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ABSTRACT OF DISSERTATION 

 

 

IMPROVING TRACEABILITY RECOVERY TECHNIQUES 
THROUGH THE STUDY OF TRACING METHODS AND ANALYST BEHAVIOR 

 
Developing complex software systems often involves multiple stakeholder interactions, 

coupled with frequent requirements changes while operating under time constraints and budget 
pressures. Such conditions can lead to hidden problems, manifesting when software modifications 
lead to unexpected software component interactions that can cause catastrophic or fatal situations. 
A critical step in ensuring the success of software systems is to verify that all requirements can be 
traced to the design, source code, test cases, and any other software artifacts generated during the 
software development process. The focus of this research is to improve on the trace matrix 
generation process and study how human analysts create the final trace matrix using traceability 
information generated from automated methods.  

This dissertation presents new results in the automated generation of traceability matrices 
and in the analysis of analyst actions during a tracing task. The key contributions of this 
dissertation are as follows: (1) Development of a Proximity-based Vector Space Model for 
automated generation of TMs. (2) Use of Mean Average Precision (a ranked retrieval-based 
measure) and 21-point interpolated precision-recall graph (a set-based measure) for statistical 
evaluation of automated methods. (3) Logging and visualization of analyst actions during a 
tracing task. (4) Study of human analyst tracing behavior with consideration of decisions made 
during the tracing task and analyst tracing strategies. (5) Use of potential recall, sensitivity, and 
effort distribution as analyst performance measures. 

Results show that using both a ranked retrieval-based and a set-based measure with 
statistical rigor provides a framework for evaluating automated methods. Studying the human 
analyst provides insight into how analysts use traceability information to create the final trace 
matrix and identifies areas for improvement in the traceability process. Analyst performance 
measures can be used to identify analysts that perform the tracing task well and use effective 
tracing strategies to generate a high quality final trace matrix. 

KEYWORDS:  Traceability, Process Improvement, Traceability Matrix, 
Study of Methods, Study of the Analyst 
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Chapter 1 - Introduction 

 

Developing complex software systems often involves multiple stakeholder interactions, 

coupled with frequent requirements changes while operating under time constraints and budget 

pressures. Such conditions can lead to hidden problems, manifesting when software modifications 

lead to unexpected software component interactions that can cause catastrophic or fatal situations. 

Reports on the Therac-25 radiation accidents [1], Arianne 5 rocket explosion [2], and Mars 

Climate Orbiter crash [3] highlight the importance of verifying the safety and reliability of 

mission- and safety-critical systems. Failure in software systems that deliver high business value 

could mean losing market share to competitors. Rapid changes in marketplace trends can often 

leave rigid sequence-based software processes crippled in the wake of requirements changes. 

Even in agile software projects, managing traceability from user stories to finished software 

product requires that developers understand how components interact within a software system. 

A critical step in ensuring the success of software systems is to verify that all 

requirements have been met by the design, code, test cases, and other software artifacts generated 

in the software development process. Requirements traceability can be defined as the “ability to 

follow the life of a requirement in a forward and backward direction [4].” Verification and 

Validation (V&V) analysts or Independent V&V (IV&V) analysts achieve this goal by using a 

Requirements Traceability Matrix (RTM), more generically called a Traceability Matrix (TM). A 

TM consists of links between pairs of software artifacts being traced, e.g., a set of high-level 

requirements to a set of low-level requirements. TMs are used to support software engineering 

activities such as change impact analysis and regression test identification [5]. Software changes 

can be traced to affected components, providing analysts with information on how those changes 

affect the entire software system and helping analysts determine the appropriate type and amount 

of testing required for the change. 

Formal software development processes and software development standards such as the 

IEEE/EIA 12207 [6] mandate traceability as part of the software development process. TMs, 

however, are commonly created after the fact, where traceability information is recovered from 

existing software artifacts. Building such TMs is often error prone and requires intensive effort 

[7]. Agile software development processes, however, eschew the traditional TM for alternate 

forms of traceability, where the focus on traceability involves driving the development process 
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towards meeting customer requirements through user stories [8]. Even so, maintaining 

traceability information using either process involves human interaction, and humans by nature 

are not perfect. 

Requirements traceability users can be categorized based on how they use traceability in 

practice. Low-end traceability users typically use TMs because it is mandated by regulations or 

their organization, while high-end traceability users use TMs as an integral part of the 

development process and to capture rationale for requirements decisions [9]. A survey of 

organizations in various domains on requirements traceability finds that requirements traceability 

is seldom used and traces are rarely kept up-to-date [9]. Increasing the use of requirements 

traceability requires tracing tools that make life easier for the analyst by producing accurate and 

useful results, allowing the analyst to easily discern relevant links from irrelevant links, and 

reducing the time spent performing the tracing task [10]. 

Information Retrieval (IR) techniques greatly reduce the search space for an analyst 

tasked with creating a final TM [11]. For example, a TM generated using an IR technique for a 

software project with one hundred high-level requirements and two hundred low-level 

requirements could contain less than half of the 20,000 possible candidate links for an analyst to 

accept or reject. Even then, only a small percentage of these candidate links would be relevant. IR 

techniques, in general, are effective in retrieving almost all relevant links (or true links) between 

two artifacts (measured by “recall” which is defined in Chapter 2.) In fact, simply returning all 

possible links retrieves all relevant links. The number of irrelevant links (or false links) returned 

along with true links in the candidate TM1 (measured by “precision” which is defined in Chapter 

2) measures a technique’s effectiveness. Another measure that is of interest to the analyst is the 

number of false links that are discarded by the technique. This represents the amount of work that 

the analyst saves by not having to review all possible links (measured by “selectivity”, which is 

defined in Chapter 2.) Tracing technique performance comparisons among researchers present a 

challenge due differences in how results are reported and the availability of datasets. 

While much effort has been put into improving the performance of automated traceability 

techniques, a separate effort focuses on how analysts work with TMs and how their decisions 

affect the quality of the final TMs [10, 11, 12, 13]. Researchers have looked at different ways of 

evaluating the effort spent by analysts working on TMs [14, 15, 16, 17, 18, 19]. Analysts often 

                                                 
1 A TM is called a “candidate” until an analyst vets them. 
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end up with final TMs that are worse than the candidate TMs [13, 17, 18]. Despite the fact that 

analysts introduce subjectivity into the “traceability process loop,” it is not possible to “do away 

with” the analyst in the tracing process [13, 17, 18, 19]. These initial studies indicate that there is 

still much to study about how analysts work with TMs, and that studying the analyst is a critical 

step in traceability process improvement. 

 Problem Statement and Motivation 
TM usage continues to be lacking in software engineering. TMs are perceived to be 

burdensome to create and maintain, and are further perceived to provide little value. Automating 

the TM generation process and quantifying the potential savings when using automated methods 

reduces analyst burden. TM usage provides value when tracing techniques provide accurate 

results and reduces the effort required to complete the tracing task. One way to improve existing 

tracing techniques is to challenge its underlying assumptions. IR techniques often assume that 

elements within artifacts are independent of each other, disregarding relationships between 

elements within each artifact. One possible improvement would be to consider element proximity 

(the number of elements in between two related elements in an artifact) when generating the 

candidate TM. 

Important information about how analysts work with TMs has not been thoroughly 

studied and empirically validated. For example, how accurately do analysts perform tracing 

tasks? How often do analysts make correct decisions? How often and why do they make incorrect 

decisions? How do analysts spend their time during the tracing task and are they making the best 

use of their time? Answering these questions provides new insight as to how to improve 

automated tools to encourage beneficial and discourage ineffectual tracing activities. 

Automated methods are capable of achieving high recall but have low precision. One 

research goal is to improve the quality of candidate TMs generated from unstructured natural 

language textual software engineering artifacts. The quality of a candidate TM generated from an 

automated tracing technique can be measured by the number of false links that an analyst reviews 

before finding true links. An analyst accepts and rejects links in the candidate TM in order to 

create the final TM. Another research goal is to identify characteristics of analyst performance 

that can lead to higher quality final TMs. The quality of an analyst can be measured by the 

decisions they make and effort spent on true and false links in the candidate TMs. Barriers to TM 

usage can be overcome once analysts have confidence in automated tools for generating TMs and 

when analyst performance can be quantified and targeted for improvement. 
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 Research Thesis 
The dissertation thesis can be stated as follows: Adapting IR techniques that have not 

previously been used in requirements tracing improves the quality of candidate TMs generated 

using current automated traceability techniques. Studying analyst tracing behavior and identifying 

analyst performance characteristics that lead to higher quality final TMs provides targets for 

improving analyst performance. 

 Research Contributions 
This dissertation makes several contributions. The quality of candidate TMs is improved 

through the development of a term proximity-based tracing technique. This technique is validated 

against a baseline tracing technique (vector space), showing that the quality of candidate TMs can 

be effectively measured through the use of Mean Average Precision MAP (defined in Chapter 2) 

as a measure of internal quality and 21-point interpolated precision-recall graph (defined in 

Chapter 2) as a measure of overall quality. Different visualization techniques depict how analysts 

performed during the tracing task through the logging of analyst actions. This dissertation 

introduces potential recall, sensitivity, and effort distribution (defined in Chapter 2) as analyst 

performance measures. Analyst decisions on candidate links are visualized and studied to 

determine when and why they made incorrect decisions on true links. Tracing strategies derived 

from trace logs are used to understand how analysts work with TMs and how tracing strategies 

affect tracing results. 

The remainder of the dissertation is organized as follows. Chapter 2 presents an overview 

of requirements traceability and evaluation measures. Chapter 3 discusses related work. Chapter 4 

presents the Proximity-based Vector Space Model (PVSM), an enhancement of the Vector Space 

Model (VSM). Chapter 5 reports on the study of analyst behavior through logging and log 

depiction. Chapter 6 presents a study of analyst performance and tracing strategies. Chapter 7 

concludes the dissertation and outlines future work. 

 

 

 

Copyright © Wei-Keat Kong 2012 
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Chapter 2 - Background 
 

This chapter provides an overview of requirements traceability and evaluation measures 

used in traceability research. 

 Requirements Traceability 
There are two main types of requirements traceability: pre-requirements specification 

(pre-RS) traceability and post-requirements specification (post-RS) traceability [4]. Pre-RS 

traceability defines traceability from statements in the requirements document (RD) to their 

source. Elicitation and refinement processes transform initial requirement statements to their final 

form in the RD. Post-RS traceability deals with tracing requirements statements in the RD to and 

from artifacts created throughout the software development process (Figures 2.1 through 2.4 

shown below are examples of typical software artifacts). V&V and IV&V analysts review these 

traceability links to verify that requirements have been met. This dissertation focuses on post-RS 

traceability, specifically the task of recovering traceability links from artifacts without existing 

traceability information and the study of how human analysts use recovered traceability 

information to generate the final TM. 

 
Figure 2.1 Sample high-level requirement statement. 

 
Figure 2.2 Sample low-level requirement statement. 

The DPU-RTOS shall provide a function to allow an application program to write to the Real-

Time Clock registers on the RAD6000SC CPU Module. 

Real-Time Clock Interface  This routine gets the value of the Real-Time Clock 

(RTC) Registers and places the results in variables rtcu and rtcl. 
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Figure 2.3 Sample use case. 

 
Figure 2.4 Sample test case. 

In order to verify that requirements have been met, it is necessary to define what it means 

for some element in a software artifact to satisfy a requirement. When tracing between 

requirements and design, an analyst deems a requirement as “satisfied” when there is a design 

element (or design document) that adequately addresses the requirement. A partial degree of 

UC-F5 

Use Case Name  Delete Folders 

Summary  User deletes the folders with all messages in them. 

Actor   Pine user 

Pre-condition  The user logs in to the pine system. 

Use Case ID  UC.F.2 

Description  

1. The system displays a listing of all the available mail messages. 

2. The user views the listing of all available folders. 

3. The user selects a folder and prompts to delete it. 

4. The system checks if the folder is empty and issues a warning if the folder is not 

empty. 

5. The system allows the user to choose whether to delete the folder or return to the 

folder list. 

6. If the user chooses to delete it, the system deletes the folder. 

Post-condition  The system deletes the folder as selected by the user. 

TF5 

Use Case Name:  Deleting A Folder And All Its Messages Using Windows System 

Test Requirement:   F5 

Use case ID:   CASE_F5 

Test Cases:   Test case T6 (in order of steps) =  

1. User types “pine” 

2. User presses “L” (ListFldrs) to see the Folder List screen.  

3. User chooses a folder to delete and types “D” and confirms the deletion.  

Expected result:  The selected folder and its messages are deleted by user. 
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satisfaction may exist between a requirement and a design element due to the unstructured nature 

of language. Satisfaction assessment [20] is another area of research that is emerging in 

requirements traceability, where specific parts of a requirements document are mapped to specific 

parts of a design element to determine the degree of requirements satisfaction. In this dissertation, 

a TM captures satisfaction in the form of links between documents. A link indicates relevance 

between two documents. An automated traceability technique generates a candidate TM, which is 

a collection of links that an analyst accepts or rejects. The collection of accepted links for a 

particular requirement can be treated as the satisfaction of that requirement. The final TM only 

contains links that the analyst accepted. 

Figure 2.5 depicts a trivial example of a TM that traces between three requirements and 

four design elements. R1 and R3 have links to some design elements, but it can be seen that R2 

does not have any design element links. This indicates that a requirement possibly has not been 

satisfied. Design element D3, in addition, does not have any links to any requirements. This 

indicates that there is possibly a design element that was not specified by the requirements. In this 

example, tracing from requirements to design is called forward tracing, which verifies that all 

requirements are met by some lower-level design element. In this example, R2 is not satisfied by 

any design element. Backward tracing verifies that all design elements map to some high-level 

requirement ensuring that the design only specifies what is required. In this example, D3 specifies 

a design element that is not part of the requirements. 

The requirements tracing process between a single requirements document and a single 

design document (or any pair of software artifacts) can be broken down into the following steps: 

1. Identify individual requirement elements and separate each into individual 

documents. 

2. Identify individual design elements and separate each into individual documents. 

3. Build the TM using software or by hand. 

4. Find links to all design documents that satisfy that each requirement document in the 

TM. 

5. Find links to all requirement documents that are satisfied by each design element in 

the TM. 

6. Look for missing requirements documents or extraneous design documents. 

7. Maintain the TM as changes are made during the software development process. 
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 R1 R2 R3 

D1 X   

D2 X   

D3    

D4   X 
 

 

Figure 2.5 Example TM containing links between requirements and design elements. 

Steps one and two can be defined as parsing problems outside the scope of this research. 

Steps four and five verify that the TM is correct. Step six is verifies that the TM is complete. Step 

seven is a continual process of keeping the TM up to date. Steps four through seven require 

significant human analyst involvement and effort. This dissertation focuses on steps three through 

five, developing a technique to build TMs from software artifacts containing English language 

text and studying how analysts make decisions on candidate links. 

Requirements 

R1: The system shall embed in each message a date/timestamp of when the message was 

sent. 

R2: The system shall allow a text search that users may use to find mail messages. 

R3: The system shall use the SMTP mail protocol. 

 

Design 

D1: The timestamp is added to the message using the SysTime() function when the 

message is processed by the MailHandler() function. 

D2: The date is added to the message using the SysDate() function when the message is 

processed by the MailHandler() function. 

D3: The sender IP address is added to the message using the GetIP() function when the 

message is processed by the MailHandler() function. 

D4: The MailTransport() function implements the SMTP protocol according to RFC 

5321. 
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In order to prepare software artifacts for traceability link recovery, artifacts are separated 

into individual documents, i.e., each containing a single requirement, use case, or test case. The 

text in these documents is assumed to be intelligible and may contain minor grammatical and 

spelling errors. Documents can vary in internal structure, with no specific formatting or 

grammatical style. A corpus represents a collection of documents. Documents are broken down 

further into a collection of words or terms, forming a vocabulary for the corpus. In addition, there 

is a need to search the document collection for any and all documents that are related to a specific 

document. Documents that are used to trace to other documents in the corpus are called queries. 

A query consists of terms selected from a document and is used to find other documents that 

match or are related to those terms. Document collections are often pre-processed. Pre-processing 

of the document collection removes punctuation, line feeds, and special characters in each 

document, then separates each document into contiguous strings of alphanumeric characters 

(linearizing/tokenizing) called terms. A stop word list containing commonly used terms such as 

“a”, “the”, “as” excludes those terms from the corpus. In addition, Porter’s stemming algorithm is 

a fast heuristic process that is used to reduce terms to a base form [21]. For example, “includes,” 

“including,” and “included” are stemmed to a single token “includ.” This heuristic is imperfect, 

and in some cases, two unrelated terms can end up stemmed to the same base form. Even so, 

stemming significantly reduces the number of distinct terms in the vocabulary. Stemming, 

however, is language-sensitive and performs poorly on languages with complex grammar i.e., 

Italian [22]. Stemmed terms are then indexed into the corpus which maintains statistics about 

those terms and the document collection. 

Tracing methods are used to trace between two sets of documents in the corpus to 

generate candidate TMs. Candidate TMs are scored using some weighting method to indicate 

relevance, and ranked by the relevance weight between the high-level document and the low-level 

document. An analyst validates the candidate TM by accepting, rejecting, and possibly adding 

links before certifying the final TM. Figure 2.6 shows an example of how links in candidate TMs 

are generated. 

In software engineering, tracing is typically performed on artifact pairs, e.g., tracing from 

a design document to a test description document. In this case, the document collection would 

contain a document for each test case from the test description document and a document for each 

design element from the design document. Each design element would be used to query the test 

case document collection to search for similar test case documents. High-level requirements are 

typically represented as a collection of sentences describing in general what the software “shall” 
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do. Low-level requirements typically contain further elaboration of those requirements and may 

contain design elements as well. 

 

Figure 2.6 Process to generate candidate TMs. 

Figure 2.7 shows an example of a candidate TM that contains high-level and low-level 

document pairs with corresponding relevance weights. 
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Dataset
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HighDoc LowDoc Weight 

SDP3.3-4 L1APR01-I-1 0.868 

SDP3.3-4 L1APR01-F-2.2.3-4 0.103 

SDP3.3-4 L1APR01-F-4-3 0.084 

SDP3.3-4 L1APR01-F-2.1-4 0.081 

SDP3.3-4 L1APR03-F-1-2 0.079 

SDP3.3-4 L1APR03-I-5 0.067 

SDP3.3-4 L1APR03-F-3.2.1-2 0.055 

SDP3.3-4 L1APR01-F-2.2.4-2 0.055 

SDP3.3-4 L1APR01-F-2.1-1 0.051 

SDP3.3-4 L1APR03-F-3.2.3-2 0.049 

SDP3.3-4 L1APR01-F-2.1-5 0.028 

SDP3.3-4 L1APR03-F-6.1-1 0.028 

SDP3.3-4 L1APR03-F-3.4.4-1 0.027 

SDP3.3-4 L1APR01-F-2.4-1 0.026 

SDP3.3-4 L1APR01-F-2.3-1 0.024 

SDP3.3-4 L1A5.3 0.020 

SDP3.3-4 L1APR01-I-3 0.018 

SDP3.3-4 L1APR01-I-2 0.018 

SDP3.3-4 L1APR03-I-2 0.017 
 

HighDoc LowDoc Weight 

SDP3.3-4 L1A5.2 0.015 

SDP3.3-4 L1APR01-F-1.1-5 0.008 

SDP3.3-4 L1APR01-F-2.2.4-4 0.006 

SDP3.3-4 L1APR01-F-2.2.2-4 0.006 

SDP4.2-1 L1APR01-F-4-3 0.657 

SDP4.2-1 L1APR01-F-2.4-2 0.316 

SDP4.2-1 L1APR01-F-2.4-1 0.307 

SDP4.2-1 L1APR01-I-1 0.282 

SDP4.2-1 L1APR01-F-5.1-1 0.199 

SDP4.2-1 L1APR01-F-4-5 0.072 

SDP4.2-1 L1APR01-F-1.2-1 0.065 

SDP4.2-1 L1APR01-F-4-4 0.061 

SDP4.2-1 L1APR01-F-2.1-1 0.028 

SDP4.2-1 L1APR01-F-2.2.3-4 0.027 

SDP4.2-1 L1APR01-F-2.1-4 0.016 

SDP4.2-1 L1APR01-F-2.1-5 0.015 

SDP4.2-1 L1APR01-F-2.3-1 0.013 

SDP4.2-1 L1APR01-F-2.2.4-2 0.012 
 

Figure 2.7 Example of a candidate TM. 

 Evaluation Measures 
The quality of a TM is measured by comparing it against an answer set (a list of links 

determined to be true links through manual review by one or more experts.) Answer sets typically 

consists of just high-level and low-level document pairs. Figure 2.8 shows an example of an 

answer set. 
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HighDoc LowDoc 

SDP3.3-4 L1APR01-I-1 

SDP4.2-1 L1APR01-F-2-1 

SDP4.2-2 L1APR01-F-4-3 

SDP5.2-1 L1APR01-F-1.1-5 

SDP5.2-1 L1APR01-F-2.1-4 

SDP5.2-1 L1APR01-F-2.2.2-4 

SDP5.2-1 L1APR01-F-2.2.3-4 

SDP5.2-1 L1APR01-F-2.2.4-4 

SDP5.2-1 L1APR01-F-4-5 

SDP5.2-1 L1APR01-I-2 

SDP5.2-1 L1APR02-F-4.1-2 

SDP5.2-1 L1APR02-F-4.4-2 

SDP5.2-1 L1APR03-F-1-2 
 

HighDoc LowDoc 

SDP5.2-1 L1APR03-F-2.4-1 

SDP5.2-1 L1APR03-F-3.2.3-2 

SDP5.2-1 L1APR03-F-4.2-2 

SDP5.2-1 L1APR03-F-4.3-2 

SDP5.2-1 L1APR03-F-5.4-2 

SDP5.2-1 L1APR03-F-5.5-2 

SDP5.2-1 L1APR03-I-2 

SDP5.2-3 L1APR03-I-5 

SDP5.2-4.3 L1APR03-F-2.4-2 

SDP5.2-4.3 L1APR03-F-2.5-2 

SDP5.2-4.5 L1APR01-F-2.1-5 

SDP5.2-4.5 L1APR03-F-5.5-2 

SDP5.2-4.5 L1APR03-F-5.4-2 

SDP5.3-1 L1APR03-F-2.5-2 
 

Figure 2.8 Example of an answer set. 

Recall, precision, and F-measure are measures frequently used to evaluate the quality of a 

TM. One method for calculating recall and precision is through a confusion matrix, which 

summarizes the performance of a TM against an answer set [23]. Figure 2.9 shows an example of 

a confusion matrix. “TP” represents true positives, the number of links in the TM that are in 

answer set. “FP” represents false positives, the number of links in the TM that are not in the 

answer set. “TN” represents true negatives, the number of links that are correctly left out of the 

TM. “FN” represents false negatives, the number of links in the answer set that are incorrectly left 

out of the TM. 

 

TM 

Answer set 
TP FN 

FP TN 
 

Figure 2.9 Confusion matrix. 
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Recall is defined as the number of true positives divided by the sum of true positives and 

false negatives, 

Recall = TP / (TP + FN) . (1) 

In traceability research, automated methods build the candidate TM from all possible 

links. Recall using (1) is calculated appropriately when evaluating automated methods. However, 

when an analyst validates the candidate TM to build the final TM, they often do not validate each 

link in the candidate TM. Calculating recall using (1) is only accurate if the analyst actually finds 

and decides on all the true links in the candidate TM and only if the candidate TM contains all the 

true links in the answer set. Therefore, when evaluating the final TM built by an analyst from a 

candidate TM, recall is calculated using the following equation instead, 

Recall = TLa / TLt . (2) 

where TLa (equivalent to TP) is the number of links accepted into the final TM and TLt is the 

total number of links in the answer set. Equation (1), however, is still a valid measure when it 

comes to evaluating the quality of the final TM. This dissertation uses sensitivity (another name 

for recall) to measure analyst accuracy with respect to the number of true links actually observed, 

which is alternately define as follows: 

Sensitivity = TLa / TLs , (3) 

where TLa is the number of true links accepted and TLs is the number of true links seen. Note that 

while recall measures the accuracy of the final TM, sensitivity measures the quality of analyst 

decision-making on true links. For example, an analyst who sees 90% of the true links but accepts 

only 50% of them (50% sensitivity) has 45% recall. Contrast this to another analyst that sees 45% 

of the true links and accepts all of them (100% sensitivity) resulting in 45% recall as well. 

Between these two analysts, the one with higher sensitivity potentially did a better job at deciding 

on true links. High sensitivity, however, can easily be achieved by accepting all the links in the 

candidate TM (which would likely not be a good approach as tracing tools also retrieve many 

false links). Precision balances sensitivity in the same way it balances recall, by measuring how 

selective analysts are at accepting links into the final TM. Precision is defined below as the 

number of retrieved true links divided by the sum of true positives and false positives (TP + FP is 

also the number of links in the final TM.): 
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Precision = TP / (TP + FP) . (4) 

Fβ measure combines recall and precision into a single value by taking the harmonic 

mean of both measures. Fβ measure can be adjusted to emphasize either precision or recall. In 

Equation (5), when β is set to one, precision and recall are weighted equally and the measure is 

called the F1 measure. When β is set to two, recall is weighted twice as much as precision and is 

called the F2 measure. Similarly, precision is weighted twice as much as recall when β is set to 

0.5. 

Fβ measure = (1 + β2) * Precision * Recall / ((β2 * Precision) + Recall) . (5) 

It should be noted that in requirements tracing research, emphasis has been on recall over 

precision. It is often easier for an analyst to determine the relevance of a link in the candidate TM 

than to seek out relevant links outside of the candidate TM [12]. The F2 measure is one measure 

that traceability researchers have used to emphasize the importance of recall [20]. Note, however, 

when evaluating analyst performance on the final TM, the emphasis on recall over precision may 

not be appropriate depending on how the final TM is used. Regardless of whether software is 

critical or non-critical, TM usage differs depending on the expected “downstream” (successor) 

actions. For example, criticality analysis uses the TM to identify “critical” requirements. 

Elements that trace to these critical requirements will be subject to additional analysis, review, 

and/or testing. A missed link (error of omission) in the TM may mean that an element that really 

is tied to a critical requirement is not identified and hence is not subject to the additional rigor. In 

this scenario, recall is preferred over precision. Contrast this to tasks such as satisfaction 

assessment, consistency checking, and coverage analysis; each of these trigger additional 

activities when links are not found in the TM. For example, a requirement marked as “not 

satisfied” will be the subject of additional analysis and repair, while marking a requirement as 

“satisfied” when it is not (error of commission) leads to the possible “corruption” of successor 

activities. Here, precision is preferred over recall. 

 One other measure that can be obtained from a confusion matrix but is seldom used to 

evaluate TMs is “specificity”, defined as the number of true negatives divided by the sum of true 

negatives and false positives. 

Specificity = TN / (TN + FP) . (6) 
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Specificity as a measure is seldom used in traceability research since the final TM does 

not contain links that an automated method or an analyst rejected. Specificity could be considered 

as a measure of analyst performance, as it measures how well an analyst rejects false links. TN, 

however, heavily influences specificity, which can lead to an inaccurate representation of analyst 

performance due to the disproportionate number of false links vs. true links in a candidate TM. 

FP is a measure of interest for analyst performance, indicating the number of false links accepted 

by the analyst into the final TM. Precision as defined in (4) is a suitable measure for analyst 

performance compared to specificity, as TP is bounded by the number of true links in the answer 

set. This dissertation uses sensitivity, precision, and additional measures described in Chapter 6 to 

measure analyst performance. 

Selectivity is a secondary measure used in traceability research that measures the 

percentage reduction of all possible links that are presented to the analyst for review after a 

candidate TM is generated using an automated method [24]. This measure is also used to indicate 

the amount of effort reduced for the analyst building the final TM. This measure is calculated by 

dividing the number of candidate links by the total number of possible links for a candidate TM. 

Selectivity = (TP + FP) / (TP + FP + TN + FN) .  (7) 

Measures derived from the confusion matrix are considered set-based measures, as the 

position of true links within the TM does not influence those measures. From the perspective of 

an analyst vetting links, a candidate TM with true links near the top is more desirable than a 

candidate TM with true links further down the list [25]. A ranked-retrieval-based measure, 

however, considers the position of true links in the TM. “Lag” is a ranked-retrieval-based 

measure [24] that counts the average number of false links above each relevant link in a candidate 

TM. This measure indicates the analyst effort needed to review false links that are in the 

candidate TM above (before) true links. Lag is an ordinal measure compared to the other earlier 

measures which are bounded between zero and one. A limitation of this measure is that it does 

not factor in true links that are not in the candidate TM. For example, Lag for a candidate TM that 

has one true link at the top of the list but is missing three other true links is zero since there are no 

false links above the single true link. MAP is a ranked retrieval-based measure used in the IR 

community that is similar to Lag but does not have this limitation. MAP is calculated based on 

the position of relevant links in the candidate TM [26]. Using MAP, links near the top of the 

candidate TM are considered more important than links further down the list. 
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For example, assume that a query has four true links but the candidate TM only returned 

three, ranking them at position 1, 3, and 5. The precision for the first true link is 1. The precision 

for the second true link is 2/3 and the precision for the third true link is 3/5. Since the fourth true 

link is not in the candidate TM, the precision for that link is 0. The average precision for the 

query is (1 + 2/3 + 3/5 + 0) / 4 = 0.57. MAP is the arithmetic mean of precision scores for each 

query with at least one true link. The IR community frequently uses MAP to characterize results 

of ranked-retrieval IR techniques and it has been shown to be a stable performance measure [27]. 

Average precision per query allows for per-query performance comparison between 

techniques, which is also the base for statistical testing of technique performance using MAP as 

the test statistic. This dissertation introduces the use of MAP in traceability research with the 

additional rigor of statistical testing to test the difference in MAP between tracing techniques. 

Using MAP in traceability experiments will provide more accurate performance comparisons of 

traceability techniques. 

In prior traceability research that uses recall and precision measures [7, 13, 14, 15, 25, 

28], the candidate TM includes queries that do not have any true links for that query in the answer 

set. This in effect lowers precision of the candidate TM since all links returned for such queries 

will be false links when using a set-based measure. When evaluating automated traceability 

techniques using MAP, this measure indicates how well a technique returns a candidate TM with 

true links near the top for each query, which naturally excludes queries without any true links. On 

the other hand, the 21-point interpolated precision-recall graph (described next) is based on set-

based measures and includes queries without true links, providing “apples to apples” comparison 

to prior work while augmenting the comparison with statistical testing. 

Weight threshold filtering and document cut point filtering are techniques that are used to 

increase precision at the cost of decreasing recall [7, 15, 28]. Threshold filtering sets a lower limit 

for an acceptable candidate link. Links with similarity scores lower than the threshold are 

excluded from the candidate TM. Document cut point filtering limits the number of candidate 

links returned per query. For example, Top 5 filtering returns the top 5 links for each query. The 

tradeoff in precision and recall is often visualized using variants of the precision-recall graph, 

showing the overall performance of the technique at various recall levels. By varying the weight 

threshold or document cut point, precision-recall points are obtained and plotted on the precision-

recall graph.  
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Interpolation can be used to map the nearest recall value to fixed recall points [26]. The 

precision for each interpolated recall point r is the maximum precision of any recall point r’ > r. 

Using fixed recall points allows for easier comparison of precision between techniques. This 

dissertation instead uses a 21-point interpolated precision-recall graph to measure a technique’s 

overall performance, statistically validating it using Median Precision (MP) as the test statistic. 

MP is the precision value obtained at the 50% recall point. The Wilcoxon Signed-Ranks test [29] 

is used to test the median difference in MP for statistical significance at the 0.05 level. Figure 

2.10 depicts an example of a 21-point interpolated precision-recall graph of two IR techniques. 

Technique B improves over Technique A for most of the lower recall points. The Wilcoxon 

Signed-Ranks test shows a significant difference in the MP of Technique B over Technique A (W 

= 110, Ns/r = 20, p = 0.04). 

 

Figure 2.10 Example of a 21-point interpolated precision-recall graph. 

 
 
 
 
 
 
 

Copyright © Wei-Keat Kong 2012  



18 

Chapter 3 - Related Work 

 

This chapter provides an overview of related work and is divided into the study of 

methods, technique evaluation methods, term proximity, study of the analyst, and analyst 

evaluation methods. Though the dissertation does not build on some of these method studies, they 

are provided as additional background information. 

 Study of Methods 
The study of methods investigates techniques that recover traceability link information 

for analysts to vet. These studies typically apply one or more techniques to retrieve links and 

compare them against a baseline technique using some performance measure. This dissertation 

contributes to the study of methods by developing a term proximity-based augmentation of the 

VSM, validating the work using a ranked-retrieval based measure that has not been previously 

used in requirements tracing. 

Vector Space Model 
The VSM [30] is a popular and effective IR technique, considered one of the baseline 

techniques in requirements tracing experiments [7, 11, 10, 14, 15, 20, 24, 25, 31, 32, 33]. A 

vector represents each document in the corpus where each cell of the vector indicates the 

presence or absence of a term in the document, generally using some weighting factor (with term 

frequency-inverse document frequency (tf-idf) being the most common). The query is similarly 

represented. A similarity value between zero and one is then computed using the cosine angle of 

the vectors to represent the relevance of a given document element to the query. Values that are 

close to one indicate a document that is highly relevant to the query; values close to zero are not 

relevant. Candidate TMs are ranked in order of relevance weights. Figure 3.1 shows pseudo code 

for generating candidate TMs using VSM. The TermFreq function simply returns the number of 

terms in a given document and the InvDocFreq function returns the number of documents 

containing the given term. 
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Figure 3.1 Pseudo code for building candidate links lists using VSM. 

  

VSM() 
{ 
 Candidates[][] = Array[NumTerms(highDocuments)][NumTerms(lowDocuments)] 

 
 FOR EACH document i in highDocuments 
  FOR EACH term in i 

 i[term] = TermFreq(term, i) * InvDocFreq(term, highDocuments) 
END FOR 
 
FOR EACH document j in lowDocuments 
 FOR EACH term in j 

   j[term] = TermFreq(term, j) * InvDocFreq(term, lowDocuments) 
 END FOR 
 
 Candidates[i][j] = CosineSimilarity(i,j) 
END FOR 

 END FOR 
 

 return Candidates 
} 
 
CosineSimilarity(i,j) 
{ 
 MagHigh = 0 
 FOR EACH term in i 
  MagHigh = MagHigh + Power(i[term], 2)   
 END FOR 
 
 MagLow = 0 
 FOR EACH term in j 
  MagLow = MagLow + Power(j[term], 2)   
 END FOR 
 
 Norm = Sqrt(MagHigh) * Sqrt(MagLow) 
 
 Terms[] = GetCommonTerms(i,j) 
 
 Score = 0 
 FOR EACH term in Terms 
  Score = Score + (i[term] * j[term] / Norm) 
 END FOR 
  
 return Score 
} 
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More formally, the VSM with tf-idf weighting is defined as follows. Given the entire 

collection of unique terms D = {t1,..,tn} in a document collection, each document d is represented 

by a vector V = {w1,..,wn} consisting of unique terms contained in each document. The 

importance of each term wi in the document is determined by a weight function: 

w(t) = tf(di, t) * idf(t) , (8) 

where tf(di, t) represents the importance of the term within the document, measured by the 

number of times the term occurs in the document. idf(t) represents the importance of the term 

within the entire document collection, computed as: 

idf(t) = log ( |𝐷| / df(D, t)) , (9) 

where |𝐷| represents the number of documents in the collection and df(D, t) is the number of 

documents that contain the term t in 𝐷. Queries are similarly represented in the VSM. The 

relevance of a given document d to a query q is computed by using the cosine angle of the 

vectors. The cosine similarity is defined as follows: 

sim(𝑑, 𝑞) =  𝑑 • 𝑞 (‖𝑑‖‖𝑞‖) .⁄  (10) 

The VSM can be augmented in a number of ways. The use of key phrases [7] and 

thesaurus look-up [7, 10, 15, 24] increases the number of common terms between queries and 

documents while increasing the weight of important terms. Relevance feedback [11, 10, 24] uses 

analyst feedback to modify the weight of remaining links and present links that are more relevant 

to the analyst. Pivot normalization [15] modifies the normalization factor of the similarity score 

based on characteristics of the document collection. Swarm intelligence [31] techniques mimic 

ant colony behavior to build candidate links. These “swarm agents” traverse the vocabulary space 

between documents, depositing “pheromones” on nearby terms in a document, increasing the 

probability of other agents searching for those terms to select the same document. Latent 

Semantic Indexing (LSI) is a technique that reduces the dimensionality of the VSM, addressing 

issues of synonymy and polysemy in document collections [22, 24, 28, 34]. Latent Semantic 

Analysis (LSA) and enhanced similarity measures using relevance feedback [32] improves 

candidate TMs generated during TM maintenance. This technique modifies similarity weights 

based on the type of change made to the software artifact. 
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All the VSM augmentations mentioned above modify the weights assigned to each 

document by modeling some feature of the document collection in order to more accurately rank 

the links returned in the candidate TM. Some features are derived from the collection itself (key 

phrases, pivot normalization, swarm, LSI/LSA), while others are combined with external 

information (thesaurus, relevance feedback). The VSM augmentation introduced in this 

dissertation uses term proximity [33], considering the distance between terms in both a query and 

document as a measure of document relevance in addition to the tf-idf weighting. 

Probabilistic Model 
The probabilistic model is another popular baseline technique used in requirements 

tracing experiments [14, 35, 36, 37, 38, 39]. Most studies use a naïve Bayesian model, where 

documents are ranked based on the probability that the document is related to the query. The 

probability of a document being related to a query is the sum of probabilities for all terms 

occurring in both the query and document over the sum of probabilities for all terms occurring in 

the query. More formally, 

𝑃 ( 𝐷𝑖| 𝑄 ) = � ∑ 𝑃 ( 𝐷𝑖  | 𝑡 ) 𝑃 ( 𝑄 | 𝑡 ) 𝑡 ∈𝑄 ∩ 𝐷 � / 𝑃 ( 𝑄 ) , (11) 

where 𝑃 ( 𝐷𝑖  | 𝑡 ) is the frequency of terms in the document over all terms in the document, 

𝑃 ( 𝑄 | 𝑡 ) is the frequency of terms in the query over the number of queries that contain that term, 

and 𝑃 ( 𝑄 ) is the sum of  𝑃 ( 𝑄 | 𝑡 ) for each term in the query. 𝑃 ( 𝐷𝑖| 𝑄) equals zero when no 

common terms occur between the query and the document although a smoothing function [14] 

can be used to address this condition. Links with 𝑃 ( 𝐷𝑖| 𝑄 ) exceeding a selected threshold would 

be added to the candidate TM. 

The probabilistic model can be augmented in a number of ways. The probabilistic model 

is used to generate candidate links for impact detection as part of the Goal-Centric Traceability 

(GCT) [36] approach to managing non-functional requirements. Phrasing techniques [35] select 

terms that occur in phrases or a project glossary, increasing the contribution of those terms to the 

overall probability. Hierarchical ordering of documents [38] modifies the probability of a 

document by including the probabilities of all documents above it in the hierarchy. Logical 

clustering of documents [38] uses the average probability of all links in a document cluster to 

determine the probability of a link between a query and a document. Graph pruning [38] excludes 

terms identified as constraint terms between groups of queries and documents in order to improve 

queries that have low precision. Machine learning techniques [37] use a list of indicator terms 
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identified from a subset of documents, increasing the weights of indicator terms that occur in 

subsequent documents. Web searches [37, 39] are used to gather collections of web documents, 

from which domain concepts are extracted and used to query for candidate links. 

The probabilistic model is similar to the VSM in that term frequencies in queries and 

documents are used as the basis for calculating similarity scores. Performance comparisons 

between these two models have produced mixed results, with no model consistently 

outperforming the other under different conditions [14, 40, 41]. 

Rule-based Model 
Rule-based models involve building object models between software artifacts, then using 

rules to query the model for candidate links. Parts-of-speech patterns can be used to generate 

rules for generating candidate TMs [42]. Candidate TMs can also be generated using a 

combination of LSI with structural analysis [43], a technique where Traceability Link Graphs 

(TLGs) visualize links between source code and documentation elements, which are then used to 

generate rules for building the candidate TM. These rule-based methods are highly precise but 

require additional analyst effort to configure appropriate rule sets. 

Event-based traceability 
Event-based traceability maintains traceability links in software artifact change 

management systems using the probabilistic model [44] and LSI [22]. Under such systems, 

software artifacts are monitored for changes, triggering updates for other linked artifacts as 

needed. In addition, the dependencies between software artifacts and their states are clearly 

visible in the system, providing a high-level view that aids in project management and trace 

analysis. While event-based traceability is beneficial for maintaining TMs (step seven of the 

requirements tracing process in the previous chapter), these methods are outside the scope of this 

dissertation. 

 Technique Evaluation Methods 
Results from the study of methods show that IR techniques are able to retrieve most of 

the true links (high recall), but usually at the expense of retrieving many false links as well (low 

precision). Filtering techniques can be used to measure the performance of a tracing technique 

from an overall perspective. Document cut and threshold weight filtering techniques trim the 

candidate TM to improve precision while possibly lowering recall, and are visualized using 

variants of the precision-recall graph to determine technique effectiveness  [7, 14, 15, 24, 28, 35, 
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43]. Precision at each recall point for a given tracing technique, however, may not line up with 

values obtained from another technique, which presents a challenge when trying to determine if 

one technique outperforms the other. Note, however, filtering does not actually make a difference 

in the performance of the tracing technique, i.e., the position of the true links in the candidate TM 

does not change with filtering. Filtering techniques are not suitable for measuring per-query 

performance of tracing techniques which is important to the analyst who values true links ranked 

near the top of the candidate links for each query.  

Lag has some shortcomings as a ranked-retrieval based measure in that it can be 

misleading when candidate TMs have few links. DiffAR [25] is a measure that indicates the 

average weight difference between true links and false links in a candidate TM. Candidate TMs 

with high DiffAR clearly distinguish true links from false links. Selectivity is another measure 

that provides quantifiable savings from the use of automated methods [11, 24], indicating the 

effectiveness of an automated method. An automated method that isn’t very effective returns a 

majority of the possible links (has very low precision), which does not provide any reduction in 

effort for the analyst and might be perceived as providing little value. 

Some probabilistic models require supervised learning before performing the trace 

recovery. Evaluation of such methods requires cross validation in order to reduce selection bias 

[37]. Unsupervised learning methods, however, can be evaluated using the same evaluation 

techniques that are used for evaluating VSM. 

The use of different comparison techniques in the traceability community highlights the 

need for standardized measurement techniques among researchers. This dissertation introduces 

MAP as a measure of the internal quality of candidate TMs and the 21-point interpolated 

precision-recall graph as a measure of the overall quality of candidate TMs. Technique 

performance can be validated by using statistical testing of both measures. 

 Term Proximity 
The IR community has studied a number of term proximity techniques, but so far none of 

these techniques has been applied to requirements tracing. This dissertation tailors a term 

proximity technique for requirements tracing from the term proximity techniques described 

below. 

Document relevance can be calculated using the distance between terms in a proximity 

relation instance called Z-mode [45]. As a baseline, a set of terms representing important 
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concepts (referred to as a proximity relationship) is selected from each query and used with the 

NEAR operator within 200 characters to retrieve relevant documents. Using Z-mode, a span is 

defined as the largest number of words between terms in a proximity relationship. Document 

relevance is calculated based on the span of each proximity relationship in a document. The 

overall document relevance is a function of the manually assigned proximity relationship weight 

and the document relevance due to the proximity relationship. The term proximity technique in 

this dissertation differs in that all terms from the query are used to find relevant documents, using 

terms in close proximity to increase the similarity weight. 

Another way to calculate term weights based on term proximity is to use keyword pairs. 

A baseline probabilistic model is enhanced with term proximity using all possible term-pairs in a 

query within four words of each other [46]. Queries with only one keyword are removed since 

term-pairs could not be formed with just a single keyword. The weight of each term pair weight is 

calculated using the inverse square of the word distance between term-pairs. The term proximity 

technique in this dissertation differs in that weight calculations are not limited to keyword pairs 

and that the proximity weight is a component of the overall similarity weight, which does not 

exclude queries and documents with single keywords. 

A comparison study of two span-based and three distance aggregation measures uses the 

distance between terms in the document instead of how often they occur in the document to 

determine document relevance [47]. Span-based measures are based on the shortest segment of 

text that either covers all query terms including repeated terms, or that covers all query terms at 

least once (minimum coverage). Aggregation-based measures look at pair-wise distances between 

query terms, considering the minimum distance, average distance, and maximum distance 

between each pair of query terms in the document. Documents that only have one query term 

return the length of the document as the measure, heavily penalizing documents that only have 

one term in common with the query (which may not be fair if that common term is an important 

term). Results showed that the minimum distance measure performed the best among the 

measures compared. The technique in this dissertation uses a similar distance aggregation 

technique in that only terms within a maximum word distance from each other are considered in 

the proximity weight calculations. 

Another term proximity technique uses term positions to vary the relevance contribution 

of a term to the weight of the document [48]. Query terms are grouped into non-overlapping 

phrases and the relevance contribution of each phrase is calculated by the number of terms within 
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the phrase and the distance between them. The sum of each relevance contribution replaces the 

term frequency in the Okapi BM25 (a probabilistic) model. The technique in this dissertation is 

similar in that groups of terms in close proximity to each other in both the query and the 

document are aggregated. Instead of replacing a component of the similarity measure, the 

proximity measure complements the similarity measure. 

This dissertation introduces the idea of calculating document relevance by considering 

important terms occurring within close proximity to each other in both the query and the 

document. Instead of short ad hoc queries frequently used in the IR domain, queries that are used 

in requirements tracing consist of terms from an entire document. This model considers term 

proximity of both the query and the documents being traced, ensuring that terms close together in 

the query are also close together in the document. Most studies in the IR domain use probabilistic 

models, while VSM is a common baseline model in requirements tracing. This dissertation uses 

VSM as the underlying model for integrating the term proximity measure. The term proximity 

weight is combined with the cosine similarity weight such that links with low cosine similarity 

weights increase more than links with high cosine similarity weights. 

 Study of the Analyst 
On another front, progress has been made in studying the human analyst in the tracing 

process. The study of the analyst refers to examining ways to best use the human analyst’s time in 

the tracing process (such as vetting candidate links) in order to generate the best possible final 

TM. 

Prior to human studies, analyst simulations provided a means to test tracing strategies. 

Studies using relevance feedback with multiple iterations and filtering to validate candidate TMs 

showed that precision improved substantially when perfect feedback is given by simulated 

analysts (always accepts a true link, always rejects a false link). Relevance feedback, however, 

still did not outperform a thesaurus retrieval-based technique [10, 24] (results included links used 

for feedback). 

Simulations of the perfect analyst studied how link ordering and analyst feedback 

affected results, measuring the effort required to achieve either a fixed recall level or to measure 

the recall achieved using a fixed amount of effort [11]. A number of possible analyst strategies 

that decrease analyst effort were studied. Results showed that local ordering with feedback 

performed the best. Additional observations found that determining the stopping point is crucial, 
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using feedback helps, and a systematic approach helps. Simulations of relevance feedback for 

maintaining software artifacts looked at how prior feedback given by analysts could be used to 

reduce the effort of future “retracing” or “delta tracing” tasks. Results showed that prior correct 

feedback improved results but results worsened when earlier decisions were wrong [32]. This 

dissertation builds on the lessons learned from these simulations, using a study to identify actual 

analyst strategies. 

Incremental approaches using document cut or threshold weight filtering with various 

feedback strategies showed that a significant amount of effort is required to retrieve all true links 

in the TM [49] (results excluded links that were used for feedback, and in some cases use of 

feedback made results worse). The ADAMS Re-Trace tool [22] uses a similar technique, enabling 

analysts to set decreasing threshold values and control the size of the candidate TM presented to 

them. The tool also groups relevant links together and alerts analysts to potential feedback 

mistakes in the vetting process. 

Analysts typically spend most of the time vetting false links, considering that the scarcity 

of true links in a candidate TM increases significantly as the matrix of possible links grows. 

Humans get tired, which means that they probably have a period of time where they do their best 

work. While the simulation studies described above assumed that analysts made perfect decisions, 

studies of actual human analysts showed that analysts were fallible in predictable ways [17]. 

Given small candidate TMs (high precision, low recall), analysts added more links, improving 

recall at the cost of precision. Given large candidate TMs (low precision, high recall), analysts 

threw links out, improving precision at the cost of some recall. Given higher accuracy candidate 

TMs, analysts produced slightly lower accuracy final TMs. Given lower accuracy candidate TMs, 

analysts produced significantly higher accuracy final TMs [13, 17, 18]. Analysts tended to 

produce final TMs that were near the precision = recall line, meaning they had final TMs that 

were about the size of the true TM [13]. 

Analysts were better at validating links as opposed to searching for missing links [4] and 

their accuracy did not depend on whether they had industrial experience or not (while 

experienced analysts were more correct on true links than those with less experience, both 

achieved less than 50% precision) [18]. Decisions were more likely to be correct when made 

quickly and most decisions were made on false links [4, 18]. Effort spent validating links did not 

correlate with trace accuracy [2, 18]. 
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This dissertation builds on previous analyst studies, focusing on how analysts work with 

TMs when given the same starting candidate TM. Analyst actions are logged to provide a step-

by-step account of the decisions made during the tracing task. These logs provide a significant 

amount of information that can be mined for trends, analyzed for tracing strategies, and visualized 

to show areas where analysts have difficulty during the tracing task. 

 Analyst Evaluation Methods 
A number of measures have been used to evaluate the analyst working with TMs. Most of 

these measures relate to the effort spent on tracing tasks. In one study, the Recovery Effort Index 

(REI) measures the benefit of using an automated tracing technique by using the ratio of retrieved 

links over all possible links. This measure is equivalent to selectivity, which is defined in chapter 

2. The effort spent on techniques that use the probabilistic model and VSM was compared to the 

effort spent using UNIX grep utility that simulated a manual trace. Results from grep were not 

ranked and were much worse compared to both IR methods [14]. Another study used a similar 

measure, called reduction (which is the same as 1 – selectivity), to gauge the expected effort to 

vet links when evaluating precision/recall levels [15]. Effort can also be considered as the amount 

of time spent on the tracing task [16, 18]. Post-study surveys asked participants about the amount 

of effort spent validating links vs. finding missing links, providing anecdotal evidence that higher 

effort spent validating links results in lower final TM accuracy [18]. 

In this dissertation, effort is considered as a ratio between false links seen and true links 

seen, indicating the amount of effort disproportionately allocated to review false links. In 

addition, measures that look at how well the analyst decides on true links in the candidate TM 

provide a better indicator of analyst performance that could not be obtained from looking at the 

final TM. This dissertation also considers the decisions that analysts make during the tracing task, 

visualizing how well they do at accepting true links and rejecting false links. 

 
 
 
 
 
 
 
 
 
 

Copyright © Wei-Keat Kong 2012  
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Chapter 4 - A Proximity-based Vector Space Model2 

 

This chapter provides details on the application of a proximity-based technique to the 

VSM, which considers term proximity in the ranking of a document in the candidate TM 

generation process. 

 Overview 
In the PVSM, a document that has a set of query terms that occur close to each other 

should be more relevant than another document that has the same query terms occurring further 

away. The proximity function is evaluated depending on two parameters: α which is the minimum 

number of common terms between the query and document and ω which is the maximum term 

distance between two consecutive terms. The term proximity function below is used to generate a 

proximity weight value between zero and one. More formally, the proximity weight for query q 

and document d is the sum of idf values for common terms between q and d (indicated by 𝑇𝑞and 

𝑇𝑑) that occur within ω terms of each other divided by the sum of idf values for common terms 

between q and the entire document collection D.  

𝑃𝑟𝑜𝑥(𝑞,𝑑) = �

∑ idf(𝑞,𝑡)𝑡∈𝑇𝑞∩𝑇𝑑
∑ idf(𝑞,𝑖)𝑖 ∈⋃ �𝑇𝑞∩𝑇𝑥�𝑥∈𝐷

 , 𝑇𝑞 ∩ 𝑇𝑑 > 𝛼, |𝑡, 𝑡 + 1| ≤  𝜔
 

0                       , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                
  (12) 

 The tf-idf weight is then augmented with the proximity weight using the equation below, 

which allows for lower-weight links to increase more than higher-weight links but still remain 

under the upper bound of one. 

𝑃𝑉𝑆𝑀(𝑞,𝑑) = 𝑠𝑖𝑚(𝑞,𝑑) +�1 − 𝑠𝑖𝑚(𝑞,𝑑)� × 𝑃𝑟𝑜𝑥(𝑞,𝑑)  (13) 

Figures 4.1, 4.2, and 4.3 show an example of two test cases traced to a single 

requirement. Terms in bold indicate common terms between the requirement in Figure 4.1 and 

                                                 
2 © 2011 IEEE. Minor revision of the work published in “Proximity-Based Traceability: An 
Empirical Validation using Ranked Retrieval and Set-based Measures” by Wei-Keat Kong and 
Jane Huffman Hayes, 2011. Proceedings of Empirical Research in Requirements Engineering 
Workshop (EMPIRE 2011), IEEE Requirements Engineering (RE) Conference. 
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the test cases in Figure 4.2 (a false link) and Figure 4.3 (a true link). Using VSM, the false link 

will be ranked higher than the true link due to the frequent occurrence of the term “format.” 

When using PVSM, however, the proximity of the terms in the first sentence increases the true 

link’s weight significantly. 

ChangeStyle formats compiled code according to Jalopy’s formatting 

convention standards. 

Figure 4.1 A high-level requirement. 

Purpose: Test that format works on each BlueJ class type. 

 

Procedure: 

    * Open the test project. 

* Use the Tools/Preferences menu to select the  

   Sun Style convention. 

    * Follow the steps below.  

 

Test Data: 

Action Input    Expected Output 

Click on the Compile button.  All classes are compiled. 

Using the Tools menu click  Sub-menu appears with  

     on ChangeSyle.          Format Entire Project 

          enabled. 

Click on Format Entire  The classes are formatted. 

     Project.   

Now try to right click on the  You will notice that a menu  

     paper icon in the        doesn't pop up offering  the  

     environment.       formatting option, since the  

         file is a .txt file. 

Use diff or fc to confirm the   No differences should appear. 

     format from a terminal or  

     command prompt.  

Figure 4.2 A non-relevant test case. 
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Purpose: Verify that ChangeStyle formats code properly  

 

Procedure: 

    * Create a new BlueJ Project and open the “TestClass” file. 

    * Click on the Import -> Browse button. 

    * Choose JDalbeyConvention.xml. 

    * Navigate to the Printer > Braces section. 

    * Click the box next to “Sun Java style”. 

    * Click [OK]. 

    * Right-click “TestClass”. 

    * Click Compile. 

    * Right-click “TestClass”. 

    * Click ChangeStyle > Format. 

    * -- compare expected output #1 below. 

    * Right-click “TestClass”. 

    * Click Open Editor. 

    * -- compare expected output #2 below. 

 

Test Data: 

Expected Output #1 

The “TestClass” icon should have “hash marks” indicating it is not compiled.  

No pop-up messages should appear. 

 

Expected Output #2 

public class TestClass { 

        private int x; 

        public TestClass() { 

                x = 0; 

        } 

} 

Figure 4.3 A relevant test case. 
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 Purpose and Planning 
The experiment evaluates the VSM and the PVSM with respect to the quality of 

candidate TMs. The experiment is conducted from the point of view of the researcher, in the 

context of automatic traceability link generation. The experiment answers the question: Is the 

candidate TM generated by the PVSM better or worse than the candidate TM generated by the 

VSM? The experiment hypotheses can be stated as follows: 

H01: There is no difference in the MAP of the PVSM candidate TM compared to the MAP of the 

VSM candidate TM.  

HA1: There is a difference in the MAP of the PVSM candidate TM compared to the MAP of the 

VSM candidate TM. 

H02: There is no difference in the median precision (MP) of the PVSM interpolated precision-

recall graph compared to the MP of the VSM interpolated precision-recall graph.  

HA2: There is a difference in the MP of the PVSM interpolated precision-recall graph compared to 

the MP of the VSM interpolated precision-recall graph. 

 Variables and Datasets 
The dependent variables in the experiment are the MAP and MP, the independent 

variable is the IR technique (VSM and PVSM). The experiment uses datasets selected based on 

answer set availability. CM1Subset1 is a subset of the NASA-provided CM-1 (a science 

instrument) project containing 22 high-level requirements, 53 low-level requirements, and 40 true 

links. Pine is an open source email client that has 49 high-level requirements, 133 use cases, and 

contains 246 true links. ChangeStyle is a Java-based style checker that has 32 high-level 

requirements, 17 test cases, and 23 true links. EasyClinic is a collection of software artifacts used 

in the development of a software system to manage a medical ambulatory. The experiment traces 

between the 30 use cases and 47 code classes in the collection, with 93 true links in the answerset. 

 Experiment Design 
This one-factor, multiple treatments experiment compares the candidate TMs generated 

from a research tool that implements the VSM (TFIDF) and PVSM model (PVSM ω = 1 and α = 

2 provides the best performance based on earlier evaluations). MAP is calculated using the set of 

queries that have relevant documents. MP is calculated by obtaining the precision at every recall 

point, generating a 21-point interpolated precision-recall graph, and calculating the median. A 

permutation test with replacement using 1,000,000 random permutations tests the difference in 
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MAP for statistical significance at the 0.05 level. The permutation test with large samples 

provides an accurate estimate of the p-value without requiring any assumptions on the 

distribution of the data or needing many data points [50, 51]. The Wilcoxon Signed-Ranks test 

tests the difference in MP for statistical significance at the 0.05 level. The permutation test is not 

appropriate for testing MP as each pair of PVSM and VSM precision values must be in 

decreasing order. 

 Threats to Validity 
Threats to conclusion validity are concerned with the experiment outcome and whether or 

not the correct conclusion can be drawn from the results. Statistical significance usually requires 

many data points. The randomization/permutation test, however, doesn’t require many data points 

in order to have power as it calculates the exact (or approximate if using permutation) p-value for 

the test. It also looks at just the experiment data and determines the probability of the results 

occurring by chance. With the processing power of today’s computers, the 

randomization/permutation test is recommended over the other parametric and non-parametric 

statistical tests for applicable IR experiments [51]. 

Threats to internal validity are related to the risk of confounding factors in the 

experiment. This threat is not a concern as treatment results do not change when repeatedly 

applied to the datasets. In addition, the order of the treatment application does not affect results. 

Construct validity deals with the ability to generalize the results of the experiment to the 

model. The PVSM effect may be confounded by differences in the content of each dataset. The α 

and ω factors in PVSM may not produce the best performance depending on the content of the 

dataset. Some other values may perform better based on the distance of relevant terms in each 

document. Future work is planned to study the effects of these factors on more datasets. 

External validity deals with the ability to generalize the results of the experiment to real 

world situations. The four datasets used in this experiment may not be representative of all the 

software artifacts used in traceability. To mitigate this threat, software artifacts from four 

different domains are used in the experiment. 

 Experiment Results 
Table 4.1 presents the MAP obtained from applying the PVSM and VSM to the 

experiment datasets. The PVSM performed slightly better than VSM on two of the four datasets, 
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albeit without statistical significance. The ChangeStyle dataset had 0.816 MAP using the PVSM 

compared to 0.709 MAP using the VSM while CM1Subset1 PVSM had 0.698 MAP to VSM’s 

0.658. In Table 4.2, MP of ChangeStyle PVSM outperformed MP of ChangeStyle TFIDF with 

statistical significance. MP for Pine PVSM performed slightly better than Pine TFIDF but 

without statistical significance. MP for EasyClinic PVSM performed worse than VSM with 

statistical significance. One thing to note, VSM performed reasonably well across the four 

datasets, producing MAP values of at least 0.658 to 0.865, indicating that most queries returned 

relevant documents near the top of the candidate TM. Most of the loss of precision is due to links 

below the last relevant link. If the analyst knew when to stop examining links, much effort could 

be saved [11]. 

Table 4.1 Permutation Tests for MAP 

PVSM TFIDF N p-value

MAP
ChangeStyle 0.816 0.709 23 0.15
CM1Subset1 0.698 0.658 19 0.35
Pine 0.858 0.865 47 0.56
EasyClinic 0.736 0.755 28 0.62  

 

Table 4.2 Wilcoxon Signed-Ranks Test for Median Precision (MP)3 

PVSM TFIDF N Ns/r p-value

MP
ChangeStyle 0.93 0.45 21 11 0.004
CM1Subset1 0.43 0.43 21 8 -
Pine 0.56 0.58 21 15 0.168
EasyClinic 0.75 0.77 21 18 < 0.001  

Figure 4.4 visualizes the distribution of the average precision for each dataset for both the 

PVSM and VSM. The hash mark indicates MAP, the middle line of the bounding box indicates 

the median, and the top and bottom line of the bounding box indicates the average precision at the 

3rd and 1st Quartiles, respectively. The whiskers represent the min/max average precision values. 

Notice that with both techniques, at least half of the queries for the ChangeStyle and Pine datasets 

had perfect or near perfect precision. At least half of the queries for CM1Subset1 and EasyClinic 

                                                 
3 Results reported in the original paper had mean values instead of median values. The values 

reported here are the correct median values. 
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had more than 0.6 average precision using both techniques as well. At least 75% of queries in all 

datasets had at least 0.5 average precision, indicating that for the most part, both techniques do 

well at generating candidate TMs. These results suggest that current automated techniques 

already provide good performance for most traceability tasks. 

 
Figure 4.4 Box plot of average precision distributions for each dataset. 

Figure 4.5 presents the precision-recall graphs for the four datasets. ChangeStyle PVSM 

had equal or better precision at all recall levels. This indicates a noticeable improvement in the 

candidate TM, although the number of differences isn’t enough to provide statistical significance. 

Pine PVSM performed slightly better at the 0.50 to 0.85 recall levels but worse at the 0.20 to 0.45 

range. CM1Subset1 PVSM performed worse at a few low recall points and only performed 

slightly better at one recall point. EasyClinic PVSM performed worse from the 0.05 to 0.70 recall 

range, only slightly outperforming VSM at one recall point. 
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Figure 4.5 21-point interpolated precision-recall graphs for all datasets. 

 Summary 
Results showed that the PVSM had slightly higher MAP for two of the four datasets used 

in the experiment. Upon reviewing the candidate links, a number of false links were ranked high 

due to the presence of common terms but differed in one or two “golden” keywords. These 

“golden” keywords were terms that significantly altered the semantics of the document. The 

PVSM and VSM shares this limitation, although PVSM is more susceptible to overweighting 

these links since the technique is unable to determine the significance of the missing keyword 

when detecting terms in close proximity.  

It was observed that some queries performed well regardless of the technique used. This 

suggests that the terms contained in the query and the relevant documents were unique enough to 

differentiate them from the rest of the documents. On the other hand, some queries did not 

perform well at all. After analyzing some of these queries and their relevant documents, various 

reasons were attributed to the lower performance such as: synonymy (similar terms), 

misspellings, abbreviations, and common terms that were unimportant to the query (Gibiec et al. 

called these queries ‘stubborn traces’ [39].) These queries presumably cannot be improved by 
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using frequency-based information alone and could benefit from techniques that are not based on 

term frequency such as LSI or use of a thesaurus. 

Results suggest that average precision can be used to categorize the difficulty level of 

datasets. Datasets that have high MAP with basic IR techniques presumably would not benefit 

much from the application of more advanced techniques. Identifying queries that have low 

average precision allows a researcher to focus on improving such queries or to detect erroneous 

links in the answer set. In this study, Pine had a large proportion of queries that returned many 

relevant documents near the top of the candidate link list, resulting in high MAP. Differences in 

MAP were influenced by a small number of queries in that dataset. CM1Subset1 and EasyClinic 

were comparatively harder datasets with a lower MAP, although they both had MAP over 0.65. 

More datasets, however, need to be analyzed in order to validate this idea. 

This work in the dissertation introduces a new tracing technique called the PVSM and 

validates it using MAP as a measure of the internal quality of a candidate TM. Results show that 

PVSM outperforms VSM on two datasets although without statistical significance. The 21-point 

interpolated precision-recall graph can be used to visualize the overall performance between two 

techniques and test for significant difference in MP. In this study, PVSM outperformed VSM on 

MP for ChangeStyle but not for EasyClinic. 

 

 

 

 

 

 

 

 

Copyright © Wei-Keat Kong 2012  



37 

Chapter 5 - Logging and Depicting Analyst Actions during 

Trace Validation Tasks4 

 

This chapter presents the contribution of an initial study of analyst tracing behavior in the 

context of trace validation tasks. 

 Requirements Tracing and the Role of Human Analysts 
Research has shown that automated traceability techniques retrieve traceability links 

faster than manual techniques [7, 14] and are capable of retrieving most of the true links but at the 

cost of retrieving many false links [7, 14, 52, 53]. 

The key reason for studying automated methods for tracing is to replace menial analyst 

effort. In some settings where tracing occurs, e.g., post-deployment activities such as reverse 

engineering, fully automated tracing is a feasible alternative to the manual tracing procedures of 

today. However, trace recovery and trace validation tasks for mission- or safety-critical projects 

must include a human analyst who validates and updates, as necessary, any automatically 

generated traces. In such settings, automated tracing tools are still appropriate, as they can “cover 

more ground” much faster and present a reduced search space for an analyst to search for links in 

a matter of minutes. But it is the accuracy of the final TM, delivered and certified by the analyst, 

that serves as the final judgment of success or failure of the tracing process. 

Figure 5.1 depicts the results from a study of how well analysts performed when given 

candidate TMs with difference accuracies [13]. Each participant's performance is represented by a 

vector with the tail indicating the accuracy of the candidate TM and the head (arrow) indicating 

the accuracy of the final TM. The results of the study confirmed initial observations: human 

analysts that get more accurate candidate TMs do not always produce more accurate final TMs. In 

fact, one of the most important observations from the study was that the analysts who were 

                                                 
4 © 2011 ACM. Revision of the work published in “How Do We Trace Requirements? An Initial 
Study of Analyst Behavior in Trace Validation Tasks” by Wei-Keat Kong, Jane Huffman Hayes, 
Alex Dekhtyar, Jeff Holden, 2011. Proceedings of the 4th International Workshop on Cooperative 
and Human Aspects of Software Engineering (CHASE 2011), International Conference on 
Software Engineering (ICSE Conference). 
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provided the least accurate candidate TMs were the only ones who consistently and significantly 

improved the accuracy of the TM while performing the trace validation task. 

In the absence of a human analyst, recall and precision provide a clear way of 

determining which automated method is better: methods that lead to higher accuracy for 

automatically generated TMs. However, the study described above makes it clear that this may 

not be the right way of determining the best automated tracing method to be used to generate 

candidate TMs for analyst validation. This creates a real challenge for the traceability community: 

without understanding how analysts work with automated tracing software, it is impossible to 

successfully automate the tracing process. 

 

Figure 5.1 Analyst performance when given different candidate TMs. 

 Study Design 
To better understand the work of the analysts with tracing software, a study was 

conducted with two upper-division Software Engineering classes: one at the University of 

Kentucky and one at Cal Poly. The participants of the study were senior and graduate students 
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majoring in Computer Science and Software Engineering. Prior to the study, a pre-survey was 

given to gauge each participant's level of software engineering and tracing expertise, as well as 

their confidence in their ability to perform tracing. Participants were given access to a special-

purpose requirements tracing tool called RETRO.NET [11] and a small training example in order 

to familiarize them with the tool. In the study, participants used a version of the tool enhanced 

with a logging mechanism and the capability to deliver a pre-computed candidate TM to each 

participant. The ChangeStyle dataset was used for the study. Each participant validated the 

candidate TM, modifying the TM as needed: removing false links or discovering true links 

outside of the candidate TM. Participants submitted the final TM and the user activity log at the 

end of the study. A post-study survey asked questions about the participants' experience with the 

tracing task, the tracing software, and their self-assessment on how well-prepared they were.  

Figure 5.2 shows the RETRO.NET User Interface (UI). The participant starts the task by 

logging in to the tool. Next, they are presented with the assigned candidate TM to trace. On the 

left side of the UI, the list of source elements and the text of the current source element are 

displayed. On the right side of the UI, the list of target elements and their text is shown. The 

participant evaluates each candidate link and renders a Link/Not a Link decision (initially all 

candidate links are labeled Default). The participant can also mark source elements as 

Satisfied/Partially Satisfied/Not Satisfied by target elements. The UI also allows a participant to 

perform simple keyword searches in both source and target elements, view all links, as well as 

perform other actions that are less relevant to the direct task of trace validation.  
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Figure 5.2 RETRO.NET UI. 

To understand the participant decision-making process, participants could have been 

asked to record what they were thinking as they performed the task. In fact, Cuddeback et al. [13] 

collected a simple handwritten task log that allowed for some crude estimate of the participant 

effort. However, a more detailed manually generated task log would invariably affect the 

performance of the task, forcing the participant to switch between the tracing task and 

documenting their decision-making process. Besides causing them to switch mental activities, 

this would also increase the amount of time required to perform the tracing task. 

An alternative way of getting this information is for the software tool to log participant 

actions during the task; this does not put any additional burden on the participant. In this work, an 

existing tracing tool is enhanced with an action logger to record participant actions. The action 

logger tracks the following actions in a log file along with a time stamp for each action: 

1. User selects a source/target element in the TM. 

2. User views recommended links, views all links, or performs a keyword search (using 

the tabs at the bottom of the RETRO.NET UI window). 

3. User marks the observed source/target element pair as a (true) link or not a link. 
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4. User marks a source element as satisfied, partially satisfied, or not satisfied by target 

elements. 

Figure 5.3 shows an example of actions performed during a particular task. The log entry 

on row 1 shows that source element 2.0.0 was selected by the participant and target element TC-

11 (row 2) was displayed at 12:52:03. The participant performed a keyword search for 

‘documentation’ seven seconds later and TC-14 was displayed. Ten seconds later, the participant 

confirmed TC-14 as a link to 2.0.0 (row 5). Logs are stored by the tool in comma-separated value 

format. Log analysis includes running automated scripts to parse and process actions of interest 

for further analysis. The possible downside of this approach is that the research team analyzing 

the logs may misinterpret participant intent. Log analysis, however, can provide key insights into 

participant behavior that would otherwise be difficult to obtain without affecting the outcome of 

the task. 

 

Figure 5.3 Sample log output from RETRO.NET. 

12:52:03 2.0.0 Selected
12:52:03    TC-11 Selected
12:52:10 LowLevelID Keyword search: documentation
12:52:10    TC-14 Selected
12:52:20    TC-14 Marked Link
12:52:28 1.0.4 Selected
12:53:04    TC-11 Selected
12:53:17 LowLevelID By Recommendation selected.
12:53:45    TC-11 Selected
12:53:52    TC-11 Marked Link
12:54:01 LowLevelID All links selected.
12:54:02    TC-2 Selected
12:54:08    TC-13 Selected
12:55:13    TC-13 Marked Not A Link
12:55:15    TC-8 Selected
12:55:16    TC-12 Selected
12:55:17    TC-19 Selected
12:55:19    TC-5 Selected
12:55:37    TC-5 Marked Link
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 Threats to Validity 
A possible threat to conclusion validity is whether the correct conclusion can be drawn 

from interpreting the logs of analyst actions. It is possible that a study participant’s unintentional 

actions could be misinterpreted by the researcher. The logging tool could possibly pose a threat to 

internal validity in that it might not accurately log analyst actions. Interpreting time between 

clicks as time spent focused on the link represents a possible threat to construct validity as 

participants may not actually be focused on the task in the time between clicks. A possible threat 

to external validity is the use of students in the study. According to the following studies, 

however, there were no significant differences between students and professionals on small tasks 

of judgment [54], and that the use of students is acceptable if students are appropriately trained 

and the data is used to establish a trend [55]. This threat is mitigated by training the study 

participants on how to perform tracing. 

 Results and Discussion 
Thirteen participant responses were collected: eight responses from one university and 

five responses from the other university. 

Table 5.1 summarizes the work of the study participants. It shows the accuracy of the 

candidate TMs presented to each participant, the accuracy of the final TM submitted by the 

participants, and the change in the TM accuracy. The accuracy is reported as recall, precision, and 

the F2-measure. For example, UserA was presented with a TM that had 7 true links out of 35 

candidate links (30.4% recall, 20% precision, and 27.6% F2). At the end of the task, UserA 

submitted a TM that contained 15 true links out of 28 total links (65.2% recall, 53.6% precision, 

and 62.5% F2), significantly improving the quality of the TM (difference of 34.8% recall, 33.6% 

precision, and 34.9% F2). The information in this table only tells us the beginning and the end of 

the user’s story. As with Figure 5.1, which showed the overall change in the TM accuracy for 

participants in the earlier study [13], Figure 5.4 graphs the data in Table 5.1. To better understand 

the “middle” of the user story for the 13 participants, the analysis proceeds as follows:  two user 

logs are examined in detail, all logs are analyzed and graphed for trends, and observations are 

made. 
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Table 5.1 Initial and Final TMs for each Participant 

     

  

 

Figure 5.4 Recall and precision performance of the 13 study participants. 

User

Begin 
true 
links

Begin 
total 
links

Begin 
Recall

Begin 
Precision

Begin 
F2

Final  
true 
links

Final 
total 
links

Final 
Recall

Final 
Precision

Final 
F2

Delta 
Recall

Delta 
Precision

Delta 
F2

UserA 7 35 30.4% 20.0% 27.6% 15 28 65.2% 53.6% 62.5% 34.8% 33.6% 34.9%
UserB 5 7 21.7% 71.4% 25.3% 15 27 65.2% 55.6% 63.0% 43.5% -15.9% 37.8%
UserC 13 26 56.5% 50.0% 55.1% 12 15 52.2% 80.0% 56.1% -4.3% 30.0% 1.0%
UserD 16 18 69.6% 88.9% 72.7% 12 33 52.2% 36.4% 48.0% -17.4% -52.5% -24.7%
UserE 21 42 91.3% 50.0% 78.4% 21 31 91.3% 67.7% 85.4% 0.0% 17.7% 7.0%
UserF 20 28 87.0% 71.4% 83.3% 14 15 60.9% 93.3% 65.4% -26.1% 21.9% -17.9%
UserG 19 29 82.6% 65.5% 78.5% 19 37 82.6% 51.4% 73.6% 0.0% -14.2% -4.9%
UserH 17 81 73.9% 21.0% 49.1% 18 35 78.3% 51.4% 70.9% 4.3% 30.4% 21.7%
UserI 6 7 26.1% 85.7% 30.3% 19 37 82.6% 51.4% 73.6% 56.5% -34.4% 43.3%
UserJ 17 20 73.9% 85.0% 75.9% 16 20 69.6% 80.0% 71.4% -4.3% -5.0% -4.5%
UserK 21 44 91.3% 47.7% 77.2% 20 40 87.0% 50.0% 75.8% -4.3% 2.3% -1.4%
UserL 20 42 87.0% 47.6% 74.6% 19 22 82.6% 86.4% 83.3% -4.3% 38.7% 8.7%
UserM 20 26 87.0% 76.9% 84.7% 20 24 87.0% 83.3% 86.2% 0.0% 6.4% 1.5%
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Analyst Logs 
Delving into the log of an analyst’s actions reveals a wealth of information about what 

possibly happened during the task. For example, did the participant read all of the source 

elements before beginning to mark links for any source elements?  How much time was spent 

searching for links not in the candidate TM?  The following summary illustrates what can be 

gleaned from individual logs by examining two sample user logs. UserM is a senior in Computer 

Science with some industry experience while UserF is a sophomore in Information Systems 

without any industry experience. Neither user had any prior tracing experience. 

UserM spent nearly four minutes on source element 1.9.5 early on in the task, then took 

about 30 seconds to skim through the remaining links before starting back at the top and marking 

links for about ten minutes. Then, about four minutes were spent reviewing the TM. The last 

thirteen minutes of the task were spent performing keyword searches, which resulted in one 

dropped true link being added back into the TM. 

UserF had difficulty with the first few source elements, spending six minutes on them 

before continuing on, then going back and spending another two minutes to mark them. From 

there, marking the rest of the links took about eight minutes. Then two minutes were spent 

reviewing links.  

From these two logs, a pattern of difficulty with certain elements early on in the task is 

seen, especially with source element 1.9.5. UserF also rejected more true links in the TM. 

Log Analysis 
The examples above suggest that looking at the logs side-by-side may reveal some 

common trends. Log analysis revealed that participants spent an average of 32.5 minutes on the 

task (min. 18 minutes, max. 48 minutes, std. dev. 9.4 minutes). Participants spent an average of 

5.6 minutes to find and make a decision on the first true link in the TM (min. 2 minutes, max. 10 

minutes, std. dev. 2.3 minutes). The discovery that participants took a significant amount of time 

to start marking links leads us to look further into the logs as to possible causes of such behavior. 

Log analysis also identified various strategies used by participants during the task, i.e., 

review recommended links most of the time; review all links most of the time; review 

recommended links first then review all links; review recommended links first then search for 

keywords; and alternate  between recommended links, keyword search, and all links. From log 
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analysis and the final TM metrics, it appears that participants starting with high recall TMs tend 

to end up with slightly lower recall but increased precision, and participants starting with low 

recall TMs tend to end up with higher recall but lower precision TMs. Almost all participants 

confirmed TMs with at least 65% recall and at least 50% precision, which was acceptable for 

recall, and excellent for precision based on a classification of results by Hayes et al. [24]. 

In the user logs, this study looked for factors that influence when a participant decides to 

search outside the recommended list for additional links (and whether these searches are fruitful). 

Results showed that certain links were dropped by most participants, pointing to the analysis of 

these links to identify factors that prevent participants from correctly identifying them. This 

analysis is planned for future studies which will provide insight into the design of future 

traceability tools as well as provide advice for assisting software engineers to write more easily 

traceable documents. 

Log Depiction 
With the above insights in mind, several ways to examine the user logs have been 

developed. Thirteen logs are depicted and trends observed. For example, thirteen participants 

exhibited one of four different behavior patterns over the length of the task:  some found links 

early, some found links later, some found links early but then began to make significant mistakes, 

and some found correct links and made mistakes throughout the entire task. 

Figures 5.5 through 5.8 depict the progress of the thirteen participants throughout the task 

using two sets of graphs. All participants start with an empty final TM; hence the starting 

accuracy is 0% recall and 0% precision and 0% F2-measure. Precision, recall, and F2-measure of 

the final TM changes as correct and incorrect links are confirmed by each participant. One set of 

graphs plots the change in precision vs. recall. A directional arrow (not drawn in the graphs) from 

the (red) circle to the last precision/recall point of the task would correspond to the graph shown 

in Figure 5.4. The other set of graphs plots the F2-measure of the final TM over elapsed task time. 

F2-measure increases as participants make correct decisions (either confirm a true candidate link 

or discover an omitted true link) and decreases with each incorrect decision (confirmation or 

inclusion of a false positive). A rejected true link is also an incorrect action, but it does not alter 

the F2 measure. Confirmed true links are marked as (green) circles, confirmed false positive links 

are marked as (red) Xs, and rejected true links are marked as (red) triangles. The graphs also 

contain a horizontal line signifying the F2-measure of the candidate TM. 
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Figure 5.5 Group of users finding links later. 

Figure 5.5 plots the decisions made by the six participants who started slowly, sometimes 

with a number of incorrect decisions, but after a certain point stopped making mistakes. The 

observation made from analyzing the two user logs in an earlier section is seen here: participants 

in this group have difficulty identifying correct links until after they have spent at least 20 

minutes on the task. Log analysis shows that half of the participants in this group were reviewing 

all links during the earlier part of the task, which could contribute to the delay in reaching the true 

links in the rest of the candidate TM. 

Figure 5.6 shows the progress of a group of four participants who were able to locate 

correct links earlier in the task and made very few mistakes throughout the task. Log analysis 
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reveals that while most of these participants still had a ‘delay’ in marking links, they were able to 

get past the hurdle quickly and then were able to go through links at a faster pace (compared to 

the participants shown in Figure 5.5). They made a few occasional mistakes: two participants 

made some mistakes at the very end, while the other two made a few individual mistakes in the 

first half of the task. 

 
Figure 5.6 Group of users finding links earlier. 

Figure 5.7 presents the work of two participants who showed a period of “tiredness” 

during which they made many incorrect decisions in a row: at the very end of the task for one 

participant, in the middle of the task for the other participant. Log analysis reveals that one 
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participant, UserB, had finished going through the recommended links in the TM and was adding 

additional links outside of the recommended list. About 40% of the false links added by the other 

participant came from links to a single source element, 1.9.5. The other participant, UserK, 

actually showed behavior similar to that of UserM and UserJ (Figure 5.6), but with a more 

pronounced bout of final mistakes.  

Figure 5.8 shows the work of UserI who evenly interspersed correct decisions with 

occasional mistakes throughout the task. The recommended TM for this participant was very 

small, which resulted in the participant searching outside the recommended TM almost the whole 

time. The graphs capture the change in the nature of UserI’s activity after UserI “ran out” of 

candidate links to confirm. 

 
Figure 5.7 Participants making mistakes at certain points in the task. 
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Figure 5.8 Participant making mistakes evenly throughout. 

Figures 5.5 through 5.8 show that all participants had an “upward hill” climb during 

which they were able to find correct links. Log analysis reveals that the last 18 or so links from 

the bottom of the recommended list were marked more quickly due to presumably a much clearer 

link between the source element and the target element. The variability of the “climb” seems to 

be in how quickly the participant started to climb, and whether or not the participant made 

mistakes after the steep uphill climb (the two participants shown in Figure 5.7). Further analysis 

of the individual links involved needs to be undertaken to see if the links that contributed to the 

initial delay in making good decisions are the same ones that contributed to the “drop off” of 

good work in some user sessions. 

Figure 5.9 presents an additional depiction of the user log based on the effort spent on 

each true link. An automated script parses the log for actions related to true links and sums the 

time spent on each link. Each row of the table represents one of the 23 true links in the TM. Link 

L8, for example, was viewed by eight out of the 13 participants (black squares indicate that the 

participant did not even view the link). UserE spent less than a minute on the true link before 

confirming it as a true link. On the other hand, UserF spent more than one minute on the same 

link and ended up rejecting the true link. UserG initially rejected the true link but changed their 

decision right away, which was most probably due to selecting the wrong option in the tool. 

Overall, around 25% of the decisions required the participant to spend at least 30 seconds or 

more, of which about 75% of the decisions were correct. There were a number of participants 

who wavered in their decision on certain links in the TM, but there was no particular link that 

caused this behavior (this can be seen from the + and – links in the table). In most cases, 
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participants spent additional time on these source elements, trying to decide whether the element 

pair was a link or not, perhaps due to some ambiguity in the description of the elements. Note that 

this reinforces a similar observation made by Egyed et al. in a manual tracing experiment that 

trace quality doesn’t improve with increased effort spent [16]. Focusing on these “ambiguous” 

links will allow us to address such issues in future traceability research. 

 
Figure 5.9 Participant effort spent on each true link. 

 Observations 
Based on the logs and the depiction of the logs, a number of observations can be made: 

The quality of the final TM is influenced by the quality of the initial TM. In addition, analysts 

given low quality initial TMs tend to make the best decisions as they develop a final TM, 

validating the observations made in the Cuddeback et al. study [13]. Certain links are very 

troublesome for the analysts while others tend to be very intuitive and easy to identify. When an 

analyst spends very little time on a link, they tend to make the correct decision. On difficult links, 

where the analyst struggles to make a decision, they frequently commit to the incorrect decision. 

Link\User A B C D E F G H I J K L M
L1 - ! + ! ! * * !   !      Dropped                                                     
L2 ! *
L3 * ! ! * * ! !   +     Dropped then added
L4 !
L5 ! +    -     Added then dropped   
L6 * !
L7 ! * ! ! ! *  Viewed but no decision                    
L8 ! +
L9  Did not view
L10 *
L11 *  Viewed < 1 minute
L12
L13  Viewed > 1 minute
L14 * +
L15 *
L16
L17 * * * + !
L18 * *
L19 ! ! - +
L20 -+ *
L21 +
L22 * ! *
L23 *
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One key observation discovered through log depictions was that all analysts eventually settle into 

a pattern where they make multiple correct decisions in a row. In several of the cases, this 

behavior lasts a short time, leading to a second “incorrect link” trend. This “incorrect streak” 

often occurred when their final TM recall approached the candidate TM recall. This seems to 

occur when analysts did not search outside their candidate TM to locate missing links; instead 

they focused on rejecting incorrect links. In most cases these decisions were confirming links 

rather than rejecting incorrect links or searching for a missing link. This adds additional support 

to the notion that validating a link is a simpler task than discovering a new link [24]. 

An additional key observation was that analysts tend to cause more errors after the nature 

of the task changes. This can be seen when an analyst was presented with an initial TM with low 

recall and high precision: such candidate TMs are small. In this study, only two participants, 

UserB and UserI, were assigned such TMs. Both participants quickly ran out of candidate links, 

appeared to conclude that more links needed to be discovered and, thus, were forced to search for 

omitted links. Both participants confirmed many false links past the point where the nature of 

their task changed. While anecdotal at this point, if this is confirmed in later studies, this 

information can be used as an essential requirement for future tracing tools: the tool should not 

produce results with too few links for the analyst to validate, because the switch from link 

confirmation to link discovery causes errors of judgment to be introduced. 

A final key observation is that, for the most part, analysts were able to use RETRO.NET 

effectively with minimal training and guidance. The analysts tended to use the tool as intended, 

explored a range of functionality available to them in the tool, and were able to successfully 

perform the tracing task. 

 This work represents an initial study of analyst actions through the logs of their actions. 

Analyst actions are visualized to study how they work with candidate TMs to produce the final 

TM. These visualizations provide insight into difficulties that analysts encounter when working 

with TMs and points to possible improvements to how they can produce better final TMs.    

 

 

 

Copyright © Wei-Keat Kong 2012  



52 

Chapter 6 - Studying Analyst Tracing Behavior5 

 

This chapter provides results from a study of how analysts work with TMs, through 

analyzing trace logs and visualizing their progress towards the final TM. 

 Traceability Process Improvement 
To move toward improvement of tracing as a practice, it is necessary to consider the 

tracing "process improvement feedback loop." Do trends indicating a need for process change 

exist and can they be observed? Automated tracing methods do not retrieve perfect TMs [13]. 

Analysts are not perfect either, and can often make a high quality TM worse [13, 18]. To improve 

the practice of traceability, however, analysts need to properly validate TMs and improve their 

accuracy. For analysts to do so, this work "drills down" and studies exactly how analysts work 

with TMs.  

The traceability process improvement goal for this work is to develop procedures and 

software that facilitate accurate assisted tracing6 [17]. To that end, there is a need to identify 

things that analysts do well and things with which they struggle. Based on this knowledge, 

improvements can be made (better tracing methods, better user interfaces, better procedures that 

capitalize on analyst strengths) or situations that challenge analysts can be handled or avoided. 

While recall and precision address the accuracy of the final tracing product, new 

measures are needed to capture information about analyst “behavior.” These measures will enable 

researchers to properly understand how analysts perform tracing tasks and to evaluate analyst 

work quality. This dissertation posits that recall may not always be preferred over precision when 

evaluating analyst quality. Recall only indicates how many true links an analyst added to the final 

TM and not how many they did not find or incorrectly rejected. Analysts’ performance should 

reflect all their decisions on true and false links. An analyst that rarely rejects a true link, rarely 

accepts a false link, and spends less effort on false links produces a high quality final TM. 

                                                 
5 © 2012 Wei-Keat Kong. Revision of the work published in “Process Improvement for 

Traceability: A Study of Human Fallibility,” by W.-K. Kong, J. H. Hayes, A. Dekhtyar, and O. 

Dekhtyar. University of Kentucky Technical Report TR 520-12, March 5, 2012. 
6 Assisted tracing refers to an analyst working with the output of an automated tracing tool. 
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Analysts also need to be put in the situation where they are likely to observe all the true links in 

the candidate TM. 

This dissertation introduces three new measures that target the study of the tracing 

process in addition to the accuracy of the final TM: potential recall, sensitivity, and effort 

distribution. These measures are studied in a multi-site and multi-dataset study of assisted 

requirements tracing. The study focuses on when and why analysts make correct and incorrect 

decisions by logging analyst actions during a tracing task. This work also introduces a matrix 

visualization that provides an at-a-glance view of analyst decisions on true links. To support trend 

analysis, analyst logs are visualized using a lattice chart that tracks the state of the TM and 

analyst measures over time. Participant tracing strategies are identified based on log analysis and 

survey data. 

 Motivation 
The assisted tracing process is best described as follows: an analyst uses an automated 

method to generate a candidate TM, reviews it, makes any desired changes, and “certifies” the 

final TM. Human analysts are not perfect and cannot possibly review every link in the candidate 

TM without investing significant time and effort. The analyst has to decide how to best spend 

their time in order to produce a high quality final TM. The quality of the final TM is measured 

against an answer set TM using recall and precision. The quality of analyst decision making on 

true links is measured using sensitivity and the following measures. 

Since the analyst is not expected to examine every link, some true links may be among 

the candidate links not seen by the analyst. Thus, when it comes to validating true links, analyst 

accuracy is limited by the percentage of the true links seen. This percentage, dubbed potential 

recall, represents the upper bound on recall. It is defined as follows: 

Potential recall = TLs / TLt , (14) 

where TLs is the number of true links seen (accepted, rejected, or left undecided), and TLt is the 

total number of true links in the collection.  

Additionally, there is a need to measure analyst effort and how it is spent throughout the 

tracing process. In order for analysts to make the best use of their time, the effort spent reviewing 

false links should be balanced by the effort spent reviewing true links. The following measure can 
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be used to indicate how analysts spend their time during a tracing task in terms of the number of 

links seen: 

 Effort distribution = FLs / TLs , (15) 

where FLs is the number of false links seen and the TLs is the number of true links seen. An 

analyst that sees an equal number of true links and false links has an effort distribution of one 

(1). This dissertation posits that analysts who view many false links are more likely to accept 

some of those links into the final TM, decreasing precision. Note, however, that an analyst may 

not go through the trouble of rejecting false links if they know that only accepted links are 

included in the final TM, which could result in higher effort distribution if they are skimming 

through links looking for specific keywords. 

Each analyst, without specific traceability training or guidance, approaches tracing in 

their own way. Often, an analyst uses some sort of strategy, either consciously or unconsciously, 

to complete the tracing task. Capturing these strategies (without detracting from the actual tracing 

task) provides insight as to which strategies produce the best results in terms of potential recall, 

sensitivity, and effort distribution. These strategies could also indicate the threshold that an 

analyst applies to what they consider to be a true link, which influences the precision of the final 

TM. 

In order to design reliable and accurate assisted tracing processes, this study investigates 

what factors contribute to analyst performance in tracing tasks. In prior studies [13, 17, 18], the 

accuracy of the starting candidate TM varied for the tracing task and results showed that the 

accuracy of the starting candidate TM strongly influenced the accuracy of the final TM. 

Meanwhile, almost no other factors related to individual analyst qualities, their environment, and 

their approach to tracing had any significant influence. 

The focus of this work is on the link validation task and to “drill down” into analyst 

actions using logs of their tracing activity. By having participants work with the same starting 

candidate TM, any variability in responses can be attributable to other factors. Three categories of 

factors that can influence analyst performance are identified as follows: (i) personal 

characteristics, (ii) environmental characteristics, and (iii) tracing behavior. Although these sets 

of characteristics are measured in different ways, they are not independent. In particular, the 
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tracing behavior of analysts can be motivated by both their personal characteristics and 

environmental factors. 

Among the personal characteristics of the participants, this study looks at their grade 

level, software engineering experience, tracing experience, and confidence in tracing. 

Environmental characteristics are essentially the study dataset and the location/group. Logs and 

post-study surveys allow the extraction of information about the tracing behavior of the 

participants. This study considers four tracing behaviors: time to complete the tracing task, link 

selection strategy, use of feedback, and average number of links viewed per high-level element. 

These motivations lead to the following questions: 

RQ1:  How accurate are analysts at creating the final TM? 

RQ2:  Do better-performing analysts exhibit certain trends during the tracing task? 

RQ3:  How do tracing strategies affect the accuracy of the analyst and the final TM? 

RQ4:  What are statistically significant factors that affect analyst performance? 

 Study Design 
This section describes instrumentation, datasets, participants, study  design, and data 

collection for the study. 

Instrumentation 
To address the research questions in the previous section, an experimental tool called 

SmartTracer was created to log participant actions while performing a tracing task. SmartTracer 

presents a set of high-level documents (HDs) and a set of low-level documents (LDs) to the 

participant, allowing them to make decisions on each retrieved pair of documents. SmartTracer 

also allows the participant to make a decision on whether an HD is satisfied by the linked LDs. 

The simple user interface is designed to allow the participant to concentrate on the task of making 

decisions on trace links. Figure 6.1 shows a screenshot of SmartTracer. 
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Figure 6.1 Screenshot of SmartTracer. 

A “Recalculate” button in the tool allows the participant to use positive feedback they’ve 

already given to reorder the LDs. The Rocchio feedback algorithm [56] with parameters α=1, 

β=1, γ=0 is used in SmartTracer, which means that the full term weights of links provided 

through positive feedback (β=1) are used in the feedback calculation. Negative feedback (γ=0) is 

not used as studies have shown that standard relevance feedback techniques perform poorly with 

negative feedback [57, 58]. After the LDs are reordered, the next undecided LD is shown to the 

participant. The participant can choose not to use the “Recalculate” button and proceed to the 

next document in the list by clicking on the “Next” button or by directly clicking on another LD 

in the list. SmartTracer records a number of actions that can be performed by the participant: 

select an HD or LD, decide on an HD or LD, and press the recalculate button. SmartTracer also 

records a timestamp for each individual action. 

Datasets 
Two datasets are used in the study. The first is a set of 42 functional requirements (FRs) 

and 89 software requirements (SRs) for open source web archive file manipulation tools called 

WARC [59]. Eighteen (18) FRs that have two or more relevant SRs and all 89 of the SRs are used 

for the study. The excluded FRs have either one relevant SR that is phrased roughly the same as 
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the FR or do not have any relevant SRs. The candidate TM contains 1535 links with 100% recall 

and 3.6% precision. The answer set contains 55 links. 

The second dataset consists of 123 operational requirements (ORs) and 503 system 

specifications (SSs) for an Unmanned Aerial Vehicle Tactical Control System (UAVTCS) [60]. 

A subset of 20 ORs and 264 SSs is used for the study. The candidate TM contains 4621 links 

with 100% recall and 1.8% precision. The answer set contains 81 links. Note that candidate TMs 

are generated using VSM with term frequency and inverse document frequency weighting. The 

original TMs included in both datasets were revised by multiple graduate and undergraduate 

students until full consensus was reached on each link in the answer set. The original authors of 

the artifacts were not available to provide feedback on the revisions. 

Participants 
Participants are mostly junior- and senior-level undergraduate and graduate students in 

computer science from the University of Kentucky (UK) and graduate students in computer 

science from DePaul University and Cal Poly. The graduate students at UK and DePaul are 

mostly part-time graduate students that work full time in industry. Most graduate students at Cal 

Poly are full-time students with prior experience in industry through part-time or full-time 

employment or summer internships. The study was conducted during regular class time in a lab 

for three groups at UK. Participants at DePaul and Cal Poly were given instructions in a group 

setting but performed the tracing task on their own time. 

Study design 
Table 6.1 presents the distribution of participants and datasets for the study. Participants 

were given the same starting candidate TMs. Participants were blocked on grade level (graduate 

and undergraduate) and dataset (WARC and UAVTCS) to reduce the effects of those factors on 

the dependent variables in Table 6.2. A fourth university was to participate in the study (using the 

UAVTCS dataset) but was unable to recruit enough student participants, resulting in the 

unbalanced study groups. Table 6.3 presents independent variables used in the study. 
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Table 6.1 Participant Information 

Location # of participants Dataset 

University Y Group A (grad) 6 WARC 

University X Group B (und) 10 WARC 

University Z Group E (grad) 8 WARC 

University X Group C (und) 15 UAVTCS 

University X Group D (grad) 8 UAVTCS 

Table 6.2 Dependent Variables 

Variable Scale 

Potential recall Ratio 

Sensitivity Ratio 

Precision Ratio 

Effort distribution Ratio 

Table 6.3 Independent Variables 

Variable Abbreviation Scale 

Grade Level Grade Nominal 

Software Engineering Experience SEExp Ordinal 

Tracing Experience TRExp Ordinal 

Confidence in tracing Confidence Ordinal 

Dataset Dataset Nominal 

Location Location Nominal 

Time to perform tracing task Time Ratio 

Link Strategy LinkStrategy Nominal 

Level of relevance feedback Feedback Ordinal 

Average number of links viewed LinksViewed Ratio 

 

Data collection 
Prior to the study, participants were given a pre-study survey with questions regarding 

their software engineering background, prior software engineering classes taken, their tracing 

experience, as well as an assessment of their confidence in performing the tracing task. Each 

participant was given a user ID to identify them in the study. Each participant was given a short 
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training session on how to use the tracing tool. The overall goal of the study was explained and 

instructions were given for them to be mindful of how they perform the task. 

After completing the training, participants were given 45 to 60 minutes to complete the 

tracing task. Upon completing the tracing task, participants submitted the final TM and trace logs. 

The logs track the time spent on each action and record the number of feedback recalculations per 

HD. 

A post-study survey was given after completing the task, asking each participant to 

record: their overall tracing strategy, when they decided to stop looking for additional links, 

feedback on what additional tool features might be useful, and their confidence in performing 

tracing after performing the task. 

Data collection for RQ1 and RQ2: Potential recall, sensitivity, recall, precision, effort 

distribution, and final TM size are calculated at each participant’s decision point. Snapshots of 

participant decisions are captured at the nearest five-minute mark with the time of the last 

decision rounded down to the nearest five-minute mark to plot the charts in Figures 6.3 and 6.4. 

Data collection for RQ3: Trace logs and post-study surveys are analyzed to identify 

strategies used by participants and compared with data collected for RQ1. 

Data collection for RQ4: Pre-study surveys are reviewed and coded into the scales in 

Table 6.3. The level of relevance feedback is coded into three levels based on the number of 

times participants used the “Recalculate” button. 

 Threats to Validity 
Threats to conclusion validity are issues that affect the credibility of the conclusions 

reached from the results. The study environment varied due to the multiple locations and 

availability of the participants to perform the study at the same time. A possible Hawthorne effect 

was introduced when participants were told that their actions were being recorded and that they 

were to be mindful of how they performed the tracing task. 

Threats to internal validity relate to whether the trends seen are indeed causal. The 

somewhat limited amount of time given to participants to complete the tracing task (especially 

studies undertaken during class time) could influence results. This was mitigated by having two 

of the participant groups perform the study on their own time. 
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Threats to construct validity involve questions of whether the study is designed to 

correctly measure what the study set out to measure. A possible bias would be the use of a simple 

tracing tool that is not representative of full-featured tracing tools in use today. This study 

implements a basic tool with enough functionality to focus on a single aspect of the tracing task, 

reducing nuisance factors that may arise from tool usage. A possible selection threat exists due to 

the selection of HDs used in both datasets in order to influence the performance of the relevance 

feedback mechanism. 

Threats to external validity deal with the generalization of results to other domains. 

Threats of this nature are mitigated through the use of two datasets from very different domains; a 

mission-critical system and a web content archival tool. Use of student participants does not 

significantly affect results as found in previous studies [18], though this study includes a number 

of participants who have industry experience. 

 Results 
This section provides answers to the research questions formulated in the previous 

section. In group C, three participants were dropped from the study due to partial loss of results 

e.g., results were submitted without log files. 

Results for Research Question 1 
Table 6.4 shows the average potential recall, average sensitivity, average recall, average 

precision, and average effort distribution by dataset and grade level. Each participant, on average, 

saw 79% of all true links in the candidate TM but only accepted 77% of them, resulting in the 

average final TM having 61% recall. This is a significant 18 percentage point drop due to 

participants not reviewing some of the true links and rejecting some of the true links. The final 

TMs had an average 54% precision, meaning that 46% of the links in the TM were false links 

incorrectly accepted by the participants. Participants viewed, on average, close to five times as 

many false links as true links. 

A significant difference in sensitivity exists between WARC and UAVTCS datasets 

(two-sample t-test, alpha=0.05, p=0.042), while the differences in other measures (recall, 

potential recall, precision, and effort distribution) are not statistically significant. A statistically 

significant difference in sensitivity and recall exists between grade levels (A, D, E vs. B, C), with 

undergraduates having higher averages (two-sample t-test, alpha=0.05, p=0.02 for sensitivity and 

p=0.004 for recall). Between datasets, grade level had no statistically significant effect on any of 
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the dependent variables for UAVTCS. Grade level had a statistically significant effect on 

sensitivity, recall, and precision on WARC: graduates had higher average precision while 

undergraduates had higher average recall, which indicates that undergraduates tended to accept 

more links than graduates. For the UAVTCS dataset, however, graduate and undergraduate 

students performed similarly without any significant difference in any of the measures. 

Table 6.4 Statistics for each Participant Group 

 
To “drill down” further into participant results, Figure 6.2 is a matrix visualization of the 

decisions that participants made on true links for both datasets (which influences potential recall, 

sensitivity, and recall). Each row represents a participant and each column represents a true link 

in the candidate TM (20x81 for UAVTCS, 24x51 for WARC). True links that were never seen 

are marked in black and true links that were seen but rejected are marked in gray. The remaining 

‘white space’ represents true links that were correctly accepted into the final TM. 

Pot. Recall Sensitivity Recall Precision Eff. Dist.
Overall 0.79 0.77 0.61 0.54 4.8
Dataset
WARC 0.81 0.73 0.60 0.56 4.4
   Undergrad. (B) 0.83 0.78 0.65 0.46 5.8
   Grad. (A, E) 0.79 0.70 0.56 0.63 3.4
UAVTCS 0.78 0.82 0.63 0.51 5.3
   Undergrad. (C) 0.82 0.85 0.70 0.52 2.8
   Graduate. (D) 0.71 0.78 0.53 0.49 9.0
Grade Level
Undergrad. 0.83 0.82 0.68 0.50 4.2
   WARC (B) 0.83 0.78 0.65 0.46 5.8
   UAVTCS (C) 0.82 0.85 0.70 0.52 2.8
Grad. 0.76 0.73 0.55 0.58 5.4
   WARC (A, E) 0.79 0.70 0.56 0.63 3.4
   UAVTCS (D) 0.71 0.78 0.53 0.49 9.0
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Figure 6.2 Matrix visualization of participant decisions on true links. 

For the UAVTCS dataset, twelve links were never seen by more than half of the 

participants, of which three links were never seen by all participants, and one link was only seen 

by one participant (as indicated by black vertical line segments). Most of these links had low 

weights and the HD in each of these links was also linked to a number of other LDs that fully 

satisfied each respective HD. One participant did not see more than 90% of the true links and 

another missed about 45% of the true links (both from Group D). Both participants spent most of 

their time on a few HDs and responded in the post-study survey that they did not feel sufficiently 

trained on the task. Two other participants each did not see about 25% of the true links but the 

missing links were spread out over the dataset (as indicated by black horizontal line segments). 

The logs show that both participants viewed an average of 6-7 LDs per HD, missing any 

additional links further down the list. These twelve links and four participants together account 

for about 18% out of the 22% of lost potential recall. 

For the WARC dataset, all true links were seen by at least one participant, but six of 

those links were never seen by more than half of the participants (also due to the same reason as 

the twelve links in UAVTCS, although some were somewhat related). Three participants did not 

see more than half of the true links and two participants did not see about 35% of the true links 

(also due to viewing anywhere from 4-8 LDs per HD). Five participants rejected at least one-third 

of the true links that they saw, and fourteen true links were rejected by at least 25% of the 
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participants. Most of these rejections were because the LDs in each link were only somewhat 

relevant to their respective HDs, causing some participants to waver in their decision. 

Results for Research Question 2 
Figure 6.3 shows participant performance on the WARC dataset by group on a lattice 

chart, tracking potential recall, distribution and TM size (on secondary vertical axis) on the lower 

cell at five-minute intervals. The number of links in the answer set is represented as a line 

intersecting each bar representing TM size at each time interval. Participant results are sorted by 

increasing TM size. 

For example, participant B4 had about 5% recall and 65% precision five minutes into the 

tracing task and correctly identified all the true links seen up to that point. Thirty minutes into the 

task, recall went up to about 30% while precision dropped to about 30% as well. At about 50 

minutes (at the end of the task), recall went up to 60%, precision increased to about 40%, but 

potential recall was about 90%, i.e., the participant missed about 30% of the true links they saw 

(66% sensitivity). Effort distribution steadily increased but leveled off half way through the 

tracing task, coinciding with the increased recall and decreased sensitivity (seeing more true links 

but rejecting some of them as well). 

Similarly, Figure 6.4 shows participant performance on the UAVTCS dataset. Participant 

D8 achieved about 5% recall and 60% precision five minutes into the task with 100% sensitivity. 

After 30 minutes, precision and sensitivity plunged to about 20% and 30%, respectively. 

Additional log analysis revealed that the participant spent about ten minutes on the first two HDs 

looking through many LDs, as indicated by the spike in effort distribution. The participant then 

started skimming through the remaining HDs, as indicated by the plunge in sensitivity, adding 

false links into the final TM, as indicated by the plunge in precision, before spending another 20 

minutes on the first two HDs, as indicated by the stagnant recall. The second half of the time saw 

a sharp increase in recall as the participant went through the remaining HDs much faster, 

accepting many of the true links seen earlier but continuing to accept many false links, as 

indicated by increasing recall and sensitivity while lowering precision. The participant ended the 

task with a final TM containing 246 links with about 80% recall, 94% sensitivity, and 30% 

precision. A number of participants showed similar trends where significant differences between 

potential recall and recall early in the tracing task (B1, E2, D4, D8) can be attributed to 

participant actions of reading through each HD first before starting to mark links. This can be 
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seen mostly when sensitivity starts low or drops suddenly before increasing steadily as the task 

progresses. 

WARC participants who performed well (A4, B3, E2) averaged about 75% recall, 59% 

precision, and 83% sensitivity while UAVTCS participants who performed well (D1, C1, C2) 

also averaged about 76% recall, 58% precision, and 84% sensitivity. These participants increased 

recall at a consistent pace, while keeping other measures stable. 

In Figure 6.4, participants D2 and D6 did not complete the tracing task as they spent most 

of their time on the first few HDs, as indicated by the rapid increase in effort distribution. 

Participant D2 changed strategies about 35 minutes into the task (effort distribution peaked and 

started coming down) and managed to achieve about 50% recall at the end of the task. Participant 

D6, however, spent almost all of their time reviewing false links. Both participants had low 

precision from adding many false links into the final TM. 
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Results for Research Question 3 
SmartTracer directs its users to consider candidate links by HD, consistent with other 

tracing software used in similar studies [19, 24, 61]. Analysis of participant logs points to a 

number of different strategies used to select links. These strategies are classified based on a single 

researcher’s perspective and are briefly outlined below. 

First good link. Participants looked through the list of candidate links associated with a single 

HD only until they discovered the first good link (one that they think satisfies the HD). They 

switched to the next HD immediately after that. 

Accept-focused. Participants tended to only submit accept decisions for candidate links, not 

bothering to reject links in SmartTracer. These participants understood well that only explicitly 

accepted links will be put in the final TM, so not accepting a link is essentially equivalent to 

rejecting it. 

Preview. Participants previewed their task by reading through the list of HDs and some LDs 

before starting to make any decisions on links. 

Iterative. Participants revisited most of the HDs more than once to review or change their 

decisions. 

Some participants used multiple strategies. For some, a distinct strategy could not be 

established (Unknown). This study also looked at whether participants used feedback 

(“Recalculate” button) during their work. Participants were divided into three categories based on 

the average number of links per HD they considered: less than 10, 10 to 20, and more than 20. 

Table 6.5 presents the results of the study broken down by participant strategy. For 

example, two participants using the “First good link” strategy achieved, on average, 40% 

potential recall, 22% recall, 81% precision, and 1.9 effort distribution. This strategy led to fast 

task completion (average 15 minutes) but at the cost of not observing a significant number of true 

links. On the other hand, participants who used multiple strategies were able to achieve high 

potential recall (87% on average) with moderate (4.4. on average) effort distribution. 

A significant difference in potential recall and recall exists between those that used 

feedback and those who didn’t, but most of the difference can be attributed to the two participants 

who used the “first good link” strategy and the participant who only observed two HDs (neither 
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used feedback.) When comparing participants by the average number of links viewed, the “10-

20” strategy was most common and achieved high potential recall and moderate effort 

distribution. 

Table 6.5 Results From Tracing Strategies 

Strategy Pot. Recall Recall Precision Eff. Dist. 
# of  

participants 

Time 

Spent 

Link Selection  

  First good link 40% 22% 81% 1.9 2 15 

  Accept-focused 79% 65% 64% 2.3 4 30 

  Preview 81% 47% 67% 3.4 2 40 

  Iterative 85% 67% 53% 2.9 4 34 

  Multiple 87% 68% 60% 4.4 5 43 

  Unknown 80% 62% 49% 5.9 27 44 

Feedback  

  Used feedback 84% 66% 53% 4.3 31 43 

  No feedback 68% 47% 56% 5.9 13 33 

Links Viewed  

  Under 10 67% 46% 72% 1.8 11 28 

  10-20 87% 67% 51% 3.9 26 42 

  20+ 72% 60% 38% 12.6 7 54 

 

Results for Research Question 4 
As reported in the results for RQ1, differences in analyst performance based on 

environmental factors are observed: the combination of the dataset they were working with and, 

for WARC, their specific group. Among the personal characteristics of participants, grade level 

had statistically significant effect on participant performance. Additionally, for the UAVTCS 

dataset, tracing experience, when controlled for software engineering experience and post-study 

tracing confidence, had a significantly negative effect on sensitivity. 

Statistical analysis of precision, time spent tracing, and effort distribution revealed a 

significant relationship between those three measures. Multiple regression showed that for the full 

dataset, time to trace and effort distribution jointly explain 41.6% of precision (with r2
adj = 38.7), 
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which is statistically significant. A significant negative correlation with precision exists between 

both time to trace (-0.52) and effort distribution (-0.57). 

Looking at individual datasets, however, provided some additional insight. For the 

WARC dataset, multiple regression showed effort distribution to be significant for precision (r2 = 

36.7, r2
adj = 30.6) when controlling for time. At the same time, when controlling for effort 

distribution, time spent tracing is not a significant influence on precision. For UAVTCS, the 

situation is reversed. Controlling for time, multiple regression showed effort distribution to be not 

significant for precision, while controlling for effort distribution, time spent tracing is a 

significant influence. A similar discrepancy between graduates and undergraduates exists as 

well. For graduates, multiple regression showed effort distribution to influence precision 

significantly when controlling for time (r2 = 58.1, r2
adj = 52.9), while time is not a significant 

influence on precision. For undergraduates, the opposite holds. 

To summarize, for the WARC dataset, the increase in the number of observed links and 

thus the decrease in precision primarily came from participants who viewed more false candidate 

links, but it was not affected by how long the participants worked on the tracing task. On the 

other hand, for the UAVTCS dataset, increase in the number of links viewed and decrease in 

precision primarily came from participants electing to spend more time viewing links, but not 

necessarily viewing more false candidate links percentage-wise. Similarly, graduates decreased 

their precision whenever they wound up viewing more false candidate links, but not when they 

worked longer. Undergraduates decreased their precision with time spent tracing, but not with 

how many more false candidate links they saw. 

 Observations 
From the results of the previous research questions, results showed that links are more 

likely to be missed when there are multiple LDs for an HD and when some of those LDs fully 

satisfy the HD. This possibly causes participants to decide at some point that they have enough 

LDs to mark the HD “satisfied.” This is especially characteristic of those who never investigate 

links that are far down the ranked candidate link list. 

Without proper training and direction, some analysts may spend too much time on parts 

of the TM where they are more likely to add false links to the TM, decreasing precision. 

Participants varied in how selective they are in determining what constitutes a link, possibly 

because they did not really know how the TM was to be used. 
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From our observation of the results, participant decisions fall into three categories: 

obvious true links, obvious false links, and troublesome gray links, i.e., links that seem to cause 

significant amount of deliberation for the analysts. The issue of gray links is also a concern for 

researchers when building answer sets (Does the answer set include gray links or not?). These 

gray links, nevertheless, represent areas of concern from the viewpoint of the analyst, and should 

be investigated further. With knowledge of how the final TM is going to be used, analysts would 

then reject or accept all gray links to trigger the appropriate successor activities to resolve those 

concerns. Another consideration would be to have a third decision option that separates these 

links from the “Yes it’s a link” and “No it’s not a link” decisions. This way, the accuracy of the 

analyst at making decisions on links that they think are obvious versus links they think are 

“suspect” can be measured. 

One of the things that can be done about the analyst other than “embrace” them is to 

“change” them [17]. When TM usage is defined, analysts can be “trained” to produce final TMs 

that fit the desired final TM characteristic based partially on the final TM size. A final TM size 

that is close to the true TM size will have nearly equal precision and recall. Given an estimate of 

the true TM size (based on historical data or a starting estimate), analysts are able to be more 

aware of their selectiveness when adding links into the final TM, adjusting the thresholds they 

apply to links as they proceed through the tracing task and improving their precision. Learning 

and applying tracing strategies to tracing tasks is another way to “change” the analyst. Once 

studies are undertaken to determine how tracing strategies affect results, analysts will be able to 

apply appropriate strategies for the desired tracing task outcomes. 

The research contributions of this work are the introduction of analyst-specific measures, 

visualization of analyst decisions on true links, and the identification of analyst tracing strategies 

through studying the logs of analyst actions. These measures provide a more accurate description 

of analyst actions and the visualization of their decisions provides an at-a-glance view of links 

that are problematic to analysts. Tracing strategies classified from the analyst logs provide insight 

to how analysts approach the task of validating a candidate TM. 
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Chapter 7 - Conclusions and Future Work 

 

Traceability links recovered after-the-fact from existing software artifacts continue to 

present challenges to analysts working with TMs. Although much has been done in the study of 

methods to improve the quality of recovered traceability links, the study of the analyst has only 

just begun. Even though the analyst introduces subjectivity into the traceability process, it is not 

possible to leave the analyst “out of the loop.” Analysts need to have confidence in traceability 

tools and in themselves in order to effectively perform tracing tasks. Although studies of new 

automated traceability methods will still continue, this work emphasizes the greater need to 

understand how analysts work with TMs and how to help them be more effective in tracing tasks. 

The following represent the contributions of this dissertation toward the goal of 

improving automated traceability techniques and studying how analysts work with TMs: 

1. A new proximity-based tracing technique called PVSM was developed, considering the 

relevance of documents based on distance between terms in addition to the cosine 

similarity weight. Results showed that PVSM performed better than the baseline VSM on 

one dataset using the 21-point interpolated precision recall graph and slightly better on 

two datasets using MAP. 

2. MAP and the 21-point interpolated precision recall graph were introduced and shown to 

be effective in evaluating the performance of techniques with statistical rigor in terms of 

internal quality and overall quality. 

3. Analyst decisions during a tracing task were tracked and saved in the form of trace 

activity logs, which were then visualized to show how analysts work with TMs and 

analyzed to show how they spent their time during the tracing task. 

4. The measures of potential recall, sensitivity, and effort distribution were introduced to 

evaluate analyst performance. Logs of analyst actions were visualized to show where 

they make correct and incorrect decisions on true links, and investigated to determine the 

cause for true links that were never seen and true links that were rejected. 

5. Analyst tracing strategies were examined from trace logs and analyzed to determine how 

they affect tracing results. 

A number of conclusions can be reached based on the results of this dissertation. The 

more time analysts spend on links, the more likely they are to make an incorrect decision. The 
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more false links that analysts see, the more likely they are to add those links into the final TM. 

This was seen anecdotally in the initial study of the analyst when participants ran out of links and 

started searching for additional links, adding many false links into the final TM. In the second 

study where participants were only tasked with validating links, a significant association with 

precision was found between time spent tracing and effort distribution. This suggests that 

participants add more false links into the final TM when they either spend more time on the 

tracing task or view more false links. Future work in this area will investigate ways to reduce the 

number of false links that analysts view while improving the chances of observing as many true 

links as possible. In addition, future work will investigate why true links are rejected by analysts 

and identify factors that prevent analysts from correctly identifying these links. 

Analysts that employ multiple tracing strategies and use relevance feedback tend to 

perform better than other analysts. Future work will include employing multiple reviewers to 

classify tracing strategies from the 44 logs and obtain the level of agreement between reviewers 

on perceived tracing strategies. Future work will also investigate the influence that tracing 

strategies have on the final TM. Prior analyst simulations often assume that analysts provide 

perfect feedback. This dissertation reports on a study of actual analysts performing a tracing task 

and provides an initial measure of the “imperfect” analyst that misses roughly one out of every 

four true links they observe (77% sensitivity). Future studies using relevance feedback will 

measure how simulated techniques fare using the tracing strategies mined from trace logs along 

with imperfect feedback to validate technique effectiveness. 

TMs that have multiple relevant links per high-level element are more likely to have 

some links missed by analysts, especially if there are other links that fully satisfy the high-level 

element. Future studies will focus on ways to encourage the analyst to continue looking for these 

additional links. How a TM will be used in successor activities determines the importance of 

recall vs. precision. Future studies will include the investigation of a “gray link” decision as a 

possible decision during the tracing task where the analyst is given guidance on final TM usage. 

 

 
 
 
 
 

Copyright © Wei-Keat Kong 2012  
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Appendices 

Appendix A - Data for Chapter 4 
Table A1. Data table of average precision and recall/precision points: All datasets 

Dataset Average Precision Interpolated Precision-Recall 

EasyClinic 

High PVSM TFIDF 
PVSM TFIDF 

Recall Precision Recall Precision 
1.TXT 1.00 1.00 0.00 1.00 0.00 1.00 

10.TXT 0.53 1.00 0.05 0.84 0.05 1.00 
11.TXT 0.71 0.71 0.10 0.84 0.10 0.94 
12.TXT 0.71 0.71 0.15 0.84 0.15 0.94 
13.TXT 0.70 0.70 0.20 0.77 0.20 0.92 
14.TXT 0.81 1.00 0.25 0.77 0.25 0.87 
15.TXT 0.87 1.00 0.30 0.77 0.30 0.84 
16.TXT 0.81 0.87 0.35 0.77 0.35 0.84 
17.TXT 0.28 0.28 0.40 0.76 0.40 0.83 
18.TXT 0.58 0.30 0.45 0.76 0.45 0.79 
2.TXT 1.00 1.00 0.50 0.75 0.50 0.77 

20.TXT 0.51 0.53 0.55 0.68 0.55 0.75 
21.TXT 0.53 0.57 0.60 0.66 0.60 0.72 
22.TXT 0.56 0.70 0.65 0.64 0.65 0.69 
23.TXT 0.43 0.28 0.70 0.60 0.70 0.68 
25.TXT 0.33 0.33 0.75 0.59 0.75 0.55 
26.TXT 0.59 0.61 0.80 0.50 0.80 0.54 
27.TXT 0.92 0.92 0.85 0.31 0.85 0.33 
28.TXT 0.71 0.54 0.90 0.26 0.90 0.27 
29.TXT 1.00 1.00 0.95 0.17 0.95 0.17 
3.TXT 1.00 1.00 1.00 0.00 1.00 0.00 

30.TXT 0.70 0.76         
4.TXT 1.00 1.00         
5.TXT 1.00 1.00         
6.TXT 1.00 1.00         
7.TXT 0.92 0.92         
8.TXT 0.70 0.70         
9.TXT 0.72 0.72         

Pine 

High PVSM TFIDF 
PVSM TFIDF 

Recall Precision Recall Precision 
A1.TXT 0.99 0.98 0.00 1.00 0.00 1.00 
A2.TXT 1.00 1.00 0.05 1.00 0.05 1.00 
A4.TXT 0.50 1.00 0.10 1.00 0.10 0.97 
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C1.TXT 0.89 0.89 0.15 1.00 0.15 0.97 
C10.TXT 1.00 1.00 0.20 0.96 0.20 0.91 
C2.TXT 1.00 1.00 0.25 0.93 0.25 0.81 
C3.TXT 1.00 1.00 0.30 0.86 0.30 0.76 
C4.TXT 1.00 1.00 0.35 0.78 0.35 0.70 
C5.TXT 0.50 0.50 0.40 0.75 0.40 0.68 
C6.TXT 0.78 0.86 0.45 0.64 0.45 0.62 
C7.TXT 0.73 0.73 0.50 0.56 0.50 0.58 
C8.TXT 0.53 0.57 0.55 0.53 0.55 0.56 
C9.TXT 0.92 0.92 0.60 0.51 0.60 0.54 
F1.TXT 0.89 1.00 0.65 0.49 0.65 0.49 

F10.TXT 1.00 1.00 0.70 0.47 0.70 0.49 
F2.TXT 0.86 0.86 0.75 0.45 0.75 0.48 
F3.TXT 1.00 0.36 0.80 0.43 0.80 0.45 
F4.TXT 0.84 1.00 0.85 0.37 0.85 0.38 
F5.TXT 0.96 0.94 0.90 0.25 0.90 0.25 
F6.TXT 0.90 0.93 0.95 0.20 0.95 0.20 
F7.TXT 0.69 1.00 1.00 0.00 1.00 0.00 
F8.TXT 1.00 1.00         
F9.TXT 1.00 1.00         
G1.TXT 1.00 1.00         

G10.TXT 0.78 0.78         
G11.TXT 0.63 0.69         
G12.TXT 1.00 1.00         
G13.TXT 1.00 1.00         
G14.TXT 1.00 1.00         
G2.TXT 0.52 0.52         
G3.TXT 0.93 0.81         
G4.TXT 0.88 0.88         
G5.TXT 0.93 0.53         
G6.TXT 0.71 0.78         
G7.TXT 1.00 1.00         
G9.TXT 0.49 0.57         
N1.TXT 0.78 0.78         
N2.TXT 0.61 0.61         
N3.TXT 1.00 0.96         
R1.TXT 1.00 1.00         
R2.TXT 0.50 0.50         
R3.TXT 0.70 0.70         
R4.TXT 0.92 1.00         
R5.TXT 1.00 1.00         
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R6.TXT 1.00 1.00         
R7.TXT 1.00 1.00         
R8.TXT 1.00 1.00         

ChangeStyle 

High PVSM TFIDF 
PVSM TFIDF 

Recall Precision Recall Precision 
2.1.1 1.00 1.00 0.00 1.00 0.00 1.00 

2.1.12 0.50 0.50 0.05 1.00 0.05 1.00 
2.1.13 1.00 1.00 0.10 1.00 0.10 1.00 
2.1.2 1.00 1.00 0.15 1.00 0.15 1.00 
2.1.3 1.00 1.00 0.20 1.00 0.20 1.00 
2.1.4 1.00 1.00 0.25 1.00 0.25 1.00 
2.1.5 0.08 0.09 0.30 1.00 0.30 0.90 
2.1.6 1.00 0.20 0.35 1.00 0.35 0.90 
2.1.7 1.00 1.00 0.40 0.93 0.40 0.83 
3.0.1 1.00 1.00 0.45 0.93 0.45 0.50 

3.0.10 0.50 1.00 0.50 0.93 0.50 0.45 
3.0.11 1.00 1.00 0.55 0.82 0.55 0.32 
3.0.12 1.00 0.33 0.60 0.58 0.60 0.32 
3.0.14 1.00 1.00 0.65 0.36 0.65 0.32 
3.0.16 1.00 0.50 0.70 0.34 0.70 0.24 
3.0.17 0.11 0.50 0.75 0.27 0.75 0.19 
3.0.18 0.08 0.08 0.80 0.22 0.80 0.10 
3.0.2 0.50 0.50 0.85 0.10 0.85 0.10 
3.0.3 1.00 1.00 0.90 0.10 0.90 0.10 
3.0.4 1.00 1.00 0.95 0.09 0.95 0.09 
3.0.5 1.00 1.00 1.00 0.00 1.00 0.00 
3.0.6 1.00 0.11         
3.0.9 1.00 0.50         

CM1Subset1 

High PVSM TFIDF 
PVSM TFIDF 

Recall Precision Recall Precision 
SRS5.12.2.1 0.63 0.63 0.00 1.00 0.00 1.00 
SRS5.12.2.2 0.83 0.83 0.05 1.00 0.05 1.00 
SRS5.12.3.1 0.34 0.34 0.10 0.67 0.10 0.78 
SRS5.12.3.2 0.53 0.15 0.15 0.65 0.15 0.78 
SRS5.12.3.3 1.00 1.00 0.20 0.65 0.20 0.65 
SRS5.12.3.4 1.00 1.00 0.25 0.65 0.25 0.65 
SRS5.12.3.5 1.00 1.00 0.30 0.59 0.30 0.59 
SRS5.12.3.6 1.00 1.00 0.35 0.47 0.35 0.56 
SRS5.12.3.7 1.00 1.00 0.40 0.46 0.40 0.53 
SRS5.13.1.1 0.07 0.07 0.45 0.46 0.45 0.53 
SRS5.13.1.2 0.81 0.64 0.50 0.43 0.50 0.43 
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SRS5.13.1.3 0.76 0.92 0.55 0.36 0.55 0.38 
SRS5.13.1.4 0.60 0.60 0.60 0.34 0.60 0.35 
SRS5.13.2.1 1.00 0.50 0.65 0.33 0.65 0.24 
SRS5.13.2.2 0.50 0.50 0.70 0.17 0.70 0.17 
SRS5.13.2.3 0.70 0.83 0.75 0.16 0.75 0.16 
SRS5.13.3.1 0.08 0.08 0.80 0.13 0.80 0.13 
SRS5.13.3.2 0.42 0.42 0.85 0.13 0.85 0.13 
SRS5.13.4.1 1.00 1.00 0.90 0.12 0.90 0.12 

      0.95 0.11 0.95 0.11 
      1.00 0.00 1.00 0.00 
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Appendix B - Data for Chapter 5 
Table B1. Data table for log depictions.  

  Mins 

F2 when 
TL 

Accepted  Mins 

F2 when 
FL 

Accepted Mins 

F2 when 
TL 

Rejected 

UserA 

19.6 0.05 5.1 0.00 15.8 0.00 
25.4 0.10 15.3 0.00     
28.7 0.14 16.0 0.00     
29.1 0.19 18.8 0.00     
29.5 0.23 20.5 0.05     
29.6 0.28 20.6 0.05     
30.0 0.32 21.0 0.05     
30.9 0.36 22.9 0.05     
31.6 0.40 23.9 0.05     
32.0 0.44 24.8 0.05     
32.3 0.48 29.5 0.23     
32.5 0.52 30.5 0.32     
32.7 0.56 34.6 0.59     
32.8 0.59         
37.1 0.63         

UserB 

9.7 0.05 17.7 0.30     
10.5 0.11 24.5 0.35     
13.7 0.16 25.8 0.34     
14.9 0.21 26.2 0.34     
15.7 0.26 26.6 0.34     
16.3 0.31 27.7 0.33     
21.6 0.35 30.1 0.33     
32.3 0.37 31.9 0.33     
44.6 0.40 34.3 0.37     
45.0 0.44 35.9 0.36     
46.4 0.48 37.0 0.36     
46.8 0.52 39.4 0.36     
47.2 0.56         
47.9 0.59         
48.1 0.63         

UserC 

6.5 0.05 15.6 0.05 7.6 0.05 
24.1 0.10 20.5 0.05     
24.3 0.15 27.8 0.56     
24.5 0.20         
24.8 0.25         
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25.2 0.30         
25.8 0.35         
26.1 0.39         
26.9 0.44         
27.0 0.48         
27.1 0.52         
27.5 0.57         

UserD 

12.5 0.05 17.6 0.05 17.2 0.05 
29.7 0.09 17.7 0.05 21.4 0.05 
32.0 0.13 17.9 0.05     
34.9 0.17 18.5 0.05     
37.0 0.21 18.7 0.05     
37.7 0.25 18.9 0.05     
38.3 0.29 19.2 0.05     
38.7 0.33 19.4 0.05     
39.2 0.37 20.4 0.05     
41.0 0.41 20.7 0.05     
42.2 0.44 21.1 0.05     
43.7 0.48 21.6 0.05     

    22.6 0.05     
    23.7 0.05     
    29.5 0.05     
    32.3 0.13     
    36.3 0.17     
    36.5 0.17     

UserE 

7.6 0.05 7.8 0.05     
10.9 0.10 9.5 0.05     
11.4 0.15 10.4 0.05     
18.2 0.19 12.8 0.15     
20.1 0.24 13.5 0.15     
20.6 0.28 15.4 0.15     
20.8 0.32 16.1 0.15     
21.0 0.37 19.2 0.23     
21.3 0.41 19.7 0.23     
21.4 0.45 26.3 0.85     
21.6 0.49         
22.5 0.53         
22.7 0.57         
22.9 0.61         
23.1 0.65         
23.2 0.68         
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24.5 0.72         
24.9 0.76         
25.0 0.79         
25.2 0.83         
25.3 0.86         

UserF 

6.8 0.05 11.4 0.26 8.1 0.16 
7.4 0.11     10.2 0.26 
7.8 0.16     13.1 0.26 
8.8 0.21     17.1 0.53 
9.6 0.26     17.7 0.57 

13.3 0.30         
13.6 0.35         
15.8 0.40         
16.1 0.44         
16.2 0.49         
16.8 0.53         
17.5 0.57         
17.9 0.61         
18.2 0.65         

UserG 

21.2 0.05 8.9 0.00 7.4 0.00 
31.4 0.09 9.3 0.00 20.1 0.00 
31.9 0.14 13.5 0.00 28.9 0.05 
32.6 0.18 14.2 0.00 33.3 0.18 
33.6 0.22 18.6 0.00     
33.8 0.26 18.8 0.00     
34.5 0.30 19.5 0.00     
35.1 0.34 19.8 0.00     
35.9 0.38 19.9 0.00     
36.5 0.42 22.3 0.05     
37.1 0.46 23.7 0.05     
37.8 0.50 25.4 0.05     
38.3 0.53 27.1 0.05     
38.9 0.56 28.4 0.05     
39.4 0.60 28.6 0.05     
41.1 0.63 28.7 0.05     
41.6 0.67 35.3 0.34     
42.0 0.70 38.8 0.53     
43.9 0.74         

UserH 
13.1 0.05 4.6 0.00 4.9 0.00 
18.1 0.09 8.1 0.00 23.3 0.14 
22.6 0.14 11.1 0.00     
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23.8 0.18 12.1 0.00     
24.4 0.22 12.7 0.00     
24.5 0.27 13.6 0.05     
24.8 0.31 14.3 0.05     
25.6 0.35 14.6 0.05     
25.8 0.38 15.0 0.05     
26.3 0.42 16.4 0.05     
26.7 0.46 17.4 0.05     
26.8 0.50 17.4 0.05     
27.0 0.54 18.2 0.09     
27.3 0.57 21.1 0.09     
27.6 0.61 24.2 0.18     
27.8 0.65 25.7 0.34     
28.4 0.68 28.9 0.71     
28.6 0.71         

UserI 

7.7 0.05 7.2 0.00 10.1 0.21 
8.2 0.11 11.0 0.20     
8.4 0.16 12.5 0.30     
9.2 0.21 14.0 0.29     

11.2 0.25 14.1 0.29     
12.3 0.30 15.3 0.33     
14.8 0.34 15.4 0.33     
15.6 0.37 15.8 0.37     
16.7 0.41 15.9 0.37     
18.1 0.45 17.0 0.41     
19.8 0.48 18.8 0.44     
20.7 0.52 22.9 0.59     
21.8 0.56 24.4 0.66     
22.6 0.60 24.9 0.66     
23.2 0.63 30.0 0.69     
23.7 0.67 30.2 0.68     
29.6 0.69 30.7 0.74     
30.3 0.71 31.6 0.74     
30.6 0.75         

UserJ 

4.1 0.05 7.3 0.21 8.5 0.30 
4.6 0.11 9.4 0.39     
5.1 0.16 13.1 0.68     
5.3 0.21 15.4 0.68     
7.7 0.26         
7.9 0.30         
8.7 0.35         
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9.0 0.40         
9.6 0.44         

10.7 0.48         
11.3 0.52         
11.5 0.57         
11.7 0.61         
11.8 0.65         
12.1 0.69         
18.4 0.71         

UserK 

3.2 0.05 2.0 0.00 6.8 0.10 
4.4 0.11 4.6 0.10 13.0 0.24 

10.9 0.15 7.2 0.10     
12.4 0.20 8.1 0.10     
12.6 0.24 9.4 0.10     
13.3 0.29 10.4 0.10     
13.4 0.33 14.5 0.46     
13.8 0.38 19.1 0.80     
14.1 0.42 20.0 0.79     
14.3 0.46 21.0 0.79     
14.6 0.50 21.0 0.78     
14.9 0.54 21.2 0.77     
15.0 0.58 21.9 0.77     
15.4 0.62 22.2 0.76     
16.1 0.66 23.6 0.75     
16.4 0.70 26.5 0.75     
16.7 0.73 28.4 0.74     
16.9 0.77 32.0 0.74     
17.1 0.81 32.8 0.73     
35.7 0.76 35.0 0.73     

UserL 

1.7 0.05 4.4 0.11 6.2 0.11 
2.2 0.11 10.2 0.20 17.6 0.39 
7.5 0.16 23.3 0.39 19.2 0.39 
9.1 0.21         

10.7 0.25         
13.4 0.30         
14.3 0.35         
16.5 0.39         
23.5 0.43         
24.2 0.48         
24.5 0.52         
24.7 0.56         
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25.3 0.60         
26.1 0.64         
26.5 0.68         
26.7 0.72         
26.8 0.76         
27.3 0.80         
27.7 0.83         

UserM 

3.7 0.05 5.8 0.11 10.8 0.26 
5.1 0.11 23.0 0.84     
7.3 0.16 23.2 0.83     
9.7 0.21 25.7 0.83     

10.2 0.26         
12.1 0.30         
12.3 0.35         
12.6 0.40         
12.8 0.44         
13.0 0.49         
13.3 0.53         
13.7 0.57         
14.1 0.61         
14.3 0.65         
14.9 0.69         
15.1 0.73         
15.6 0.77         
15.7 0.81         
16.8 0.85         
27.7 0.86         
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Figure B1. Participant marking times 

 

Link\User A B C D E F G H I J K L M
L1 8.8- 7.7 1.9 7.2! 5.6+ 4.6 4.2! 0.6! 0.0* 0.0* 1.4 0.1! 4.6   !      Dropped                                                     
L2 0.1 0.2 0.4 3.9 0.1! 0.1 0.0* 1.6
L3 0.1 0.0* 0.1! 0.7 1.0! 0.3 0.2 0.0* 0.0* 1.3! 0.3! 0.8   +     Dropped then added
L4 0.6 0.8 0.2 0.2 0.6 0.2! 0.2 0.2 4.2 0.2 0.7 1.0
L5 0.4 1.0! 0.6+ 0.4 0.7 0.0 0.0 0.1 0.7 0.6 0.2 0.8    -     Added then dropped   
L6 0.4 0.6 0.9 0.0* 0.3 1.1 0.0 0.3! 0.3 0.2 0.3 0.4 0.6
L7 0.3 0.6 0.2 0.5! 0.3 0.5 0.1 0.0* 0.9! 0.6! 0.7! *  Viewed but no decision                    
L8 0.2 1.0! 0.1+ 0.1 0.0 0.2 0.7 0.5
L9 0.2 0.2 0.3 0.3 0.2 0.1 0.2 0.1 0.2 0.2 0.2 0.3  Did not view
L10 0.4 0.5 0.3 0.1* 0.1 0.3 0.1 0.4 0.3 0.4 0.4 0.2 0.3
L11 0.2 0.2 0.2 0.2* 0.2 0.3 0.1 0.3 0.3 0.3 0.3  Viewed < 1 minute
L12 0.1 0.9 0.5 0.3 0.9 1.2 0.2 0.1 0.1 1.1 0.1 0.3 0.2
L13 0.1 0.2 0.1 0.6 0.1 0.4 0.1 0.2 0.1 0.2 0.2 0.2 0.1  Viewed > 1 minute
L14 0.4 0.4 0.2 0.2 0.1 0.3 0.0* 0.3+ 0.2 0.2 0.4
L15 0.1 0.1 0.1 0.2 0.1* 0.0 0.1 0.1 0.3 0.3 0.5 0.4
L16 0.1 0.0 0.3 0.1 0.2 0.6 0.0 0.2 0.1 0.1 0.4 0.4 0.3
L17 0.2 0.0* 0.0* 0.0* 0.1+ 0.3! 0.0 0.2 0.2 0.3 0.5 0.1 0.7
L18 0.4 0.0* 0.2 0.3* 0.2 0.3 0.1 0.2 0.1 0.2 0.2 0.3 0.2
L19 0.2 3.0 0.1 0.3 0.1 0.2! 0.1 0.2 1.1! 0.6- 0.3 0.3 0.6+
L20 0.1 0.6-+ 0.1 0.3* 0.2 0.2 0.2 0.6 0.8 0.2 0.3 0.2 0.2
L21 0.1+ 1.1 0.4 0.5 0.1 0.3 0.1 0.1 0.4 0.3 0.3 0.2 0.2
L22 0.1* 0.3! 0.1 0.0* 0.9
L23 0.8 0.1 0.1* 0.1 0.1 0.1 0.3 0.3
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Appendix C - Data for Chapter 6 
 

 
Figure C1. Sample trace log. 

 
 

Time Elapsed ElapsedMin Link Action Decision Answer Count Recall Precision TP FP FN TN FeedbackCount
12:44:11 0 0 UAVTCSSubset1 Selected
12:44:11 0.2 0 ORD002.txt Selected
12:44:11 0.3 0 ORD002.txt:SSS404.txt Selected 1 0
12:45:03 51.7 0.9 ORD002.txt:SSS404.txt Set from undecided to TRUE 1 1 1 0.01 1 1 0 0 0
12:45:06 54.9 0.9 ORD002.txt:SSS491.txt Selected 2 0.01
12:45:35 84 1.4 ORD002.txt:SSS491.txt Set from undecided to FALSE -1 -1 2 0.01 1 1 0 0 1
12:45:36 84.8 1.4 ORD002.txt:SSS496.txt Selected 3 0.01
12:46:23 132.4 2.2 ORD002.txt:SSS496.txt Set from undecided to FALSE -1 -1 3 0.01 1 1 0 0 2
12:46:24 133 2.2 ORD002.txt:SSS153.txt Selected 4 0.01
12:47:07 176.5 2.9 ORD002.txt:SSS153.txt Set from undecided to TRUE 1 1 4 0.02 1 2 0 0 2
12:47:09 178.4 3 ORD002.txt:SSS059.txt Selected 5 0.02
12:47:25 193.8 3.2 ORD002.txt:SSS059.txt Set from undecided to TRUE 1 -1 5 0.02 0.67 2 1 0 2
12:47:25 194.3 3.2 ORD002.txt:SSS371.txt Selected 6 0.02
12:47:50 219.4 3.7 ORD002.txt:SSS371.txt Set from undecided to FALSE -1 -1 6 0.02 0.67 2 1 0 3
12:47:51 220.5 3.7 ORD002.txt:SSS439.txt Selected 7 0.02
12:47:54 222.9 3.7 ORD002.txt Link Weights Recalculated 6
12:47:54 222.9 3.7 ORD002.txt:SSS399.txt Selected 8 0.02
12:48:02 230.8 3.8 ORD002.txt:SSS399.txt Set from undecided to TRUE 1 -1 8 0.02 0.5 2 2 0 3
12:48:02 231.4 3.9 ORD002.txt:SSS447.txt Selected 9 0.02
12:48:11 240.6 4 ORD002.txt:SSS399.txt Selected 9 0.02
12:48:11 240.6 4 ORD002.txt:SSS399.txt Selected 9 0.02
12:48:13 242.7 4 ORD002.txt:SSS447.txt Selected 9 0.02
12:48:20 249.5 4.2 ORD002.txt:SSS447.txt Set from undecided to TRUE 1 -1 9 0.02 0.4 2 3 0 3
12:48:21 250.5 4.2 ORD002.txt:SSS439.txt Selected 9 0.02
12:48:34 262.9 4.4 ORD002.txt:SSS439.txt Set from undecided to TRUE 1 1 9 0.04 0.5 3 3 0 3
12:48:34 263.7 4.4 ORD002.txt:SSS059.txt Selected 9 0.04
12:48:40 269.6 4.5 ORD002.txt:SSS439.txt Selected 9 0.04
12:48:41 270.5 4.5 ORD002.txt:SSS059.txt Selected 9 0.04
12:48:47 276.5 4.6 ORD002.txt:SSS050.txt Selected 10 0.04
12:49:21 309.8 5.2 ORD002.txt Link Weights Recalculated 3
12:49:21 309.8 5.2 ORD002.txt:SSS092.txt Selected 11 0.04
12:49:31 320.7 5.3 ORD002.txt:SSS092.txt Set from undecided to TRUE 1 -1 11 0.04 0.43 3 4 0 3
12:49:32 321.3 5.4 ORD002.txt:SSS405.txt Selected 12 0.04
12:49:55 344.2 5.7 ORD002.txt:SSS405.txt Set from undecided to TRUE 1 -1 12 0.04 0.38 3 5 0 3
12:49:56 344.7 5.7 ORD002.txt:SSS081.txt Selected 13 0.04
12:50:03 352.3 5.9 ORD002.txt:SSS081.txt Set from undecided to TRUE 1 -1 13 0.04 0.33 3 6 0 3
12:50:04 353 5.9 ORD002.txt:SSS211.txt Selected 14 0.04
12:50:30 379.1 6.3 ORD002.txt:SSS211.txt Set from undecided to FALSE -1 -1 14 0.04 0.33 3 6 0 4
12:50:30 379.6 6.3 ORD002.txt:SSS312.txt Selected 15 0.04
12:50:49 398.3 6.6 ORD002.txt:SSS312.txt Set from undecided to FALSE -1 -1 15 0.04 0.33 3 6 0 5
12:50:50 398.9 6.6 ORD002.txt:SSS323.txt Selected 16 0.04
12:50:51 399.9 6.7 ORD002.txt Link Weights Recalculated 5
12:50:51 400 6.7 ORD002.txt:SSS098.txt Selected 17 0.04
12:51:15 424.3 7.1 ORD002.txt:SSS098.txt Set from undecided to TRUE 1 -1 17 0.04 0.3 3 7 0 5
12:51:16 424.9 7.1 ORD002.txt:SSS439.txt Selected 17 0.04
12:51:30 439.7 7.3 ORD002.txt:SSS452.txt Selected 18 0.04
12:51:38 447.6 7.5 ORD002.txt Link Weights Recalculated 1
12:51:38 447.6 7.5 ORD002.txt:SSS479.txt Selected 19 0.04
12:52:04 473.5 7.9 ORD002.txt:SSS453.txt Selected 20 0.04
12:52:23 492.4 8.2 ORD003.txt Selected
12:52:23 492.4 8.2 ORD003.txt:SSS398.txt Selected 21 0.04
12:52:54 523.2 8.7 ORD003.txt:SSS398.txt Set from undecided to TRUE 1 1 21 0.05 0.36 4 7 0 5
12:52:55 523.8 8.7 ORD003.txt:SSS420.txt Selected 22 0.05
12:53:37 565.8 9.4 ORD003.txt:SSS420.txt Set from undecided to TRUE 1 1 22 0.06 0.42 5 7 0 5
12:53:37 566.7 9.4 ORD003.txt:SSS435.txt Selected 23 0.06
12:54:00 589 9.8 ORD003.txt:SSS435.txt Set from undecided to TRUE 1 -1 23 0.06 0.38 5 8 0 5
12:54:00 589.6 9.8 ORD003.txt:SSS439.txt Selected 24 0.06
12:54:02 590.7 9.8 ORD003.txt Link Weights Recalculated 3
12:54:02 590.7 9.8 ORD003.txt:SSS372.txt Selected 25 0.06
12:54:20 608.9 10.1 ORD003.txt:SSS372.txt Set from undecided to TRUE 1 -1 25 0.06 0.36 5 9 0 5
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Table C2. WARC participant measures over time 

UserID Elapsed Mins Recall Precision Sensitivity TMSize Eff. Dist. 

A7 5 0.04 1.00 0.33 2 1.7 

A7 10 0.05 1.00 0.33 3 1.6 

A7 15 0.05 0.60 0.27 5 2.1 

A7 20 0.09 0.56 0.33 9 2.4 

A7 25 0.22 0.67 0.46 18 2.0 

A7 30 0.24 0.59 0.42 22 2.1 

A7 35 0.27 0.63 0.45 24 2.3 

A7 40 0.35 0.66 0.49 29 2.4 

A7 45 0.44 0.69 0.53 35 2.5 

A3 5 0.07 0.67 0.33 6 1.7 

A3 10 0.11 0.35 0.38 17 2.5 

A3 15 0.27 0.50 0.60 30 2.6 

A3 20 0.33 0.51 0.58 35 2.7 

A3 25 0.42 0.56 0.61 41 2.8 

A3 30 0.51 0.58 0.61 48 3.2 

A2 5 0.07 0.80 0.50 5 1.3 

A2 10 0.13 0.88 0.54 8 1.7 

A2 15 0.13 0.44 0.50 16 2.9 

A2 20 0.29 0.62 0.70 26 2.3 

A2 25 0.42 0.64 0.68 36 2.2 

A2 30 0.45 0.61 0.68 41 2.6 

A2 35 0.58 0.64 0.71 50 2.6 

A2 40 0.60 0.62 0.67 53 2.9 

A5 5 0.11 1.00 0.86 6 2.7 

A5 10 0.15 0.89 0.73 9 2.9 

A5 15 0.16 0.69 0.69 13 3.5 

A5 20 0.16 0.45 0.64 20 5.0 

A5 25 0.22 0.43 0.71 28 5.8 

A5 30 0.35 0.51 0.70 37 4.6 

A5 35 0.42 0.56 0.66 41 4.4 
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A5 40 0.44 0.55 0.62 44 5.0 

A5 45 0.53 0.58 0.63 50 5.1 

A5 50 0.58 0.59 0.63 54 5.3 

A4 5 0.09 0.83 0.71 6 1.0 

A4 10 0.13 0.64 0.64 11 1.3 

A4 15 0.15 0.33 0.67 24 2.8 

A4 20 0.25 0.37 0.78 38 2.7 

A4 25 0.47 0.46 0.87 56 2.1 

A4 30 0.49 0.45 0.79 60 2.6 

A4 35 0.62 0.50 0.83 68 2.5 

A4 40 0.71 0.51 0.85 76 2.6 

A6 5 0.11 0.75 1.00 8 1.3 

A6 10 0.13 0.54 1.00 13 3.1 

A6 15 0.20 0.42 0.92 26 3.1 

A6 20 0.22 0.27 0.92 44 4.5 

A6 25 0.24 0.21 0.93 61 5.6 

A6 30 0.31 0.23 0.94 74 5.4 

A6 35 0.49 0.29 0.96 93 4.1 

A6 40 0.56 0.29 0.97 107 4.3 

A6 45 0.62 0.30 0.94 114 4.2 

A6 50 0.64 0.29 0.95 122 4.5 

A6 55 0.71 0.27 0.95 144 4.7 

A6 60 0.87 0.28 0.96 170 4.6 

B6 5 0.05 0.50 0.60 6 2.2 

B6 10 0.24 0.65 0.76 20 1.7 

B6 15 0.38 0.68 0.75 31 1.4 

B1 5 0.05 0.43 0.30 7 1.5 

B1 10 0.22 0.55 0.55 22 1.5 

B1 15 0.27 0.48 0.50 31 1.8 

B1 20 0.31 0.52 0.53 33 2.2 

B1 25 0.36 0.53 0.61 38 2.7 

B1 30 0.45 0.56 0.66 45 2.7 

B1 35 0.51 0.57 0.70 49 2.6 
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B1 40 0.58 0.58 0.73 55 2.7 

B2 5 0.15 0.80 1.00 10 1.6 

B2 10 0.18 0.53 0.91 19 2.6 

B2 15 0.35 0.45 0.90 42 2.7 

B2 20 0.56 0.52 0.89 60 2.2 

B2 25 0.64 0.55 0.83 64 2.2 

B7 0 0.02 0.50 0.50 2 1.0 

B7 5 0.09 0.83 0.83 6 1.8 

B7 10 0.11 0.86 0.86 7 5.4 

B7 15 0.13 0.64 0.64 11 4.3 

B7 20 0.15 0.36 0.62 22 5.3 

B7 25 0.15 0.27 0.53 30 5.8 

B7 30 0.27 0.37 0.60 41 4.1 

B7 35 0.31 0.39 0.53 44 3.7 

B7 40 0.33 0.35 0.47 51 4.0 

B7 45 0.55 0.43 0.59 70 5.3 

B5 0 0.13 0.88 0.88 8 2.6 

B5 5 0.16 0.47 0.82 19 5.0 

B5 10 0.20 0.34 0.79 32 7.1 

B5 15 0.22 0.29 0.71 42 7.8 

B5 20 0.35 0.33 0.79 58 7.6 

B5 25 0.38 0.32 0.64 65 6.6 

B5 30 0.53 0.38 0.62 77 5.8 

B4 5 0.07 0.67 1.00 6 1.5 

B4 10 0.11 0.55 1.00 11 2.3 

B4 15 0.18 0.43 0.91 23 2.7 

B4 20 0.20 0.35 0.92 31 4.6 

B4 25 0.20 0.31 0.85 36 5.9 

B4 30 0.27 0.33 0.83 46 5.3 

B4 35 0.31 0.36 0.68 47 5.0 

B4 40 0.38 0.37 0.62 57 5.3 

B4 45 0.40 0.36 0.58 61 5.7 

B4 50 0.60 0.39 0.66 84 5.7 
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B9 5 0.11 0.67 1.00 9 3.8 

B9 10 0.15 0.50 0.89 16 6.8 

B9 15 0.20 0.46 0.85 24 7.5 

B9 20 0.24 0.39 0.87 33 9.1 

B9 25 0.42 0.45 0.85 51 6.4 

B9 30 0.47 0.45 0.87 58 6.8 

B9 35 0.58 0.45 0.89 71 6.9 

B9 40 0.71 0.49 0.91 80 6.4 

B3 5 0.15 0.89 0.89 9 4.9 

B3 10 0.16 0.26 0.82 35 8.8 

B3 15 0.47 0.41 0.90 63 5.2 

B3 20 0.60 0.41 0.89 80 5.6 

B3 25 0.85 0.46 0.90 102 5.4 

B8 5 0.16 0.69 0.82 13 1.7 

B8 10 0.22 0.50 0.86 24 3.1 

B8 15 0.31 0.40 0.89 43 4.1 

B8 20 0.60 0.46 0.94 71 3.1 

B8 25 0.69 0.43 0.95 88 3.9 

B8 30 0.87 0.39 0.94 124 5.0 

B10 5 0.05 0.75 0.75 4 1.5 

B10 10 0.13 0.88 0.64 8 6.2 

B10 15 0.15 0.38 0.62 21 8.2 

B10 20 0.15 0.27 0.57 30 9.8 

B10 25 0.15 0.21 0.57 38 13.9 

B10 30 0.16 0.20 0.56 44 15.7 

B10 35 0.24 0.23 0.65 57 18.2 

B10 40 0.42 0.32 0.82 71 18.4 

B10 45 0.51 0.33 0.88 84 21.3 

B10 50 0.56 0.30 0.82 104 20.9 

B10 55 0.78 0.30 0.86 145 18.1 

E7 5 0.05 0.60 0.38 5 2.0 

E7 10 0.11 0.75 0.38 8 2.3 

E7 15 0.18 0.83 0.38 12 2.0 
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E5 5 0.04 1.00 1.00 2 1.5 

E5 10 0.04 0.40 1.00 5 4.5 

E5 15 0.25 0.78 0.78 18 1.4 

E1 5 0.05 0.33 0.60 9 4.0 

E1 10 0.29 0.64 0.76 25 2.0 

E1 15 0.51 0.72 0.78 39 2.3 

E11 5 0.05 1.00 0.50 3 2.2 

E11 10 0.07 1.00 0.40 4 4.3 

E11 15 0.07 0.80 0.36 5 5.5 

E11 20 0.09 0.71 0.38 7 7.6 

E11 25 0.24 0.76 0.57 17 5.5 

E11 30 0.35 0.79 0.56 24 4.6 

E11 35 0.38 0.78 0.53 27 5.0 

E11 40 0.45 0.71 0.54 35 5.3 

E11 45 0.49 0.71 0.54 38 5.4 

E12 5 0.00 0.00 0.00 0 0.0 

E12 10 0.02 1.00 1.00 1 1.0 

E12 15 0.02 1.00 1.00 1 2.0 

E12 20 0.09 0.83 0.63 6 1.9 

E12 25 0.09 0.56 0.63 9 3.1 

E12 30 0.09 0.50 0.63 10 3.8 

E12 35 0.11 0.46 0.67 13 4.7 

E12 40 0.16 0.56 0.75 16 3.5 

E12 45 0.20 0.58 0.79 19 3.1 

E12 50 0.25 0.64 0.67 22 2.1 

E12 55 0.31 0.65 0.65 26 2.3 

E12 60 0.38 0.70 0.70 30 2.5 

E12 65 0.51 0.74 0.74 38 2.3 

E2 5 0.13 1.00 0.33 7 1.4 

E2 10 0.18 0.83 0.42 12 2.8 

E2 15 0.22 0.80 0.43 15 3.7 

E2 20 0.33 0.82 0.51 22 3.7 

E2 25 0.47 0.81 0.59 32 3.8 
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E2 30 0.56 0.84 0.63 37 3.7 

E2 35 0.69 0.81 0.73 47 4.3 

E8 5 0.13 0.88 1.00 8 1.4 

E8 10 0.15 0.57 0.89 14 2.4 

E8 15 0.15 0.35 0.89 23 4.4 

E8 20 0.16 0.32 0.82 28 6.1 

E8 25 0.18 0.36 0.67 28 4.9 

E8 30 0.22 0.36 0.75 33 5.1 

E8 35 0.33 0.43 0.72 42 3.8 

E8 40 0.42 0.46 0.68 50 3.5 

E8 45 0.44 0.46 0.69 52 3.6 

E8 50 0.47 0.48 0.68 54 3.7 

E8 55 0.53 0.49 0.76 59 4.1 

E8 60 0.62 0.51 0.77 67 4.1 

E8 65 0.71 0.51 0.81 76 4.6 

E14 5 0.11 0.50 0.60 12 2.0 

E14 10 0.20 0.37 0.61 30 2.9 

E14 15 0.42 0.49 0.68 47 2.4 

E14 20 0.60 0.52 0.73 63 2.4 

E14 25 0.69 0.51 0.78 75 2.9 

E14 30 0.69 0.46 0.75 82 3.7 
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Table C3. UAVTCS participant measures over time 

UserID Elapsed Mins Recall Precision Sensitivity TMSize Eff. Dist. 

D7 5 0.05 0.36 1.00 11 3.8 

D7 10 0.2 0.64 0.73 25 2.3 

D7 15 0.31 0.69 0.64 36 2.6 

D7 20 0.37 0.67 0.57 45 2.9 

D7 25 0.4 0.68 0.52 47 3.0 

D7 30 0.43 0.7 0.51 50 3.1 

D4 5 0.01 1 0.05 1 0.1 

D4 10 0.02 1 0.10 2 0.6 

D4 15 0.11 0.82 0.32 11 1.0 

D4 20 0.19 0.88 0.43 17 1.0 

D4 25 0.28 0.79 0.53 29 1.2 

D4 30 0.37 0.81 0.59 37 1.3 

D4 35 0.43 0.76 0.63 46 1.6 

D4 40 0.53 0.8 0.66 54 1.6 

D3 5 0.04 0.43 1.00 7 2.7 

D3 10 0.06 0.36 0.83 14 3.2 

D3 15 0.06 0.31 0.71 16 4.7 

D3 20 0.09 0.33 0.64 21 4.5 

D3 25 0.11 0.41 0.64 22 4.6 

D3 30 0.11 0.43 0.32 21 2.5 

D3 35 0.15 0.6 0.39 20 2.7 

D3 40 0.22 0.67 0.45 27 2.3 

D3 45 0.32 0.68 0.51 38 2.1 

D3 50 0.48 0.75 0.62 52 2.0 

D1 5 0.06 1 0.71 5 1.4 

D1 10 0.09 0.7 0.64 10 1.5 

D1 15 0.15 0.55 0.80 22 3.1 

D1 20 0.2 0.53 0.76 30 14.5 

D1 25 0.21 0.52 0.74 33 13.6 

D1 30 0.36 0.57 0.81 51 9.3 
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D1 35 0.47 0.62 0.86 61 9.0 

D1 40 0.64 0.68 0.87 77 7.1 

D1 45 0.72 0.65 0.81 89 6.6 

D5 5 0.04 0.38 1.00 8 2.3 

D5 10 0.06 0.31 0.31 16 1.9 

D5 15 0.12 0.38 0.45 26 4.7 

D5 20 0.23 0.42 0.61 45 4.2 

D5 25 0.43 0.53 0.78 66 3.5 

D5 30 0.54 0.47 0.83 93 3.6 

D5 35 0.7 0.47 0.83 121 3.4 

D8 5 0.04 0.6 1.00 5 2.3 

D8 10 0.05 0.57 0.80 7 24.4 

D8 15 0.09 0.7 0.30 10 5.6 

D8 20 0.09 0.5 0.29 14 6.1 

D8 25 0.09 0.25 0.29 28 6.7 

D8 30 0.09 0.2 0.29 35 7.0 

D8 35 0.12 0.19 0.38 53 7.0 

D8 40 0.15 0.16 0.44 73 7.6 

D8 45 0.21 0.2 0.55 86 7.8 

D8 50 0.35 0.23 0.72 123 7.4 

D8 55 0.51 0.24 0.85 173 7.2 

D8 60 0.81 0.27 0.94 246 5.8 

D2 5 0.05 0.57 1.00 7 1.5 

D2 10 0.1 0.36 1.00 22 3.1 

D2 15 0.1 0.26 1.00 31 7.4 

D2 20 0.11 0.21 1.00 43 10.4 

D2 25 0.11 0.17 1.00 53 14.6 

D2 30 0.11 0.12 1.00 78 20.0 

D2 35 0.11 0.1 1.00 88 25.7 

D2 40 0.12 0.11 0.91 94 24.2 

D2 45 0.14 0.11 0.92 100 25.0 

D2 50 0.19 0.14 0.94 109 20.5 

D2 55 0.26 0.16 1.00 131 18.3 
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D2 60 0.36 0.2 0.97 147 14.1 

D2 65 0.48 0.23 0.98 168 11.5 

D6 5 0.04 0.25 1.00 12 4.3 

D6 10 0.04 0.14 0.75 21 7.8 

D6 15 0.04 0.09 0.75 35 15.8 

D6 20 0.04 0.07 0.75 45 23.3 

D6 25 0.04 0.06 0.75 48 33.0 

D6 30 0.02 0.04 0.50 46 38.3 

D6 35 0.02 0.04 0.50 55 47.5 

D6 40 0.07 0.09 0.86 69 37.4 

C9 5 0.11 1 0.82 9 0.5 

C9 10 0.2 1 0.62 16 0.4 

C9 15 0.33 0.87 0.66 31 0.8 

C9 20 0.51 0.89 0.69 46 0.8 

C14 5 0.12 0.83 0.91 12 1.6 

C14 10 0.37 0.88 0.81 34 0.9 

C14 15 0.46 0.77 0.84 48 5.4 

C14 20 0.63 0.7 0.81 73 4.1 

C12 5 0.15 0.5 0.92 24 1.6 

C12 10 0.25 0.57 0.83 35 1.3 

C12 15 0.36 0.6 0.81 48 1.4 

C12 20 0.47 0.63 0.84 60 1.4 

C12 25 0.65 0.62 0.84 85 1.6 

C7 5 0.12 0.71 0.83 14 0.8 

C7 10 0.19 0.52 0.79 29 1.3 

C7 15 0.31 0.57 0.83 44 1.2 

C7 20 0.46 0.61 0.86 61 1.2 

C7 25 0.59 0.62 0.87 78 1.2 

C1 5 0.04 0.38 1.00 8 5.0 

C1 10 0.1 0.62 0.73 13 3.0 

C1 15 0.12 0.43 0.83 23 5.3 

C1 20 0.16 0.43 0.87 30 6.2 

C1 25 0.3 0.51 0.89 47 4.2 
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C1 30 0.41 0.54 0.92 61 3.7 

C1 35 0.52 0.55 0.93 76 3.4 

C1 40 0.62 0.54 0.91 92 3.3 

C1 45 0.74 0.58 0.88 104 2.9 

C1 50 0.79 0.57 0.88 112 3.3 

C2 5 0.04 0.5 1.00 6 5.7 

C2 10 0.11 0.56 0.82 16 2.5 

C2 15 0.17 0.41 0.82 34 3.3 

C2 20 0.27 0.43 0.81 51 3.2 

C2 25 0.44 0.49 0.86 73 2.7 

C2 30 0.56 0.54 0.87 84 3.0 

C2 35 0.72 0.56 0.83 104 2.8 

C2 40 0.78 0.51 0.84 123 3.0 

C10 5 0.02 0.67 1.00 3 1.5 

C10 10 0.04 0.27 1.00 11 3.7 

C10 15 0.09 0.32 0.88 22 3.0 

C10 20 0.17 0.36 0.93 39 2.8 

C10 25 0.2 0.35 0.84 46 3.1 

C10 30 0.23 0.33 0.83 57 3.4 

C10 35 0.37 0.38 0.81 80 2.6 

C10 40 0.62 0.47 0.81 107 1.8 

C10 45 0.64 0.43 0.78 122 2.1 

C6 5 0.04 0.43 1.00 7 2.7 

C6 10 0.1 0.32 1.00 25 3.6 

C6 15 0.19 0.43 0.94 35 2.9 

C6 20 0.27 0.46 0.96 48 2.7 

C6 25 0.33 0.42 0.93 64 3.0 

C6 30 0.4 0.44 0.91 73 3.0 

C6 35 0.46 0.45 0.93 82 2.9 

C6 40 0.77 0.49 0.91 127 2.4 

C5 5 0.04 0.21 0.75 14 5.3 

C5 10 0.05 0.36 0.57 11 5.1 

C5 15 0.15 0.43 0.75 28 5.6 
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C5 20 0.3 0.46 0.83 52 4.3 

C5 25 0.51 0.52 0.82 79 3.3 

C5 30 0.75 0.48 0.87 127 3.4 

C15 5 0.04 0.19 1.00 16 5.3 

C15 10 0.1 0.24 1.00 34 5.1 

C15 15 0.17 0.27 0.88 51 4.9 

C15 20 0.28 0.35 0.88 65 3.8 

C15 25 0.47 0.42 0.93 91 2.9 

C15 30 0.58 0.42 0.92 111 2.8 

C15 35 0.65 0.42 0.90 126 2.8 

C15 40 0.73 0.38 0.91 157 3.1 

C15 45 0.78 0.35 0.89 178 3.5 

C13 5 0.04 0.2 1.00 15 6.0 

C13 10 0.1 0.22 1.00 36 4.8 

C13 15 0.19 0.22 0.94 67 4.3 

C13 20 0.32 0.28 0.96 93 3.5 

C13 25 0.51 0.34 0.95 122 2.7 

C13 30 0.65 0.33 0.95 160 2.7 

C13 35 0.8 0.33 0.93 196 2.6 

C3 5 0.04 0.5 0.75 6 2.3 

C3 10 0.04 0.23 0.30 13 2.5 

C3 15 0.04 0.1 0.30 29 5.7 

C3 20 0.04 0.08 0.30 37 10.2 

C3 25 0.04 0.06 0.25 52 11.4 

C3 30 0.04 0.05 0.25 62 15.1 

C3 35 0.12 0.12 0.56 82 11.8 

C3 40 0.21 0.16 0.61 106 9.4 

C3 45 0.36 0.21 0.69 136 7.1 

C3 50 0.68 0.29 0.85 187 5.4 
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Table C4. Data table for participant strategies 

User Dataset Strategy 
Feed-
back Links  

Time 
Spent 

Pot. 
recall Sensitivity Recall Precision 

Eff. 
Dist 

A2 WARC Unknown Yes 10-20 45 0.89 0.72 0.64 0.64 2.7 
A3 WARC Preview Yes 10-20 30 0.84 0.61 0.51 0.58 3.2 
A4 WARC Unknown Yes 10-20 40 0.84 0.85 0.71 0.51 2.6 
A5 WARC Unknown Yes 10-20 50 0.93 0.62 0.58 0.59 5.5 
A6 WARC Unknown Yes 10-20 60 0.91 0.96 0.87 0.28 4.6 
A7 WARC Unknown Yes < 10 45 0.82 0.50 0.41 0.69 2.6 
B1 WARC Iterative Yes 10-20 40 0.8 0.73 0.58 0.58 2.7 

B10 WARC Unknown Yes > 20 55 0.91 0.86 0.78 0.3 18.1 
B2 WARC Iterative Yes < 10 25 0.76 0.84 0.64 0.55 2.2 
B3 WARC Unknown Yes 10-20 25 0.95 0.89 0.85 0.46 5.4 
B4 WARC Unknown No 10-20 50 0.91 0.66 0.6 0.39 5.7 
B5 WARC Unknown Yes 10-20 35 0.85 0.62 0.53 0.38 5.8 
B6 WARC Unknown No < 10 15 0.65 0.58 0.38 0.68 1.4 
B7 WARC Unknown No 10-20 50 0.93 0.59 0.55 0.43 5.3 
B8 WARC Unknown Yes 10-20 35 0.93 0.94 0.87 0.39 5.0 
B9 WARC Unknown Yes 10-20 40 0.78 0.91 0.71 0.49 6.4 
C1 UAVTCS Unknown Yes 10-20 50 0.9 0.88 0.79 0.57 3.3 

C10 UAVTCS Unknown Yes 10-20 45 0.83 0.77 0.64 0.43 2.1 
C12 UAVTCS Accept No < 10 25 0.78 0.83 0.65 0.62 1.6 
C13 UAVTCS Accept Yes 10-20 35 0.86 0.93 0.8 0.33 2.6 
C14 UAVTCS Accept Yes 10-20 40 0.78 0.81 0.63 0.7 4.1 
C15 UAVTCS Unknown Yes 10-20 45 0.88 0.89 0.78 0.35 3.5 
C2 UAVTCS Iterative Yes 10-20 40 0.93 0.84 0.78 0.51 3.1 
C3 UAVTCS Unknown No > 20 50 0.8 0.85 0.68 0.29 5.4 
C5 UAVTCS Unknown No 10-20 30 0.86 0.87 0.75 0.48 3.5 
C6 UAVTCS Unknown Yes 10-20 40 0.84 0.92 0.77 0.49 2.4 
C7 UAVTCS Unknown No < 10 25 0.68 0.87 0.59 0.62 1.2 
C9 UAVTCS Accept Yes < 10 20 0.73 0.70 0.51 0.89 0.8 
D1 UAVTCS Multiple Yes > 20 45 0.89 0.81 0.72 0.65 6.7 
D2 UAVTCS Unknown Yes > 20 65 0.51 0.94 0.48 0.23 10.4 
D3 UAVTCS Preview Yes 10-20 50 0.78 0.55 0.43 0.75 2.0 
D4 UAVTCS Multiple Yes < 10 40 0.8 0.60 0.48 0.8 1.6 
D5 UAVTCS Multiple Yes 10-20 35 0.85 0.82 0.7 0.47 3.4 
D6 UAVTCS Unknown No > 20 65 0.09 0.78 0.07 0.09 37.6 
D7 UAVTCS Unknown No 10-20 30 0.84 0.51 0.43 0.7 3.1 
D8 UAVTCS Multiple Yes > 20 60 0.86 0.94 0.81 0.27 5.8 
E1 WARC Unknown No < 10 15 0.65 0.78 0.51 0.72 2.4 
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E11 WARC Unknown No 10-20 45 0.91 0.54 0.49 0.71 5.4 
E12 WARC Unknown Yes < 10 65 0.69 0.74 0.51 0.76 2.3 
E13 WARC Iterative Yes 10-20 30 0.93 0.75 0.69 0.46 3.7 
E2 WARC Multiple Yes > 20 35 0.95 0.73 0.69 0.81 4.3 
E5 WARC First good No < 10 15 0.33 0.76 0.25 0.78 1.8 
E7 WARC First good No < 10 15 0.47 0.38 0.18 0.83 2.0 
E8 WARC Unknown Yes 10-20 65 0.87 0.81 0.71 0.51 4.6 
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Table C5. T-test and Mann-Whitney test for WARC vs. UAVTCS data points. 

 Pot. 

Recall 

Sensitivity Recall Precision Eff. 

Distr. 

Time # 

respondents 

WARC: 

mean 

  Std. dev 

0.81 

0.16 

0.73 

0.14 

0.6 

0.18 

0.56 

0.16 

4.4 

3.29 

38.5

4 

15.3

6 

24 

UAVTCS 

mean 

std. dev. 

0.83 

0.18 

0.82 

0.11 

0.63 

0.18 

0.51 

0.21 

5.3 

7.94 

41.7

5 

12.7

0 

20 

T-test:  pval 0.562 0.042 0.531 0.382 0.673 0.45

2 

 

Mann-

Whitney  

pval 

0.171 0.053 0.409 0.45 0.416 0.53  

Assympt 

signif. 

No Yes No No No No  

Kruskal-

Wallis 

0.171 0.053 0.409 0.45 0.416 0.53  
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Table C6. Full dataset: graduate vs. undergraduate students. 

 Pot. 

Recall 

Sensitivity Recall Precision Eff. 

Distr. 

Time # 

respondent

s 

undergraduate: 

mean 

  Std. dev 

0.83 

0.1 

0.82 

.1 

0.68 

0.12 

0.51 

0.15 

4.12 

3.32 

38.20 

11.8 

25 

graduate mean 

std. dev. 

0.74 

0.23 

0.71 

0.15 

0.52 

0.2 

0.58 

0.22 

5.62 

8.04 

42.37 

16.78 

19 

T-test:  pval 0.1 0.014 0.005 0.258 0.452 0.363  

Mann-Whitney 

pval 

0.265 0.02 0.004 0.1 0.84 0.316  

Assym. Median No Yes Yes No No No  
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Table C7. WARC dataset: graduate vs. undergraduate students. 

 Pot. 

Recall 

Sensitivity Recall Precision Eff. 

Distr. 

Time # 

respond

ents 

undergraduate: 

mean 

  Std. dev 

0.84 

0.12 

0.79 

0.12 

0.66 

0.14 

0.50 

0.14 

5.34 

4.14 

39.23 

13.52 

13 

graduate mean 

std. dev. 

0.76 

0.20 

0.67 

0.15 

0.52 

0.19 

0.64 

0.16 

3.29 

1.33 

37.73 

17.94 

11 

T-test:  pval 0.245 0.053 0.046 0.031 0.114 0.822  

Mann-Whitney 

pval 

0.303 0.072 0.018 0.026 0.106 0.91  

 
Table C8. UAVTCS dataset: graduate vs. undergraduate students. 

 Pot. 

Recall 

Sensitivity Recall Precision Eff. 

Distr. 

Time # respondents 

undergr

aduate: 

mean 

  Std. 

dev 

0.82 

0.07 

0.85 

0.06 

0.7 

0.09 

0.52 

0.17 

2.8 

1.30 

37.08 

10.1 

12 

graduat

e mean 

std. dev. 

0.71 

0.27 

0.71 

0.15 

0.53 

0.23 

0.49 

0.27 

8.83 

11.98 

48.75 

13.56 

8 

T-test:  

pval 

0.279 0.175 0.082 0.79 0.2 0.06  

Mann-

Whitne

y pval 

0.521 0.238 0.082 0.97 0.13 0.082  
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Table C9. Undergraduate students: WARC vs. UAVTCS. 

 Pot. 

Recall 

Sensitivity Recall Precision Eff. 

Distr. 

Time # respondents 

WARC: 

mean 

  Std. dev 

0.84 

0.12 

0.79 

0.12 

0.66 

0.14 

0.50 

0.14 

5.34 

4.14 

39.23 

13.52 

13 

UAVTCS 

mean 

std. dev. 

0.82 

0.07 

0.85 

0.06 

0.7 

0.09 

0.52 

0.17 

2.8 

1.30 

37.08 

10.1 

12 

T-test:  

pval 

0.566 0.122 0.491 685 0.054 0.656  

Mann-

Whitney  

pval 

0.205 0.27 0.81 0.611 0.019 0.81  

Assympt 

signif. 

No No No No Yes No  
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Table C10. Undergraduate students: WARC vs. UAVTCS. 

 Pot. 

Recall 

Sensitivity Recall Precision Eff. 

Distr. 

Time # respondents 

WARC: 

mean 

  Std. 

dev 

0.76 

0.20 

0.67 

0.15 

0.52 

0.19 

0.64 

0.16 

3.29 

1.33 

37.73 

17.94 

11 

UAVTC

S mean 

std. dev. 

0.71 

0.27 

0.71 

0.15 

0.53 

0.23 

0.49 

0.27 

8.83 

11.98 

48.75 

13.56 

8 

T-test:  

pval 

0.636 0.196 0.893 0.206 0.234 0.146  

Mann-

Whitney  

pval 

0.442 0.206 0.351 0.968 0.238 0.206  

Assymp

t signif. 

No No No No No No  
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Table C11. WARC dataset. Differences between three locations (three groups). 

Dataset N Mean 
Std. 

Deviation 
F (2,21) Sig 

WARC Time Spent 1.00 8 35.63 21.118 .707 .505 

2.00 6 45.00 10.000   

3.00 10 37.00 12.737   

Potential 

Recall 

1.00 8 .727273 .2264661 1.621 .222 

2.00 6 .869697 .0451505   

3.00 10 .832727 .1316143   

Recall 1.00 8 .504545 .1993496 1.742 .200 

2.00 6 .624242 .1545633   

3.00 10 .652727 .1593029   

Analyst 

Sensitivity 

1.00 8 .683056 .1449982 1.131 .342 

2.00 6 .715265 .1610193   

3.00 10 .782786 .1316652   

Precision 1.00 8 .695189 .1352719 7.313 .004 

2.00 6 .548919 .1426798   

3.00 10 .464567 .1113788   

Effort 

Distribution 

1.00 8 3.300 1.3533 1.650 .216 

2.00 6 3.533 1.2291   

3.00 10 5.800 4.6504   
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Table C12. Influence of personal characteristics on task performance: All. 

Source Dependent Variable Type III 
Sum of 
Squares 

df Mean Square F Sig. 

PostConfidence 

PotentialRecall .001 1 .001 .030 .864 
Analyst Sensitivity .002 1 .002 .093 .762 
Recall .000 1 .000 .005 .945 
Precision .031 1 .031 .962 .333 
EffortDistribution 61.414 1 61.414 1.786 .189 
Time Spent 76.200 1 76.200 .383 .540 

TRExp 

PotentialRecall .007 1 .007 .230 .634 
Analyst Sensitivity .016 1 .016 .889 .351 
Recall .000 1 .000 .004 .953 
Precision .050 1 .050 1.566 .218 
EffortDistribution .916 1 .916 .027 .871 
Time Spent 37.329 1 37.329 .188 .667 

SEExp 

PotentialRecall .061 1 .061 2.049 .160 
Analyst Sensitivity .014 1 .014 .756 .390 
Recall .078 1 .078 2.502 .122 
Precision .007 1 .007 .231 .633 
EffortDistribution 10.850 1 10.850 .316 .577 
Time Spent 553.901 1 553.901 2.784 .103 
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Table C13. Influence of personal characteristics on task performance: WARC. 

Source Dependent Variable 
Type III 
Sum of 

Squares 
df 

Mean 
Square 

F Sig. 

PostConfidence 

PotentialRecall .017 1 .017 .621 .601 
AnalystSensitivity  .013 1 .013 .563 .760 
Recall .052 1 .052 1.608 .450 
Precision .004 1 .004 .176 .456 
EffortDistribution 27.658 1 27.658 3.235 .053 
TimeSpent  .553 1 .553 .003 .227 

TRExp 

PotentialRecall .008 1 .008 .291 .000 
AnalystSensitivity  .022 1 .022 .963 .000 
Recall .052 1 .052 1.606 .000 
Precision .000 1 .000 .011 .013 
EffortDistribution 13.983 1 13.983 1.635 .001 
TimeSpent Time 
Spent 

13.625 1 13.625 .062 .003 

SEExp 

PotentialRecall .033 1 .033 1.203 .440 
AnalystSensitivity  .002 1 .002 .072 .462 
Recall .023 1 .023 .713 .219 
Precision .045 1 .045 1.746 .679 
EffortDistribution 47.327 1 47.327 5.535 .087 
TimeSpent Time 
Spent 

938.017 1 938.017 4.275 .960 

 

 

 



109 

Table C14. Influence of personal characteristics on task performance: UAVTCS. 

Source Dependent Variable Type III 
Sum of 
Squares 

df Mean Square F Sig. 

Corrected Model 

PotentialRecall .069a 3 .023 .644 .598 
AnalystSensitivity  .104b 3 .035 4.353 .020 
Recall .173c 3 .058 2.161 .133 
Precision .134d 3 .045 1.028 .407 
EffortDistribution 161.133e 3 53.711 .829 .497 
TimeSpent  140.315f 3 46.772 .256 .856 

Intercept 

PotentialRecall .325 1 .325 9.067 .008 
AnalystSensitivity  .550 1 .550 68.996 .000 
Recall .232 1 .232 8.680 .009 
Precision .048 1 .048 1.093 .311 
EffortDistribution 31.869 1 31.869 .492 .493 
Time Spent 1475.223 1 1475.223 8.074 .012 

PostConfidence 

PotentialRecall .019 1 .019 .525 .479 
AnalystSensitivity  .000 1 .000 .025 .876 
Recall .018 1 .018 .684 .420 
Precision .044 1 .044 1.001 .332 
EffortDistribution 6.524 1 6.524 .101 .755 
TimeSpent  14.065 1 14.065 .077 .785 

TRExp 

PotentialRecall 
6.596E-

005 
1 6.596E-005 .002 .966 

AnalystSensitivity  .087 1 .087 10.967 .004 
Recall .065 1 .065 2.417 .140 
Precision .086 1 .086 1.984 .178 
EffortDistribution 2.405 1 2.405 .037 .850 
TimeSpent  119.269 1 119.269 .653 .431 

SEExp 

PotentialRecall .032 1 .032 .896 .358 
AnalystSensitivity  .012 1 .012 1.533 .233 
Recall .061 1 .061 2.268 .152 

Precision 
5.612E-

005 
1 5.612E-005 .001 .972 

EffortDistribution 126.428 1 126.428 1.951 .182 
TimeSpent  1.750 1 1.750 .010 .923 
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Table C15. Grade level vs. Tracing Experience: Chi-squared All datasets. 

Grade * TRExp Crosstabulation 
Dataset TRExp Total 

0 1 

UAVTCS 
Grade 

0 
Count 12a 0b 12 
% within TRExp 80.0% 0.0% 60.0% 

1 
Count 3a 5b 8 
% within TRExp 20.0% 100.0% 40.0% 

Total 
Count 15 5 20 
% within TRExp 100.0% 100.0% 100.0% 

WARC 
Grade 

0 
Count 6a 7a 13 
% within TRExp 66.7% 46.7% 54.2% 

1 
Count 3a 8a 11 
% within TRExp 33.3% 53.3% 45.8% 

Total 
Count 9 15 24 
% within TRExp 100.0% 100.0% 100.0% 

Each subscript letter denotes a subset of TRExp categories whose column proportions 
do not differ significantly from each other at the .05 level. 
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 Table C16. Influence of eff. dist. and time spent tracing on links seen. All.  

Multiple Regression 

Model R R Square Adjusted R 
Square 

Std. Error of the 
Estimate 

1 .565a .319 .286 130.183 
 

ANOVAa 
Model Sum of Squares df Mean Square F Sig. 

1 

Regression 325446.596 2 162723.298 9.601 .0001b 
Residual 694857.291 41 16947.739   

Total 1020303.886 43    

a. Dependent Variable: Linkseen  
b. Predictors: (Constant), Time Spent, EffortDistribution 

 

Model Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. 

B Std. Error Beta 

1 

(Constant) 70.113 60.485  1.159 .253 
EffortDistribution 7.487 3.852 .283 1.944 .059 
TimeSpent Time 
Spent 

4.088 1.584 .375 2.581 .014 
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Table C17. Influence Links seen on precision. All 

Linear Regression 

ANOVAa 
Model Sum of Squares df Mean Square F Sig. 

1 

Regression .413 1 .413 16.923 .0001b 
Residual 1.026 42 .024   

Total 1.439 43    

a. Dependent Variable: Precision 
b. Predictors: (Constant), Link seen 
Model Unstandardized 

Coefficients 
Standardized 
Coefficients 

t Sig. 

B Std. 
Error 

Beta 

1 
(Constant) .711 .048  14.855 .000 
Linkseen Link seen -.001 .000 -.536 -4.114 .000 
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Table C18. Influence of eff. dist. and time spent tracing on links seen. WARC 

Multiple Regression. 

Dataset Model R R Square Adjusted R 
Square 

Std. 
Error of 
the 
Estimate 

WARC 1 .992a .983 .982 23.954 
 
ANOVAa 
Dataset Model Sum of Squares df Mean Square F Sig. 

WARC 1 

Regressi
on 

705426.288 2 352713.144 614.721 .000b 

Residual 12049.337 21 573.778   

Total 717475.625 23    

a. Dependent Variable: Linkseen Link seen 
b. Predictors: (Constant), EffortDistribution, TimeSpent Time Spent 

 
Dataset Model Unstandardized 

Coefficients 
Standardized 
Coefficients 

t Sig. 

B Std. Error Beta 

WARC 1 

(Constant) -5.309 13.584  -.391 .700 
TimeSpent Time 
Spent 

.751 .354 .065 2.119 .046 

EffortDistribution 51.761 1.654 .964 31.292 .000 
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Table C19. Influence of Links Seen on precision. WARC. 

Linear Regression 

Dataset Model R R Square Adjusted 
R Square 

WARC 1 .612a .375 .347 

 

ANOVAa 
Dataset Model Sum of 

Squares 
df Mean Square F Sig. 

WARC 1 

Regression .217 1 .217 13.200 .001b 
Residual .362 22 .016   

Total .579 23    

a. Dependent Variable: Precision 
b. Predictors: (Constant), Linkseen Link seen 

 

Dataset Model Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. 

B Std. Error Beta 

WARC 1 
(Constant) .701 .046  15.166 .0001 
Link seen -.001 .000 -.612 -3.633 .001 
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Table C20. Influence of eff. dist. and time spent tracing on links seen. UAVTCS. 

Multiple Regression. 

By DATASET: LINK SEEN vs Time spent and Effort distribution 

Dataset Model R R Square Adjusted R 
Square 

Std. Error of the 
Estimate 

UAVTCS 1 .641a .411 .341 99.544 

 
ANOVAa 
Dataset Model Sum of 

Squares 
df Mean Square F Sig. 

UAVTCS 1 

Regression 117332.882 2 58666.441 5.921 .011b 
Residual 168452.918 17 9908.995   

Total 285785.800 19    

a. Dependent Variable: Linkseen Link seen 
b. Predictors: (Constant), EffortDistribution, TimeSpent Time Spent 

 
Dataset Model Unstandardized 

Coefficients 
Standardized 
Coefficients 

t Sig. 

B Std. Error Beta 

UAVTC
S 

1 

(Constant) 6.028 86.827  .069 .945 

Time Spent 7.276 2.247 .753 3.239 .005 
EffortDistributi
on 

-3.632 3.593 -.235 -1.011 .326 
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Table C21. Influence of Links Seen on precision. UAVTCS.  

Linear Regression 

Dataset Model R R Square Adjusted 
R Square 

UAVTCS 1 .477a .228 .185 

 

ANOVAa 
Dataset Model Sum of 

Squares 
df Mean Square F Sig. 

UAVTC
S 

1 

Regression .190 1 .190 5.315 .033b 
Residual .642 18 .036   

Total .832 19    

a. Dependent Variable: Precision 
b. Predictors: (Constant), Linkseen Link seen 

 

Dataset Model Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. 

B Std. Error Beta 

UAVTC
S 

1 
(Constant) .749 .111  6.742 .000 
Linkseen Link 
seen 

-.001 .000 -.477 -2.305 .033 
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Figure C4. Influence Models for Time, Precision and Effort Distribution. 
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Figure C5. Influence Models for Time, Precision, Links seen and Effort Distribution. 

  

Precision 
Time 

Effort  

Distribution 

Precision 

Time 

Effort  

Distributio

Precision 

Time 

Effort  

Distributio

All Data 

WARC 

UAVTCS 

#Links Seen 

#Links Seen 

#Links Seen 



119 

References 

[1] N. Leveson and C. Turner, “An Investigation of the Therac-25 Accidents,” Computer, 
vol. 26, no. 7, pp. 18 –41, Jul. 1993. 

[2] G. Le Lann, “An Analysis of the Ariane 5 Flight 501 Failure - A System Engineering 
Perspective,” in Engineering of Computer-Based Systems, 1997. Proceedings., 
International Conference and Workshop on, Mar. 1997, pp. 339 –346. 

[3] D. Isbell and D. Savage, “Mars Climate Orbiter Failure Board Releases Report, 
Numerous NASA Actions Underway in Response,” NASA Press Release 99-134, Nov. 
1999. [Online]. Available: http://nssdc.gsfc.nasa.gov/planetary/text/-
mco_pr_19991110.txt  

[4] O. Gotel and C. Finkelstein, “An Analysis of the Requirements Traceability Problem,” in 
Requirements Engineering, 1994., Proceedings of the First International Conference on, 
Apr. 1994, pp. 94 –101. 

[5] J. Cleland-Huang, “Just Enough Requirements Traceability,” in Computer Software and 
Applications Conference, 2006. COMPSAC ’06. 30th Annual International, vol. 1, Sept. 
2006, pp. 41 –42. 

[6] “IEEE/EIA Standard Industry Implementation of International Standard ISO/IEC 12207: 
1995 (ISO/IEC 12207) Standard for Information Technology Software Life Cycle 
Processes,” IEEE/EIA 12207.0-1996, pp. 1 –75, 1998. 

[7] J. H. Hayes, A. Dekhtyar, and J. Osborne, “Improving Requirements Tracing via 
Information Retrieval,” in Requirements Engineering Conference, 2003. Proceedings. 
11th IEEE International, Sept. 2003, pp. 138 – 147. 

[8] S. Ratanotayanon, S. Sim, and R. Gallardo-Valencia, “Supporting Program 
Comprehension in Agile with Links to User Stories,” in Agile Conference, 2009. AGILE 
’09., Aug. 2009, pp. 26 –32. 

[9] B. Ramesh and M. Jarke, “Toward Reference Models for Requirements Traceability,” 
Software Engineering, IEEE Transactions on, vol. 27, no. 1, pp. 58 –93, Jan. 2001. 

[10] J. H. Hayes, A. Dekhtyar, S. Sundaram, and S. Howard, “Helping Analysts Trace 
Requirements: An Objective Look,” in Requirements Engineering Conference, 2004. 
Proceedings. 12th IEEE International, Sept. 2004, pp. 249 – 259. 

[11] A. Dekhtyar, J. H. Hayes, and J. Larsen, “Make the Most of Your Time: How Should the 
Analyst Work with Automated Traceability Tools?” in Predictor Models in Software 
Engineering, 2007. PROMISE’07: ICSE Workshops 2007. International Workshop on, 
May 2007, p. 4. 

[12] J. H. Hayes and A. Dekhtyar, “Humans in the Traceability Loop: Can’t Live with ’em, 
Can’t Live without ’em,” in Proceedings of the 3rd international workshop on 
Traceability in emerging forms of software engineering, ser. TEFSE ’05. New York, NY, 
USA: ACM, 2005, pp. 20–23. 

[13] D. Cuddeback, A. Dekhtyar, and J. H. Hayes, “Automated Requirements Traceability: 
The Study of Human Analysts,” in Requirements Engineering Conference (RE), 2010 
18th IEEE International, Oct. 2010, pp. 231 –240. 

[14] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo, “Recovering 
Traceability Links Between Code and Documentation,” IEEE Trans. Softw. Eng., vol. 28, 
no. 10, pp. 970 – 983, Sept. 2002. 

[15] R. Settimi, J. Cleland-Huang, O. Ben Khadra, J. Mody, W. Lukasik, and C. DePalma, 
“Supporting Software Evolution through Dynamically Retrieving Traces to UML 
Artifacts,” in Software Evolution, 2004. Proceedings. 7th International Workshop on 
Principles of, Sept. 2004, pp. 49 – 54. 



120 

[16] A. Egyed, F. Graf, and P. Grünbacher, “Effort and Quality of Recovering Requirements-
to-Code Traces: Two Exploratory Experiments,” in Requirements Engineering 
Conference (RE), 2010 18th IEEE International, Oct. 2010, pp. 221 –230. 

[17] D. Cuddeback, A. Dekhtyar, J. H. Hayes, J. Holden, and W.-K. Kong, “Towards 
Overcoming Human Analyst Fallibility in the Requirements Tracing Process (NIER 
Track),” in Proceedings of the 33rd International Conference on Software Engineering. 
New York, NY, USA: ACM, 2011, pp. 860–863. 

[18] A. Dekhtyar, O. Dekhtyar, J. Holden, J. H. Hayes, D. Cuddeback, and W.-K. Kong, “On 
Human Analyst Performance in Assisted Requirements Tracing: Statistical Analysis,” in 
Requirements Engineering Conference (RE), 2011 19th IEEE International, Sept. 2011, 
pp. 111 –120. 

[19] W.-K. Kong, J. H. Hayes, A. Dekhtyar, and J. Holden, “How Do We Trace 
Requirements: An Initial Study of Analyst Behavior in Trace Validation Tasks,” in 
Proceedings of the 4th International Workshop on Cooperative and Human Aspects of 
Software Engineering, ser. CHASE ’11. New York, NY, USA: ACM, 2011, pp. 32–39. 

[20] E. A. Holbrook, J. H. Hayes, and A. Dekhtyar, “Toward Automating Requirements 
Satisfaction Assessment,” in Requirements Engineering Conference, 2009. RE ’09. 17th 
IEEE International, Sept. 2009, pp. 149 –158. 

[21] M. F. Porter, “Readings in Information Retrieval,” K. Sparck Jones and P. Willett, Eds. 
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1997, ch. An algorithm for 
suffix stripping, pp. 313–316. 

[22] A. De Lucia, R. Oliveto, and G. Tortora, “ADAMS Re-Trace: Traceability Link 
Recovery via Latent Semantic Indexing,” in Proceedings of the 30th international 
conference on Software engineering, ser. ICSE ’08. New York, NY, USA: ACM, 2008, 
pp. 839–842. 

[23] “Glossary of Terms,” Machine Learning, vol. 30, pp. 271–274, 1998. 
[24] J. H. Hayes, A. Dekhtyar, and S. Sundaram, “Advancing Candidate Link Generation for 

Requirements Tracing: the Study of Methods,” Software Engineering, IEEE Transactions 
on, vol. 32, no. 1, pp. 4 – 19, Jan. 2006. 

[25] S. Sundaram, J. H. Hayes, A. Dekhtyar, and E. A. Holbrook, “Assessing Traceability of 
Software Engineering Artifacts,” Requirements Engineering, vol. 15, pp. 313–335, 2010. 

[26] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Information Retrieval. New 
York, NY, USA: Cambridge University Press, 2008. 

[27] C. Buckley and E. M. Voorhees, “Evaluating Evaluation Measure Stability,” in 
Proceedings of the 23rd annual international ACM SIGIR conference on Research and 
development in information retrieval, ser. SIGIR ’00. New York, NY, USA: ACM, 2000, 
pp. 33–40. 

[28] A. Marcus, J. I. Maletic, and A. Sergeyev, “Recovery of Traceability Links between 
Software Documentation and Source Code,” International Journal of Software 
Engineering & Knowledge Engineering, vol. 15, no. 5, pp. 811 – 836, 2005. 

[29] S. Siegel, Nonparametric Statistics for the Behavioral Sciences, ser. McGraw-Hill series 
in psychology. McGraw-Hill, 1956. 

[30] G. Salton, A. Wong, and C. S. Yang, “A Vector Space Model for Automatic Indexing,” 
Commun. ACM, vol. 18, pp. 613–620, November 1975. 

[31] H. Sultanov, J. H. Hayes, and W.-K. Kong, “Application of Swarm Techniques to 
Requirements Tracing,” Requirements Engineering, vol. 16, pp. 209–226, 2011. 

[32] S. Winkler, “Trace Retrieval for Evolving Artifacts,” in Traceability in Emerging Forms 
of Software Engineering, 2009. TEFSE ’09. ICSE Workshop on, May 2009, pp. 49 –56. 

[33] W.-K. Kong and J. H. Hayes, “Proximity-based Traceability: An Empirical Validation 
using Ranked Retrieval and Set-based Measures,” in Empirical Requirements 
Engineering (EmpiRE), 2011 First International Workshop on, Aug. 2011, pp. 45 –52. 



121 

[34] A. De Lucia, F. Fasano, R. Oliveto, and G. Tortora, “ADAMS Re-Trace: A Traceability 
Recovery Tool,” in Software Maintenance and Reengineering, 2005. CSMR 2005. Ninth 
European Conference on, Mar. 2005, pp. 32 – 41. 

[35] X. Zou, R. Settimi, and J. Cleland-Huang, “Phrasing in Dynamic Requirements Trace 
Retrieval,” in Computer Software and Applications Conference, 2006. COMPSAC ’06. 
30th Annual International, vol. 1, Sept. 2006, pp. 265 –272. 

[36] J. Cleland-Huang, R. Settimi, O. BenKhadra, E. Berezhanskaya, and S. Christina, “Goal-
Centric Traceability for Managing Non-Functional Requirements,” in Software 
Engineering, 2005. ICSE 2005. Proceedings. 27th International Conference on, May. 
2005, pp. 362 – 371. 

[37] J. Cleland-Huang, A. Czauderna, M. Gibiec, and J. Emenecker, “A Machine Learning 
Approach for Tracing Regulatory Codes to Product Specific Requirements,” in Software 
Engineering, 2010 ACM/IEEE 32nd International Conference on, vol. 1, May 2010, pp. 
155 –164. 

[38] J. Cleland-Huang, R. Settimi, C. Duan, and X. Zou, “Utilizing Supporting Evidence to 
Improve Dynamic Requirements Traceability,” in Requirements Engineering, 2005. 
Proceedings. 13th IEEE International Conference on, Aug. 2005, pp. 135 – 144. 

[39] M. Gibiec, A. Czauderna, and J. Cleland-Huang, “Towards Mining Replacement Queries 
for Hard-to-Retrieve Traces,” in Proceedings of the IEEE/ACM international conference 
on Automated software engineering, ser. ASE ’10. New York, NY, USA: ACM, 2010, 
pp. 245–254. 

[40] C. Marton, “Salton and Buckley’s Landmark Research in Experimental Text Information 
Retrieval,” Evidence Based Library and Information Practice, vol. 6, no. 4, 2011. 

[41] M. O. Nassar, G. Kanaan, and H. A. Awad, “Comparison between Different Global 
Weighting Schemes,” International Multi Conference of Engineers and Computer 
Scientists, Hong Kong, 2010. 

[42] G. Spanoudakis, A. Zisman, E. Pérez-Miñana, and P. Krause, “Rule-based Generation of 
Requirements Traceability Relations,” Journal of Systems and Software, vol. 72, no. 2, 
pp. 105 – 127, 2004. 

[43] C. McMillan, D. Poshyvanyk, and M. Revelle, “Combining Textual and Structural 
Analysis of Software Artifacts for Traceability Link Recovery,” in Traceability in 
Emerging Forms of Software Engineering, 2009. TEFSE ’09. ICSE Workshop on, May 
2009, pp. 41 –48. 

[44] J. Cleland-Huang, C. Chang, and M. Christensen, “Event-based Traceability for 
Managing Evolutionary Change,” Software Engineering, IEEE Transactions on, vol. 29, 
no. 9, pp. 796 – 810, Sept. 2003. 

[45] D. Hawking and P. Thistlewaite, “Proximity Operators - So Near and Yet So Far,” in 
Proceedings of TREC-4, Nov. 1995, pp. 131–143, nIST special publication 500-236. 

[46] Y. Rasolofo and J. Savoy, “Term Proximity Scoring for Keyword-based Retrieval 
Systems,” in Proceedings of the 25th European conference on IR research, ser. ECIR’03. 
Berlin, Heidelberg: Springer-Verlag, 2003, pp. 207–218. 

[47] T. Tao and C. Zhai, “An Exploration of Proximity Measures in Information Retrieval,” in 
Proceedings of the 30th annual international ACM SIGIR conference on Research and 
development in information retrieval, ser. SIGIR ’07. New York, NY, USA: ACM, 2007, 
pp. 295–302. 

[48] R. Song, M. J. Taylor, J.-R. Wen, H.-W. Hon, and Y. Yu, “Viewing Term Proximity 
from a Different Perspective,” in Proceedings of the IR research, 30th European 
conference on Advances in information retrieval, ser. ECIR’08. Berlin, Heidelberg: 
Springer-Verlag, 2008, pp. 346–357. 

[49] A. De Lucia, R. Oliveto, and P. Sgueglia, “Incremental Approach and User Feedbacks: a 
Silver Bullet for Traceability Recovery,” in Proceedings of the 22nd IEEE International 



122 

Conference on Software Maintenance. Washington, DC, USA: IEEE Computer Society, 
2006, pp. 299–309. 

[50] H. Ninness, R. Newton, J. Saxon, R. Rumph, A. Bradfield, C. Harrison, E. Vasquez, and 
S. Ninness, “Small Group Statistics: A Monte Carlo Comparison of Parametric and 
Randomization Tests,” Behavior and Social Issues, vol. 12, pp. 53–63., 2002. 

[51] M. D. Smucker, J. Allan, and B. Carterette, “A Comparison of Statistical Significance 
Tests for Information Retrieval Evaluation,” in Proceedings of the sixteenth ACM 
conference on Conference on information and knowledge management, ser. CIKM ’07. 
New York, NY, USA: ACM, 2007, pp. 623–632. 

[52] J. Cleland-Huang, C. Chang, G. Sethi, K. Javvaji, H. Hu, and J. Xia, “Automating 
Speculative Queries through Event-based Requirements Traceability,” in Requirements 
Engineering, 2002. Proceedings. IEEE Joint International Conference on, 2002, pp. 289 
– 296. 

[53] A. Marcus and J. Maletic, “Recovering Documentation-to-source-code Traceability Links 
using Latent Semantic Indexing,” in Software Engineering, 2003. Proceedings. 25th 
International Conference on, May 2003, pp. 125 – 135. 

[54] M. Höst, B. Regnell, and C. Wohlin, “Using Students as SubjectsA Comparative Study 
ofStudents and Professionals in Lead-Time Impact Assessment,” Empirical Softw. Engg., 
vol. 5, no. 3, pp. 201–214, Nov. 2000. 

[55] W. F. Tichy, “Hints for Reviewing Empirical Work in Software Engineering,” Empirical 
Softw. Engg., vol. 5, pp. 309–312, Dec. 2000. 

[56] J. Rocchio, Relevance Feedback in Information Retrieval. Prentice-Hall Inc., 1971, 
ch. 14, pp. 313–323. 

[57] M. D. Dunlop, “The Effect of Accessing Nonmatching Documents on Relevance 
Feedback,” ACM Trans. Inf. Syst., vol. 15, pp. 137–153, Apr. 1997. 

[58] X. Wang, H. Fang, and C. Zhai, “A Study of Methods for Negative Relevance 
Feedback,” in Proceedings of the 31st annual international ACM SIGIR conference on 
research and development in information retrieval, ser. SIGIR ’08. New York, NY, 
USA: ACM, 2008, pp. 219–226. 

[59] “Specifications for WARC Tools,” Retrieved May 31, 2010. [Online]. Available: http://-
code.google.com/p/warc-tools/downloads/list  

[60] “UAV Tactical Control System,” Retrieved May 31, 2010. [Online]. Available: http://-
www.fas.org/irp/program/collect/uav_tcs.htm  

[61] J. Lin, C. C. Lin, J. Huang, R. Settimi, J. Amaya, G. Bedford, B. Berenbach, O. Khadra, 
C. Duan, and X. Zou, “Poirot: A Distributed Tool Supporting Enterprise-Wide 
Automated Traceability,” in Requirements Engineering, 14th IEEE International 
Conference, Sept. 2006, pp. 363 –364. 

  



123 

Vita 

 
Date and Place of Birth: 
August 29, 1976 in Kuala Lumpur, Malaysia 
 
 
Education: 
University of Kentucky 
Bachelor of Science in Computer Science, December 1997 
 
University of Kentucky 
Master of Science in Computer Science, May 2005 
 
 
Professional Positions Held: 
Lexmark International, Software Engineer 
September 2005 – Present 
 
Analysts International, Quality Assurance Software Tester 
February 1998 – September 2005 
 
UK Laboratory for Advanced Networking, College of Engineering 
Software Verification and Validation Research Lab, Graduate Student Researcher 
May 2010 – May 2012 
 
 
Professional Publications: 
W.-K. Kong and J. H. Hayes, “Proximity-based Traceability: An Empirical Validation using 
Ranked Retrieval and Set-based Measures,” in Empirical Requirements Engineering (EmpiRE), 
2011 First International Workshop on, Aug. 2011, pp. 45 –52. 
 
W.-K. Kong, J. H. Hayes, A. Dekhtyar, and J. Holden, “How Do We Trace Requirements: An 
Initial Study of Analyst Behavior in Trace Validation Tasks,” in Proceedings of the 4th 
International Workshop on Cooperative and Human Aspects of Software Engineering, ser. 
CHASE ’11. New York, NY, USA: ACM, 2011, pp. 32–39. 
 
D. Cuddeback, A. Dekhtyar, J. H. Hayes, J. Holden, and W.-K. Kong, “Towards Overcoming 
Human Analyst Fallibility in the Requirements Tracing Process (NIER Track),” in Proceedings of 
the 33rd International Conference on Software Engineering. New York, NY, USA: ACM, 2011, 
pp. 860–863. 
 
H. Sultanov, J. H. Hayes, and W.-K. Kong, “Application of Swarm Techniques to Requirements 
Tracing,” Requirements Engineering, vol. 16, pp. 209–226, 2011. 
 
J. H. Hayes, H. Sultanov, W.-K. Kong, and W. Li, “Software Verification and Validation 
Research Laboratory (SVVRL) of the University of Kentucky: Traceability Challenge 2011: 
Language Translation,” in Proceedings of the 6th International Workshop on Traceability in 



124 

Emerging Forms of Software Engineering, ser. TEFSE ’11. New York, NY, USA: ACM, 2011, 
pp. 50–53. 
 
J. H. Hayes, W.-K. Kong, W. Li, H. Sultanov, S. A. Wilson, S. Taha, J. Larsen, S. Sundaram., 
"Software Verification and Validation Research Laboratory (SVVRL) of the University of 
Kentucky: Traceability Challenge," (2009). Conference paper, held at 2009 Workshop on 
Traceability in Emerging Forms of Software Engineering (May 18 - 18, 2009), an International 
Conference on Software Engineering workshop, TEFSE 2009. 
 


	IMPROVING TRACEABILITY RECOVERY TECHNIQUES THROUGH THE STUDY OF TRACING METHODS AND ANALYST BEHAVIOR
	Recommended Citation

	Title
	Abstract
	Dedication
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1 -  Introduction
	Problem Statement and Motivation
	Research Thesis
	Research Contributions

	Chapter 2 -  Background
	Requirements Traceability
	Evaluation Measures

	Chapter 3 -  Related Work
	Study of Methods
	Technique Evaluation Methods
	Term Proximity
	Study of the Analyst
	Analyst Evaluation Methods

	Chapter 4 -  A Proximity-based Vector Space Model
	Overview
	Purpose and Planning
	Variables and Datasets
	Experiment Design
	Threats to Validity
	Experiment Results
	Summary

	Chapter 5 -  Logging and Depicting Analyst Actions during Trace Validation Tasks
	Requirements Tracing and the Role of Human Analysts
	Study Design
	Threats to Validity
	Results and Discussion
	Observations

	Chapter 6 -  Studying Analyst Tracing Behavior
	Traceability Process Improvement
	Motivation
	Study Design
	Threats to Validity
	Results
	Observations

	Chapter 7 -  Conclusions and Future Work
	Appendices
	Appendix A -  Data for Chapter 4
	Appendix B -  Data for Chapter 5
	Appendix C -  Data for Chapter 6

	References
	Vita

