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ABSTRACT OF DISSERTATION 

 

 

 

 

MnSOD AND AUTOPHAGY IN PREVENTION OF OXIDATIVE 
MITOCHONDRIAL INJURIES INDUCED BY UVB IN MURINE SKIN 

 

UVB radiation is a known environmental carcinogen that causes DNA damage and 
increase ROS generation in mitochondria. Accumulating evidence suggests that 
mtDNA damage and increased ROS generation trigger mitochondrial translocation of 
p53. Within mitochondria, p53 interacts with nucleoid macromolecular complexes 
such as mitochondrial antioxidant MnSOD, mitochondrial DNA polymerase Polγ, and 
mtDNA. Mitochondria are considered to be a potential source for damage-associated 
molecular patterns (DAMPs) such as mtDNA, cytochrome C, ATP, and formyl 
peptides. Intracytoplasmic release of DAMPs can trigger inflammasome formation 
and programmed cell death processes. Autophagic clearance of mitochondria with 
compromised integrity can inhibit inflammatory and cell death processes. 

In this study we investigated whether and how MnSOD plays a protective role in 
UVB-induced mitochondrial damage. The possibility of MnSOD participating in the 
mtDNA repair process was addressed in vivo using transgenic and pharmacological 
approaches.  The results demonstrate that MnSOD functions as a fidelity protein that 
maintains the activity of Polγ by preventing UVB-induced nitration and inactivation 
of Polγ and that MnSOD coordinates with p53 to prevent mtDNA damage. 

We also investigated whether autophagy is an adaptive response mechanism by which 
skin cells respond to mitochondrial injury, using mouse keratinocytes (JB6 cells) and 
C57/BL6 mice as in vitro and in vivo models. The results demonstrate that UVB 
induces autophagy initiation in murine skin tissues and that down regulation of AKT-
mTOR levels triggers initiation of autophagy processes. These results suggest that 
autophagy may play a role in scavenging damaged mitochondria. 
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Taken together, the results from these studies suggest that MnSOD plays a protective 
role against UVB-induced mitochondria injury beyond its known antioxidant 
function. Within the mitochondrial matrix, MnSOD acts as an antioxidant and fidelity 
protein by prevention of UVB-induced nitration of Polγ. The functions of MnSOD 
may be to enhance mitochondrial membrane integrity and to prevent the genesis of 
oxidatively damaged mitochondrial components and subsequent intracytoplasmic 
spillage. Activation of autophagy serves as an additional response that scavenges 
damaged mitochondria. 
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1 Chapter One 
	  	  

1.1 Introduction 
 

Skin being the largest organ of the body forms an anatomical barrier against 

environmental toxicants such as xenobiotics, UV and ionizing radiation. These 

environmental agents either directly or indirectly increase generation of reactive 

oxygen species (ROS). Interestingly, UV radiation mimics ROS and at the same time 

mediates ROS generation that triggers a cascade of signaling pathways involved in 

inflammation, apoptosis, DNA repair, proliferation and cell cycle arrest. These 

signaling molecules involved in mediating these events include NFκB, COX-2, Bax, 

Bcl2, MAPK, AP-1, p53, and p21 mediated pathways. ROS plays a critical role in the 

pathogenesis of various skin diseases such as photoaging and skin cancer. (Briganti 

and Picardo 2003, Trouba et al 2002, Zhou et al 2009).  

Mitochondria are semi-autonomous organelles and the primary site for ROS 

generation in the cell. Mitochondrial DNA and proteins are more susceptible to 

oxidative damage. Exposure to agents such as UV, ionizing radiation, and chemical 

carcinogens favors increased ROS generation that results in mitochondrial 

dysfunction. The manganese superoxide dismutase (MnSOD) is a critical antioxidant 

against ROS-mediated damage by preventing the harmful effects of superoxide (O2
-•) 

through dismutation.  

Recent studies have shown MnSOD association with mtDNA to be an integral 

constituent of nucleoids in the protection of mtDNA from ROS-mediated insults 

(Kienhofer et al 2009). Depletion and/or inactivation of the antioxidant system, 

particularly MnSOD in mitochondria due to ROS overload, results in damage to 

mtDNA and mitochondrial proteins. A breach in the first line of defense that prevents 

ROS-mediated damages triggers mitochondrial translocation of the tumor suppressor 

protein p53 that assists mtDNA repair by interacting with mtDNA repair proteins 

(Zhao et al 2005b). Factors that overwhelmingly increase oxidative stress results in 

activation of transcription-independent apoptosis by mitochondrial p53 and/or 

oxidative stress-mediated activation of autophagy. Autophagy is a catabolic pathway 

involved in clearance of damaged proteins and organelles such as mitochondria to 

ensure cell survival. 
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1.2 Ultraviolet radiation 
	  

Ultraviolet radiation is a constituent of the electromagnetic spectrum of sunlight. 

UVB lies between the visible spectrum and x-ray region and the wavelengths between 

400 and 100 nm are divided into three regions, namely UVA between 400-320 nm, 

UVB between 320-280 nm, and UVC between 280-200 nm. UVC is completely 

prevented from reaching the earth by ozone layer. Approximately, 1-10% of UVB and 

more than 90% of UVA reaches the earth’s atmosphere (Bowden 2004). High energy 

UVB radiation can penetrate up to the epidermal layer of the skin. UVB radiation 

causes DNA damage, denaturation of protein, and lipid peroxidation due to direct 

absorption by DNA, proteins, and lipids. UVA radiation can penetrate up to dermis 

and increases ROS production. These results in indirect DNA damage (oxidative 

DNA damage) and damage to elastin and collagen fibers. Acute exposure to UV 

results in both beneficial and harmful effects. Beneficial effects from acute UV 

exposure include skin pigmentation (tanning), bactericidal effects, and Vitamin D 

production.  The harmful effects of UV radiation are DNA damage, sunburn, 

erythema (inflammation), and immunosuppression. Chronic exposure to UV leads to 

photo aging and has been strongly associated with skin carcinogenesis. UV radiation 

has been used in phototherapy of disease conditions such as psoriasis, vitiligo, and 

atopic dermatitis. 

1.2.1  The role of UV in skin cancer 
 

Skin is the organ most exposed to UV radiation. Non-melanoma skin cancer accounts 

for 96% of skin cancer and the remaining 4% are attributed to melanoma. Every year 

approximately a million cases of skin cancer are diagnosed in United States. The 

ability to produce pigment and degree of pigmentation are the two important risk 

factors that determine skin cancer development (Gloster and Brodland 1996, Rigel 

2008).   	  

1.2.2  Mechanisms of DNA damage and DNA repair 
 

The aromatic rings in the purines and pyrimidines structures in DNA absorb high-

energy UV photons (maximum between 245 and 290 nm wavelength) (Tornaletti and 

Pfeifer 1996). This results in base adducts, strand breaks, and adjacent base 
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dimerization. The most common mutagenic lesions induced by UVB radiation are 6-4 

photoproducts and cyclobutane pyrimidine dimers (CPD). The CPDs are formed by 

cyclobutane rings connecting the C4 and C5 carbon atoms of adjacent pyrimidines, as 

shown in Figure 1A. The 6-4 photoproducts are formed by a four -member ring 

intermediate between the C6 carbon of the 5’ pyrimidine base and the C4 carbon of 

the 3’ pyrimidine base (Pfeifer 1997), as shown in Figure 1B. Of these two photo 

lesions, CPDs occur more frequently, 6-4 photoproducts are repaired easily 

(Matsumura and Ananthaswamy 2002). When photo lesions are not repaired, UVB-

induced signature mutations result in the form of C-T and CC-TT transitions.  The 

nature of the DNA lesion determines the type of repair mechanism to be activated. 

Bulky adducts such as CPDs and 6-4 photoproducts are removed by the NER system. 

The photo lesions within the actively transcribed region are removed by transcription-

coupled repair (TCR). The global genome repair pathway (GGR) repairs lesions in 

the non-transcribed region. The NER sub-pathways differ in their initial lesion 

recognition step. In GGR, the lesion is recognized by XPC/HHR23B. In TCR, the 

lesion is recognized by RNA polymerase II (Petit and Sancar 1999, van Hoffen et al 

1995).  
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A 

 

B 

 

Figure 1.1 UV radiation induces mutagenic cyclopyrimidine dimers (CPDs) and 
6-4 photoproducts between adjacent pyrimidine dimers in the DNA. 

 

A. The CPDs are formed between C4 and C5 of adjacent pyrimidine dimers forming a 

four-ringed structure.  

B. The 6-4 photoproducts are formed between C4 of 5’ pyrimidine residue and C6 of 

3’ pyrimidine residue (adapted with permission from Matsumura Y and 

Ananthaswamy HN 2002. Expert Rev. Mol. Med. 4(26): 1-22). 
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1.2.3  p53-mediated gene regulation in UVB-exposed keratinocytes 
 

 Although keratinocytes have the ability to repair DNA damage caused by UV 

radiation, some cells retain the DNA lesions. Uncontrolled replication of these 

keratinocytes always results in skin cancer. However, skin has adaptive mechanisms 

to tightly regulate proliferation, differentiation, and cell death in different growth 

compartments of epidermis. Tumor suppressor protein p53 plays a critical role in 

mediating this temporo-spatial regulation of proliferation, differentiation, and cell 

death in keratinocytes. The initial response to UVB-induced DNA damage is p53 

stabilization by phosphorylation of serine 15 and 20 residues that results in nuclear 

translocation of p53. As a transcription factor, p53 up-regulates expression of cell 

cycle control proteins such as p21/WAF1 (el-Deiry et al 1993) and GADD45 (Smith 

et al 1994). p21 (wild-type p53 activated fragment1)/CIP1 inhibits cyclin dependent 

kinase (CDK) and cause cell cycle arrest at G1-S phase (Harper et al 1993). GADD45 

inhibits transition from G0-S phase and G2-M phases, by interacting with 

proliferating cell nuclear antigen (PCNA). GADD45 also stimulates the NER repair 

pathway (Maeda et al 2002). By regulating the cell cycle, p53 provides sufficient time 

for DNA repair before the S phase. In cells with severe DNA damage, p53 

upregulates transcriptional dependent and transcriptional independent apoptotic 

pathways (Mihara et al 2003).  

1.2.4  Differential function of p53 in UVB exposed skin 
 

UVB-induced p53 protein plays a significant role in regulating apoptosis and DNA 

repair in the undifferentiated and differentiated compartments of epidermis. Loss of 

p53 decreases UVB induced DNA repair while the apoptotic rate remains unchanged 

(Li et al 1996). In the undifferentiated compartment, p53-independent apoptosis is 

minimal, while p53-dependent DNA repair is predominant. On the other hand, in the 

differentiated compartment p53-dependent apoptosis is predominant. Further, there is 

reduced activation of the NER pathway, which is p53 independent in the 

differentiated compartment (Li et al 1997). Apoptosis effectively eliminates damaged 

keratinocytes in differentiated compartment. On the other hand, DNA repair system 

effectively repairs the damaged keratinocytes in the basal compartment. This complex 

mechanism ensures epidermal integrity by protecting the epidermal stem cell 

population in the basal cell layer that is responsible for replenishing the epidermal 
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keratinocytes and is therefore critical to maintain homeostasis, as shown in Figure 2 

(Tron et al 1998). UVB-induced mutation in p53 results in disruption of temporo-

spatial regulation resulting in proliferation of basal cells with DNA damage and 

resistance to apoptosis. This gives a selective advantage to the p53-mutated clones 

over normal cells that undergo apoptosis when exposed to subsequent UVB radiation. 

The net result of keratinocyte proliferation-apoptosis dysregulation is the clonal 

expansion of p53-mutated cells that causes skin cancer. 
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Figure 1.2 UVB induced cellular changes in epidermis 

In the differentiated compartment of epidermis UVB-induced p53 causes increase in 
apoptosis. In the undifferentiated compartment of epidermis UVB-induced p53 causes 
increase in DNA repair (adapted from Tron VA et.al., 1998. Am. J. Pathol. 153(2): 
579-585) 
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1.2.5  Effects of UVB-induced ROS generation in skin 
	  
Generation of ROS is the most immediate consequence of UV exposure in skin 

(Herrling et al 2006). Absorption of shorter wavelength UV radiation by conjugated 

bonds of organic molecules within the cells generates ROS. Keratinocytes exposed to 

UVB radiation activate xanthine oxidase and nitric oxide synthase (cNOS) to generate 

increased levels of NO• and O2
-• which in turn react to form peroxynitrite 

(Deliconstantinos et al 1996). Endogenous sensitizers, such as porphyrin and NADH, 

absorb energy from UV radiation and react with oxygen molecules to produce ROS 

(de Gruijl 2000). UV radiation can act both as a complete and incomplete carcinogen 

by causing damage to DNA, protein, and lipids. The endogenous photosensitizers, 

such as flavins, quinones, and porphyrins, absorb energy from UV radiation. These 

excited photosensitizers transfer energy to O2 molecule by type II photosensitization 

mechanism to generate singlet and triplet oxygen. The guanine nucleotide has the 

lowest ionization potential, hence it is targeted by ROS generated by type II 

photosensitization mechanism. This results in increased formation of 8- oxo-7,8,-

dihydro-2’-deoxyguanosine (8-oxo-dG) (Cadet et al 2000). 8-oxo-dG is the major 

oxidative base modification produced by hydroxy radicals and/or singlet oxygen on 

the C8 position of the 2’-deoxyguanosine (2-dG) in the nucleotide pool or within 

DNA (Cadet et al 2000, Hayakawa et al 1995, Kasai and Nishimura 1983). 8-oxo-dG 

plays a critical role in mutagenesis and carcinogenesis by pairing with adenine and 

cytosine (Shibutani et al 1991). Chronic exposure to UVB causes increased 8-oxo-dG 

formation. Hence, failure to remove 8-oxo-dG results in increased skin tumor 

formation (Kunisada et al 2005). Oxidation of guanine in DNA or formation of 8-oxo-

dG in the nucleotide pool can cause G:C to T:A or A:T to C:G transversions. The 8-

oxo-dG in the nucleotide pool is hydrolyzed to 8-oxo-dGMP by MTH1 protein 

(Nakabeppu 2001) and prevents spontaneous incorporation of 8-oxo-dG during DNA 

replication. 2-OH-A/adenine DNA glycosylase (MUTYH), 8-oxoG DNA glycosylase 

(OGG1), and apurinic/apyrimidinic (AP) endonuclease (APEX2) (Ide et al 2003) are 

involved in the removal to 8-oxo-dG from  DNA as shown in Figure 3. All these 

enzymes are identified both in the nucleus and mitochondria (Tsuchimoto et al 2001).     
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Figure 1.3 ROS-induced oxidative DNA damage and DNA repair mechanism.  

Reactive oxygen species form 8-oxo-dG and 2-OH-A in the nucleotide pool and in 

the DNA strands. This results in G:C to A:T or A:T to G:C transversions. The 8-oxo-

dG and 2-OH-A are removed by OGG1 and MUTYH respectively from the DNA 

strands. MTH1 hydrolyzes 8-oxo-dG, 8-oxo-dA and 2-OH-A, making them 

unavailable for incorporation during replication (adapted from Nakabeppu Y et al., 

2004. Ann. NY. Acad. Sci. 1011:101-111). 
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1.2.6  UVB-induced ROS in skin carcinogenesis 
 

Murine multistep skin carcinogenesis studies suggest that UV radiation is a complete 

carcinogen (Willis et al 1981).  UV induced photoproducts and oxidative damage to 

DNA produce mutations in proto-oncogenes and tumor suppressor genes. The C-T 

and CC-TT transition mutation in hot spot regions of the p53 gene is an early event 

and p53 mutations are observed in more than 50% of actinic keratosis. Mutated 

undifferentiated cells (initiated cells) in the basal compartment of epidermis appear as 

early as 8 weeks (Berg et al 1996, Ziegler et al 1993, Ziegler et al 1994). The initiated 

cells have the following physical characteristics: 

a. Unlimited proliferative potential 

b. Increased resistance to UVB induced apoptosis compared to adjacent normal           

keratinocyte 

c. Ability to generate and withstand ROS mediated damage 

Clonal expansion of initiated cells results in UVB induced tumor promotion. UVB as 

tumor promoter can cause clonal expansion of initiated cells (Cerutti 1985, Zhang et 

al 2001). UVB-induced ROS mediated MAPK kinase activation plays a crucial role in 

AP-1 and NFκB activation. UVB activates ERK1/2, p38, and JNK signaling 

pathways by ROS generation (Bode and Dong 2003). UVB-induced ROS also 

stimulates the epidermal growth factor receptor (EGFR) by phosphorylation (Bode 

and Dong 2003, Cooper and Bowden 2007, Peus et al 1998). The activation of 

proliferation signaling cascades lead to skin cancer. 

1.3 Tumor suppressor p53  
 

p53 regulates the cell cycle and mutations that causes loss of the function of p53 often 

results in carcinogenesis.  The ability of wild-type p53 to inhibit transformation 

induced by oncogenes, and deletion or mutation of wild-type p53 allele in different 

tumor types classified p53 as a tumor suppressor protein (Levine et al 1991).  

p53 is activated in response to a tumor associated stress signal or various other 

cellular stress signals, such as hypoxia, irradiation, and DNA damage. p53 is 

described as “guardian of the genome” due to the fact that the biochemical function of 

p53 as a transcription factor can translate in to biological function by regulating cell 

cycle.  (Lane 1992, Vousden and Lu 2002). UVB- induced skin cancer studies with 
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p53 knock-out mice reveal a decrease in apoptotic keratinocytes. In UVB exposed 

skin tissue, p53 induces apoptosis and not DNA repair in differentiated layers of 

epidermis. This results in efficient elimination of damaged keratinocytes. Hence, p53 

has been named the “guardian of the tissue” in skin (Ziegler et al 1994). More than 

90% of skin squamous cell carcinomas have mutated p53 (Brash et al 1991, Ziegler et 

al 1993).     

Equal erythemogenic doses of UVA, UVB, and UVC induce p53 in a wavelength 

specific pattern. UVC increased p53 stabilization in the upper epidermal layer, while 

UVB increased p53 stabilization throughout the epidermis and UVA increased p53 

stabilization only in basal layers of epidermis.  However, the mechanism of p53 

induction by UVA is different from that of UVB and UVC (Campbell et al 1993).  

1.3.1  Post-translational p53 modification by UV radiation 
 

In more than 50% of cancer, p53 mutation results in disruption of the apoptotic 

process. In normal cells, p53 is inactive and maintained at low concentrations by 

Mdm2 mediated polyubiquitination and degradation. Cellular stress factors such as 

hypoxia, metabolic stress, and DNA damage induced by UV radiation, ionizing 

radiation, and ROS result in p53 activation, stabilization, and by rapid accumulation 

of p53 in the cell (Harris and Levine 2005, Prives and Hall 1999). This increase in 

p53 level is due to decreased p53-Mdm2 interaction that results in decreased 

ubiquitination and degradation of p53 (Momand et al 2000). The above mentioned 

cellular stress factors employ different post-translational modifications of p53 to 

induce p53 activation. Various post-translational modifications of p53, such as 

phosphorylation, methylation, monoubiquitylation, sumoylation, and acetylation have 

been identified and are well elucidated. UV mediates phosphorylation of 2 threonine 

and 7 serine residues in the N-termini and 2 serine residues in the C-termini. This 

leads to increased p53 transcription, stabilization, and increased p53-mediated 

transcription. This results in increases in DNA repair, cell cycle control, and apoptotic 

proteins (Appella and Anderson 2001). UV radiation mediates acetylation of 2 lysine 

residues in the C-terminal domain. Acetylation of p53 results in increased 

transcriptional activity of p53 by an increase in its DNA binding property (Sakaguchi 

et al 1998). Methylation of lysine 372 residue by Set9methyl transferase increases 

nuclear localization and p53 stability (Chuikov et al 2004).  



	   12	  

1.3.2  Translocation of p53 to mitochondria 
 

Although mitochondrial translocation of p53 is a well-established phenomenon, the 

role of post-translational modification in translocation is still debated. Recent studies 

suggest monoubiquitylation as one of the possible mechanisms that may target p53 to 

mitochondria (Marchenko et al 2007).  Mitochondria are the major source of ROS. 

ROS regulate communication between mitochondria and nucleus by redox 

modulation of various proteins such as phosphatases, kinases, and transcriptional 

factors (Liu et al 2008, Storz 2006). ROS mediate loss of zinc ions and oxidation of 

cysteine residues (Cys 227) in the DNA binding domain of the p53 protein. This 

interferes with the DNA binding properties of p53. (Fojta et al 1999). In the oxidized 

state, p53 interacts with thymine containing response elements. On the other hand, in 

the reduced state, p53 interacts with cytosine containing p53 response elements. 

These findings suggest modification of p53 transcriptional activity by ROS (Buzek et 

al 2002). Our laboratory findings show p53 translocation to mitochondria in JB6 cells 

and mice skin tissue exposed to the known oxidative stress inducer, TPA (Zhao et al 

2005b). Mitochondrial localization of p53 has wide-ranging effects, from inducing 

apoptosis to mtDNA repair. As a transcriptional factor, p53 regulates the expression 

of the synthesis of cytochrome c oxidase 2 (SCO2) and regulates energy metabolism. 

SCO2 is required for cytochrome c oxidase complex formation and increased 

mitochondrial oxygen consumption (Matoba et al 2006). Apart from SCO2, p53 also 

regulates expression of key glycolytic enzymes. p53 negatively regulates 

phosphoglyceromutase and regulates the Tp53-induced glycolytic and apoptotic 

regulator (TIGAR). TIGAR dephosphorylates fructose-2, 6- bisphosphate to fructose-

6-phosphate that is utilized in the pentose pathway (Bensaad et al 2006, Kondoh et al 

2005).  
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1.3.3  p53 in mtDNA homeostasis  
 

p53 plays an important role in mtDNA homeostasis. Studies with p53 knock-out mice 

fibroblasts show 50% reduction in mtDNA copy numbers and 40% reduction in 

mitochondrial mass. Similar results were observed in p53 deficient human fibroblasts. 

A decrease in p53 levels causes a decrease in mtDNA transcription and decrease in 

mtDNA-packaging factor (mtTFA) levels, and p53-regulated subunit of 

ribonucleotide reductase (p53R2) levels. mtTFA and p53R2 play critical roles in 

mtDNA maintenance (Lebedeva et al 2009).  Increase in ROS and mtDNA damage 

triggered by DNA damaging agents, such as ethidium bromide, triggers mitochondrial 

translocation of p53. Mitochondrial p53 rescues mtDNA by interacting with Polγ and 

participating in the mitochondrial base excision repair (mtBER) process (Achanta et 

al 2005). The role of p53 in mtBER involves:  

(i) Stimulating nucleotide incorporation by Polγ 

(ii) Increasing glycosylase activity of mtBER 

(iii) Enhancing polymerization and 3’-5’ exonuclease activity of Polγ (Chen et 

al 2006, de Souza-Pinto et al 2004).  

Further, mitochondrial p53 reduces incorporation of nucleoside analog in mtDNA 

(Bakhanashvili et al 2008) and interacts with mitochondrial single stranded binding 

protein (mtSSB) to excise 8-oxodG from mtDNA (Wong et al 2009). 

1.3.4  p53 mediated apoptosis  
	  

1.3.4.1 Transcription-dependent apoptosis 
 

p53 mediates the intrinsic and extrinsic apoptotic pathways by transcriptional 

regulation of pro-apoptotic and anti-apoptotic proteins such as Bax (Miyashita and 

Reed 1995), Fas/Apo-1 (Owen-Schaub et al 1995), insulin- like growth factor binding 

protein 3 (IGF-BP3) (Buckbinder et al 1995), Killer/DR5 (Wu et al 1997), Noxa (Oda 

et al 2000a),  the p53-regulated apoptosis inducing protein-1 (p53-AIP1) (Oda et al 

2000b), PERP (Attardi et al 2000), and Bcl-2 (Haldar et al 1994). 

 

p53 regulates the mitochondria mediated intrinsic apoptotic pathway by transcription 

dependent and transcription independent mechanisms (Moll and Zaika 2001). p53 
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regulates transcription of apoptotic protease activating factor-1 (APAF-1), a 

scaffolding protein that complexes with cytochrome c released from mitochondria and 

caspase-9 to form apoptosome (Robles et al 2001). Similarly, p53 regulates 

transcription of p53 upregulated modulator of apoptosis (PUMA), a BH3 domain 

containing protein. Mitochondrial translocation of PUMA causes induction of 

cytochrome C release to trigger activation of the intrinsic pathway (Nakano and 

Vousden 2001). 

1.3.4.2 Transcription-independent apoptosis 
 

The transcription independent pro-apoptotic function of p53 involves a direct 

translocation of p53 to mitochondria and the outer mitochondrial membrane. The p53 

translocation event precedes alterations in mitochondrial membrane potential and the 

cytochrome c release associated with apoptosis (Erster et al 2004, Marchenko et al 

2000). Cytoplasmic p53 is sequestered through its interaction with Bcl-xL. Nuclear 

translocation of p53 by the genotoxic stress signal results in transcriptional 

upregulation of PUMA. PUMA interaction with Bcl-xL aids disruption of 

cytoplasmic sequestration of p53 by Bcl-xL. This results in p53 translocation to the 

outer mitochondrial membrane. p53 interacts and activates Bax to induce 

mitochondrial outer membrane potential (MOMP) (Chipuk et al 2004, Chipuk et al 

2005).  Within the outer mitochondrial membrane, p53 activates Bak by disrupting its 

interaction with Mcl1 (Leu et al 2004).  

1.3.5  p53 regulates mitochondrial ROS 
 

 p53 is essential for mitochondrial biogenesis and ROS homeostasis. Lack of p53 

leads to decreased mitochondrial mass, indicative of reduction in mitochondrial 

oxidative capacity (Lebedeva et al 2009). Mitochondrial antioxidant MnSOD activity 

is increased in p53 deficient cells, which is also a common feature in most cancer cell 

types with p53 mutations. These p53 deficient cells are capable of surviving in 

conditions that induce cell death in normal cells (Pani et al 2000). An increase in p53 

expression reduces MnSOD expression and activity. p53 interaction with Sp-1, a 

transcription factor that binds to the MnSOD promoter, is attributed to the p53-

induced suppression of MnSOD gene expression (Dhar et al 2006). 
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1.4 Mitochondrial structural organization and function  
 

Mitochondria are organelles approximately 0.5 to 1 µm in diameter and up to 5 µm 

long. The morphology, activity, and distribution of mitochondria are regulated by 

fusion and fission process (Chan 2006, Okamoto and Shaw 2005). Mitochondria have 

two phospholipid bilayer membranes. The outer and inner mitochondrial membranes 

are separated by intermembrane space and have distinct physiochemical properties 

based on their phospholipid composition and protein-to-lipid ratio. The outer 

membrane contains porin, a protein that forms nonspecific pores that are widely 

permeable to ions and larger molecules. The outer membrane has a protein-to-lipid 

ratio of 50:50. The inner membrane has an 80:20 protein-to-lipid ratio and is less 

permeable to ions and small molecules. The mitochondrial matrix is composed of 

mtDNA and an array of enzymes involved in carbohydrate, lipid, and amino acid 

oxidation. The inner membrane is organized into numerous projections called cristae. 

The cristae compartmentalize the mitochondrial matrix and increase the surface area 

of the inner membrane. The inner membrane contains respiratory complexes 

responsible for oxidative phosphorylation. The NADH and FADH2 produced in the 

mitochondrial matrix by the citric acid cycle are used as substrates for oxidative 

phosphorylation. Oxidative phosphorylation is a chemiosmotic process in which 

electrons are transferred through a series of respiratory protein complexes (Lenaz et al 

2010) to oxygen and thereby reducing oxygen to water. The electron transfer by 

respiratory complexes is coupled to the transfer of protons against the electrochemical 

gradient from matrix to the intermembrane space. The electrochemical gradient that 

results from proton transfer across the inner membrane enables F1F0ATP synthase to 

generate ATP (Krauss 2001).  

 

1.4.1  Mitochondrial respiratory complexes in ROS generation 
 

Complex I is considered to be one of the main sites of ROS production and are 

involved in lipid peroxide production (Takeshige and Minakami 1979). Electron leak 

from complex I and transport of electron from succinate to NAD+ are two possible 

mechanisms by which complex I generate O2
-•. Compounds like Adriamycin generate 
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O2
-• via complex I by a redox cycling mechanism. This involves transfer of an 

electron to Adriamycin, resulting in semiquinone formation. The semiquinone radical 

subsequently reacts with oxygen to regenerate Adriamycin and O2
-•.  (Salvatorelli et 

al 2006). 

 

 O2
-• generation by complex III involves the Q cycle with transfer of electron against 

the electrical gradient. In state 4 mitochondrial respiration, the very high 

electrochemical potential inhibits the transfer and allows sufficient time for 

semiquinone to react with oxygen, resulting in O2
-• generation (Jezek and Hlavata 

2005). Increased electron flow through complex II and auto-oxidation of flavin in 

complex II cause complex II to generate O2
-• (McLennan and Degli Esposti 2000, 

Zhang et al 1998). In addition to respiratory complexes, mitochondrial 

glycerophosphate dehydrogenase and dihydroorotate dehydrogenase are also involved 

in O2
-• generation in mitochondria.  

1.4.2  Pathological conditions associated with ROS-induced mtDNA damage  
 

The mitochondrial genome consists of multiple copies of circular DNA that encodes 

13 polypeptides required for oxidative phosphorylation, and 2 RNAs and 22 tRNAs 

required for their translation. The mitochondrial genome follows a non-Mendelian 

pattern of inheritance.  About 93% of the mitochondrial genome is composed of 

coding DNA and no introns, with a gene density of 1 gene per 450 base pairs. The 

mitochondrial genome is not protected by histone proteins, however it is associated 

with several proteins to form nucleoids. Mitochondrial replication is based on strand-

coupled and strand-displacement models. All genes are transcribed as large 

polycistrons. 

 

mtDNA is a target for most chemical carcinogens and mtDNA is implicated as having 

a causal role in metastasis and oncogenic transformation (Allen and Coombs 1980, 

Backer and Weinstein 1980).  Most tumors have a high frequency of homoplasmic 

point mutations in mtDNA (Coller et al 2001, Fliss et al 2000).  mtDNA mutations 

and deletions are implicated in a number of hereditary disease conditions, such as  

Leber’s hereditary optic neuropathy (LHON) (Wallace et al 1988) and spontaneous 

neuromuscular diseases such as chronic progressive ophthalmoplegia (CPEO), and 
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Kearns-Sayresyndrome (KSS) (Holt et al 1988, Wallace 1999).  mtDNA deletions 

such as 4977-bp (Yang et al 1994) and 3895-bp (Krishnan et al 2004) in skin 

mitochondria are used as biomarkers for cumulative exposure to sun that is indicative 

of photo-aging. The implication of mitochondria in diseases is due to its ability 

generate ROS. ROS induced damage to mtDNA results in alteration of polypeptides 

encoded by mtDNA for respiratory complexes. These results in a further decrease of 

electron transfer activity and increases ROS generation. This establishes a “vicious 

cycle” of oxidative stress (Levine et al 1991) and decline in energy production 

(Achanta et al 2005, Lenaz and Genova 2010).  

1.5 Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS) 
 

When the balance between pro-oxidant and antioxidant is tipped toward pro-oxidant, 

oxidative stress results. This may be due either to increased production of pro-

oxidants like reactive oxygen species (ROS) and reactive nitrogen species (RNS) or 

due to depletion of the antioxidant system. Aerobic metabolic processes, such as 

respiration, that involves mitochondria and microsomes, are responsible for ROS 

generation. O2
-• is formed by transfer of an electron to ground state molecular oxygen 

Sequential reduction of O2
-• results in formation of various ROS and water as shown 

in Figure 4. Approximately 1-2% of the oxygen consumed for mitochondrial 

respiration is converted to O2
-• or into its dismutation product hydrogen peroxide 

(H2O2) (Boveris and Chance 1973). Further, in the presence of such metal ions such 

as Fe (III) or Cu (III), oxygen and H2O2 can generate hydroxyl ions that target the 

amino acid side chains at metal-binding site and cause protein oxidation (Stadtman 

1990). This results in loss of enzyme function, cell integrity, and genomic instability 

(Hensley et al 2000). ROS is implicated in tumor initiation, promotion and 

progression stages of multistage carcinogenesis model. ROS can modulate cell 

growth, cell proliferation, and cell survival molecules such as c-FOS, c-JUN, c-MYC 

and AKT (Cerutti 1985, Cerutti and Trump 1991).  
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Figure 1.4 Sequential reduction of oxygen to water 

Conversion of molecular oxygen to water requires sequential addition of 4 electrons 
that results in formation of different intermediate ROS molecules such as superoxide, 
peroxide, and hydroxyl radical, respectively. (Adapted from Imlay JA 2008. Annu. 
Rev. Biochem. 77:755-776. 
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1.5.1  Peroxynitrite and its effects on cellular components 
 

Peroxynitrite (OONO-) is an anion and a strong oxidant. Unlike OH•, OONO- can 

diffuse within a cell to cause oxidative damage and nitration (Radi 1998). The 

OONO- anion is formed at diffusion-controlled rates by the reaction between O2
-• and 

NO•. The site of OONO- formation is spatially associated with O2
-•. This is due to the 

limited ability of O2
-• to diffuse across membranes and its short half-life. The sources 

of O2
-• are mitochondria, NADPH oxidase, and xanthine oxidase. The OONO- is 

produced at the rate of 50-100 µM per minute (Alvarez et al 2004, Nalwaya and Deen 

2005, Quijano et al 2005). Although OONO- has a very short half-life at physiological 

pH (approximately 10 ms), its ability to diffuse through cell membrane up to 5- 20 

µm has wide-ranging effects on adjacent cells. Within cells, OONO- cause antioxidant 

depletion and inhibition, protein aggregation, cytosolic enzyme activation and 

inhibition, enzyme cofactor impairment, modification of molecular mediators of cell 

signaling pathways, lipid peroxidation, calcium dysregulation, mitochondrial 

dysfunction, and DNA damage (Szabo et al 2007).  

1.5.1.1 Direct oxidation by peroxynitrite 
 

Oxidation reactions of OONO- are pH dependent and both OONO- and OONOH 

participate in oxidation of biomolecules with thiol groups and transition metal centers. 

Peroxynitrite reacts with thiol containing proteins such as glutathione and cysteine 

(Carballal et al 2003, Quijano et al 1997). The important cellular reaction involved in 

scavenging OONO- is glutathione oxidation.  Seleno compounds and selenoproteins 

such as glutathione peroxidase are also involved in reducing OONO- and are recycled 

by glutathione. OONO- disrupts transition metal centers of proteins, such as alcohol 

dehydrogenase (Zn-S center) and aconitase (4Fe-4S cluster) (Szabo et al 2007). 

Heme-containing proteins, such as oxyhemoglobin (Romero et al 2003), peroxidases, 

and cytochrome c2+, are also oxidized by peroxynitrite (Szabo et al 2007).  

1.5.1.2 Nitration reactions by peroxynitrite  
 

The Fe, Zn, Cu, and Mn containing superoxide dismutase enzymes are nitrated by 

OONO-. MnSOD nitration leads to subsequent inactivation of its enzymatic activity 

(MacMillan-Crow et al 1998). In the presence of transition metals, metalloproteins, 
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and carbon dioxide, OONO- can cause nitration of tyrosine (Ischiropoulos et al 1992), 

tryptophan residues of proteins, guanine residues of DNA (8-oxo and 8-nitro guanine) 

(Burney et al 1999, Szabo and Ohshima 1997), and aliphatic groups of sugars and 

fatty acids.   

1.5.1.3 Peroxynitrite-carbon dioxide reaction  
 

The OONO- reaction with carbon dioxide gains more importance because:  

1. It accounts for 30-40% (intracellular) and 90% (extracellular) of OONO- reactivity.   

2. There is an abundant availability of carbon dioxide in both intra- and extra -cellular 

compartments.  

The OONO- and CO2 yields an adduct nitrosoperoxocarbonate (ONOOCO2
-). The 

ONOOCO2
- decomposes to carbonate (CO3

•-) and nitrogen dioxide (•NO2) radicals, 

which are one-electron oxidants (Goldstein et al 2005, Lymar and Hurst 1998). 

Compared with OONO- anion, the oxidation reactions that form these radicals have 

lower yield. However, the nitration reaction has a higher yield and is accelerated by a 

factor of 2 in the presence of carbon dioxide (Radi et al 2001). 

A small fraction of OONO- also undergoes slow homolytic fission and proton-

catalyzed decomposition to form one-electron oxidants •NO2 and CO3
•-. This reaction 

assumes significance due to the fact that this reaction initiates lipid peroxidation 

processes (Mustafa et al 2010). Peroxynitrite can also nitrosate thiols, lipids, and 

sugars that elicit strong biological responses, such as vasodilation (Radi 1998). 

1.5.2  Peroxynitrite in mitochondria  
 

Mitochondria remain the primary site for formation and interaction of peroxynitrite. 

Cells exposed to •NO have decreased mitochondrial respiration due to inactivation of 

succinate dehydrogenase, NADH dehydrogenase and ATPase by OONO- formed 

from the reaction between O2
-• and NO• (Radi et al 1994). Peroxynitrite inhibits 

glutamate/malate and succinate supported oxygen consumption and also enhances 

generation of ROS such as O2
-• and H2O2 in a complex-II dependent mechanism. In 

addition to increasing the generation of ROS, OONO- also inactivates the 

mitochondrial antioxidant MnSOD by nitration of Tyr34 residue. This further 

aggravates mitochondrial injury by failure to detoxify the accumulating O2
-• within 
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mitochondria (MacMillan-Crow et al 1996, Yamakura et al 1998). Recently, 

cytochrome c has been identified as a target for peroxynitrite induced nitration. 

Nitration of cytochrome c at Tyr67 residue is critical due to its ability to promote 

conformational change by disrupting the heme-methionine bond (Batthyany et al 

2005, Cassina et al 2000). Nitration of cytochrome c increases its peroxidase activity. 

This adds further insult to the mitochondrial oxidative injury caused by peroxynitrite 

(Jang and Han 2006).  

1.6 Antioxidant systems 
	  

1.6.1  MnSOD in normal cellular homeostasis and various disease processes 
 

Manganese superoxide dismutase (MnSOD) is a nuclear encoded mitochondrial 

antioxidant protein. MnSOD is essential to protect aerobic life from adverse effects of 

oxygen by catalyzing the dismutation of O2
-• generated by oxidative phosphorylation. 

MnSOD is a 96 kDa homotetramer transported to mitochondria by an amino-terminal 

mitochondrial target sequence. The importance of MnSOD to aerobic life forms is 

well demonstrated by MnSOD gene knock-out studies in mice and Drosophila 

models (Duttaroy et al 2003, Li et al 1995). In mice, deletion mutation of the MnSOD 

gene results in embryonic lethality at 5-21 days after birth and exhibits several 

pathologic lesions that include myocardial injury, left ventricular dilation and 

hypertrophy, severe anemia due to bone marrow depletion, neurodegeneration, severe 

mitochondrial damage, and lipid peroxidation (Lebovitz et al 1996, Li et al 1995). 

Several important mitochondrial enzymes involved in oxidative phosphorylation and 

the citric acid cycle such as succinate dehydrogenase and aconitase activities are 

significantly reduced in MnSOD knock-out mice and Drosophila (Li et al 1995, Paul 

et al 2007). MnSOD enzymatic activity is decreased by nitration of tyrosine residues, 

resulting in decreased mitochondrial activity (MacMillan-Crow et al 1998, 

MacMillan-Crow and Thompson 1999). Inactivation of MnSOD by nitration has been 

implicated in Alzheimer’s disease pathogenesis (Anantharaman et al 2006). Long-

term heterozygous MnSOD knock-down studies reveal increased oxidative DNA 

damage to both nuclear and mitochondrial DNA and a higher incidence of 

carcinogenesis (Van Remmen et al 2003). In condition such as diabetes, cancer, 

radiation injury, neuronal disease, and cardiovascular diseases there is a decrease in 

MnSOD expression or activity. Treatment with SOD mimetics such as 5, 10, 15, 20-
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tetrakis (4-benzoic acid) porphyrin (MnTBAP), MnIIITE-2-PyP5+, and MnTnHex-2-

PyP5+ prevents the adverse effects of decreased MnSOD expression or activity. 

(Batinic-Haberle et al 2010, Batinic-Haberle et al 2011). 

1.6.2  Role of MnSOD as tumor suppressor 
 

The role of MnSOD in cancer has been unclear until now due to the fact that MnSOD 

expression and/or activity increases or decreases in different tumor types (Chung-man 

Ho et al 2001, Oberley et al 1978, Oberley and Buettner 1979, Zhong et al 1999). The 

decrease may be attributed to either defects in MnSOD gene expression due to 

mutation in the promoter region (Wan et al 1994) or to inactivation by nitration 

(Vickers et al 1999). Tumors that have increased metastatic potential and poor 

prognosis have increased MnSOD expression (Janssen et al 2000, Malafa et al 2000). 

Further, over-expression of MnSOD alters many physical properties of tumors such as 

increased proliferation, decreased apoptosis, anaplasia, invasiveness, and anchorage 

independent growth (Chuang et al 2007, Church et al 1993). The role of MnSOD 

tumor initiation and promotion has been well studied by a murine multistep chemical 

skin carcinogenesis model. There was decreased incidence and number of papillomas 

in MnSOD over-expressing mice compared to the non-transgenic genotype due to a 

decrease in the level of 4-HNE modified proteins by tumor promoter treatment (Zhao 

et al 2001). With MnSOD knock-down mice, the incidence and number of papillomas 

were similar to that of wild-type mice and this might be due to an increase in both 

apoptosis and proliferation after tumor promoter treatment. (Zhao et al 2002). The 

increase in apoptosis might suppress the increased proliferation in MnSOD knock-

down mice. Further, apoptosis precedes proliferation as apoptosis peaks at 6 h post 

treatment while mitosis peaks at 24 h post treatment. An intervention of the 

proliferative phase was made by treatment with MnSOD mimetic 12 h after tumor 

promoter treatment. The mimetic treatment reduces proliferation without affecting the 

apoptotic process resulting in a 50% decrease in tumor incidence. This provides a 

possible mechanism by which MnSOD acts as a tumor suppressor by reducing the 

oxidative stress-mediated tumorigenesis process (Zhao et al 2005a).  
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1.6.3  Regulation of transcription factors by MnSOD in tumor suppression 
 

Another mechanism by which MnSOD causes tumor suppression is by altering the 

expression or activity of other tumor suppressors, oncogenes, and transcription factors 

(Chuang et al 2007, Kiningham and St Clair 1997, Li et al 1998). Regulation of 

transcription factors such as AP-1 and p53 by MnSOD has been well studied in our 

laboratory using a murine multi-stage skin carcinogenesis model.  Treatment with 

DMBA and TPA activates AP-1 and p53, resulting in increased proliferation and 

apoptosis in the basal layers of the epidermis. Compared to wild-types, the increase in 

AP-1 activation in MnSOD knock-down is much greater. The increased AP-1 

activation can be prevented by treatment with MnIIITE-2-PyP5+. This demonstrates 

the role of MnSOD in modulating AP-1 activity in multi-stage skin carcinogenesis 

(Zhao et al 2005a).  

 

1.6.4  Modulation of ROS by MnSOD in tumor suppression  
 

MnSOD acts as a tumor suppressor primarily by modulating ROS generation. 

(Oberley 2005). In most of the tumor types, over-expression of MnSOD causes partial 

suppression of tumor phenotype. Alteration in MnSOD enzymatic activity by 

polymorphisms such as I58T or V9A plays a significant role in tumor suppression 

(Ambrosone et al 1999, Borgstahl et al 1996). This suggest that increase in MnSOD 

level results in tumor suppression in different tumor types (Oberley 2005).  

Modulation of the signal transduction pathway by redox regulation is attributed to 

non-cytotoxic tumor suppression by increased MnSOD levels.  

1.6.5  Alteration of MnSOD expression in carcinogenesis 
 

Our laboratory has extensively studied alterations in the regulation of MnSOD gene 

expression. Sp-1 and AP-2 binding sites have been identified in the MnSOD GC-rich 

promoter region (Wan et al 1994). Sp-1 is a transcriptional activator of basal and 

TPA-induced MnSOD expression and Sp-1 interaction with transcription factors such 

as p53 repress MnSOD gene expression. AP-2, on the other hand, is a transcriptional 

repressor of MnSOD expression (Dhar et al 2006, Porntadavity et al 2001, Xu et al 

2002). An NF-κB response element identified in the intron 2 region confers NF-κB-

mediated MnSOD expression to which nucleophosmin is an important cofactor (Dhar 
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et al 2004, Xu et al 1999a, Xu et al 2007b). Transition, insertion, and transversion 

mutations to the GC rich promoter region have been identified in different tumor cell 

types. These mutations in the promoter result in at least 50% reduction in MnSOD 

transcription compared to the normal promoter (Xu et al 1999b). The CàG 

transversion at -38 site in several human colorectal carcinomas creates a binding site 

for both Sp-1 and AP-2. Hence, the relative levels of Sp-1 and AP-2 determine 

MnSOD expression (Xu et al 2008). The insertion of A in the 11-straight G region at -

93 site disrupts the nucleophosmin mediated interaction between the 11G loop at the 

promoter region and the enhancer region in the intron 2, resulting in decreased 

MnSOD expression (Xu et al 2007b).   

Four kinds of single nucleotide polymorphisms (SNP) have been identified in the 

MnSOD gene. The Ala16Val SNP due to CàG transition in the mitochondrial signal 

sequence affecting MnSOD translocation to mitochondria is well understood and 

studied in different tumor types. The Ala16 wild-type variant forms a partial α-helical 

structure that localizes in the mitochondrial matrix. The Val16 variant forms a β-sheet 

structure that localizes in the mitochondrial inner membrane and has decreased 

MnSOD activity (Rosenblum et al 1996, Sutton et al 2003). The Val16 SNP has been 

implicated in ovarian, lung, pancreatic, and prostate cancer (Bag and Bag 2008, 

Johnatty et al 2007, Wang et al 2001, Woodson et al 2003). Other MnSOD SNPs 

affect MnSOD transcription, enzyme activity and thermal stability, and create 

potential glucocorticoid receptor binding sites (Borgstahl et al 1996, Hernandez-

Saavedra and McCord 2003, Hernandez-Saavedra and McCord 2009, Ho and Crapo 

1988). Recent studies have identified MnSOD as an integral constituent of nucleoids. 

As a constituent of nucleoid MnSOD plays a vital part in protecting mtDNA and 

associated proteins from oxidative stress (Kienhofer et al 2009). 

1.7 Mitochondrial DNA polymerase gamma 
 

DNA polymerase gamma (Polγ) is the mitochondrial polymerase enzyme responsible 

for mtDNA replication, repair, and the recombination process (Graziewicz et al 2006, 

Kaguni 2004). Polγ was first identified as a RNA-dependent DNA polymerase present 

in mitochondria that represents 1% of the total cellular polymerase activity (Bolden et 

al 1977, Fridlender et al 1972). Polγ belongs to the A group family of polymerases. 

Polγ catalytic subunit shares structural homology with other polymerases in the group 
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that includes Escherichia coli DNA polymerase I, Thermus aquaticusDNA 

polymerase, and bacteriophage T7 DNA polymerase (Lecrenier et al 1997). The 

human Polγ catalytic subunit is mapped to chromosomal location 15q24 and the 

accessory subunit is mapped to chromosomal location 17q23-24. The Polγ encodes 

1239 amino acids and has a 13-glutamine stretch in the N-termini encoded by CAG 

repeats in exon 2 (Lecrenier et al 1997, Ropp and Copeland 1996). Polγ is a 

heterotrimer composed of a 140 kDa catalytic unit and a dimer of 55 kDa accessory 

subunits (Bolden et al 1977, Gray and Wong 1992, Lim et al 1999, Wang et al 1997, 

Yakubovskaya et al 2006).  

A wide range of substrates that includes homopolymers such as poly(dA).oligo(dT) 

and poly(dC).oligo(dG), single primed M13 DNA, and activated DNA is utilized by 

Polγ. Polγ possesses a unique reverse transcriptase activity that enables it to utilize 

poly(rA).oligo(dT) homopolymer. The ability of Polγ to utilize poly(rA).oligo(dT) is 

often used in assays to differentiate Polγ from other DNA polymerases (Graziewicz et 

al 2006). The N-terminal region contains an exonuclease domain with conserved 

motifs I, II, and III. The C-terminal region has a polymerase domain with conserved 

motifs A, B, and C and 6 conserved sequence elements (γ1, γ2, γ3, γ4, γ5, and γ6) 

(Kaguni 2004). Extended spacer region separates the polymerase and exonuclease 

domain (Yakubovskaya et al 2007). The catalytic subunit interacts with the accessory 

subunits by spacer region. It is thought that the spacer element might be involved in 

functional linking between polymerase and exonuclease activities, DNA binding, and 

subunit interaction (Graziewicz et al 2006).  

The polymerase activity of Polγ has a fidelity of 1 error in 2.8 million base pairs 

incorporated (Johnson and Johnson 2001). Mutations in the conserved sequence 

elements and spacer region affect processivity, DNA binding affinity, polymerase 

activity, and exonuclease activity. Hence Polγ mutations have been implicated in 

various mitochondrial disorders (Luo and Kaguni 2005). Polγ is active between pH 

7.5 and 9.5 and requires divalent cation (Mg2+/Mn2+). The two tyrosine residues (Tyr 

951 and 955) along with glutamine residue (Glu 895) form a hydrophobic pocket in 

the active site of Polγ. The amino acid residues in the active site are responsible for 

interaction and selection of nucleotides by Polγ (Bienstock and Copeland 2004, 

Graziewicz et al 2004). Polγ activity is inhibited by dideoxynucleotides, sulfhydryl 
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blocking agent N-ethylmaleimide (NEM), ROS, and high salt concentration. 

However, it is resistant to inhibition by aphidicolin. The inhibitory effects of NEM, 

ROS and high salt concentration are attributed to the absence of an accessory subunit. 

Further, the presence of an accessory subunit confers resistance to inhibition in the 

holoenzyme (Graziewicz et al 2002, Lim et al 1999) .  

The presence of a Polγ accessory subunit also stimulates processivity, polymerase and 

exonuclease activity of the catalytic subunit (Carrodeguas et al 1999, Johnson et al 

2000, Wang and Kaguni 1999). The catalytic subunit of Polγ has intrinsic 5’-

deoxyribose phosphate (dRP) lyase activity that is involved in mtDNA repair by a 

base excision repair pathway (Longley et al 1998). The intrinsic dRP-lyase activity 

allows Polγ to catalyze and remove the 5’-dRP sugar moiety from an incised 

apurinic/apyrimidinic site and incorporates appropriate nucleotides. The accessory 

subunit enhances the lyase activity of the catalytic subunit (Longley et al 1998, Pinz 

and Bogenhagen 1998).  

Mutations in the POLG gene are extensively studied and lead to mtDNA depletion 

and deletion disorders. Mutations in POLG are associated with diseases such as 

progressive external ophthalmoplegia (PEO), Alper’s syndrome, premature 

menopause, Parkinsonism, sensory ataxia neuropathy, dysarthria and 

ophthalmoparesis (SANDO), and mitochondrial neurogastrointestinal encephalopathy 

(MNGIE) (Graziewicz et al 2006). Mutations in POLG can be classified as 3 types; 

namely,  

(i) Class I mutations that occur in the Polγ catalytic site and reduce Polγ 

enzymatic activity 

(ii) Class II mutations that occur in the DNA binding channel and interfere 

with DNA binding affinity  

(iii)  Class III mutations that interfere with interaction between the catalytic 

subunit and the accessory subunit and decrease processivity (Lee et al 

2009).  

Mutations in the polymerase domain that cause PEO, such as Y955C and R943H, 

decrease polymerase activity. The decrease in the polymerase activity of Polγ is due 

to amino acid substitution that interferes with enzyme translocation and interaction 
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with nucleotides. This results in decreased affinity of incoming nucleotides, increased 

error rates, and reduced catalysis (Ponamarev et al 2002). Mutations in the spacer 

region are classified as either a class II or class III mutation. Mutations in the global 

intrinsic region and/or accessory intrinsic region results in decreased Polγ affinity for 

mtDNA (Lee et al 2009). Mutations in the linker region that results in replacement of 

a neutral amino acid residue by a positively charged amino acid residue such as 

W748S destabilize DNA binding and decrease enzyme activity by decreasing 

processivity (Chan et al 2006). Mutations such as A467T in motif A of the 

polymerase domain are class III mutations that decrease Polγ processivity (Chan et al 

2005).  

Anti-retroviral drugs, such as the nucleoside reverse transcriptase inhibitor (NRTI) 

cause mitochondrial toxicity that mimic hereditary mitochondrial disease. 

Mitochondrial toxicity is attributed to Y951, Y955, and E895 residues in the active 

site of Polγ that result in increased sensitivity to NRTI inhibition. The Y951 residue 

stabilizes the incoming nucleotide analogue, while Y955 and E895 interact and form 

a steric block at the active site (Graziewicz et al 2004) . This may cause termination 

of DNA replication by incorporating terminal dideoxynucleotides into the replicating 

DNA strand. This also causes increased Polγ error by misincorporation, inefficient 

removal of nucleotides from the mtDNA, and inhibition of nucleotide incorporation 

by Polγ by steric inhibition of the active site (Graziewicz et al 2006). Studies with 

cardiac- targeted Y955C mutation in transgenic mice explored the features of 

cardiomyopathy caused by NTRIs. Transgenic mice with cardiac- targeted Y955C 

mutation in Polγ exhibited mtDNA depletion, oxidative stress, and mitochondrial 

damage to cardiomyocytes (Lewis et al 2007). 

1.8 Autophagy 
 

Autophagy is defined as a programmed cell death (type II) or a pro-survival pathway 

in a different physiological and pathological context (Ferraro and Cecconi 2007). 

Autophagy is a catabolic pathway involved in the degradation and recycling of 

cellular components such as long-lived and damaged organelles and proteins. 

Organelles such as mitochondria are the source and primary target for ROS.  Studies 

have shown that autophagy efficiently removes defective mitochondria that generate 

more ROS and less ATP with high levels of mtDNA mutations. Such an effective 
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mechanism of mitochondrial turnover by autophagy ensures cell survivability by 

maintaining mtDNA integrity and thereby mitochondrial function (Gu et al 2004, 

Kroemer et al 2010, Yen and Klionsky 2008). Studies show that mitochondrial ROS- 

induced lipid peroxidation products activate autophagy (Scherz-Shouval and Elazar 

2007). Furthermore, mitochondria are considered to be a potential source of damage 

associated with molecular patterns (DAMPs) such as mtDNA, cytochrome c, ATP, 

and formyl peptides (Zitvogel et al 2010). Intracytoplasmic release of DAMPs and/or 

exposure to UVB triggers formation of the NLR (nucleotide-binding domain, leucine-

rich-repeat-containing) family, pyrin domain containing 3 (NRLP3) inflammasome. 

Activation of the inflammasome leads to activation of pro-inflammatory cytokines by 

Caspase-1 (Feldmeyer et al 2007, Keller et al 2008, Nestle et al 2009). Release of 

DAMPs into the extracellular milieu triggers a systemic inflammatory response 

syndrome (SIRS) (Krysko et al 2011, Zhang et al 2010). Autophagic clearance of 

damaged mitochondria inhibits NRLP3 inflammasome formation and activation of 

pro-inflammatory mediators (Nakahira et al 2011, Zhou et al 2011). UVB-induced 

inflammation plays an important role in enhancement of tumor growth (Sluyter and 

Halliday 2000, Sluyter and Halliday 2001). UVB radiation regulates signaling 

pathways that stimulate production of inflammatory mediators. Further inhibition of 

inflammation with anti-inflammatory agents inhibits skin carcinogenesis, especially 

during the tumor promotion and progression stages (Halliday and Lyons 2008). 

1.8.1  General features of autophagy 
 

Cellular homeostasis is completely dependent on synthesis and degradation of 

organelles and macromolecules that are vital for cellular functions. Within eukaryotic 

cells, lysosomal autophagy process and/or proteosomal ubiquitination degrade 

cellular components. While the transient proteins are degraded by the proteosomal 

ubiquitination pathway (Ciechanover et al 2000), the lysosomal autophagy pathway is 

involved in degrading macromolecules and turnover of cellular organelles 

(Mizushima et al 2008). Three major forms of autophagy occur in mammalian cells 

based on acquisition of substrate by lysosomes: macroautophagy, chaperone-mediated 

autophagy and microautopahgy (Cuervo 2004). Chaperone-mediated autophagy 

involves transport of proteins with a specific motif across lysosomal membranes 

aided by chaperone proteins that interact with lysosomal membrane proteins. 
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Microautopahgy is a process that involves cytoplasmic intake by lysosomal 

invagination. Macroautophagy is a process that involves sequestration of cytoplasmic 

contents in double membrane vesicles called autophagosomes. Autophagosomes 

mature through fusion with lysosomes to deliver the contents for degradation by 

lysosomal acid proteases (Levine and Klionsky 2004). The amino acids and other 

degradation byproducts are exported to the cytoplasm for synthesis of 

macromolecules and for metabolism by lysosomal permeases and transporters 

(Mizushima 2007). Thus, autophagy replenishes cellular energy reserved by ATP 

generation and recycles damaged and non-functional proteins and organelles. 

1.8.2  Molecular mechanism of autophagy 
 

 At the molecular level, the autophagy pathway involves the following steps: 

1. Nucleation or formation of phagophore.  

2. Ubiquitin-like conjugation and formation of Atg5-Atg12-Atg16L complex 

and its association with extending phagophore membrane. 

3. LC3 lipidation and association with growing phagophore membrane. 

4. Acquisition of macromolecule targets for degradation. 

5. Autophagosome-lysosomal fusion and degradation of macromolecule. 

1.8.3  Phagophore formation  
 

Phagophore membranes are derived from endoplasmic reticulum, trans-golgi 

apparatus and endosomes. Vesicular protein sorting 34 (VPS34), a class III PI3 

kinase, and its binding partner Beclin-1, a known tumor suppressor, is involved in 

phagophore formation. VPS34 uses phosphatidylinositol (PI) to generate 

phosphotidyl inositol triphosphate (PI3P) for phagophore elongation. VPS34 interacts 

with Beclin-1 to recruit Atg proteins to the phagophore. Bcl2 disrupts beclin-1 

interaction with VPS34 by its interaction mediated by the BH3 domain (Pattingre et al 

2005). Bcl2-VPS34 interaction is disrupted by Jnk1-mediated phosphorylation of 

Bcl2 in response to nutrient stress signal. VPS34-Beclin-1 complex recruits additional 

pro-autophagic regulatory proteins such as UV radiation resistance associated 

proteins (UVRAG), a tumor suppressor (Liang et al 2006), BAX-interacting factor-1 
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(BIF-1), Ambra1 (Fimia et al 2007), Atg14L (Matsunaga et al 2009), and autophagy 

inhibitory proteins such as RUN domain and cysteine-rich domain containing Beclin-

1 interacting protein (Rubicon) (Matsunaga et al 2009) and Bcl2 (Pattingre et al 

2005). 

1.8.4  Formation of Atg5-Atg12-Atg16L multimeric complex 
 

The Atg5-Atg12 complex is formed by a ubiquitin-like conjugation system that 

involves Atg7, which functions like the E1 ubiquitin activation enzyme. Atg7 binding 

to its C-termini glycine residue activates Atg12 in an ATP-dependent manner. Atg12 

is transferred to Atg10 that covalently links Atg12 to Atg5 at K130 residue. Atg10 

acts as an E2-like ubiquitin carrier protein. Atg5-Atg12 complex forms the Atg5-

Atg12-Atg16L multimeric complex with Atg16L dimers. The Atg5-Atg12-Atg16L 

complex is targeted to the extending phagophore. Association of the Atg5-Atg12-

Atg16L complex with growing phagophore induces asymmetric recruitment of 

processed LC3II protein (Kirkin et al 2009, Mizushima 2007).  

1.8.5  LC3 lipidation  
 

Processing and conjugation of microtubule-associated light chain 3 protein (LC3) to 

autophagosomes are critical steps in the autophagy pathway and involve an ubiquitin- 

like conjugation system. LC3 protein is a mammalian homologue to the yeast Atg8 

protein. The cytosolic full length LC3 protein is proteolytically cleaved by cysteine 

protease Atg4 that exposes the C-terminal G120 residue. Atg7, an E1-like ubiquitin 

activation enzyme, activates the cleaved LC3 in an ATP-dependent manner. Activated 

LC3-I (18kDa) protein is conjugated with phospotidylethanolamine (PE) at an 

exposed carboxyl glycine and transferred to Atg3. The lipidated LC3-II (14-16 kDa) 

is targeted to the autophagosome, which in turn is dependent on the Atg5-Atg12 

complex (Kirkin et al 2009). 

1.8.6  Acquisition of macromolecule targets for degradation  
 

LC3-II acts as a receptor molecule for the adaptor molecule p62/SQSTM1 that 

promotes turnover of poly-ubiquitinated protein aggregates. 
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1.8.7  Autophagosome-lysosomal fusion  
 

After the growing ends of the autophagosome completely fuse, the autophagosomes 

combine with the endosomal compartment of lysosome to form the autolysosome. 

The Lamp1 and Lamp2 proteins play a critical role in the maturation of the 

autolysosomes (Tanaka et al 2000). During the maturation process, the 

macromolecules within the vesicles are delivered to the endosomal compartment that 

lowers the pH and facilitates the degradation process carried out by acid proteases 

(Eskelinen 2005).  

1.8.8  Autophagy regulation by signaling pathways 
 

Autophagy is strongly induced as an adaptive response mainly to starvation signals. 

The mammalian target of rapamycin (mTOR) plays a critical role in nutrient sensing, 

cell growth, and autophagy regulation (Jin 2006). The mTOR signaling pathway is 

activated by AKT-PI3 kinase, a growth factor signaling pathway. mTOR acts as a 

downstream control point for hypoxia, ATP levels, insulin signaling, and growth 

factor receptor signaling that promotes cellular growth through regulation of 

ribosomal protein expression and protein translation (Sabatini 2006, Shaw 2009). In 

normal growth promoting conditions, mTOR inhibits autophagy through its inhibitory 

effects on Atg1 kinase. A decrease in AKT signaling and activation of adenosine 5’-

monophosphate (AMP)-activated protein kinase (AMPK) by decreased ATP levels 

inhibit mTOR and upregulate the catabolic process through activation of autophagy. 

Hypoxia induces autophagy through activation of hypoxia inducing factor-1 (HIF1). 

Activated HIF1 targets include Bcl2/adenovirus E1B 19 kDa interacting protein 

(BNIP3) and BNIP3L, both of which are involved in mitochondrial clearance through 

mitophagy (Schweers et al 2007, Tracy et al 2007). In cardiac and skeletal muscles, 

BNIP3 activates mitochondrial clearance in response to ROS (Hamacher-Brady et al 

2006, Mammucari et al 2007), and involves interaction with the LC3 related molecule 

Gamma amino butyric acid-A-receptor associated protein (GABARAP) (Schwarten et 

al 2009).  

Activation of oncogenic signaling pathways such as PI3K-AKT and growth factor 

receptor suppress autophagy. Hence, autophagy is implicated in cancer as a tumor 

suppressor.  In addition, proteins involved in regulation of autophagy, such as Beclin-

1, UVRAG, Bif1 and Atg4C, are considered to be tumor suppressors. This is based on 
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the fact that inactivation of these protein results in tumor promotion. Mitochondria 

and peroxisomes produce ROS as a part of their normal oxidative function that are 

considered to be a potential source for DNA damage. Mitochondria and peroxisomes 

damaged by ROS are recycled by autophagy and favor genetic stability in normal 

cells. On the other hand, suppression of autophagy increases DNA damage, and the 

loss or gain of chromosomes thereby increases genetic instability and leads to tumor 

promotion (Brech et al 2009).  Mitochondrial recycling by autophagy is a selective 

process of mitochondrial quality control through which autophagy selectively 

removes damaged mitochondria. As shown in Figure 6, autophagy exerts its tumor 

suppressor function through regulation of mitochondria within the cells (Jin 2006).   
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Figure 1.5  Schematic representation that illustrates carcinogenesis suppression 
by autophagy  

Autophagy selectively degrades defective mitochondria and inhibits the vicious cycle 

of ROS generation and mitochondrial damage, thereby preventing nuclear DNA 

(Adapted from Jin S. 2006 Autophagy. 2(2): 80-84). 
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1.9 Research objectives 
 

Although UVB-induced oxidative stress and cancer are well documented in murine 

skin carcinogenesis models, the survival mechanisms involved in those keratinocytes 

that survive the UVB insult remain unclear. This dissertation addresses the following 

hypotheses: 

1.9.1 Manganese superoxide dismutase is a mitochondrial fidelity protein that 
protects Polγ against UV-induced inactivation 

 

In chapter two we provide experimental data that suggest that epidermal cells use a 

novel dual-step approach to counteract UVB insult, which involves tumor suppressor 

protein p53 and mitochondrial antioxidant protein MnSOD. The mtDNA damage by 

UVB recruits p53 to mitochondria where p53 might provide support to mitochondrial 

DNA polymerase Polγ in repairing the damaged mtDNA and help Polγ in maintaining 

mtDNA integrity. We also demonstrate that UV-mediated peroxynitrite production in 

mitochondria inactivates redox sensitive proteins such as Polγ and impairs its ability 

to maintain mtDNA integrity, and that MnSOD acts as a nucleoid protector by 

interacting with Polγ and protecting it from oxidative stress induced inactivation.  

1.9.2 AKT is a target for UVB- induced autophagy in mouse skin 
 

In chapter three we investigate an autophagic mechanism that may contribute to the 

survival of keratinocytes after UVB exposure. Our results suggest that AKT inhibition 

triggers activation of autophagy and the removal of compromised mitochondria from 

keratinocytes exposed to UVB. The overall goal of this research is to investigate how 

mitochondrial redox status can be modulated to prevent the development of cancer.  

The data provide insights into the mechanisms leading to the survival of damaged 

cells. The data also suggest the potential use of Mn-porphyrin based mimetics for the 

prevention of skin cancer.  
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2 Chapter Two 
	  

Manganese	  superoxide	  dismutase	  is	  a	  mitochondrial	  fidelity	  
protein	  that	  protects	  Polγ	  against	  UV-‐induced	  inactivation	  

 

This chapter is based on work submitted as: Vasudevan Bakthavatchalu, Swatee Dey, 

Yong Xu, Teresa Noel, Paiboon Jungsuwadee, Aaron K. Holley, Sanjit kumar Dhar, 

Ines Batinic-Haberle and Daret St Clair, Oncogene, doi: 10.1038/onc.2011.407  

 

2.1 Highlights 
 

Manganese superoxide dismutase is a nuclear encoded primary antioxidant enzyme 

localized exclusively in the mitochondrial matrix. Genotoxic agents, such as UV 

radiation, generate oxidative stress and cause mitochondrial DNA (mtDNA) damage. 

The mitochondrial DNA polymerase (Polγ), a major constituent of nucleoids, is 

responsible for the replication and repair of the mitochondrial genome. Recent studies 

suggest that mitochondria contain fidelity proteins, and that MnSOD constitutes an 

integral part of the nucleoid complex. However, it is not known whether or how 

MnSOD participates in the mitochondrial repair processes. Using skin tissue from 

C57/BL6 mice exposed to UVB radiation, we demonstrate that MnSOD plays a 

critical role in preventing mtDNA damage by protecting the function of Polγ. Q-PCR 

analysis shows an increase in mtDNA damage after UVB exposure. 

Immunofluorescence and immunoblotting studies demonstrate p53 translocation to 

mitochondria and interaction with Polγ after UVB exposure. The mtDNA 

immunoprecipitation assay with Polγ and p53 antibodies in p53+/+ and p53-/- mice 

demonstrates an interaction between MnSOD, p53, and Polγ.  The results suggest that 

these proteins form a complex for the repair of UVB-associated mtDNA damage. The 

data also demonstrate that UVB exposure injures the mtDNA D-loop in a p53-

dependent manner.  The study used MnSOD-deficient mice and demonstrates that 

UVB-induced mtDNA damage is MnSOD-dependent. Exposure to UVB results in 

nitration and inactivation of Polγ, which is prevented by addition of the MnSOD 

mimetic MnIIITE-2-PyP5+. These results demonstrate for the first time that MnSOD is 

a fidelity protein that maintains the activity of Polγ by preventing UVB-induced 
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nitration and inactivation of Polγ. The data also demonstrate that MnSOD plays a role 

along with p53 to prevent mtDNA damage. 

 

 

2.2 Introduction 
 

Ultraviolet (UV) radiation is a pro-oxidant and carcinogen that induces oxidative 

stress and DNA damage (Aitken et al 2007, Bickers and Athar 2006). UV irradiation 

leads to increased stabilization and accumulation of tumor suppressor protein p53 in 

the skin. The main contributing factor to non-melanoma skin cancer is UVB-induced 

signature mutations in the p53 gene (Brash et al 1991, Hall et al 1993, Liu et al 1994). 

N-acetyl cysteine (NAC), superoxide dismutase mimetic, and catalase mimetic 

attenuate UVB-induced p53 stabilization without altering the transcriptional 

activation and cell cycle arrest functions of p53, suggesting a role for oxidative stress 

in UVB-induced p53 stabilization and accumulation (Decraene et al 2004a, Renzing 

et al 1996). Increased cellular stress by ROS triggers p53 translocation to 

mitochondria, leading to apoptosis and mitochondrial DNA (mtDNA) repair (Mihara 

et al 2003, Mihara and Moll 2003, Waster and Ollinger 2009, Zhao et al 2002, Zhao 

et al 2005b). 

mtDNA is organized in the inner mitochondrial membrane as nucleoids. The 

nucleoids consist of mtDNA-protein macromolecular complexes containing 2-8 

mtDNA molecules associated with various proteins such as mitochondrial 

transcription factor A (mTFA), a mitochondrial single-strand DNA-binding protein 

(mtSSB) and mitochondrial DNA polymerase gamma (Polγ) (Chen and Butow 2005, 

Garrido et al 2003, Legros et al 2004). mtDNA is more susceptible to UV-induced 

damage than nuclear DNA because it lacks histone and an elaborate repair system 

(Brown et al 1979, Shokolenko et al 2009, Yakes and Van Houten 1997). 

Polγ is the only known polymerase enzyme responsible for replication and repair of 

mtDNA (Bogenhagen et al 2001, Hubscher et al 1979, Stuart et al 2004). The Polγ 

holoenzyme is a heterotrimer consisting of 1 catalytic subunit and 2 accessory 

subunits (Carrodeguas et al 1999, Gray and Wong 1992, Yakubovskaya et al 2006). 

The Polγ catalytic subunit has polymerase and proofreading activity for mtDNA 
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replication, and 5’-deoxyribose-5-phosphate lyase activity for base excision repair. 

The accessory subunits bind nucleotide to mtDNA for faster replication, increased 

processivity and protection of the catalytic subunit from ROS-mediated oxidative 

damage (Johnson et al 2000) . Polγ is susceptible to oxidative modifications due to 

the presence of 31 tyrosine residues in the catalytic subunit, including the two highly 

conserved tyrosine residues in the active site responsible for catalytic efficiency 

(Graziewicz et al 2002, Graziewicz et al 2004, Lewis et al 2006, Lim et al 2003, Van 

Goethem et al 2001).  

UV irradiation triggers NO• production in keratinocytes, which combines with O2
-• to 

form the powerful oxidant peroxynitrite (Maglio et al 2005, Wu et al 2010). 

Inactivation of proteins by tyrosine nitration is regarded as a marker of nitrosative 

stress. The importance of nitration to protein structure or function depends on the 

location of tyrosine residues in the proteins; for example, its location in a loop or 

hydrophobic milieu such as the active site of an enzyme (Alvarez and Radi 2003).  

ROS produced in mitochondria are detoxified by enzymatic and non-enzymatic 

antioxidant defense systems. The major constituents of the enzymatic system are 

MnSOD (Weisiger and Fridovich 1973), glutathione peroxidase (Esworthy et al 1997) 

and members of the thioredoxin family (Holmgren 1985). MnSOD forms the first line 

of defense against the O2
-• produced in the mitochondria. Lack of MnSOD causes 

accumulation of oxidative mtDNA damage as well as inactivation of respiratory and 

Krebs cycle enzymes (Li et al 1995, Melov et al 1999). Recent studies have identified 

MnSOD as a nucleoid complex component that may protect mtDNA and proteins 

associated with mtDNA from oxidative damage (Kienhofer et al 2009). Further 

MnSOD enzymatic activity is regulated by mitochondrial SIRT3 to maintain ROS 

levels and mitochondrial homeostasis (Ozden et al 2011, Tao et al 2010). We propose 

that epidermal cells use the following novel dual-step strategy to counteract a UVB 

insult involving tumor suppressor protein p53 and MnSOD 

 1) Damaged mtDNA recruit p53 to mitochondria where p53 enhances mitochondrial 

DNA polymerase Polγ repair activity  

2) MnSOD may act as a fidelity protein by interacting with Polγ and protecting it 

from oxidative stress-induced inactivation.  
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2.3 Material and Methods 
	  

2.3.1  Materials 
 

All chemicals and reagents were purchased from Sigma-Aldrich (St. Louis, MO) with 

exception of the following: protease inhibitor set III from Calbiochem (La Jolla, CA), 

dithiothreitol from BioRad (Carlsbad, CA), rabbit poly-clonal anti-MnSOD from 

Upstate Technology (Lake Placid, NY), Protein A/G agarose from Santa Cruz 

Biotechnology (Santa Cruz, CA), rabbit poly-clonal anti-nitrotyrosine antibody from 

Cayman Chemical (Ann Arbor, MI), rabbit poly-clonal anti-Polγ antibody from 

Pierce Biotechnology (Rockford, IL), mouse monoclonal anti-p53 (1C12) antibody 

from Cell Signaling Technology Inc. (Danvers, MA), Monoclonal p53 antibody (DO-

1) from Santa Cruz Biotechnology (Santa Cruz, CA), poly(rA).oligo(dT)12-18 from 

Midland Certified Reagent Company (Midland, TX), and DNase I from New England 

Biolabs Inc. (Ipswich, MA). 

2.3.2  Animal studies 
 

Heterozygous MnSOD knockdown mice (MnSOD+/-) (Li et al 1995, Van Remmen et 

al 1999) and p53 knock-out mice (p53-/-) (Jacks et al 1994) were generated and 

genotyped as described. The animal experimental procedures used in this study were 

approved by the Institutional Animal Care and Use Committee of the University of 

Kentucky. 

2.3.3  UV exposure 
 

Depilated mice in the resting phase of hair cycle and JB6 cells were exposed to 

ultraviolet irradiation in a Plexiglass cabinet (Plastic Design Corporation, MA). A 

single dose of 5kJ/m2 (mice) or 400mJ/cm2 (JB6 cells) was delivered by UVB lamps 

(Black light blue lamp, Sankyo Denkco Ltd., Japan). The UV emittance was 

measured using a UVB photometer radiometer (International Light Technologies, 

Peabody, MA) equipped with a UVB measuring head.  
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2.3.4  Isolation of mitochondrial fraction from mouse skin tissue  
 

The skin mitochondria were isolated as previously described (Zhao et al 2002). 

Briefly, the tissue was homogenized and diluted in 5 mL of ice-cold mitochondrial 

isolation buffer containing 0.225 mol/L mannitol, 0.075 mol/L sucrose, and 1 mmol/L 

EGTA (pH 7.4) The cytoplasmic, nuclear and tissue contaminants were removed by 

centrifugation at 576 × g (Sorvall 5B centrifuge) for 5 minutes. Intact mitochondria 

were isolated from the filtered supernatant and subsequently washed with 1 ml 

mitochondrial isolation buffer by centrifugation at 9,000 × g for 5 minutes. The 

protein concentration was determined by Bradford assay (Bio-Rad, Richmond, CA). 

2.3.5  mtDNA isolation and mtDNA damage analysis using quantitative PCR 
(Q-PCR) 

 

The Q-PCR to analyze mtDNA damage using Pico-Green dye was performed as 

described previously (Kovalenko and Santos 2009).  mtDNA was isolated from 

mouse skin tissue using a genomic DNA extraction kit (QIAGEN, Chatsworth, VA). 

The mtDNA and PCR products were quantified using the PicoGreen dsDNA 

Quantitation kit (Invitrogen Corp., Carlsbad, CA). The fluorescence values of PCR 

products from UVB- treated samples and the control samples were used to calculate 

relative amplification and lesion frequency. 

2.3.6  Mitochondrial fractionation  
 
The subcellular fractionation of enriched mitochondria was performed as described 

previously (Mihara and Moll 2003). Briefly, mouse skin was homogenized with a 

polytron homogenizer in calcium reticulocyte buffer (10mM Tris pH 7.6, 1.5 mM 

CaCl2, 10 mM NaCl) and mixed with 2ml of ice-cold mannitol-sucrose buffer (210 

mM mannitol, 70 mM sucrose, 5 mM EDTA, 5 mM Tris, pH 7.6). Two hundred 

microlitres of whole skin homogenate was stored at -20°C for further use. The 

remainder of the whole skin homogenate was centrifuged thrice at 1000 x g for 5 min 

at 4°C to clear nuclear, cytosolic and intact skin cell fraction. The mitochondria were 

isolated by discontinuous sucrose gradient centrifugation.  
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2.3.7  Co-Immunoprecipitation  
 
Immunoprecipitation was performed as previously described (Bonifacino et al 2001).  

Briefly, the protein A/G-agarose beads (40 µL) were conjugated overnight to Polγ, 

MnSOD, p53 (DO-1), and 3-nitrotyrosine antibodies (3 µg) at 4°C in 0.5 mL ice-cold 

PBS. Appropriate control antibody was used as negative control. The mitochondrial 

pellets were lysed in denaturing buffer (1% w/v sodium dodecyl sulfate (SDS), 50 

mM Tris-HCl, pH 7.4, 10 mM dithiothreitol, 5 mM EDTA, 15 U/ml DNase I, and 1 

µL/mL Protease inhibitior) by heat at 95ºC for 5 min and the DNA was sheared. After 

denaturation and shearing, 250-500 µg of precleared mitochondrial protein were 

immunoprecipitated with antibody conjugated protein A/G-agarose beads with 10 µL 

of 10% BSA incubated overnight at 4ºC in a tube rotator. The immunoprecipitates 

were analyzed with 4-10% gradient gel. 

 

2.3.8  mtDNA immunoprecipitation  
	  
The ChIP-IT system (Active Motif, Carlsbad, CA) was used to investigate the 

interaction of Polγ, MnSOD, p53 (DO-1) and mtDNA. Briefly, skin mtDNA exposed 

to UVB was immunoprecipitated with p53 and Polγ antibodies, and the mtDNA D-

loop region was quantified by real-time PCR (LightCycler 480 Real-Time PCR 

System, Roche). The following primer sets were designed and used to amplify the 

mtDNA D-loop region: 5′-ACT ATC CCC TTC CCC ATT TG-3′ and 5′-TGT TGG 

TCA TGG GCT GAT TA-3′. Equal amounts of mtDNA from each treatment were 

used as input loading control, and mtDNA pulled down by IgG served as the negative 

antibody control.  

 
2.3.9  Polγ reverse transcriptase activity assay  
 
The RNA-dependent DNA polymerase activity of Polγ was measured as described 

previously (Longley and Copeland 2002, Taanman et al 2010). Briefly, the 

mitochondrial lysates prepared in extraction buffer (100 mM NaCl, 25 mM HEPES-

KOH pH 8.0, 1% v/v Triton-X 100) were assayed at 37ºC for 10 min in 50 µL 

reaction mixture with 10 µg of the mitochondrial protein, 25 mM HEPES-KOH pH 

8.0, 0.5 mM MnCl2, 100 mM NaCl, 2.5 mM β-mercaptoethanol, 50 µg/mL 
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poly(rA).oligo(dT)12-18, 100 µg/mL acetylated bovine serum albumin (Ac-BSA), 0.1 

mM aphidicolin, 500 µg/mL RNasin® RNase inhibitor (Promega, Madison, WI) and 

5 µM [α-32P]thymidine 5′-triphosphate (dTTP; specific activity: 5 Ci/mmol) 

(Amersham Corp., Piscataway, NJ). The reaction was stopped with 1.0 ml of stop 

solution (500 mM NaOH, 100 mM sodium pyro-phosphate, 0.1 mg/mL sonicated calf 

thymus DNA, 0.5 mg/ml BSA). The DNA precipitated with 20% TCA was filtered 

through GF/C filters and washed thrice with 1N HCl, rinsed with 95% ethanol and 

dried. The TCA-insoluble radioactivity was measured by liquid scintillation counting. 

 
2.3.10 Treatment with Mn-based porphyrin 
 

The Mn(III) meso-tetrakis(N-ethylpyridinium-2-yl) porphyrin (MnIIITE-2-PyP5+) was 

synthesized as previously described (Batinic-Haberle et al 1999, Ferrer-Sueta et al 

1999). The mice were injected intraperitoneally with 5 mg/kg of MnIIITE-2-PyP5+ in 

saline twice daily for 2 days before UVB treatment.  

2.3.11 Data analysis 
 

The data are represented as mean ± SEM from replicate samples (n = 3), and were 

analyzed by one-way and two-way analyses of variance using Prism software 

(GraphPad, San Diego, CA). An α level of P<0.05 was considered significant. 
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2.4 Results 
	  

2.4.1  UVB induces mtDNA damage in mouse skin  
 

To assess mtDNA damage by UVB, we performed a time course study in which wild-

type C57BL/6 mice were exposed to 5kJ/m2 of UVB radiation. mtDNA isolated from 

skin at 1 and 24 h after exposure to UVB was subjected to quantitative PCR analysis. 

The mtDNA damage was analyzed based on the difference in amplification due to 

blockage of the recombinant Thermus thermophilus (rTth) DNA polymerase by UVB-

induced lesions. PCR negative control was used as a blank reference to eliminate 

background fluorescence. The relative amplification plot in Figure1 shows a 

significant decrease in amplification of 10 kb mtDNA at 1 h and 24 h after UVB 

treatment compared to undamaged control template, indicating an increase in mtDNA 

damage. A quantitative analysis of lesions induced by UVB treatment in the 10 kb 

mtDNA is shown in Table 1. We normalized mtDNA copy number variation using 

fluorescence values from amplified short mtDNA fragments (117 bp), as there is a 

very low probability that UVB treatment will introduce a lesion in small mtDNA 

segments.  This analysis indicates a significant increase in lesions at 1 h and 24 h after 

UVB treatment, suggesting mtDNA is highly prone to damage by UVB treatment.  
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Figure 2.1. Quantification of mtDNA damage in mice skin induced by UVB 
radiation 

(A) Wild-type C57BL/6 mice were exposed to 5kJ/m2 of UVB radiation. mtDNA was 

isolated and analyzed with Q-PCR using primers specific for mouse mtDNA. The 10 

kb mtDNA fragment was amplified and the blockage of rTth DNA polymerase 

amplification by damage in mtDNA was quantified in PCR products with Pico-Green 

dye. The relative amplification levels at 1 h and 24 h after UVB treatment were 

normalized with untreated control. ***P < 0.001 compared with control.  

 

 

Table 1 Control 1 h UVB 24 h UVB 

Lesions/10kb 0 0.17±0.03** 0.18±0.02*** 

The 10-kb mDNA fragment was normalized with 117-bp mtDNA fragment 

Table 2.1 The number of lesions per 10kb mtDNA by UVB treatment was 
quantified after normalizing with mitochondrial copy number   
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2.4.2 UVB induces p53 translocation to mitochondria in mice epidermal cells 
 

We have previously observed p53 translocation to mitochondria in a multistage skin 

cancer model using a known mutagenic chemical initiator, 7,12-dimethyl-benz(a)-

anthracene (DMBA), followed by repetitive treatment with the known tumor 

promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) (Zhao et al 2002). It has also 

been shown that p53 translocates into mitochondria after exposure to a stress inducing 

agent, including ionizing radiation (Vaseva and Moll 2009). To determine whether 

UVB-induced mtDNA damage triggers p53 translocation to mitochondria in vivo, 

skin mitochondrial fractions devoid of cytosolic and nuclear contamination were 

prepared from mouse skin by a sucrose density gradient ultracentrifugation process 

after UVB treatment and subjected to immunoblot analysis. As shown in Figures 2A 

& 2B, the p53 level increased significantly in both whole skin lysates and 

mitochondrial fractions at 1 h and at 24 h after UVB treatment. The absence of 

cytosolic and nuclear contamination was confirmed by immunoblotting of the 

mitochondrial fractions with antibodies against cytosolic and nuclear marker proteins 

IĸBα and PCNA, respectively. 
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Figure 2.2 UVB enhances p53 mitochondrial translocation 

(A) C57BL/6 mice were exposed to 5kJ/m2 of UVB radiation. Whole skin tissue 

lysates and fractionated mitochondrial lysates were immunoblotted with p53 antibody 

(DO-1). Ponceau staining was used to confirm equal loading and uniform transfer of 

protein. Monoclonal anti-β-actin and anti-HSP60 antibodies were used as internal 

loading control. (B) The p53 accumulations in whole skin lysates and mitochondrial 

lysates at 1 h and 24 h after UVB exposure were quantified. Results were averaged 

from 3 sets of independent experiments. *P < 0.05, ***P < 0.001, compared with 

control, ##P < 0.01, comparison of 1 h and 24 h UVB treatment.  
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2.4.3  UVB enhances physical interaction of p53 with Polγ and mtDNA, and the 
role of p53 in Polγ and mtDNA interaction 

 

Previous studies have shown that p53 can directly interact with Polγ and mtDNA and 

enhance Polγ repair efficiency (Achanta et al 2005, Bakhanashvili et al 2008, Heyne 

et al 2004). Here, we tested whether UVB could enhance p53 interaction with Polγ 

and mtDNA.  Mitochondria were isolated from the skin of wild-type C57BL/6 mice 

exposed to 5kJ/m2 of UVB radiation and the interaction between p53 and Polγ was 

assessed by co-immunoprecipitation with an antibody specific for p53 with 

subsequent detection of p53 or Polγ by Western analysis. As shown in Figure 3A, 

Polγ and p53 proteins pulled down from the mitochondrial lysates by both p53 and 

Polγ antibodies increased at 1 h and 24 h after UVB treatment. We also determined 

UVB-induced p53 and mtDNA interaction by isolating mtDNA from the skin of 

C57BL/6 wild-type mice exposed to 5kJ/m2 of UVB radiation. The mtDNA 

immunoprecipitated with p53 antibody were purified and amplified by real-time PCR 

with primers specific for mtDNA D-loop region to probe the relationship between 

mtDNA and Polγ function. As shown in Figure 3B, the amplification of the D-loop 

region of mtDNA immunoprecipitated by p53 antibody increased significantly at 1 h 

and 24 h after UVB treatment. To verify the role of p53 in mtDNA repair by Polγ 

after UVB treatment, mtDNA immunoprecipitation was performed on p53+/+ and p53-

/- mice at 1 h and 24 h after UVB treatment. As shown in Figure 3C, the amplification 

of the D-loop region of mtDNA immunoprecipitated by Polγ antibody in p53+/+ mice 

increased significantly at 1 h and 24 h after UVB treatment. The amplification level 

of the D-loop in p53-/- mice was lower than that in the p53+/+ mice and did not change 

significantly in response to UVB treatment. Thus, the significant increase in 

amplification of the D-loop region after UVB treatment was limited to the p53+/+ 

genotypes, suggesting a role for p53 in the interaction of Polγ with mtDNA. 
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Figure 2.3 UVB-induced physical interaction of p53-Polγ-mtDNA  

(A) Skin mitochondrial lysates from wild-type C57BL/6 mice exposed to 5kJ/m2 of 

UVB radiation were immunoprecipitated with p53 (DO-1), Polγ antibodies, and 

control IgG. (B) mtDNA isolated from wild-type C57BL/6 mice skin exposed or 

sham exposed to 5 kJ/m2 of UVB radiation was immunoprecipitated with p53 

antibody (DO-1) and control IgG. The input mtDNA from control at 1 h and 24 h 

after UVB treatment was used as internal control. Real-Time PCR was used to 

amplify mtDNA D-loop region from input and immunoprecipitated mtDNA. ***P < 

0.001. (C) mtDNA isolated from p53+/+ and p53-/- mice skin exposed or not exposed  

to 5kJ/m2 of UVB radiation was immunoprecipitated with Polγ antibody. Real-time 

PCR was used to amplify the immunoprecipitated mtDNA D-loop. *P < 0.05, ***P < 

0.001, compared with control; ##P < 0.01, compared at 1 h and 24 h after UVB 

treatment; ^P<0.05, compared between p53+/+ and p53-/- genotypes. 
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2.4.4 UVB induces physical interaction of MnSOD with p53 and Polγ and the 
effect of MnSOD on Polγ and mtDNA 

	  
We have previously observed an interaction between p53 and MnSOD in the 

mitochondria of epidermal cells exposed to DMBA and TPA (Zhao et al 2002, Zhao 

et al 2005b). To determine whether UVB causes p53 and MnSOD to interact in 

mitochondria, skin mitochondrial lysates from UVB-treated wild-type C57BL/6 mice 

were immunoprecipitated with p53 and MnSOD antibodies, respectively. As shown in 

Figure 4A, the amount of MnSOD and p53 proteins pulled down from mitochondrial 

lysates by p53 and MnSOD antibodies increased at 1 h and 24 h after UVB treatment. 

Previous studies have demonstrated that MnSOD is an integral part of the nucleoid 

complex (Kienhofer et al 2009). Hence, we tested whether UVB induces MnSOD and 

Polγ interaction using co-immunoprecipitation. As shown in Figure 4B, the amount of 

MnSOD and Polγ proteins pulled down from mitochondrial lysates by Polγ and 

MnSOD antibodies increased at 1 h and 24 h after UVB treatment. We further used 

p53+/+ and p53-/- mice to perform a co-immunoprecipitation study to determine 

whether UVB induces interaction between MnSOD and Polγ and whether it is 

dependent on p53. As shown in Figure 4C, the amount of MnSOD and Polγ proteins 

pulled down from mitochondrial lysates by Polγ and MnSOD antibodies increased at 

1 h and 24 h after UVB treatment in both genotypes. To assess the role of MnSOD in 

mtDNA and Polγ interaction after UVB treatment, mtDNA immunoprecipitation was 

performed on MnSOD+/+ and MnSOD+/- mice. As shown in Figure 4D, amplification 

of the D-loop region of mtDNA immunoprecipitated by the Polγ antibody resulted in 

more than 1.5 fold increase at 1 h after UVB treatment in both genotypes, and when 

compared between the genotypes. Although the increase was less than 1.5 fold at 24 h 

after UVB treatment in both genotypes, the increase was significant in the MnSOD+/+ 

genotype at 24 h after UVB treatment. The results suggest that MnSOD interacts with 

both p53 and Polγ, but the interaction between MnSOD and Polγ appears to be 

independent of p53. The results also show that MnSOD enhances the Polγ/mtDNA 

interaction 24 h after UVB-irradiation, implying a role for MnSOD in maintaining 

Polγ activity. 
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Figure 2.4 UVB-induced physical interaction of MnSOD-p53-Polγ  

(A) Skin mitochondrial lysates from wild-type C57BL/6 mice exposed to 5kJ/m2 of 

UVB radiation were immunoprecipitated with p53 (DO-1), MnSOD antibodies, and 

control IgG. Co-immunoprecipitated MnSOD and p53 were quantified by 

immunoblotting with specific antibodies. (B) Co-immunoprecipitation of Polγ and 

MnSOD. Mitochondrial lysates from mice skin exposed to UVB at 1 h and 24 h were 

immunoprecipitated with Polγ and MnSOD antibodies, and control IgG. Co-

immunoprecipitated Polγ and MnSOD were quantified by immunoblotting with 

specific antibodies.  (C) Mitochondrial lysates from p53+/+ and p53-/- mice skin 

exposed to UVB were immunoprecipitated with Polγ, MnSOD antibodies and control 

IgG. Co-immunoprecipitated Polγ and MnSOD were quantified by immunoblotting 

with specific antibodies. (D) mtDNA isolated from MnSOD+/+ and MnSOD+/- mice 

skin exposed to 5kJ/m2 of UVB radiation was immunoprecipitated with Polγ 

antibody. Real-time PCR was used to amplify the precipitated mtDNA D-loop. ***P 

< 0.001, **P < 0.01, compared with control; ^^P < 0.01 compared at 1 h and 24 h 

after UVB treatment; ##P < 0.01 compared between MnSOD+/+ and MnSOD+/- mice. 
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2.4.5 MnSOD deficiency enhances UVB-mediated Polγ inactivation 
 

To determine whether UVB treatment induces an alteration in Polγ protein level in 

the mitochondria of MnSOD+/+ and MnSOD+/- mice, Western blotting for Polγ protein 

was performed using skin mitochondrial lysates from UVB- treated wild-type 

C57BL/6 mice. As shown in Figure 5A, there was no apparent change in the Polγ 

protein level at 1 h and 24 h after UVB treatment in either genotype. UVB induces 

OONO- production in skin by the reaction of NO• with O2
-• and nitrates proteins, 

further Polγ protein undergoes oxidative damage-induced inactivation (Graziewicz et 

al 2002, Wu et al 2010). A Polγ reverse transcriptase activity assay was performed 

using the skin mitochondrial lysates from UVB-treated MnSOD+/+ and MnSOD+/- 

mice to determine whether UVB treatment results in a change in Polγ activity in the 

mitochondria. As shown in Figure 5B, Polγ reverse transcriptase activity decreased 

significantly in MnSOD+/- genotype at 1 h and 24 h after UVB treatment compared to 

MnSOD+/+ mice, where a significant decrease in activity was observed only at 24 h 

after UVB treatment. To determine whether UVB-induced Polγ inactivation is 

associated with nitration, we performed a co-immunoprecipitation study using 3-

nitrotyrosine antibody. As shown in Figures 5C & 5D, the amount of Polγ protein 

pulled down from the mitochondrial lysates by 3-nitrotyrosine antibody significantly 

increased at 1 h and 24 h after UVB treatment in MnSOD+/- mice. There was a 

significant difference between the genotypes at 24 h after UVB treatment, as shown in 

Figure 5D. These results suggest that MnSOD may be important in preventing 

nitration and subsequent inactivation of Polγ after UV exposure. 
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Figure 2.5 UVB induced Polγ inactivation by nitration  

(A) Immunoblot analysis of Polγ protein levels in MnSOD+/+ and MnSOD+/- mice 

skin mitochondria exposed to 5kJ/m2 of UVB radiation.  (B) Polγ reverse transcriptase 

activity assay in MnSOD+/+ and MnSOD+/- mice skin mitochondria exposed or not 

exposed to 5 kJ/m2 of UVB radiation #P < 0.05, ###P < 0.001 compared with control. 

(C) MnSOD+/+ and MnSOD+/- mouse skin exposed to 5 kJ/m2 of UVB radiation was 

co-immunoprecipitated with 3-nitrotyrosine antibody. Co-immunoprecipitates were 

immunoblotted with Polγ antibody. (D) Quantification of Polγ co-

immunoprecipitation by 3-nitrotyrosine antibody. **P < 0.01, ***P<0.001 compared 

with control; #P < 0.05 compared between 1 h and 24 h after UVB treatment; ^P < 

0.05 compared between MnSOD+/+ and MnSOD+/- mice.  
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2.4.6 MnIIITE-2-PyP5+ rescues Polγ from inactivation by UVB-mediated 
nitration 

	  
Previous studies have clearly established MnIIITE-2-PyP5+ as a potent O2

-• and 

OONO- scavenger (Batinic-Haberle et al 2010, Batinic-Haberle 2010). To test if Polγ 

could be rescued from UV-induced inactivation, MnSOD+/- mice were pre-treated 

twice daily with MnIIITE-2-PyP5+ at 5mg/kg body weight in 250 µl volume before 

UVB exposure. Polγ reverse transcriptase activity assay was performed in skin 

mitochondrial lysates from saline and MnIIITE-2-PyP5+ treated MnSOD+/- mice after 

UVB exposure. As shown in Figure 6A, Polγ reverse transcriptase activity in 

MnIIITE-2-PyP5+ pre-treated MnSOD+/- mice increased significantly at 24 h after 

UVB treatment and compared with saline pre-treated MnSOD+/- mice. There was a 

significant decrease in activity in saline pre-treated MnSOD+/- mice at 24 h after UVB 

treatment. To determine whether MnIIITE-2-PyP5+ pre-treatment reduce UVB-

mediated Polγ inactivation by nitration, co-immunoprecipitation was performed using 

3-nitrotyrosine antibody. As shown in Figure 6B, the amount of Polγ protein pulled 

down from the mitochondrial lysates by 3-nitrotyrosine antibody in saline pre-treated 

MnSOD+/- mice increased significantly at 1 h and 24 h after UVB treatment. There 

was no significant change in nitration levels in MnIIITE-2-PyP5+ pre-treated 

MnSOD+/- mice. When compared with saline pre-treated MnSOD+/- mice, the 

decrease in nitration in MnIIITE-2-PyP5+ pre-treatment was significant at 24 h after 

UVB treatment, as shown in Figure 6C. 
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Figure 2.6  MnIIITE-2-PyP5+ protects UVB induced Polγ inactivation by nitration 

in MnSOD+/- mice  

(A) Polγ reverse transcriptase activity assay in MnIIITE-2-PyP5+ and saline pre-treated   

MnSOD+/- mice skin mitochondria exposed to 5 kJ/m2 of UVB radiation *P < 0.05 

compared with control; #P < 0.05 compared between 1 h and 24 h after UVB 

treatment; ^P < 0.05 compared between MnIIITE-2-PyP5+ and saline pre-treatment. 

(B) MnIIITE-2-PyP5+ and saline pre-treated MnSOD+/- mice skin exposed to 5 kJ/m2 of 

UVB radiation were co-immunoprecipitated with 3-nitrotyrosine antibody and 

immunoblotted with Polγ antibody. (C) Quantification of Polγ co-

immunoprecipitation by anti-3-nitrotyrosine antibody in MnIIITE-2-PyP5+ and saline 

pre-treated MnSOD+/- mice skin exposed to 5 kJ/m2 of UVB radiation. **P < 0.01, 

***P < 0.001 compared with control; ###P < 0.001 compared between 1 h and 24 h 

after UVB treatment; ^^P < 0.01 compared between MnIIITE-2-PyP5+ and saline pre-

treatment. 
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2.5 Discussion 
	  

The present study demonstrates that UVB-induced mtDNA damage triggers p53 

accumulation of mitochondria, that mitochondrial p53 interacts with both mtDNA and 

Polγ after UVB exposure, and that the mtDNA/Polγ association is dependent on the 

availability of p53. These results support a previous report on the role of p53 in the 

mtDNA repair process (Achanta et al 2005, Bakhanashvili et al 2008).  We have 

previously shown that oxidative stress induces p53 translocation to mitochondria and 

its subsequent interaction with MnSOD in a multistage chemical carcinogenesis 

model (Zhao et al 2002, Zhao et al 2005b). The present study confirms these findings 

using UVB treatment to cause DNA damage, and extends to demonstrate that UVB 

treatment leads to increased interaction between MnSOD and Polγ and that the 

interaction between MnSOD and Polγ is p53 independent. These results suggest that 

MnSOD participates in mtDNA repair processes by acting as a fidelity protein 

protecting the function of the major DNA repair enzyme in the mitochondria.  This 

conclusion is supported by the findings that 1) MnSOD deficiency leads to a decrease 

in mtDNA-Polγ interaction and 2) inactivation of Polγ by nitration is prevented by 

treatment with MnIIITE-2-PyP5+, a potent peroxynitrite inhibitor. The findings of this 

study verify that MnSOD is an integral part of the nucleoid complex and extend to 

demonstrate that the antioxidant property of MnSOD serves to enhance the fidelity of 

mtDNA repair by salvaging the DNA polymerase (Polγ) in mitochondria from UV-

induced peroxynitrite mediated inactivation. 

Skin is the primary target of UVB radiation. UVB exposure has wide-ranging effects 

in skin, such as erythema and epidermal hyperplasia, which can eventually lead to 

photocarcinogenesis or photoaging. The underlying cellular processes for these 

conditions include DNA damage, apoptosis and oxidative stress. Both nuclear and 

mitochondrial DNA can be damaged by UVB radiation. Owing to its uniqueness, 

mtDNA has been used as a reliable biomarker for UV induced DNA damage (Birch-

machin et al 1998, Harbottle and Birch-Machin 2006, Krishnan et al 2004). Our Q-

PCR analysis of the mitochondrial genome indicates that UVB causes damage to 

mtDNA in mouse skin. The relative amplification ratio of the 10 kb mtDNA fragment 

at 1 h and 24 h after UVB treatment was significantly less than that of the reference 

control, which indicates the presence of DNA damage that blocks the amplification 
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process. There were ~0.15 lesions per 10 kb per strand at both the 1 h and 24 h 

treatments compared to the reference control. An earlier report that used Q-PCR to 

analyze UVB-exposed epidermal mtDNA from human skin shows deletions ranging 

from 4 to 10.5 kb in a 11.1 kb PCR fragment (Ray et al 2000). Thus, in our model 

UVB-induced mtDNA damage is being repaired.   

UVB-induced oxidative stress and DNA damage stabilize p53 protein in the skin, 

leading to DNA repair in proliferating basal keratinocytes but cell cycle arrest and 

apoptosis in differentiated keratinocytes (Berg et al 1996, Li et al 1997, Ouhtit et al 

2000, Renzing et al 1996, Tron et al 1998). UVB signature mutations in the p53 gene 

may lead to dysregulation of apoptosis and DNA repair, resulting in skin 

carcinogenesis (Li et al 1995). Our results demonstrating p53-dependent UVB-

induced mtDNA repair are consistent with these findings. The increased physical 

interaction of p53 with mtDNA and Polγ might be a p53 response to mtDNA damage 

after UVB treatment. A basal level of interaction between mtDNA and Polγ has been 

observed in both p53+/+ and p53-/- genotypes. This interaction can be attributed to a 

p53-independent mtDNA replication process, since the very same basal level 

interaction between mtDNA and Polγ was observed 1 h and 24 h after UVB treatment 

in the p53-/- phenotype. In contrast, increased interaction between mtDNA and Polγ 

was observed 1 h and 24 h after UVB treatment in p53+/+ mice. This increase from 

basal level can be attributed to mtDNA repair and indicates that the interaction 

requires p53. The presence of p53 enhances the accuracy of mtDNA repair by proof 

reading and by reducing the misincorporation of dNTP into mtDNA by Polγ 

(Bakhanashvili et al 2008). Recent studies have identified p53-regulated p53R2 as a 

subunit of ribonucleotide reductase (RNR), a rate-limiting enzyme in the de novo 

synthesis of deoxyribonucleotides (dNTPs) (Bourdon et al 2007, Kulawiec et al 2009, 

Lebedeva et al 2009). The UVB induced p53 stabilization triggers transcriptional up-

regulation of p53R2, and increases output of dNTPs required for the UVB induced 

mtDNA repair process. This may be attributed to the increase in amplification of the 

D-loop region after UVB treatment observed in Figure 3B. 

The diverse functions of mitochondrial p53, which range from maintaining mtDNA 

integrity to apoptosis, led us to further explore our previous finding concerning 

MnSOD and p53 interaction in mitochondria. The physical interaction between p53 

and MnSOD is observed with UVB treatment as was seen in chemical carcinogenesis 
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studies. In light of new evidence that establishes MnSOD as an integral component of 

nucleoids (Kienhofer et al 2009), and our findings that a physical interaction occurs 

between MnSOD and Polγ after UVB treatment and that this interaction is p53-

independent, these results suggest that MnSOD may enhance mtDNA stability by 

serving as a fidelity protein protecting the function of the key mitochondrial DNA 

repair enzyme. The interaction between MnSOD and Polγ and subsequent protection 

of Polγ from UVB-induced inactivation support a new role for mitochondrial 

antioxidant enzyme MnSOD in maintaining mtDNA fidelity. Our previous studies 

with MnSOD over-expressing and knockdown mice treated with DMBA/TPA have 

clearly established that MnSOD prevents protein oxidation in mitochondria (Zhao et 

al 2001, Zhao et al 2002). The decrease in the interaction between mtDNA and Polγ 

after UVB treatment in MnSOD+/- mice might be attributed to increased oxidative 

modification of Polγ. Oxidative stress in yeast due to a lack of MnSOD leads to 

oxidation of various mitochondrial proteins such as aconitase, pyruvate, keto-acid 

dehydrogenase, α-ketoglutarate dehydrogenase, HSP60, glyceraldheyde-3-phosphate, 

and cytosolic fatty acid synthase (Cabiscol et al 2000, O'Brien et al 2004). The Polγ 

protein is known to be sensitive to oxidative modification when exposed to H2O2 

(Graziewicz et al 2002) . The Polγ exonuclease proof reading transgenic mice have 

increased point mutations, mtDNA deletions, and increased apoptosis that leads to 

accelerated aging (Kujoth et al 2005, Trifunovic et al 2004, Vermulst et al 2008). NO• 

and O2
-• generated by UVB can result in OONO- production in skin, leading to 

nitration of proteins (Wu et al 2010). In this study we provide evidence for the first 

time that Polγ nitration and the consequent inactivation after UVB exposure are 

enhanced when MnSOD is deficient, and that pre-treatment of MnSOD+/- with 

MnIIITE-2-PyP5+ results in decreased nitration and inactivation of Polγ.   

In summary, our study shows that MnSOD plays an important role in protecting the 

fidelity of mtDNA against UVB-induced mtDNA damage in keratinocytes. We 

propose a model in Figure 7 to illustrate a novel dual-step strategy adapted by 

keratinocytes in response to UVB insult that enhances the repair of mtDNA and 

protects the mtDNA repair enzyme from being inactivated. On one hand, UVB-

induced mtDNA damage triggers p53 translocation to mitochondria. The 

mitochondrial p53 interacts with mtDNA and enhances the polymerase and 

exonuclease activities of Polγ, which plays a major role in the mtDNA repair process 
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with its proof reading ability. On the other hand, mitochondrial antioxidant MnSOD 

plays a novel role by interacting with Polγ and protecting it from peroxynitrite-

mediated inactivation. Circumstances that lead to increased oxidative stress by 

depleting MnSOD level and/or decrease MnSOD activity by acetylation can result in 

Polγ inactivation. Increasing MnSOD levels and/or activity by Sirt3 deacetylation 

enhances mitochondrial O2
-• scavenging and reduces ROS-mediated insult on vital 

mitochondrial proteins such as Polγ. Additional studies aimed at the identification of 

the specific tyrosine residues of Polγ that are nitrated after UVB exposure and are 

responsible for reduced activity and/or protection by MnSOD will provide further 

biochemical insight into the mechanisms by which the nuclear encoded, 

mitochondrial localized protein, MnSOD, serves to maintain the fidelity of the 

mtDNA and will establish a nuclear mitochondrial feed forward loop in cellular 

adaptive responses against oxidative stress-mediated mitochondrial DNA instability. 
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Figure 2.7 Schematic illustration of novel dual step strategy adapted by 
keratinocytes to survive UVB insult 
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3 Chapter Three 
	  

Autophagy	  activation	  by	  UV	  in	  murine	  skin	  model	  
	  

3.1 Highlights 
 

Acute exposure to UVB radiation causes increased DNA damage and ROS 

generation. Depending on the severity of the insult and keratinocyte differentiation 

status, a cascade of signaling events culminates in cell survival or apoptosis. Recent 

studies have demonstrated the diverse role of autophagy in cellular stress, metabolic 

homeostasis, and cell death. Our recent studies have demonstrated that 1) UVB 

induces an increase in ROS-mediated damage in mitochondria; 2) MnSOD protects 

Polγ from oxidative inactivation in mitochondria. As the primary source and target of 

ROS, damaged mitochondria and mitochondrial components such as mtDNA and 

cytochrome c are capable of triggering severe inflammatory response and cell death 

processes. Autophagy mediated scavenging of damaged mitochondria and 

mitochondrial components play a critical role in regulating inflammatory and cell 

death processes. Thus, it is possible that exposure to UVB radiation may lead to 

activation of autophagy as an adaptive response to mitochondrial injury.  The present 

study used mouse keratinocytes (JB6 cells) and C57/BL6 mice as in vitro and in vivo 

models to study the effects of UVB radiation. Keratinocytes and whole skin were 

collected 1 h and 24 h post UVB irradiation. Immunoblotting reveals a decrease in 

phosphorylated AKT and mTOR levels in both in vitro and in vivo models. A 

significant increase in autophagy markers such as LC3-II and Beclin-1 were observed 

in the in vivo model. Taken together, the results suggest that exposure to UVB leads 

to activation of autophagy associated with inhibition of AKT-mTOR pathways.  
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3.2 Introduction 
 

Skin is the primary target of UV radiation, a known environmental carcinogen 

implicated in skin cancer and aging (Yaar and Gilchrest 2001). The carcinogenic 

effect of UV is mainly due to the UVB spectrum, which primarily affects the 

epidermis of the skin. Based on the optics of skin, stratum corneum and epidermis 

form an optical barrier to the UVB spectrum by absorbing and scattering UVB 

radiation. Absorption of UVB by chromophores such as melanin (Kobayashi et al 

1998) and urocanic acid results in a photo-protective effect.  UVB radiation increases 

ROS and absorption of UVB by aromatic amino acids and nucleic acids causes 

damage to DNA, RNA and proteins in keratinocytes of the epidermal layer (Anderson 

and Parrish 1981, Takeuchi et al 2004).  

The UVB-induced response in keratinocytes depends on the differentiation status of 

the keratinocytes and UVB dosage. The epidermis is composed of a heterogeneous 

population of keratinocytes that differ in proliferation potential and differential status. 

The basal layer is composed of undifferentiated cells with unlimited proliferation 

potential. The suprabasal and granular layers are composed of differentiated cells with 

limited or no proliferation potential that terminally differentiate keratinocytes to form 

an outer keratinized layer (Candi et al 2005, Nemes and Steinert 1999). p53 enhances 

DNA repair by a nucleotide excision repair system in the basal layer of the epidermis 

(Li et al 1997). In the differentiated layers, p53 induces apoptosis, which eliminates 

damaged cells (Baba et al 1996, Tron et al 1998). However, the induction of DNA 

repair occurs mostly at low doses of UVB while apoptosis is strictly induced at high 

doses; both events are dependent on wild-type p53 function (Li and Ho 1998).  

On the molecular level, protection against UVB insult to keratinocytes is conferred by 

formation of sunburn cells (apoptotic cells). When the DNA damage inflicted by 

UVB is extensive and beyond repair, the affected keratinocytes undergo apoptosis to 

prevent malignant transformation. UVB up-regulates both extrinsic and intrinsic 

apoptotic pathways in response to DNA damage and ROS production (Kulms and 

Schwarz 2002, Takasawa et al 2005). 

Keratinocytes undergo apoptosis at 3 h and 24 h after UVB exposure by early and late 

apoptotic pathways.  However, the presence of the exogenous growth factor (EGF) 
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activates the AKT pro-survival signaling pathway that inhibits the mitochondria 

mediated “early-activated apoptotic pathway” in keratinocytes exposed to UVB 

radiation. This inhibition in turn assists the nucleotide excision repair pathway in 

removing additional thymidine dimers from DNA (Decraene et al 2002, Kuhn et al 

1999). Furthermore, in malignant keratinocytes, the induction of the early apoptotic 

pathway is inhibited by dysregulation of the AKT pathway (Decraene et al 2004b).  

Recent advances in understanding the signaling pathway have helped to elucidate 

different and somewhat unique cell death and cell survival pathways of epidermis. 

Based on the dosage, UVB induces differentiation-based cornification/keratinization, 

apoptosis, necrosis and autophagy in keratinocytes (Mammone et al 2000). Recent 

studies have established that activation of AKT not only inhibits apoptosis but also 

inhibits autophagy in keratinocytes (Claerhout et al 2010). AKT is a serine/threonine 

kinase that belongs to the protein kinase B family and is encoded by a proto-

oncogene. AKT activation is a multistep process that involves membrane 

translocation and phosphorylation induced conformational change. The T-loop, αB 

and αC helices, and hydrophobic motif of the C-terminal tail of an inactive AKT are 

in complete disarray. AKT is phosphorylated on serine 473 in the hydrophobic motif 

by PI3K-related, DNA-dependent protein kinase (PDK1).  PI3K-generated PIP3 and 

PIP2 recruit phosphorylated AKT and PDK1 to the plasma membrane. The 

phosphorylated hydrophobic motif of AKT activates and stabilizes PDK1. 

Phosphorylation of AKT on threonine 308 by activated PDK1 and stabilization of the 

kinase domain by the phosphorylated hydrophobic motif lead to orderly arrangement 

of the T-loop and αB and αC helices, resulting in activation of AKT (Bellacosa et al 

2005, Manning and Cantley 2007). The AKT-mTOR pathway plays a critical role in 

regulating autophagy.  The mammalian target of rapamycin (mTOR) is a member of 

the phosphoinositide kinase-related kinase (PIKK) family that phosphorylates serine 

and threonine residues of its target proteins. mTOR is a complex comprised of  

mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). mTOR regulates an 

array of cellular functions such as translation, transcription, protein stability, mRNA 

turn-over, actin cytoskeletal organization and autophagy (Jacinto and Hall 2003). 

mTOR is a major downstream target of the AKT signaling pathway that regulates 

cellular growth, proliferation, and metabolism by integrating cell growth factors such 

as insulin with cellular nutrients such as glucose and/or amino acids. AKT disrupts 
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the interaction between tumor suppressor proteins TSC1 and TSC2 by 

phosphorylating TSC2, resulting in increased accumulation of Rheb (Ras family 

small GTPase). Accumulation of Rheb results in activation of the mTOR complex. 

Activation of mTOR regulates its downstream targets, such as eukaryotic initiation 

factor 4E-binding protein (4E-BPs), p70 ribosomal S6 kinase, and HIF-1. As mTOR 

is an important down-regulator of autophagy, activators of the mTOR pathway such 

as AKT, suppress autophagy (He and Klionsky 2009, Ravikumar et al 2010). Recent 

studies show that mTORC1 phosphorylates the autophagy regulatory complex 

[composed of mammalian Atg13 protein (mAtg13), unc-51-like kinase 1(ULK1), and 

focal adhesion kinase interacting protein 200 kDa (FIP 200)] at ULK1 serine residue 

757, resulting in inhibition of autophagy (Chan 2009, Egan et al 2011a).  Inhibition of 

mTOR causes dephosphorylation of ULK1/mAtg13/FIP200 complex resulting in 

activation of autophagy. Further, mAtg13 and FIP200 are critical for ULK1 

membrane translocation and stability (Ganley et al 2009, Jung et al 2009). Nutrient 

sensing kinases such as adenosine monophosphate-activated kinase induces 

autophagy and mitophagy by phosphorylation of ULK1 and inactivation of mTOR 

(Egan et al 2011a, Egan et al 2011b, Lee et al 2010).  

Autophagy is defined as a programmed cell death (type II) or a pro-survival pathway 

in different physiological and pathological contexts (Ferraro and Cecconi 2007). 

Autophagy is a catabolic pathway involved in degradation and recycling of cellular 

components such as long-lived and damaged organelles and proteins. Organelles such 

as mitochondria are the source and primary target of ROS. In our previous study, we 

showed that UVB causes direct mtDNA damage and generates ROS that inactivates 

Polγ by nitration, thereby impairing its mtDNA repair function. Recent studies have 

shown evidence for efficient removal of defective mitochondria that generate more 

ROS and less ATP with high levels of mtDNA mutations by autophagy. Such an 

effective mechanism of mitochondrial turnover by autophagy ensures cell 

survivability by maintaining mtDNA integrity and thereby mitochondrial function 

(Gu et al 2004, Kroemer et al 2010, Yen and Klionsky 2008).  Recent studies show 

that mitochondrial ROS generates lipid peroxidation products induce autophagy 

(Scherz-Shouval and Elazar 2007). Our studies previously demonstrated that nitration 

of mitochondrial proteins such as Polγ may lead to activation of autophagy in UVB-

exposed epidermal keratinocytes. Furthermore, mitochondria are considered to be a 
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potential source of damage associated with molecular patterns (DAMPs) such as 

mtDNA, cytochrome C, ATP, and formyl peptides (Zitvogel et al 2010). 

Intracytoplasmic release of DAMPs and/or exposure to UVB trigger formation of the 

NLR (nucleotide-binding domain, leucine-rich-repeat-containing) family and pyrin 

domain containing 3 (NRLP3) inflammasome, which in turn leads to caspase-1 

mediated activation of such pro-inflammatory cytokines (Feldmeyer et al 2007, Keller 

et al 2008, Nestle et al 2009). Leakage of DAMPs into the extracellular milieu can 

trigger severe inflammatory response such as systemic inflammatory response 

syndrome (SIRS) (Krysko et al 2011, Zhang et al 2010). Autophagic clearance of 

mitochondria with compromised integrity inhibits NRLP3 inflammasome formation 

and activation of pro-inflammatory mediators (Nakahira et al 2011, Zhou et al 2011). 

Although UVB induces immunosuppression, UVB-induced inflammation plays an 

important role in enhancement of tumor growth (Sluyter and Halliday 2000, Sluyter 

and Halliday 2001). UVB radiation regulates signaling pathways that stimulate 

production of inflammatory mediators. Further, inhibition of inflammation with anti-

inflammatory agents inhibits skin carcinogenesis especially during the tumor 

promotion and progression stages (Halliday and Lyons 2008). 

In the previous study, we showed the importance of UVB-induced mtDNA damage in 

triggering p53 translocation to mitochondria to aid Polγ in mtDNA repair and the role 

of MnSOD in protecting Polγ from ROS-induced inactivation by nitration. In this 

study, we hypothesize that UVB-induced AKT inhibition triggers activation of 

autophagy and play a significant role in removal of damaged mitochondria that 

prevent activation of inflammasomes. 
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3.3 Materials and Methods 
	  

3.3.1 Materials  
 

All chemicals and reagents were purchased from Sigma-Aldrich (St. Louis, MO) with 

exception of the following: protease inhibitor set III from Calbiochem (La Jolla, CA); 

Propidium iodide from Molecular Probes, Inc. (Eugene, OR); rabbit poly-clonal anti-

MnSOD from Upstate Technology (Lake Placid, NY); rabbit polyclonal anti-LC3, 

Beclin-1, PI3kinase P110a, AKT, phospho-AKT (Ser473), mTOR, and phosphor-

mTOR (Ser2448) from Cell Signaling Technology Inc. (Danvers, MA); rabbit 

polyclonal anti-HSP60 from Santa Cruz Biotechnology (Santa Cruz, CA). 

3.3.2 Cell Culture  
 

The JB6 Cl41.5a cells derived from primary cultures of neonatal Balb/C epithelial 

cells were established and maintained as previously described (Colburn et al 1979). 

The cells were grown in MEM (Minimum Essential Medium, Earle’s, Invitrogen), 

supplemented with 4% fetal bovine serum (Hyclone), and 2 mmol/L of L-glutamine 

(Gibco, Life Technologies Inc., USA).  A day after plating, the MEM media was 

discarded and culture dishes were washed and replenished with 1 ml of sterile PBS. 

The JB^ cells were exposed or not exposed to 50 mJ/cm2 UVB radiation. 

3.3.3 Animals Studies  
 

Six- to eight-week-old, wild-type, female C57BL/6 mice were purchased from 

Jackson Laboratory (Indianapolis, IN) and maintained at the University of Kentucky 

animal facility. Dorsal hairs were initially trimmed using an electrical surgical 

trimmer in conjunction with topical depilatory cream (Nair, Church & Dwight Co., 

Inc.) 3 days prior to UVB irradiation. The experimental protocol used in this study 

was approved by IACUC (The Institutional Animal Care and Use Committee of the 

University of Kentucky). 

3.3.4 UV exposure  
 

Depilated mice in the resting phase of the hair cycle were anaesthetized with 

ketamine and xylazine as described earlier (Xu et al 2007a) and exposed to a single 

dose of 5 kJ/m2 UVB radiation. JB6 cells covered with 1 ml of sterile PBS were 
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exposed to 50 mJ/cm2 UVB radiation. All the UVB exposures were carried out in a 

Plexiglass Lucite chamber (Plastic Design Corporation, Chelmsford, MA) delivered 

by UVB lamps (Black light blue lamp, Sankyo Denkco Ltd., Japan). The UV 

emittance was measured by UVB photometer radiometer (International Light 

Technologies, Peabody, MA) equipped with UVB measuring head.  

	  

3.3.5 Immunocytochemistry  
 
JB6 cells were plated (1x104) in an eight-well Lab-Tek Chamber Slide w/Cover (BD, 

Biosciences) in 350 µl antibiotic-free medium (Minimum essential medium, Earle’s, 

Invitrogen, Carlsbad, CA). One hour and 24 h after UVB treatment, the cells were 

washed and fixed with 4% paraformaldehyde for 30 min at room temperature. The 

cells were permeabilized with permeabilizing solution (0.1% Na citrate / 0.1% Triton 

X-100) on ice for 15 min and washed thrice with ice-cold blocking buffer. LC3 

antibody was added at a dilution of 1:100 in blocking buffer and cells were incubated 

overnight at 4°C followed by incubation with anti-rabbit IgG-FITC (Jackson 

ImmunoResearch Laboratories, West Grove, PA) at a dilution of 1:200 for 1 h at 

room temperature. The cells were then washed three times with blocking buffer and 

counter-stained with 1 mg/ml of Propidium iodide. Laser scanning confocal images 

were acquired with Leica TCS confocal system at the University of Kentucky 

Imaging facility. 

 

3.3.6 Western blot analysis 
 

Equal amounts of skin mitochondrial proteins, and whole skin and cell lysate proteins 

were resuspended in 2X sample buffer with or without 2-Mercaptoethanol and 

separated on 6%, 10%, and 4-20% gradient polyacrylamide gels. After the separation, 

the proteins were transferred electrophoretically to nitrocellulose membrane and 

blocked with 5% nonfat dried milk in TBST buffer containing 50 mmol/L Tris, pH 

7.9, 150 mmol/L NaCl and 0.05% (v/v) Tween-20. The blots were incubated 

overnight at 4°C with respective primary antibody at 1:2500 dilution, followed by 

incubation with horseradish peroxidase conjugated secondary antibody appropriate 

for the primary antibody species. The membranes were washed thrice with TBST 
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buffer, and the proteins were detected using enhanced chemiluminescence 

(Amersham Corp, Piscataway, NJ.) 

3.3.7 Immunohistochemistry  
	  
The mouse skin tissue was fixed in 4% paraformaldehyde in PBS at 4°C on a rotator 

overnight. The skin tissue was incubated in 10%, 20%, and 30% serial PBS-sucrose 

solution for 1 h each at 4°C in a rotator. The skin tissue was embedded in cryo-O.C.T. 

compound (Sakura Finetek Inc., Torrance, CA), frozen on dry ice and stored at -80°C. 

Immunostaining was performed on 7-10 µm frozen sections as described using the 

TSA amplification system (NEN Life Sciences, Cambridge, MA). Heat-induced 

target retrieval was performed for 30 min with Target retrieval solution as described 

(DAKO Carpinteria, CA). Endogenous peroxidase activity was quenched with 1.5-3% 

H2O2, and then washed 3 times with phosphate buffered saline for 5 minutes each. 

The sections were incubated with MnSOD antibody diluted to 1:1000 in blocking 

buffer for 1 h at room temperature. Following washes with wash buffer, the sections 

were incubated with horseradish peroxidase conjugated goat anti-rabbit secondary 

antibodies (Jackson Immuno Research, West Grove, PA) diluted to 1:2000 in 

blocking buffer for 1 h at room temperature. Following three washes with wash buffer 

5 min each, tyramide signal amplification (TSA, Perkin-Elmer Life Science Products, 

Boston, MA) was used according to the manufacturer’s instructions. Laser scanning 

confocal images were acquired with Leica TCS confocal system at the University of 

Kentucky Imaging facility. 

3.3.8 Data analysis 
 

The data are represented as mean ± SEM from replicate samples (n = 3), and were 

analyzed by one-way and two-way analyses of variance using Prism software 

(GraphPad, San Diego, CA). An α level of P<0.05 was considered significant. 
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3.4 Results 
	  

3.4.1 UVB- induced modulation in mitochondrial antioxidant MnSOD 
 

UVB is known to generate O2
−• radicals in the skin. MnSOD is the major antioxidant 

enzyme that dismutates O2
−• radicals in mitochondria. Increase in MnSOD is 

indicative of an increase in the mitochondrial O2
−• level. Recent studies have 

indicated that O2
−• is the major ROS that regulates autophagy (Chen et al 2009, Kim 

et al 2007). Hence, MnSOD levels were analyzed in JB6 cells and mice skin exposed 

to UVB radiation by immunoblotting. As shown in Figure 1A, in JB6 cells exposed to 

50mJ/cm2 of UVB radiation, MnSOD levels increased at 1 h and 24 h after UVB 

exposure. A similar increase in MnSOD level in mouse whole skin lysate and 

mitochondrial fraction at 1 h and 24 h after UVB exposure was further confirmed by 

immunoblotting, as shown in Figure 1B. β-Actin and HSP60 were used as loading 

control. As shownin Figure 1C the increase in MnSOD levels after UVB treatments 

were significant. The in vitro and in vivo increases in MnSOD level suggest an 

increased mitochondrial O2
−• level. Since MnSOD is known to induce cell 

differentiation and increased cell turnover ratio, we performed immunohistochemistry 

to determine MnSOD localization in different layers of the epidermis. 

Immunohistochemical studies with mouse skin exposed to 5 kJ/m2 UVB suggest 

increased MnSOD immunostaining in keratinocytes that line the basement membrane 

(basal layer of epidermis) and in the dermal fibroblasts at 1 h after UVB treatment, as 

shown in Figure 1D. However, by 24 h after UVB treatment, there is increased 

MnSOD immunostaining in the basal and suprabasal layers of the epidermis, and in 

the papillary layer of the dermis, as shown Figure 1D.  
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D	  

  

Figure 3.1 UVB-induced modulation in mitochondrial antioxidant MnSOD level 

in keratinocytes and murine skin tissue 

(A) JB6 cells were exposed or unexposed to 50mJ/cm2 of UVB radiation. Whole cell 

lysates were immunoblotted for MnSOD antibody. β-actin was used as internal 

loading control. (B) C57BL/6 mice were exposed to 5 kJ/m2 of UVB radiation. 

Whole skin mitochondrial fraction was immunoblotted for MnSOD antibody. HSP-

60 was used as internal loading control. (C) MnSOD levels in skin mitochondrial 

lysate at 1 h and 24 h after UVB exposure were quantified. *P<0.05, compared with 

control, #P<0.05, compared between 1 h and 24 h UVB treatment. Results were 

averaged from 3 sets of independent experiments. (D) C57BL/6 mice were exposed 

to 5 kJ/m2 of UVB radiation. Approximately 7-10 µm thick skin cryosections were 

immunostained with anti-MnSOD followed by cyanine 3 (Cy3) tagged goat anti-

rabbit using tyramide signal amplification system and then counterstained with DAPI 

(nucleus). 
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3.4.2 UVB- induced modulations in AKT status 
 

Recent studies have shown that activation of the AKT signaling pathway through 

various growth factors and oxidative stress offers transient protective effect to 

keratinocytes from UVB-induced apoptosis (Decraene et al 2002, Lotti et al 2007, 

Martindale and Holbrook 2002). To verify UVB-induced modulation of the AKT 

signaling pathway, cell lysates from cultured JB6 cells and skin lysates from 

C57BL/6 mice exposed to 50mJ/cm2 and 5kJ/m2 UVB radiation, respectively, were 

subjected to immunoblot analysis. AKT activation was measured by detection of 

AKT Thr-308 phosphorylation. As shown in Figures 2A, 2B, 2C, and 2D, UVB 

induced a significant increase in AKT Thr-308 phosphorylation which peaked at 1 h 

post irradiation and decreased to basal level at 24 h post- irradiation in both in vitro 

and in vivo models. β-Actin was used as loading control. These results indicate that 

the significant increase in AKT phosphorylation at 1 h post- irradiation was transient, 

since it reaches the basal level at 24 h post-UVB radiation and there was no 

significant change observed with PI3K levels at 1 h and 24 h post-UVB radiation 

compared to the controls in both in vitro and in vivo models.   
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Figure 3.2 UVB-induced suppression of PI3K-AKT pathway in cultured 
keratinocytes and murine skin tissue 

(A) JB6 cells were exposed or unexposed to 50 mJ/cm2 of UVB radiation. Fifty 

micrograms of whole cell lysate was immunoblotted for PI3K, AKT and 

phosphorylated AKT (Thr 308). β-actin was used as internal loading control. (B) The 

total AKT and phosphorylated AKT levels in whole cell lysate at 1h and 24h after 

UVB exposure were quantified. ***P<0.001, compared with control, ###P<0.001, 

compared between 1 h and 24 h UVB treatment. (C) C57BL/6 mice were exposed or 

unexposed to 5kJ/m2 of UVB radiation. Fifty micrograms of whole skin tissue lysate 

was immunoblotted for PI3K, AKT and phosphorylated AKT (Thr 308). The Ponceau 

staining was used to confirm equal loading and uniform transfer of protein. 

Monoclonal anti-β-actin antibody was used as internal loading control. (D) The total 

AKT and phosphorylated AKT levels in skin lysate at 1 h and 24 h after UVB 

exposure were quantified. ***P<0.001, compared with control, ###P<0.001, 

compared between 1 h and 24 h UVB treatment. 
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3.4.3 UVB- induced modulations in AKT downstream target m-TOR 
 

Previous studies have shown that mTOR is a downstream target of the AKT signaling 

pathway. mTOR phosphorylation at ser-2448 residue indicates activation of mTOR 

via the AKT signaling pathway (Altomare et al 2004). To verify whether UVB 

modulates the mTOR complex, cell lysates from cultured JB6 mouse keratinocytes 

and skin lysates from C57BL/6 mice exposed to 50mJ/cm2 and 5kJ/m2 UVB 

radiation, respectively, were subjected to immunoblot analysis. mTOR activation was 

measured by detection of ser-2448 residue phosphorylation. As shown in Figures 3A, 

3B, 3C, and 3D, UVB induced a significant increase in mTOR ser-2448 

phosphorylation which peaked at 1 h post-irradiation and decreased to basal level at 

24 h post-irradiation in both in vitro and in vivo models. These results indicate that the 

activation of mTOR closely followed the activation of AKT since a similar pattern of 

changes was seen with mTOR activation. This suggests that mTOR is a downstream 

target of AKT that is activated in keratinocytes acutely exposed to UVB radiation.  
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Figure 3.3 UVB-induced suppression of mTOR pathway in cultured 
keratinocytes and murine skin tissue 

(A) JB6 cells were exposed or not exposed to 50 mJ/cm2 of UVB radiation. Fifty 

micrograms of whole cell lysate was immunoblotted for mTOR and phosphorylated 

mTOR (Ser 2448). β-actin was used as internal loading control. (B) The total mTOR 

and phosphorylated mTOR levels in whole cell lysate at 1 h and 24 h after UVB 

exposure were quantified. *P<0.05, compared 1 h UVB treatment and control, 

#P<0.05, compared between 1 h and 24 h UVB treatment. (C) C57BL/6 mice were 

exposed or unexposed to 5kJ/m2 of UVB radiation. Fifty micrograms of whole skin 

tissue lysate was immunoblotted for mTOR and phosphorylated mTOR (Ser 2448). β-

actin was used as internal loading control. (D) The mTOR and phosphorylated mTOR 

(Ser 2448) in skin lysate at 1 h and 24 h after UVB exposure were quantified. 

***P<0.001, compared with control, ###P<0.001, compared between 1 h and 24 h 

UVB treatment. 
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3.4.4 UVB- induced AKT inhibition activates autophagy in mouse epidermis 
 

Previous studies have identified autophagy as a pro-survival mechanism activated by 

AKT-mTOR axis inhibition in skin squamous cells carcinoma cell lines (Claerhout et 

al 2010). Activation of autophagy by UVB was assessed in JB6 cells exposed to 

50mJ/cm2 UVB radiation and immunostained for LC3. The JB6 cells were 

counterstained with propidium iodide. As shown in Figure 4A, punctate LC3 

immunostaining slightly increased at 1 h and 24 h after UVB treatment compared to 

the control. Increase in punctate staining compared to diffuse staining by LC3 

antibody is indicative of activation of autophagy. The change in the staining pattern 

suggests that LC3-I is processed to phospholipid conjugated LC3-II (lipidated form) 

with subsequent targeting to autophagosomal membranes. Hence, we performed 

immunoblotting with whole cell lysate obtained from JB6 cells treated with 50mJ/cm2 

UVB radiation to assess the modulations in LC3-II after UVB treatment.   As shown 

in Figures 4B and 4C, in contrast to immunostaining, there was a significant decrease 

in LC3-II level at 24 h after UVB treatment compared to the control and 1 h UVB 

treatment group. However, there was no significant difference in the LC3-II level 

when compared between the control and 1 h UVB treatment groups. Furthermore, 

there was a significant decrease in Beclin-1 protein levels at 24 h after UVB treatment 

compared to control and 1 h UVB treatment group, as shown in Figures 4B and 4D.   

Surprisingly immunoblot analysis of whole skin lysates from C57Bl/6 mice exposed 

to 5kJ/m2 UVB radiation confirmed a significant increase in LC3-II and Beclin-1 

levels at 24 h after UVB treatment compared to the control and 1 h UVB treatment 

group as shown in Figures 5A, 5B, and 5C.   
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Figure 3.4 UVB-induced modulation of autophagy in murine cell culture system 

(A) JB6 cells were unexposed or exposed to 50mJ/cm2 of UVB radiation. Cells were 

immunostained anti-LC3 antibody followed by FITC-goat anti-rabbit antibody and 

counterstained with propidium iodide (nucleus). An increase in punctate LC3 staining 

was observed at 1 h and 24 h after UVB exposure compared with control. (B) JB6 

cells were unexposed or exposed to 50 mJ/cm2 of UVB radiation. One hundred 

micrograms of whole cell lysate was immunoblotted for LC3 and Beclin-1. β-actin 
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was used as internal loading control. (C) The LC3-II levels in whole cell lysate at 1 h 

and 24 h after UVB exposure were quantified. *P<0.05, compared between control 

and 24 h UVB treatment, #P<0.05, compared between 1 h and 24 h UVB treatment. 

(D) The Beclin-1 levels in whole cell lysate at 1 h and 24 h after UVB exposure were 

quantified. *P<0.05, compared between control and 24 h UVB treatment, #P<0.05, 

compared between 1 h and 24 h UVB treatment. 
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Figure 3.5 UVB-induced activation of autophagy in murine skin tissue 

 (A) C57BL/6 mice were unexposed or exposed to 5kJ/m2 of UVB radiation. One 

hundred micrograms of whole skin lysate was immunoblotted for LC3 and Beclin-1. 

β-actin was used as internal loading control. (B) The LC3-II levels in skin tissue 

lysate at 1 h and 24 h after UVB exposure were quantified. ***P<0.05, compared 

between control and 24 h UVB treatment, ###P<0.05, compared between 1 h and 24 

h UVB treatment. Results were averaged from 3 sets of independent experiments. (C) 

The Beclin-1 levels in skin tissue lysate at 1 h and 24 h after UVB exposure were 

quantified. *P<0.05, compared between control and 24 h UVB treatment, #P<0.05, 

compared between 1 h and 24 h UVB treatment. 
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3.5 Discussion 
 

Skin is constantly exposed to oxygen, the main source of O2
-• radical, which is 

aggravated by exposure to extrinsic factors such as UVB radiation. This enormous 

burden is overcome by dynamic compartmentalization of the skin into the highly 

cellular epidermis and the collagen-rich dermis. Within the epidermal milieu, 

keratinocytes are in a constant state of flux through a programmed cell death process 

called terminal differentiation (Lippens et al 2005), in which UVB is known to induce 

apoptosis and necrosis depending on the dose and duration of exposure.  For the first 

time, this study shows evidence for activation of macroautophagy (autophagy) in 

keratinocytes exposed to UVB radiation. 

In this study, both in vivo and in vitro models showed an initial transient but 

significant increase in phosphorylated AKT (Thr-308) at 1 h after UVB treatment and 

a significant decrease to basal levels in phosphorylated AKT (Thr-308) 24 h after 

UVB treatment. mTOR, a downstream target of AKT, followed a similar trend to that 

of AKT. This observation concurs with a previous study that shows that growth 

factor-mediated activation of the AKT pro-survival pathway. AKT activation leads to 

inhibition of early UVB-induced apoptosis by disrupting Bax translocation to 

mitochondria to enhance DNA repair (Claerhout et al 2007, Decraene et al 2002). 

UVB exposure causes a transient activation of the AKT pathway that delays early 

onset of the mitochondrial apoptotic pathway. The increase in the apoptotic initiation 

threshold is mediated by IGF-1 (Decraene et al 2002). This delay in apoptosis onset 

provides more time for keratinocytes to initiate the DNA repair process. This 

temporal pause is particularly more relevant in basal layers of keratinocytes. This is 

due to the fact that the IGF-1 binding protein-3 that modulates the IGF-1 mediated 

AKT pathway is expressed only in basal keratinocytes of skin (Batch et al 1994). 

Activation of apoptosis and autophagy were observed when AKT inhibitors were 

used to treat squamous cell carcinoma. (Claerhout et al 2010). In addition, recent 

studies indicate that increased ROS generation leads to inhibition of the AKT 

pathway (Hussain et al 2011). This prompted us to investigate the possibility of 

autophagy activation by UVB-mediated inhibition of the AKT pathway in murine 

epidermal cells. The time-dependent increase in lipidation of LC3 protein and 

increase in Beclin-1 levels confirm induction of autophagy in murine skin exposed to 
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UVB radiation. In the in vitro, study we observed a significant decrease in lipidation 

of LC3 protein and Beclin-1 levels at 1 and 24 h post-UV radiation. This suggests that 

autophagy is not a major mechanism in JB6 cells exposed to 50 mJ/cm2 of UVB. 

However, in the in vivo study we observed a significant increase in lipidation of LC3 

protein and Beclin-1 levels at 24 h post-UV radiation. This discrepancy in autophagy 

induction in in vivo and in vitro models can be attributed to the difference in UVB 

dosage. Further, within murine skin epidermis, keratinocytes with various 

differentiation potentials are compartmentalized. The supporting dermis contains 

fibroblasts that secrete several growth factors and cytokines essential for 

keratinocytes. These cytokines are also involved in proliferation, apoptosis, and 

inflammation. After UVB exposure, presence of melanocytes and dendritic cells 

activity will further influence the outcome in murine epidermis. A simple monolayer 

of JB6 cells is less complicated and devoid of the above-mentioned factors that are 

critical in determining the outcome with respect to any insult. The cause for the 

activation of autophagy is poorly understood. Recent studies have shown autophagic 

clearance of ROS generating and/or oxidatively damaged mitochondria as key a 

mechanism to prevent activation of inflammasome by intracytoplasmic and 

extracellular release of mtDNA and mitochondrial protein (Nakahira et al 2011, Zhou 

et al 2011).  

In the previous chapter, we opined UVB-induced mtDNA damage and inactivation of 

mitochondrial DNA proteins such as Polγ by ROS -mediated nitration. The damaged 

DNA in mitochondria can be a major contributor to the formation of ROS-generating 

mitochondria. Our immunohistochemistry and immunoblotting studies suggest an 

increase in MnSOD expression in basal, suprabasal and dermal fibroblasts after UVB 

exposure. Previous studies have demonstrated the ROS-dependent pleiotropic ability 

of MnSOD to induce cell differentiation and cell turnover by induction of apoptosis 

and mitosis through regulation of AP-1 and p53 levels in nucleus (Oberley et al 2004, 

St Clair et al 1994). Recent studies have implicated MnSOD in regulating ROS-

mediated autophagy of oxidatively damaged mitochondria and nucleus in 

keratinocytes (Deruy et al 2010). Acute exposure to UVB radiation induces IL-1α, Il-

1β and TNF- α in human keratinocytes that stimulate UVB-exposed dermal 

fibroblasts to upregulate MnSOD (Naderi-Hachtroudi et al 2002).  Hence, an increase 

in MnSOD level in basal and suprabasal layers and in dermal fibroblasts may be 
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attributed to ROS-mediated cell differentiation processes or cytokine-mediated 

paracrine signaling pathways. In these scenarios activation of autophagy after UVB 

exposure might help in the clearance of damaged mitochondria by cells. This might 

be particularly relevant in the basal compartment of the epidermis that comprises the 

undifferentiated proliferating cells. Any intracellular spillage of damaged 

mitochondrial proteins or mtDNA might trigger apoptosis resulting in loss of cells in 

the proliferating compartment. Previous studies have demonstrated “temporo-spatial” 

differences in keratinocytes response to UVB exposure based on their differentiation 

status. Well-differentiated keratinocytes of the epidermis with a minimal capacity for 

DNA repair are destined to apoptosis. Keratinocytes in the undifferentiated 

compartment reveal predominant activation of DNA repair process rather than 

apoptosis (Li et al 1996, Li et al 1997, Tron et al 1998).  Thus, it can be hypothesized 

that keratinocytes exposed to UVB initiate apoptosis in well-differentiated 

keratinocytes that have limited proliferative potential. However, autophagy initiated 

in undifferentiated layers of keratinocytes protects epidermal integrity by protecting 

its stem cell population, which is responsible for replenishing the epidermis with 

keratinocytes. Autophagy may serve as a survival pathway by eliminating ROS 

producing mitochondria and damaged proteins. However increased damage leading to 

increased elimination of damaged organelles and protein by autophagy itself could 

threaten the very survivability of the cells. This may result in autophagy acting as a 

cell death pathway (Tsujimoto and Shimizu 2005).  

Taken altogether, our results support the hypothesis (summarized schematically in 

Figure 6 that UVB-induced ROS-mediated inhibition of AKT-mTOR triggers 

activation of autophagy and may prevent activation of the NRLP3 inflammasomes 

that can contribute to the development of skin cancer.  
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Figure 3.6. Schematic representation of autophagy’s potential role in prevention 
of carcinogenesis 
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4 Chapter Four 
	  

4.1 Summary and future studies 
 

Skin, an important organ is constantly exposed to environmental toxicants such as 

UVB radiation. Skin exposed to UVB is under pronounced oxidative stress. 

Mitochondria are the major source and target of ROS. Any damage to vital 

mitochondrial proteins such as Polγ may exacerbate mitochondrial damage in UVB-

exposed skin tissue. The data presented in this dissertation strongly suggest that 

inactivation of Polγ contributes to mitochondrial dysfunction and subsequent leakage 

of damaged mitochondrial constituents. Although the role of MnSOD as an 

antioxidant has been well recognized, to my knowledge the data presented here are 

the first to support the novel role of MnSOD as a mitochondrial fidelity protein that 

influences the mtDNA repair process by protecting Polγ inactivation by nitration and 

activation of autophagy by UVB in murine skin tissue. The data obtained in the study 

addresses the following hypotheses:  

1. Manganese superoxide dismutase is a mitochondrial fidelity protein that protects 

Polγ against UV-induced inactivation  

2. Activation of autophagy by UVB in murine skin model  

UVB-induced mtDNA damage and inactivation of Polγ by nitration were studied 

using p53 and MnSOD transgenic mice in the C57BL/6 strain. Polγ was nitrated with 

an associated decrease in its reverse transcriptase activity in skin mitochondria after 

acute exposure to UVB radiation. The time dependent increase in nitration and 

inactivation of Polγ showed a strong inverse correlation to MnSOD level in the 

mitochondria based on studies with MnSOD transgenic mice. However, there was no 

change in the Polγ protein levels after UVB treatment. Amino acid sequence analysis 

of Polγ catalytic subunit reveals the presence of 31 tyrosine residues, of which 2 

tyrosine residues are present in the catalytic active site of the polymerase motif. These 

2 tyrosine residues are responsible for the uptake of incoming nucleotide. This in turn 

is further supported by the findings that Polγ has increased sensitivity to oxidation 

induced by H2O2 and the oxidizing environment (Graziewicz et al 2002).  
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Furthermore, studies show that inactivation of tyrosine residue in the catalytic site, by 

antiretroviral nucleoside drugs leads to unwanted side effects such as muscle wasting. 

UVB-induced translocation of p53 to mitochondria is consistent with previous studies 

(Achanta et al 2005, Erster et al 2004, Zhao et al 2005b). In addition, our data from 

C57BL/6 wild-type mice acutely exposed to UVB radiation reveal increased mtDNA 

lesions in skin. Mitochondrially translocated p53 interacts with mtDNA, Polγ and 

MnSOD, which is consistent with previous studies (Achanta et al 2005, Zhao et al 

2005b). The significance of p53 in UVB-induced mtDNA-Polγ interaction was 

assessed using p53 transgenic mice. Consistent with previous findings, UVB-induced 

Polγ-mtDNA interaction is enhanced by p53. This observation suggests a critical role 

for p53 in the enhancement of the Polγ-mediated mtDNA repair process after UVB 

exposure (Achanta et al 2005, Bakhanashvili et al 2008). 

Previous findings from chemical carcinogenesis study from our lab suggest that 

oxidative stress induces p53 accumulation in mitochondria. Mitochondrial p53 

interact with MnSOD (Zhao et al 2005b). Recent studies suggest that MnSOD is an 

integral constituent of the nucleoid macromolecular complex composed of mtDNA 

and its associated proteins such as Polγ (Kienhofer et al 2009). The UVB-induced 

increase in interaction between MnSOD and Polγ supports the possibility of MnSOD-

mediated modulation in Polγ-mtDNA interaction in skin mitochondria after UVB 

exposure. Acute UVB exposure studies with MnSOD transgenic mice reveal that 

modulations in the interaction between Polγ and mtDNA are MnSOD-dependent. 

However, there was no significant increase in Polγ protein level with respect to 

MnSOD level in the mitochondria. Recent studies suggest a considerable increase in 

NO• and O2
-• generation within murine skin mitochondria acutely exposed to UVB 

radiation (Maglio et al 2005). This suggests an increased possibility that the above-

mentioned free radicals react instantaneously and generate the powerful oxidant, 

peroxynitrite anions. Tyrosine residues within the protein are potential targets of 

peroxynitrite for nitration and thereby inactivation of the protein functions. UVB 

induces increased nitration and inactivation of Polγ, which is assessed by a decrease 

in reverse transcriptase activity. 
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The role of MnSOD in Polγ nitration was analyzed using MnSOD transgenic mice. 

For the first time, the results from this study demonstrate protection of Polγ protein 

from UVB-mediated nitration by MnSOD. To further confirm the novel role of 

MnSOD in protecting Polγ, MnSOD deficient mice were treated with Mn-based 

porphyrin, MnIIITE-2-PyP5+. The decrease in Polγ nitration and increase in reverse 

transcriptase activity after MnIIITE-2-PyP5+ treatment suggest that Polγ is rescued 

from UVB-mediated nitration and inactivation by MnIIITE-2-PyP5+. The results from 

this study are the first to suggest that the classical antioxidant function of MnSOD 

extends to a novel mitochondrial fidelity protein that protects Polγ from inactivation 

by UVB-mediated nitration. Based on this study, we propose that skin tissue exposed 

to acute UVB radiation may adapt a novel dual-step strategy to protect itself against 

the damaging effects of UVB radiation. This involves p53 translocation to 

mitochondria in response to increased mtDNA damage and oxidative stress. 

Mitochondrially translocated p53 interacts with mtDNA and Polγ, and mediates 

UVB-induced Polγ-mtDNA interaction. This enhances the UVB-induced mtDNA 

repair process by Polγ. Concomitantly, MnSOD protects Polγ from inactivation due to 

nitration. Peroxynitrite is a powerful oxidant and is known to nitrate and inactivate 

MnSOD and other mitochondrial proteins involved in oxidative phosphorylation and 

Kerb’s cycle. Hence, the effect of peroxynitrite on the activity of these proteins after 

UVB exposure needs to be further investigated. Since Polγ has 31 tyrosine residues in 

the catalytic subunit that are potential targets for peroxynitrite, further studies are 

required to identify the specific tyrosine residues that are nitrated after UVB exposure 

in skin mitochondria. The significance of the nitrated tyrosine residue with respect to 

Polγ polymerase and exonuclease activity and structural integrity needs to be further 

explored. Polγ holoenzyme is a heterotrimer composed of a catalytic unit and 2 

accessory subunits. Recent studies have shown that in holoenzyme form, the 

accessory subunit provides sufficient protection to the catalytic unit against H2O2 and 

N-ethylmaleimide (NEM) mediated damage. Although our in vivo study has taken 

into account the holoenzyme complex of Polγ, further studies are required to analyze 

the effects of UVB radiation on the accessory subunit. Studies to assess effect of 

UVB radiation on the catalytic unit in the absence of accessory subunits might also 

provide some useful information.  
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Recent studies have revealed that any ROS-mediated mitochondrial dysfunction 

culminates in the development of various diseases. Mitochondria with “compromised 

integrity” are a potential source for DAMPs such as mtDNA, cyt c, and other 

mitochondrial proteins. Formation of inflammasomes is triggered by leakage or 

intracytoplasmic release of these mitochondrial DAMPs. Activation of autophagy is 

implicated in scavenging damaged mitochondria, thereby preventing activation of 

inflammasomes.  We have already presented data from our study confirming damage 

to mtDNA and mitochondrial proteins such as Polγ by UVB radiation in murine skin 

tissue.  

Autophagy is a catabolic pathway involved in the degradation and recycling of 

cellular components such as proteins and damaged cellular organelles. AKT-mTOR 

pathway tightly regulates autophagy activation. In this study, activation of autophagy 

was examined after acute exposure to UVB radiation in both cultured keratinocytes 

(JB6 cells) and wild-type C57BL/6 mice skin tissue. Our results demonstrate 

activation of AKT by an increase in AKT (Thr-308) phosphorylation at 1 h after UVB 

radiation in both in vitro and in vivo models. A transient but significant increase in 

AKT phosphorylation at 1 h post-UVB radiation was followed by a decrease to basal 

level at 24 h post-UVB radiation. Activation of the AKT pathway immediately after 

acute UVB exposure has been implicated in protection against early transcription 

independent mitochondrial apoptotic pathway (Claerhout et al 2010, Decraene et al 

2004b). Previous studies have shown that mTOR is a downstream target of the AKT 

signaling pathway. mTOR phosphorylation at ser-2448 residue is due to activation of 

mTOR via the AKT signaling pathway (Altomare et al 2004). Activation of mTOR by 

AKT was measured by the increase in the levels of phosphorylated mTOR (ser-2448), 

which peaks at 1 h post-UVB irradiation and decreases to basal level at 24 h post-

UVB irradiation. These results indicate that the activation of mTOR closely followed 

the activation of AKT since a similar pattern of changes was seen with mTOR 

phosphorylation. This suggests that mTOR is a downstream target of AKT that is 

transiently activated in keratinocytes exposed to acute UVB radiation. Previous 

studies have identified autophagy as a pro-survival mechanism in conditions where 

AKT-mTOR axis is inhibited (Claerhout et al 2010). Based on the AKT-mTOR 

phosphorylation, activation of autophagy was measured by assessing the processing 
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of LC3-I to phospholipid conjugated LC3-II (lipidated form) and change in Beclin-1 

levels.  

Our study for the first time demonstrates that murine skin tissue exposed to UVB 

radiation has increased LC3-II and Beclin-1 levels consistent with activation of 

autophagy. Future studies should be aimed at understanding the mechanism involved 

in scavenging mitochondria by autophagy. Autophagy is triggered by release of 

mitochondrial DAMPs. We have already established damage to mtDNA and Polγ by 

UVB. Now, we need to understand whether and how leakage of mtDNA and Polγ 

from the mitochondrial matrix into cytoplasm activates signaling events that can 

eventually result in retrograde signaling by mitochondria. 
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5 Appendix 
 

 The findings presented in the appendix have been published in the journal entitled 

“Carcinogenesis” 2008. 29(10): 1920-29. This study was designed to test the 

carcinogenic potential of alumina nanoparticle. Nanoparticles have an increased 

surface area to volume ratio that increases their reactivity, which differs from bulk 

materials of the same compositions. Significant contributions have been made in 

understanding the uptake of nanoparticles by keratinocytes. This was achieved by 

standardization and analysis of the uptake of alumina nanoparticle by JB6 cells. 

Further, alumina is considered to be a pro-oxidant similar to UVB and other well-

known chemical tumor promoters like TPA that can cause increased oxidative 

damage to the skin. Assays to measure ROS level in the cells were standardized using 

DCFH dyes. This helped to determine the cellular oxidative status after alumina 

nanoparticle exposure. Assays to measure MnSOD activity were standardized to 

measure the adaptive response mounted by the cells to counteract the increased ROS 

generated by alumina nanoparticles.    
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Interaction between SIRT1 and AP-1 reveal a mechanistic insight into the 
growth promoting properties of Alumina (Al2O3) nanoparticles in mouse skin 

epithelial cells 
 

This chapter is based on work submitted as: Swatee Dey, Vasudevan Bakthavatchalu, 

Michael T. Seng, Peng Wu, Rebecca L. Florence, Eric A. Grulke, Robert A. Yokel, 

Sanjit kumar Dhar, Hsin-Sheng Yang, Yumin Chen, and Daret St Clair, 

Carcinogenesis, 2008. 29(10): 1920-1929 (reproduced with permission from 

Carcinogensis, Copyright Clearence Center) 

 

5.1 Highlights 
 

The physicochemical properties of nanomaterials differ from those of the bulk 

material of the same composition. However, little is known about the underlying 

effects of these particles in carcinogenesis. The purpose of this study was to 

determine the mechanisms involved in the carcinogenic properties of nanoparticles 

using aluminum oxide (Al2O3/alumina) nanoparticles as the prototype. Well-

established mouse epithelial JB6 cells, sensitive to neoplastic transformation, were 

used as the experimental model. We demonstrate that alumina was internalized and 

maintained its physicochemical composition inside the cells. Alumina increased cell 

proliferation (53%), proliferative cell nuclear antigen (PCNA) levels, cell viability, 

and growth in soft agar. The level of manganese superoxide dismutase (MnSOD), a 

key mitochondrial-antioxidant enzyme, was elevated, suggesting a redox signaling 

event. In addition, the levels of reactive oxygen species (ROS) and the activities of 

the redox sensitive transcription factor AP-1 and a longevity-related protein, (sirtuin-

1) SIRT1, were increased. SIRT1 knock-down reduces DNA synthesis, cell viability, 

PCNA levels, AP-1 transcriptional activity, and protein levels of its targets, JunD, c-

Jun, and Bcl-xL, relative to controls. Immunoprecipitation studies revealed that 

SIRT1 interacts with the AP-1 components c-Jun and JunD, but not with c-Fos. The 

results identify SIRT1 as an AP-1 modulator and suggest a novel mechanism by 

which alumina nanoparticles may function as a potential carcinogen.  

 

 



	   98	  

 

5.2 Introduction 
 

The rapidly evolving field of nanotechnology has increased human exposure to 

engineered nanoparticles (diameter < 100 nm) via inhalation, oral, dermal and 

injection routes. Despite the wide application of nanoparticles and highly publicized 

benefits of industrial and medical applications, sufficient knowledge of potential 

toxicity and human health risk is lacking. The unique physicochemical properties of 

nanoparticles are attributable to their particle size, distribution, chemical composition, 

surface area, surface chemistry and surface charge, which differ from bulk materials 

of the same compositions (Oberdorster et al 2005a, Xia et al 2006). Some of the 

nanomaterials used are primarily of metals and metal oxides of Al, Fe, Au, Si, Pd, Ce, 

Zn and Ti.  To date, the majority of studies show that inhalation of toxic metals and 

metal oxides leads to lung cancer and implicate ROS in oxidative stress-related 

inflammatory functions, cardiovascular injury and lung cytotoxicity (Borm et al 2006, 

Donaldson and Tran 2002, Donaldson et al 2004, Elder et al 2006, Oberdorster et al 

2005b, Warheit et al 2005, Xia et al 2006). 

Little is known about the effect of these particles on skin carcinogenesis, particularly 

the effect of oxides of non-transition metals such as aluminum oxide (Al2O3). 

Aluminum has a very strong oxide film on its surface that generally inhibits corrosion 

and chemical attack. Aluminum flake is commonly used in metallic paints, cosmetics, 

and medical devices. Aluminum is known to be toxic (Exley 1998, Yokel and 

McNamara 2001). The International Agency for Research on Cancer (IARC), the 

National Toxicology Program (NTP), and others have classified alumina fibers, 

commonly known as ceramic fibers, as possible human carcinogens (Group 2B) 

(Siemiatycki et al 2004). Aluminum used in antiperspirants has the potential to cause 

breast cancer by entering the lymphatic system (Darbre 2006, Exley et al 2007). In 

addition, epidemiological studies of drinking water and food have implicated 

aluminum as a potential risk factor in cognitive impairment in the elderly, and in 

Alzheimer's Disease (Flaten 2001). However, the potential skin carcinogenic effect of 

aluminum is unknown.  
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To explore the carcinogenic potential for aluminum oxide nanoparticles, we used 

mouse epithelial cells JB6 (cl41-5a) as an in vitro model of skin carcinogenesis. JB6 

cells are sensitive to neoplastic transformation by tumor promoter phorbol esters, such 

as 12-O-tetradecanoylphorbol-13-acetate (TPA) (Colburn et al 1978). In this model, 

activation of the activator protein-1 (AP-1) is a well-established event associated with 

tumor promotion (Zhao et al 2002).  

SIRT1 (sirtuin-1), a type III nicotinamide adenine dinucleotide (NAD)-dependent 

histone/protein deacetylase, is of particular interest because of its pleiotropic nature 

(Blander and Guarente 2004). SIRT1 regulates a variety of stress-response cellular 

and molecular processes such as survival, neuronal protection, aging, calorie 

restriction, glucose metabolism, and longevity (Brunet et al 2004, Lim 2006, Luo et al 

2001). Interaction between SIRT1 and transcriptional coactivator Peroxisome 

proliferator-activated receptor-γ coactivator 1α (PGC-1α), a key regulator of 

metabolism and mitochondrial biogenesis, has been demonstrated (Nemoto et al 

2005). In response to oxidative stress, mammalian SIRT1 physiologically interacts 

with Forkhead transcription factor (FOXO) and increases the transcription of FOXO 

target genes, including the primary antioxidant enzyme manganese containing 

superoxide dismutase (MnSOD) (Kops et al 2002), suggesting that SIRT1 may play 

an important role in cell survival under oxidative stress conditions. Furthermore, in 

response to an increase in ROS concentration, there is an increase in MnSOD 

expression level in JB6 cells (Zhao et al 2005b). In this study, we investigated the 

carcinogenesis potential of alumina and identified a novel mechanism by which 

alumina may enhance cell proliferation by a SIRT1 mediated event.  
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5.3 Materials and Methods  
	  

5.3.1 Preparation and characterization of alumina nanoparticles 
 

Metal oxide-nanoparticles prepared by gas-phase synthesis are often aggregated into 

much larger secondary particles. While commercial “nanoparticle” products may have 

primary particles with the advertised diameters, the aggregates are often much larger 

than 1 µm, and may not physically pass through biological structures. In addition, 

metal oxides often have surface charges and tend to coagulate into agglomerates 

through their interactions with salts, buffers, proteins, and/or themselves. We used the 

following procedure to produce nanoparticles with known particle size distributions 

from a commercial nanoparticle sample that formed a relatively stable suspension in 

polar solvents. Aluminum oxide nanoparticles (alumina) were purchased from Alfa 

Aesar Ward Hill, MA, 01835, USA (item # 10459, CAS Reg. #1344-28-1, γ-α 

mixture, 99.98% purity, 10 to 20 nanometer diameter, surface area ~ 100 m2/g). 

Transmission electron microscopic images (TEM, Jeol 2010F) (Figure1A) verify that 

the purchased nanoparticles were aggregated with average diameters in the range of 

500 nm on a vol % basis. X-ray diffraction shows that the sample was the gamma 

phase (not shown). Aggregates were dispersed by ultrasonication. Alumina (2.5 g) 

was added into 47.5 g (5 wt %) of deionized, ultrafiltered water and sonicated at a 

power level of 50 W for one hour using a Hielscher UP400s sonicater. The 

suspension was cooled continuously to prevent water evaporation. The product had 75 

vol % particles less than 200 nm and 70 vol % less than 100 nm as determined by 

light scattering. The particles greater than 100 nm were removed via centrifugation 

(1500 g for 10 minutes, bowl radius = 6 cm, tube length = 5 cm). The larger particles 

accumulated at the bottom of the tube, and the top 1 cm of liquid in the tube was 

siphoned off as the product. The volume-fraction particle size distribution is shown in 

Figure 1B. Ninety-five vol % of the sample was between 8 to 12 nm in diameter, with 

the remainder about 65 nm in diameter. The concentration of alumina in the 

supernatant fraction was 0.6 wt % as confirmed by atomic absorption spectrometry. 

The material shown in Figure 1B, was relatively stable and did not coagulate much 

more when allowed to settle overnight. In such preparations, the particle size 

distribution could be recovered by brief sonication (30 s) at the same power level 

prior to use.  
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5.3.2 Uptake of alumina-nanoparticles in mouse skin epithelial cells 
 

Cells were treated with non-sonicated (alumina aggregates ~ 500 nm) and sonicated 

alumina nanoparticles (diameter < 20 nm). The amount of particle used was based on 

the surface area of 9.8 cm2 of the tissue culture dish and the mean particle diameter 

from each preparation to cover the entire surface area of the dish as monolayer. 

Alumina-treated cells were washed three times in PBS and scraped, and cell 

suspension was centrifuged at low speed. The resulting cell pellets were fixed in 4% 

formalin and examined using a combination of light and electron microscopy. At the 

light microscopy level, Toluidine blue staining revealed that there were visibly fewer 

cells containing internalized alumina in cells subjected to non-sonicated (aggregated) 

alumina (Figure 1C) than in cells exposed to sonicated alumina (Figure 1D). In 

addition, a large number of mitotic cells were observed in the alumina treated cells 

(Figure 1D). To validate the composition of alumina-nanoparticles as Al2O3, high-

resolution transmission electron microscopy and scanning transmission electron 

microscopy (HRTEM/STEM) were performed on unstained samples. The elemental 

profile identified in each sample matches that of alumina (Figure 1E). 
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Figure 5.1 Characterization of alumina nanoparticles 

A Transmission electron microscopy image of aggregated alumina nanoparticles.  

B Light scattering particle size distribution for supernatant of ultrasonicated, 

centrifuged material. 

Detection of intracellular nanoparticles of alumina (Al2O3) 

C JB6 cells treated with non-sonicated particles showing uptake of particles in some 

cells. Arrows point to the refractory inclusions in the affected cells.  

D JB6 cells treated with sonicated/dispersed particles. Virtually, all cells contain 

refractory inclusions, and presence of a large number of mitotic cells is evident. 

Toluidine blue-stained plastic section, magnification x 1000.	  

Characterization of alumina nanoparticle (Al2O3) by HRSTEM and scanning 

transmission electron microscopy  

E The image with a red line passing through a bright spot (top/left) indicates the area 

of X- ray elemental analysis. The elemental profile shown on the top/right panel 

shows both aluminum and oxygen that are highlighted in the bottom frame. 
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5.3.3 Characterization of cell growth 
 

Cells were cultured at a density of (1 x 104) in triplicate in a 6-well plate. The cells 

were mixed with Trypan blue stain to mark dead cells and counted daily for 5 days to 

determine the number of live cells per well. Growth rate was determined by 

calculating the doubling time from the initial slope of the growth curve before 

saturation occurred.  

	  

5.3.4 Cell viability assay 
 

The effect of alumina on JB6 cell viability/metabolic activity was determined using 

the colorimetric MTT assay–(3-[4,5-dimethythiazol-2yl]-2,5 diphenyl tetrazolium 

bromide, Roche Applied Science, Indianapolis, IN). Cells were cultured at a density 

of (1 x 105) in triplicate in a 48- well plate.  

	  

5.3.5 Manganese superoxide dismutase (MnSOD) activity assay 
 

The MnSOD activity was measured using modified NBT (nitro blue tetrazolium) 

method as described previously (Spitz and Oberley 1989). This assay is based on the 

competition between superoxide dismutase in the cell homogenate and NBT, an 

indicator molecule for the O2
-•. The xanthine-xanthine oxidase system was used for 

the generation of constant flux of O2
-•.  The cells were cultured at a density of (1x106 

cells) in triplicate in P-150 plates. The amount of alumina nanoparticles used to treat 

the cells was calculated based on the surface area of the P-150 plate and the mean 

diameter of the alumina nanoparticle. The cells were washed three times in PBS and 

stored at -80°C overnight. The cell were thawed, scraped and homogenized in 0.25 ml 

of 50 mM potassium phosphate buffer (pH 7.8, with diethylenetriaminepentaacetic 

acid) per plate. The homogenate was sonicated on ice with three 15 sec bursts with 

400-W microtip sonicater at 70% output. The reduction of NBT to blue formazan by 

O2
-• with/without cell homogenate was measured spectrophotometrically at 560 nm at 

25°C. The rate of NBT reduction in the absence of cell homogenate was used as the 

reference rate (0.02±0.005 absorbance/min). The data were plotted as percent 

inhibition of NBT reduction versus protein concentration and fitted with a curve using 

GraphPad Prism 4 (Enzyme kinetics) software program.  One unit of activity was 
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defined as the amount of protein necessary to reduce the rate of NBT reduction to 

50% of maximum inhibition. All the data were expressed in units of SOD activity per 

milligram of protein. 

 

5.3.6 Detection of ROS 
 

The intracellular ROS production was assayed using 2',7'-dichlorofluorescein 

diacetate (DCFH) (Molecular Probes, Eugene, OR) as described previously (Smith et 

al 2007).  The cell permeant DCFH dye was cleaved of its acetate moiety by cellular 

esterase producing 2',7'-dichlorofluorescein (DCF) that fluoresces upon ROS 

oxidation in the cells. The carboxy-DCFH (C-369) (Molecular Probes, Eugene, OR) 

dye is a non-oxidizable fluorescent dye that does not change its fluorescence in the 

presence of ROS in the cells. The cells were cultured at a density of (1 x 104 cells) in 

triplicate in 48-well plates.  After 24 hours the cells were treated with alumina per the 

working surface area of the cell culture plate and the size of the alumina nanoparticle. 

The cells were incubated for 24 hours after alumina nanoparticle treatment. After the 

24 hour incubation the cells were washed with PBS (pH 7.4) and incubated for 45 min 

with 0.25ml of PBS containing 10 µM of DCFH or with 1 µM of C-369, which 

served as a negative control. The cells were washed twice with PBS (pH 7.4) and 0.25 

ml of fresh PBS was added. The fluorescence was read at excitation/emission of 

488/525 nm with a Spectra Max Gemini plate reader from Molecular Devices. The 

background fluorescence from wells with cells only (no DCFH/ C-369 dye added) 

was subtracted from those with DCFH/ C-369 dye added. 

  

5.3.7 Anchorage-independent cell transformation assay in soft agar 
 

Anchorage-independent cell transformation is one of the best in vitro indicators of 

neoplastic growth potential. The cells were treated with TPA as the positive control. 

Agar plates were prepared which contained a bottom layer of 0.5% agar, overlaid 

with a layer of 0.33% soft agar inclusive of cells and test compounds. Cultured 

untreated JB6 cells were trypsinized and diluted in culture media to obtain single cell 

suspensions. Aliquots of cell suspensions (5000 cells) left untreated, or treated with 

alumina or TPA - positive control, were mixed with the 0.5% agar media and layered 

gently over the solidified bottom agar. The top layer was allowed to set for 30 min at 
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room temperature. Excess culture media was added over the set-soft agar layer and 

incubated at 37oC in a 5% CO2-air humidified incubator for 14 days.  Colonies 

comprising more than 50 cells were counted under a dissecting microscope. 

  

5.3.8 Transient transfection and Luciferase assay for detecting AP-1 activity 
 

JB6 cells (2 x 105) were cultured at 70% confluency in culture plates in antibiotic-free 

culture media (Minimum Essential Medium, Earle’s, Invitrogen), supplemented with 

4% FBS. A lipofectamine transfection protocol was used as described by the 

manufacturer (Invitrogen, Carlsbad, CA). Cells were transfected with 2 µg of empty 

vector alone (pGL3-Luc), or empty vector containing a tandem of four AP-1 

consensus binding sites in the promoter (AP-1-pGL3-Luc), and co-transfected with 

pRL-TK (0.22 µM), which contains the Renilla cDNA, driven by the thymidine 

kinase promoter, as the internal control. The samples were analyzed for luciferase 

activity using the Dual-Luc Reporter Assay System (Promega, Madison, WI), 

according to the manufacturer’s instructions, in a TD-20/20 luminometer (Turner 

Designs, Sunnyvale, CA).  

 

5.3.9 SIRT1 activity assay 
 

The lysyl deacetylase activity of SIRT-1 was measured using the fluor de Lys-SIRT1 

substrate (a peptide comprised of amino acids 379-382 of human p53 [Arg-His-Lys-

Lys(Ac)], Biomol, Plymouth Meeting, PA). Briefly, JB6 (cl41-5a) cells were left 

untreated or treated with alumina for 72 hours.  Following treatment, cells were 

harvested in lysis buffer (described above; see Western blot).  Crude cell lysates were 

frozen/thawed three times and centrifuged at 12,000g for 10 min. The supernatants 

(cell lysates) were normalized for protein content and incubated in assay buffer 

supplemented with 50 µM of SIRT1 substrate at 37oC in 96-well plates for 1 hour.  

The reaction was subsequently quenched with the quenching buffer containing the 

developer and SIRT1 inhibitor, NAD, for 45 min at room temperature (23oC). The 

enzyme-catalyzed release of the fluorophore triggered by the NAD+-dependent 

deacetylation of the substrate by SIRT1 was quantified by a SpectraMax Gemini 

Fluorimeter (Molecular Device, Sunnyvale, CA) using 360 nm excitation and 460 nm 

emission wavelengths. SIRT1 activity was expressed as units per microgram of total 
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protein. Changes in alumina-induced SIRT1 activity were compared with the control 

cells (no treatment). Mean values were obtained from three replicates (n = 3). Protein 

concentrations were determined using the Bradford method (Biorad, Hercules, CA). 

  

5.3.10 Immunoprecipitation  
 

Whole cell lysates from JB6 cells left untreated or treated with alumina were used for 

immunoprecipitation studies. Cell lysates (200 µg) were mixed with 2 µg of anti-c-

Jun polyclonal antibody or anti-JunD polyclonal antibody or anti-c-Fos polyclonal 

antibody, and incubated overnight at 4oC with continuous mixing. Subsequently, 20 

µl of protein A/G agarose beads were added to the reaction mixture of lysate and 

antibody and incubated overnight at 4oC with continuous mixing. Immunoprecipitates 

were collected by centrifugation at 2500 rpm for 5 mins at 4oC, followed by washing 

4 times with radioimmune precipitation assay (RIPA) buffer (9.1 mM Na2HPO4, 1.7 

mM NaH2PO4, 150 mM NaCl 0.5 %, Sodium deoxycholate, 1 % Nonidet P-40, 0.1 % 

SDS, 10 µg/ml phenylmethylsulphonyl fluoride [PMSF], and 1 µg/ml aprotinin 

[Sigma-Aldrich, St. Louis, MO 63178, USA]).   Subsequently, the supernatant was 

carefully removed and the pellets were resuspended in 1X electrophoresis sample 

buffer. The samples were boiled for 5 mins and immunoprecipitated proteins were 

detected by Western blot.  

 

5.3.11 SIRT1 knockdown by siRNA approach 
 

JB6 (cl41-5a) cells were transfected using small interfering RNA (siRNA) to SIRT1 

(a cocktail of 5’-AUC UUG CCU GAU UUG UAA TT-3’; 5’- GUA CCA CCA AAU 

CGU UAC ATT-3’; and 5’-GCA UAG AUC UUC ACC ACA ATT-3’, Santa Cruz 

Biotechnology, Santa Cruz, CA). Cells (2 x 105) were grown in 6-well culture plates 

in antibiotic-free culture media (Minimum Essential Medium, Earle’s, Invitrogen, 

Carlsbad, CA), supplemented with 4% FBS at 37oC in a 5% CO2-air humidified 

incubator until the cells were 70 - 80% confluent. Cells were transfected using a 

lipofectamine transfection reagent as directed by the manufacturer (Santa Cruz 

Biotechnology, Santa Cruz, CA). For each transfection, 0.8 µg of siRNA duplex for 

SIRT1 and control siRNA were mixed with transfection reagent and medium.  The 

transfection media was removed after 7 hours and replenished with fresh culture 
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media. After 24 hours, cells were left untreated or treated with alumina. Seventy-two 

hours after treatment, cells were washed with PBS and lysed in lysis buffer (described 

above; see Western blot) and centrifuged for 10 mins to pellet cellular debris. The 

samples were analyzed for SIRT1, JunD, c-Jun, c-Fos, Bcl-xL and Bax protein 

expressions using Western blot analysis. Mean values were obtained from three 

replicates (n = 3). 

  

5.3.12 Detection of cell proliferation 
 

Cell proliferation was determined by detecting the incorporation of 

bromodeoxyuridine (BrdU), a thymidine analog, using anti-BrdU specific antibodies 

(BD Biosciences, San Jose, CA). To study the function of SIRT1 in proliferation, the 

cells were transfected with siRNA for SIRT1 and control siRNA (as described 

above). Twenty-four hours after transfection, the cells were labeled with BrdU 

solution followed by treatment with alumina, or by no treatment. Seventy-two hours 

after treatment, cells were fixed with Zamboni’s fixative and washed with PBS, 

permeabilized and incubated with biotin anti-BrdU monoclonal antibody. The slides 

were visualized using the streptavidin-HRP enzyme complex and the signal was 

detected by DAB substrate. The number of BrdU positive cells was counted from 10 

randomly selected fields and the percentage of proliferating cells was calculated as 

(number of BrdU cells/number of total cells x 100). Mean values were calculated 

from three replicates (n = 3).  

 

5.3.13 Data Analysis 
 

Data are represented as mean + SEM from replicate samples obtained from at least 3 

separate experiments. Overall differences between experimental groups were 

analyzed using ANOVA (JMP IN statistical software, release version 5.1, SAS 

Institute Inc., Belmont, CA). When significant differences were found between 

experimental groups, paired group differences were analyzed post hoc using 

Dunnett’s (d) test. An α level of p < 0.05 was considered significant for all statistical 

tests employed. 
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5.4 Results 
 

5.4.1 Alumina nanoparticle-induced cell proliferation and transformation 
 

As an initial step to determine the effects of alumina on cell proliferation we 

determined the growth characteristics of cells over time. TPA, a well-established 

tumor promoter, was used as the positive control. Cells were left untreated, or treated 

with alumina (diameter < 20 nm) or TPA (10 ng/ml). The amount of particles to be 

applied was calculated to provide uniform coverage of monolayer cells.  Alumina and 

TPA treated cells showed a 53% and 124% increase in growth, respectively, 

compared to untreated controls (Figure 2A). Western blot analysis revealed increases 

in PCNA levels in alumina and TPA treated cells, compared to controls, at 72 hours 

(p < 0.001) and 120 hours (p < 0.006), which further validates the increase in cell 

proliferation (Figures 2B, C). Consistent with these findings, a large number of 

mitotic cells were observed in the toluidine-stained, alumina-treated JB6 cells (Figure. 

1D). Changes in viability and metabolic activity of cells exposed to alumina were 

measured using the MTT assay. The results indicate a significant increase in cell 

viability after 72 hours, compared to untreated controls (*p < 0.001) (Figure 2D). 

Alumina also induced anchorage-independent transformation of JB6 cells in soft agar. 

Single cells were seeded in 33% soft agar with, or without, alumina or TPA (positive 

control). Transformed colonies in alumina and TPA treated cells were significantly 

greater in number and larger in diameter compared to controls (alumina: p < 0.05; 

TPA: p < 0.001) (Figures. 2E, F).  
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Figure 5.2 Alumina nanoparticle-induced cell proliferation and transformation 

(A) Cells were left untreated or treated with alumina nanoparticles (diameter < 20 nm; 

dose calculated for uniform application over cell surface) or TPA (10 ng/ml; positive 

control) and a growth curve was established by daily counting of cell numbers. 

Alumina- and TPA-treated JB6 cells demonstrated increase in growth rate, compared 

with controls *P<0.006; **P<0.001. (B) Western blot analysis indicated significantly 
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increased PCNA levels in alumina- and TPA-treated cells, compared with controls, at 

72 h (P<0.001) and 120 h (P<0.006). Mouse anti-actin monoclonal antibody was used 

as an internal loading control. (C) Quantitative analysis of PCNA expression was 

performed. Results were averaged from three sets of independent experiments. (D) 

Cell viability of JB6 cells exposed to alumina in vitro was determined using the 3-

(4,5-dimethythiazol-2yl)-2,5-diphenyl tetrazolium bromide assay, a colorimetric 

measure of metabolic activity, which serves as an indicator of cell viability. Cells 

treated with alumina demonstrated an increase in cell viability (*P<0.001; n=6), 

compared with controls. (E) Phase contrast microscopy images of transformed 

colonies of JB6 cells seeded in soft agar, untreated or treated with nanoparticles of 

alumina or 10 ng/ml TPA (positive control). The number of transformed colonies was 

counted after 14 days. The images shown were taken at ×10 magnification. All 

colonies found in alumina- or TPA-treated cells contain an average of >50 cells, as 

determined by dissociation of the smallest colony in the alumina-treated cells with 

trypsin and counting with a hemocytometer. (F) Quantitative analysis showed that 

alumina-treated cells demonstrated a significant increase in transformed colonies 

compared with controls (alumina: P<0.05; positive control TPA: P<0.001). 
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5.4.2 Alumina exposure enhances MnSOD expression and activity in mouse 
epithelial cells 

 

Given that manganese superoxide dismutase (MnSOD) is a well-documented 

indicator for oxidative stress and a TPA inducible gene, and that alumina 

nanoparticles have similar effects as TPA in JB6 cells, we probed the effect of 

alumina on cellular redox status by studying the changes in protein levels of MnSOD. 

Results indicate a significant increase of MnSOD at 72 h and 120 hours (72 h: p < 

0.04; 120 h: p = < 0.03), compared to controls (Figures 3A, B).   

To verify that changes in MnSOD protein result in corresponding changes in MnSOD 

activity, we measured MnSOD activity using the NBT reduction assay. The results 

indicate corresponding increases in MnSOD activity in alumina treated cells at 72 

hours p<0.05 (Figure 3C).  

To further probe whether the increase in MnSOD activity is likely to reduce total 

cellular ROS levels, we measured intracellular ROS levels using the oxidizable probe 

DCFH.  Alumina treated cells show significantly increased ROS levels (p<0.05) 

(Figure 3D).  The non-oxidizable probe (C-369) did not manifest any differences in 

fluorescence (Figure 3E). 
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Figure 5.3 Alumina exposure enhances MnSOD and ROS levels in mouse 
epithelial cells  

(A) Cells were left untreated or treated with alumina (diameter < 20 nm). Cell lysates 

were extracted for western blot analysis to detect MnSOD expression. (B)JB6 cells 

exposed to alumina showed a significant increase in MnSOD levels after 72 h 

(P<0.04) and 120 h (P<0.038) of treatment, compared with controls. Mouse anti-actin 

monoclonal antibody was used as an internal loading control. Results were averaged 

from three sets of independent experiments. (C) The MnSOD activity was measured 

72 h after treatment. (D) Significant increase in MnSOD activity was found in 

alumina-treated cells (P<0.05). (E) The levels of total cellular ROS represented by 

DCF fluorescence was significantly increased (P<0.05) at 72 h, whereas the 

fluorescence level of the C-369 was not changed in alumina-treated cells.  



	   114	  

5.4.3 Alumina exposure enhances AP-1 transcription activity as well as SIRT1 
deacetylation activity 

 

It has been demonstrated that activator protein-1 (AP-1) and its downstream genes 

induce cell proliferation in skin exposed to tumor promoter TPA (Bowden et al 1995).  

To determine whether increases in proliferation and transformation of JB6 cells 

exposed to alumina are associated with activation of AP-1, cells were transfected with 

the AP-1 promoter construct (API-1pGL3-Luc) or (pGL3-Luc), and transcriptional 

activity of AP-1 was measured using the luciferase reporter assay. A significant 

increase in AP-1 transcriptional activity was observed in alumina-treated cells after 

24 hours, compared to the corresponding empty vector-transfected cells and untreated 

controls (p <0.001) (Figure 4A).  

Mammalian Silent information regulator 2 homolog, sirtuin (SIRT1), has been 

identified as a longevity gene and an important regulator of cell survival in the 

presence of stress, such as oxidative stress (Brunet et al 2004, Luo et al 2000, Luo et 

al 2001). Analysis of SIRT1 protein levels using Western blot showed a significant 

induction at 72 hours in both TPA and alumina-exposed cells (p < 0.006) (Figures. 

4B, C). This finding was confirmed by an increase in SIRT1 activity in alumina 

treated cells (p < 0.002) (Figure 4D).  

5.4.4 SIRT1 interacts with Jun members of AP-1 
  

The AP-1 complex consists of a variety of dimers of the members of the Jun and Fos 

family of proteins (Raivich and Behrens 2006). Previous studies have shown that the 

Jun family of proteins may play a key role in TPA-induced AP-1 activity in skin 

(Zhao et al 2001). To explore the possibility that SRIT1 may participate in the 

transcription of AP-1 target genes by interacting with AP-1, we performed 

immunoprecipitation coupled to Western analysis of SIRT1 and AP-1 components.   

Immunoprecipitation studies revealed a physical interaction of SIRT1 with the AP-1 

components, c-Jun and JunD, but not c-Fos, in alumina-exposed cells (Figures. 4E-

G). 
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Figure 5.4 Alumina exposure enhances AP-1 transcription activity and SIRT1 
deacetylation activity  

(A) JB6 (cl41-5a) cells were transfected with the empty vector alone (pGL3-Luc) or 

empty vector containing the AP-1 promoter-driven luciferase reporter vector. Thirty-

six hours after transfection, cells were divided into sets, three dishes per group, for 

treatment with or without alumina nanoparticles. Twenty-four hours after treatment, 

cells were collected for luciferase activity as a measure of AP-1 transcription activity. 

A significant increase in AP-1 transcriptional activity was observed in alumina-

treated JB6 cells, compared with the corresponding empty vector-transfected cells and 

controls [pAP1/dimethyl sulfoxide (DMSO)] (P<0.001). (B and C) Western blot 

analysis revealed an increase in the SIRT1 protein level in alumina- and TPA-treated 

cells (P<0.006). (D) Increase in protein levels in alumina-exposed JB6 cells was 

confirmed by SIRT1 enzyme activity assay (P<0.002). (E and F)Interaction of SIRT1 
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and AP1 components: immunoprecipitation studies revealed physical interaction of 

SIRT1 with the AP-1 components, c-Jun and JunD, but not with c-Fos, in alumina-

treated cells. (G) Immunoprecipitation with IgG was used as controls. 
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5.4.5 SIRT1 is essential for cell proliferation in alumina-exposed mouse 
epithelial cells 

 

We used the siRNA approach to verify the role of SIRT1 in alumina-induced cell 

proliferation.   Cells were transfected with control siRNA and SIRT1 siRNA and 24 

hours later were exposed to alumina for 72 hours. Suppression of SIRT1 reduced 

alumina-induced SIRT1 expression in treated cells (^p < 0.0001), as well as in 

controls (^p < 0.007) (Figures. 5A, B). The role of SIRT1 in cell proliferation was 

determined by detecting cells in S-phase using BrdU staining. Alumina exposure 

showed an increase in the S-phase population of cells (*p < 0.0002), which was 

attenuated in cells transfected with SIRT1 siRNA (^p < 0.0004; controls: ^p < 

0.0004) (Figures. 5C, D). The role of SIRT1 in cell proliferation was further 

confirmed by the increase in alumina-induced PCNA levels (*p < 0.003; #p < 0.02), 

which was reduced in the alumina-exposed SIRT1 siRNA transfected cells (^p < 

0.001) (Figures 5E, F). Suppression of SIRT1 also reduced cell viability measured by 

MTT assay (*p < 0.005, #p < 0.02, alumina: ^p < 0.0001; controls: ^p < 0.0006) 

(Figures 5G). 
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Figure 5.5 SIRT1 is essential for increased cell proliferation in alumina-exposed 
mouse epithelial cells  

(A and B) JB6 (cl41-5a) cells were transfected with siRNA for SIRT1 and control 

siRNA. SIRT1 siRNA significantly suppressed basal levels and alumina-induced 

SIRT1 expression (*P<0.02; alumina: ^P<0.0001; controls: ^P<0.007). (C and D) S-

phase population of cells was detected by the incorporation of BrdU, which was 

recognized by anti-BrdU-specific antibodies. Increase in S-phase population in 

alumina-treated cells (*P<0.0002) was attenuated by SIRT1 siRNA transfection 

(^P<0.0004; controls: ^P<0.0004). (E and F) Western blot analysis revealed increase 

in alumina-induced PCNA levels (*P<0.003; #P<0.02), which was attenuated in 

alumina-exposed SIRT1 knockdown cells (^P<0.001). (G) Cell viability was assessed 
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using 3-(4,5-dimethythiazol-2yl)-2,5-diphenyl tetrazolium bromide assay. 

Suppression of SIRT1 reduced cell viability in controls and alumina-treated cells 

(*P<0.005, #P<0.02, alumina: ^P<0.0001; controls: ^P<0.0006). *Increase in protein 

levels, S-phase cells and viability in cells treated with alumina and transfected with 

control siRNA in comparison with untreated cells. Reduction in protein levels, S-

phase cells and viability in SIRT1 knockdown untreated and treated JB6 cells, 

compared with respective control siRNA transfected cells. #Increase in PCNA levels 

in alumina-exposed JB6 cells transfected with siRNA for SIRT1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	   120	  

5.4.6 SIRT1 is essential for the activation of AP-1 and its target gene, Bcl-xL, in 
alumina-exposed mouse epithelial cells 

 

To verify the role of SIRT1 in the activation of AP-1 and its components, JB6 cells 

were co-transfected with the AP-1 promoter construct (API-1pGL3-Luc) or (pGL3-

Luc), and siRNA for SIRT1, or control siRNA. Transcriptional activity of AP-1 was 

measured using the luciferase reporter assay 72 hours after transfection.  Suppression 

of SIRT1 reduced alumina-induced and basal levels of AP-1 transcriptional activity 

(alumina: *p < 0.02; ^p < 0.001, controls: ^p < 0.001) (Figures 6A). SIRT1 knock-

down also reduced alumina-induced protein expression of AP-1 component, JunD (*p 

< 0.002; ^p < 0.0001) (Figures 6B, C), and c-Jun (*p < 0.0002; ^p < 0.001) (Figures 

6B, D) but not the level of the non-AP-1 target gene, c-Fos (Figures 6B, E). Further, 

alumina increased pro-survival AP-1 target gene Bcl-xL, but the reverse occurred in 

SIRT1 knock-down cells (Figures 6F, G). 
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Figure 5.6  SIRT1 is essential for the activity of AP-1 and the expression of AP-1 
target genes in alumina-exposed mouse epithelial cells 

(A) JB6 (cl41-5a) cells were cotransfected with either the AP-1-driven luciferase 

reporter construct (AP-1pGL3-Luc) or empty vector (pGL3-Luc), along with siRNA 

for SIRT1 or control siRNA. After 24 h of cotransfection, cells were left untreated or 
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treated with alumina for 72 h. Cells were collected for luciferase activity as a measure 

of AP-1 transcriptional activity. AP-1 transcriptional activity was reduced in controls 

and alumina-exposed SIRT1 knockdown cells (alumina: *P<0.02; ^P<0.001, 

controls: ^P<0.001). (B, C, D, and E) Protein levels of AP-1 components JunD and 

c-Jun were attenuated in SIRT1 knockdown cells (JunD-alumina: *P<0.002; 

^P<0.0001) (B and C), (c-Jun-alumina: *P<0.0002; ^P<0.001). SIRT1 suppression 

did not alter the alumina-induced expression levels of c-Fos (*P<0.05). (F and G) 

Prosurvival AP-1 target gene BclxL increased in alumina-exposed JB6 cells, which 

was reversed in SIRT1 knockdown cells (BclxL: *P<0.03; alumina: ^P<0.001, 

control: alumina: ^P<0.002, control: ^P<0.025). *Increase in AP-1 activity and other 

protein levels in cells treated with alumina and transfected with control siRNA, 

compared with untreated controls. Reduction in AP-1 transcriptional activity and 

protein expression in SIRT1 knockdown untreated and treated JB6 cells compared 

with respective control siRNA-treated cells. 
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5.5 Discussion 
 

Ultra-microscopic nanoparticles are used to facilitate novel state-of-the-art therapeutic 

regimens and targeted drug delivery systems in an attempt to improve treatment 

efficacy (McNeil 2005). They are also used in cosmetics and other consumer products 

(Darbre 2005, Darbre 2006). However, the increased surface to volume ratio of the 

miniscule nanoparticles increases reactivity and may result in intrinsic toxicity. 

Despite the wide application of nanoparticles, knowledge of their adverse effects, 

especially on carcinogenesis, is lacking. One of the most common entry routes for 

nanoparticles is inhalation, and early reports indicate that workers involved in 

aluminum production may be at increased risk of developing lung cancer (Andersen 

et al 1982). In vivo studies have demonstrated lung inflammation due to exposure to 

nanoparticles (Dailey et al 2006). Systemic distribution of nanoparticles has been 

reported into the blood stream and lymphatic pathways (Medina et al 2007).  Because 

aluminum distributes evenly in plasma and blood cells, aluminum concentrations in 

plasma and whole blood have similar value in assessing toxicity (van der Voet and de 

Wolff 1985). Aluminum is excreted predominantly via the kidneys and therefore 

accumulates in patients with renal failure (Alfrey et al 1980). Long-term exposure 

could lead to accumulation of aluminum, even in workers having normal renal 

function.  

Another important route for nanoparticle entry is the skin, from accidental exposure 

and use of   cosmetics and other topical applications. Although the outer layer of the 

epidermis, the stratum corneum, protects against environmental insults, TiO2 has been 

shown to penetrate the stratum corneum and even hair follicles (Lademann et al 

1999). Penetration of nanosized titanium dioxide (5-20 nm) into the skin and 

interaction with the immune system has been demonstrated (Kreilgaard 2002).  

Studies have also demonstrated that, in conjunction with motion, nanoparticles 

penetrate into the stratum corneum of human skin reaching to the epidermis and 

dermis (Tinkle et al 2003). 

Recently, aluminum has been found to be a potential pro-oxidant in sunscreens and 

sunblocks (Nicholson and Exley 2007). Several studies report permeability and 

accumulation of aluminum salts in anti-perspirants with dispersion to systemic sites 

(Flarend et al 2001). In addition, aluminum has been categorized as a metalloestrogen 
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that can interfere with estrogen receptors and that has a potential role in breast cancer 

(Darbre 2005). Further, aluminum could function as a pro-oxidant increasing 

oxidative damage to the skin (Exley 2004).  However, whether and how nanoparticles 

of alumina exert a carcinogenic effect on skin epithelial cells are unknown. 

Our results show that alumina is internalized and significantly increases MnSOD 

protein levels, indicating that the effect of alumina may occur, in part, via alteration 

of cellular redox status.  Our results also indicate that nanoparticle exposure can cause 

increased proliferation and anchorage-independent transformation in JB6 cells. 

Proliferating cell nuclear antigen (PCNA) is a well-established indicator of cell 

proliferation, actively involved in DNA replication and repair (Paunesku et al 2001). 

The increase in PCNA levels further validates the role of alumina in cell proliferation.  

Our results also demonstrate that treatment with alumina enhances MnSOD protein 

and activity as well as the levels of total cellular ROS.  These results suggest that the 

observed increase in MnSOD levels is an adaptive response to alumina-induced 

oxidative stress.  The finding that the total cellular ROS is also increased in the 

presence of higher MnSOD activity is consistent with this possibility.  Further support 

for this possibility includes the finding that alumina activates AP-1, a redox sensitive 

transcription factor. The major components of AP-1 are the “Jun” (c-Jun, JunB, and 

JunD) and “Fos” (c-Fos, FosB, Fos related antigen-1 [Fra-1], and [Fra-2)]) family of 

proteins (Wisdom 1999). They are characterized by the Leucine zipper regions that 

allow the different components to form homodimers or heterodimers and bind to 

specific DNA binding elements called 12-O-tetradecanoylphorbol-13-acetate 

response elements (TRE) (Angel et al 1987). Unlike the Jun family of proteins, Fos 

proteins cannot form homodimers. They form heterodimers with the Jun family of 

proteins (Mason et al 2006). Activation of AP-1 is essential for the neoplastic 

transformation of mouse epithelial JB6 cells (Bernstein and Colburn 1989). Inhibition 

of c-Jun or AP-1 represses transactivation of AP-1 and transformation of JB6 cells 

(Dong et al 1994). Thus, AP-1 transcriptional activity instigated by alumina may 

result from redox-mediated events that lead to cell proliferation and neoplastic 

transformation.  

Mammalian silent information regulator 2 homolog (SIRT1) has been recently 

identified as a pro-survival factor against stress-induced DNA damage (Imai et al 

2000, Luo et al 2001).  SIRT1 promotes cell survival by negatively regulating the 
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tumor suppressor protein p53 (Langley et al 2002, Lim 2006, Luo et al 2001, Vaziri et 

al 2001). Previous studies have shown that the deacetylase activity of SIRT1 is 

responsible for gene silencing, DNA recombination, increase in survival and 

longevity in response to oxidative stress and other stress factors (Bordone and 

Guarente 2005, Brunet et al 2004, Cohen et al 2004, Langley et al 2002, Luo et al 

2001, Smith 2002, Vaziri et al 2001). Our studies indicate that alumina exposure to 

mouse epithelial cells increases SIRT1 protein and activity levels. Interestingly, we 

also observed interaction of SIRT1 with the AP-1 components c-Jun and JunD in 

alumina-exposed cells.  This is the first study to demonstrate SIRT1 as a component 

of AP1-mediated transcription.  Our results also show that SIRT1 is an essential 

modulator of AP-1 mediating cell proliferation and neoplastic transformation, as the 

use of siRNA to block SIRT1 attenuates AP-1 transcriptional activity, protein levels 

of c-Jun, JunD, and Bcl-xL, as well as PCNA levels, cells in S-phase, and cell 

viability. 

The Bcl-2 family of proteins consists of both anti-apoptotic and pro-apoptotic 

members and the ratio of these proteins often determines the life/death fate of cells 

(Tsujimoto 1998, Tsujimoto and Shimizu 2000). The Bcl-2 gene was originally 

identified as an oncogene involved in human follicular B cell lymphoma (Tsujimoto 

et al 1985). Bcl-2 and Bcl-xL prevent apoptosis by sequestering death-inducing pro-

caspases and/or preventing release of cytochrome c and apoptosis inducing factor 

(AIF) into the cytoplasm (Tsujimoto 1998). In contrast, pro-apoptotic Bax and Bak 

trigger the release of cytochrome c that initiates the caspase signaling cascade 

(Grutter 2000, Jiang and Wang 2004, Tsujimoto 1998). The Bcl-xL protein is 

localized within the mitochondrial membrane (Gonzalez-Garcia et al 1994) and 

inhibits apoptosis (Boise et al 1993). An AP-1 consensus sequence was found at -267 

of the promoter region of the mouse Bcl-xL gene (Grillot et al 1997). Our findings 

that alumina increases the pro-survival AP-1 target gene Bcl-xL and that suppression 

of SIRT1 reverses Bcl-xL levels further support the possibilities that AP-1 activation 

is a mechanism by which nanoparticles of alumina can cause transformation. 

The mechanisms by which SIRT1 participates in the carcinogenesis process are 

unknown. Although the precise mechanism by which SIRT1 modulates AP1 activity 

is unclear, our study indicates that SIRT1 may contribute to the carcinogenesis 

potential of alumina, at least in part, by interacting with AP-1 and modulating the 
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expression of AP-1 target genes. These results reveal a novel mechanism involving 

the positive role of SIRT1 on transcription leading to enhanced proliferation in 

alumina-treated cells. Further study in an animal model will be needed to establish 

this novel observation.  Our initial observations in a cellular model suggest that 

alteration of cellular longevity and metabolic regulator should be considered in 

tandem with the evolving new opportunities using engineered nanoparticles to ensure 

the safety of nanomaterials. 
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