP1 to I-BOP-induced MCP-1 

transcription.  SP1-binding element is located at -115 bp of MCP-1 promoter.  Site-

directed mutagenesis of SP-1 site resulted in a significant decrease of I-BOP-induced 
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promoter activity compared with the wild type (Figure 35). These data reveal that TP-

mediated MCP-1 expression is SP1 dependent.   

 

 

 

 

 

 

 

 

 

 

Figure 31. Effects of TP antagonist and several protein kinases inhibitors on I-BOP-

induced MCP-1 expression  

            Cells were treated with TP antagonist SQ29548 (10 µM), PKC inhibitor GF109203X 

(0.5 µM), MEK inhibitor U0126 (10 µM), and NF-κB activation inhibitor MG132 (10 

µM) for 30 min before incubation with 50 nM I-BOP for 24 h.  Media were collected 

and assayed as described in Figure 28c.  
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Figure 32. Effects of SP1 inhibition on I-BOP-induced MCP-1 expression at protein 

levels 

Cells were treated with indicated concentrations of SP1 inhibitor mithramycin A (MTM) 

and Hsp90 inhibitor geldanamycin (GA) for 30 min before incubation with 50 nM I-BOP 

for 24 h. Media were collected and assayed as described in Figure 28c.  

 

 

 

 

 



94 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 33. Effects of SP1 inhibition on I-BOP-induced MCP-1 expression at mRNA 

levels  

Cells were treated  with above inhibitors for 30 min before incubation with 50 nM I-BOP 

for 4 h. RNAs were isolated and real-time PCR was performed as described in Materials 

and methods. * P < 0.05 and ** P < 0.01 compared with I-BOP treated alone.  
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Figure 34. SP1 protein levels are increased in the nuclei of A549-TPα cells following 

I-BOP stimulation  

Cells were treated with 50 nM I-BOP for the indicated time periods. Nuclear extract and   

whole cell lysate were prepared as described in Materials and methods. Protein level of 

SP1 was determined by Western blot.  Densitometric analysis of each band was made and 

control untreated time point was normalized to 1.  
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Figure 35. Regulation of MCP-1 promoter activity by SP1 

A549-TPα cells were transfected with luciferase reporter plasmids containing 500 bp of 

MCP-1 promoter sequence with either wild type or mutated SP1 binding sites. After 24 h 

transfection, cells were treated with vehicle control (0.1% ethanol) or 50 nM I-BOP for 

additional 18 h in serum free medium.  Luciferase assay was carried out as described in 

Materials and methods. ** P < 0.01.   
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4.4.3 TP agonist-induced MCP-1 exhibits chemotactic effects on macrophages  

        To determine the chemotactic property of I-BOP-induced MCP-1 on macrophages, 

we examined the effect of conditioned medium from A549-TPα cells treated with or 

without I-BOP on the migration of murine macrophage RAW 264.7 cells.  As shown in 

Figure 36, conditioned media from I-BOP-treated cells significantly induced RAW 264.7 

cells migration compared to the media from vehicle (0.1% ethanol)-treated cells.  MCP-1 

neutralizing antibody and RS-102895, antagonist of CCR2, significantly decreased the 

chemotactic potency of medium from I-BOP-treated A549-TPα cells.  These data 

indicate that MCP-1 is a key chemotactic factor in A549-TPα cell culture which caused 

migration of macrophages.   
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Figure 36. Effects of A549-TPα conditioned medium on the migration of RAW 264.7 

macrophages  

Chemotaxis assay of RAW 264.7 cells was carried out as described in Materials and 

methods. Preparation of conditioned medium (CM) from A549-TPα cells was also carried 

out as described in Material and methods section. CM-C is derived from vehicle-treated 

cells, and CM-I is derived from I-BOP-treated cells. SFM represents serum free medium. 

Rat IgG antibody which has no known specificity served as isotype control.  The 

concentrations of both antibodies were 5µg/mL original CM.  The concentration of RS-

102895 was 10 µM.  ** P < 0.01.  
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4.4.4 Co-culture of RAW 264.7 macrophages induces expression of metastatic genes 

by A549 cells   

        To elucidate the effects of macrophages on the invasiveness of A549 cells, we first 

used a trans-well co-culture system as shown in Figure 37.  In this co-culture system, 

there is no cell-cell direct contact and cells communicate with each other through soluble 

proteins.  Both control A549 and A549-TPα cells became more elongated and scattered 

after 12 h of co-culture with RAW264.7 cells than the cells grown alone (Figure 38). 

Furthermore, results from RT-PCR analysis showed that expressions of metastatic genes 

including several MMPs and VEGF were significantly elevated in either control A549 or 

A549-TPα cells co-cultured with macrophages (Figure 39).  Macrophages also induced 

MCP-1 expression by control A549 or A549-TPα cells (Figure 39).  As mentioned in 

3.1.2, Reduction of E-cadherin is tightly linked with cell migration and invasion [169]. 

Therefore, we examined whether macrophage-lung cancer cell interactions regulate E-

cadherin expression in control A549 or A549-TPα cells.  Indeed, co-culture with RAW 

264.7 macrophages significantly reduced the levels of E-cadherin in either type of A549 

cells (Figure 40).  Collectively, these data indicate that co-culture with macrophages may 

increase migration and invasion potential of A549 cells.   
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Figure 37. Diagram of a transwell co-culture system  

RAW 264.7 cells and A549 cells were separately cultured for 24 h and then co-cultured 

in serum free medium for further 12 h or 24 h as described in Materials and methods.   

 

 

 

 

 

 

 

 

 

 



101 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 38. Transwell co-culture of RAW 264.7 macrophages induces morphological 

changes of A549 cells         

Either control A549 or A549-TPα cells became more scattered and spindle shaped after 

culture with RAW 264.7 cells. A549 cells were pictured after 12 h of culture with or 

without RAW 264.7 cells as described in Figure 37.  
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Figure 39. Co-culture of macrophages induces metastatic gene expression by A549 

cells  

The expressions of several metastatic genes in A549 and A549-TPα cells including 

MMPs, VEGF and MCP-1 mRNA after co-culture with macrophages were examined by 

RT-PCR as described in Materials and methods.  Data are representative of three 

independent experiments. 
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Figure 40. Co-culture of macrophages decreases E-cadherin expression by A549 

cells 

 A549 cells were collected after 24 h of culture with or without RAW 264.7 cells as 

described in Figure 37.  Protein level of E-cadherin was determined by Western blot as 

described in Material and methods.  Results are a representative of three independent 

experiments. 

 

 

 

 

 



104 
 

4.4.5 Co-culture of RAW 264.7 macrophages induces morphological changes and 

invasion of A549 cells 

        To further examine if macrophages promote invasion of A549 cells, we next used 

another co-culture system as shown in Figure 41.  In this system, cells communicate with 

each other via direct contact, which is closer to the physiological situation.  As shown in 

Figure 42, after 12 h of co-culture with macrophages, control A549 cells exhibit 

elongated protrusions indicating the invasive potential. This morphology still sustained 

after 36 h of co-culture.  In addition, in matrigel invasion assay, co-culture with 

macrophages induced a 2.5-fold increase in cellular invasiveness of control A549 cells 

through matrigel relative to those cells grown alone (Figure 43).  These results indicate 

that macrophages attracted by MCP-1 released from A549 cells may stimulate cancer 

cells invasion. 
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      Figure 41. Diagram of a direct co-culture system 

RAW 264.7 cells and A549 cells were plated into the same well of a culture plate.    

 

 

 

 

 

 

 

 

 

 

 

Figure 42. Direct co-culture of macrophages induces morphological changes of A549 

cells  

A549 cells exhibit elongated shape after culture with RAW 264.7 macrophages. A549 

cells were plated into a 12-well plate with or without RAW 264.7 cells as described in 

Figure 41. Cells were pictured at the indicated time points. In the lower panel, those small 

cells exhibiting round shape were RAW 264.7 cells. Results are representative of three 

independent experiments. 
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Figure 43. Co-culture of macrophages induces invasion of A549 cells 

 Invasion assay of A549 cells was carried out as described in Material and methods. ** P 

< 0.01.  
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5. Discussion 

5.1 Increased expression of MMPs mediates TP agonist-induced invasion in A549-

TPα cells  

        There is much evidence that COX-2 and one of its derived products, prostaglandin 

E2 (PGE2) mediate invasion and metastasis of various cancers through upregulation of 

MMPs [63-65, 178]. TXA2, another product downstream of COX-2, is also reported to be 

involved in cancer invasion and metastasis [46, 179].  However, there are few data on the 

connection between TXA2-TP and MMPs in promotion of cancer invasion and 

metastasis.    In this study, it was demonstrated that one TXA2 mimetic, I-BOP, induced 

significantly the expression of several MMPs, such as MMP-1, MMP-3, MMP-9 and 

MMP-10 in both A549-TPα and A549-TPβ cells.  This study is the first to establish the 

association between TP and MMPs in cancer; it also provides the evidence that TP 

mediates cellular invasive potential by inducing MMPs.  

        To study the mechanisms of I-BOP-induced MMPs expression, MMP-1 was chosen 

as a model system to explore the roles of nuclear factors and signal transduction pathways 

in TP-mediated MMPs gene expression. Using specific pharmacological inhibitors of 

various signaling molecules which were reported to be activated in TP-mediated 

signaling transductions [10, 26, 180], we identified PKC and MAPK/ERK but not 

SAPK/JNK, P38 MAPK or PI3K pathways are involved in I-BOP-stimulated MMP-1 

expression.  Recently, Uchiyama et al. reported that both MMPs and PKC inhibitors 

inhibited TP agonist U46619-induced shedding of heparin-binding epidermal growth 

factor (HB-EGF)[181], suggesting the involvement of PKC in TP-mediated MMPs 

expression or activation.  
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        We further explored downstream targets of PKC and ERK pathways in the 

regulation of MMP-1 expression. As we mentioned in 1.5.1, based on the compositions 

of cis-acting elements in their promoters, MMPs have been roughly grouped into three 

categories. Group 1 consists of the majority of the MMPs: MMP-1, 3, 7, 9, 10, 12, 13 and 

19 which contain a TATA box and an AP-1 site in the proximal region of their 

promoters.  In the present study, MMPs induced by I-BOP belong to Group 1, suggesting 

that transcription factor AP-1 can be activated and involved in TP-mediated signaling.  It 

has been previously reported that ERK-AP1 pathway play an important role in cytokine 

and growth factor stimulation of expression of MMPs.  Constitutive activation of ERK 

transactivates the MMP-1 promoter through phosphorylation and activation of AP-1 and 

Ets proteins [182].  EGF activation of the ERK pathway can activate multiple MMP 

genes simultaneously, including MMP-1[75], MMP-3[78], MMP-7, MMP-9[80] and 

MMP-14 [183].  PKC has also been shown to regulate MMPs expression through 

activation of AP-1[184].  Activation of AP-1 by TP agonist has been found in human 

vascular smooth muscle cells and endothelial cells [185, 186].  In this study, we found 

that I-BOP induced significantly the phosphorylaton of c-Jun and the expression of c-Fos, 

the major subunits of AP-1 transcription factors.  Inhibition of PKC and ERK repressed 

the induction of p-c-Jun and c-Fos, suggesting that PKC and ERK pathways regulate 

MMP-1 expression through targeting at AP-1 factors.  Both ERK and JNK can directly 

activate c-Jun according to others report [187].  We also detected the activation of JNK in 

I-BOP-treated cells and inhibition of JNK partially blocked I-BOP-induced p-c-Jun.  

However, JNK inhibitor neither decreased the induction of MMP-1 nor changed the 

expression of c-Fos, suggesting that activation of c-Jun alone is not sufficient to induce 
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TP-mediated MMP-1 expression.  Activation of both c-Jun and c-Fos is required for TP-

mediated MMP-1 regulation.  This is consistent with the findings of Hu et al. [188]who 

demonstrated that EGF and platelet-derived growth factor (PDGF) could not induce the 

expression of MMP-1 and MMP-3 even though these growth factors induced 

significantly the expression of c-Jun, JunB and other AP-1 proteins in c-fos-deficient cell 

lines.  To further define the role of AP-1 in I-BOP-induced MMP-1 transcription, we 

mutated three AP-1 sites separately in the region close to the transcription start site of 

MMP-1 promoter. The results showed that the proximal AP-1 site, -73 bp relative to the 

transcription start site, is critical to I-BOP-induced MMP-1 transcription.   

        In addition to AP-1, our results indicated that transcription factor C/EBPβ was also 

involved in I-BOP-induced MMP-1 expression.  Previously, it was demonstrated that IL-

1β and IL-17 induced MMP-1 expression through ERK-dependent induction and 

phosphorylation of C/EBPβ on Thr-235[171, 172, 189].  We showed that inhibition of 

ERK blocked I-BOP-induced expression and phosphorylation of C/EBPβ and knockdown 

of C/EBPβ by siRNA decreased I-BOP-induced MMP-1 expression. These results 

support the contention that C/EBPβ plays an important role in inducing MMP-1 

expression.  It has been shown that there are several silencer elements in the region 

between -1,653 and -2,672 bp of MMP-1 promoter which suppress the transcription of 

MMP-1[190]. The C/EBPβ site located at -2,921 bp is outside of the region of repression. 

Therefore, deletion mutation of this C/EBPβ site significantly decreased the basal and I-

BOP-induced MMP-1transcription.  In addition to MMP-1, MMP-3 and MMP-10 also 

contain multiple putative C/EBP sites in their promoters.  Silencing C/EBPβ decreased 

IL-1β-induced MMP-3 and MMP-10 gene expression [172].  Our previous study 
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indicated that C/EBP plays an important role in I-BOP-stimulated COX-2 transcription 

[166].  Taken together, these data suggest that the role of C/EBP signaling pathways in 

TP-mediated transcriptional regulation of cancer related genes cannot be overlooked.   

        Our data show that I-BOP increased invasiveness of A549-TPα and A549-TPβ cells 

maximally at low concentration (10 nM) although a higher concentration was needed to 

induce maximal expression of MMPs (Figure 13). This could be due to the fact that a 

higher concentration of TP agonist reduced tumor cell migration [20]. It seems that TP-

mediated cell migration is in a temporal and spatial manner [20].  Further studies are 

required to provide a plausible explanation for the poor correlation.   

         In our studies, MMP-1 and MMP-9 function as mediators of I-BOP-induced cell 

invasion which are supported by other reports that short hairpin RNA of MMP-1 reduced 

invasiveness of breast cancer cells in vitro and prevent lung metastasis of melanomas 

[191, 192],  and inhibition of MMP-9 blocked chronic lymphocytic leukemia B-cell 

invasion through matrigel [193].  These results may be due to the degradation of ECM by 

MMPs. Nevertheless, MMP-1 was recently found to activate protease activated receptor-

1(PAR-1) to promote invasion of breast cancer and melanoma cells [69, 70]. MMP-9 has 

also been found to display anti-apoptotic effects on tumor cells that are independent of its 

catalytic activity [194]. These newly discovered functions of MMP-1 and MMP-9 may 

also be involved in TP-mediated cell invasion.    

         Moreover, COX-2 and MMP-1 were found to be part of the clinically validated 

lung metastasis gene signature (LMS) genes. Knockdown of COX-2 and MMP-1/2 genes 

synergistically inhibited metastasis of breast cancer [195].  We previously demonstrated 

that I-BOP significantly increased COX-2 expression in A549-TPα cells. The induced 
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COX-2 produced more prostaglandins and TXA2 as a result of positive feedback [166]. 

Taken together, these studies suggest that targeting TP may prevent metastasis of cancer 

effectively via suppression of both COX-2 and MMP-1 production.      

         GM6001, a general inhibitor of MMPs, inhibited both basal and I-BOP-induced 

invasion.  These results suggest that MMPs, other than MMP-1 and MMP-9, such as 

MMP-3 and MMP-10 which are also induced by I-BOP are involved in TP-mediated cell 

invasion. Elevated levels of these MMPs were previously reported to be critical for 

cancer invasion and metastasis [196-198].  

        In summary, our findings indicate that TXA2-TP mediates cancer cell invasion 

through upregulation of several MMPs. PKC-, ERK-AP-1 and ERK-C/EBPβ pathways 

are involved in TP-mediated MMP-1 expression. Figure 44 depicts signaling pathways 

for TP-mediated expression of MMPs.  

 

 

 

 

 

 

 

Figure 44. Proposed pathways of TP-mediated MMP-1 expression        
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5.2 MMP-1-mediated release of MCP-1 by conditioned media from TP agonist-

treated A549-TPα cells is through activation of PAR2 

         MMP-1 was reported to promote melanoma progression through both its 

collagenase activity and its PAR1 activating function [70]. MMP-1/PAR1 signaling 

induces a variety of genes which can contribute to melanoma invasion and metastasis.  

Here, it was demonstrated that the increased MMP-1 could induce the expression of 

MCP-1, a potential biomarker for tumor invasion and metastasis, by autocrinely acting on 

cancer cells surface receptor PAR2 in A549 cells.   

        Except for MMP-1, activation of TPα also induces MMP-3 and MMP-9 expression. 

MMP-3 and MMP-1 have been reported to induce macrophage MMP-9 expression in 

TNF-α and COX-2 dependent manner [199].  However, in our system neither MMP-3 nor 

MMP-9 can stimulate the release of MCP-1 from A549 cells, indicating the specific 

function of MMP-1 in MCP-1 gene induction.   MMP-1 also induces an array of genes 

expression via PAR1 in endothelial cells in addition to melanoma cells [200].  However, 

MMP-1 and thrombin, a known PAR1 ligand, induce expression of different subsets of 

pro-angiogenic genes.  PAR1 antagonist, SCH79797 cannot inhibit MMP-1-induced 

VEGFC, NOTCH4, AKT1 and ANGPT2 genes expression in endothelial cells [200].  

Moreover, MMP-1-induced FGFR2, IGF1, SERPINB5 and S100A4 genes expression 

have not been associated with thrombin/PAR1 signaling in melanoma cells [70]. These 

studies indicate that MMP-1 may target other receptors than PAR1 to induce these genes 

expression.  Our data showed that antagonist of PAR2, but not that of PAR1 or PAR4, 

inhibits MMP-1-induced MCP-1 release from A549 cells indicating the involvement of 

PAR2 in this process.  The concentration of SCH79797 we used was 50 nM, which was 
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sufficient to block PAR1-AP-induced MCP-1 release. The same concentration also 

effectively blocked MMP-1-induced gene expressions in melanoma cells [70].  This is 

also supported by studies on MCP-1 induction using different PAR-APs.  Although 

PAR1-AP and PAR4-AP can increase the expression of MCP-1, PAR2-AP induced more 

significantly MCP-1 release compared with them (p<0.001).  Furthermore, Asokananthan 

et al. [201] reported that agonist peptides of PAR1, PAR2 and PAR4 but not that of 

PAR3 stimulated the release of other cytokines IL-6 and IL-8 from A549 cells with a 

rank order of potency of PAR2>PAR4>PAR1, which is in the same order as that for 

MCP-1 induction in our studies.   

        PAR2 has been shown to play an important role in cancer progression.  PAR2 

mediates tumor or stromal cells-derived proteases to shape tumor microenvironment by 

inducing various growth factors, pro-angiogenic and immune modulating cytokines 

[202].  It has been found that PAR2 signaling in breast cancer cells induced an array of 

pro-angiogenic factors and immune regulators, such as VEGF [102], Cyr61, VEGFC, 

CTGF, CXCL1, IL8, CSF1 and CSF2 [103]. Although activation of PAR1 also up-

regulated some of those factors in breast cancer cells, PAR2 was the major mediator for 

the induction of immune regulators CXCL1, IL8 and CSF2.  MCP-1, another immune 

regulating cytokine, is often up-regulated together with IL-8 by extracellular stimuli [203, 

204]. Thus, PARs-mediated MCP-1 expression may also mainly depend on PAR2 

activation.  

        PAR-APs activate PARs by directly binding with their respective receptors without 

the cleavage process. Accordingly, the induction of MCP-1 mRNA by SLIGKV-NH2, a 

PAR2-AP, was rapid.  However, MMP-1 induced a delayed MCP-1 transcription 
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suggesting that MMP-1 may behave like other proteases by proteolytic unmasking of the 

tethered ligand first before the activation of PAR2.   How MMP-1 cleaves and activates 

the N-terminus of PAR2 needs to be determined further.  

        Induction of MCP-1 by thrombin/PAR1 signaling has been observed in different cell 

types [106, 205, 206].  Similarly, induction of pro-angiogenic gene expressions by 

thrombin and MMP-1 was found also via PAR1 in human microvessel endothelial cells 

[200].  However, it appears that thrombin and MMP-1 cleave and activate PAR1 in a 

different manner.  Thrombin cleaves PAR1 at R41-S42 and exposes SFLLRN sequence 

to activate PAR1, whereas MMP-1 cleaves PAR1 at two different locations (F87-I88 and 

L44-L45).  Cleavage at L44-L45 results in decreasing or abolishing the functional 

activity of SFLLRN sequence [207].   Consequently, MMP-1 may also cleave and 

activate other PARs than PAR1.  PAR2 appears to be an ideal target of MMP1 since 

antagonist of PAR2, ENMD-1068, but not that of PAR1 or PAR4 was able to block 

MMP-1 induced MCP-1 expression. 

        In conclusion, our studies, for the first time, provide the evidence that MMP-1-

induced MCP-1 expression is dependent on PAR2 activation in A549 cells.  Although the 

mechanism of how MMP-1 activates PAR2 remains unknown, we linked TXA2/TP 

signaling with PARs signaling in lung cancer cells by TP-mediated MMP-1 release. 

5.3 Activation of TP increases MCP-1 expression and recruits macrophages to 

promote invasion of lung cancer cells  

        In addition to MMP-1, released by TP activation, can induce MCP-1 expression in 

A549 cells, TP agonist can directly stimulate the production of MCP-1 in A549-TPα 
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cells.  In this study, we also suggest that MCP-1 may attract macrophages to cancer cells, 

thereby promoting their invasion.  

        TXA2 has been shown to induce MCP-1 expression in vascular endothelial cells and 

also other cytokines in WISH cells (an amnion epithelium-derived cell line) [208, 209].  

In addition, a recent report showed that TXAS inhibitor ozagrel suppressed MCP-1 and 

IL-8 gene expression and inflammatory cell accumulation in a lung injury model 

indicating the role of TXA2 in regulation of these processes [210]. Cancers are considered 

as chronic wounds never heal. Therefore, they share certain characteristics.  Several CC 

chemokines including MCP-1 were found to be highly expressed in human NSCLC 

tumor tissues and the levels of MCP-1 also significantly correlated to macrophage 

infiltration [138].  These findings led to the hypothesis that TXA2 might be involved in 

lung cancer development via MCP-1-mediated macrophage recruitment.  Especially 

compared to other prostanoids, TXA2 agonist induced the most expression of MCP-1 in 

both H460 and A549-TPα cells indicating a significant contribution of TXA2-TP axis to 

MCP-1 production.   

        Mechanisms of regulation of MCP-1 by I-BOP were further studied. There are 

several cis-acting transcriptional regulatory elements including NF-κB, AP1 and SP1 

sites in the promoter region of human MCP-1 gene (Figure 8).  Expression of MCP-1 

induced by IL-1β was regulated by PKC-dependent NF-κB activation in smooth muscle 

cells [118]. U46619, another TP agonist, was also reported to induce MCP-1 expression 

via PKC-dependent induction of NF-κB and AP-1 binding activity in vascular endothelial 

cells [208]. Activation of PKC, NF-κB and AP-1 by TP-mediated G protein signaling has 

been found in several other cell types including A549 cells [166].  However, in this study, 
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neither PKC inhibitor GF109203X nor NF-κB activation inhibitor MG132 had any effect 

on I-BOP-induced expression of MCP-1. As presented in 4.2, I-BOP-induced MMP-1 

expression was mediated by PKC and ERK-dependent AP-1 activation in the same cell 

lines. Nevertheless, inhibition of ERK did not block I-BOP-induced MCP-1 expression 

either, suggesting AP-1 was not involved in MCP-1 regulation by I-BOP in A549-TPα 

cells.  These data indicated that separate signaling pathways were involved in the 

expression of downstream targets induced by I-BOP activation of TP.  It is also possible 

that MCP-1 regulation is tissue-specific, and NF-κB and AP-1 are not important for 

MCP-1 expression in lung epithelial cancer cells.  A separate study in fibroblast 3T3 cells 

showing that the expression of MMP-1 induced by growth factors was c-Fos-dependent, 

whereas that of MCP-1 was not provides support to our proposition.   Moreover, it has 

been reported that PDGF induction of MCP-1 transcription requires SP1 but not NF-κB 

and AP-1 response elements in its promoter region in fibroblast [115].  Therefore, we 

propose that in cancer cells I-BOP may regulate MCP-1 expression in a way similar to 

how PDGF does in fibroblast.  We observed that SP1 was increased in nuclei after I-BOP 

stimulation and SP1 inhibitor blocked I-BOP-induced MCP-1 expression.  Furthermore, 

using GC-rich promoter region of 12(S)-lipoxygenase as a probe, Chang and his 

colleagues identified that Hsp90 interacts with SP1 and modulates its promoter binding 

ability [177].  In the present study, indirect inhibition of SP1 by Hsp90 inhibitor 

geldanamycin blocked I-BOP-induced MCP-1 expression at protein as well as mRNA 

levels.  Moreover, the results obtained from MCP-1 promoter-luciferase reporter assay 

further indicate the critical role of SP1 binding site in MCP-1 regulation by I-BOP. 

Although the upstream signals by which TP regulates SP1 expression and translocation 
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need further studies, the results presented here demonstrated that I-BOP induced MCP-1 

expression in A549-TPα cells by SP1-dependent but NF-κB and AP-1-independent 

mechanism.  

        As mentioned in 1.8.1, macrophages have been classified into M1 and M2 two 

major groups. M1 macrophages inhibit tumor progression, whereas M2 macrophages 

promote tumor progression. Both M1 and M2 macrophages could be present in tumor 

islet. Here, we employed RAW264.7 macrophages to study the interactions between lung 

cancer cells and macrophages. RAW 264.7, a murine macrophage cell line, can be 

polarized into either M1 or M2 macrophages [211]. Interactions of RAW 264.7 

macrophages with human cancer cells such as lymphoma and breast cancer cells have 

been reported in previous studies [212, 213]. Furthermore, human MCP-1 and mouse 

MCP-1 which is truncated at the C terminus are highly homologous. Indeed, human 

MCP-1 even has a higher chemotactic potency to murine monocytes than full length of 

murine MCP-1 due to the less glycosylation of human MCP-1 C terminus [214].  

Therefore, RAW 264.7 macrophages can serve as an appropriate cell line to study TP-

mediated interactions between lung cancer cells and macrophages.          

        Macrophages contribute to various aspects of cancer progression such as cancer cell 

proliferation, survival, invasion, metastasis and angiogenesis.  In this study, co-culture of 

macrophages with A549 cells stimulated gene expressions of several MMPs and VEGF 

by A549 cells.  It was reported that A549-TPα cells induced tumor formation and 

angiogenesis in nude mice through induction of VEGF expression [37].  In 3.2 we also 

showed that I-BOP-induced invasion of A549-TPα cells was mediated by increased 

expression of several MMPs such as MMP-1 and MMP-9.  Here, macrophages induced 
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these genes, and thus enhanced the effects of TP-mediated angiogenesis and invasion of 

cancer cells.  MCP-1 was also induced in A549 cells by co-culture with macrophages 

forming a positive feedback loop that might reinforce the recruitment of more 

macrophages to promote cancer cell invasion.        

        Tumors are very heterogeneous and contain numerous subpopulations of cells [215] 

that may express different levels of TP. We show here that once TXA2 initiates a 

signaling cascade leading to the release of MCP-1 from tumor cells expressing high 

levels of TP, the subsequent recruited macrophages could increase the invasion of tumor 

cells regardless of their TP levels.  Therefore, TP expands its influence on tumor 

progression through MCP-1-mediated macrophage recruitment.    

        In summary, TP-mediated interactions and relationships among MMP-1, PAR2 and 

MCP-1, as well as macrophages leading to an increased invasive potential of carcinoma 

cells is illustrated in Figure 45.  
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Figure 45. Illustration of a tentative mechanism for TP-mediated invasion of cancer 

cells 

Black arrows (      ) represent pathways mediated by direct activation of TP.  Gray arrow  

(     ) represents pathway mediated by PAR2 activation. Dashed arrows (     ) represent 

pathways activated by macrophages.  
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6. Summary and conclusions 

        In this dissertation, I investigated the cellular and molecular mechanisms by which 

thromboxane A2 receptor-mediated cancer cell invasion.  The findings of this dissertation 

research are summarized below: 

(1)  Using human lung adenocarcinoma cells A549 overexpressing TPα or TPβ as a 

model system, we found that activation of either isoform of TP decreased the 

expression of cell-cell adhesion molecule E -cadherin, changed epithelial cell 

morphology to scattered spindle-shaped morphology, and induced invasion in 

these cells. 

(2) Further studies revealed that activation of TPs induced expression of several 

MMPs including MMP-1, MMP-3, MMP-9, and MMP-10.  MMPs general 

inhibitor and siRNA of MMP-1 and MMP-9 blocked TP agonist-induced invasion 

of A549-TPα cells indicating the positive correlation of MMPs to TP-mediated 

cancer cell invasion.  We also identified several key signal transduction pathways 

involved in MMP-1 gene regulation including ERK-AP1, PKC-AP1, and ERK-

C/EBPβ pathways.   

(3) PAR2 was identified as a novel target of MMP-1 which induced MCP-1 

expression in A549 cells.  Conditioned media from I-BOP-treated A549-TPα cells 

(CM-I-BOP) also induced MCP-1 expression via MMP-1.  PAR2 antagonist and 

siRNA blocked both MMP-1 and CM-I-BOP-induced MCP-1 expression.  

(4) Activation of TP could directly induce the release of MCP-1via SP1 dependent 

pathway.  MCP-1 recruited macrophages which in turn stimulated the expression 

of several metastatic genes including MMPs and VEGF, therefore, enhanced the 
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invasion of A549 cells.  Macrophages also induced a further generation of MCP-1 

by A549 providing a positive feedback loop to recruit more macrophages to 

enhance cancer cell invasion.  

(5) Finally, the rapid expression of MCP-1 induced by activation of TPα is followed 

by delayed expression of MCP-1 either induced by MMP-1or macrophages to 

ensure continued supply of chemotactic MCP-1 for recruitment of macrophages 

and for promotion of invasion of cancer cells.   
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