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ABSTRACT OF THESIS 

 

 

SPATIAL PRIORITIZATION FOR INVASIVE PLANT MANAGEMENT 

 

Invasive exotic plant species have been recognized as serious threats to 
ecosystems. Extensive research on invasive exotic plant species has primarily focused on 
the impacts, characteristics, and potential treatments. Decision tools and management 
models that incorporate these findings often lack input from managers and have limited 
use in differing invasion scenarios. Therefore, in this study, I created a scientifically-
driven framework that incorporates expert input to prioritize watersheds for management 
within the Inner Bluegrass region of Kentucky.  The widely distributed invasive exotic 
plant Amur honeysuckle (Lonicera maackii) was used as an example species. The 
framework is built around the Analytic Hierarchy Process and highlights areas in most 
need of invasive exotic plant management by incorporating weighted landscape variables 
associated with the invasion process. Results of the prioritization provide useful 
information for natural resource managers by aiding in the development of control 
strategies while also creating a valuable framework that can be adapted to various 
invasive exotic plant species.   
 

KEYWORDS: Invasive exotic plants, GIS, Analytic Hierarchy Process, Lonicera 
maackii, spatial analysis 
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Chapter One: Introduction 

 Many researchers and natural resource managers have recognized invasive exotic 

species as a growing problem with both economic and ecological implications.  In 

particular, invasive exotic plant (IEP) species are serious threats to natural resource 

management within various ecosystems. IEPs threaten ecosystem function, native 

biodiversity, and put rare and endangered species at risk (Wilcove et al. 1998, Byers et al. 

2002, Ehrenfeld 2010). Additionally, factors pertaining to IEP control and their potential 

damages of ecosystem services result in high economic costs annually (Pimentel et al. 

2005).   

 Research has identified basic invasive characteristics that many IEPs share. Traits 

such as high resource use efficiency, high reproductive output, natural robustness, and 

high dispersability contribute to invasibility and make IEPs good competitors (Webster et 

al. 2006). Habitats that tend to have fewer IEPs include dense or mature forests and large 

non-fragmented areas (Alpert et al. 2000). Recently disturbed habitats with high light 

levels and proximity to an abundant seed source may lead to an increase in forest 

invasibility for certain IEPs (Hutchinson and Vankat 1997, Hansen and Clevenger 2005).   

Most IEPs follow a generalized invasion process that is comprised of four stages; 

introduction, establishment, spread, and impact (Lockwood et al. 2007).  The time period 

within each stage can be variable and invaders must overcome a series of barriers before 

moving on to the next invasion stage (Webster et al. 2006). For example, after an invader 

has been transported and introduced into a novel habitat, it must become established 

before it can begin the spread stage. Though most invasions display basic similarities, 

subtle differences are noted when analyzing the invasion process across different 
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ecosystem types. The first stage of the invasion process essentially addresses the 

introduction of the invader. Depending upon the IEP, introduction can occur accidentally 

or sometimes purposely such as when introduced for landscaping, erosion control, or 

horticulture purposes (Reichard and Hamilton 1997, Reichard and White 2001). 

Once introduced into a new habitat, IEPs have the potential for establishing a 

viable population. Various research efforts have focused on the establishment stage, 

especially studying how or why invaders become established in certain habitats over 

others. For example, disturbances may act as pathways for IEP invasion and 

establishment (Hansen and Clevenger 2005). Disturbed areas such as roadways may 

provide suitable habitat for IEPs (Parendes and Jones 2000), while fire or other 

disturbances such as tree harvesting create openings that may allow for new IEP 

establishment (Keeley 2006, Oswalt et al. 2007, Mandle et al. 2011). 

With an established reproducing population, dispersal and spread of IEPs is 

possible and facilitated by numerous mechanisms. For example, roadways can act as 

corridors that provide connectivity and potentially increase spread rates (Parendes and 

Jones 2000, Gadagkar et al. 2007), while propagule spread into forest systems can be 

aided by cars and machinery (Von der Lippe and Kowarik 2007). Furthermore, particular 

IEPs have the potential to disperse significantly farther in forests that experience litter 

disturbance or removal (Marshall and Buckley 2008). Finally, spread can also be 

facilitated by natural mechanisms, such as avian fruit dispersal (Bartuszevige and 

Gorchov 2006).  

The impact stage represents the final phase of the invasion process. One can 

analyze impacts from different perspectives or levels. For instance, when hybridization 
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occurs between invaders and native species the gene pool is altered, thus impacting the 

genetic level (Barbour et al. 2006). In addition, invaders that outcompete natives may 

affect genetic variability at the population level. Therefore, competition from invaders 

operates at both the individual and population level, as a more competitive plant can 

better compete for resources, often at the expense of other species (Holmes et al. 2009). 

Finally, IEPs can impact the structure and functions of ecosystems by altering species 

diversity, primary productivity, and the flow of energy, water, or nutrients (Walker and 

Smith 1997, Ehrenfeld 2010).  

As IEPs continue to spread and invade new regions, managing to reduce the 

impacts of IEPs becomes crucial (Byers et al. 2002). Within the United States, exotic 

species including pathogens, pests, and plants cause environmental damages and losses 

totaling $120 billion annually (Pimentel et al. 2005). With an estimated 5000 exotic 

plants naturalized within the United States, many ecosystems are experiencing the 

economic and ecological impacts (Morse et al. 1995). For example, the invasive exotic 

woody shrub Tamarix spp., which alters water regimes and affects sedimentation, 

reportedly costs the western United States 280 - 450 dollars per ha annually (Zavaleta 

2000).  

As impacts rise, identifying vectors of introduction and preventing the spread of 

IEPs become important management goals. Early detection and rapid response to 

invasions are essential for management, as actions are needed to quickly address the 

problem and generate rapid solutions to either eradicate or control the invader (Webster 

et al. 2006). In addition, proactive approaches that employ adaptive management are 

needed to further reduce the impacts on our conservation areas (Webster et al. 2006). 
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However, managers need to know distributions and densities of invaders to effectively 

direct control operations, as a lack of knowledge about IEP distributions can significantly 

hinder management actions (Bradley and Marvin 2011). 

Consequently, for management purposes, there is a need for accurate IEP 

distribution information. However, agencies with large management areas need a cost 

effective estimation process that is relatively accurate. Large field surveys may require 

too many resources, especially for managers that may have limited personnel or finances. 

Fortunately for some IEPs, acquiring data through remote sensing is an alternative to sole 

reliance on field surveys. 

Remote sensing is the act of acquiring data without a physical sample in the field.  

Sensors can acquire data from various means such as satellite imagery, aerial 

photographs, or airborne multi-spectral scanners (Joshi et al. 2004). Remote sensing 

allows researchers to collect data at large study sites more quickly than if data were 

collected solely through field work.  Remote sensing also enables data collection in 

habitats that may be difficult to access in person.  

Researchers can recommend IEP control operations to natural resource managers 

based on pertinent remotely sensed data. Furthermore, remote sensing may facilitate 

control operations by collecting data that detects new invasions while also creating an 

accurate distribution of the invader. Remotely sensed data can lead to estimations of 

historical distributions, resulting in studies of IEP dispersal patterns that can be adapted 

into land use and landscape invasion analyses. Finally, managers can use remote sensing 

techniques in conjunction with other spatial data to critically analyze larger regions for 

IEP management. For instance, GIS systems can integrate spatial data with remotely 
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sensed data to create spread models or analyze conditions that may facilitate invasion 

(Peterson et al. 2009). In addition, organizations that incorporate GIS allow for sharing of 

data between agencies and the public. For example, Bradley and Marvin (2011) 

suggested that knowledge of plant invasions and their general distributions exist within 

local agencies and experts were prepared to participate in regional sharing of such data.  

Thus, the combined use of remote sensing and GIS for analyzing invasive exotic species 

has been increasing and provides the possibility for creating a framework that aides in 

guiding IEP management. 

Due to limited resources, managers often face widely established IEP populations 

in more areas than can be quickly managed, making it a necessity to prioritize 

management actions (Hiebert 1997). Creating a framework that directs management 

actions to priority areas would be useful for managers. Such a framework could be 

created by spatially prioritizing landscape units based on the IEP distributions, impacts, 

and land use characteristics (Byers et al. 2002). Furthermore, it would be beneficial to 

build this framework based on scientifically-driven planning at the watershed level, as the 

invasion risk of a particular area is often related to its environmental factors (Blossey 

1999, With 2002).  

 Additionally, we are acknowledging that certain watersheds may be more 

vulnerable to invasion and experience various levels of impacts. Prioritization at the 

watershed level permits for eradication of the most ecologically damaging populations 

and creates a system that uses limited labor in areas of most need. A prioritization 

framework needs to incorporate the attributes of relevant invaders, such as widely 

distributed and high impact understory IEPs. However, these invaders prove to be 



 
 

6 
 

problems for remote sensing as the reflectance values correspond to canopy species rather 

than understory IEPs, signifying a need to develop new management frameworks that 

address such invaders (Joshi et al. 2004). 

Amur honeysuckle (Lonicera maackii) is a common understory IEP in the eastern 

United States. Management of the invader is important to natural resource managers 

because of its increasing distribution and ecosystem impacts. Amur honeysuckle can 

quickly develop into dense thickets that negatively impact understory plants (McKinney 

and Goodell 2010).  In addition, natural regeneration of secondary forests may be 

adversely affected by Amur honeysuckle’s impacts to native tree seedlings (Gorchov and 

Trisel 2003). Amur honeysuckle has also been linked to altering native forest amphibian 

communities (Watling et al. 2011) and changing habitat characteristics resulting in 

unusual behavior of some small mammals  (Dutra et al. 2011). Finally, stands of Amur 

honeysuckle are also linked with reducing the nesting success of forest birds while also 

altering breeding bird communities (Borgmann and Rodewald 2004, McCusker et al. 

2010, Rodewald et al. 2010). 

Amur honeysuckle occurs mostly in urban or urban-fringe landscapes and has a 

high reproductive output with seeds that are effectively dispersed by birds (Luken and 

Thieret 1996).  Rather than invading from an advancing front, Amur honeysuckle often 

invades from multiple loci and is associated with distance to nearest town or city centers 

(Bartuszevige et al. 2006, Trammell and Carreiro 2011). Its distribution is significantly 

affected by distance to nearest road and forest connectivity may facilitate more extensive 

spread (Hutchinson and Vankat 1998, Flory and Clay 2006). Finally, areas that are not 
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actively managed, such as roadsides and fence lines, provide suitable habitat for the 

invader (Luken 1988).  

As Amur honeysuckle is a high impact and widely distributed invader, it would be 

beneficial to managers to use this invader as a model species for a management 

prioritization framework. Yet, to create the framework, we are highly dependent on 

knowing the invader’s current distribution, as it is critical to develop comprehensive 

distribution and abundance data for modeling (Bradley and Marvin 2011). Fortunately, 

Amur honeysuckle has distinct phenological characteristics that allow researchers to 

estimate its distribution using satellite imagery and remote sensing techniques (Resasco 

et al. 2007, Wilfong et al. 2009). 

My research had two primary foci. My first objective, addressed in chapter 2, was 

to use remote sensing techniques to estimate the distribution of Amur honeysuckle within 

the Inner Bluegrass physiographic region of Kentucky. My second objective, the focus of 

chapter 3, was to incorporate Amur honeysuckle distribution data and other spatial 

variables into a framework that prioritizes landscape units for IEP management based on 

expert input. This study is significant because it highlights areas in most need of IEP 

management by incorporating weighted landscape variables associated with the invasion 

process. Furthermore, this study will provide the basis for a framework that can be used 

by managers to address their goals for prioritizing IEP management within regions 

experiencing varying stages of the invasion process. 
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Chapter Two: Supervised Classification of Amur Honeysuckle within the Inner Bluegrass 

Region of Kentucky 

 

INTRODUCTION 

For successful management of invasive exotic plants (IEPs), early detection, 

prevention of new introductions, and determined efforts for eradication are needed 

(Rejmanek 2000). Understanding IEP characteristics alone is inadequate to handle the 

problem of increased exotic plant invasions. Rather, efficient IEP management requires 

scientifically-driven planning and implementation of management actions (Hobbs and 

Humphries 1995, Blossey 1999). More specifically, managers need to know distributions 

and densities of invaders to effectively direct control operations, as a lack of knowledge 

about IEP distributions can hinder strategic management planning (Bradley and Marvin 

2011). 

Knowledge of IEP spatial distributions can allow for the creation of models for 

management prioritization and invasion risk assessment. Yet, managers first need a cost 

effective and reasonably accurate process for estimating such distributions. Remote 

sensing has proven to be a valuable tool for gathering ecological data. Remote sensing is 

the act of acquiring data without an extensive physical sample in the field.  The data is 

acquired from sensors on multiple platforms such as satellite imagery, aerial photographs, 

or airborne multi-spectral scanners (Joshi et al. 2004).   

Early IEP remote sensing research often focused on spectral reflectance 

measurements, specifically testing if it was possible for computer systems to 

quantitatively differentiate IEPs from native vegetation (Everitt et al. 1987). Everitt et al. 
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(1987) studied two IEPs that were found in rangeland habitat, broom snakeweed 

(Gutierrezia sarotbrae) and spiny aster (Aster spinosus). The researchers found that both 

invaders had lower near-infrared reflectance values than the common rangeland shrubs 

and herbaceous vegetation of the area. These lower values caused the invaders to have a 

distinct color on color-infrared aerial photographs, thus allowing computer-based image 

analyses to calculate distributions of the invaders from aerial photographs. When such 

studies were effective, the remotely sensed data was often integrated into a GIS to create 

distribution maps that were used for monitoring and treatment of invasive populations 

(Everitt et al. 1995). 

Within the past few decades, researchers have been persistently improving and 

using new remote sensing methodologies to aide in IEP management. Research focuses 

on the use of three main remote sensing data acquisition systems: hyperspectral, high 

spatial resolution (HSR), and medium spatial resolution (MSR) sensors. Varying spatial 

and spectral resolutions are the two factors that differentiate these systems from one 

another. Researchers may choose specific sensors depending upon their goals, study area, 

and focal IEP, as each system has advantages and disadvantages depending upon the 

invasion or research scenario. 

Hyperspectral remote sensing has a high spectral resolution that acquires images 

across hundreds of spectral bands (Vane and Goetz 1993). The main benefit of 

hyperspectral remote sensing is the ability of the sensor to capture images within many 

narrow bands that may better differentiate the object of interest from its background 

based on unique reflectance properties (Jensen 2005). Consequently, hyperspectral 

remote sensing has been effective at mapping IEPs that exhibit distinct spectral 



 
 

10 
 

reflectance values (Noujdina and Ustin 2008).  Furthermore, hyperspectral imagery is 

especially useful when the invader has a low distribution density or scattered spatial 

pattern  (He et al. 2011).  Thus, mapping of IEPs has been successful in habitats where 

the invader is inter-mixed and spread among native vegetation (Lawrence et al. 2006).  

Though hyperspectral remote sensing is beneficial for mapping IEPs with low 

densities, it has its drawbacks. For instance, acquiring hyperspectral data is very 

expensive; typical cost for a 20 x 40 km area with 2 -3 m spatial resolution ranges 

between 60,000 to 100,000 dollars (Lass et al. 2005). Furthermore, hyperspectral imagery 

requires large data storing capacity, long processing times, and complex procedures that 

may be technologically beyond the grasp of most ecologists (He et al. 2011). Finally, 

most hyperspectral sensors are airborne, meaning their flight patterns are limited and may 

only cover certain regions of the world and at only certain times.  

HSR remote sensing, typically with a resolution of 5 m or less, records data in 

multiple bands of the electromagnetic spectrum (Jensen 2005). The goal of these HSR 

sensors is to cover large extents, while being able to collect data in the same detail as 

aerial photographs (Mehner et al. 2004). HSR data acquisition is advantageous for many 

researchers, as it may allow for regular monitoring of vegetation (Slater and Brown 

2000). Therefore researchers or land managers can update land cover and vegetation 

distribution maps quicker than if solely assessed through fieldwork. In addition, HSR 

sensors have been successfully used to detect and map IEP distributions (Carter et al. 

2009). Unfortunately, HSR  imagery is still not necessarily cost effective, as a 20 x 40 km 

image area with 1 m spatial resolution with four spectral bands can cost between 17,000 

to 35,000 dollars (Lass et al. 2005). Furthermore, HSR imagery may not be favorable 
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when the object of interest is larger than a pixel, making HSR use not ideal for certain 

studies (Song and Woodcock 2002). 

MSR sensors acquire data at lower spatial resolutions, such as on the Landsat 7 

platform which produces a pixel size of 30 x 30 m.  Researchers often use MSR sensors 

for studies that assess land cover classes, land change, and land use (Ringrose and 

Matheson 1987, Dewey et al. 1991, Morisette et al. 2006). In IEP studies, MSR images 

have been used to create IEP habitat suitability maps and future invasion risk maps 

(Shafii et al. 2004, Bradley and Mustard 2006, Morisette et al. 2006). For example, 

Bradley and Mustard (2006) used historical distribution maps of cheatgrass (Bromus 

tectorum) and integrated its extent with six landscape variables derived from Landsat 

imagery to create a risk map that is useful for land management.  

  With the limited spatial resolution, MSR imagery may not be ideal for IEP 

distribution mapping, especially for newly invaded areas (Carter et al. 2009). This is 

because newly established IEP patches are frequently much smaller than the pixel size, 

which results in the mixing of vegetation types within a pixel, making classification 

problematic for low IEP density areas (Foschi 1994, Carson et al. 1995). 

On the other hand, MSR can be effective when the infested area is large and the 

target species have a distinct phenology (Everitt et al. 1995, Resasco et al. 2007). For 

instance, researchers have characterized the phenological features of understory bamboo 

and successfully mapped its spatial distribution with MODIS imagery (Tuanmu et al. 

2010). Finding the optimal phenological time periods for remote sensing has also allowed 

other researchers to calculate distributions of IEPs such as false broomweed (Ericameria 

austrotexana) (Anderson et al. 1993). Furthermore, researchers have used phenological 
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traits to calculate distributions of saltcedar (Tamarix ramosissima) by using Landsat 

imagery (Groeneveld and Watson 2008). Saltcedar displays dark stems that make it 

distinguishable from other vegetation during the leafless winter period. These research 

studies demonstrate the importance of knowing the characteristics of the study plant, as 

certain seasonal times may be more appropriate for MSR based IEP classification.  

When IEPs have large invasion patches and distinct phenological characteristics 

that allow for separation from background vegetation, it may be more beneficial to use 

MSR imagery over other sensors for a few reasons. First, MSR sensors frequently 

produce images that are provided by the government free of charge, a significant factor 

for managers and agencies that are fiscally constrained. Another benefit of using MSR 

sensors such as Landsat thematic mapper is the global coverage and approximately 16 

day temporal resolution of the sensor, providing images of the same geographic location 

every 16 days since 1982. This temporal resolution is a great tool for researchers, 

especially those interested in studying IEP distributions and habitat invasibility, as the 

repetitive visits of the sensor allows for historical analysis of IEP distributions that permit 

analyses of spread and habitat invasion.  

The goal of this study was to map the distribution of Amur honeysuckle (Lonicera 

maackii), an ecologically damaging IEP in the Bluegrass Region of Kentucky, to 

facilitate management planning.  The specific objective of this study was to (1) examine a 

classification process that uses a Landsat satellite image to estimate the distribution of 

Amur honeysuckle and (2) explore the reliability of a supervised classification technique 

and analyze the importance of imagery pre-processing methods to enhance the accuracy 

of the classification. With limited budgets, using a methodology that incorporates free 
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Landsat imagery into the analysis may be more attractive to managers in other regions 

facing similar IEP problems.  

 

METHODS 

Study area 

The study area was created to fit the general boundary of the Inner Bluegrass 

physiographic region of Kentucky (Lobeck 1932). The study area covers approximately 

5,000 km2 and was further edited to fit within one Landsat satellite image, causing the 

northern tip of the Inner Bluegrass region to be clipped from the study area (Figure 2.1) 

The Inner Bluegrass region is largely defined by limestone formations and soils that tend 

to be phosphate-rich silt loams (Wharton and Barbour 1991). The regional climate is 

characterized as temperate, humid, and continental (Wharton and Barbour 1991). 

 

Study species 

Amur honeysuckle is distributed widely throughout the Inner Bluegrass region 

and can quickly develop into dense thickets, negatively impacting understory plants and 

natural regeneration (Gorchov and Trisel 2003, McKinney and Goodell 2010). Amur 

honeysuckle has also been linked to altering native forest amphibian communities 

(Watling et al. 2011), changing habitat characteristics (Dutra et al. 2011), reducing 

nesting success of forest birds (Borgmann and Rodewald 2004, Rodewald et al. 2010), 

and altering breeding bird communities (McCusker et al. 2010).  

Amur honeysuckle occurs mostly in urban or urban-fringe landscapes and has a 

high reproductive output with seeds that are effectively dispersed by birds (Luken and 
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Thieret 1996). Rather than invading from an advancing front, Amur honeysuckle often 

invades from multiple loci and is associated with distance to nearest town or city centers 

(Bartuszevige et al. 2006, Trammell and Carreiro 2011). Its distribution is significantly 

affected by distance to nearest road  and forest connectivity may further affect its spread 

(Hutchinson and Vankat 1998, Flory and Clay 2006). Finally, areas that are not actively 

managed, such as roadsides and fence lines, also provide suitable habitat for the invader 

(Luken 1988).  

Amur honeysuckle has phenological characteristics that enable the plant to obtain 

leaves longer than most deciduous trees and shrubs, and its leaf expansion occurs well 

before native plants (Trisel and Gorchov 1994, McEwan et al. 2009). This distinctive 

phenological characteristic has allowed researchers to estimate the invader’s distribution 

using Landsat satellite imagery, even though it is typically found under forest canopies 

(Wilfong et al. 2009). 

 

Field work 

 Accurate vegetation classification relies on precise field data of various land 

cover classes. Field work locations were selected by an opportunistic sampling 

methodology of public lands and parks within the study area. Between May and July of 

2011, 28 sites were visited for data collection (Figure 2.2). Once on site, perimeter 

locations of distinct land cover patches were collected using a Juno series Trimble 

handheld GPS unit. Perimeters were collected at a minimum size of 30 x 30 m (size of a 

Landsat pixel) to ensure that the training data for the classification process represented an 

entire pixel. 
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 Field notes were taken at each location regarding site characteristics such as land 

cover type (forest, grass, shrub), local attributes (stream, road, fence), and general 

attributes (urban park, dense forest, open field). The field points were placed into one of 

five classes: Amur honeysuckle, tree urban, tree rural, grass natural, or grass managed. 

The tree points were assigned by their sampling location (rural or urban), while the grass 

points were assigned based on the management of the grass. For instance, “grass 

managed” represented open grass areas that were mowed frequently, such as in parks. 

Areas of unmanaged grass and small shrubs were placed into the class “grass natural”. 

Overall, a total of 161 Amur honeysuckle presence and 108 absence locations were 

collected.  

 

Image pre-processing 

 Landsat scenes (row 34, path 20) were obtained from the USGS Global 

Visualization Viewer for a late fall date of November 7, 2009 and for a mid-winter date 

of January 23, 2009. The late fall date of November 7 allowed for the green leaf exposure 

of Amur honeysuckle while deciduous trees were leaf off. The image captured in January 

allowed for a comparable site when all deciduous species were leaf off, including Amur 

honeysuckle. I also obtained a November 12, 2005 image for classification purposes, thus 

allowing for Amur honeysuckle change analysis over the 4 year period. All images were 

of high quality and had no cloud cover within the study site. The seven bands of the 

Landsat image were first spectrally stacked and processed based on methods outlined in 

Wilfing et al. (2009). The Landsat images were then clipped to the outline of the study 

area (Figure 2.3). 
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 Four additional steps were taken to remove unwanted pixels prior to Amur 

honeysuckle classification. These steps included (1) removing pixels that displayed non-

vegetated areas (roads, buildings, and water), (2) removing pixels that could be spectrally 

confused with Amur honeysuckle, such as evergreen species, (3) using change in 

Normalized Difference Vegetation Index (NDVI) values to further remove unwanted 

pixels, and (4) determining which bands provided the best possibility of land cover 

discrimination.  

 Non-vegetated pixels, including urban and water, were removed first using an 

unsupervised classification and verified with field data and aerial photography (Figure 

2.4). Pixels associated with the absence of Amur honeysuckle were removed based on the 

differences between November and January images. Both the November and January 

2009 Landsat images were converted to NDVI values. NDVI uses bands of near infrared 

and red to estimate the health and greenness of vegetation.  

 

NDVI = (NIR – R) / (NIR + R)  

 

Within the January image, pixels with high winter NDVI values would most likely 

represent the greenness of evergreen species. Yet at the same point in time, leaf off 

deciduous species would display very low NDVI values. Therefore, pixels with high 

January NDVI values were assumed to be associated with evergreen species and were 

removed from the image.  

 Next, a new NDVI value was generated by subtracting the January NDVI from 

the November NDVI, following the algorithm outlined by Wilfong et al. (2009).  In 
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theory, pixels that represent leaf off deciduous trees in November would experience little 

change in NDVI values because they would still be leaf off in January. However, forests 

that were invaded by Amur honeysuckle would display a higher NDVI value in 

November but a lower value during January when the invader was leaf off, consequently 

displaying a noticeable change in NDVI values. This method was used to remove pixels 

that experience little or no change in NDVI value, which likely represented un-invaded 

deciduous forest land. Aerial imagery and field data were used to analyze the NDVI 

values and decide the cut off points to ensure that pixels were not incorrectly removed.  

The final pre-processing step was to determine which bands of the Landsat scene 

were most effective in discriminating the land cover classes from each other without 

providing redundant spectral information (Jensen 2005). The mean spectral values of 

each land cover were graphed within each of the 7 bands for analysis (Figure 2.5). Bands 

3, 4, and 5 were found to be the best candidates for class discrimination without 

redundant information (Figure 2.6). The resulting pre-processed Landsat image 

represented the area and pixels that would be subjected to the classification process 

(Figure 2.7). The same mask was applied to the November 12, 2005 image to allow for a 

similar classification analysis. 

 

Classification and accuracy assessment 

I chose only to use field points that covered an entire Landsat pixel for the 

classification process in order to improve accuracy. Thus, 62 Amur honeysuckle data 

points were used for the supervised classification. A stratified random sample was 

applied to split the field data, of which 2/3 were used for classification and 1/3 for 
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accuracy assessment (Table 2.1). Classification points were used to collect signatures for 

their respective classes. The averaged class signatures were applied to the maximum 

likelihood decision model which resulted in the placement of each pixel into one of the 

five classes (Amur honeysuckle, tree urban, tree rural, grass natural, or grass managed) 

for the November 7, 2009 image. The same point locations were used to collect new 

signature data and classify the November 12, 2005 image.  

The remaining 1/3 of points were used for the accuracy assessment. The accuracy 

assessment was evaluated based on three merged classes; Amur honeysuckle, forest, and 

grass. The resulting classified image was checked for three accuracy types; producer’s 

(based on the perspective of the map maker), user’s (based on the perspective of the map 

user), and overall accuracy of the final classified image. This included accounting for the 

number of times that the field data matched correctly with the classified map and noting 

which classes were incorrect when the two data sets did not agree. Again, the same 

methodology was applied to the November 12, 2005 image.  

 

RESULTS 

In this study, we took a traditional pixel based classification method and increased 

the relative amount of imagery pre-processing to estimate the distribution of Amur 

honeysuckle. The results for the classification of the 2009 image were formulated into an 

error matrix to calculate the user’s, producer’s and overall accuracies and resulted in an 

overall classification accuracy of 71.93% (Table 2.2). Of the three classified land cover 

groups, the tree class had the highest producer’s accuracy, followed by Amur 

honeysuckle, and then grass. Amur honeysuckle had the highest user’s accuracy, 
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followed by grass and then the tree class. Most importantly for this study were the 

accuracies associated with Amur honeysuckle (producer’s accuracy of 71% and user’s 

accuracy of 75%). Amur honeysuckle field points were incorrectly classified as other 

classes in 6 of 21 points, 3 misclassified as tree and 3 as grass. Furthermore, other land 

cover classes were incorrectly classified as Amur honeysuckle in some instances. The 

classification misidentified 5 pixels as Amur honeysuckle, 4 were truly grass and 1 was a 

tree location. 

In a similar fashion, the results for the classification of the 2005 image were 

grouped into an error matrix for analysis (Table 2.3). The overall accuracy was slightly 

higher than the classification of the 2009 image , with an accuracy of 77.2%.  In addition, 

both producer’s accuracy (85.7%) and user’s accuracy (81.8%) for Amur honeysuckle 

were higher in the 2005 image when compared to their 2009 image accuracies. Overall, 

the producer’s accuracy for the grass class displayed the lowest accuracy under both 

models.  

The final classification map represents the overall distribution of the three land 

cover classes (Figure 2.8). Large patches of forested areas and open grass fields dominate 

the classified image. Throughout the region, stands of Amur honeysuckle are intermixed 

between these two classes (Figure 2.9). Amur honeysuckle seems to most densely 

populate the south-central region, the part of the study area where edge between forested 

and agricultural land is dominant. Furthermore, within the urban areas, patches of Amur 

honeysuckle are potentially interconnected by invaded road edges and tree corridors 

(Figure 2.10).  
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DISCUSSION 

The supervised classification methodology was successful in estimating the 

species-level distribution of Amur honeysuckle within the study area for both 2009 and 

2005 images with moderate accuracy. This methodology is similar to previous research 

that has used remote sensing to analyze IEP distributions (Wilfong et al. 2009). However, 

I altered this basic methodology by incorporating various pre-processing techniques and 

extended the classification to a regional scale. 

 

Image pre-processing  

 Non-vegetated areas such as roads and buildings are often removed before 

classifying images. Yet, it may also be favorable to remove certain vegetated pixels that 

are not associated with the study species to lessen the potential of incorrectly classifying 

pixels. This is especially useful in studies that use MSR systems, such as Landsat 

imagery, where the possibility for spectral mixing is high. Therefore, it was beneficial to 

use the NDVI values and imagery dates in accordance with the specific phenological 

characteristics of Amur honeysuckle to remove pixels that could be spectrally confused 

with the invader. 

 The ability of each spectral band to discriminate Amur honeysuckle from other 

land cover classes was evaluated in the final pre-processing step. The combination of 

bands 3, 4, and 5 displayed the greatest spectral variability among classes. According to 

NASA, band 3, the visible red band, is one of the most important bands for 

discriminating among various vegetation types. Band 4, the near infrared band, helps to 

convey the amount of vegetation biomass. Finally band 5, the mid-infrared band, is 
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sensitive to the amount of water within plants (NASA 2011). In areas where Amur 

honeysuckle is present, the abundance of these green leaves would result in different 

reflectance values than areas with withered leaves or showing an empty canopy. 

Therefore, this band combination (3, 4, and 5) was useful in discriminating Amur 

honeysuckle from other vegetation types.  

 

Classification  

 The pixel based supervised classification resulted in a relatively accurate 

estimation of Amur honeysuckle when compared to similar research. Wilfong, et al. 

(2009), used a comparable methodology to predict Amur honeysuckle presence and 

found that their verification model had a R2 = .77. Furthermore, another research study 

that used Landsat imagery to identify IEP distributions had a similar accuracy of 72% 

(Bradley and Mustard 2005). 

With a user’s accuracy of 75%, my classification displays the estimated locations 

and general IEP density levels of the invader throughout the region. The user’s accuracy 

reports when other land cover classes are incorrectly classified as Amur honeysuckle. 

What I learned from the user’s accuracy is that the grass pixel was most often 

misclassified as Amur honeysuckle. Reasons for this may be associated with the invaders 

establishment of forest edges; areas which are similar to the natural shrub transition zones 

between open fields and forests.  

 The producer’s accuracy reports when Amur honeysuckle field points are 

incorrectly classified as other land cover classes. With a 70% producer’s accuracy not all 

of the Amur honeysuckle in the field is correctly identified on the map. However, the 
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supervised classification still provides managers with a general estimation of the 

invader’s distribution. When Amur honeysuckle was incorrectly classified, it was evenly 

distributed between the grass and tree classes. This misclassification may depend on the 

invaders location within various land cover types. For example, along a fence line within 

a park, Amur honeysuckle may be incorrectly classified as a natural grass pixel. 

However, when found within a dense forest, the invader may be more likely misclassified 

as a forest pixel. 

The overall accuracy of the classified image, 71.93%, is also of interest. Low 

producer’s accuracy for grass pixels and low user’s accuracy for tree pixels might be 

associated with limited field points of these land cover classes. The overall accuracy may 

be increased by collecting additional points within these land cover classes. However, as 

my main goal was to identify Amur honeysuckle distribution, it was beneficial to allocate 

more sampling points to collecting the locations of the invader.  

 

Similar research 

 Researchers first attempts at classifying Amur honeysuckle discovered that using 

late fall dates of Landsat imagery provided the best possibility for capturing the invaders 

locations (Resasco et al. 2007). Researchers then used regression models to predict Amur 

honeysuckle cover by converting November and January images into NDVI values 

(Wilfong et al. 2009). My research aimed to identify Amur honeysuckle within a 

complicated landscape at a regional scale, extending the application by implementing 

new pre-processing techniques.   
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 By recognizing the attributes of the MSR Landsat imagery and evaluating the 

phenological characteristics of Amur honeysuckle, I spent more time pre-processing the 

image to remove un-wanted pixels before the classification. Furthermore, I concentrated 

on the spectral reflectance values within a supervised classification technique rather than 

using NDVI values within a regression analysis to predict Amur honeysuckle presence. 

The supervised classification technique relies not only on Amur honeysuckle locations 

but also incorporates other vegetation classes absent of the invader. By separating the 

absence data among various vegetation types, I was able to provide the model with more 

options for classifying a pixel, which may be useful in cases of spectral mixing. Overall, I 

believe that the pre-processing and supervised classification techniques were best suited 

for the widespread variability found within the regional scale of my study area.  

 

Limitations  

This study demonstrated that MSR imagery is useful for estimating IEP 

distributions that have distinct phenological characteristics. However, it is necessary to 

address the limitations of both this approach and MSR imagery. First, researchers and 

managers need to be certain that imagery dates fall within the specific time frame of 

Amur honeysuckle leaf on and deciduous tree leaf off. Generally, within the Inner 

Bluegrass region of Kentucky, it was found that native vegetation was mostly leaf off by 

the first week of November (McEwan et al. 2009), and therefore our image date falls 

within this time period.  

When using MSR imagery, spectral mixing is another issue. Narrow strips of 

Amur honeysuckle along roads may incorrectly be associated with road pixels because 
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these stands typically do not cover most of a pixel, resulting in spectral mixing. As these 

two spectral values are dissimilar, the spectral mixing would potentially result in a value 

not associated with Amur honeysuckle, even though the invader is present. This 

ultimately means that some locations of Amur honeysuckle are not correctly classified. 

Furthermore, even though the classified map had relatively high accuracies for MSR 

imagery, this methodology only displays estimated locations and densities of the invader. 

Managers might consider these limitations when examining distribution maps and 

planning possible control operations. 

 

Future research 

The supervised classification and pre-processing steps could be improved for 

future research. For instance, increasing the field collection process to more accurately 

locate and delineate absence classes from Amur honeysuckle may improve the 

classification. I found that the grass layer was most often incorrectly classified as Amur 

honeysuckle. Therefore, it would be advantageous to obtain more grass absence locations 

and possibly further divide them into many sub-classes to better differentiate it from 

Amur honeysuckle.    

Future research should focus on removing more grass pixels by increasing the 

pre-processing efforts before the classification occurs. Also, further separating the study 

region into urban and rural areas may improve classification accuracy. From field notes, 

forests in rural areas tended to contain larger stands of Amur honeysuckle, while urban 

park systems tended to include smaller and more sporadic patches of the invader. The 

differences in stand structure and background land cover classes could alter the 
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reflectance values associated with Amur honeysuckle pixels between these general 

locations. Therefore, I suggest that future research should classify the invader separately 

within urban and rural areas to better obtain any differences in Amur honeysuckle 

reflectance values. 

 

Research and management implications 

IEP modelers generally prefer HSR imagery to MSR imagery. However, MSR 

imagery may be more useful for management agencies because these platforms are cost 

effective, have a high temporal resolution, and allow for land change analysis over large 

geographic extents. Therefore, it is beneficial to managers when researchers create 

methodologies that incorporate MSR imagery. My adapted pre-processing methodologies 

provide techniques that researchers can apply to other MSR platforms and IEPs for 

management purposes.  

In addition, my methodologies demonstrate how managers can use Landsat 

imagery to help identify IEP distributions. This study has successfully classified the 

distribution of an IEP at a scale that is useful for numerous managers. The results can be 

given to agencies to inform them of the various levels of invasion within their lands and 

be made available to public landowners for education purposes. Furthermore, this same 

methodology could be applied to other regions to identify Amur honeysuckle invasion, 

which would increase information on the current distributions and spread of the invader. 

Using Landsat images, managers can create historical distribution maps of Amur 

honeysuckle, thus opening the door for further invasion analysis. Overall, this framework 
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builds on the use of MSR imagery for IEP management and provides a basic 

methodology that estimates the distribution of Amur honeysuckle.    

 

CONCLUSION 

Knowledge of IEP distributions is an important and essential tool for management 

purposes.  Early detection of IEPs maximizes the potential for long-term management 

and helps to reduce negative environmental impacts. Remote sensing can facilitate early 

detection by aiding IEP distribution modeling, thus leading to quick eradication and 

prevention of spread. Here, I have created a methodology that uses the phenological 

characteristics of Amur honeysuckle, along with pre-processing techniques, and a 

supervised classification system to estimate the distribution of the invader. My research 

has created not only useful IEP presence/absence data for managers but also provided a 

basic methodology that can be used to estimate locations of the invader in different 

regions.  

Unfortunately though, ecologists and managers underutilize remote sensing. One 

reason for this may be the lack of interdisciplinary training between ecologists and 

geographers. Integration is needed that introduces ecologists and IEP researchers to the 

benefits and potential uses of remote sensing in order to fully construct a useful network 

of IEP distributions based on remote sensing methodologies. Further remote sensing 

research is needed to create additional cost effective and basic classification frameworks 

that allow managers to estimate the distributions of various IEP species.  
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Table 2.1. The distribution of field points for either model or accuracy assessment 
purposes within the supervised classification process 
 
Land cover Points for model Points for assessment 
Amur honeysuckle 41 21 
Tree urban 11 5 
Tree rural 20 10 
Grass natural 22 11 
Grass managed 19 10 
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Table 2.2. Error matrix and supervised classification accuracies of three land cover 
classes that were classified on a 2009 Landsat image 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                     Field work

Amur honeysuckle Tree Grass Row Total User's accuracy
Amur honeysuckle 15 1 4 20 75.0%

 Map Tree 3 12 3 18 66.7%
Grass 3 2 14 19 73.7%
Column total 21 15 21 57
Producer's accuracy 71.4% 80.0% 66.7% 71.9%
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Table 2.3. Error matrix and supervised classification accuracies of three land cover 
classes that were classified on a 2005 Landsat image 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                  Field work 

Amur honeysuckle Tree Grass Row Total User's accuracy
Amur honeysuckle 18 0 4 22 81.8%

 Map Tree 1 12 3 16 75.0%
Grass 2 3 14 19 73.7%
Column total 21 15 21 57
Producer's accuracy 85.7% 80.0% 66.7% 77.2%
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Figure 2.1. Map of the study area created to fit the general outline of the Inner Bluegrass 
region of Kentucky 
 

 

 

 

 

 

 

 

 

 

 

 



 
 

31 
 

 

Figure 2.2. Sampling locations within the study area based on an opportunistic sampling 
methodology 
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Figure 2.3. Landsat image of the study area displaying the full coverage of pixels prior to 
image pre-processing 
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Figure 2.4. Landsat image of the study area displaying vegetation pixels and also 
showing areas in white where pixels have been removed 
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Figure 2.5. Mean spectral values for the five land cover classes of the November 7, 2009 
Landsat image 
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Figure 2.6. Mean spectral values for bands 3, 4, and 5 of the November 7, 2009 Landsat 
image 
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Figure 2.7. Landsat image displaying the pixels that were used in the classification 
process and also showing areas in white where pixels have been removed 
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Figure 2.8. The 2009 classified image displaying the distribution of the three land cover 
classes 
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Figure 2.9. The 2009 classified image displaying only Amur honeysuckle presence 
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Figure 2.10. Connectivity of Amur honeysuckle along roads within an urban area 
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Chapter Three: Prioritization Framework for IEP Management 

 

INTRODUCTION 

 Invasive exotic plants (IEP) are a threat to conservation, ecosystem services, and 

biodiversity (Mack et al. 2000, Ehrenfeld 2010). Though IEPs are widely researched, 

most studies focus on the characteristics, spread, and impacts of the invaders. Such 

studies tend to center their goals on a particular step of the invasion process, leading to 

generalizations about invasion ecology (Davis et al. 2000, Byers 2002, Gelbard and 

Belnap 2003, Coutts et al. 2011, Pergl et al. 2011). Researchers use this essential 

knowledge to further explore IEPs by creating models to analyze the invasibility of 

recipient ecosystems (Alpert et al. 2000, Hansen and Clevenger 2005), forecast future 

invasion spread (Coutts et al. 2011, Pergl et al. 2011), and predict potential impacts 

(Cook et al. 2007). 

However, research that directly leads to IEP management actions is often limited. 

As IEPs continue to spread and further impact native ecosystems, managing these 

invasions becomes vital. Managers often face widely established IEP populations in more 

areas than can be quickly managed due to limited resources, making it a necessity to 

prioritize management actions (Webster et al. 2006). Yet, the extensive knowledge about 

invasion ecology is inadequate to guide such management actions. To optimize effective 

IEP management, there is a need for scientifically-driven strategic planning implemented 

at the landscape level that includes characteristics of the invaded ecosystem (Hobbs and 

Humphries 1995, Blossey 1999, Byers et al. 2002).  
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Hiebert (1997) was one of the first researchers to call upon the need for 

scientifically guided management strategies for IEP control. He stressed the need for 

managers to objectively assess the feasibility of control, the impacts, and the potential for 

spread when evaluating management options. Based on such guidelines, there is a need 

for decision tools and models to address the allocation of limited resources to areas of 

management priority. While decision tools have been used for various purposes, 

including prioritizing areas for conservation (Jane 1995, Sarakinos et al. 2001, Moilanen 

et al. 2005), the IEP management field has only recently begun using decision tools and 

models to prioritize management actions.  

These IEP prioritization frameworks share a common component, in which 

models are created specifically to address one stage or characteristic of the invasion 

process. For instance, researchers have argued the need for prevention (Leung et al. 2002) 

and thus models have been created that focus on preventing the introduction of high 

impact IEPs (Cunningham et al. 2004). However, other researchers stress that it may be 

more beneficial to focus management on already established IEPs and therefore have 

created models to address IEP detection (Mehta et al. 2007). Models are also built that 

focus on the spread of the invaders by analyzing their distributions and densities to 

address populations most likely to disperse into adjacent areas (Taylor and Hastings 

2004). In other instances, models can prioritize management options based on potential 

economic impacts (Cook et al. 2007).  

These models address different stages of the invasion process, resulting in several 

approaches for prioritizing IEP management. Unfortunately, these static models are 

generally not flexible for application between differing invasion stages. Thus, a stage-
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specific prioritization framework could be problematic if a manager has multiple 

management goals. For example, the manager might be interested in prioritizing IEP 

management operations associated with prevention and monitoring of newly emerging 

species in one area, while wanting to prioritize removal operations of well-established 

species in another location. Static models could be too rigid and not applicable to both 

management goals. Furthermore, model creation typically does not include manager 

input. Thus, models created by researchers may not completely address the specific goals 

or perspectives of managers. Managers need to be able to add their input into models and 

weight the level of importance of the included variables. Finally, models need to be 

intuitive and relatively easy for mangers to implement.  

We therefore argue the need for a flexible modeling framework that is adjustable 

to the differing stages of invasion while also allowing for the inclusion and manipulation 

of important variables that represent the various goals of managers. Such a framework 

could be important for management because it would not limit managers to a specific 

invasion stage and could be applicable to different regions. A model that incorporates all 

these factors will be more attractive to managers and have a higher likelihood of actual 

application in the field.  

 With this in mind, we designed a prioritization framework that uses the Analytic 

Hierarchy Process (AHP) as a basis for manager input and adjustability. The AHP 

employs a pair wise comparison method in a manner in which a goal is set and associated 

variables are arranged in a hierarchical fashion so that relative weights of importance can 

be compared (Saaty 1990). This methodology can be used to build a hierarchical 

foundation around the invasion process while also allowing managers to address their 
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management goals by weighing the importance of the variables built into the model. The 

adaptable AHP methodology has been used in broad studies to prioritize areas for forest 

conservation (Valente and Vettorazzi 2008) and landfill site selection in Serbia 

(Zelenović Vasiljević et al. 2012). 

 Application of the AHP methodology has been applied in the field of IEP 

management to assess invasion risks by different species (Ou et al. 2008, Roura-Pascual 

et al. 2009) and to determine management activities (van Wilgen et al. 2008). The goal of 

this research was to create a prioritization framework using the AHP methodology that 

was applicable to various invasion stages while allowing expert input to prioritize 

watershed units for IEP management. In addition, we analyzed how the expert weighting 

of variables affected the final prioritizations. To demonstrate our modeling framework, 

Amur honeysuckle (Lonicera maackii), a widely distributed and high-impact IEP, was 

selected as our study species. 

  

METHODS 

Study area 

The study area was created to fit the general boundary of the Inner Bluegrass 

region of Kentucky as created by Lobeck (1932). The study area covers approximately 

5,000 km2 and was further edited to fit within one Landsat satellite image, causing the 

northern tip of the Inner Bluegrass region to be clipped from the study area (Figure 3.1). 

The Inner Bluegrass region is largely defined by limestone formations and soils that tend 

to be phosphate rich silt loams (Wharton and Barbour 1991). Amur honeysuckle is 

widespread and distributed throughout this region. The highest densities of the invader 
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are found in the south-central region of the study area, where there are large segments of 

edge between forested and agricultural land. 

 

Source of data 

Spatial data relevant to IEP management were collected to build our prioritization 

model and were designated as separate indicators (Table 3.1). An indicator is an 

individual data set that addresses a specific characteristic of the invasion process. To fit 

the framework of the AHP, the indicators were organized into a hierarchy (Table 3.2). At 

the highest level, the indicators were placed into one of three categories: IEP attributes, 

ecological impacts, or land use characteristics. At the lowest level, the indicators were 

broken down into detailed criteria. Full descriptions of the indicators, along with 

explanations of data sources and detailed criteria, can be found in Table 3.1.  

To address management priority, the study area was separated into different units. 

We used the 14-digit hydrological unit (HUC14) as our base unit for the prioritization 

framework. Spatial distributions of the indicators within each of the 286 HUC14 units are 

displayed in Figures 3.2 - 3.8. Data were manipulated within ArcGIS 10 and Geospatial 

Modeling Environment.  

 

Prioritization framework 

 We built the prioritization framework around the AHP, which allows for expert 

input and model flexibility to address differing invasion stages. This methodology works 

within a hierarchical association to weight the overall importance of variables in meeting 

the assigned goal.  Our goal was to “prioritize watersheds for IEP management”. 
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Therefore, to assign weights to the variables, each hierarchical level was assessed by a 

pair wise comparison methodology. 

 At the highest level, the categories, the pair wise methodology assigned relative 

weights by comparing all categories with one another. The comparisons were completed 

by asking, “when prioritizing watersheds for IEP management, is it more important to 

know the ecological impacts or IEP attributes?” In this pair wise manner, all categories 

were compared (IEP attributes against ecological impacts, ecological impacts against 

land use characteristics, and IEP attributes against land use characteristics). The answers 

to each of these comparisons resulted in ratio-scale weights that were calculated within 

Expert Choice decision software, version 11.5. 

The same method was used to weight the next two levels of the hierarchy, the 

indicators and detailed criteria, by asking in a pair wise manner the same question of 

importance among all the variables. For instance, at the indicator level, “is it more 

important to know the presence/absence of rare species or to know the presence/absence 

of ecologically important sites when prioritizing watersheds for IEP management?” 

Again, the pair wise comparisons were conducted for each indicator and detailed criteria 

within the model, resulting in ratio-scale scores that represented the relative weight each 

variable carried in addressing the management goal.   

 In our study, we used a natural resource manager and an ecologist to provide 

responses to the pair wise comparisons. To gain insights from both perspectives, the two 

experts were interviewed separately. The AHP methodology was introduced and an 

explanation of the purpose and goal of the prioritization model were given to the experts. 

Their responses to each of the pair wise comparisons were recorded and because of their 
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parsimonious responses, we combined their expert opinion. We then used their combined 

responses to calculate the ratio-scale weighted values of all the variables within the 

framework. 

 

Prioritization models  

 One framework can create different models by varying the model inputs and the 

ranking of indicators to address, for example, the current invasion stage. Expert input 

regarding indicator importance may vary among invasion stages, as one indicator may be 

more important in a highly infested invasion scenario, but not as important in a newly 

invaded scenario. Therefore, to test the flexibility of our framework, two separate models 

were created that represented the same region, one pertaining to the current invasion 

stage and the other to a hypothetical stage of invasion. 

 The first model addresses the current invasion stage of Amur honeysuckle in the 

Inner Bluegrass region of Kentucky. This model was labeled the “established invasion 

scenario” because Amur honeysuckle is widely established and distributed throughout 

this region, having high ecological and economic impacts. The second model was created 

to prioritize the same Inner Bluegrass region but the expert responses were based on a 

hypothetical invasion scenario related to recent invasion and limited impacts. This model 

was labeled “new invasion scenario” because it was created to represent a stage of 

invasion in which the density levels of Amur honeysuckle are hypothetically much lower 

than what the region is currently experiencing.  

 Therefore, the two invasion scenarios represent the same Inner Bluegrass region 

and use the same data. Again, the only difference is that even though Amur honeysuckle 
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is heavily established in this region, we are hypothetically claiming that in the new 

invasion scenario, the invader is newly invading. We believe that it is acceptable to use 

the same IEP density data for both scenarios because the class levels for density (lowest, 

low, medium, high, highest) are only relative density percentages and can be altered to fit 

our hypothetical scenario. For instance, we can make the class level densities 

hypothetically different between the scenarios by suggesting that within the new invasion 

scenario the five levels are made of lower densities. For example, within the established 

invasion scenario, the five class levels may include IEP densities from 0 - 70%, but we 

can hypothetically say that these same five levels represent smaller intervals of IEP 

density from 0 - 15% within the new invasion scenario. This would give us the spatial 

distribution data of the IEP that is needed to help differentiate the watersheds from one 

another. By using the same data, we are allowing the experts to apply different weights to 

the indicators depending on their altered importance within either invasion scenario. 

Furthermore, using the same study area allows for easy comparisons of change in 

management priority between the invasion scenarios. 

 For both invasion scenarios, the expert responses created different weighted ratios 

of importance at each hierarchy level. The ratios, which are essentially percentages, were 

then converted to scores to represent the priority level of management for each 

watershed. For example, the ecological impacts category received a weighted ratio of 

0.661 (66%), while the last 34% was divided among the other two categories. The 66% 

assigned to the ecological impacts category was converted to 66 points, which was then 

divided proportionally among the three indicators within this category. Again, this 

allocation of points to the indicator was dependent on the weights assigned by the expert 
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responses. For instance, the rarity-weighted species richness index received a weighted 

value of 49%, ecologically important sites 41%, and GAP diversity 10%. These weights 

were converted to points based on the indicators’ percentage of the 66 points possible, 

resulting in the rarity-weighted species richness index with 32 points, ecologically 

important sites with 27 points, and GAP diversity with 7 points.  

 The points assigned to each indicator had to be further divided among the last 

level of the hierarchy, the detailed criteria. The detailed criteria represented the attributes 

of the indicators and each watershed could only be assigned one level of the detailed 

criteria. For instance, the detailed criteria of the GAP diversity indicator was represented 

as “high”, “medium”, or “low” diversity levels. Depending on the expert weighting, the 

detailed criteria received either the total allotment of points from its indicator or only a 

proportion of points. For example, the experts indicated that “high” GAP diversity levels 

were most important, and therefore this level received all 7 possible points from the 

indicator. The “medium” level was next important and received 4 of the possible 7 points, 

while the “low” diversity level was ranked least important and received only 1 of the 7 

points. The points of all the detailed criteria were assigned to the watersheds in this way. 

Weights and allocation of points accordingly can be seen in detail in Table 3.3. Point 

totals were calculated, resulting in a final prioritization score for each watershed (Figure 

3.9). The higher the score a watershed received, the higher the need for IEP management.  

 

Model analysis 

 By creating two invasion scenarios that use the same data and represent the same 

region, we can identify which indicators are of most importance for management priority 
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based on the stage of invasion. Yet, we also wanted to address how expert input affects 

the allocation of management priority within each individual invasion scenario. To do 

this, “null” models were created for comparison. For each invasion scenario, a null model 

was created by making the relative weights of the three categories equal. The indicators 

were also assigned equal weight within each category, thus allowing for change analysis 

between models that were weighted by experts or weighted equally.  

  Overall, for both invasion scenarios, two models were created, an expert model 

and its associated null model, resulting in a total of four models for analysis. Differences 

between expert and null models were analyzed by comparing scores across HUC14 units 

in ArcGIS. The absolute value of differences in score were created to display the overall 

change in priority score between the models. Finally, we were also interested in knowing 

how changes in point allocation may alter the priority level of a watershed between the 

differing models. Therefore, watersheds were placed into one of four management 

priority levels, based on their final point total (Table 3.4). Differences between models 

were analyzed by comparing the change in priority level across watersheds.  

 

RESULTS 

Established invasion scenario 

 For the established invasion model, results from the AHP indicated that the 

ecological impacts category carried the most importance in prioritizing management 

areas, followed by IEP attributes, and land use characteristics (Table 3.3). The indicators 

of greatest influence were the rarity weighted species richness index, followed by 
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ecologically important sites, and IEP density. The remaining five indicators had limited 

influence, with high invasion pressure and road density having the lowest weights.  

We created four separate priority levels based on the scores of the established 

invasion expert model (Figure 3.10). The lowest priority score for a watershed was 17 

while the highest was 91. The results for the established invasion null model varied from 

its expert model (Figure 3.11, Table 3.5). The lowest priority score for a watershed was 

23, with a high of 89.  

Though it is important to know the final priority scores a watershed received from 

the two models, it is more important to know if the different priority scores affect the 

placement of a watershed into different priority levels. Approximately 2/3 of the 

watersheds changed priority level based on the expert vs. null models (Figure 3.12). The 

greatest change in priority was a difference in levels of -1 or -2. These values indicate 

that the null model prioritized such watersheds either 1 or 2 levels higher than the expert 

model did. Thus, for the bulk of watersheds that did experience a change in priority, their 

level was higher in the null model, and the expert model ranked them with less priority. 

Furthermore, within the expert model, the top priority level contained watersheds 

that were mostly found along a narrow strip on the western side of the study area. This 

general section represents a large area of edge between forested and agricultural land. In 

the null model, some of the top priority watersheds were found in this same area. 

However, the null model resulted in most watersheds being distributed across the top 

three priority levels, while within the expert model, the lowest priority level contained the 

highest number of watersheds. 
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New invasion scenario 

The responses of the experts altered the weight of the variables within the 

framework to fit the new invasion scenario. Results from the AHP indicated that the IEP 

attributes category carried the most weight for this model, followed by land use 

characteristics, and ecological impacts (Table 3.6). The expert model had the majority of 

its weight spread amongst five indicators. The IEP density indicator carried the most 

weight, followed by young IEP density, land cover, road density, and high invasion 

pressure. The remaining three indicators had little influence on the model, with the GAP 

diversity indicator receiving the lowest weight.  

Total priority scores were again calculated for the watersheds (Figure 3.13). The 

lowest score for a watershed was 13 while the highest score was 89. Compared to the 

expert model, the null model resulted in different scoring totals (Figure 3.14). Scores 

ranged from 10 to 86 for the null model (Table 3.7). The differences in scoring affected 

the placement of watersheds into different priority levels (Figure 3.15). Approximately 

1/3 of watersheds changed priority, favoring a positive level change of 1, indicating that 

the expert model prioritized such watersheds one rank higher than the null model.  

For the expert model, the highest priority level watersheds were in a tight cluster 

within the center of the study area. This general location was among the areas that 

displayed the highest Amur honeysuckle densities. For the null model, however, the 

highest priority watersheds were more scattered throughout the study area, especially 

along the western portion. In addition, the general number of watersheds placed within 

each of the four priority levels varied between the two models.  
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Comparison of the invasion scenarios 

 By comparing the change in management priority between the two expert models 

of the differing invasion scenarios, we were able to analyze the flexibility of the 

framework (Figure 3.16). The change in priority scoring ranged from 0 to 58, which 

altered the allocation of watershed priority (Figure 3.17). The majority of watersheds 

displayed a negative priority level change, indicating that most watersheds were 

prioritized at lower levels within the established invasion scenario when compared to the 

new invasion scenario.  

 

DISCUSSION 

 The responses to the pair wise comparisons within the framework served as the 

basis for the AHP. Using experts to answer the pair wise questions was very important. 

Interestingly, although the manager and scientist were interviewed separately, their 

responses were very similar and allowed us to combine their inputs into one “expert” 

opinion. Furthermore, we believe that their input and feedback gave us insights that 

improved our prioritization framework.  

The prioritization framework was built at the watershed level. It is important to 

address this scale because the risk of invasion is often related to its environmental factors 

(With 2002). By using a watershed level approach, we are acknowledging that certain 

watersheds may be more vulnerable to invasion and experience various levels of impacts. 

Likewise, prioritization at the this level can facilitate eradication of the most ecologically 

damaging populations, while creating a system that uses limited labor in areas of most 

need. 
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Moreover, deciding how to break up the landscapes in a reasonable manner to 

allow for prioritization is important. For instance, models could use political boundaries 

to divide the land. However, we believe that watersheds create the most reasonable 

boundaries for prioritization at this scale. Watersheds are highly recognizable, and most 

managers know where their ownership boundaries fall within watersheds. In addition, 

watersheds provide a natural topographic boundary for analysis compared to political 

boundaries. Even though we argue the usefulness of the watershed boundary, other 

boundary layers could easily be applied to our framework to suit managers’ needs.  

 We used the AHP to create a spatial prioritization framework for IEP 

management that incorporated expert input to alter weights of variables between the 

various models. The current invasion status within the Inner Bluegrass region of 

Kentucky resulted in the creation of the established invasion scenario. By using the same 

data and hypothetically altering the IEP density levels, we created the new invasion 

model for comparison. 

 

Established invasion expert model 

 Within this model, experts gave the most weight to the ecological impacts 

category because of the high impact potential of Amur honeysuckle. Within this category, 

experts weighted management priority to locations with rare species and ecologically 

important sites. The GAP diversity indicator did not receive much weight because it is a 

rough estimate of diversity potential. In contrast, the rarity weighted species richness 

index and the ecologically important sites are discrete results from fieldwork and species 
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presence data. These two indicators are far more accurate at displaying areas that would 

potentially experience high ecological impacts.  

 Priority was next given to the IEP density indicator. Though it is imperative to 

identify ecologically important areas, it is also important to recognize known locations of 

Amur honeysuckle stands. Interestingly, experts gave watersheds with the lowest IEP 

density levels the highest priority. Since Amur honeysuckle is so thoroughly established 

in this region, it is more feasible to manage low density sites where the IEP will not 

quickly re-establish, giving managers a higher likelihood for control. The other 

indicators, which related to spread and establishment, are not as important because the 

IEP is already widely established. Consequently, management priority was assigned to 

locations of high ecological importance and watersheds displaying the best potential for 

IEP control.  

 

Comparison of the established invasion expert and null models 

 Approximately 2/3 of watersheds changed priority level between the expert and 

null model, with most expressing negative level changes. This means that because of its 

equal weighted inputs, the null model is incorrectly allocating management by giving top 

priority to watersheds that are not in most need of management. This demonstrates the 

importance of expert opinion within our framework to direct management actions.  

This also shows that if managers are interested in prioritizing management, they 

need to use a model that incorporates their goals and inputs. Our model took the expert 

responses and prioritized management areas accordingly. For instance, experts were most 

interested in preventing ecological impacts, and therefore our framework gave priority to 
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watersheds that had both rare species and ecologically important sites. This is valuable 

because experts were able to analyze the invasion scenario and by the pair wise 

comparison method decide which factors were most important for management. 

Furthermore, this framework presented how and why priority was given and did so in a 

comprehendible manner.  

 

New invasion expert model 

 In the new invasion scenario, experts gave the most weight to the IEP attributes 

category because of the hypothetically lower IEP density levels. Within this category, the 

experts weighted most management priority to IEP density indicators because managing 

watersheds with the highest IEP densities would allow for the most removal before 

further spread. In addition, the high invasion pressure indicator was important because of 

its ability to identify watersheds that are experiencing high propagule pressure.  

Similarly, the land use characteristics category becomes more important in this 

hypothetical invasion scenario because its indicators may lead to monitoring and 

prevention operations. For instance, the land usage and road density indicators identify 

areas of increased disturbance, which may relate to a higher probability of introduction or 

establishment. The ecological impacts category and its three indicators did not carry 

much weight in this scenario. Rather than focusing on potential impacts, experts 

hypothetically deemed it more important to center activities on removing current stands 

while also directing operations to monitor and/or prevent new introductions, in an effort 

to eradicate the IEP. 
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Comparison of the invasion scenarios 

Within the new invasion scenario, approximately 1/3 of the watersheds changed 

priority between the expert and null models. This again demonstrated the importance of 

expert input, as the allocation of management priority changed noticeably between the 

two models. However, this scenario showed less change in watershed priority levels 

when compared to the established invasion scenario. The expert model of the established 

invasion scenario had its point allotment dispersed mostly among three indicators, while 

the expert model of the new invasion scenario had its points dispersed mostly among five 

indicators. Because more points were allotted to fewer indicators within the established 

invasion expert model, it created a more dramatic difference compared to its null model. 

Depending on the invasion scenario, the experts modified weights at all three 

hierarchy levels, which ultimately altered the locations receiving management priority. 

Within the established invasion scenario, the experts weighted the ecological impacts 

category with most importance, while the IEP attributes received the most weight in the 

new invasion scenario. In addition, the experts altered their weights at the detailed criteria 

level. For instance, the low IEP density class received the most weight within the 

established invasion scenario, while within the new invasion scenario, the highest IEP 

density class received the most weight that indicator. In addition, the land usage, road 

density, and young IEP density indicators experienced changes in class weights. These 

differences in weighting demonstrate the flexibility of the framework and how it can be 

adjusted to fit different invasion scenarios, which is useful for managers.  
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Framework analysis 

Our modeling approach has created a useful framework for prioritizing IEP 

management. This approach is valuable because it consolidates characteristics of the 

invasion process in one framework, making it applicable to diverse regions and distinct 

invasion scenarios. Our framework is also important because it was implemented at a 

landscape scale, which allowed for the inclusion of new and relevant data that managers 

might not have previously considered. The framework also adds to the field of IEP 

management because of our characterization of Amur honeysuckle. We were able to 

analyze current stands of the invader and identify watersheds at higher risk of further 

invasion. 

By comparing the indicators in a pair wise manner rather than simply listing 

importance 1- 8, we are providing managers with a more objective way to rank the most 

important factors that determine management priority. We are also giving managers the 

ability to first analyze the region and stage of invasion, and then objectively weight 

which factors are of most importance to their management goals. Furthermore, our 

framework takes this input and then interprets the priority locations. Overall, as we have 

demonstrated the flexibility of our framework, we are giving managers a tool that can be 

adapted to various regions or IEPs based on their expert input.  

Agencies and managers with dissimilar goals could use this one framework to 

create customized prioritizations. One manager may be more interested in management 

that removes IEP from areas with high ecological value and can adjust the framework to 

such goals. On the other hand, a manager with less invaded lands can use this same 

framework to prioritize management based on preventing introduction or establishment. 
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Furthermore, managers could fit the framework to different invaders by adding or 

removing indicators based on the characteristics of the IEP. For example, if the IEP has 

known dispersal characteristics, such as wind dispersal, then populations of the invader 

located on higher topographic positions may be prioritized for management (Roura-

Pascual et al. 2009). Managers can also adjust the framework to fit special invasion 

scenarios, such as for regions where the IEP has a potential to alter important 

hydrological regimes (Ou et al. 2008). 

 Other factors that this framework did not incorporate, such as management 

feasibility, may influence control operations. Obviously, without proper resources, the 

control operations may not be executed. However, this type of information and data are 

highly variable from agency to agency, and therefore need to be addressed from within 

when applying prioritization frameworks. Finally, in highly urbanized regions, access to 

lands may be a management barrier that is difficult to deal with. Agencies may need to 

initiate incentives to private landowners to gain land access or reward them for individual 

removal.  

A primary goal of this prioritization was to use data that is easily accessible and 

available for managers, yet possibly one of the most important indicators in our 

framework, the IEP distribution, may be the hardest for managers to acquire. Our model 

applied remote sensing techniques to acquire an estimated distribution of Amur 

honeysuckle within our study area. This stresses the importance and need for accurate 

distributions maps of IEP species throughout the United States. Employing similar 

remote sensing methodologies by government agencies or other environmental 
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organizations to create a more accurate database of IEP distributions would be beneficial 

for managers.  

CONCLUSION 

 As IEP continue to spread and establish in new regions worldwide, there is an 

ever-increasing need to manage these invasions. Often times, managers simply do not 

have the resources to sufficiently address and manage all infested areas under their 

control. Therefore, it becomes particularly vital that managers use scientifically driven 

decision tools to prioritize areas in most need of management in order to conserve and 

protect our native ecosystems. Managers need a flexible framework that incorporates 

their goals and can be applied to various stages of invasion.  

Therefore, our overall approach was to create a prioritization framework that used 

accessible data, encouraged expert input, and was adaptable to differing invasion 

scenarios. We applied the working knowledge of the invasion process and the flexible 

AHP methodology to address managers’ goals and input in one framework. Our results 

detail the important role that expert input plays in making management decisions, as 

management priority was allocated to watersheds that displayed the key indicators 

associated with the invasion stage of that region. This framework is useful and can be 

easily applied by managers. Furthermore, within the finalized prioritization, managers 

can adjust the number of watersheds grouped within the top priority level to be meet 

budget needs.  

Overall, decision tools are and will be important in the fight against IEPs. Such 

tools will guide managers to areas in most need of management based on their relative 
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goals. Researchers need to present these tools to managers in a basic manner that allows 

for ease of use and increases the likelihood of application within their management areas. 
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Table 3.1. Detailed description of indicators used in the prioritization framework 
 

        Indicator                                      Description                                            Index Classes 
IEP Attributes   
IEP density Estimated Amur honeysuckle density 

from a supervised classification of a 
2009 Landsat satellite image 

5 density levels: lowest, low, 
medium, high, highest 

Young IEP density Estimated Amur honeysuckle from a 
supervised classification of a 2005 
Landsat satellite image. Subtracted 
the 2005 distribution from the 2009 
distribution 

5 density levels: lowest, low, 
medium, high , highest 

High invasion pressure Calculated average density of Amur 
honeysuckle for watersheds. Higher 
densities relate to higher invasion 
pressure on neighboring watersheds 

Is the watershed neighboring 
an area with a higher than 
average density of Amur 
honeysuckle? Yes or no 

Ecological Impacts   
Rarity-weighted species 
richness index 

Presence/absence of rare species. 
Index created by the Kentucky State 
Nature Preserves Commission. Index 
incorporates the rare species 
distribution and number of 
populations within the state to create 
a rarity index score. 

5 index levels:  
High = high concentration of 
rare species and/or rare 
species that have a very small 
range.  
Medium = rare species 
present.  
Low = May support rare 
species, though no 
occurrences are known.  
Historic = rare species 
occurrences that have not 
been observed for over 20 
years and may no long exit.  
Absent

Ecologically important sites 

 = no rare species 
present or historically 
documented 

Ecologically significant areas as 
identified by the Kentucky State 
Nature Preserves Commission.  

Does the watershed contain 
an ecologically important 
area? Yes or no 

GAP diversity Generalized habitat diversity levels 
as modeled by the GAP analysis 
program.  

3 diversity levels: low, 
medium, high 

Land Use Characteristics   
Land usage General land usage of each 

watershed derived from Population 
Interaction Zones for Agriculture 
(PIZA) created by the USDA. The 
index identifies zones of agricultural 
land and the surrounding levels of 
increasing population interaction.  

3 zones: agricultural land, 
less impacted land, highly 
urbanized land 

Road density The road dataset was produced by 
the Kentucky Transportation Cabinet 

5 density levels: lowest, low, 
medium, high, highest 
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Table 3.2. Hierarchical association of categories, indicators, and detailed criteria that 
created the prioritization framework 

 

 

 

 

 

 

 

 

 

 

 

 

 

 1. IEP Attributes 2. Ecological Impacts 3. Land Use Characteristics

 1.1 IEP density 2.1 Rarity-weighted richness  3.1 Land usage

 Lowest High Agriculture 

 Low Medium Less impacted

 Medium  Low Highly urban 

 High Historic 

 Highest Absent 3.2 Road density 

Lowest

 1.2 Young IEP density 2.2  Ecologically important site  Low

 Lowest Yes Medium

 Low No High

 Medium  Highest

 High     2.3 GAP diversity 

 Highest Low  

Medium 

 1.3 High invasion pressure High 

 Yes   

 No  
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Table 3.3. The AHP results for the established invasion expert model of the prioritization 
framework 

 

 

 

 

 

 

 

 

 

 

 

 

 

 1. IEP Attributes (24%) 2. Ecological Impacts (66%) 3. Land Use Characteristics (10%)

 1.1 IEP density (14) 2.1 Rarity-weighted richness  (32) 3.1 Land usage (6)

 Lowest 14 High 32 Agriculture 1

 Low 10 Medium 28 Less impacted 6

 Medium  5 Low 14 Highly urban 2

 High 2 Historic 7

 Highest 0 Absent 0 3.2 Road density (4)

Lowest 4

1.2 Young IEP density (6) 2.2  Ecologically important site  (27) Low 3

 Lowest 1 Yes 27 Medium 2

 Low 2 No 0 High 1

 Medium  3 Highest 0

 High     4 2.3 GAP diversity (7)

 Highest 6 Low  1

Medium 4

1.3 High invasion pressure (4) High 7

 Yes   4

 No  1
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Table 3.4. Scoring intervals that created the management priority levels  

 

Scoring Interval Priority rank Priority Level 
0-30 Lowest 1 

31-50 Low 2 
51-70 Medium 3 
71-91 High 4 
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Table 3.5. The AHP results for the established invasion null model of the prioritization 
framework 

 

 

 

 

 

 

 

 

 

 

 

 

 

 1. IEP Attributes (33%) 2. Ecological Impacts (33%) 3. Land Use Characteristics (34%)

 1.1 IEP density (11) 2.1 Rarity-weighted richness  (11) 3.1 Land usage (17)

 Lowest 11 High 11 Agriculture 2

 Low 8 Medium 10 Less impacted 17

 Medium  4 Low 5 Highly urban 6

 High 2 Historic 2

 Highest 0 Absent 0 3.2 Road density (17)

Lowest 17

 1.2 Young IEP density (11) 2.2  Ecologically important site  (11) Low 14

 Lowest 1 Yes 11 Medium 8

 Low 3 No 0 High 4

 Medium  5 Highest 1

 High     8 2.3 GAP diversity (11)

 Highest  11 Low  2

Medium 6

 1.3 High invasion pressure (11) High 11

 Yes   11

 No  2
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Table 3.6.  The AHP results for the new invasion expert model of the prioritization 
framework 

 

 

 

 

 

 

 

 

 

 

 

 1. IEP Attributes (62%) 2. Ecological Impacts (9%) 3. Land Use Characteristics (29%)

 1.1 IEP density (30) 2.1 Rarity-weighted richness  (4) 3.1 Land usage (17)

 Lowest 6 High 4 Agriculture 1

 Low 14 Medium 3 Less impacted 12

 Medium  19 Low 2 Highly urban 17

 High 25 Historic 1

 Highest 30 Absent 0 3.2 Road density (12)

Lowest 1

 1.2 Young IEP density (21) 2.2  Ecologically important site  (4) Low 4

 Lowest   4 Yes 4 Medium 7

 Low 10 No 0 High 10

 Medium  15 Highest 12

 High 19 2.3 GAP diversity (1)

 Highest  21 Low  1

Medium 1

 1.3 High invasion pressure (11) High 1

 Yes   11

 No  1



 
 

67 
 

Table 3.7.  The AHP results for the new invasion null model of the prioritization 
framework 

 

 

 

 

 

 

 

 

 

 

 1. IEP Attributes (33%) 2. Ecological Impacts (33%) 3. Land Use Characteristics (34%)

 1.1 IEP density (11) 2.1 Rarity-weighted richness  (11) 3.1 Land usage (17)

 Lowest 2 High 11 Agriculture 1

 Lowest 5 Medium 10 Less impacted 12

 Medium  7 Low 6 Highly urban 17

 High 9 Historic 2

 Highest 11 Absent 0 3.2 Road density (17)

Lowest 2

 1.2 Young IEP density (11) 2.2  Ecologically important site  (11) Low 5

 Lowest 2 Yes 11 Medium 10

 Low 5 No 0 High 14

 Medium  8 Highest 17

 High     10 2.3 GAP diversity (11)

 Highest 11 Low  2

Medium 6

 1.3 High invasion pressure (11) High 11

 Yes   11

 No  1



 
 

68 
 

 

Figure 3.1. Map of the study area created to fit the general outline of the Inner Bluegrass 
region of Kentucky 
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Figure 3.2. The distribution of Amur honeysuckle density displayed within HUC 14 
watershed boundaries 
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Figure 3.3. The distribution of young Amur honeysuckle density displayed within HUC 
14 watershed boundaries 
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Figure 3.4. The locations of high invasion pressure displayed within HUC 14 watershed 
boundaries 
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Figure 3.5. The distribution of the rarity-weighted species richness index displayed 
within HUC 14 watershed boundaries 
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Figure 3.6. The distribution of GAP diversity classes displayed within HUC 14 watershed 
boundaries 
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Figure 3.7. The distribution of the land usage classes displayed within HUC 14 watershed 
boundaries 
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Figure 3.8. The distribution of road density displayed within HUC 14 watershed 
boundaries 
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Figure 3.9. Workflow showing how the watershed attributes and the model’s weights 
result in the final watershed prioritization 
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Figure 3.10. The watershed priority scores calculated for the established invasion expert 
model 
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Figure 3.11. The watershed priority scores calculated for the established invasion null 
model 
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Figure 3.12. The change in watershed priority level between the expert and null models 
of the established invasion scenario 
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Figure 3.13. The watershed priority scores calculated for the new invasion expert model 
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Figure 3.14. The watershed priority scores calculated for the new invasion null model 
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Figure 3.15. The change in watershed priority level between the expert and null models 
of the new invasion scenario 
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Figure 3.16. The change in priority score between the expert models of the established 
invasion and new invasion scenarios 
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Figure 3.17. The change in watershed priority level between the expert models of the 
established invasion and new invasion scenarios 
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