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ABSTRACT OF DISSERTATION 

 

 

 

 

CRYOGENIC MACHINING AND BURNISHING OF AZ31B MAGNESIUM 

ALLOY FOR ENHANCED SURFACE INTEGRITY AND                 

FUNCTIONAL PERFORMANCE 

 

 

 

Surface integrity of manufactured components has a critical impact on their 

functional performance. Magnesium alloys are lightweight materials used in the 

transportation industry and are also emerging as a potential material for biodegradable 

medical implants. However, the unsatisfactory corrosion performance of Mg alloys limits 

their application to a great extent. Surface integrity factors, such as grain size, 

crystallographic orientation and residual stress, have been proved to remarkably influence 

the functional performance of magnesium alloys, including corrosion resistance, wear 

resistance and fatigue life. 

In this dissertation, the influence of machining conditions, including dry and 

cryogenic cooling (liquid nitrogen was sprayed to the machined surface during 

machining), cutting edge radius, cutting speed and feed rate, on the surface integrity of 

AZ31B Mg alloy was investigated. Cryogenic machining led to the formation of a 

―featureless layer‖ on the machined surface where significant grain refinement from 12 

µm to 31 nm occurred due to dynamic recrystallization (DRX), as well as increased 

intensity of basal plane on the surface and more compressive residual stresses. Dry and 

cryogenic burnishing experiments of the same material were conducted using a fixed 

roller setup. The thickness of the processed-influenced layer, where remarkable 

microstructural changes occurred, was dramatically increased from the maximum value 

of 20 µm during machining to 3.4 mm during burnishing. The burnishing process also 

produced a stronger basal texture on the surface than the machining process.  

Preliminary corrosion tests were conducted to evaluate the corrosion performance 

of selected machined and burnished AZ31B Mg samples in 5% NaCl solution and 

simulated body fluid (SBF). Cryogenic cooling and large edge radius tools were found to 

significantly improve the corrosion performance of machined samples in both solutions. 

The largest improvement in the material's corrosion performance was achieved by 

burnishing.  



 

 

A finite element study was conducted for machining of AZ31B Mg alloy and 

calibrated using the experimental data. A user subroutine was developed and incorporated 

to predict the grain size changes induced by machining. Good agreements between the 

predicted and measured grain size as well as thickness of featureless layers were 

achieved. Numerical studies were extended to include the influence of rake angle, feed 

rate and cutting speed on the featureless layer formation.  

 

 

KEYWORDS:  Surface Integrity, Cryogenic Machining/Burnishing, Corrosion 

Resistance, Finite Element Analysis, Magnesium Alloys  
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CHAPTER 1: INTRODUCTION  

 

1.1 Introduction 

Failures of metallic materials due to wear, corrosion and/or fatigue often start at 

the surface of manufactured products. The quality of the surface produced by 

manufacturing processes has critical influence on the functional performance of the 

products. The concept of ―surface integrity (SI)‖ was used to refer to the surface quality 

by Field and Kahles in 1964 and defined as ―the inherent or enhanced condition of a 

surface produced in machining or other surface generating operation‖ (Field and Kahles, 

1964). They also developed a systematic method to study and evaluate the characteristic 

features of machined surfaces in three different levels as shown in Table 1.1 (Field et al., 

1972).  Among these SI factors, residual stress is one of the most frequently studied due 

to its proved relationship with fatigue life (Leverant et al., 1979; Sasahara, 2005). 

Microstructural changes, especially ―white layer‖ formation, are also well investigated 

because they were proved to reduce fatigue life (Hashimoto et al., 2006). Recently, more 

and more studies on surface integrity have been reported by researchers from various 

countries due to its close relationship with functional performance of the manufactured 

products (Jawahir et al., 2011). However, most of the current researches were conducted 

on difficult-to-machine materials, such as AISI 52100 steel, nickel-based superalloys and 

titanium alloys. The purpose of these studies was mainly to avoid the formation of 

undesirable surface integrity, including tensile residual stresses, white layer and other 

surface defects. The possibility of using manufacturing processes to improve functional 
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performance of manufactured products through inducing desirable surface integrity has 

not been well investigated. 

Table 1.1: Different levels of surface integrity (SI) (Field et al., 1972) 

Minimum SI data set 
Standard SI data set 

 

Extended SI data set 

Surface finish 

Macrostructure (10× or less) 

Macrocracks 

Macroetch indications 

Microstructure 

Microcracks 

Plastic deformation 

Phase transformation 

Intergranular attack 

Pits, tears, laps, 

protrusions 

Built-up edge 

Melted and redeposited 

layers 

Selective etching 

Microhardness 

 

Minimum SI data set 

 

Fatigue tests (screening) 

Stress corrosion tests 

 

Residual stress and 

distortion 

 

Standard SI data set 

Fatigue tests (extended to 

obtain design data) 

Additional mechanical tests 

Tensile 

Stress rupture 

Creep 

Other specific tests 

(e.g., bearing 

performance, sliding 

friction evaluation, 

sealing properties of 

surfaces) 

 

The functional performance of metallic materials, including corrosion and wear 

resistance (Wang et al., 2006; Zhang et al., 2006) as well as fatigue life (Villegas et al., 

2005), was substantially enhanced by surface nanocrystallization (SNC) induced by 

severe plastic deformation (SPD) processes. Machining is a SPD process involving large 

strains (typically 2–10), high strain-rates (up to 10
6
 s

-1
) and large heat generation. 

Nanocrystalline grain structure was found in the white layer of AISI 52100 steel (Ramesh 

et al., 2005) and IN100 nickel-based superalloy (Wusatowska-Sarnek et al., 2011). The 

potential of machining as a SNC process was also supported by recent literature 

(Chandrasekar et al., 2011) where it was shown that nanocrystalline grain structures 
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could be found on the machined surface of various materials. However, the use of 

machining to enhance functional performance of materials through induced 

nano/ultrafine grain structures on the surface has not been reported.  

Magnesium alloys are promising lightweight materials for both automotive and 

aerospace applications. Recently, they are also emerging as a novel biodegradable 

material for temporary internal fixation implants (Witte, 2010). However, one major 

limitation of the wide application has been their unsatisfactory corrosion performance. 

The poor corrosion resistance of Mg alloys also limits their applications as lightweight 

materials for the transportation industry (Luo, 2002). Grain refinement was proved to be 

an effective way to improve the corrosion resistance of magnesium alloys as well as their 

fatigue life (Wang et al., 2007).  Therefore, there is a possibility that 

machining/burnishing can be used to enhance the functional performance of magnesium 

alloys by formation of a grain refinement layer on the surface. 

In addition to grain size, other SI factors, such as residual stresses, were also 

reported to have remarkable influence on the corrosion resistance of magnesium alloys. 

Large compressive residual stresses induced by deep rolling were claimed to reduce the 

corrosion rate of a biphasic MgCa3.0 alloy by a factor of approximately 100 (Denkena 

and Lucas, 2007). Crystallographic orientations, which could be changed significantly by 

machining (To et al., 2003; Velásquez et al., 2010), were reported recently to have a 

dramatic influence on the corrosion resistance of AZ31 Mg alloy (Song et al., 2010b). 

Strong basal texture on the surface resulted in significantly enhanced corrosion resistance 

(Song et al., 2010).  
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1.2 Research Objectives 

The literature suggests that traditional manufacturing processes involving SPD 

such as machining and burnishing may be used to improve the corrosion resistance of 

magnesium alloys through inducing desirable surface integrity factors, such as grain 

refinement, compressive residual stresses and stronger basal texture. However, a 

systematic study is greatly needed since various SI factors are involved and will change 

at the same time during processing. Another concern is that grain growth may occur due 

to high temperature generated during machining/burnishing and the grain refinement may 

not be maintained on the workpiece surface/subsurface. This research is an attempt to 

address these concerns and its major objectives are: 

1) Investigating the influence of processing conditions, especially the use of 

cryogenic cooling during processing, on surface integrity changes such as 

microstructure, crystallographic orientations, residual stresses, etc., generated 

by machining and burnishing; 

2) Evaluating the resulting corrosion performance of machined and burnished 

samples processed under different conditions in both 5% NaCl solution and 

simulated body fluid (SBF); and 

3) Developing a numerical method using finite element modeling (FEM) 

techniques to predict grain size changes in the surface and sub-surface 

induced by machining under different processing conditions. 
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1.3 Dissertation Outline 

In the following Chapter 2, a literature review is conducted which covers 

experimental and numerical studies on surface integrity in machining/burnishing and its 

influence on functional performance. In Chapter 3, experimental results on the surface 

integrity resulting from machining under different conditions including cooling method 

(dry and cryogenic), cutting edge radius, cutting speed and feed rate are presented. The 

surface integrity factors investigated are microstructure, crystallographic orientations, 

residual stresses, hardness and surface roughness. Chapter 4 presents the experimental 

results on the surface integrity resulting from burnishing experiments. The same surface 

integrity factors were investigated as in machining. The main burnishing conditions 

studied are dry and cryogenic cooling. The selected machined and burnished Mg samples 

were subjected to corrosion test in both 5% NaCl solution and SBF and these results are 

presented in Chapter 5. Chapter 6 presents a numerical study on the grain size changes 

and grain refinement layer thickness induced by machining. Good agreement with 

experimental observations was achieved by using a customized user subroutine combined 

with commercial FEM software. Finally, a summary of conclusions resulting from this 

work, as well as recommendations for future work, are presented in Chapter 7. 
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CHAPTER 2: LITERATURE REVIEW 

 

Surface integrity (SI) of machined components has been studied since the 1950‘s. 

Residual stress is one of the most commonly studied SI factors. There are growing 

commercial interests in microstructural changes due to recent research findings that thin 

layers of nanocrystalline grain structures were produced on the machined surface of 

various materials. In general, this can improve the functional performance of machined 

products. Finite element methods for predicting surface integrity are rapidly emerging 

due to the growing power of computers. A review of these experimental and numerical 

studies is presented in this chapter.  

Another important topic reviewed in this chapter is the influence of various SI 

factors on the functional performance of manufactured components, such as 

corrosion/wear/fatigue resistance. The focus of this part is on the corrosion resistance of 

Mg alloys since the unsatisfactory corrosion performance impedes their emerging 

application as biodegradable fixation implants and the application as lightweight 

materials for transportation industry. The mechanism for grain refinement in machining 

and empirical relationships concerning dynamic recrystallization (DRX) in Mg alloys are 

also reviewed, which provides a basis for explaining the experimental results presented in 

the following chapters as well for the modeling work in Chapter 6. 

2.1  Surface Integrity in Machining  

 Machining is one of the most common manufacturing processes and is used for 

both metallic and non-metallic components. One of its key functions is to achieve the 
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desired geometry accuracy and the machined surfaces are often exposed to various 

thermal-mechanical loadings, such as a machined piston surface in a combustion engine. 

In addition to required geometric accuracy and surface finish, more and more researches 

have demonstrated the importance of material properties beneath the machined surface on 

the functional performance of machined components, such as residual stress, 

microstructures, etc., which are the focus of the literature survey in the present study. 

2.1.1 Experimental studies on residual stresses 

One of the earliest efforts to investigate the influence of machining on SI was 

conducted by Henriksen (Henriksen, 1951). He studied the changes of residual stresses 

caused by the machining process and claimed that mechanical effects were more 

important than thermal effects in the development of residual stresses.  These residual 

stress changes were caused by heterogeneous plastic deformations, thermal contractions 

and/or phase transformation. There are mainly two types of residual stresses. One is 

macro residual stresses which vary within the body of the component over a scale much 

larger than the grain size. The other type is micro level and may vary from grain to grain 

or within one single grain. For most cases, the residual stresses reported from machining 

literature are macro level residual stresses.  

Sadat and Bailey (Sadat and Bailey, 1987) studied the influence of cutting speed, 

feed rate and depth of cut on the residual stresses of machined AISI 4340 steel. They 

showed that peak residual stresses were tensile at low speeds (30 and 60 m/min) for all 

feed rates, and compressive at high speed (90 m/min) for all feed rates. Peak residual 

stresses and the depth of stressed region increased with an increase in feed rate and depth 

of cut, but decreased with an increase in cutting speed. 
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M'Saoubi et al. (M'Saoubi et al., 1999) showed that increased cutting speed led to 

larger tensile residual stress on the machined surface but decreased the thickness of the 

tensile layer in orthogonal machining of AISI 316L steels as shown in Figure 2.1. They 

showed that feed rates had little influence on the surface residual stresses but increasing 

values of feed rate had a tendency to increase the compressive stress values in the sub-

surface, and the thickness of the tensile layer. They claimed that it was due to a 

mechanical effect causing the augmentation of the compressive zone in the region of the 

workpiece situated below the cutting edge, leading to greater elastic relaxation after 

machining. 

 

Thiele et al. (Thiele et al., 2000) presented the results of an experimental 

investigation of the effects of cutting edge geometry and workpiece hardness on the 

residual stresses in finish hard-turning of AISI 52100 steel. Large edge radius tools were 

found to produce more compressive residual stress in the axial and hoop directions than 

small edge radius tools. Small edge hone tools typically produced over-tempered surface 

Figure 2.1: Surface residual stresses and tensile layer depth as functions of cutting 

speed (M'Saoubi et al., 1999). 



9 

 

layers, which were in residual tension for low hardness (41 HRC) steel and in residual 

compression for high hardness (57 HRC) steel. 

The importance of cutting edge radius of the tools on residual stresses was 

highlighted by Outeiro et al. (Outeiro et al., 2010) in orthogonal turning of AISI 1045 

steel. Large edge radius tools were found to increase the forces and temperatures, which 

led to increased tensile residual stresses on the machined surface. 

2.1.2 Experimental studies on microstructural changes and surface

 nanocrystallization  

Field and Kahles (Field and Kahles, 1971) were among the first to investigate the 

influence of machining on microstructures of the machined components. They found that 

significant changes had occurred after machining of various materials, including different 

steels and Inconel 718. A ―white layer‖ was found on the hole surface after drilling of 

AISI 4340 steel. This layer had a white appearance under optical microscope after using 

standard etchants and was claimed to be consisted of untempered martensite.  The 

hardness of this layer was increased from 52 HRC to 61 HRC. An overtempered 

martensitic layer was also found below the ―white layer‖ and its hardness was reduced to 

43 HRC. Similar layers were reported frequently on other steels. Figure 2.2 shows an 

example of the white layer and the overtempered martensitic layer (often called ―dark 

layer‖ due to its appearance under an optical microscope) on a machined AISI 52100 steel 

(Chou and Evans, 1999).  
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Numerous experimental and numerical studies have been conducted to investigate 

the influence of various machining conditions on the formation of ―white layer‖ and their 

purpose was mainly to avoid the formation of this layer due to its detrimental effects on 

performance of the machined components. However, recent studies of the ―white layer‖ 

by using advanced material characterization techniques, such as transmission electron 

microscopy (TEM), showed that nanocrystallized grain structures were formed in the 

―white layer‖ (Ramesh et al., 2005; Wusatowska-Sarnek et al., 2011) and brought up 

another possibility that ―white layer‖ might sometimes be beneficial for some materials 

since surface nanocrystallization (SNC) was proved to be an effective way to improve 

functional performance of metallic materials (Lu and Lu, 1999). 

Ramesh et al. (Ramesh et al., 2005) investigated the structure and properties of 

white layers formed during machining of hardened AISI 52100 steel (62 HRC) at 

different cutting speeds using TEM and X-ray diffraction (XRD). They found that white 

layers produced at low-to-moderate cutting speeds were mainly due to grain refinement 

Figure 2.2: An example of white and dark layers formed at a hard turned surface of 

AISI 52100 steel (Chou and Evans, 1999). 
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induced by severe plastic deformation, whereas white layer formation at high cutting 

speeds was mainly due to thermally-driven phase transformation. The white layers at all 

speeds were found to be comprised of nanocrystallized grain structures which were 

coarser (∼20 nm) at higher speed than those generated at lower speeds (∼5 nm). 

In an earlier work from Purdue University, Brown et al. (Brown et al., 2002) 

demonstrated that siginficant grain refinement occurred in the machined chips of various 

materials, such as copper, steels and nickel.  Swarninathan et al. (Swarninathan et al., 

2005) studied the variation of chip microstructures with cutting conditions in machining 

of oxygen-free high thermal conductivity (OFHC) copper, Al 6061-T6 and AISI 52100 

steel. Figure 2.3 (a) shows the microstructure of partially detached OFHC copper chip 

(Swarninathan et al., 2005). While the grain structures were clearly visible in the bulk 

material, they disappeared in the machined chips and on the machined surface. It was 

shown in Figure 2.3 (b) that significant grain refinement from 20 µm to 216 ± 104 nm 

occurred in the machined chips (Swarninathan et al., 2005). Nanocrystallined grains of 75 

nm were found in the machined chips of Al 6061-T6 (Swarninathan et al., 2005). In a 

later work from the same group, it was found that the remarkable grain refinement also 

occurred in the machined surface of copper and grains of 175 ± 30 nm were found as 

shown in Figure 2.3 (c) (Chandrasekar et al., 2009). The hardness of the machined 

surface was increased from 57 to 155 kg·mm
-2

 and was similar to that reported in the 

machined chips (152 kg·mm
-2

). They proved experimentally that strains in the machined 

chips and on the machined surface were similar to each other in value and led to the 

similarity in microstructures and hardness.  
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Wusatowska-Sarnek et al. conducted microstructural characterization of the white 

etching layer (WEL) formed during milling of an nickel-based superalloy IN100 using 

TEM (Wusatowska-Sarnek et al., 2011).  It was shown that a nanocrystallized layer with 

the thickness from 0.5 to 1 µm formed on the machined surface. The grain size in the 

nanocrystalline layer was between 15 and 70 nm. The measured hardness of the layer was 

increased from about 4.5 GPa to 7.5 GPa.  
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(a) 

(b

) 
(b) 

(c) 

Figure 2.3: (a) Microstructure of partially detached OFHC copper chip  (superimposed 

are average Vickers hardness values (kg/mm
2
); (b) TEM image of microstructure of 

OFHC copper chips showing equiaxed grains of 216 ± 104 nm (Swaminathan et al., 

2005); (c) TEM image of machined copper surface showing grains of 175 ± 30 nm 

(Chandrasekar et al., 2009). 
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2.1.3 Experimental studies on the influence of cryogenic machining on surface 

integrity 

 The beneficial effects of cryogenic machining on tool life, where liquid nitrogen 

was sprayed from the rake and/or flank side of the cutting tools, were reported on 

different materials such as steels (Ghosh et al., 2003) and titanium alloys (Hong et al., 

2001; Dhananchezian and Kumar, 2011). However, very few researchers have reported 

the influence of cryogenic cooling on surface integrity induced by machining. Surface 

roughness on the machined surface was found to be reduced by cryogenic cooling 

compared with dry and flood cooling on AISI 52100 steel (Ghosh et al., 2003) and AISI 

4037 steel (Dhar and Kamruzzaman, 2007). Less tensile residual stresses was generated 

on the machined surface of AISI 52100 under cryogenic cooling compared with dry 

machining when an Al2O3 ceramic tool was used as shown in Figure 2.4 (Ghosh et al., 

2003). The application of cryogenic cooling also reduced the thickness of white layers on 

AISI 52100 steel to about 50% compared with dry machining with both polycrystalline 

cubic boron nitride (PCBN) tools and Al2O3 ceramic tools (Ghosh et al., 2003). Pusavec 

et al. investigated the influence of cryogenic machining on the surface integrity of 

Inconel 718 and found that  more compressive residual stresses and better surface finish 

were achieved compared with dry and minimum quantity lubrication (MQL) (Pusavec et 

al., 2011).  
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2.1.4 Finite element modeling of surface integrity in machining 

 Different factors of surface integrity in machining, such as microstructure and 

residual stresses, can be affected by various cutting conditions simultaneously. In 

addition to experimental studies, predictive models are greatly needed to further 

understand the mechanisms that drive the surface integrity changes and to find the 

optimum machining conditions that would lead to desirable surface integrity. Residual 

stress is one of the most commonly studied surface integrity factor in predictive models. 

Due to the improved performance and power of computers, finite element modeling 

(FEM) is becoming one of the widely used approaches to predict residual stresses 

induced by machining. Major advantages of FEM include the application of complex 

material behavior models which allow flow stress to change with strain, strain-rate and 

temperature. Also, ―user subroutines‖ can be easily implemented to capture complex 

material changes during the machining process, such as  phase transformations, dynamic 

recrystallization, etc., that influence the surface integrity. Obtaining appropriate 

Figure 2.4: Residual stress as a function of depth under machined surface, radial 

sample direction (across turning lines) (Ghosh et al., 2003).  
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experimental data as input to calibrate the model is still an essential part of this 

implementation. 

 Ee et al. developed a thermal elastic-viscoplastic finite element model to evaluate 

the residual stresses remaining in a machined component (Ee et al., 2005). They used the 

model to study the influence of sequential cuts and cutting conditions on the residual 

stresses induced by orthogonal machining. Outerio et al. (Outeiro et al., 2006c) conducted 

both experimental and numerical studies using the commercial software Deform 2D to 

investigate the influence of various cutting conditions on residual stresses in machining 

of AISI 316L steel. Figure 2.5 shows that a good agreement between experiment and 

predicted data can be achieved by using this model. It was found from the numerical 

studies that the residual stresses tend to increase with cutting speed, uncut chip thickness 

and tool cutting edge radius. Also, sequential cuts were reported to increase the 

superficial residual stresses.  

 

Figure 2.5: Comparison between experimentally and numerically obtained residual 

stresses (Outeiro et al., 2006c) 
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 A hardness-based flow stress model was developed by Umbrello and implemented 

in Deform 2D through a customized user routine to simulate hard turning of AISI 52100 

steel (Umbrello et al., 2004). A hydrostatic stress-based fracture criterion was used to 

simulate chip separation. This model was proved successful not only in predicting 

residual stresses (Umbrello et al., 2010b) but also the white and dark layer formation. 

Figure 2.6 shows that a good agreement between the observed white and dark layers 

(Poulachon et al., 2001) and the predicted layers was achieved by using their hardness-

based flow stress model (Umbrello et al., 2010a).    

 

 Microstructural changes during machining such as grain refinement induced by 

dynamic recrystallization (DRX) have significant influence on the surface integrity of the 

machined workpiece. However, very few studies have reported modeling of the 

microstructural changes due to the complexity of the problem. Caruso et al. expanded the 

model developed by Umbrello (Umbrello et al., 2004) and implemented another user 

subroutine where empirical equations concerning the grain size changes induced by DRX 

was used  (Caruso et al., 2011). The model parameters were evaluated from experimental 

Figure 2.6: White and dark layers formation in machining of AISI 52100 steel: (a) 

observed (Poulachon et al., 2001); (b) predicted (Umbrello et al., 2010a). 
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data and then used to predict other cases. Good agreement between the measured and 

predicted grain size on the machined surface and in the sub-surface after hard turning of 

AISI 52100 was achieved.  

2.2 Experimental Studies on Surface Integrity in Burnishing 

Burnishing is a manufacturing process used in industry to reduce surface 

roughness, increase hardness and/or introduce beneficial compressive residual stresses.  

Rajesham and Tak investigated the influence of roller burnishing on aluminum 

alloy (Rajesham and Tak, 1989). They found that the surface finish was improved and the 

hardness was increased up to 0.4 mm below the burnished surface. Hassan and Al-

Bsharat studied the influence of different ball burnishing conditions, including forces, 

ball diameter, speed and feed, on the surface roughness and hardness of two non-ferrous 

metals (Hassan and Al-Bsharat, 1996). Large diameter balls were found to be more 

effective in improving surface roughness, while small diameter balls more effective in 

increasing surface hardness. Klocke and Liermann conducted ball burnishing using a 

ceramic ball on turned 100Cr6 steel (Klocke and Liermann, 1998). In addition to 30-50% 

reduction of surface roughness, they found that burnishing shifted the tensile residual 

stresses induced by machining to large compressive residual stresses. The microstructures 

before and after burnishing were also studied and the white layer still existed after 

burnishing; no cracks or spalling were found.  

Prevéy developed a new burnishing process,  low plasticity burnishing (LPB), to 

induce deep compressive residual stress layers with a low degree of cold work (less than 

3.5%) (Prevéy, 1998). He showed that large compressive residual stresses could be 

induced on nickel-based superalloy IN718 by LPB. The thermal stability of compressive 
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residual stresses induced by LPB was also significantly improved over shot peening at 

600 °C (Prevéy, 2000). 

Zhang and Lindemann conducted roller burnishing on AZ80 Mg alloy and 

reported that more compressive residual stresses were achieved than in shot peening. 

(Zhang and Lindemann, 2005a). In addition to residual stress changes, it was found that a 

severely deformed layer about 700 µm was created near the burnished surface and the 

hardness of this layer was increased from 90 HV to 150 HV (Figure 2.7).  Significant 

grain refinement occurred in the top 200 µm and the microstructures were not discernable 

using optical microscopy and scanning electron microscopy. At the depth of 200–700 µm 

from surface, a high density deformation twinning was observed. 
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2.3 Application of Magnesium Alloys in Biomedical Applications 

In the U.S. alone, physician visits for orthopedic surgery reached 48,066,000 in 

2006 (Cherry et al., 2008). Nine out of the twenty five most common orthopedic 

surgeries involve repair of bone fractures (Garrett et al., 2006). Internal bone fixation 

implants, such as bone plates and screws, are widely used to provide temporary fixation 

(a) 

(b) 

Figure 2.7: Light optical microscopy of roller burnished AZ80 Mg alloy with a roller 

force of 200 N: (a) overview; (b) detail of framed region (Zhang and Lindemann, 2005a). 
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for fractured bones. An example of fixation implants is shown in Figure 2.8 (a). Stainless 

steels and titanium alloys are two major biomaterials currently used for these implants. 

However, their excessive mechanical properties compared to bones may lead to stress 

shielding. The corrosion and fatigue of these materials will inevitably generate metallic 

ions and particles that may activate adverse tissue reactions. For example, after 6 years‘ 

service, a 316L stainless steel spinal fixation device was removed from the patient and 

large number of discolored areas were found on the steel plate as shown in Figure 2.8 (a) 

(Mohanty et al., 2003). Scanning electron microscopy (SEM) picture in Figure 2.8 (b) 

shows that large corrosion pits were formed in the discolored areas, which contributed to 

the chronic inflammatory response around the component parts. It was also reported that 

all the screws were loose in the screw holes and were covered by slimy granulation 

tissue. To avoid the adverse reactions after bone healing, the fixation implants are 

required to be removed during a subsequent surgery, which adds additional morbidity 

(pain, refracture, etc.) to the patients and increases healthcare cost. 
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While various approaches are being investigated to increase the bio-inertness of 

traditional implant materials, magnesium alloys are emerging as a novel biodegradable 

material in which the relatively fast corrosion phenomenon is used as a unique advantage 

for temporary fixation implants. The potential of magnesium alloys as a biodegradable 

implant material was explored by several researchers in the first half of the twentieth 

century (McBride, 1938; Troitskii and Tsitrin, 1944; Znamenskii, 1945). No systematic 

reaction and only little inflammation were observed in these human trials. A marked 

stimulatory effect for bone healing was reported (McBride, 1938). However, the 

premature failure of magnesium-based implants due to the poor corrosion resistance in 

physiological environments and gas bubbles generated due to the high corrosion rate 

impeded further investigation until recently. As shown in Figure 2.9, the Mg-based 

fixation implants need to hold their mechanical strength for at 12 weeks to allow 

sufficient healing time for the fractured bone, while premature failures of these implants 

Figure 2.8: (a) Components of a 316L stainless steel spinal fixation device after 6 years‘ 

service in human body and (b) SEM picture of the discolored surface of the metal plates 

in (a) showing area of corrosion (Mohanty et al., 2003). 
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often occurred due to high corrosion rates in human body (some at only 3 weeks) (Pietak 

et al., 2006). Although numerous publications on the potential benefits of Mg-based 

biodegradable implants have emerged in the past decade (Witte, 2010), one of the major 

problem to be solved is to improve the corrosion resistance of Mg alloys.  

 

2.4 Effects of Surface Integrity on Functional Performance  

Failure of metallic materials due to wear, corrosion and/or fatigue often starts at 

the surface of manufactured products. The functional performance of components can be 

significantly influenced by the surface integrity induced by the machining/burnishing 

processes. As shown in the previous section, unsatisfactory corrosion resistance is the 

major disadvantage of the current Mg-based biodegradable implants; it also limits the 

application of Mg alloys in automotive industry despite of the fact that desirable weight 

saving can be achieved by using Mg alloys (Luo, 2002). Therefore, the focus of the 

Figure 2.9: Premature failure of the current Mg-based implants and the expected 

behavior of improved Mg-based implants. Compiled from Pietak et al. (2006). 
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literature review in this section is focused on the influence of various surface integrity 

factors on the corrosion performance of Mg alloys. Other functional performance factors, 

such as wear and fatigue life, as well as different materials, were also covered in this 

review. 

2.4.1 Effect of grain size  

Grain size of magnesium alloys has a remarkable influence on their corrosion 

resistance (Wang et al., 2007). Grain refinement from 25.7 μm to 4.5 μm induced by 

equal channel angular pressing (ECAP) led to better corrosion performance for AZ31 Mg 

alloy in simulated body fluid (SBF) (Alvarez-Lopez et al., 2010). It was also reported on 

pure magnesium that grain refinement from 125 μm to 2.6 μm by ECAP enhanced its 

corrosion resistance in 0.1 mol/L NaCl solution (Birbilis et al., 2010b). Figure 2.10 shows 

that a clear relationship between the corrosion current and the grain size exists in pure 

magnesium (Birbilis et al., 2010b) that samller grains lead to reduced corrosion current 

(improved corrosion resistance). The grain boundary of AZ31B Mg alloy was claimed as 

physical corrosion barriers and smaller grain size led to better corrosion resistance in 3.5 

wt. % NaCl solution (Aung and Zhou, 2010). The critical influence of grain size on 

corrosion resistance was also reported on other materials, such as titanium (Balakrishnan 

et al., 2008b), stainless steel (Wang and Li, 2002), etc., and this relationship was claimed 

to be analogous to the classical Hall–Petch relationship which describes the dependence 

of hardness on grain size  (Birbilis et al., 2010a).  
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In addition to corrosion performance, the beneficial effects of grain refinement 

was reported on the fatigue life of AZ31 Mg alloy (Wang et al., 2007) as well as many 

other materials, such as titanium, Al alloys and copper (Mughrabi and Hoppel, 2010). 

Compared with the coarse-grained annealed copper, copper with a nanocrystalline 

surface layer obtained by using surface mechanical attrition treatment (SMAT) exhibited 

remarkably better wear resistance (Zhang et al., 2006)  

2.4.2 Effect of crystallographic orientation  

The changes of crystallographic orientations on the workpiece surfaces after 

machining were not often reported in the literature and most of them focused on 

machining of single crystals (To et al., 2003). The importance of crystallographic 

orientations on corrosion resistance was  reported on both pure Mg  (Liu et al., 2008) and 

Mg alloys (Song et al., 2010b). It was found both experimentally and theoretically that 

the (0001) basal plane of AZ31 Mg alloy is more corrosion resistant than the other planes 

due to its higher atomic coordination and thus lower surface energy (Song et al., 2010b).  

Figure 2.10: Corrosion current as function of grain size in 0.1 mole/L NaCl 

 (Birbilis et al., 2010b) 
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Xin et al. prepared AZ31 Mg samples with different crystallographic orientations 

by cutting the sample at different degrees, 0°, 30°, 60° and 90°, to the rolled sheet as 

shown in Figure 2.11 (a) (Xin et al., 2011). Rolled sheet of Mg alloys was reported 

frequently to have a strong basal texture on the rolled surface (Chang et al., 2003). 

Therefore, the intensity of the basal texture on the Mg samples decreased with the larger 

angles as shown in Figure 2.11 (b).  The hydrogen evolution method (Song et al., 2001) 

was used to evaluate the corrosion resistance of the Mg samples with different 

crystallographic orientations (smaller hydrogen volume, better corrosion resistance). As 

shown in Figure 2.11(c), a clear relationship between the corrosion resistance and the 

crystallographic orientation exists and this agreed with earlier data from the literature  

that the corrosion resistance of Mg alloys increases with increased intensity of basal 

texture. The effects of crystallographic orientations on corrosion resistance were also 

reported to outweigh those of grain size in pure titanium after ECAP (Hoseini et al., 

2009).  
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Figure 2.11: (a) Schematic illustration of sample preparation; (b) inverse pole figure 

maps of 0°, 30°, 60° and 90° Samples and (c) hydrogen evolution rates of the AZ31 Mg 

samples immersed in 3.5 wt.% NaCl (Xin et al., 2011). 

(a) 

(b) 

(c) 

0° 30° 

60° 90° 
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2.4.3 Effect of residual stresses  

The influence of residual stresses on fatigue life of manufactured components was 

frequently reported while the influence on corrosion resistance was less well known until 

recently. The pitting corrosion resistance of AISI 316L stainless steel was improved after 

inducing near-surface compressive residual stresses by sand blasting and wire brushing 

(Ben Rhouma et al., 2001). The high compressive residual stress generated in the 

subsurface via a deep rolling process was also claimed to reduce the corrosion rate of a 

biphasic magnesium-calcium alloy by a factor of approximately 100 (Denkena and 

Lucas, 2007). The corrosion performance of 7475-T7351 aluminum alloy was 

significantly improved by inducing large compressive residual stresses near the surface 

through low plasticity burnishing (LPB) (Scheel et al., 2010). It was also reported that 

large residual stresses would reduce the corrosion resistance of magnesium alloys, 

although the grain size of the alloys became smaller (Ralston and Birbilis, 2010). The 

influence of different machining and grinding procedures on stress corrosion cracking of 

AISI 304 stainless steel was recently investigated, and high tensile stresses induced by 

grinding were also found to cause more severe pitting corrosion (Turnbull et al., 2011). 

In addition to affecting corrosion resistance, residual stress has a critical influence 

on fatigue life. Leverant et al. studied the fatigue life of machined Ti-6AI-4V and showed 

that the surface residual stresses played a dominant role in the determination of fatigue 

microcrack growth rates and consequently the total fatigue life (Leverant et al., 1979). 

Matsumoto et al. conducted the rolling contact fatigue tests of AISI 52100 steel after hard 

turning and grinding and also measured the residual stresses after processing (Matsumoto 

et al., 1999). They found that longer fatigue life was achieved by hard turning than 
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grinding which was attributed to the larger penetration depth of compressive residual 

stresses by turning. The significantly enhanced fatigue performance was also reported on 

various materials processed by LPB for critical applications, including Ti-6Al-4V 

(Hornbach et al., 2006) used in femoral hip stems and stainless steels Alloy 450 and 17-

4PH used in steam turbines (Prevéy et al., 2010). These improvements were all attributed 

to the large compressive residual stresses induced by LPB. 

2.5  Dynamic Recystallization and Grain Refinement   

 In addition to experimental studies, one objective of the present study is to 

develop a predictive model using FEM to investigate the influence of various cutting 

conditions on the surface integrity of the machined components. As shown in the 

previous sections, microstructural changes, especially grain size, have a remarkable 

influence on the corrosion resistance of Mg alloys. Therefore, the major objective of the 

FEM model is to predict the changes of surface grain size induced by machining. In order 

to develop the model, it is first necessary to understand the mechanism of grain 

refinement induced by machining. 

 Machining is a severe plastic deformation (SPD) process involving large strains 

and high strain-rates. Meyers et al. studied the deformation of various materials at high 

strain-rates (>10
4
 s

-1
) including copper, titanium and tantalum (Meyers et al., 1997). They 

found that grain refinement occurred in the shear band and the mechanism was rotational 

dynamic recrystallization (DRX). The mechanism of grain refinement in an AZ91 Mg 

alloy induced by a SPD process, SMAT, was studied by Sun et al. (Sun et al., 2007). As 

shown in Figure 2.12, twinning was claimed as the first step of grain refinement. Then 

dislocation movements on both basal plane and non-basal plane slip systems lead to 
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dislocation arrays which become the subgrain boundaries with high stored energy. The 

high strain energy stored in the sample significantly decreases the recrystallization 

temperature. At the same time, the severe plastic deformation at high strain-rate also rises 

the temperature. When the temperature is higher than the recrystallization temperature, 

DRX occurs, which leads to the formation of nanocrystallized grains.  It is noted that the 

recrystallization temperature changes with the amount of plastic strain induced in the 

specimen.  There are no phases changes in the AZ31B Mg alloy used for the current study 

and this simplifies the simulation of the machining process. 

 

  The critical conditions for the onset of DRX in AZ31 Mg alloy in standard 

material property testing was investigated by several researchers (Wang et al., 2002; 

Huang et al., 2007a). For DRX to occur, a critical strain, Ɛ cr, needs to be reached. This 

critical value was found to be dependent on the strain-rate and temperature (Wang et al., 

2002) , which can be calculated using the Zener-Hollomon parameter, Z, as: 

Figure 2.12: Schematic illustration of the grain refinement process of AZ91D alloy 

during SMAT (Sun et al., 2007). 
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          (2.1) 

Z is defined as: 

             
exp( )

Q
Z
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    (2.2)
 

where  is the strain-rate; Q is the activation energy; R is the gas constant and T 

is the temperature. 

An empirical formula was used to predict the size of the recrystallized grains in 

AZ31 Mg alloy after FSP and was proved to be consistent with the experimental results 

(Chang, 2007). The formula is: 

             

3 1/310rec

init

d
Z

d
                                          (2.3)  

where drec is the recrystallized grain size; dinit is the initial grain size and Z is the 

Zener-Hollomon parameter.  

Reduced temperature during deformation leads to larger Z value as calculated by 

Equation (2.2), which will reduce the grain size after DRX according to Equation (2.3). 

To obtain ultrafine/nano level grain size, liquid nitrogen was used by several researchers 

to cool the processing zone. Chang et al. designed a fixture with two internal cooling 

channels during FSP of AZ31 Mg alloy and liquid nitrogen was used as the coolant 

(Chang et al., 2007). The authors claimed that the finest microstructure obtained by 

friction stir process (FSP), which was about 100-300 nm, was achieved. A Cu rod, which 

was cooled to -173 K by liquid nitrogen before processing, was subject to a surface 

mechanical grinding treatment (SMGT) and nanocrystalline grains smaller than 50 nm 

was achieved (Li et al., 2008). 
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2.6  Summary  

The literature review presented in this chapter clearly shows that surface integrity 

can be remarkably changed by machining and burnishing. These changes will have a 

critical influence on the functional performance of machined and burnished components. 

Another important topic reviewed is the recent development of numerical methods in 

studying surface integrity changes, such as residual stresses, white layer formation, etc. 

Although numerous efforts have been made to understand the changes of surface integrity 

induced by machining/burnishing, most of them focused on avoiding the formation of 

undesirable surface integrity, such as tensile residual stresses, white layer and other 

surface defects. The possibility of using machining/burnishing to improve functional 

performance of manufactured products through inducing desirable surface integrity has 

not been adequately investigated. The experimental and numerical results presented in the 

following chapters will demonstrate the potential of using traditional manufacturing 

processes, machining and burnishing, to improve the corrosion resistance of AZ31B Mg 

alloy through inducing desirable surface integrity factors including nano/ultrafine grain 

structure, compressive residual stresses, strong basal texture, etc. Surface integrity 

resulting from different machining/burnishing conditions is presented as well as corrosion 

performance testing data on selected machined/burnished samples. A user subroutine is 

also developed and implemented in a commercial FEM software to predict the grain size 

changes induced by machining. 
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CHAPTER 3: EXPERIMENTAL STUDY ON SURFACE INTEGRITY IN 

MACHINING OF AZ31B MAGNESIUM ALLOY 

 

3.1 Introduction 

This chapter presents the results of an experimental investigation of the effect of 

machining conditions on the surface integrity of AZ31B Mg alloy. The surface integrity 

factors investigated include microstructures, crystallographic orientations and residual 

stresses, all of which have been proved to influence the corrosion performance of Mg 

alloys. In addition, surface roughness, hardness and chip microstructures/morphology 

were studied. The influence of cryogenic cooling on surface integrity is one of the most 

important topics investigated in this chapter. Cutting edge radius of the tools, cutting 

speed and feed rate were also found to have remarkable influences on the surface 

integrity of machined AZ31B alloy.  

The results show that cryogenic machining with a large edge radius tool leads to 

significantly enhanced surface integrity in terms of: a) significant grain refinement to 

nanocrystalline level; b) large intensity of (0002) basal plane on the machined surface; c) 

10 times larger compressive areas in the residual stress profiles; and d) improved surface 

finish. These changes should notably improve the functional performance of machined 

AZ31B Mg components. Corrosion test results of these machined samples will be 

presented in Chapter 5 and detailed discussion provided. The experimental results 

presented here serve as a basis for the development of predictive model for machining 

AZ31B Mg alloy which will be presented in Chapter 6.  
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3.2 Experiment Setup 

  The work material studied was the commercial AZ31B-O Mg alloy. The nominal 

composition by weight percentage (wt. %) is shown in Table 3.1. The work material was 

received in the form of a 3.22 mm thick sheet. Disc specimens having 130 mm diameter 

were cut from the sheet by vertical milling in the machine shop and subsequently 

subjected to machining.  

Table 3.1: Nominal composition of AZ31B-O magnesium alloy (wt. %) 

Al Zn Mn Mg 

2.5 - 3.5 0.7 - 1.3 0.2 – 1.0 balance 

 

As shown in Figure 3.1 (a), a Mazak Quick Turn-10 Turning Center, equipped 

with an Air Products ICEFLY
® 

liquid nitrogen delivery system, was used to conduct 

orthogonal turning of the AZ31B Mg discs. As shown in Figure 3.1 (b), liquid nitrogen 

was sprayed to the machined surface from the clearance side of the cutting tool at a flow 

rate of 0.6 kg/min during cryogenic machining (More details on the cryogenic cooling 

setup are provided in Section 3.4). The cutting tool material is uncoated carbide. The 

geometry of the grooved cutting tool is TNMG 432. The parameters of the grooves are: 

groove width, 1.84 mm; land length, 0.135 mm; groove radius, 1.068 mm; backwall 

height, 0.042 mm. A KISTLER 3-Component Tool Dynamometer was used to monitor 

the cutting and radial forces during machining. A FLIR Systems ThermaCam PM695 

infrared camera was used to measure the whole field temperature of the AZ31B Mg discs 

during machining. The accuracy of the camera was ± 2 °C according to the 

manufacturer‘s manual. As shown in Figure 3.1 (b), the infrared camera was mounted on 
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the machine and did not move during cutting. The distance between the workpiece and 

the camera was 0.5 m.  

 

Figure 3.1: (a) Mazak Quick Turn-10 Turning Center equipped with a liquid nitrogen 

delivery system; (b) orthogonal turning of AZ31B Mg disc with application of liquid 

nitrogen and infrared camera location. 

3.3 Characterization of Surface Integrity 

Surface integrity includes many factors covering various aspects of the surface 

and sub-surface conditions resulting from manufacturing processes (Field et al., 1972). 

(a) 

(b) 
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The factors studied in this chapter were selected based on their importance relating to the 

corrosion performance of magnesium alloys. As reviewed in Chapter 2, the most 

important factors include microstructures, crystallographic orientations and residual 

stresses. In addition, other factors, such as surface roughness and hardness, were also 

investigated since they may also influence the corrosion performance. The studied 

surface integrity factors and their characterization methods are summarized below.  

3.3.1 Microstructure 

As shown in Figure 3.2, metallurgical samples were cut from the machined discs. 

After cold mounting, grinding and polishing, acetic picric solution was used as the 

etchant to reveal the grain structure. Optical microscopy and Scanning electron 

microscopy (SEM) were used to observe the microstructure of the AZ31B Mg discs as 

well as the machined chips. 

 

Figure 3.2: Sectioning of the metallurgical sample and view for microstructural analysis 
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3.3.2 Crystallographic orientations 

The crystallographic orientations on the circumferential surfaces before and after 

machining were analyzed using a Bruker D8 Discover X-ray Diffractometer. The 

radiation used was Cu-Kα at 20 kV and 5 mA. 

3.3.3 Residual stresses 

The residual stress state in machined AZ31B Mg samples was analyzed by X-ray 

diffraction technique using the sin
2
ψ method (Noyan and Cohen, 1987). The experiments 

were conducted at the X-ray Diffraction Center for Materials Research (CEMDRX), 

University of Coimbra, Portugal. The equipment used was iXRD from PROTO®. Figure 

3.3 shows the experimental setup for residual stress measurements.  
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Figure 3.3: Experiment setup at the University of Coimbra (Portugal) for residual stress 

measurements on machined AZ31B Mg discs using iXRD from PROTO®  

The complete disc was used without any sectioning to avoid possible changes of 

residual stresses during sample preparation. The parameters used in the X-ray analysis 

are shown in Table 3.2. To determine the in-depth residual stress profiles, successive 

layers of material were removed by electropolishing to avoid the modification of 

machining-induced stresses. The solution used for electropolishing of AZ31B Mg alloy is 

shown in Table 3.3. For each measurement, a tape was used to expose only a square 

window (2 mm × 5 mm) on the machined surface to make sure the same location was 

measured each time. It is noted that in the present study, the total penetration depth of the 

X-ray beam for Mg is 25 µm. Therefore, the first data point, which was measured on the 

surface, started at 25 µm from the machined surface. The peak breadth data was also 
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collected from the XRD measurement and used to compare the degree of work hardening 

under different machining conditions. 

Table 3.2: X-ray diffraction parameters for residual stress measurement 

Radiation Mn-Kα 

Voltage and current 20kV, 4 mA 

Collimator diameter [mm] 5  

Bragg angle 2θ [°] 
151.06  

(hkl) = (203) 

X-ray elastic modulus [MPa
-1

] 
S2 = 29.32 × 10

-6
,  

S1 = -6.59× 10
-6

 

Number of ψ angles 30 

 

Table 3.3: Solution used for electropolishing of AZ31B Mg alloy 

Name Quantity 

Sodium thiocyanate 160 g 

Butyl cellosovle 80 ml 

Ethanol 800 ml 

Distilled water 20 ml 

 

3.3.4 Surface roughness 

The surface roughness before and after machining was measured using Zygo New 

View 5300 measurement system which was based on white light interferometry. 
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3.3.5 Hardness 

 Sample segments with the same shape as shown in Figure 3.2 were cut from the 

machined discs, cold mounted, ground and polished.  Microindentation tests were 

performed using a Vickers indenter on a CSM Micro-Combi Tester. The load used was 

100 mN and the duration time was 10 s. 

3.4 Effects of Edge Radius and Cooling Methods on Surface Integrity 

The influence of cutting edge radius on surface integrity, especially residual 

stresses, is frequently reported in the literature. A larger edge radius was found to induce 

more compressive residual stresses in the surface layer. The application of liquid nitrogen 

during machining was reported to result in larger compressive residual stresses (Zurecki 

et al., 2003) and also reduce the white layer thickness of AISI 52100 steel when compared 

to dry machining (Umbrello et al., 2012) using the same cutting parameters.  More 

significant grain refinement was achieved on AZ31B Mg alloy after friction stir 

processing with the help of liquid nitrogen cooling (Huang et al., 2007b). Therefore, the 

focus of this section was to investigate the influence of cryogenic cooling and cutting 

edge radius on surface integrity of the machined AZ31B Mg alloy. The experiment matrix 

is shown in Table 3.4. 
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Table 3.4: Experiment matrix for machining under different edge radii and 

cooling methods  

No. Tool Edge Radius, rn 

[μm] 
Cooling Method 

Cutting Speed, V  

[m/min] 

Feed Rate, f 

[mm/rev] 

1 30 Dry 100 0.1 

2 70 Dry 100 0.1 

3 30 Cryogenic 100 0.1 

4 70 Cryogenic 100 0.1 

  

The cutting tool edge radii were ground to two levels, 30 μm and 70 μm, by a 

grinding company. The actual values were measured by Zygo New View 5300 

measurement system before machining to make sure the edge used was within the range. 

Typical oblique plots measured by Zygo for the tools with different edge radii are shown 

in Figure 3.4. They show the 3D representations of the cutting edge and provide a direct 

comparison of the differences in edge radius. 
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Figure 3.4: Typical oblique plots for edge radius measurement using ZYGO New View 

5300: (a) 30 μm; (b) 70 μm. 

 For dry machining, no coolant or lubricant was used; for cryogenic machining, 

liquid nitrogen was sprayed via a nozzle from the clearance side of the tool to the 

machined surface as shown in Figure 3.5.  

(a) 

(b) 
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Figure 3.5: Experimental setup of cryogenic machining: (a) photo (tool approaching the 

workpiece) and (b) schematic diagram. 

3.4.1 Cutting forces 

The cutting and thrust force components measured by the dynamometer are 

shown in Figure 3.6. The application of liquid nitrogen did not have a large influence on 

either the cutting or thrust force. The maximum difference in cutting force between dry 

and cryogenic machining was only 3%, when tools with 70 µm cutting edge radius were 

used and cryogenic machining led to slightly smaller forces. This may be due to the fact 

that the liquid nitrogen was sprayed to the machined surface from the clearance side of 
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the cutting tool. It has little influence on the temperature of the primary and secondary 

deformation zones. Compared with data obtained under dry machining, the thrust force 

for cryogenic machining with 30 µm and 70 µm cutting edge radii was increased 12% 

and 7%, respectively. The increase is due to the effective cooling from the liquid nitrogen 

jet which enhances the mechanical properties of the material.    

The influence of edge radius on thrust forces for both dry and cryogenic 

conditions was significant. There were 60% and 53% increases respectively in the thrust 

force under dry and cryogenic conditions when the cutting edge radius was increased 

from 30 µm to 70 µm.  

The increase in the cutting forces was much smaller than that for the thrust force, 

the largest increase which was 10% (under dry conditions). Similar trends in the forces 

were observed by Albrecht (Albrecht, 1960). The larger force especially in the thrust 

direction were attributed to the increased ploughing effects caused by larger cutting edge 

radius. The increased ploughing effect should be desirable for the occurrence of strain-

induced grain refinement in Mg alloy (Shi et al., 2007)  since greater severe plastic 

deformation will be induced on the machined surface and sub-surface. 
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3.4.2 Calibration of infrared camera and temperature analysis 

The purpose of the temperature measurement using infrared camera was to 

measure the temperature of the machined surface. The emissivity of the material is a 

critical parameter and will influence the accuracy of the measurement temperatures. It 

was reported that linear relationships between the temperature measured by the infrared 

camera and the one measured by a thermal couple (the actual temperature) on AZ31 Mg 

alloy could be found when the emissivity was set to 0.18 (Liu et al., 2005; Liang and 

Yuan, 2008). In this study, the emissivity was set to 0.18. A hotplate was used to heat up 

the AZ31B Mg work material from room temperature up to 250 °C. A thermocouple and 

the infrared camera were used to measure the temperature of the AZ31B Mg disc at the 

same time. As shown in Figure 3.7, a linear relationship was found between the 

temperatures measured by infrared camera and thermocouple as: 

                                               T = 1.022TIR – 23.36         (3.1) 

Figure 3.6: Force measurement results under different machining conditions (V = 100 

m/min, f = 0.1 mm/rev). 
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where T is the temperature measured by thermocouple (actual temperature) and 

TIR is the temperature measured by infrared camera. Equation (3.1) was used to calculate 

the actual temperature of the machined surface using the data from infrared camera.  

 

 

Figure 3.8: Example of temperature measurement using the infrared camera (dry 

machining, rn = 30 µm, V = 100 m/min, f = 0.1 mm/rev). 

 

Figure 3.7: Relationship between temperatures measured by infrared camera and 

thermocouple. 
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Figure 3.8 shows a sample measurement of the temperature on the machined 

surface. The maximum temperature measured within the square box was given by the 

software and was subsequently used to calculate the actual temperature using Equation 

(3.1). Figure 3.9 shows the maximum temperature on the machined surface under 

different machining conditions. For dry machining with 30 µm cutting edge radius, the 

maximum temperature measured was 125 °C. This was in good agreement with the 

results measured by Kurihara et al. (Kurihara et al., 1981) who performed bar turning of 

the same material. The depth of cut used by the authors was 3 mm and the feed rate was 

0.32 mm/rev, which were more aggressive than the cutting conditions used in this study. 

As expected, the maximum temperature was higher in their work than the one observed 

in this study (150 °C vs. 125 °C). 

A significant reduction on the temperature of the machined surface was evident 

when liquid nitrogen was used. With the same cutting edge radius of 30 µm, the 

temperature dropped about 60% from 125 °C for dry machining to 52 °C under cryogenic 

condition. Although few researchers have investigated the influence of cryogenic cooling 

on the temperature of the machined surface, it was shown that the tool-chip interface 

temperature was reduced from 880 °C to 440 °C when liquid nitrogen was sprayed to the 

machined surface from the clearance side of the tool during turning of  Ti-6Al-4V (Hong 

and Ding, 2001). This suggested that more reduction in temperature of the machined 

surface could be achieved and this agreed with the findings of this study.  
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 Under the same cryogenic condition, the temperature of the machined surface was 

increased from 52 °C to 71 °C when the cutting edge radius was changed from 30 µm to 

70 µm. As shown in Figure 3.6, there was a 53% increase in thrust force, which resulted 

in more severe plastic deformation on the machined surface as well as larger friction, and 

this led to increased heat generation. The increase of workpiece temperature with larger 

cutting edge radius was also reported by Nasr et al. in orthogonal cutting of  AISI 316L 

steel (Nasr et al., 2007). 

3.4.3 Microstructural analysis 

The microstructure near the surface before machining is shown in Figure 3.10. 

The grain boundaries were clearly visible near the surface, and there were some 

deformation twins in the region presumably resulting from the vertical milling process 

used to cut the disc specimens from the sheet.  

Figure 3.9: Maximum temperature on the machined surface under different machining 

conditions (V = 100 m/min, f = 0.1 mm/rev). 
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Figure 3.10: Microstructure near the surface before machining experiments. 

Figure 3.11 shows the microstructures of the machined surface and chips created 

using different conditions. The microstructure of the machined surface using a 30 µm 

edge radius tool under dry conditions is similar to the initial microstructure shown in 

Figure 3.10, and the grain boundaries are still visible. However, using the same edge 

radius tool under cryogenic conditions, a ―featureless‖ surface layer in which grain 

boundaries were no longer visible at this magnification (Figure 3.11 (b)) was formed; the 

layer was about 8 μm thick. The thickness of this layer increased to 15 µm with a 70 μm 

edge radius tool under cryogenic conditions (Figure 3.11 (d))  With the same edge radius 

of 70 μm, a featureless layer with a darker appearance about 20 μm formed under dry 

conditions.  It was reported that the thickness of the tensile residual stress layers became 

greater with increased number of cutting passes (more rotations of the discs) (Outeiro et 

al., 2006b). The influence of sequential cuts on the machined surface should be more 

notable with large edge radius tools since the stagnation point will move upward and 

more material will flow to the machined surface (Yen et al., 2004). Therefore, machining 

using large edge radius tools will induce effects similar to burnishing and will change the 

microstructures of the machined surface to greater depths. The corresponding chip 
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microstructures in Figure 3.11 show that serrated chips were formed under all conditions. 

Grain boundaries are clearly visible in the interior of the chips and the grain structures do 

not change much, especially in Figure 3.11 (b).  Similar featureless layers were found in 

the machined chips at the tool-chip interfaces. This similarity between the chip and the 

machined surface agrees well with a recent study where it was proved experimentally that 

the two regions (chip and the machined surface) experienced similar deformation during 

machining (Guo et al., 2011). The thickness of the featureless layer in the chips was 

reduced with larger edge radius tools, and could also be caused by the upward movement 

of the stagnation point (Yen et al., 2004). In addition to the microstructural changes at the 

tool-chip interface, notable differences occurred near the right edge of the saw-tooth 

which is caused by the fact that this portion of the material came from the machined 

surface of the previous cut. 
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Figure 3.11: Microstructure of the machined surface and chips after machining under 

different conditons: (a) dry machining, rn = 30 μm; (b) cryogenic machining, rn = 30 

μm; (c) dry machining, rn = 70 μm; and (d) cryogenic machining, rn = 70 μm.  

(V = 100 m/min, f = 0.1 mm/rev). 
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The appearance of the featureless layers formed under cryogenic machining 

(Figure 3.11 (b) and (d)) were similar to the ―white layers‖ in the machined surfaces of 

AISI 52100 steel (Ramesh et al., 2005) and nickel-based superalloy IN-100 (Wusatowska-

Sarnek et al., 2011) where significant grain refinement to nanocrystalline level was found 

due to dynamic recrystallization (DRX). To find the possible structures and properties of 

the featureless layer on machined surface of AZ31B Mg alloy, the samples machined with 

70 µm edge radius tools under cryogenic condition (Figure 3.11 (d)) were further studied. 

The SEM pictures of the machined surface and chip were shown in Figure 3.12. Although 

the grain boundaries are clearly visible below the featureless layer (Figure 3.12 (a)), no 

features can be found within the layer at this magnification. In Figure 3.12 (b), the 

material on the left of the line was almost strain-free and that within the shear plane 

seems to have undergone severe plastic deformation. The grain structures on the right of 

the line were no longer discernable. Nano/ultrafined grain structures have been reported 

frequently on Mg alloys through strain-induced DRX in various processes, such as 

SMAT (Shi et al., 2007) and cryogenic burnishing (Pu et al., 2011). The disappearance of 

grain boundaries in Figure 3.12 (b) after the material had passed the shear plane are likely 

be caused by the formation of nano/ultrafined grains through DRX, whose structures 

could not be resolved under this magnification. This claim was also supported by the 

finding that nanocrystalline grain structures of about 20 nm in size formed in the 

adiabatic shear band formed when machining 30CrNi3MoV steel (Duan and Wang, 

2005). The mechanism for the dramatic decrease of grain size was rotational DRX which 

was previously found by Meyers and Pak (Meyers et al., 2001). 
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Figure 3.12: SEM pictures of (a) the machined surface and (b) chip using a 70 μm edge 

radius tool under cryogenic condition (V = 100 m/min, f = 0.1 mm/rev). 

 

An empirical formula (Watanabe et al., 2001) was used to predict the size of the 

recrystallized grains in AZ31 Mg alloy after FSP with the application of liquid nitrogen, 

and this was proved to be consistent with the experimental results (Chang, 2007). The 

formula is: 

             

3 1/310rec

init

d
Z

d
                                        (3.2)  

25 µm 
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10 µm 

Shear plane 
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where drec is the recrystallized grain size; dinit is the initial grain size; Z is the 

Zener-Hollomon parameter defined as: 

exp( )
Q

Z
RT                                                                     

    (3.3)
 

where  is the strain-rate; Q is the activation energy; R is the gas constant and T 

is the temperature. The temperature during FSP under cryogenic conditions was 200 ºC 

and the calculated grain size after DRX was 250 nm (Chang, 2007). During cryogenic 

machining with a 70 µm edge radius tool, the temperature is only 71 ºC and the strain-

rate is much higher than FSP, which should result in significantly smaller grain size less 

than 250 nm that cannot be recognized by the optical microscope and SEM used in this 

study. 

Phase imaging tapping-mode AFM was reported to successfully provide grain 

boundary details (Pang et al., 2002; Alexander, 2007) in the nano-scale materials. The 

accuracy of the grain size measurements was claimed to be comparable to TEM 

measurement with ±10% (Pang et al., 2002). In tapping-mode AFM, an oscillating 

cantilever scans the sample surface and tip-to-sample height is kept constant through a 

feedback loop. Instead of height difference, it measures the contrast in the phase angle 

between the driving and response frequencies, which is sensitive to material properties 

including composition, viscoelasticity and surface adhesion (Bharat and Jun, 2003). 

Figure 3.13 shows the AFM tapping mode phase image of the featureless layer at about 2 

µm from the surface obtained after machining using a 70 µm edge radius tool cryogenic 

condition. Although no etching was used, some grain-like features with an average size 

of 31 nm are clearly shown in Figure 3.13. This result agrees with the findings that 

nanocrystallined grains were formed due to DRX in the ―white layer‖ of AISI 52100 steel 
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(Ramesh et al., 2005) and IN100 nickel-based superalloy (Wusatowska-Sarnek et al., 

2011), as well as on the machined surfaces of copper (Guo et al., 2011).  

 

Figure 3.13: AFM tapping mode phase image of the featureless layer at about 2 

µm from the surface obtained after machining using a 70 µm edge radius tool and 

cryogenic condition (V = 100 m/min, f = 0.1 mm/rev). 

The featureless layer produced by dry machining using a 70 µm edge radius tool 

(Figure 3.11(c)) has a darker appearance than those under cryogenic conditions. Figure 

3.14 shows the SEM pictures of the machined surface under this condition at different 

magnifications. Compared with the SEM picture of the machined surface after cryogenic 

machining using the same edge radius tools (Figure 3.12 (a)) under the same 

magnification, a clear transition from the initial microstructure to the featureless layer on 

the top was shown in Figure 3.14 (a), while the changes were abrupt under cryogenic 

conditions. Severe shear deformation started at about 20 µm below the machined surface. 

The grains were first elongated and then the grain boundaries disappeared near the 

surface.   This process was very clear at a higher magnification as shown in Figure 3.14 

(b) where grain elongation was evident from 10 to 20 µm below the machined. No grain 

boundaries were visible in the top 10 µm layer. It is expected that significant grain 

refinement occurs in this layer due to the large plastic strains imposed by machining with 

(a
) 
 

(b
) 
 

100 nm 
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a large edge radius tool. The minimum grain size achieved should be larger than that after 

cryogenic machining due to higher temperature according to Equation (3.2), which will 

be confirmed in future experiments. Using the same edge radius tool, the influence of dry 

machining on microstructure extended to greater depth than cryogenic machining. 

Similar differences in microstructures near the machined surface between dry and 

cryogenic conditions were reported recently on nickel-based superalloy Inconel 718 

(Kenda et al., 2011).  
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3.4.4 Crystallographic orientation 

 It was found recently that the corrosion resistance of AZ31B Mg alloy was 

enhanced with stronger intensity of (0002) crystallographic plane (Song et al., 2010b; Xin 

et al., 2011). Figure 3.15 shows the evolution of crystallographic orientations on the 

machined surface before and after cryogenic machining using a 70 µm edge radius tool 

10 µm 

10 µm 

(a) 

(b) 

Figure 3.14: SEM pictures of the machined surface using a 70 μm edge radius tool 

under cryogenic condition: (a) ×2000 and (b) ×5000 magnification. 
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conditions. The relative height of the peak corresponding to the basal plane (0002) 

increased significantly after cryogenic machining. The relative intensity of the basal 

peak, which was calculated by dividing its absolute intensity by the absolute intensity of 

the most intense peak , was used to quantitatively evaluate the texture changes 

using different machining conditions. As shown in Figure 3.15 (b), machining with larger 

edge radius tools led to stronger intensity of the basal peak under both dry and cryogenic 

conditions. The formation of strong basal texture was reported on Mg alloys after 

cryogenic burnishing (Pu et al., 2011). Machining with a large edge radius tool induces 

more ploughing effects on the workpiece surface and is closer to the burnishing process, 

which leads to the higher intensity of the basal planes appearing on the machined surface.  

 With the edge radius of 30 µm, dry machining led to larger increase in the basal 

peak intensity than did in cryogenic machining. With higher temperature, the local 

adhesion of the material and the flank side of the rounded cutting edge could be 

increased, which led to more severe shear deformation of the material near the 

workpiece. This was supported by a recent finding that less shear deformation occurred 

on the machined surface under cryogenic cooling conditions compared with dry 

machining (Kenda et al., 2011). However, this trend was reversed when the edge radius 

was increased to 70 µm where cryogenic machining led to the stronger basal texture. 

More deformation tends to occur at the basal plane when the temperature is near room 

temperature since the critical resolved shear stress (CRSS) for basal plane slip in Mg is 

the smallest at room temperature (Reedhill and Robertson, 1957). Machining using 70 

µm edge radius tools induced more plastic deformation on the machined surface than 

machining using 30 µm edge radius tools, and dry machining using 70 µm edge radius 
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tools generated much higher surface temperature than 125 ºC (dry machining with 30 µm 

edge radius as shown in Figure 3.9). The higher temperature activated more non-basal 

slip systems and led to weaker basal texture compared with cryogenic machining.   
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Figure 3.15: (a) Evolution of crystallographic orientations and (b) relative intensity of 

basal peak (0002) on the machined surface before and after machining under different 

conditions as shown in Table 3.4 (V =100 m/min, f = 0.1 mm/rev). 
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3.4.5 Residual stresses 

Figure 3.16 shows the measured residual stresses in the circumferential and axial 

directions after machining using cutting tools with two different edge radii under both dry 

and cryogenic conditions. As shown in Figure 3.16, the initial residual stresses in both 

directions were close to zero when the distance from the surface reached about 70 μm. 

With a 30 μm edge radius tool, compressive residual stresses were induced under both 

dry and cryogenic conditions up to 140 μm below the machined surface in the 

circumferential direction. The peak compressive stress for dry machining was about -40 

MPa at a depth of 30 μm below the surface. These two parameters were almost the same 

when cryogenic cooling was used. Much larger differences were found in the axial 

direction between dry and cryogenic machining with the same edge radius of 30 μm. 

Tensile residual stress of 37 MPa was generated in the axial direction while cryogenic 

machining led to compressive residual stress of -39 MPa in that direction.  

When the cutting edge radius was increased to 70 μm, the penetration depth of the 

compressive residual stresses were extended to about 200 μm in the circumferential 

direction under cryogenic conditions compared with 150 μm under dry conditions, a 54% 

increase. The residual stresses in the axial direction were also more compressive and 

extended to greater depths during cryogenic machining than those created during dry 

machining. For dry machining, the peak compressive stresses in both directions were 

reduced by about 16% when the cutting edge radius was increased from 30 μm to 70 μm 

which was due to the increased temperature resulting from more severe ploughing 

effects. For cryogenic machining, the peak compressive residual stress was reduced 

slightly in the circumferential direction and increased by 12% in the axial direction.  
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The compressive area which is the area defined by the compressive portion of the 

residual stress profile and the depth axis was claimed to have a notable influence on the 

fatigue life (Hashimoto et al., 2009). Figure 3.17 shows the compressive areas calculated 

by the integration of the residual stress profiles with respect to depth below the machined 

surface up to 200 µm before and after machining under different conditions.  Compared 
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Figure 3.16: Residual stresses after machining using cutting tools with different edge 

radii and cooling conditions in (a) circumferential and (b) axial directions  

(V =100 m/min, f = 0.1 mm/rev). 
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with the initial condition, cryogenic machining with 70 µm edge radius tools increased 

the compressive areas in both directions by a factor of about 10. With 30 µm edge radius 

tools, the application of liquid nitrogen led to a smaller compressive area compared with 

the one created dry machining. The trend was similar to the effect observed on 

crystallographic orientations and could also be caused by less severe plastic deformation 

on the machined surface under cryogenic conditions. An opposite trend was observed 

when the cutting edge radius was increased to 70 µm where cryogenic machining led to 

72% and 97% increases in compressive areas, respectively in the circumferential and 

axial directions, compared with dry machining.  

For dry machining, an increased cutting edge radius led to a reduction in 

compressive areas for both directions. On the contrary, large increases in compressive 

areas were obtained by cryogenic machining. The results suggest that more significant 

heat generation occurs when the large edge radius tools are used as shown in Figure 3.9 

and this tends to induce more tensile residual stresses, if an inadequate cooling method 

was used.  It also reveals a great opportunity to use cryogenic cooling combined with 

large edge radius tools to induce large and deep compressive residual stresses on the 

machined surface, which should enhance the functional performance of the components 

such as fatigue life and wear/corrosion resistance.  
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3.4.6 Surface roughness 

Most of the SPD processes used for grain refinement, such as SMAT (Tao et al., 

2002) and surface nanocrystallization and hardening (SNH) (Villegas et al., 2005), are 

based on repetitive impacts of balls with the workpiece, and this frequently leads to an 

unsatisfactory surface finish that may impair the performance. Dramatic increase of 

surface roughness from 0.41 µm of the as-received material to 5.5 µm was reported after 

SNH of nickel-based Hastelloy C-2000. The surface roughness (Ra) before and after 

machining under different conditions is shown in Figure 3.18. All used machining and 

cooling conditions improve the surface finish, which is one of the advantages over other 

SPD processes since large surface roughness was found to decrease the corrosion 

resistance of AZ31B Mg alloy (Song and Xu, 2010). The application of liquid nitrogen 

cooling led to about 20% decrease in surface roughness for both 30 and 70 µm edge 

radius tools. Strong adhesive effects between the cutting tool and magnesium alloys were 

reported and the consequent formation of flank build-up was found to be more severe at 

higher temperature in dry machining of AZ91 Mg alloy (Tönshoff and Winkler, 1997).  

Figure 3.17: Compressive areas of the residual stress profiles before and after 

machining under different conditions (V =100 m/min, f = 0.1 mm/rev). 

. 
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Therefore, the better surface finish in cryogenic machining is attributed to the reduced 

temperature through effective cooling using the liquid nitrogen as shown in Figure 3.9.  

The beneficial effects of cryogenic machining on surface roughness was also reported on 

AISI 4037 steel (Dhar and Kamruzzaman, 2007). For the same cooling conditions, 

machining using large edge radius tools led to increased surface roughness which may 

also be due to the larger temperature rise and greater adhesive effects between the 

workpiece and the cutting tool. 

 

Figure 3.18: Surface roughness (Ra) before and after machining under different 

conditions (V = 100 m/min, f = 0.1 mm/rev). 

3.4.7 Hardness 

The hardness variation with depth below the machined surface under different 

conditions is shown in Figure 3.19. The hardness increased 87% from 52.3 ± 4.0 Hv in 

the bulk material to 96.6 ± 5.6 Hv at about 10 μm below the machined surface after 

cryogenic machining using the 70 µm edge radius tool. Using the same edge radius tool, 

the hardness increase was slightly smaller under dry conditions (85.8 ± 5.9 Hv). The 

hardness at this depth under dry and cryogenic machining using the 30 µm edge radius 
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tools is very similar to each other despite the differences in their microstructures as 

shown in Figure 3.11.  

  

Figure 3.19: Hardness variation with depth below the machined surface under different 

conditions. 

   

In addition to grain size, work hardening is another important factor that 

influences the hardness of a material. The amount of work hardening was successfully 

estimated by several researchers using the peak breadth measured from X-ray diffraction 

technique (Prevéy, 1987; Outeiro et al., 2006a). The peak breadth variation with depth 

below the machined surface under different conditions is shown in Figure 3.20. The peak 

breadth after cryogenic machining using the 70 µm edge radius tool increased by 62% 

compared with the initial peak breadth at the depth of 25 µm below the machined surface. 

Under dry condition, the increase was 40% using the same edge radius tool. Since 

significant grain refinement occurred within the first 10 µm after these two conditions, 

the broadening should be the combined effects of work hardening and reduced grain size. 
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The larger increase in peak breadth under cryogenic condition compared with dry 

condition could be resulting from more severe work hardening and/or smaller grain size.  

 Using the 30 µm edge radius tools, the same amount of work hardening was 

achieved in cryogenic and dry machining at the depth of 25 µm below the machined 

surface, which is not as expected. This could be due to the fact that more plastic 

deformation was induced on the workpiece by dry machining due to the stronger 

adhesion of the workpiece material to the cutting tool at higher temperature (Tönshoff 

and Winkler, 1997). This was supported by a recent finding that less shear deformation 

occurred on the machined surface under cryogenic cooling conditions compared with dry 

machining (Kenda et al., 2011). The changes in crystallographic orientations shown in 

Figure 3.15 also agree with this interpretation. Therefore, it could be concluded that the 

increased mechanical deformation outweighed the thermal effects during dry machining 

when using the 30 µm edge radius tool and this led to similar amount of work hardening 

with the cryogenic condition.  
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Figure 3.20: Peak breadth variation with depth below the machined surface under 

different conditions. 

 

Instead of decreasing continually as when using other conditions, the peak breadth 

of the workpiece after dry machining with the 30 µm edge radius tool first increased to a 

maximum value at 50 µm depth from the surface, and then decreased. This could be due 

to the decreasing temperature from the surface to the bulk material. The high temperature 

at the surface outweighed the mechanical deformation effects. This change of peak 

breadth was also reflected by the hardness value (Figure 3.19) where the hardness after 

dry machining using the 30 µm edge radius tool remained almost the same from 10 µm to 

50 µm below the machined surface while the values under other conditions dropped more 

abruptly. Under the same dry condition, this trend of peak breadth was not observed 

when the 70 µm edge radius tool was used, which could be caused by the fact that the 

mechanical deformation effects induced by the honed cutting edge outweighed the 

thermal effects.  
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Cryogenic machining with a 30 µm edge radius tool led to smallest changes in 

hardness compared with the initial value as shown in Figure 3.19. This agrees with the 

amount of work hardening as shown in Figure 3.20. Machining under cryogenic cooling 

conditions and the use of a relatively sharp tool tends to significantly decrease the 

temperature in the cutting zone, and thus significantly reduce the adhesion of the 

magnesium alloy with the uncoated carbide tool. Therefore, much less plastic 

deformation occurred on the workpiece and the smallest changes of hardness and work 

hardening were observed under this condition.  

Under the same liquid nitrogen cooling condition, the hardness curves using the 

two different edge radii correlate well with the peak breadth curves, which suggest that 

the hardness and work hardening are intimately related. However, the influence of 

microstructural changes on hardness cannot be overlooked.  Dramatic increase in 

hardness was reported on the same material after friction stir process (FSP) which was 

attributed to the significant grain refinement (Chang et al., 2008). The Hall-Petch 

relationship between the hardness and grain size was also found to be well followed in 

AZ31 Mg alloy (Chang et al., 2004). Therefore, the changes in hardness after machining 

are likely to be resulting from the combined effects of several surface integrity factors, 

such as microstructure and work hardening.  

3.4.8 Chip morphology 

Although not a surface integrity factor, chip control in machining is another 

essential issue in machining operations. Short broken chips are desired because 

unexpected long chips may damage the machined surface, leading to tool fracture, or 

even injure the operator. It was shown in Figure 3.11 that serrated chips were formed 
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under all four machining conditions reported herein. However, totally different chip 

morphology was observed as shown in Figure 3.21. Remarkable differences exist 

between dry and cryogenic machining using the 30 µm edge radius tools. The chips 

formed during dry machining were long and un-broken while small, spiral chips were 

formed when liquid nitrogen was applied. The latter chip morphology is more desirable 

and it suggests that cryogenic machining may allow better chip control in addition to 

creating surface integrity improvement.  It was reported recently that the application of 

liquid nitrogen reduced the tool-chip contact length and increased the chip curl in 

cryogenic machining of Ti-6Al-4V (Bermingham et al., 2011). Although the liquid 

nitrogen was sprayed directly to the machined surface, it should also indirectly cool the 

cutting tool. This claim was supported by the layer of ice that covered the cutting tool 

before cutting began as shown in Figure 3.5 (a). The infrared images captured (Figure 

3.22) clearly show the differences in chip morphology between dry and cryogenic 

machining using the 30 µm edge radius tools. The maximum temperatures at the tool-

chip interface for dry and cryogenic machining are 131°C and 52 °C, respectively. The 

reduced temperature decreased the adhesion effects between the uncoated carbide tools 

and the magnesium alloy and reduced the tool-chip contact length, which increased chip 

curl and led to the formation of the spiral chips.  

When the cutting edge radius of the tool increased to 70 µm, both dry and 

cryogenic machining led to the formation of ribbon-like chips. The increased cutting edge 

radius led to more negative effective rake angle, and also a notable increase in 

temperature. Both of these changes resulted in larger tool-chip contact length, and 

reduced chip curl. Also, more ploughing was induced and less material flowed into the 
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chips. It was evident from Figure 3.11 that the featureless layers in the chips became 

thinner with increased cutting edge radius and this may lead to the improved breakability 

of the chip. Therefore, the chips are not continuous as in dry machining when using the 

30 µm edge radius tools. There are little differences in chip morphology between dry and 

cryogenic conditions when the cutting edge radius was 70 µm. This may be due to the 

fact that the thermal effects were outweighed by other factors, such as more negative 

effective rake angle due to the honed cutting edge.  

 

(a) 
 

(b) 
 

Figure 3.21: Chip morphology under different machining conditions: (a) dry, 30 µm; 

(b) cryogenic, 30 µm; (c) dry, 70 µm; and (d) cryogenic, 70 µm. 

(c) 
 

(d) 
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3.5 Effects of Cutting Speed and Feed Rate on Surface Integrity  

It has been shown in the previous section that a surface grain refinement layer 

where nanostructures exist can be fabricated by spraying liquid nitorgen to the machined 

surface. As reviewed in Chapter 2, grain refinement can remarkably improve the 

corrosion resistance of AZ31B Mg alloys and the grain refinement layer induced by 

cryogenic machining is desirable. However, the maximum thickness of this layer was 

only 15 µm and this was achieved when 70 µm edge radius tools were used. The major 

purpose of this part of experiments is to investigate whether thicker grain refinement 

layers can be achieved by adjusting cutting speed and feed rate. The cooling method was 

spraying liquid nitrogen to the machined surface from the flank side of the tool, and the 

(a) 
 

(b) 
 

Figure 3.22: Infrared image of chip morphology under (a) dry and (b) cryogenic 

machining when using 30 µm edge radius tools (V =100 m/min, f = 0.1 mm/rev). 
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cutting edge radius of the tools used was 70 µm. The experimental matrix is shown in 

Table 3.5.  

Table 3.5: Experiment matrix for machining under different cutting speeds and 

feed rates 

No. 
Feed Rate, f 

[mm/rev] 

Cutting Speed, V  

[m/min] 

Tool Edge 

Radius, rn [μm] 

Cooling Method 

1 0.05 50 70 Cryogenic 

2 0.05 100 70 Cryogenic 

3 0.05 150 70 Cryogenic 

4 0.15 50 70 Cryogenic 

5 0.15 100 70 Cryogenic 

6 0.15 150 70 Cryogenic 

7 0.25 50 70 Cryogenic 

8 0.25 100 70 Cryogenic 

9 0.25 150 70 Cryogenic 

 

3.5.1 Cutting forces 

The cutting and thrust force components measured by the dynamometer under 

different cutting speeds and feed rates are shown in Figure 3.23. The cutting and thrust 

force components did not change much with the cutting speed at the feed rates of 0.05 

mm/rev, which may be due to the fact that only a small amount of material was removed 

by cutting. It is noted that at this feed rate (50 µm/rev), which is smaller than the cutting 

edge radius of the tool (70 µm), the cutting force is smaller than the thrust forces; the 

ratio Fc / Ft is 0.8 for all the cutting speeds. This agrees with the finding from the 

literature (Liu et al., 2004), and it suggests that ploughing effects are dominant at this 

feed rate. When the feed rate was increased to 0.15 mm/rev, the forces in both directions 

decreased slightly with larger cutting speeds. Increasing cutting speed normally 
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influences the forces in two ways: a) increased heat generation leads to higher 

temperature and reduces the forces; and b) increased strain-rate leads to stronger work 

hardening and increases the forces. The decrease of forces at this feed rate can be due to 

the fact that thermal softening outweighed the work hardening effects; this was supported 

by the changes in chip morphology where a higher cutting speed led to continuous, un-

broken chips while lower cutting speed generated short, discontinuous ribbon chips as 

shown in Figure 3.24 (b) and (c). When the feed rate of 0.25 mm/rev was used, the 

cutting and thrust forces increased with the increase in cutting speed. This may be caused 

by the fact that the work hardening effect outweighed the thermal softening effect. As 

shown in Figure 3.25, the chips for all the cutting speeds at this feed rate were needle-like 

and suggested that the materials had limited ductility. The Fc / Ft ratios for the feed rate of 

0.25 mm/rev are all larger than 1.4 as shown in Figure 3.23 (c). This shows that the 

cutting effects are more dominant than the ploughing effects at the larger feed rate.  
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Figure 3.23: Measured forces under different cutting speeds and feed rates 
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3.5.2 Microstructure and chip morphology 

Figure 3.24 shows the microstructures of the machined surfaces and the 

corresponding chip morphology at the feed rate of 0.05 mm/rev and different cutting 

speeds. When the cutting speed was increased from 50 m/min to 100 m/min, the 

thickness of the featureless layer increased from 6 µm to 11 µm. The critical strain for 

DRX to start in AZ31 Mg alloy was found to be a function of the Zener-Hollomon 

parameter (defined in Equation (3.3)) as (Wang et al., 2002): 

             
0.06

cr 0.02039Z

 

                                                                   (3.4)
 

It was reported that the cutting temperature increased dramatically with increased 

cutting speed (Kurihara et al., 1981). Increasing the cutting speed from 50 m/min to 100 

m/min should lead to a large increase in temperature and results in a smaller Z value 

according to Equation (3.3), which reduces the critical strain for DRX to start. Therefore, 

the thickness of the featureless layer was increased. However, further increase of the 

cutting speed decreases the thickness of the featureless layer as shown in Figure 3.24 and 

this may be due to the occurrence of grain growth after the nanocrystalline grains were 

formed. It was reported that grain growth could easily occur in the recrystallized grain 

structures of Mg alloys due to their low melting temperature (Chang et al., 2008). The 

temperature rise at the machined surface was also found to significantly limit the grain 

refinement achieved on the machined surface of copper and a very small cutting speed of 

0.6 m/min was used to prevent grain growth (Calistes et al., 2009). The liquid nitrogen in 

this study was sprayed directly to the machined surface, and it was expected that the 

surface temperature was the lowest. Therefore, the nanocrystalline grain structures close 

to the machined surface were retained due to the liquid nitrogen cooling and the refined 
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grains below the machined surface grew, leading to a decrease in the featureless layer 

thickness. The chip shape produced for all cutting speeds at this feed rate was un-broken, 

continuous chips. The chips become more tangled as cutting speed increases, which 

suggest that the temperature was increased.  
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(a) 
 

(b) 
 

(c) 
 

Figure 3.24: Microstructures of the machined surface and chip morphology after 

cryogenic machining under different cutting speeds: (a) 50 m/min; (b) 100 m/min; and 

(c) 150 m/min (f = 0.05 mm/rev, rn = 70 µm). 
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Figure 3.25 shows the microstructures of the machined surfaces and the 

corresponding chip morphology at the feed rate of 0.15 mm/rev and different cutting 

speeds. Remarkable differences in the microstructures and the chip morphology were 

found when the cutting speed was changed. The chip shape changed from needle to short, 

discontinuous ribbon when the cutting speed was increased from 50 m/min to 100 m/min. 

The needle chips indicate that the ductility of the workpiece is relatively low. Given the 

same work material, this decrease in ductility suggests that the temperature at the cutting 

zone is relatively low. Further increase in the cutting speed to 150 m/min changes the 

chip morphology to long, continuous ribbons, which indicate better ductility. The 

changes in chip morphology agree with the literature that increasing the cutting speed 

results in significant increase in cutting temperature (Kurihara et al., 1981). 

The featureless layer when cutting at 50 m/min has a dark appearance, while the 

layer under 100 m/min is similar to the white layer shown in Figure 3.11 (d). This 

similarity is caused by the lack of variation in cutting conditions. All the other conditions 

are the same except that the feed rate is increased from 0.1 mm/rev to 0.15 mm/rev. In 

addition to the surface layer, noteworthy differences in the microstructures below the top 

layers are also evident. While there is no twinning visible when cutting at 100 m/min, it is 

visible up to more than 50 μm away from the top surface under 50 m/min. Twinning is 

the dominant deformation mode in Mg alloys at room temperature (Sun et al., 2007). 

Therefore, the large amount of twinning formed under the cutting speed of 50 m/min was 

due to the low temperature at the machined surface which should be smaller than the 

maximum temperature for a more severe cutting condition (71 °C) as shown in Figure 3.9 

(f = 0.1 mm/rev, V = 100 m/min, rn = 70 µm).  
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Figure 3.25: Microstructures of the machined surface and chip morphology after 

cryogenic machining under different cutting speeds: (a) 50 m/min; (b) 100 m/min; and 

(c) 150 m/min (f = 0.15 mm/rev, rn = 70 µm). 
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To investigate the possible structure of the featureless layer formed under 50 

m/min and 0.05 mm/rev (Figure 3.25 (a)), SEM was used to observe the surface 

microstructure. Figure 3.26 (a) shows an overview of the microstructure near the 

machined surface after cryogenic machining produced when using a 70 μm edge radius 

tool at 0.05 mm/rev feed rate and 50 m/min cutting speed. Twinning and grain boundaries 

are clearly visible about 10 μm away from the surface, while there are no apparent grain 

structures in the top surface layer. An expanded view of that layer is shown in Figure 

3.26 (b), and no discernable structures can be found. Figure 3.26 (c) was taken at the 

location with greater depth than Figure 3.26 (b) and it shows that a transition occurs. 

Grain boundaries are clearly visible in the bottom half of the figure while they become 

vague in the top half. The grain refinement in AZ91 Mg alloys induced by a SPD process 

was found to take place in three steps (Sun et al., 2007). Twinning was claimed as the 

first step of grain refinement and divided the original coarse grains into finer twin 

platelets. Then, dislocation movements on both basal plane and non-basal plane slip 

systems led to dislocation arrays which became the subgrain boundaries with high stored 

energy. The high energy stored in the sample significantly decreased the recrystallization 

temperature. Simultaneously, the heavy plastic deformation at high strain-rate also raised 

the temperature of the sample. Once the local temperature was higher than the 

recrystallization temperature, DRX took place, which was the last step, and this led to the 

formation of nanocrystallized grains. It can be concluded from this process that the 

recrystallization temperature and critical strain must be achieved for DRX to start even 

though the required temperature will be significantly lower than the one without any 

plastic deformation. According to this theory, the microstructures shown in Figure 3.26 
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(b) should be high density dislocation arrays and are still in the second step of the grain 

refinement process. Due to the lower temperature at this small cutting speed (< 71 °C), 

DRX was not initiated and therefore it does not have the ―white‖ appearance as the 

featureless layers formed under higher cutting speed (100 m/min), where the third step of 

the grain refinement process was completed (Figure 3.25 (b)). This conclusion is further 

supported by the microstructure formed under the same cutting speed (50 m/min), but 

higher feed rate (0.25 mm/rev) as shown in Figure 3.27 (a) where the featureless layer 

has a ―white‖ appearance. Increased feed rate from 0.15 mm/rev to 0.25 mm/rev led to a 

increase in cutting force as shown in Figure 3.23 and led to a higher temperature, which 

allowed DRX to occur.  

The featureless layer formed at a cutting speed of 150 m/min has a similar 

appearance with the one under 100 m/min, which suggest that DRX occurrs and 

dislocation arrays evolve into nanocrystalline grain structures. However, the thickness of 

this layer was reduced slightly from 10 µm to 6 µm. This finding agrees with previous 

finding from the microstructures of the machined surface at the feed rate of 0.05 mm/rev, 

where a further increase in cutting speed reduced the thickness of the featureless layer, 

and the cause for these reductions is the grain growth due to the increased temperature.  
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(a) 
 

(b) 
 

(c) 
 

Figure 3.26: Microstrucutre of the machined surface after cryogenic machining: (a) 

overview; (b) top surface layer; and (c) below the top layer 

 (f = 0.15 mm/rev, V = 50 m/min, rn = 70 µm). 
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Figure 3.27 shows the microstructures of the machined surfaces and the 

corresponding chip morphology at the feed rate of 0.25 mm/rev and different cutting 

speeds. The chips formed under all different cutting speeds are needle-like chips which 

suggest limited ductility of the workpiece. As shown in Figure 3.23, the cutting forces 

increase as the feed rate increases, which suggest a heavier plastic deformation (larger 

strain and strain-rate) at the shear plane. The increased forces also implied that the 

increased strain hardening effects induced by higher cutting speed outweighed the 

thermal softening effects. It was proved that the ductility of magnesium alloys decreased 

remarkably with increased strain-rate (Langdon et al., 2003). Therefore, the formation of 

needle-like chips should be caused by the increased strain-rates.  

A featureless layer similar to the one in Figure 3.11 (d) formed at the cutting 

speed of 50 m/min as shown in Figure 3.27 (a). Further increase in the cutting speed led 

to the disappearance of this layer. It can be observed from Figure 3.27 (b) and (c) that 

some grains near the machined surface are slightly larger than the ones in Figure 3.27 (a), 

which indicates that grain growth occurs at these two cutting speeds, and this agrees with 

the findings from the other two feed rates, as well.  
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Figure 3.27: Microstructures of the machined surface and chip morphology after 

cryogenic machining under different cutting speeds: (a) 50 m/min; (b) 100 m/min; and 

(c) 150 m/min (f = 0.25 mm/rev, rn = 70 µm). 
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3.5.3 Crystallographic orientation 

In addition to grain size, crystallographic orientation was recently found to be a 

major factor that can significantly influence the corrosion resistance of magnesium 

alloys. Stronger intensity of (0002) crystallographic plane was found to improve the 

corrosion resistance of AZ31B Mg alloy (Song et al., 2010b; Pu et al., 2011; Xin et al., 

2011). The relative intensity of the (0002) peak on the machined surface after cryogenic 

machining under different cutting speeds and feed rates is shown in Figure 3.28. The 

relative intensity of the (0002) peak on the initial material before the machining 

experiments was 14%. Cryogenic machining under all the selected cutting speeds and 

feed rates increased the intensity of the (0002) basal plane on the machined surfaces. The 

strongest relative intensity observed in this study was 76%, and this was achieved under 

the cutting speed of 100 m/min and the feed rate of 0.15 mm/rev. The increase of basal 

texture on the machined surface should be caused by the shear deformation induced by 

the rounded cutting tool, since the basal plane slip of Mg alloys is the dominant 

deformation mode, especially when the temperature is close to room temperature 

(Reedhill and Robertson, 1957). Therefore, theoretically, the relative intensity of the 

(0002) basal plane should be dependent on two major surface factors: the value of the 

plastic strain and temperature. A clear decreasing trend with increased cutting speed was 

found at the feed rate of 0.25 mm/rev. Based on the previous analysis, the increase of 

cutting speed at this feed rate led to increased temperature. Therefore, the decrease of the 

(0002) basal plane intensity could be caused by the increase of temperature, which leads 

to the activation of non-basal slip systems in Mg alloys. 



87 

 

At the feed rate of 0.15 mm/rev, the intensity of the basal plane was increased 

when the cutting speed was increased from 50 m/min to 100 min/min. The temperature at 

these two cutting speeds may be smaller than the critical value. The work hardening 

effects induced by a higher cutting speed on the machined surface outweighed the 

thermal softening effects, which led to increased shear deformation on the machined 

surface and therefore increased intensity of basal plane. However, with further increase in 

the cutting speed, the additional temperature rise may activate more non-basal slip 

systems, and therefore the intensity of the basal plane decreased. At the feed rate of 0.05 

mm/rev, the relative intensity at the cutting speed of 150 m/min was 75%, and similar to 

the maximum value in the group. Decreasing the cutting speed reduced the relative 

intensity. However, it is not clear why the cutting speed of 100 m/min led to the smallest 

intensity at this feed rate. The influence of crystallographic orientations on the workpiece 

before machining on cutting forces, chip formation and surface finish was reviewed and 

summarized by Liu et al. (Liu et al., 2004). However, most of the current research in the 

literature was conducted on single crystals and few of them studied how crystallographic 

orientations were changed after machining polycrystalline materials. Since its critical 

importance on corrosion resistance of Mg alloys was found recently (Song et al., 2010b), 

it is expected that more studies will be conducted to investigate the influence of 

machining on the resulting crystallographic orientations on the workpiece. At this point, 

no solid conclusion could be made on how they change with cutting speed and feed rate.  
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3.5.4 Surface roughness 

Figure 3.29 shows the surface roughness (Ra) after cryogenic machining under 

different cutting speeds and feed rates using 70 µm edge radius tools. The surface 

roughness before machining was 0.26 µm. Cryogenic machining under all the selected 

cutting speeds and feed rates led to improved surface finish. This is a unique advantage of 

using cryogenic machining to induce surface grain refinement compared with other SPD 

techniques, such as SMAT, which may notably deteriorate the surface finish. The 

smallest surface roughness achieved was 0.07 µm, where the cutting speed of 50 m/min 

and the feed rate of 0.15 mm/rev were used. At the feed rates of 0.05 mm/rev and 0.25 

mm/rev, the surface roughness decreases, as the cutting speed increases, which agree, 

with the finding in machining of Mg alloys reported by other researchers (Denkena and 

Lucas, 2007; Guo and Salahshoor, 2010). However, increased cutting speed resulted in 

about 70% increase in surface roughness at the feed rate of 0.15 mm/rev. Strong adhesive 

effects between magnesium alloys and uncoated carbide tools were reported (Tönshoff 
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Figure 3.28: Relative intensity of basal peak (0002) on the surface after cryogenic 

machining under different cutting speed and feed rate (rn = 70 µm). 
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and Winkler, 1997). The adhesion should become more severe at higher temperature. 

Large increases in temperature were observed when the cutting speed was increased from 

50 m/min to 150 m/min, which was supported by the changes in chip morphology shown 

in Figure 3.25. In addition to the thermal effects, the thrust force at the feed rate of 0.15 

mm/rev was found to be larger than in other two feed rates as shown in Figure 3.23 (b). 

The combined effects of high temperature and thrust force reflect the causes for the 

increased surface roughness at the feed rate of 0.15 mm/rev.  

 
 

3.6 Summary 

An experimental investigation has been performed to study the effect of the 

different machining parameters, including cooling method (dry, cryogenic), cutting edge 

radius of the tool, cutting speed and feed rate, on the surface integrity of the machined 

AZ31B Mg alloy. The surface integrity factors investigated include surface roughness, 

microstructure, crystallographic orientations, residual stresses and hardness. Major 

observations from this experimental study can be summarized as follows: 

Figure 3.29: Surface roughness (Ra) after cryogenic machining under different cutting 

speed and feed rate (rn = 70 µm). 
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 Significant reduction of surface temperature was achieved during cryogenic 

machining, where liquid nitrogen was sprayed onto the machined surface from the 

clearance side of the tool. Compared with dry machining, cryogenic machining 

reduced the surface temperature of AZ31B Mg alloy from 125 ºC to 52 ºC during 

machining using edge radius tools with 30 µm edge radius (V = 100 m/min, f = 0.1 

mm/rev). The temperature was increased to 71 ºC when the cutting edge radius was 

increased to 70 µm under the same cryogenic cooling conditions. 

 Better surface finish was achieved after cryogenic machining than dry machining. 

Using the cutting speed of 100 m/min and the feed rate of 0.1 mm/rev, the application 

of liquid nitrogen reduced the surface roughness (Ra) by about 20% for machining 

using both 30 µm and 70 µm edge radius tools. Machining with larger edge radius 

tools increased the surface roughness. Using the tools with 70 µm edge radius, the 

surface roughness after cryogenic machining was dependent on the cutting speed and 

feed rate. The best surface finish achieved was Ra = 0.07 µm, where the cutting speed 

of 50 m/min and the feed rate of 0.15 mm/rev were used. 

 Cryogenic machining led to the formation of featureless surface layers which has an 

appearance similar to ―white layer‖ on machined steels and nickel-based superalloys. 

AFM tapping mode phase image suggested that significant grain refinement from an 

initial value of 12 µm to about 31 nm occurred in this featureless layer due to DRX 

induced by severe plastic deformation. The thickness of this layer was dependent on 

cutting edge radius, cutting speed and feed rate. The maximum thickness achieved 

was 15 µm where the edge radius used was 70 µm, the cutting speed was 100 m/min 

and the feed rate was 0.1 mm/rev (Figure 3.11 (d)). Under the same conditions except 
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for cooling method, dry machining led to the formation of a 20 µm featureless surface 

layer as shown in Figure 3.11 (c). Using SEM, it was found that the top 10 µm of this 

layer was similar to the featureless layer formed under cryogenic machining, and 

severe shear deformation was evident in the bottom 10 µm of this layer.  

A different type of featureless layer formed under cryogenic machining using 

70 µm edge radius tools at 50 m/min and 0.15 mm/rev. The appearance of this layer 

was darker than the other featureless layers, and further investigation using SEM 

show that a large density of dislocations existed in this layer.  

The results on microstructural changes also suggest that optical microscopy 

may not be adequate to accurately characterize the resulting microstructures from 

different machining conditions. Advanced characterization techniques, such as SEM, 

TEM or AFM, are needed.   

 The hardness of the machined surface was increased after both dry and cryogenic 

machining compared with the initial value. The largest increase of 57%, was observed 

on the sample with the thickest grain refinement layer (cryogenic machining, rn = 70 

µm, V = 100 m/min, f = 0.1 mm/rev). However, the hardness was not only dependent 

on the microstructures, but also on the work hardening and residual stresses.  

 The combination of cryogenic cooling and large cutting edge radius extended the 

depth of compressive residual stresses to about 200 µm below the surface and 

increased the compressive areas  by a factor of 10 times compared with the sample 

before machining experiments. Without the application of liquid nitrogen, the residual 

stresses became more tensile when the cutting edge radius was increased.  
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 A remarkable increase in the relative intensity of the (0002) basal plane was achieved 

on the machined surface after cryogenic machining, which should significantly 

enhance the corrosion resistance of magnesium alloys. This initial intensity of the 

basal plane before machining was 14%, and this increased to 76% after cryogenic 

machining when using the 70 µm edge radius tool, a cutting speed of 100 m/min and 

a feed rate of 0.15 mm/rev.  

With 30 µm edge radius tools, the intensity of basal plane was stronger under 

dry condition due to more intense shear deformation caused by stronger adhesion of 

tool-workpiece material at higher temperature. This trend was reversed when the 

cutting edge radius was increased to 70 µm, which was caused by the activation of 

more no-basal slip systems at high surface temperature during dry machining.   

A dependence of the basal plane intensity on the cutting speed and feed rate 

was also observed. At the feed rate of 0.25 mm/rev, the intensity decreases with 

increased cutting speed, which could be explained by the activation of more no-basal 

slip systems. However, the relationships between the intensity and the cutting speed 

at 0.05 mm/rev and 0.15 mm/rev were nonlinear, and further investigation is needed 

to establish the possible causes.  
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CHAPTER 4: EXPERIMENTAL STUDY ON SURFACE INTEGRITY IN 

BURNISHING OF AZ31B MAGNESIUM ALLOY 

 

4.1 Introduction 

It has been shown in Chapter 3 that cryogenic machining with honed cutting tools 

can enhance the surface integrity of AZ31B Mg alloy in terms of grain refinement, 

compressive residual stresses, etc., which may significantly improve its corrosion 

resistance in many applications. Controlled ploughing effects in machining are desirable 

since this induces severe plastic deformation on the workpiece surface and sub-surface 

and facilitate dynamic recrystallization (DRX). However, the maximum depth of the 

grain refinement layer achieved by cryogenic machining described in Chapter 3 was only 

15 µm. In order to improve the corrosion resistance of AZ31B Mg alloy to a greater 

extent, a thicker grain refinement layer is needed. One major objective of this chapter is 

to investigate the potential of using the burnishing process with a fixed roller to increase 

the grain refinement layer thickness in AZ31B Mg alloy.  

In addition to grain refinement, other surface integrity factors that may influence 

the corrosion resistance were also investigated, including crystallographic orientations, 

residual stresses, hardness and surface roughness. Possible influence of cryogenic cooling 

on the surface integrity in burnishing was also studied. The characterization methods for 

surface integrity used in this chapter are the same as those applied in Chapter 3, except 

that for hardness where a different microhardness tester was used, and these details will 

be described in the corresponding section of this chapter.  

 



94 

 

4.2 Experiment Setup  

The burnishing experiments were conducted on a Mazak Quick Turn-10 Turning 

Center equipped with an Air Products and Chemicals ICEFLY
®
 liquid nitrogen delivery 

system. For dry burnishing, no cooling method was used; for cryogenic burnishing, liquid 

nitrogen was sprayed at the tool-workpiece region at 0.6 kg/min via the ICEFLY system. 

The experimental setup is shown in Figure 4.1. . The AZ31B Mg work material was 

received in the form of a 3.22 mm thick sheet. Disc specimens having 130 mm diameter 

were cut from the sheet by vertical milling in the machine shop and subsequently 

subjected to burnishing. The disc was fixed in the lathe chuck and rotated during 

processing. A machining clearance cut using an uncoated carbide insert was conducted to 

reduce the diameter from 130 mm to 128 mm at the feed rate of 0.1 mm/rev and the 

cutting speed of 100 m/min in order to standardize initial burnishing conditions. Then, a 

fixed roller (no rotation) made of high speed tool steel was pushed against the discs at a 

constant feed rate of 0.01 mm/rev. The radial force (Fr) and tangential force (Ft) during 

burnishing were measured using a KISTLER 3-Component Tool Dynamometer. The 

diameter of the used burnishing roller is 14.3 mm. The burnishing speed, i.e., the linear 

speed at the contact point between the fixed roller and the rotating disc, was set to 100 

m/min. The burnishing process was stopped when the final diameter was reduced to 126 

mm.  
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Figure 4.1: Schematic of the burnishing process using a fixed roller. 

4.3 Results and Discussions 

 

The force and temperature created during burnishing were measured and 

compared with those that developed during machining. A comprehensive study on the 

surface integrity of the burnished AZ31B Mg alloy was conducted. This includes the 

analysis of microstructure, residual stresses, crystallographic orientations, hardness, work 

hardening and surface roughness. The characterization methods used were the same as 

described in details in Chapter 3 for machined samples except that a different 

microhardness tester was used which will be described in details in the corresponding 

section. 

4.3.1 Force and temperature 

Figure 4.2 shows forces measured during dry and cryogenic burnishing, as well as 

the largest forces observed during cryogenic machining (rn = 70 µm, V = 150 m/min, f = 
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0.15 mm/rev). The forces during burnishing were remarkably larger than during 

machining. The radial force components during dry and cryogenic burnishing were 1278 

N and 1500 N, respectively. The largest radial force during machining was only 205 N; 

an increase of about 7 times was observed in burnishing. The differences in force values 

in the tangential direction are smaller, and with an increase of about 3 times that of the 

machining ones. The remarkable increase in forces should lead to more severe plastic 

deformation on the surface and sub-surface of the workpiece and therefore modify the 

microstructures to a larger depth. Similar to the trend observed in machining, the 

application of liquid nitrogen to the burnished surfaces led to 18% increase in the radial 

force, which is also caused by the reduced thermal softening effects. The tangential 

forces were also increased by 16% when liquid nitrogen was applied compared with dry 

burnishing.  

 

 Figure 4.3 (a) shows an overview of the temperature field captured by the infrared 

camera during cryogenic burnishing. The temperature analysis method used was the same 

Figure 4.2: Comparison of measured forces during cryogenic machining (rn = 70 µm, 

V = 150 m/min, f = 0.15 mm/rev) and burnishing under dry and cryogenic conditions. 
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as in Chapter 3. The black body in the image is the burnishing tool consisting of the fixed 

roller and the fixture. Contrary to the image captured during machining, the material at 

the processing zone was blocked by the burnishing tool. The first point where the 

material appeared in the image is defined as the exit point A. Two profiles were taken 

from this point. Figure 4.3 (b) shows the data obtained from Profile 1 which is in the 

radial direction from point A. The temperature on the burnished surface was 80 °C and 

smaller than the one 10 mm away from the surface (90 °C). The decrease in temperature 

is caused by the effective cooling when liquid nitrogen was sprayed to the burnished 

surface. This claim was also supported by the data obtained in Profile 2 (tangential 

direction) as shown in Figure 4.3 (c). Instead of decreasing with increased distance from 

the contact point as observed during cryogenic machining, the temperature increased 

from 80 °C to 113 °C at about 100 mm away from the exit point. Then, the temperature 

reduced and stabilized at about 100 °C. It can be concluded that the temperature will be 

much higher, if no cooling method is used, as in dry burnishing, which should then result 

in a larger grain size.  
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Figure 4.3: (a) Overview of temperature field during cryogenic burnishing captured 

by infrared camera; (b) variation of temperature with distance from the surface at the 

exit point A; and (c) variation of temperature with distance from the exit point A. 
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4.3.2 Microstructure 

An overview of cross-sectional microstructures near the surface after burnishing 

under both dry and cryogenic conditions is shown in Figure 4.4. Clear process-influenced 

layers generated by the burnishing process can be identified under both conditions. The 

thickness of this layer produced by dry and cryogenic burnishing is 3.1 mm and 3.4 mm, 

respectively. Clearly, the objective of a thicker refined surface layer by using the 

burnishing process was obtained. After etching, the process-influenced layers can be 

identified with naked eyes without even using the microscope. An example is shown in 

Figure 4.4 (c), which indicates that the process-influenced layers have varying different 

degrees of chemical reactions with the etchant compared with the bulk material. The 

interfaces between the initial and the process-influenced microstructures are very clear 

for both conditions. The interface formed after cryogenic burnishing is shown at higher 

magnification in Figure 4.5. While no twinning can be seen in the initial material, there is 

a high density of deformation twins above the interface. Twinning is the dominant 

deformation mode at low temperature for Mg alloys. The location of the twins is at the 

bottom of the process-influenced layer and is more than 3 mm away from the burnished 

surface; it is expected that the plastic strain at this depth is relatively small and the 

temperature is low. Therefore, only the first step of the grain refinement process (Sun et 

al., 2007) was finished and more plastic strains are needed to induce further dislocation 

movement to facilitate the occurrence of DRX. The interface formed after dry burnishing 

is similar to the one after cryogenic burnishing. Similar twinning layers have also been 

reported by other researchers at the bottom of the process-influenced zones induced by 
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rolling burnishing of AZ80 Mg alloy (Zhang and Lindemann, 2005a) and by surface 

mechanical attrition treatment (SMAT) on AZ91D Mg alloy (Sun et al., 2007). 
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Figure 4.4: (a) Microstructure near the surface after dry burnishing; (b) microstructure 

near the surface; and (c) photo of the sample after cryogenic burnishing. 
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The microstructures near the surface before and after burnishing under dry and 

cryogenic conditions are shown in Figure 4.6. Some deformation twins are shown in the 

microstructure before burnishing which is likely induced by the vertical milling process 

which was used in removing the disc samples from the sheet. It is evident in Figure 4.6 

(b) that the grain size is significantly reduced by dry burnishing. Under the same 

magnification, the grain boundaries near the surface after cryogenic burnishing are not 

discernable as shown in Figure 4.6 (c). Scanning electron microscopy was used to further 

investigate the microstructure near the topmost surface after cryogenic burnishing. As 

shown in Figure 4.7, a majority of the grains near the burnished surface are smaller than 1 

µm. The average longitudinal axis grain size is 523 ± 131 nm. A comparison of the 

longitudinal axis grain size distribution before and after burnishing is shown in Figure 

4.8. The average grain size before burnishing was 11.9 µm and the scatter of the grain 

10 µm 

 

Figure 4.5: Interface between the initial and the process-influenced microstructures 

after cryogenic burnishing. 
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size was large.   Although not as significant as in cryogenic burnishing, grain refinement 

also occurred under dry burnishing and the average grain size was reduced to 1.4 µm.  

An empirical relationship between the recrystallized grain size and the Zener-

Holloman parameter was shown in Equation (3.2). According to this relationship, the 

grain size after dynamic recrystallization (DRX) will decrease with a larger Z value. 

Since the burnishing speed and the feed rate for both dry and cryogenic burnishing were 

the same, the strain-rates would be almost the same. With the application of liquid 

nitrogen cooling during cryogenic burnishing, the temperature at the processing zone 

should be lower than in dry burnishing, which leads to a larger Z value. Therefore, the 

finding that more significant grain refinement is achieved under cryogenic conditions 

correlates with the empirical relationship Equation (3.2).  
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Figure 4.6: Microstructures near the surface (a) before burnishing, (b) after dry 

burnishing, and (c) after cryogenic burnishing. 
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To investigate the grain refinement process, typical microstructures within the 

process-influenced layer after dry and cryogenic burnishing at different depths from the 

surface are shown in Figure 4.9 and Figure 4.10, respectively. The grain size under 

cryogenic burnishing was remarkably smaller than the one after dry burnishing. The 

percentage of recystallized grains decreased with increasing distance from the surface 
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Figure 4.8: Distribution of average longitudinal axis grain size before and after 

burnishing under dry and cryogenic conditions. 
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Figure 4.7: SEM picture of the microstructure near the topmost surface after cryogenic 

burnishing. 
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under both conditions. It was reported that the volume fraction of recrystallized grains in 

AZ31 Mg alloy decreased with smaller strain in a sigmoidal scheme (Fatemi-Varzaneh et 

al., 2007; Beer, 2010). Therefore, the decreased percentage of recystallized grains is 

likely caused by the reduction in plastic strains with increased distance from the 

burnished surface. As show in Figure 4.9 (c) and Figure 4.10 (d), ultrafine grains were 

visible to the depth of 812 µm under dry burnishing and 1118 µm under cryogenic 

burnishing, respectively. The thickness of grain refinement layer under both conditions 

was more than 40 times larger than that achieved by machining, which is caused by the 

more severe plastic deformation induced by the large burnishing forces. It is also evident 

that the DRX starts first at the boundaries of the grains and sub-grains as shown in Figure 

4.9 (d) and Figure 4.10 (d). This agrees with the DRX mechanism reported by many 

researchers that high energy stored in the grain boundaries can significantly decrease the 

recrystallization temperature (Meyers et al., 2001; Sun et al., 2007). Similar to the 

findings from Figure 4.5, large density of deformation twinning was found at the bottom 

of the process-influenced layer for both dry and cryogenic burnishing as shown in Figure 

4.9 (e) and Figure 4.10 (e).  
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20 µm 

(a) h1 = 20 µm (b) h2 = 406 µm (c) h3 = 812 µm 

(e) h6 = 3045 µm (d) h4 = 1421 µm (f) h6 = 3600 µm 

Figure 4.9: Typical microstructures at different depths from the surface after dry 

burnishing. 
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4.2.3 Crystallographic orientation 

Figure 4.11 shows the evolution of texture caused by burnishing. The relative 

heights of the peaks corresponding to the basal plane (0002) increased significantly after 

both dry and cryogenic burnishing, and became the strongest peak, which indicates that 

strong basal textures were created by the used process. The application of liquid nitrogen 

during burnishing does not have a significant influence on the crystallographic 

orientations. This suggests that the mechanical deformation induced by burnishing is the 

major cause for the texture changes. It was reported in Chapter 3 that increased ploughing 

effects induced by large edge radius tools resulted in remarkable increase in the intensity 

of the basal plane. The deformation of the workpiece induced by the ploughing effects in 

2 µm 

(a) h1 = 15 µm (b) h2 = 228 µm (c) h3 = 381 µm 

(d) h4 = 1118 µm (e) h5 = 3277 µm (f) h6 = 3785 µm 

Figure 4.10: Typical microstructures at different depths from the surface after cryogenic 

burnishing.  
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machining and by burnishing is somewhat similar to that in rolling.  It has been reported 

frequently that the rolled surfaces of AZ31 Mg often exhibit strong basal textures (Chang 

et al., 2003; Sakai et al., 2011). Therefore, it is expected that a burnished surface would 

become basal textured, which should then result in better corrosion resistance (Song et al., 

2010b).  

 

4.3.4 Residual stresses  

Figure 4.12 shows residual stresses of the ground and burnished AZ31B surfaces 

at the depth of 25 µm from the surface (the smallest achievable depth due to limits in the 

penetration depth of X-ray in this material). The circumferential residual stresses were 

claimed to be more critical than axial ones for performance of a disc in service (Umbrello 

et al., 2010b). Although the axial residual stress in the burnished samples are more 
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Figure 4.11: Evolution of crystallographic orientations: (a) before burnishing; (b) after 

dry and (c) cryogenic burnishing. 
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compressive than in the ground sample, the circumferential residual stresses become less 

compressive or more tensile after burnishing compared with its state before burnishing, 

which is different from what has been reported in most literature, and this suggests  that 

burnishing normally induces more compressive residual stresses (Zinn and Scholtes, 

1999; Denkena and Lucas, 2007; Scheel et al., 2010; Salahshoor and Guo, 2011). The 

contradictory findings from this study and the literature data may be caused by the 

different roller settings. The roller was fixed in this study while it was allowed to rotate in 

most literature examples. The fixed tool setting not only led to large radial forces but also 

about 600 N tangential force (Figure 4.2). The latter is normally close to zero when using 

a conventional rotating roller. Another possibility is that the applied radial force exceeds 

a critical value and leads to tensile residual stresses. This was supported by finding where 

the peak residual stress in AZ31 Mg alloy induced by deep rolling first became more 

compressive with increased pressure and then more tensile when the pressure exceeded 

certain value (Zinn and Scholtes, 1999). The residual stresses after roller burnishing in 

AZ80 Mg alloy became less compressive when the burnishing force was increased from 

200 N to 300 N (Zhang et al., 2005). Also, increased burnishing pressure led to more 

tensile residual stresses in the MgCa0.8 alloy (Salahshoor and Guo, 2011). In the current 

study, cryogenic machining, where radial forces are the smallest (Figure 4.2), led to the 

formation of large compressive residual stresses on the same material, and cryogenic 

burnishing, where the radial force is the largest, resulted in the largest tensile residual 

stresses. Both the results from literature (Zinn and Scholtes, 1999; Zhang et al., 2005; 

Salahshoor and Guo, 2011) and the current study suggest that a critical burnishing 

pressure exists beyond which tensile residual stresses will be induced.  
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Figure 4.13 shows the variation of residual stresses with depth below the surface 

before and after cryogenic burnishing in circumferential and axial directions. The residual 

stresses in both directions before burnishing were compressive and approached zero at a 

depth of 225 µm. Tensile residual stresses were generated in the circumferential direction 

after cryogenic burnishing. The largest tensile stress is 27 MPa, which is 18% of the 

tensile yield stress of this material. The circumferential residual stress was reduced to 

almost zero at the depth of 75 µm and then stabilized at about 20 MPa when the depth 

exceeded 330 µm. However, the peak compressive stress in the axial direction was 

changed from -31 MPa to -85 MPa after cryogenic burnishing, which is 85% of the 

compressive yield stress of AZ31B Mg alloy (110 MPa); the depth of the peak value was 

also shifted deeper from 40 µm to 515 µm. The depth of the compressive layer exceeded 

1 mm. The large differences in the two directions is a result of the anisotropic plastic 

deformation induced by the burnishing process in a thin plate specimen. Severe material 
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Figure 4.12: Residual stress at 25 µm from the surface of AZ31B Mg disc before 

burnishing and after burnishing under dry and cryogenic conditions. 
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flow in the axial direction occurred during the burnishing process, which can be 

concluded from visual observations of the burr formation after burnishing. The width of 

the disc increased from 3.22 mm to 5.5 mm on the topmost surface which was clear 

evidence of material side flow. 

 

 

Figure 4.13: Variation of residual stresses with depth below the surface: (a) before and 

(b) after cryogenic burnishing in circumferential and axial directions. 
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4.3.5 Hardness and work hardening 

 

Due to the large thickness of the process-influenced layer, a more time-efficient 

microhardness tester, a Future Tech FM-7 system, was used to measure the hardness in 

the burnished samples. A Vickers indenter was used at 50 g load and 15 s duration time. 

Significant increases in hardness values were observed near the burnished surface under 

both dry and cryogenic conditions. The maximum hardness measured was 110 HV after 

cryogenic burnishing and 97 HV after dry burnishing, which may reflect more significant 

grain refinement under cryogenic conditions. The hardness also drops more abruptly with 

distance below the surface in burnished specimen under dry condition than in the one 

under cryogenic condition. For example, at the depth of about 650 µm, the hardness 

obtained in the cryogenically burnished specimen is 92 HV while the hardness in dry 

burnished specimen is only 71 HV. This agrees with the finding that grain refinement 

layer induced by cryogenic burnishing is thicker than dry burnishing. 

 

Figure 4.14: Variation of residual stresses with depth below the surface (a) before and 

(b) after cryogenic burnishing in circumferential and axial directions. 
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The amount of cold work was successfully estimated by the breadth of the X-ray 

diffraction peaks where larger breadth indicates more work hardening (Prevéy, 1987). 

Figure 4.15 (a) shows the XRD peak breadth at a depth of 25 µm from the surface after 

machining (rn = 70 µm, V = 100 m/min, f = 0.1 mm/rev) and burnishing under dry and 

cryogenic conditions. The increased hardness obtained under cryogenic burnishing could 

also be caused by the stronger work hardening as shown in Figure 4.15 (a), in addition to 

the grain refinement. It is evident that in both machining and burnishing that the 

application of liquid nitrogen increases the work hardening on the workpiece surface. 

Although much larger forces were observed during burnishing than in machining, less 

work hardening was induced by burnishing which could be caused by the higher 

temperature. The maximum workpiece temperature measured during cryogenic 

machining was 71 °C (Figure 3.9), while the value was 113 °C during cryogenic 

burnishing (Figure 4.3). As shown in Figure 4.3 (c), there were large portions of the disc 

where the temperature was larger than 100 °C, and this might induce some degree of 

annealing effects.  

Figure 4.15 (b) shows the variation of peak breadth with depth below the surface 

before and after cryogenic machining (rn = 70 µm, V = 100 m/min, f = 0.1 mm/rev) and 

burnishing. Although remarkable work hardening was induced by cryogenic machining 

near the surface, it reduced to the initial value at a depth of 200 µm. A small increase in 

peak width was observed in the initial disc which is caused by the sample preparation 

procedure where vertical milling was used to cut the disc from the sheet. The work 

hardening induced by cryogenic burnishing decreased significantly with depth in the first 

400 µm, but did not return to the initial status after more than 1 mm. The notable increase 
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in the thickness of the work hardening layer by cryogenic burnishing is due to the 

repetitive nature of the process where no material was removed as in machining and 

plastic deformation accumulates on the surface during each rotation.  



115 

 

 

 

 

Figure 4.15: (a) Peak breadth at a depth of 25 µm from the surface before and after 

machining (rn = 70 µm, V = 100 m/min, f = 0.1 mm/rev) and burnishing under dry and 

cryogenic conditions; and (b) variation of peak breadth with depth below the surface 

before and after cryogenic machining (rn = 70 µm, V = 100 m/min, f = 0.1 mm/rev) 

and burnishing. 
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4.3.6 Surface roughness 

 

Figure 4.16 shows the surface roughness (Ra) before and after burnishing under 

dry and cryogenic conditions. The surface roughness reduced from 0.26 µm to 0.22 µm 

after dry burnishing. The application of liquid nitrogen led to slightly better surface 

roughness (0.20 µm). This trend agrees with the finding from machining experiments as 

shown in Figure 3.18. However, while most burnishing processes reported in literature 

generate better surface finish than machining (Hassan and Al-Bsharat, 1996; Salahshoor 

and Guo, 2011), the burnishing processes used in this study lead to worse surface finish 

compared with machining. The surface roughness in the machining experiments ranges 

from 0.07 µm to 0.17 µm as shown in Figure 3.18 and Figure 3.29. This disagreement is 

likely caused by the fixed roller setting used in this study inducing strong ploughing 

effects as well as significant heat generation with material side flow. The higher 

temperature increased the adhesive effects between the magnesium workpiece and the 

steel roller, which could lead to the formation of unstable build-up edge on the roller, and 

therefore damaged the surface finish. This claim was supported by the finding in Chapter 

3 that machining with larger edge radius tools increased the surface roughness since 

honed tools induced more ploughing effects and heat generation.  

The formation of build-up edge may be reduced by adjusting the burnishing 

conditions, such as burnishing speed and feed rate as well roller material, which were not 

changed in the current study.  By optimization of these burnishing conditions, better 

surface finish could likely be achieved. 
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4.4 Summary 

A custom made burnishing tool where the tool was fixed has been used to process 

the AZ31B Mg alloy. The influence of burnishing using both dry and cryogenic 

conditions on several aspects of surface integrity was investigated, including 

microstructures, crystallographic orientations, residual stresses, hardness and surface 

roughness. Major observations from this experimental study can be summarized as 

follows: 

 The forces generated during burnishing were remarkably larger than those required 

during machining of the same type specimens. The radial forces during dry and 

cryogenic burnishing were 1278 N and 1500 N, respectively. The largest radial force 

during machining was only 205 N.  

 The temperature of the workpiece first increased with the distance away from the 

liquid nitrogen nozzle from 80 °C to 113 °C, and then stabilized at 100 °C during 

cryogenic burnishing.  

Figure 4.16: Surface roughness (Ra) before and after burnishing under dry and 

cryogenic conditions. 
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 The process-influenced layers where microstructures were significantly changed were 

much thicker after burnishing than machining. While the maximum thickness of the 

grain refined layers was only 20 µm after machining, and these layers after 

burnishing were notably extended to 3.1 mm in dry burnishing and 3.4 mm in 

cryogenic burnishing.  

Grain refinement induced by DRX occurred in the process-influenced layers 

after burnishing. The average grain size near the topmost surface was reduced from 

an initial value of 11.9 µm to 0.5 µm after cryogenic burnishing and 1.4 µm after dry 

burnishing. The percentage of recystallized grains decreased with distance below the 

burnished surface. Ultrafine grains were visible to the depth of 812 µm below the 

surface in dry burnishing and 1118 µm in cryogenic burnishing. 

 The relative intensity of the (0002) basal plane, which was the weakest compared 

with other peaks before burnishing, was significantly increased and became the 

strongest after burnishing.  This seems to have significantly enhanced the corrosion 

resistance of AZ31B Mg alloy. The application of liquid nitrogen during burnishing 

did not have any significant influence on the crystallographic orientations. 

 The residual stresses at the depth of 25 µm from the surface became more tensile after 

burnishing in the circumferential direction, compared with the initial status, and are 

more compressive in the axial direction. The application of liquid nitrogen during 

burnishing led to the formation of more tensile residual stresses in both directions.  

Tensile residual stresses of about 20 MPa were induced by cryogenic 

burnishing in the circumferential direction up to 1 mm from the burnished surface. 

However, large compressive stress was generated in the axial direction. The peak 
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compressive stress was -85 MPa, which is 85% of the compressive yield stress of 

AZ31B Mg alloy (110 MPa); the depth of the peak value was 515 µm below the 

burnished surface. The depth of the compressive residual stress layer in the axial 

direction exceeded 1 mm.  

The large difference in residual stress values in the two directions could be 

caused by the different deformation directions. Bur formation was evident after both 

dry and cryogenic burnishing which suggested severe flow of the material in the axial 

direction during the burnishing process. Further studies are needed to investigate the 

possible causes for the different distribution of residual stresses in the two directions.  

 The hardness near the burnished surface after dry and cryogenic burnishing was 

increased by 70% and 93%, respectively compared with the initial material. The 

hardness after dry burnishing decreases more abruptly with the increase in depth 

below the burnished surface than that after cryogenic burnishing.  

 The surface roughness after burnishing under both dry and cryogenic conditions was 

reduced from 0.26 µm to 0.22 µm and 0.20 µm, respectively, which agrees with the 

finding in machining (Chapter 3) that the application of liquid nitrogen improves the 

surface finish. However, the surface roughness after burnishing was larger than the 

surface roughness after machining and is contradictory with the literature where 

burnishing normally generates better surface finish. This is more likely caused by 

using the fixed tool where the adhesive effects between the workpiece and the tool 

became more severe, and cause the temperatures to increase.    
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CHAPTER 5: EXPERIMENTAL STUDY ON CORROSION PERFORMANCE OF 

MACHINED AND BURNISHED AZ31B MAGNESIUM ALLOY 

 

5.1  Introduction 

Poor corrosion resistance of Mg alloys limits their application to a great extent. It 

has been reported recently that the corrosion performance of Mg alloys strongly depends 

on microstructure (especially grain size), crystallographic orientations and residual 

stresses, all of which were found to be significantly modified by the 

machining/burnishing processes as shown in Chapters 4 and 5.  

To evaluate the corrosion resistance of AZ31B Mg alloy processed under various 

machining and burnishing conditions, corrosion tests in both 5 weight percent (wt.) % 

NaCl solution and simulated body fluid (SBF) were conducted. Remarkable improvement 

in corrosion performance has been achieved by cryogenic machining and burnishing 

under some conditions. The nano/ultrafined grain refinement layers induced by 

machining/burnishing act as protective coatings and significantly improve the corrosion 

resistance. Crystallographic orientations were found to be another critical factor, 

especially for burnished samples. The influence of residual stresses was evident on 

samples machined using different cutting speeds as well as electrochemical 

measurements on burnished samples.  

This study demonstrates the success of a novel approach to enhance the corrosion 

resistance of Mg alloys by cost-effective and industrially available processes, cryogenic 

machining and burnishing, by tailored surface integrity.   
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5.2 Corrosion Performance of Machined AZ31B Mg Alloy 

To evaluate the corrosion performance of the machined AZ31B Mg alloy, samples 

were cut from the machined discs. The specimen shape was similar to the metallurgical 

samples shown in Figure 3.2. The area of the machined surface for each sample was 

about 60 mm
2
. The conditions for the machined AZ31B Mg samples selected for 

corrosion tests are shown in Table 5.1. Conditions that led to notable differences in 

microstructures, crystallographic orientations and/or residual stresses were chosen for the 

corrosion study.  

Table 5.1: Machining conditions for samples subjected to corrosion tests 

No. 
Tool Edge 

Radius, rn [μm] 

Cooling 

Method 

Cutting 

Speed, V 

[m/min] 

Feed Rate, f 

[mm/rev] 

1 30 Dry 100 0.1 

2 70 Dry 100 0.1 

3 30 Cryogenic 100 0.1 

4 70 Cryogenic 100 0.1 

5 70 Cryogenic 50 0.05 

6 70 Cryogenic 100 0.05 

7 70 Cryogenic 150 0.05 

8 70 Cryogenic 100 0.25 

 

To evaluate the corrosion performance, the machined samples were immersed in 

two different solutions. One solution was 5% weight percent (wt.) NaCl solution and the 

corrosion test was conducted at room temperature. This test was conducted to evaluate 

the corrosion performance for the transportation industry, such as automotive and 

aerospace applications. The other solution used was simulated body fluid (SBF) and its 

composition is shown in Table 5.2 (Song and Song, 2007). The pH value of the SBF was 
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adjusted to 7.4. The solution was kept in an incubator to maintain the temperature at 37 ± 

1 °C. This test was conducted to evaluate the corrosion performance of magnesium alloys 

in the human body environment.  

Table 5.2: Composition of simulated body fluid (SBF) 

Name Concentration [g/L] 

NaCl 8 

KCl 0.4 

CaCl2 0.14 

NaHCO3 0.35 

C6H12O6 1 

MgSO4.7H2O 0.2 

KH2PO4.H2O 0.1 

Na2HPO4.7H2O 0.06 

  

The immersion time was 85 hours for the test in 5 wt. % NaCl solution and 10 

days for the test in the SBF. After immersion, the samples were taken out of the solutions 

and the corrosion products were removed by chromic acid (200 g/L CrO3 and 10 g/L 

AgNO3). After washing with distilled water and drying, photos were taken by a camera to 

show the overview of the corroded surface. A Zygo New View 7300 measurement 

system was used to measure the corrosion depth. A 2 mm ×2 mm 3D topographic picture 

of the severely corroded area was recorded for each condition; the depth of the deepest 

pits was obtained by the corresponding line profiles.  

5.2.1 Corrosion performance in 5% wt. NaCl solution 

 Figure 5.1 shows the photos of machined AZ31B Mg samples under different 

cooling conditions and cutting edge radius after the corrosion test in 5 wt. % NaCl for 85 

hours. Differences in corrosion performance were found between different machining 
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conditions. The white or light grey portions on the photos in Figure 5.1 represent the 

original surface, while the dark portions are the places where large amounts of Mg were 

lost due to corrosion. It is obvious that dry machining using a 30 µm edge radius tool led 

to the worst corrosion performance. With the same edge radius, the application of liquid 

nitrogen during machining significantly improves the corrosion performance. However, 

when the cutting edge radius was increased to 70 µm, the differences of the corroded 

surface were limited between the dry and cryogenic conditions. Under the same dry 

cutting conditions, increasing the cutting edge radius from 30 µm to 70 µm remarkably 

improves the corrosion resistance of the AZ31B Mg alloy.  

 The differences in corrosion performance correlates well with the thickness of the 

―featureless layer‖ reported in Chapter 3. The sample machined using a 30 µm tool under 

dry condition, which exhibited the worst corrosion, has no featureless layer. All other 

samples have different thickness of the featureless layer (8-15 µm). It could be concluded 

that the featureless layer which consisted of nanocrystallined grain structures served as a 

protective coating and improved the corrosion resistance of AZ31B Mg alloy. This result 

agrees with the recent finding that grain refinement improves the corrosion resistance of 

Mg alloys (Wang et al., 2007; Alvarez-Lopez et al., 2010; Birbilis et al., 2010b). 
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Figure 5.2 and Figure 5.3 show the Zygo 3D topographic pictures of the severely 

corroded area as marked by red square in Figure 5.1, and the corresponding line profiles. 

While the total corroded area is much smaller on the sample machined under cryogenic 

condition (Figure 5.1) using the 30 µm edge radius tools, the maximum depths of the 

corrosion pits are almost the same: 198 µm and 171 µm for cryogenic and dry conditions, 

respectively. As shown in Figure 5.3, the application of liquid nitrogen does not lead to 

notable differences in the total corroded area. However, cryogenic machining results in 

about 183% increase in the maximum depth of the corrosion pits (130 µm vs. 71 µm). 
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Figure 5.1: Photos of machined AZ31B Mg samples under different cooling 

conditions and cutting edge radii after corrosion test in 5 wt. % NaCl for 85 hours 

 (V = 100 m/min, f = 0.1 mm/rev). 
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The results obtained when using both 30 µm and 70 µm edge radius tools show 

that the application of liquid nitrogen does not lead to notable reduction in the maximum 

corrosion pit depth, and it even increases significantly when the large edge radius tool 

was used. This could be explained by the microstructures of the machined samples in 

Figure 3.11; large amount of deformation twins, which were reported to increase the 

corrosion rate of AZ31B Mg alloy (Aung and Zhou, 2010), formed below the featureless 

layers when liquid nitrogen was used. Therefore, after the 5 wt. % NaCl solution 
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Figure 5.2: Zygo 3D topographic pictures of the corroded area as marked by red square 

in Figure 5.1 and corresponding line profiles (V = 100 m/min, f = 0.1 mm/rev). 
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penetrates the featureless layer, the twinning areas in the samples after cryogenic 

machining are more easily corroded, and this leads to deeper corrosion pit.  
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Figure 5.3: Zygo 3D topographic pictures of the corroded area as marked by red square 

in Figure 5.1 and corresponding line profiles (V = 100 m/min, f = 0.1 mm/rev). 
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The influence of cutting speed on the corrosion resistance of AZ31B Mg alloy was 

found to be remarkable. Both Figures 5.4 and 5.5 show that the total corroded areas 

increased with the use of the increased cutting speed during machining. The maximum 

corrosion depth also increased from 40 µm at 50 m/min to 77 µm at 100 m/min and 164 

µm at 150 m/min. The observable microstructrual differences among these conditions are 

not significant since featureless layers with thickness ranging from 3 to10 µm were 

formed on all three samples as shown in Figure 3.24. The different corrosion behaviors 

could be caused by the difference in residual stresses.  It was reported that the cutting 

temperature in machining Mg alloys increased dramatically with increased cutting speed 

(Kurihara et al., 1981). The higher temperature caused by increased cutting speed induces 

more tensile residual stresses on the machined surface, which could increase the 

corrosion rate remarkably (Denkena and Lucas, 2007).  
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Figure 5.4: Photos of machined AZ31B Mg samples under different cutting speeds 

after corrosion test in 5 wt. % NaCl for 85 hours  

(cryogenic, rn = 70 µm, f = 0.05 mm/rev). 
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Figure 5.5: Zygo 3D topographic pictures of the corroded area as marked by red square 

in Figure 5.4 and corresponding line profiles (cryogenic, rn = 70 µm, f = 0.05 mm/rev). 
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The influence of feed rate during machining on the corrosion resistance of AZ31B 

Mg alloy after machining is shown in Figures 5.6 and 5.7. The thickness of the featureless 

layer on the sample machined using the feed rate of 0.05 mm/rev was about 10 µm 

(Figure 3.24b) while no featureless layer was observed using a feed rate of 0.25 mm/rev. 

It is expected that much better corrosion resistance should be found on the sample 

machined under the small feed rate. However, it was shown that the maximum depth of 

the corrosion pits for the two feed rates were almost the same at about 80 µm; the 

corroded area of the sample machined at the feed rate of 0.05 mm/rev is a little smaller 

than the one using 0.25 mm/rev. It was shown in Figure 3.27 that the higher feed rate led 

to the strength of the basal texture being twice as large as the one machined using a 

smaller feed rate, which may contribute to its good corrosion resistance. Also, due to the 

high material removal rate at 0.25 mm/rev, more heat could be removed by the chips and 

thereby reduced the temperature at the cutting zone, which may induce more compressive 

residual stresses.   
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Figure 5.6: Photos of machined AZ31B Mg samples under different cutting speeds 

after corrosion test in 5 wt. % NaCl for 85 hours  

(cryogenic, rn = 70 µm, V = 100 m/min). 
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5.2.2 Corrosion performance in SBF 

Figure 5.8 shows the photos of AZ31B Mg samples machined under different 

cooling conditions and cutting edge radii after corrosion test in SBF for 10 days. Similar 

to the corrosion performance in 5 wt. % NaCl, dry machining using the 30 µm cutting 

edge radius tool led to the poorest corrosion resistance. This finding further proves that 

the featureless layers formed on the other three samples as shown in Figure 3.11 acted as 

protective coatings and prevented the matrix from further corrosion.  
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Figure 5.7: Zygo 3D topographic pictures of the corroded area as marked by red square 

in Figure 5.6 and corresponding line profiles (cryogenic, rn = 70 µm, V = 100 m/min). 

 

 

(b) 0.25 mm/rev 
 



134 

 

 

Using 30 µm edge radius tools, the maximum depth of the corrosion pits on the 

machined samples under cryogenic cooling was reduced significantly from 167 µm to 73 

µm, when compared with dry machined specimens as shown in Figure 5.9.  This finding 

is different from the results obtained in 5 wt. % NaCl solution which suggest that the 

deformation twins might not reduce the corrosion resistance of AZ31B Mg alloy in SBF. 

Even greater reductions in the maximum depth of corrosion pits were found on samples 

machined using 70 µm edge radius tools. Almost no corrosion damage can be found on 

the sample machined using cryogenic condition with the large edge radius tool. This 

finding agrees with the expectation in Chapter 3, since the surface integrity induced by 

cryogenic machining with the 70 µm edge radius tool was the best in terms of nano grain 

structures, strongest basal texture, and large and deep compressive residual stresses.   
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Figure 5.8: Photos of machined AZ31B Mg samples under different cooling 

conditions and cutting edge radii after corrosion test in SBF for 10 days  

(V = 100 m/min, f = 0.1 mm/rev). 
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Figure 5.9: Zygo 3D topographic pictures of the corroded area as marked by red 

square in Figure 5.8 and corresponding line profiles  

(V = 100 m/min, f = 0.1 mm/rev). 
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When cutting tools with 70 µm cutting edge radius was used under cryogenic 

cooling conditions, all machined AZ31B Mg samples exhibited little corrosion damage 

after 10 days‘ immersion in SBF no matter what the cutting speeds used as shown in 

Figure 5.10. The corrosion resistance under the smallest cutting speed (50 m/min) was 

the best with almost no visible corrosion pits even in the Zygo topographic pictures 

(Figure 5.11). The corrosion damage using cutting speeds of 100 m/min and 150 m/min is 

in the shape of thin lines whose maximum depth is only about 40 µm.  
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Figure 5.10: Photos of machined AZ31B Mg samples under different cutting speeds 

after corrosion test in SBF for 10 days (cryogenic, rn = 70 µm, f = 0.05 mm/rev). 
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(a) 50 m/min 

(b) 100 m/min  

(c) 150 m/min  

Figure 5.11: Zygo 3D topographic pictures of the corroded area as marked by red square 

in Figure 5.10 and corresponding line profiles (cryogenic, rn = 70 µm, f = 0.05 mm/rev). 
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Different from the corrosion results in 5 wt. % NaCl solution, larger feed rate led 

to more corrosion damage on the machined AZ31B Mg alloy as shown in Figure 5.12. 

The maximum depth of the corrosion pits are almost the same at about 40 µm. However, 

the surface machined under a larger feed rate is much rougher with several corrosion 

lines deeper than 10 µm, while the one machined using a smaller feed is relatively 

smooth as shown in Figure 5.13. The cause for the different behaviors in the two 

solutions should be the differences in corrosion mechanism since 5 wt. % NaCl is a more 

aggressive solution than SBF.  
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Figure 5.12: Photos of machined AZ31B Mg samples under different cutting speeds 

after corrosion test in SBF for 10 days (cryogenic, rn = 70 µm, V = 100 m/min). 
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5.3 Corrosion Performance of Burnished AZ31B Mg Alloy  

 A comprehensive study using four different methods was conducted to evaluate 

the corrosion resistance of burnished AZ31B Mg alloy: (a) constant immersion test, (b) 

hydrogen evolution test (Song et al., 2001), (c) in-situ corrosion observation, and (d) 

electrochemical measurements. To investigate the influence of burnishing on the 

corrosion resistance, an un-burnished sample was also tested as a reference for 

comparison purposes. As the surface roughness (Ra) of the burnished surfaces was 

reduced from the initial 0.8 µm to about 0.2 µm under both dry and cryogenic conditions, 

(a) 0.05 mm/rev 
 

Figure 5.13: Zygo 3D topographic pictures of the corroded area as marked by red square 

in Figure 5.12 and corresponding line profiles (cryogenic, rn = 70 µm, V = 100 m/min). 
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to eliminate the possible influence of surface roughness on corrosion resistance (Song 

and Xu, 2010), the un-burnished samples were ground successively using up to 4000 grit 

SiC paper prior to all the corrosion tests in order to have similar surface roughness. All 

the corrosion tests were conducted in 5 wt. % NaCl solution at room temperature.  

 In the constant immersion tests, the burnished and ground surfaces were immersed 

in the solution for 200 hours. After immersion, the corrosion products were removed by 

chromic acid (200 g/L CrO3 and 10 g/L AgNO3); after washing with distilled water and 

drying, photos were taken by a camera. Replicated samples for ground and cryogenic-

burnished surfaces were also taken out after 30 hours‘ immersion. Without cleaning the 

corrosion products, the samples underwent the same procedure as used for the original 

microstructural analysis to investigate the cross-sectional microstructures after corrosion.  

 For hydrogen evolution test, the ground and burnished surfaces (the lateral 

surfaces, which are perpendicular to the burnished surface, were covered with epoxy 

resin) were exposed to the solution for 7 hours. Pipettes were used to collect the evolved 

hydrogen from the samples (Song et al., 2001). Three replicates were measured for each 

surface. 

For in-situ corrosion observation, the lateral surfaces of the burnished samples 

prepared under dry and cryogenic conditions were exposed to the 5 wt.% NaCl solution 

and the corrosion features at several times were recorded by camera. After immersion for 

70 hours, the samples were taken out of the solutions and cleaned with the chromic acid. 

Topographic morphologies of the corroded surfaces were taken by using a Zygo 

NewView 6000 measurement system which was based on white light interferometry. 
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 For electrochemical test, a Solatron 1280 potentiostat system was used to obtain 

the polarization curves and AC impedance. The ground and burnished surfaces were 

exposed to the NaCl solution. Platinum gauze was used as a counter electrode and a KCl-

saturated Ag/AgCl electrode was used as a reference in the cell. During AC impedance 

measurements, the frequency ranged from 17,777 Hz to 0.1 Hz with 7 points/decade, and 

the amplitude of the sinusoidal potential signal was 5mV with respect to the OCP. 

Potentiodynamic polarization curve measurements were performed at a potential 

scanning rate of 0.1 mV/s from −0.3 V vs. OCP to −1.0 V (Ag/AgCl). 

5.3.1 Constant immersion test 

As shown in Figure 5.14, dramatic differences in surface morphologies can be 

found between the ground and burnished surfaces after the 200 hours immersion test; the 

differences between burnished samples under dry and cryogenic conditions are much 

smaller for the same testing duration than the difference between ground and burnished 

surfaces. The ground surface after immersion is very rough; large and deep pits are 

visible all over the surface. On the dry and cryogenic burnishing surfaces, there are only 

some small pits in the surfaces and the corroded areas of the burnished samples are 

smaller than those in the ground ones. This suggests that much less Mg was corroded 

from the burnished surfaces than the ground surface.   

To investigate the depth of corrosion pits, topographic maps of the severely 

corroded portion of each surface (marked as square boxes in Figure 5.14) were obtained 

using Zygo NewView 6000 measurement system as shown in Figure 5.15 (a) – (c). The 

depth profiles along the dotted lines shown in Figure 5.15 (a) – (c) are presented in 

Figure 5.15 (d). The profiles show that the corrosion pits on the ground samples are very 
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deep; the maximum measured depth is 512 µm while the pits on the burnished surfaces 

are less than 200 µm deep. Figure 5.15 also shows that the corrosion that occurred on the 

burnished samples is more uniform than that on the ground one.  
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Figure 5.14: Surface morphology of AZ31B Mg samples processed by different 

treatments after immersion in 5 wt. % NaCl solution for 200 hours  

(details in the square boxes are shown in Figure 5.15). 
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Figure 5.15: Topographic maps of square boxes in Figure 5.10 obtained by Zygo: (a) 

ground; (b) dry- and (c) cryogenic-burnished samples; and (d) corrosion pit depth profiles 

along the dotted lines. 
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Typical cross-sectional microstructures of ground and cryogenic-burnished 

samples after 30 hours‘ immersion test are shown in Figure 5.16. There are significant 

differences in corrosion morphology between the samples prepared by grinding and 

cryogenic burnishing. Wide and deep corrosion pits are present on the ground sample. 

The grain boundaries are clearly visible, and do not show any barrier effect to corrosion 

development. The surface after cryogenic burnishing is much smoother and corrosion 

occurred more uniformly, with small and shallow pits. The grain boundaries are not 

visible at this scale, and the microstructure is similar to the one shown in Figure 4.6 (c), 

20 µm 

(b) 

20 µm 

(a) 

Figure 5.16: Typical cross-sectional microstructures of (a) ground, and (b) cryogenic-

burnished samples after immersion in 5% wt. NaCl solution for 30 hours. 
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which suggests that corrosion occurred within the grain refined layer after 30 hours‘ 

immersion. The uniformity in corrosion may be due to the similarity in grain size and the 

electrochemical homogenization (Orlov et al., 2011) induced by the burnishing process. 

Different from the ground sample, a layer of corrosion products adhered to the cryogenic-

burnished surface as shown in Figure 5.16 (b). Apparently, the uniform corrosion 

products better protect the substrate from corrosion. This finding is directly supported by 

the literature that a higher density of grain boundaries promoted better mechanical 

adhesion through an oxide pegging mechanism (Tao and Li, 2006; Balakrishnan et al., 

2008a). 

5.3.2  Hydrogen evolution test 

The hydrogen evolution measurement was used to continually monitor the 

corrosion process of the ground and burnished surfaces in the first 7 hours. As shown in 

Figure 5.17, there is a remarkable difference between the ground and burnished surfaces 

while little difference can be detected on burnished surfaces created under both dry and 

cryogenic conditions. The total volume of hydrogen generated in 7 hours from the ground 

surface is 55% more than that from either the dry or cryogenic burnished surfaces. As 1 

mL of hydrogen evolution roughly corresponds to 1 mg of Mg dissolved (Song, 2009), 

the result indicates that in 7 hour immersion, 55% more Mg was corroded from the 

ground sample than from the burnished ones. The results agree with the constant 

immersion test data that the burnished samples under both dry and cryogenic conditions 

have similar corrosion resistance, and are both much more corrosion resistant than the 

ground sample. 
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5.3.3 Electrochemical corrosion behavior 

 The polarization curves of samples after grinding, dry and cryogenic burnishing 

are presented in Figure 5.18 (a). The corrosion potentials for both burnishing condition 

are more negative than the ground sample. The cathodic polarization current densities of 

the burnished surfaces are lower than that of the ground surface, while the latter has 

smaller anodic polarization current densities than the formers. The decreased cathodic 

polarization current densities of the burnished surfaces could be associated with their 

finer grains and (0002) grain orientation.  Grain refinement may lead to dissolution of 

impurities in the grain boundaries, less cathodic sites in the alloy for cathodic reaction 

and thus improved corrosion resistance (Song and Xu, 2010; Song and Xu, 2011). It has 

also been demonstrated (Song et al., 2010b) that the basal textured surface has lower 

polarization current densities.  However, these cannot explain the increased anodic 

polarization current densities.  The accelerated anodic process on burnished samples 

Figure 5.17: Hydrogen evolution of AZ31B samples processed by different treatments in 

5 wt. % NaCl solution. 
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(Figure 5.18 (a)) can only be ascribed to the enhanced micro circumferential tensile 

stress.  In theory, micro-scale residual stresses can reduce the activation energy required 

for an atom to leave the metal lattice and get into the solution.  Therefore, it should not be 

surprising that a stressed metal has a high anodic dissolution rate.  This may explain the 

phenomenon that cryogenic-burnished samples whose residual stresses are more tensile 

(Figure 4.12) also have larger anodic current densities than the dry-burnished ones. An 

accelerated anodic process can lead to reduced corrosion resistance, while decreased 

cathodic current densities will give rise to a retarded corrosion process. In this study, it 

seems that the influence of the accelerated anodic process on corrosion has been 

overwhelmed by the effect of the cathodic current reduction by burnishing.  

Figure 5.18 (b) shows the Nyquist plots of AZ31B Mg samples obtained after 

grinding and burnishing when tested in 5 wt. % NaCl. All spectra have a clear capacitive 

arc at the high frequency region. The diameter of this capacitive loop is associated with 

the charge-transfer resistance. It has been shown by several researchers that a larger 

diameter indicates better corrosion resistance for magnesium alloys (Makar and Kruger, 

1990; Song et al., 2010a). The diameters for the burnished samples under dry and 

cryogenic conditions are larger than that of the ground sample. This agrees well with 

their corrosion damage shown in Figure 5.14 as well as the hydrogen evolution test 

results (Figure 5.17). Thus, it can be concluded that the burnished samples prepared by 

dry and cryogenic conditions are similar to each other, and are both significantly better 

than the ground sample in their corrosion resistance.  
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Figure 5.18: (a) Polarization curves and (b) Nyquist plots of AZ31B Mg samples after 

grinding, dry and cryogenic burnishing in 5 wt.% NaCl solution 
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5.3.4 Corrosion test of lateral surfaces 

To further investigate the effect of grain size, grain orientation and residual stress 

on corrosion performance, the lateral surfaces (perpendicular to the burnished surfaces as 

shown in Figure 4.1) of the burnished samples were exposed to 5 wt. % NaCl solutions 

for 70 hours. Photos taken at the end of the immersion test (Figure 5.19 (a) and (c)) 

showed that the burnished surface layer (the process-affected region) had generally less 

corrosion damage than the bulk region. The topographic pictures from Zygo New View 

6000 measurement system and the corresponding line depth profiles (Figure 5.19 (b) and 

(d)) actually show three different zones formed on the lateral surface during the 

immersion test. This data basically agrees with the previous results (Figures 5.14 - 5.18) 

that burnishing enhanced the corrosion resistance of AZ31B Mg alloy. More detailed 

examination of the lateral surface reveals that there are two different types of corrosion 

damage within the process-influenced layer. More material is dissolved in Zone 1 (up to 

about 1 mm below surface) of the cryogenic-burnished sample; Zone 2 (from 1 mm to 2 

mm) is relatively more corrosion resistant than Zone 1. The thickness of Zone 1 on the 

dry-burnished sample is about half that obtained under cryogenic conditions and the 

corrosion resistant Zone 2 is thicker than Zone 1. As Zone 1 has the finest grains, grain 

refinement obviously cannot explain the faster corrosion rate as described here.  
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To find possible causes of the reduced corrosion resistance in Zone 1, the 

evolution of texture with the depth from the cryogenic-burnished surface was 

investigated using XRD. To obtain the crystallographic orientations of the material in the 

top 0.5 mm, a lead tape was used to cover the rest of the sample. To evaluate the texture 

at depths of 2 mm and 6 mm, a window of about 1 mm wide was cut in the lead tape and 

used to mask the rest of the sample. The evolution of texture with the depth below the 

cryogenic-burnished surface is shown in Figure 5.20 (the XRD method is the same as 

described in Chapter 3). No basal peak is found in the top 0.5 mm, which corresponds to 

Zone 1 in Figure 5.19 (d). The strength of the basal texture increases with the increase in 

(a) (b) 

(d) 
(c) 

 
2 3 

2 3 1 

1 

Figure 5.19: Typical corrosion features of (a) dry-, and (c) cryogenic-burnished samples 

after immersion in 5 wt. % NaCl solution for 70 hours; and the corresponding 

topographic map and depth profile of the black line of (b) dry-, and (d) cryogenic-

burnished samples. 
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depth. The rolled surface of Mg alloys has been reported to have strong basal texture 

(Song et al., 2010b).  The decrease of basal texture from the bulk to the surface is 

obviously caused by the burnishing process, and this agrees with the fact that the basal 

plane is parallel to the burnished surface (Figure 4.11). The lower corrosion resistance of 

Zone 1 where the grain size was small should be attributed to the lack of the basal 

texture. This conclusion is supported by literature which shows that the corrosion rate of 

AZ31B Mg dramatically increases with decreasing basal texture intensity (Xin et al., 

2011). It is also consistent with the result that the corrosion resistance of ECAPed Ti with 

weaker basal texture being lower than the material with a strong basal texture, even if the 

grain size is smaller (Hoseini et al., 2009).  

 

 



152 

 

 

5.4 Summary 

An experimental investigation has been performed to study the influence of the 

used machining and burnishing conditions on the corrosion resistance of AZ31B Mg alloy 

specimens. The effects of different processing parameters on corrosion resistance were 

also investigated, especially cooling method (dry vs. cryogenic). Major observations from 

this experimental corrosion study can be summarized as follows: 

 With the same cutting edge radius of 30 µm, the application of liquid nitrogen during 

machining significantly improved the corrosion resistance of AZ31B Mg alloy in both 

5 wt. % NaCl solution and SBF.  

Figure 5.20: Evolution of texture on the lateral surface at different depth after cryogenic 

burnishing. and depth profile of the black line of (b) dry-, and (d) cryogenic-burnished 

samples. 
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 The featureless layers formed during machining where nano-grain structures exists, 

which act as protective coatings and significantly improved the corrosion resistance in 

the two solutions tested. 

 Large amount of twinning underneath the featureless layer was found to increase the 

maximum depth of corrosion pits on the machined samples immersed in 5 wt. % 

NaCl solutions while showing no influence in SBF. 

 Using the same edge radius of 70 µm and cryogenic cooling, it was found that cutting 

speed has more influence on corrosion resistance than does feed rate. A larger cutting 

speed decreased the corrosion resistance which may be due to the larger tensile 

residual stresses induced by higher cutting temperatures. The differences in corrosion 

resistance induced by cutting speed were more obvious when the specimens were 

tested in the 5 wt. % NaCl solution than in the SBF. On the other hand, the difference 

in corrosion resistance induced by feed rate was more notable in the SBF than in the 5 

wt. % NaCl. 

 Both dry and cryogenic burnishing significantly improved the corrosion resistance of 

AZ31B Mg alloy in 5 wt. % NaCl solution as compared to the ground material. 

 Similar to the results obtained from machined samples, the thick grain refinement 

layers induced by burnishing act as protective layers and led to the enhanced 

corrosion resistance. There is little difference between the burnished samples 

prepared under dry and cryogenic conditions, which suggested that further grain 

refinement down to smaller than 1µm did not result in better corrosion resistance. 

 Crystallographic orientations of exposed specimen surfaces have a dramatic influence 

on the corrosion resistance of burnished AZ31B Mg alloy. Materials with smaller 
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grain size but little basal texture are less corrosion resistant than the ones with similar 

grain size and strong basal texture.  

 Residual stresses increased the anodic polarization current densities of burnished 

samples, but decreased the cathodic polarization current densities. Thus, their 

influence on overall corrosion resistance is relatively less evident and outweighed by 

the grain size and the texture effects. Further investigation is needed to study the 

influence of residual stresses on corrosion resistance.  
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CHAPTER 6: FINITE ELEMENT MODELING OF SURFACE INTEGRITY IN 

MACHINING AZ31B MAGNESIUM ALLOY 

 

6.1 Introduction 

In the previous chapter, surface integrity changes induced by machining and 

burnishing, especially microstructual changes were shown to notably influence the 

corrosion performance of AZ31B Mg alloy. In order to improve the functional 

performance of machined components, it is critical to have a better control of the surface 

integrity than the current industrial practices where surface roughness is the only criterion 

for most manufacturers.  It was shown in Chapters 3 and 4 that the surface integrity can 

be changed by many processing conditions, including cooling methods, tool edge radius, 

etc. These factors are not independent and will interact with each other, which make it 

more complex to understand their relationships with the resulting surface integrity issues; 

large number of experimental studies are needed, which is time consuming and not cost-

effective.  

Finite element modeling (FEM) has been used widely in machining to reduce the 

need for extensive experiments and help researchers to better understand the metal 

cutting mechanism though the prediction of information near the cutting tool that cannot 

be easily measured, such as strain, strain-rate and temperature. In this chapter, a FE study 

for machining of AZ31B Mg alloy was developed and calibrated using the experimental 

data obtained in Chapter 3. A user subroutine was developed to predict the formation of 

featureless layers induced by machining based on the dynamic recystallization (DRX) 

mechanism in AZ31B Mg alloys. The user subroutine was calibrated using the 
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experimental data reported in Chapter 3. Good agreements between the predicted and 

measured grain size as well as thickness of featureless layers (due to the limited scale of 

observation using optical microscope) were achieved.  

6.2 Finite Element Model Setup 

 The commercial FEM software DEFORM-2D
TM

, a Lagrangian implicit code, was 

used to simulate the orthogonal cutting process of AZ31B Mg alloy. The workpiece was 

initially meshed with 8000 isoparametric quadrilateral elements. The element density 

around the cutting edge, along the machined surface and in the machined chip was set to 

be much larger than at the other location as shown in Figure 6.1. The smallest element 

dimension on the workpiece is about 10 µm. The workpiece was assumed to be rigid 

visco-plastic material and the elastic portion was neglected. The tool was meshed with 

3000 elements and assumed to be rigid but conduct heat. A plane-stress coupled thermo-

mechanical analysis was performed.   

 The mesh and boundary conditions for the FE model are shown in Figure 6.1. The 

major groove parameters listed in Chapter 3 were used to construct the grooved cutting 

tool. The bottom of the workpiece was fixed in the vertical direction and allowed to move 

horizontally at the velocity that equaled the cutting speed. No velocity boundary 

conditions were applied for the left and right ends. For thermal analysis, the temperatures 

at the bottom and left sides of the workpiece as well as the top and right sides of the 

cutting tool were set to equal to the room temperature, Troom, which was 20 °C. The top 

and right sides of the workpiece as well as the left and bottom sides of the cutting tool 

(marked by red lines in Figure 6.1) were allowed to exchange heat with the environment; 

the convection coefficient was 20 W/ (m
2
K), which is the default value for free air 
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convection in DEFORM 2D (normally in the range of 5-25 W/(m
2
K)). An environmental 

window for heat exchange was defined as shown in Figure 6.1 and the width of the 

windows is 1 mm. The window is fixed in its position and does not move with the 

workpiece. The local convection coefficient in the window can be adjusted to simulate 

the cryogenic cooling effects and is one of the major parameter to be calibrated for 

modeling cryogenic machining.  

 

  

6.2.1 Material properties  

The physical and thermal properties of AZ31B Mg alloy used in the FE model are 

listed in Table 6.1 (Hibbins, 1998). The default values for the uncoated carbide tool (15% 

cobalt content) in DEFORM was used and also listed in the table.  

1 mm 
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Red boundaries: heat 
exchange with environment 
 

Heat exchange 
window used to 
simulate 
cryogenic cooling 
 

Figure 6.1: Mesh and boundary conditions for the FE model. 
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Table 6.1: Physical and thermal material properties of AZ31B Mg alloy (Hibbins, 1998) 

and the uncoated carbide tool 

 

AZ31B Mg alloy Cutting tool 

Melting temperature [K] 891 N/A 

Young's Modulus [GPa] 45 N/A 

Possion's ratio 0.35 0.23 

Thermal Conductivity [W/(mK)] 77+0.096 T 82.24 

Specific heat capacity [J/(kgK)] 1000+0.666T 5.79 

Thermal expansion coefficient [K
-1

] 2.48×10
-5

 6.3×10
-6

 

 

6.2.2 Flow stress model  

The Johnson–Cook constitutive equation was implemented in the FE code by a 

user subroutine used to model the material behavior of AZ31B Mg alloy during 

machining. The equation is:  

           
0

( ) [1 ln( )] [1 ( ) ]n mroom

m room

T T
A B C

T T
                                      (6.1) 

where σ is the equivalent flow stress;  is the equivalent plastic strain;  is the 

equivalent plastic strain-rate (s
-1

);  0  is the reference equivalent plastic strain-rate (s
-1

); 

T is the temperature of the work material; Tm is the melting temperature of the work 

material and Troom is the room temperature  (20 ºC). Coefficient A is the yield strength 
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(MPa); B is the hardening modulus (MPa); C is the strain-rate sensitivity coefficient; n is 

the hardening coefficient and m the thermal softening exponent.           

Hasenpouth (Hasenpouth, 2010) performed a wide range of mechanical tests of 

AZ31B Mg sheet where the strain-rates varied from 0.003 s
-1 

to 1500 s
-1 

and the 

temperature from room temperature to 250 ºC. After data fitting, the constants for the 

Johnson-Cook constitutive model were found for both rolling and transverse directions 

and are shown in Table 6.2. The average of the two directional values was used as the 

start values for the Johnson-Cook constants in the FE model. The values of A and B were 

adjusted slightly in the calibration process and will be explained in details in the 

corresponding section below. 

Table 6.2: Initial Johnson-Cook constants of AZ31B Mg alloy                      

(Hasenpouth, 2010) 

 

Rolling  

Direction 

Transverse 

Direction 

Average 

A [MPa] 133.1 193.8 163.5 

B [MPa] 345.8 296.8 321.3 

n 0.293 0.380 0.337 

C 0.016 0.016 0.016 

m 1.849 1.808 1.829 

 

 

 

 



160 

 

6.2.3 Friction model  

The influence of different tool-chip friction models on FEM results was 

investigated by Filice et al. (Filice et al., 2007) and it was found that as long as the 

friction coefficient was well calibrated, both cutting forces and chip morphology could be 

well predicted independent of which friction model was used. In this study, a simple 

constant shear friction model is applied: 

                                               τ =µ∙ τ0                                                                           (6.2) 

where τ is the frictional stress between the tool and the chip and work material, τ0 

is the shear flow stress of the work material and µ is a friction coefficient.  it was reported 

that the application of liquid nitrogen decreased the friction coefficient in a contact 

sliding friction test (Hong et al., 2002), especially when the contact force was low (200-

300 N). However, the test was conducted at room temperature which is different than the 

actual machining environment. The influence of cryogenic cooling on friction coefficient 

was not well reported by other literature. In the present study, the same friction 

coefficient was used for both dry and cryogenic machining. 

6.2.4 Fracture criterion  

It was shown in Chapter 3 that the machined chips of AZ31B Mg alloy under all 

the tested conditions were serrated. Therefore, tt is necessary to simulate the chip 

serration process in the FE model in order to accurately predict the forces and 

temperatures. There are two types of approaches that are utilized to simulate serrated chip 

formation. The first one is by using damage or material failure models together with the 

standard Johnson-Cook material model (Obikawa and Usui, 1996; Shivpuri et al., 2002; 
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Umbrello, 2008). It is assumed that by using this method that the chip segmentation 

occurred by crack initiation at critical points which is then followed by propagation 

inside the primary shear zone. The presence of adiabatic shear bands support the theory 

of saw-tooth chip formation by crack initiation since it was reported that the adiabatic 

shear bands are commonly the precursors to fracture (Bai and Dodd, 1992). The other 

approach to simulate serrate chips is to use a modified material flow stress model 

incorporating ―flow softening‖ effects. Flow softening is due to microscopic level 

changes and is represented by a decrease in stress with increasing strain beyond a critical 

strain value. Below that critical strain, the material exhibits strain hardening. The 

standard Johnson-Cook material model agrees well with the material flow stress curves 

obtained from Split-Hopkinson Pressure Bar Test. However, it is noted that the levels of 

strain, strain-rate and temperature achieved with this experimental method are lower than 

the actual values that occur during the machining. The achievable maximum strain by the 

Split-Hopkinson Pressure Bar is about 0.5 and strain-rate is about 10
3
 s

-1 
(Calamaz et al., 

2008) while the actual machining process involves large shear strain (typically 2–10) and 

higher strain-rates (up to 10
6
 s

-1
) rates. Outside the experimental range, the standard 

Johnson-Cook model is extrapolated and the flow stress will keep increasing with 

increased strain which was proved wrong by several researchers who reported that the 

flow stress decreased after the strain reached a critical value in Ti alloys (Miller et al., 

1999). The flow softening of Ti alloys was found to be caused by DRX (Ding and Guo, 

2004). The second approach of incorporating flow softening becomes more popular 

recently due to the increased understanding of the material behaviors, especially on Ti 

alloys where large amount of material testing data has been reported. The second 
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approach is also preferred by the author since DRX is proved to occur during machining 

of AZ31B Mg alloy in Chapter 3 and should be the caused for flow softening. However, 

due to the limitation of the existing material testing data on Mg alloys, it is not possible at 

this time to develop a good material constitutive model incorporating DRX effects. 

Therefore, the first approach is used in the current study. The Cockroft and Latham‘s 

fracture criterion  (Cockcroft and Latham, 1968) were reported to successfully simulate 

the formation of serrated chips in machining Ti alloys (Shivpuri et al., 2002; Umbrello, 

2008). This criterion is used in the current study and is expressed as:

   

 

                                               1

0

f

d D                                                    (6.3) 

where f   is the effective strain; 1 is the maximum principal stress; D is a value 

calculated for each element by DEFORM for each step by using Equation (6.3). When 

the calculated D value of any elements is larger than Dcritical, which is a material constant, 

the flow stress of these elements is forced to be only 10% of the original value, which is 

the stress calculated using Equation (6.1). The changes of damage value, effective stress 

and effective strain during one chip segmentation cycle are shown in detail in Appendix 

A, which demonstrated the ability of the fracture criterion to simulate the chip 

segmentation process during machining. The DEFORM software automatically reduced 

the flow stress of those elements whose calculated D values are larger than Dcritical to 10% 

of the original flow stress. This forced reduction of flow stress crudely simulates the 

―flow softening‖ induced by DRX. It is expected that by calibration of the material 

constants using the experimental data reported in Chapter 3 a reasonable agreement 

between the FE model and the measured data on force, temperature and chip morphology 
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can still be achieved. In part this approximate technique is used because the procedures 

for simulating microstructural changes during machining are both new and complex. 

Despite its obvious importance, very few attempts to address this problem have been 

reported (Caruso et al., 2011). Microstructure level changes are very different for 

different materials and limited help can be obtained from the literature if the workpiece 

materials used are not the same.  

6.2.5 Evaluation of friction coefficient µ and critical damage value Dcritical using 

measured force  

The calibration process of the FE model for machining AZ31B Mg alloy is shown 

in Figure 6.2. The values of the friction coefficient µ and the critical damage value Dcritical 

were determined through an iterative calibration process using the experimental data on 

cutting forces and chip morphology from dry machining with a 30 µm edge radius tool. 

The heat transfer coefficient h1 at the tool-chip interface was fixed at 1000 kW/ (m
2
 K) at 

this stage of calibration; this value was used by several researchers and good agreement 

with experimental data was reported (Filice et al., 2007; Umbrello et al., 2007). The 

studied range for µ was from 0.1 to 0.7. The initial estimated value of Dcritical was found 

by integrating a published flow stress curve of AZ31B Mg alloy (Hasenpouth, 2010) from 

beginning of deformation to fracture.  The final value of Dcritical and µ were found when a 

reasonable agreement between the experimental and numerical results was obtained. 

It was reported that the value of Dcritical was majorly responsible for the chip 

morphology and the value of µ was responsible for cutting forces in machining 

(Umbrello, 2008). However, it was found in the calibration process that the value of 

Dcritical has a significant influence on both the chip morphology and the cutting forces. 
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Figure 6.3 shows the influence of critical damage value Dcritical and friction coefficient µ 

on forces predicted by the FE model. With the same µ value of 0.7, the cutting force was 

increased 30% when the Dcritical value changed from 35 to 55.  
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Figure 6.2: Flow chart for the calibration of the FE model for machining AZ31B Mg 

alloy. 
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  It was found that the best agreement in cutting force was achieved (7% difference 

between the experiment and predicted values) when the values of Dcritical and µ were 35 

and 0.7, respectively. The predicted thrust forces were 8% smaller than the experimental 

results. When the calibrated FE model was used to predict the forces in dry machining 

with 70 µm edge radius tool, the differences between them and experimental data in 

cutting force and thrust forces were 8% and 9% respectively. With both cutting edge 

radii, the predicted thrust forces were smaller than the experimental results, which agree 

with most literature that FE models tended to underestimate the thrust forces (Filice et al., 

2007; Umbrello et al., 2007).  

  One objective of the present FE model is to predict the formation of featureless 

layer induced by DRX during machining and it was shown in Chapter 3 that the thrust 

force remarkably influenced the thickness of the featureless layers. Therefore, it is of 

Figure 6.3: Influence of critical damage value Dcritical and friction coefficient µ on 

forces predicted by the FE model. 
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great importance for the FE model to predict the thrust forces accurately and the 

predicted cutting force is less important for the present study. Although increasing the 

value of Dcritical results in larger forces in both cutting and thrust directions, it tends to 

change the chip morphology remarkably. To increase the predicted thrust force, the 

values of Johnson-Cook constants were adjusted slightly.  As shown in Figure 6.4, much 

better agreement in thrust forces were achieved when the value of A was increased from 

163 MPa to 200 MPa and the value of B was increased from 321 MPa to 400 MPa. After 

this adjustment, the differences between the predicted thrust forces and the experimental 

ones were 3.1% when 30 µm edge radius tools were used and less than 1% when 70 µm 

edge radius tools were used. At the same time, the predictions of the cutting forces were 

still in reasonable range (less than 12%). The underestimate of the A and B values for the 

FE models could be caused by the differences between the materials testing conditions 

where the constants were obtained and the actual conditions involved in a machining 

process. It could also be caused by the overlooking of the microstructure level changes 

during the machining process.  



167 

 

 

6.2.6 Evaluation of friction coefficient µ and critical damage value Dcritical using 

observed chip morphology 

To compare the predicted and measured chip morphology, three parameters were 

used to evaluate the chip shape as shown in Figure 6.5, the lengths of peak, valley and 

pitch.  The influence of critical damage value Dcritical and friction coefficient µ on chip 

morphology is shown in Figure 6.6. In addition to forces, good agreement of chip 

morphology was achieved when the values of Dcritical and µ were 35 and 0.7, respectively. 

A comparison between experimental data and predicted values is shown in Figure 6.7. 

The differences range from 10% to 20%. Since there is no clear correlation between the 

featureless layers on the workpiece and the chip morphology, the importance of chip 
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Figure 6.4: Influence of Johnson-Cook constants A and B on forces predicted by the 

FE model. 
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morphology calibration was less than forces and temperature and this level of differences 

was deemed adequate.   

 

 

Figure 6.6:  Numerically obtained chip morphology at different combination of critical 

damage value Dcritical and friction coefficient µ. 

Dcritical = 20, µ = 0.5 Dcritical = 20, µ = 0.7 Dcritical = 35, µ = 0.7 

Peak 
Pitch 

Valley 

Figure 6.5:  Chip morphology after dry machining with a 30 µm edge radius  

(V = 100 m/min, f = 0.1 mm/rev). 
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6.2.7 Evaluation of heat transfer coefficients h1 and h2 using measured 

temperature  

The remarkably differences in microstructures between dry and cryogenic 

machining shown in Figure 3.11 proved that temperature is one of the most important 

factors. A two step calibration of the FE model was conducted to find the values of heat 

transfer coefficients. First, the heat transfer coefficient at the tool-chip interface h1 was 

determined through an iterative process using the temperature measurement data from 

dry machining using the 30 µm tool (Figure 3.9). Then the value of h1 was fixed and the 

convection coefficient h2 of the local environment window defined in Figure 6.1 was 

determined through another iterative process using the temperature measurement data 

from cryogenic machining using the 30 µm tool (Figure 3.9). 

It was found that when the initial choice of h1 value of 1000 kW/ (m
2
 K) was used 

the maximum temperature on the workpeice was about 180 °C, which was higher than 

the measured value of 125 °C. A good agreement between the predicted and measured 

Figure 6.7: Comparison of chip morphology (defined in Figure 6.5) between 

experimental data and predicted values (dry machining, rn = 30 µm, V = 100 m/min, f = 

0.1 mm/rev). 
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temperature was achieved when the h1 value was increased to 5000 kW/ (m
2
 K). Figure 

6.9 (a) shows the predicted temperature distribution on the workpiece for dry machining 

with a 30 µm edge radius tool when the h1 value of 5000 kW/ (m
2
 K) was used. The 

temperature starting from the start point of the newly formed surface along the workpiece 

was measured in the FE model and shown in Figure 6.10. The temperature gradually 

drops with increased distance from the start point and the maximum temperature is 135 

°C, about 8% higher than the measured value.  

To simulate the cryogenic cooling effects, the local heat exchange window was 

used as shown in Figure 6.1. The width of the widows is 1 mm which is assumed to the 

contact length between the machined surface and the liquid nitrogen jet. This use of the 

window only change the convection coefficient of the machined surface which is covered 

by the window from the initial value of 20 kW/ (m
2
 K) to the value of h2. The window 

does not change any other boundary conditions in the FE model. Figure 6.8 (b) and (c) 

show the predicted temperature distributions during cryogenic machining when different 

convection coefficients were used within the window. Figure 6.9 shows the temperature 

profiles along the newly formed machined surface. A good agreement with measured 

temperature was achieved when the convection coefficient h2 was set to 5000 kW/(m
2
K). 

The predicted maximum temperature on the machined surface was 51 °C, about 2% 

lower than the measured value.  
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Figure 6.8: Predicted temperature distribution for (a) dry machining, and cryogenic 

machining when different convention coefficient h2 was used: (b) 500, (c) 5000 kW/ 

(m
2
K) (rn = 30 µm, V = 100 m/min, f = 0.1 mm/rev).  
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6.2.8 Validation of the FE model 

After the calibration process was completed, the important constants in the FE 

models were determined as shown in Table 6.3. The only difference in terms of constants 

between dry and cryogenic machining is the convection coefficient in the local heat 

exchange window, h2. All the other constants have the same value for dry and cryogenic 

machining. To evaluate the performance of the calibrated FE model, machining 

simulations under different edge radii and cooling conditions were conducted and 

compared with the experimental data obtained in Chapter 3. Two factors that have critical 

influence on the formation of the featureless layers were considered for the validation, 

thrust force and temperature.  

 

 

 

 

Figure 6.9: Predicted temperature from the start point of the newly formed surface 

(marked by red line in Figure 6.8) for dry machining, and cryogenic machining when 

different convention coefficient h2 was used: 500 and 5000 kW/ (m
2
K)  

(rn = 30 µm, V = 100 m/min, f = 0.1 mm/rev). 
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Table 6.3: Summary of important constants used in the FE model 

 

Johnson-Cook constants 
A = 200 MPa, B = 400 MPa, n 

= 0.337, C = 0.016, m = 1.829 

Critical damage value, Dcritical 35 

Friction coefficient, µ 0.7 

Heat transfer coefficient at the 

tool-chip interface, h1 

(For both dry and cryogenic 

conditions) 

5000 kW/ (m
2
 K) 

Convection coefficient in the 

local heat exchange window, h2 

(For cryogenic condition only) 

5000 kW/ (m
2
 K) 

 

  

Figure 6.10 shows the comparison of measured and predicted forces under dry 

and cryogenic conditions (V = 100 m/min, f = 0.1 mm/rev). The measured data on dry 

machining with the 30 µm edge radius tools was used for calibration and all the other 

three conditions were used for validation purpose.  Good agreements between the 

measured and predicted thrust forces were achieved. The maximum difference is 4%. The 

cutting forces were not as important as thrust force in the present study since the latter 

one directly relates with the thickness of featureless layers. The predicted cutting forces 

were overestimated in most cases. The maximum error is 19% when the 70 µm edge 

radius tools were used under cryogenic conditions.  
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  Figure 6.11 shows the comparison of measured and predicted maximum 

workpiece temperature under dry and cryogenic conditions (V = 100 m/min, f = 0.1 

mm/rev). The measured data on cryogenic machining with the 70 µm edge radius tools 

was used for validation purpose. The difference between the predicted and measured 

temperature is 7% which shows that the FE model is capable of temperature prediction.  
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Figure 6.10: Comparison of measured and predicted forces under dry and cryogenic 

conditions (V = 100 m/min, f = 0.1 mm/rev).  
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6.3 User Subroutine for Predicting Grain Size and Hardness 

  In order to predict the grain size and featureless layer thickness after machining, it 

is important to understand the mechanism for the grain refinement. It has been shown in 

Chapter 3 that the significant grain refinement was induced by dynamic recrystallization 

(DRX). The critical conditions for the onset of DRX in AZ31 Mg alloy in standard 

material property testing was investigated by several researchers (Wang et al., 2002; 

Huang et al., 2007a). For DRX to occur, a critical strain, Ɛ cr, needs to be reached. This 

critical value was found to be dependent on the strain-rate and temperature (Wang et al., 

2002) , which can be calculated using the Zener-Hollomon parameter (defined in 

Equation (3.3)), Z, as: 

     0.06

cr 0.02039Z           (6.4) 

   In the DEFORM  subroutine, when the calculated strain on the workpiece exceeds 

the critical strain, the initial grain size, dinit, will be replaced with the grain size after 

DRX, d, which can be calculated by Equation (3.2). This calculation is carried out 

continuously for every element in the workpiece for each step. 

  The Hall-Petch relationship between the hardness and grain size was also found to 

be well followed in AZ31 Mg alloy (Chang et al., 2004).  Therefore, the hardness can be 

estimated based on the grain size using the Hall-Petch relationship. It is noted that this 

method does not take into account fully the effect of strain hardening which was proved 

to exist on the workpiece in Chapter 3. It is expected that the predicted hardness will be 

smaller than the measured value. The Hall-Petch relationship for the AZ31B Mg alloy 

used in this study was found by using the measured hardness on the initial material (12 

µm, 52.3 HV) and on the featureless layer induced by cryogenic machining using the 70 
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µm edge radius tools (31 nm, 96.6 HV). The relationship between the hardness H and 

grain size d using this was found to be:  

     -0.552.391 9.039H d             (6.5) 

  The constants in Equation (3.2) and Equation (6.4) were found by the authors in 

the same material but different manufacturing processes. Therefore, it is expected these 

constants to be calibrated using the results from the present study before the subroutine 

can accurately predict the featureless layers induced by machining. The flowchart for the 

calibration of the subroutine is shown in Figure 6.12. The exponents in Equation (3.2) 

and Equation (6.4) were found to be the most important constants and were determined 

by calibration.  

  Figure 6.13 shows the variation of predicted strain and critical strain with distance 

below the machined surface before calibration for cryogenic machining with the 70 µm 

edge radius tools. The data was taken from 0.1 mm away from the start point of the 

newly formed machined surface as shown in Figure 6.14 (a). It shows that the predicted 

recrystallized layer is more than 50 µm thick, which is much larger than the measured 

value (15 µm). It can be found from Figure 6.13 that the critical strain at the depth of 15 

µm needs to be equal to 1.9 in order to have a recystallized layer with the thickness of 15 

µm (Ɛ cr = 1.9). Since the Zener-Hollomen parameter at the depth of 15 µm can also be 

calculated using the calibrated FE model, the exponent in Equation (6.4) can be found. 

The exponent, a, was found to be increased from 0.06 to 0.075. The predicted grain size 

on the surface was found to be about 50 nm, which is slightly larger than the measured 31 

nm. After calibration, the exponent in Figure 6.12, b, was found to be -0.205. 
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Figure 6.12: Flow chart for the calibration of the user subroutine to predict the 

featureless layer on the machined surface. 
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  The predicted grain size distributions after calibration under different machining 

conditions are shown in Figure 6.14. Only the experiment data from cryogenic machining 

with the 70 µm edge radius tool was used for the calibration and all the other three groups 

were used for validation. It shows that good agreement was achieved between the 

predicted grain size and the measured data (Figure 3.11). For both dry and cryogenic 

conditions, machining with the larger edge radius tool led to the formation of thicker 

grain refinement layers. The data on variation of grain size with depth below the 

machined surface was extracted at the location 0.1 mm away from the start point of 

newly formed surface (the point where the workpiece leaves the cutting edge) as shown 

in Figure 6.14 (a). Figure 6.15 (a) shows the variation of grain size with depth below the 

machined surface under different machining conditions. Grain refinement on the surface 

and sub-surface was successfully predicted by the user subroutine. The predicted grain 

size within the first 12 µm on the machined surface after cryogenic machining using the 

70 µm edge radius tool is about 40 nm, which is very close to the measured grain size of 
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machined surface before and after calibration of exponent a in Equation (6.4)  
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Figure 6.14: Predicted grain size distribution after machining using different cooling 

methods and tools with various edge radii (V = 100 m/min, f = 0.1 mm/rev). 
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Figure 6.15: (a) Predicted variation of grain size with depth below the machined surface; 

(b) enlarged view on the machined surface after cryogenic machining with the 70 µm 

edge radius tool; (c)  predicted grain size on the machined surface and (d) thickness of the 

featureless layers under different machining conditions (V = 100 m/min, f = 0.1 mm/rev). 
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f31 nm. The sudden increase of grain size after 12 µm is very similar to the observed 

microstructure in Figure 3.11 where a clear interface between the featureless layer and 

the bulk material is shown. The grain size distribution in the machined chips is not the 

focus of the present study. An example of the predicted grain size distribution in the 

machined chips is provided in Appendix B. The approach used in the current study to 

predict grain size is new and very few studies on grain size prediction have been reported 

(Caruso et al., 2011). 

  Figure 6.15 (c) shows the grain size on the machined surface. The influence of 

cryogenic cooling on grain size is predicted to be dramatic, which is as expected when 

one recalls the experimental data. For both edge radii, cryogenic cooling results in 

significantly smaller grain size. It is assumed that the grain size in the featureless layer is 

smaller than 2 µm which approaches the limit of the optical microscope used in the study. 

Therefore, the thickness of the predicted featureless layers can be measured from Figure 

6.15 (a). Edge radius does not play an important role in determining the grain size on the 

machined surface but has remarkably influence on the thickness of the featureless layers 

as shown in Figure 6.15 (d). This agrees with the finding from the experimental data 

shown in Figure 3.11. The predicted thickness of the featureless layer on machined 

surface after cryogenic machining using the 70 µm edge radius tool is 15.4 µm which 

agrees well with the measured value. The predicted value for dry machining using the 70 

µm edge radius tool is 28.8 µm and is a little larger than the measured value shown in 

Figure 3.11 (20 µm). This may be due to the fact that the user subroutine does not take 

consideration of grain growth after DRX. Figure 6.16 (a) shows the variation of predicted 

temperature with depth from the machined surface under different machining conditions. 
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It shows the temperatures within the first 80 µm from the machined surface under 

cryogenic conditions are significantly lower than those under dry conditions. The surface 

temperature under cryogenic cooling was less than 30% of that under dry conditions 

when the 30 µm edge radius tools were used. This trend observed from the predicted data 

agrees well with the temperature measurement shown in Figure 3.9. Therefore, it is 

highly possible that a certain amount of grain growth occurs after DRX during dry 

machining and in turn this leads to the reduction of thickness of the featureless layer. This 

claim was also supported by Calistes et al. (Calistes et al., 2009) who reported that 
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Figure 6.16: Variation of (a) predicted strain and (b) temperature with depth from the 

machined surface under different machining conditions (V = 100 m/min, f = 0.1 mm/rev). 
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ultrafined/nano grain structure were only found on the top of the machined surface of 

copper when the cutting speed was very low (< 3 m/min) during dry machining. 

  Although no featureless layer was observed on the machined surface after dry 

machining using the 30 µm edge radius tool in Figure 3.11, it is possible that a very thin 

grain refinement layer formed and it cannot be recognized by the optical microscope used 

in this study. The user routine predicted that the featureless layer under these conditions 

is 3.7 µm. The predicted thickness of the featureless layer on the workpiece after 

cryogenic machining using the 30 µm edge radius tool is 4.5 µm, which is smaller than 

the measured value of 8 µm. These differences could be caused by the size of the used 

element since the average element dimension is about 10 µm and is larger than the 

thickness of the featureless layer under this condition.  The increase of the thickness 

under cryogenic conditions compared with dry conditions could be caused by the 

increased strain as shown in Figure 6.16 (b). The strain on the machined surface was 

increased 40% when cryogenic cooling was applied. Much smaller difference in the 

strain was observed when the 70 µm edge radius tool was used. 

  Figure 6.17 shows the predicted hardness after machining using different cooling 

methods and tools with various edge radii. The predicted hardness at 10 µm from the 

machined surface is about 60 Hv for dry machining using both 30 µm and 70 µm edge 

radius tools, which is much smaller than the measured value of about 80 Hv. This large 

difference between the predicted and measured hardness could be caused by the lack of 

consideration for the dislocations in the interior of grains and residual stress in the user 

subroutine since it was proved in Chapter 3 that strain hardening contributes remarkably 

to the hardness of the machined workpiece. Figure 6.18 shows the comparison of 
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predicted and measured hardness after cryogenic machining using 70µm edge radius 

tools. The predicted hardness at 10 µm is 96 Hv, which agrees well with the measured 

hardness. However, the predicted hardness drops significantly when the depth from the 

machined surface is larger than 15 µm and returns to initial value at the depth of 30 µm 

while the measured hardness changes more gradually and is still larger than the initial 

value at the depth of 150 µm. This finding further proves that the strain hardening is the 

dominant factor in determining the hardness especially when the microstructure remains 

similar (outside of featureless layer). 
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Figure 6.17: Predicted hardness after machining using different cooling methods and 

tools with various edge radii (V = 100 m/min, f = 0.1 mm/rev). 
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6.4 Numerical Investigation of Surface Integrity using the User Subroutine 

  It can be concluded from the previous results that the calibrated user routine can 

predict reasonably well the grain size distribution on the surface and sub-surface of the 

machined workpiece. The predicted hardness is acceptable only when the grain 

refinement is the major cause for hardness increase. In this section, this user subroutine 

will be used to investigate the influence of rake angle, cutting speed and feed rate and on 

the formation of the featureless layers as well as key DRX factors, such as strain and 

temperature on the workpiece. The cooling conditions for all the simulations are 

cryogenic cooling and the edge radius of the cutting tools are 70 µm. The data extraction 

point for this section is the same as shown in Figure 6.14 (a), 0.1 mm away from the start 

point of newly formed workpiece surface.  

 

 

Figure 6.18: Comparison of predicted and measured hardness after cryogenic machining 

using 70µm edge radius tools (V = 100 m/min, f = 0.1 mm/rev). 
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6.4.1 Influence of rake angle 

 Rake angle of the cutting tools was proved experimentally to have a remarkable 

influence on the plastic deformation of the machined surface and sub-surface 

(Chandrasekar et al., 2009). The plastic strain on the brass surface machined with a -30º 

rake angle tool was 3 times larger than that machined with a +10º rake angle tool 

(Chandrasekar et al., 2009). Figure 6.19 (a) shows the predicted variation of grain size 

with depth below the surface machined under different rake angles. As summarized in 

Figure 6.19 (b), the thickest featureless layer (29 µm) was obtained when using the most 

negative rake angle and using positive rake angle results in the thinnest layer (3 µm). The 

predicted strains on the workpiece under different rake angles are shown in Figure 6.20 

(a). Machining using a -30º rake angle led to 125% increase of the surface strains 

compared with using a + 20º rake angle, which agrees with the literature(Chandrasekar et 

al., 2009) and is the cause for increased thickness of the featureless layer. The predicted 

grain size on the machined surface is shown in Figure 6.19 (b). Machining using a 

positive rake angle resulted in much larger grain size on the surface. This could be caused 

by the fact that positive rake angles induce less deformation on the workpiece and lower 

strain-rate. Since the difference in temperature is much smaller than the one in plastic 

deformation as shown in Figure 6.20, machining with a positive rake angle could lead to 

a smaller Z value and therefore increase the grain size after DRX. The difference in 

temperature is much larger than the plastic strains on the machined surface when the rake 

angle was changed from -7º to -30º as shown in Figure 6.20; this likely is the cause for 

the slightly larger grain size when a more negative rake angle was used.  
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Figure 6.19: (a) Predicted variation of grain size with depth below the machined surface; 

and (b) comparison of featureless layer thickness and grain size on the surfaces machined 

under different rake angles (cryogenic, rn = 70 µm, V = 100 m/min, f = 0.1 mm/rev). 
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6.4.2 Influence of feed rate 

 Figure 6.21 (a) shows the predicted variation of grain size with depth below the 

machined surface under different feed rates. As summarized in Figure 6.21 (b), the 

thickest featureless layer (18 µm) was obtained under the smallest feed rate. It is shown 

in Figure 6.22 (a) that the smallest feed rate also leads to the largest strain on the 

machined surface. When machining at the smallest feed rate, 0.05 mm/rev, the uncut chip 

thickness is smaller than the edge radius of the tool (0.07 mm); therefore, ploughing 
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Figure 6.20: Variation of (a) predicted strain and (b) temperature with depth from the 
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190 

 

effects are dominant, which was proved by the force measurement data shown in Figure 

3.23 (thrust force was larger than cutting force). The trend of the predicted thickness of 

the featureless layer agrees well with that observed from the experimental data where 

increased feed rate remarkably decreased the featureless layer thickness (Figure 3.24 (b), 

Figure 3.25 (b) and Figure 3.27 (b)).  

  

Figure 6.21: (a) Predicted variation of grain size with depth below the machined surface; 

and (b) comparison of featureless layer thickness and grain size on the surfaces machined 

under different feed rates (cryogenic, rake angle = -7º, rn = 70 µm, V = 100 m/min). 
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 Machining when using a larger feed rate generated higher temperature as shown 

in Figure 6.22 (b). The decrease of the strain at higher feed rates could be caused by the 

softening of the material due to increased temperature, which was supported by the 

finding from force measure shown in Figure 3.23 (b) where the thrust force was reduced 

more than 30% when the feed rate was increased from 0.1 mm/rev to 0.25 mm/rev. The 

high temperature also leads to larger grain size on the machined surface as shown in 

Figure 6.21 (b). The predicted grain sizes at feed rates of 0.05 mm/rev and 0.1 mm/rev 

(a) 

(b) 

Figure 6.22: Variation of (a) predicted strain and (b) temperature with depth from the 

surface machined under different feed rates (cryogenic, rake angle = -7º, rn = 70 µm, V = 

100 m/min). 
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are almost the same at 36 nm while the grain size was increased to 76 nm when the feed 

rate was 0.25 mm/rev.  

6.4.3 Influence of cutting speed 

  Figure 6.23 (a) shows the predicted variation of grain size with depth below the 

machined surface under different cutting speeds. As summarized in Figure 6.23 (b), the 

thickness of the featureless layer increases with larger cutting speed, which was 

contradictory to the trend observed from experimental data where the thickness decreased 

with increased cutting speed (Figure 3.25). The difference could be caused by the fact 

that the user subroutine does not consider grain growth after DRX. As shown in Figure 

6.24 (b), the cutting speed has a significant influence on the temperature near the 

machined surface. When the cutting speed was increased from 50 m/min to 250 m/min, 

the temperature on the surface was increased from 32 ºC to 52 ºC and the maximum 

temperature was more than doubled.  The trend of predicted temperature agrees well with 

the observed chip morphology changes, where serrated chips were produced at low 

cutting speed and continuous chips were obtained at high cutting speed (Figure 3.25). 

According to Equation (6.4), higher temperature will lead to a smaller Z value and reduce 

the critical strain for DRX. Since the strain level on the machined surface does not 

change notably under different cutting speeds as shown in Figure 6.24 (a), the reduced 

critical strain results in a thicker featureless layer for the prediction. During the actual 

machining test, the recrystallized grains tend to grow after DRX finishes and the 

thickness of the featureless layer will be reduced. This grain growth effect was not 

considered in the user subroutine. Therefore, relatively large differences between 

predicted and measured data exist, especially when the highest cutting speed was used.  
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Figure 6.23: (a) Predicted variation of grain size with depth below the machined surface; 

and (b) comparison of featureless layer thickness and grain size on the surfaces machined 

under different cutting speeds (cryogenic, -7º rake angle, rn = 70 µm,  f = 0.1 mm/rev). 
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6.5 Summary 

  An FE model was programmed to simulate the machining of AZ31B Mg alloy 

using the commercial software DEFORM 2D. The comparison between initial 

predictions and experimental data on forces and temperature as well as chip morphology 

was used to calibrate the FE model by updating the model parameters. A user subroutine 

was developed to predict the formation of featureless layers induced by machining based 

on the dynamic recystallization (DRX) mechanism of AZ31B Mg alloys. After evaluation 

using the experimental data, the user subroutine successfully predicted the formation of 

(a) 

(b) 

Figure 6.24: Variation of (a) predicted strain and (b) temperature with depth from the 

surface machined under different cutting speeds  

(cryogenic, -7º rake angle, rn = 70 µm, f = 0.1 mm/rev). 
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featureless layers under various cutting conditions, including different cooling methods, 

tool edge radius, rake angle, etc. Also, critical DRX parameters, such as strain and 

temperature, on the machined surface and sub-surface were predicted by the FE model. 

Major observations from this numerical study can be summarized as follows: 

 Significant reduction of temperature on the machined surface and sub-surface can be 

achieved with cryogenic cooling. The predicted temperatures on the machined surface 

under cryogenic conditions were about 30% of those under dry conditions when 

machining using both 30 µm and 70 µm edge radius tools.  

 Increasing the tool edge radius from 30 µm to 70 µm led to 30% increase in the strain 

on the machined surface under dry conditions; while very small difference was found 

under cryogenic conditions. 

 Rake angle of the cutting tool is one of the most influential factors on featureless layer 

thickness. The largest thickness was 29 µm when machining using a -30º rake angle, 

which was increased by a factor of 2 compared with machining using a -7º rake angle. 

 Large strain was generated on the machined surface when the feed rate was smaller 

than the edge radius of the tool and resulted in thick featureless layer formation. The 

trend of featureless layer thickness with increased feed rate agreed well with the 

experimental observations.  

 The predicted trend of featureless layer thickness with cutting speed is in contradiction 

to the experimental data. The difference could be caused by the fact that more grain 

growth occurs after cutting when using a high cutting speed due to the severe heat 

generation while the user subroutine does not take grain growth into consideration.  
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 In addition to grain size, the potential of using Hall-Petch relationship in the user 

subroutine to predict the hardness after machining was investigated. Large differences 

were found in the predicted and measured hardness, especially at larger depth from the 

machined surface. The difference could be caused by the overlooking of strain 

hardening effects in the user routine, which was proved to be dominant in Chapter 3. 
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CHAPTER 7: CONCLUSIONS AND FUTURE WORK 

 

7.1 Concluding Remarks 

In the current research, experimental studies on the influence of various 

machining and burnishing conditions (dry/cryogenic cooling, cutting edge radius, etc.) on 

surface integrity changes of AZ31B Mg alloy, including microstructures, residual stresses, 

crystallographic orientations, etc., have been conducted. The beneficial effects of 

cryogenic cooling during machining were reported frequently in the literature, while its 

influence on surface integrity was much less known, and this is one of the focuses in the 

current study. Another focus area of this work is how the surface integrity changes 

influence the corrosion performance of AZ31B Mg alloy which is a key criterion for its 

wide application. Preliminary corrosion studies were carried out to evaluate the corrosion 

resistance of machined and burnished AZ31B Mg samples in both 5% NaCl solution and 

simulated body fluid (SBF).  

In addition to the experimental work, a numerical study was developed to 

investigate the influence of various machining conditions on the grain size changes on the 

workpiece surface and sub-surface. Major findings from this research are:  

 A significant reduction of surface temperature was achieved during cryogenic 

machining where liquid nitrogen was sprayed onto the machined surface from the 

clearance side of the tool (less than half of the temperature obtained during dry 

machining). 

 Cryogenic machining using the large honed cutting tool led to enhanced surface 

integrity in terms of (1) significant grain refinement from 12 µm to 31 nm in the 
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featureless surface layer; (2) large intensity of (0002) basal plane on the machined 

surface; (3) 10 times larger compressive areas in residual stress profiles; and (4) 

improved surface finish. Cryogenic machining also resulted in the best corrosion 

resistance in the machined samples tested in both 5% NaCl solution and SBF. 

 Under cryogenic cooling conditions, cutting speed and feed rate have a notable 

influence on the microstructure of the machined surface and sub-surface which may 

be due to the fact that Mg alloys are sensitive to temperature changes.  

 A strong correlation between grain size and corrosion resistance was found for both 

the machined and burnished samples. The grain refinement layer acts as protective 

coating and improves the corrosion resistance in the both 5% NaCl solution and SBF. 

 Using the same edge radius of 70 µm and cryogenic cooling, cutting speed has more 

influence on corrosion resistance than does the feed rate. A larger cutting speed 

decreased the corrosion resistance which may be due to the larger tensile residual 

stresses induced by higher cutting temperatures. The differences in corrosion 

resistance induced by cutting speed were more obvious when the specimens were 

tested in the 5 wt. % NaCl solution than in the SBF.  

 Under dry conditions, the surface machined with 70 µm edge radius tool is more 

corrosion resistant than the one machined with 30 µm edge radius tool in both the 5 

wt. % NaCl solution and the SBF. 

 Burnishing using a fixed roller setup remarkably increased the grain refinement layer 

thickness compared with machining, and also created a much stronger basal texture. 

The total process-influence layer where significant microstructure occurred is up to 

3.4 mm. The application of liquid nitrogen during burnishing resulted in a greater 
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reduction in grain size on the burnished surface than dry burnishing (0.5 µm vs. 1.4 

µm, initial grain size is 12 µm). However, there is little difference in corrosion 

resistance between the burnished samples prepared under dry and cryogenic 

conditions, which suggest that further grain refinement to smaller than 1µm did not 

result in better corrosion resistance. 

 Crystallographic orientation, which has not been well studied as an important surface 

integrity factor in the literature, has a dramatic influence on the corrosion resistance 

of burnished AZ31B Mg alloy. Materials with a smaller grain size but little basal 

texture are less corrosion resistant than the ones with similar grain size and strong 

basal texture when tested in 5% NaCl solution.  

 A finite element (FE) study for machining of AZ31B Mg alloy was developed and 

calibrated using the experimental dat. A user subroutine was developed to predict the 

grain size changes on the surface and subsurface induced by machining based on the 

dynamic recystallization (DRX) mechanism in AZ31B Mg alloys. The user subroutine 

was used successfully to investigate the influence of various cutting conditions on the 

formation of featureless layers. The numerical study suggests that a negative rake 

angle resulted in a thicker featureless layer compared with the positive rake angle.  

 One of the most significant implications of this study is that by proper selection of 

processing parameters, machining and burnishing as simple and cost effective 

industrially available manufacturing processes could offer a unique opportunity to 

significantly enhance the functional performance of metallic materials, such as 

corrosion/fatigue resistance, by tailoring their microstructures, crystallographic 

orientations, etc., on the surface and sub-surface. The interactions studied via a 



200 

 

combined experimental-finite element modeling approach contribute toward an 

optimum selection of processing conditions to achieve enhanced performance of 

manufactured products.  

7.2 Future Work 

 A better temperature measurement needs to be conducted using an infrared camera 

with higher resolution and magnification than the one used in the current study, as 

well as for various cutting conditions. The measured temperature distribution near the 

cutting edge will help understanding the mechanism of dynamic recyrstallization 

(DRX), and will also provide valuable data for modeling  

 A high speed camera can be used to measure the strain and strain-rate induced by 

various machining/burnishing conditions. Together with the temperature 

measurement, this will provide comprehensive information on the thermo-mechanical 

field on the workpiece surface/sub-surface, as well as on the primary/secondary 

deformation zones, which will facilitate a greater understanding of the DRX 

mechanism during deformation at high strain-rate (up to 10
6
 s

-1
) and large strains (up 

to 10).  

 Microstructure characterization using transmission electron microscopy (TEM) is 

needed to better understand the influence of various machining/burnishing conditions 

on microstructural changes near the surface. It will also reveal useful information on 

the transition of microstructures within the relatively thin featureless layers produced 

by machining (less than 20 µm).  
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 Electron backscatter diffraction (EBSD) can be used to gather information on how the 

crystallographic orientation changes during machining and burnishing. It will be of 

great value to understand how crystallographic orientation changes with temperature 

and deformation variables such as strain and strain-rate produced by various 

machining/burnishing conditions.  

 The rake angle of the cutting tools was found to be a critical factor that influences the 

formation of featureless layers during machining based on the results of the numerical 

investigation. Machining experiments with varying rake angles need to be conducted 

to confirm this finding and it is possible that a thicker featureless layer (> 20 µm) can 

be produced at a more negative rake angle, which may further improve the corrosion 

resistance of the AZ31B Mg alloy.  

 Only cooling conditions were investigated for the burnishing process. It is strongly 

recommended that the influence of burnishing speed, burnishing force, feed rate, etc., 

on surface integrity of burnished Mg alloys to be investigated.  

 A better design of corrosion tests is needed to be able to quantitatively evaluate the 

corrosion performance of machined and burnished Mg samples. It is suggested that 

facing of a round bar to be conducted to produce a large flat surface area. Immersion 

method can be easily used when the exposed area is large enough.  

 The finite element (FE) model used in the current study uses the standard Johnson-

Cook flow stress equation and the Cockroft and Latham‘s fracture criterion to 

simulate serrated chip formation. The influence of DRX on flow stress was however 

not considered. It is important to develop a new flow stress model incorporating the 

DRX effects. The chip serration should come naturally without the use of any fracture 
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criterion and the model should achieve much better accuracy in predicting the grain 

size in machining.   

 Optimization techniques can be used to find optimized processing parameters for both 

machining and burnishing that lead to the best corrosion performance of AZ31B Mg 

alloy in both 5% NaCl solution and SBF. 

 Although only corrosion performance was primarily evaluated in the current study, 

the literature shows that grain refinement and compressive residual stress will also 

improve the fatigue life of Mg alloys (Zhang and Lindemann, 2005b; Wang et al., 

2007). Fatigue tests can be conducted to evaluate the fatigue life of the machined and 

burnished Mg samples and it is expected that their performance will be better than the 

initial material.  

 

 

 

 

 

 

 

 

 

 

 

 



203 

 

APPENDIX A: SERRATED CHIP FORMATION 

This appendix provides additional information to Section 6.2.4 on how the 

standard Johnson-Cook flow stress equation and Cockroft and Latham‘s fracture criterion 

were used in the present study to simulate the formation of serrated chips during 

machining of AZ31B Mg alloy. The three columns of pictures below show the changes of 

damage value, effective stress and effective strain respectively during a single chip 

segmentation cycle simulated by the DEFORM software. It was found from Section 6.2.6 

that the critical damage value Dcritical for the AZ31B Mg alloy is 35. The elements with D 

values larger than 35 are displayed in red color in the left column. At Step 1616, a small 

red area starts to appear in the shear plane from the damage value figure and a small light 

blue area can be seen in the corresponding elements from the effective stress figure 

shown in the middle column. At Step 1625, the red area becomes bigger and a sample 

line is draw across the effective stress figure at corresponding positions which clearly 

shows that the stresses in those elements whose value are larger than 35 dropped to about 

10% of the original value. In the last two pictures, more and more elements near the shear 

plane have damage values larger than 35 and it can be seen from the corresponding 

effective stress figure that the stress at these elements are significantly lower than their 

surrounding elements. This forced drop of flow stress by using the facture criterion 

crudely simulates the ―flow softening‖ induced by dynamic recystallization. The present 

study shows that this approach led to reasonable results as long as the material constants 

involved are calibrated by experimental data. 
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The D value of these ‖red‖ 

elements exceed the critical 

value (35 and their flow 

stresses were dropped to 

10% of the original stress.  

Damage value, D Effective stress Effective strain 

Stress drops. 
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APPENDIX B:  PREDICTED GRAIN SIZE DISTRIBUTION IN THE 

MACHINED CHIPS 

  

The major objective of the user subroutine is to predict the grain size distribution 

on the machined surface and subsurface. All the material constants were calibrated using 

the experimental data from the workpiece surface. However, some useful information on 

the grain size distribution in the machined chips can also be provided by using the user 

subroutine. Different from the machined surface, the grain size distribution in the 

machined chips does not change significantly with different cooling methods, or tool 

edge radius. An example of the predicted grain size distribution in the chips is shown in 

the figure below. Although much more work is needed to make a solid conclusion, this 

preliminary simulation result is encouraging when compared with the experimental data. 

The interior of the chip segment is almost unchanged in the actual chip and agree with the 

simulated data. The grains near the tool-chip interface and between chip segments are 

very small in both the actual chip and the simulated chips.  
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However, one major problem in the simulated chips is that DRX keeps occurring; 

the percentage of small grains becomes larger and larger (more and more blue areas in 

the above figure) with time (or steps). This phenomenon is reflected in the above picture 

where the red area in the chip segment becomes smaller from the bottom to the top. It 

was found that DEFORM could not break the chips and the plastic strain in the chips will 

be increased due to the bending of the chips. The accumulated strain will become larger 

than the critical strain and then DRX occurs. This problem needs to be solved before a 

good prediction of grain size can be achieved in the machined chips.  

 

 

 

Cryogenic,  
rake angle = -7º,  
rn = 70 µm,  
V = 100 m/min 
f = 0.1 mm/rev 
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