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This dissertation proposes a modular fast direct (MFD) analysis method for a class of 

problems involving a large fixed platform region and a smaller, variable design region. A 

modular solution algorithm is obtained by first decomposing the problem geometry into 

platform and design regions. The two regions are effectively detached from one another 

using basic equivalence concepts. Equivalence principles allow the total system model to 

be constructed in terms of independent interaction modules associated with the platform 

and design regions. These modules include interactions with the equivalent surface that 

bounds the design region. This dissertation discusses how to analyze (fill and factor) each 

of these modules separately and how to subsequently compose the solution to the original  

system using the separately analyzed modules. 

The focus of this effort is on surface integral equation formulations of 

electromagnetic scattering from conductors and dielectrics. In order to treat large 

problems, it is necessary to work with sparse representations of the underlying system 

matrix and other, related matrices. Fortunately, a number of such representations are 

available. In the following, we will primarily use the adaptive cross approximation (ACA) 

to fill the multilevel simply sparse method (MLSSM) representation of the system matrix. 

The MLSSM provides a sparse representation that is similar to the multilevel fast 

multipole method. 
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Solutions to the linear systems obtained using the modular analysis strategies 

described above are obtained using direct methods based on the local-global solution 

(LOGOS) method. In particular, the LOGOS factorization provides a data sparse 

factorization of the MLSSM representation of the system matrix. In addition, the LOGOS 

solver also provides an approximate sparse factorization of the inverse of the system 

matrix. The availability of the inverse eases the development of the MFD method.  

Because the behavior of the LOGOS factorization is critical to the development of the 

proposed MFD method, a significant part of this dissertation is devoted to providing 

additional analyses, improvements, and characterizations of LOGOS-based direct 

solution methods. These further developments of the LOGOS factorization algorithms 

and their application to the development of the MFD method comprise the most 

significant contributions of this dissertation.  
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H
V . ........................................ 39 

Figure 8.  Level 3 SSM matrices (a): 3U ; (b): 2Ẑ  ; (c):  3
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Chapter 1. Introduction 

1.1. Motivation 

In many critical electromagnetic (EM) applications, it is important to design 

relatively small subsystems (such as an antenna) for optimal operation on a much larger 

existing platform (such as an aircraft). It is also sometimes desired to modify a small 

region of a large object in order to improve its electromagnetic performance as a whole. 

In most of these scenarios, only those structures in a small, well-defined design region are 

modified during each design cycle; the remainder of the object (platform region) does not 

change from one design iteration to another. The purpose of this dissertation is to provide 

a fast method for analyzing these types of problems.  

1.2. Overview 

Frequency domain computational EM (CEM) methods are very important and are 

widely used for simulating the EM properties of a wide range of systems and devices.  

Such methods typically involve solving linear matrix equations with N  unknowns of the 

form 

 Zx F , (1.1) 

where Z  is an N N  matrix, which is referred to as the system matrix; F  contains the 

forcing vectors or excitation vectors, which is also referred to as the right hand side 

(RHS); x  contains the unknowns to be solved for each forcing vector. Equation (1.1) can 

be obtained using either differentially based formulations, or integral equation (IE) based 

methods. In the following we will focus on surface integral equation (SIE) formulations 

of electromagnetic phenomena. A significant aspect of SIEs is that the resulting system 

matrix is full. For large systems, this is a significant factor in determining appropriate 

strategies for implementing and solving (1.1). 

Equation (1.1) can be solved either iteratively or directly. Iterative methods [1] check 

the equality of (1.1) by providing a trial value of x . Different iterative methods provide 

different ways to calculate the successive trial values. The efficiency of most iterative 

methods is governed by the efficiency of the matrix-vector multiply, Zx . Fast iterative 
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methods [2-14] provide efficient strategies for calculating the matrix-vector multiply 

which save both CPU time and memory. However, these methods often suffer from a 

lack of robustness. For many problems with ill-conditioned system matrices, iterative 

methods converge very slowly or even do not converge at all. Preconditioning can 

improve the condition of a system. However, to find a suitable preconditioner is non-

trivial and, in many cases, expensive. Another drawback of fast i terative methods is the 

need to perform a full solution for each new RHS even though the system matrix is not 

changed. For these reasons, considerable effort has recently been devoted to developing 

efficient direct solvers. Direct methods can potentially provide significant advantages 

relative to iterative methods, including the ability to more rapidly solve multiple-RHS 

problems and the ability to efficiently combine with other techniques, such as the Schur 

complement method. Of course, iterative and direct methods are not mutually exclusive, 

and another advantage of efficient direct methods is their potential use as robust 

preconditioners for fast iterative solvers. 

Direct methods obtain the inverse or a representation of the inverse of Z . One of the 

basic ways to obtain the inverse of Z  is to compute the LU factorization [15] of Z , such 

that 

 Z LU , (1.2) 

 
1 1 1  Z U L . (1.3) 

Generally, this process has a CPU-time complexity of  3O N  and a memory complexity 

of  2O N  . If the system matrix is sparse, such as those obtained from the finite element 

method (FEM), various methods can be used to speed up the LU factorization [16, 17] by 

controlling the fill-in of the sparse matrices during factorization. We will refer to these 

methods as sparse LU factorization methods. Some of the latter methods have been 

included in publically available software libraries, such as SuperLU [18] and UMFPACK 

[19]. The sparsity pattern of the system matrix is an important factor that affects the 

efficiency of the algorithms used by these codes.  

Some system matrices, such as those obtained from integral equations, are inherently 

dense. Sparse LU factorization cannot be applied directly. Fortunately, sparse 

approximate representations of the dense system matrices exist. Canning and Rogovin 
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(1998) [20] proposed an algebraic way of building a sparse representation of dense 

system matrices. Sparse LU factorization on top of these sparse representations of the 

system matrix can be used to develop fast direct solvers [20, 21]. Beside the sparse LU 

factorization, additional fast direct solvers that are based on sparse representations of 

system matrices have been developed recently [21-25].  

The direct solver developed by Adams et. al. [25] is based on the concept of local-

global solution (LOGOS) modes. In this case, a particular sparse representation of the 

system matrix is factored using the so-called LOGOS modes, which are derived from the 

system matrix. By specifying whether the LOGOS source modes have overlapping or 

non-overlapping support, LOGOS modes can be classified as either overlapping or non-

overlapping. By specifying whether the LOGOS field modes radiate or do not radiate on 

to the structures outside a specified region, the LOGOS modes can be classified as 

radiating or non-radiating. The factorization using overlapping LOGOS modes has been 

shown to be asymptotically more efficient than that using the non-overlapping LOGOS 

modes for solving large problems. The non-radiating LOGOS modes are suitable for low 

frequency problems and the radiating LOGOS modes are suitable for high frequency 

problems.  

The availability of the inverse of a system matrix makes the solution process 

versatile. Schur complement method [26] is an important method that can be used to 

accelerate the simulation of problems that involve combinations of variable structures 

and fixed structures [27, 28]. The acceleration is achieved because the system matrix for 

the fixed structure can be inverted once and reused for all combinations.  

The work in this dissertation is based on the novel combination of these ideas. In 

particular, equivalence concepts are used to develop a modular analysis method, and the 

Schur complement is used to factor the resulting system for variable designs in the 

presence of a larger, fixed platform. LOGOS-based sparse direct solution algorithms are 

used in order to improve the efficiency of the underlying modular solver. In order to 

accomplish this, several significant improvements and analyses of the LOGOS solver are 

developed as part of this work. 
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1.3. Basic Idea 

 Most large systems are composed of smaller modules. Each module has its interface 

to connect to other modules. In practice, it is convenient and efficient to design and 

manufacture the modules separately with various constraints including those specified on 

the interfaces.  

The development of an EM solver that provides similar modularity in an efficient 

manner is an attractive possibility because the unchanged modules can be reused in a 

variety of varying environments. At the time of this writing, it appears that no modular 

method has yet been developed which is based on fast iterative solvers. In contrast, the 

combination of the Schur complement method with standard direct solvers, such as LU 

factorization, provides a basic modular simulation method. The work presented in this 

dissertation consists of combining a LOGOS-based sparse factorization method with the 

Schur complement method to produce a modular fast direct analysis method, which will 

be referred to as the MFD method. Though the MFD method presented in this 

dissertation is a self-contained solution method, it is ultimately intended to be embedded 

in a more general MFD scheme which is illustrated by the flow chart pictured in Figure 1. 

In Figure 1, the “baseline system” represents a sparse representation of the system 

matrix for a given problem (e.g., a ship). The steps indicated in the figure are:  

S1) Fill the sparse representation of the system matrix for the baseline system. Factor 

the sparse representation using the LOGOS factorization. The results of the 

factorization are saved to hard-disk for later use. 

S2) Later, when an engineer wishes to design a device to operate within/on the 

previously characterized platform (i.e., the baseline system), the first step in the 

proposed design procedure will consist in specifying a spatial region, which is 

referred to as the design region, that will contain all possible designs. The closed 

surface that bounds this region will subsequently be referred to as a “Green box.”  

S3) Once the design region has been defined, the next step in Figure 1 consists of 

updating the LOGOS factorization of the baseline problem to include any changes 

that are required by the introduction of the fictitious box. (The ability to rapidly 

update the factorization is a unique feature of the LOGOS factorization. Such is 

not generally possible using other sparse factorization strategies.) 
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S4) Specify a trial design structure, and fill and factor its system matrix, including all 

interactions with the Green box. 

S5) Use the Schur complement to combine the separately factored representations of 

the platform and design regions. 

S6)  Repeat S4 and S5 until a satisfactory design is obtained.  

S7) Update the baseline factorization to include the new design structure and replace 

the baseline factorization in the hard-disk. 

While the modular design strategy indicated by Figure 1 is the principle motivation 

of this work, the remainder of the dissertation will focus on how to use the LOGOS 

factorization to realize modular EM design at a reduced cost relative to existing Schur-

based methods. The extension of the work in this dissertation to the framework indicated 

in Figure 2 will be considered in detail elsewhere. 

The flow chart for the MFD method described in this thesis is given in Figure 2. S3 

of Figure 2 produces the same results as those produced in S3 of Figure 1. Other steps in 

Figure 2 are the same as those in Figure 1.  

1.4. Objective and Scope 

The purpose of this work is to develop a fast modular analysis and design method 

that analyzes different parts of an object in a modular way so that the solution to the 

whole system can be assembled with the existing analyzed modules and the newly added 

modules. Because the LOGOS-based fast direct solution method is used in the 

development of the method, it is referred to as a Modular Fast Direct, i.e. MFD,  method. 

Chapter 2 reviews some of the general technical details that are used throughout the 

thesis to analyze electromagnetic problems. In particular, this chapter provides an 

essential summary of integral equation formulations for time harmonic electromagnetic 

problems. While the methods discussed herein are not necessarily limited to integral 

equations, such formulations are the sole focus of this work. Chapter 2 also provides a 

review of the Nyström method for discretizing surface integral equations.  

Chapter 3 discusses the sparse methods that will be used throughout to fill and store 

the system matrix. The adaptive cross approximation (ACA) is used to fill blocks of the 
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system matrix, which are subsequently converted into the more efficient (i.e., sparser) 

multilevel simply sparse method (MLSSM) representation.  

Chapter 4 introduces the LOGOS concept and reviews the LOGOS factorization 

algorithm. Different types of LOGOS modes are briefly discussed and the focus is put on 

the non-overlapping, non-radiating LOGOS modes. The R  factorization, which helps 

to find the LOGOS modes efficiently, is discussed in detail in this chapter. The error 

control theory for the LOGOS factorization is formally developed, and numerical 

examples are provided to demonstrate the validity of the error control for a number of 

geometries. The multi-range localization method is also discussed to improve the 

efficiency of the LOGOS factorization. 

Chapter 5 presents the MFD method for analyzing 3D EM design problems. It 

applies the equivalence principle so that the problems can be formulated in a modular 

way. The LOGOS factorization is applied to the platform system matrix and the design 

system matrix consecutively. The factorization on the design system matrix and the 

solution processes can reuse the platform factorization results. Therefore, the design 

cycle is greatly reduced as compared to the time used to resolve the whole problem. 

Further reduction of the design cycle is possible by introducing reduced order models 

(ROMs) for the design task. In some cases, the use of ROMs renders the design cycle 

independent of the platform size. Numerical examples are presented to show the 

performance of the MFD method for different kinds of problems.  

Chapter 6 concludes the work and indicates significant directions for additional work 

based on the methods developed here. 
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Figure 1. Advanced MFD method. See Section 1.3 for a description of the 

elements of this flowchart. 
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Figure 2. Flow chart of the MFD method developed in this dissertation. See 

Section 1.3 for a description of the elements of this flowchart.  
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Chapter 2. Matrix Equations for EM Problems 

 This work focuses on solving time-harmonic electromagnetic problems formulated 

with integral equations (IEs). While it is expected that the MFD method developed in this 

work will also be applicable to problem formulations based on both the finite element 

method (FEM) and hybrid FEM/IE methods, these possibilities are not considered here.  

As discussed in Chapter 1, working with integral equation formulations necessitates 

the use of compressed representations of the underlying integral operators in order to 

treat large problems. Such compression is possible due to the characteristics of 

electromagnetic field interactions and the consequent properties of the system matr ix. 

These characteristics are highlighted below.   

For a given EM scattering/radiation problem, a range of integral equation 

formulations are possible. This is significant as different formulations lead to system 

matrices with different properties. These differences can have several consequences. In 

the first place, the formulation chosen can affect the accuracy of the resulting solution. 

Furthermore, when iterative solvers are used, the choice of formulation can dramatically  

impact the convergence of the underlying iterative solver, as well as the ability to develop 

efficient preconditioners. In the context of sparse direct methods, the choice of 

formulation impacts both the degree of compression that can be obtained in the system 

matrix as well as the efficiency of the LOGOS factorization algorithm.  

This chapter reviews some of the fundamental details in electromagnetic theory and 

simulation related to the integral equation formulation and discretization strategies used 

in the remainder of the dissertation. 

1.1. Basic Equations for Electromagnetic Fields 

The starting point of all electromagnetic field analysis is the set of Maxwell's 

equations [29]. Macroscopic Maxwell's equations are convenient to work with when 

dealing with problems where the wavelength of the field is large enough such that the 

material medium can be characterized by constitutive parameters. When the medium is 

linear, the Maxwell‟s equations in the space-frequency domain are given by (with 

suppressed time variation j te  ) 
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 j   E H M , (2.1) 

 j  H E J , (2.2) 

 



  E , (2.3) 

 
m


  H , (2.4) 

with the charge conservation relations 

 j  J , (2.5) 

 j m  M . (2.6) 

E , H , J , K ,  , m ,   and   are the electric field, magnetic field, electric current, 

magnetic current, electric charge density, magnetic charge density, permittivity and 

permeability, respectively.   

For a linear, homogeneous and isotropic medium, both   and   are scalar and not a 

function of position, so that the vector wave equations can be written as  

 2k j    E E J M , (2.7) 

 2k j    H H M J . (2.8) 

Using 2  A A A , (2.7) and (2.8) becomes 

 2 2k j      E E J M , (2.9) 

 2 2k j m     H H M J . (2.10) 

In the following discussions, unless pointed out explicitly, all mediums are linear and 

isotropic.  

Specific EM problems specify the boundary conditions that define the relationship 

between the fields on the two sides of a boundary, S , between two mediums. The 

fundamental boundary conditions are 

  2 1
ˆ

S
n   E E M , (2.11) 

  2 1
ˆ

S
n  H H J , (2.12) 

  2 1
ˆ

S
n   D D , (2.13) 

  2 1
ˆ

S
n m  B B , (2.14) 
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where the subscripts 1 and 2 refer to the medium 1 and 2, respectively; n̂  is the unit 

normal vector to the boundary pointing from medium 1 to medium 2. M  and J  are the 

surface magnetic and electric currents on the boundary. Due to the constraints of 

Maxwell's equations, (2.11) and (2.14) are not independent, similarly with (2.12) and 

(2.13). 

A special boundary condition is that at the infinity. Any Cartesian component   of 

the EM field must satisfy Sommerfeld's radiation condition [29] 

 lim 0
r

r jk
r






 
  

 
. (2.15) 

To derive integral representation of the fields and the associated integral equations, it 

is easier to work with auxiliary quantities, such as the vector and scalar potentials. Due to 

linearity, Maxwell's equations can be separated into two sets of equations that are dual to 

each other. One set is due to electric sources only. It can be written as 

 j  E H , (2.16) 

 j  H E J , (2.17) 

 



  E , (2.18) 

 0 H . (2.19) 

The fields derived from this set of equations are called fields of electric type. The other 

set of equations are due to magnetic sources only, which can be obtained from (2.16)-

(2.19) using the duality relations 

 
,   ,   ,   ,   

,  .m

   



   

 

E H H E

J M
 (2.20) 

The corresponding fields are called fields of magnetic type. The total fields due to 

electric and magnetic sources are the summation of the fields of electric and ma gnetic 

types. The vector potentials and scalar potentials can be derived from the two sets of 

equations.  

Equation (2.19) indicates that H  is solenoidal and can be written as the curl of a 

vector. Let 
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 0

1 1 1

j


  

 
      

 
H A A , (2.21) 

where 
0  is an arbitrary scalar function. Substituting (2.21) into (2.16), we have 

  0 0j    E A , (2.22) 

Therefore, 
0j  E A  is irrotational and can be written as 

 
0j     E A , (2.23) 

Eliminating E  and H  from (2.17) using (2.21) and (2.23), and using 

2  A A A , we have 

   2 2

0k j         A A A J . (2.24) 

0  
and, therefore, 

0 
 
are arbitrary functions. Write 

0     and let 

 0j  A . (2.25) 

Equation (2.24) becomes 

 2 2k    A A J . (2.26) 

Taking the divergence of (2.23), we have 

 
2 2k


 


    . (2.27) 

Equations (2.26) and (2.27) are the equations that govern the vector and scalar potentials 

produced by the electric sources. A  is the magnetic vector potential and   is the electric 

scalar potential. The field of electric type is given by  

 j   E A , (2.28) 

 
1


 H A . (2.29) 

The potentials due to magnetic sources and the fields of magnetic type can be obtained 

using the duality relations (2.20) as 

 2 2k    F F M , (2.30) 

 
2 2 m

k 


    , (2.31) 

 j   H F , (2.32) 
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1


  E F , (2.33) 

where F  and   are the electric vector potential and the magnetic scalar potential, 

respectively. 

2.1. Green's Functions 

The vector wave equations, (2.9) and (2.10), and the equations governing the 

potentials, (2.26), (2.27), (2.30) and (2.31), are all Helmholtz equations. At zero 

frequency (or 0k  ), these equations reduce to Laplace's Equations. These linear 

equations can be written in a general form as  

     L f  r r , (2.34) 

where r  is the 3D position vector,   r  the unknown function,  f r  the source 

(forcing) function and L  a linear operator. (2.34) is written for scalar functions only. It 

can be used to represent the Cartesian components of the vector Helmholtz equation, 

(2.9) and (2.10). The solution to this linear equation can be easily written as a 

superposition of the Green's function of it, which satisfies the same boundary conditions 

that need to be satisfied by the unknown function   r .  

The Green's function  ,G r r  is the solution of  

     ,L G    r r r r , (2.35) 

where   r r  is the 3D Dirac delta function, which satisfies 

        
 ,

0,V V

f V
f dv f dv

V
 

 
     


 

r r
r r r r r r

r
, (2.36) 

where f  is an arbitrary continuous function. The primed quantities are related to the 

source and the corresponding unprimed quantities are related to the field. If the Green's 

function satisfies the same boundary condition as that for the unknown function   r , 

the function   r  can be expressed using the Green's function as  

      ,
V

f g G dv   r r r r . (2.37) 
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Specifically, the Green's function that satisfies the 3D scalar Helmholtz equation 

  2 2G k G      r r  (2.38) 

in free-space is given by 

  ,
4

jk
e

G


 

 


r r

r r
r r

. (2.39) 

The free-space Green's function of the two-dimensional (2-D) scalar Helmholtz equation 

is  

      2

0

1
,

4
G H k

j
  ρ ρ ρ ρ . (2.40) 

At the limit 0k  , the Helmholtz equation (2.38) becomes Laplace's equation 

  2G     r r . (2.41) 

The Green's functions for Laplace‟s equation in three and two dimensions are given by  

  
1

,
4

G


 


r r
r r

, (2.42) 

and 

  
1

, ln
2

G


   ρ ρ ρ ρ , (2.43) 

respectively. 

2.2. Integral Equations  

The integral representation of the fields in free-space due to electric and magnetic 

sources can be obtained with the aid of potentials and Green's functions. In analogy with 

(2.37) , the vector potential and scalar potential in free-space due to electric sources in 

(2.26), (2.27) can be written as  

      ,
V

G dv    A r J r r r , (2.44) 

      
1

,
V

G dv 


   r r r r . (2.45) 

The fields of electric type can be obtained using (2.28) and (2.29) as 

        
1

, ,
V V

j G dv G dv 


         E J r r r r r r , (2.46) 
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    ,
V

G dv    H J r r r . (2.47) 

The fields of magnetic type can be obtained using the duality relations (2.20) as 

      ,
V

G dv    F r M r r r , (2.48) 

      
1

,
V

m G dv


   r r r r . (2.49) 

        
1

, ,
V V

j G dv m G dv


         H M r r r r r r , (2.50) 

    ,
V

G dv   E M r r r . (2.51) 

Equations (2.46), (2.47), (2.50) and (2.51) define the source-field relations in free-space 

or unbounded homogenous space.  

In the following, the integral representation of the fields in the presence of piecewise 

homogenous material regions are derived. Consider a homogeneous region R  bounded 

by the surface R  and probably the surface at infinity as shown by the two cases in 

Figure 3. Let the unit normal vector on the bounding surface pointing to region R  be 

denoted by n̂ . The neighbor regions of region R , denoted by 
iR  in Figure 3, are those 

that share the boundary R  or part of it with region R .  

Any fields Φ  and Ψ  in region R  satisfy the vector analogous of the Green's 

identity: 

     ˆ
R R

dv nds


         Φ Ψ Ψ Φ Ψ Φ Φ Ψ . (2.52) 

Let Φ E  and GΨ a , where E  is the total electric field in region R , a  is an arbitrary 

constant vector and G  is the 3D free-space Green's function. Substitute Φ  and Ψ  into 

(2.52) and make use of the following results1  

                                                 

 

1 The following vector identities are used to derive the resutls: 

           A A A , 

                    A B A B B A B A A B , 

                     A B A B B A A B B A , 
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2

2

G G G G

G G

         

    

a a a a

a a
 (2.53) 

 
      

   ˆ

R R

R R

G dv G G dv

G nds G dv


         

       

 

 

E a a E a E

a E a E
 (2.54) 

 
   

 

ˆ
R R

R

G nds G dv

G G dv


    

    

 



a M a M

a M M
 (2.55) 

and the Helmholtz equations, (2.9) and (2.38), satisfied by E  and G . Then, (2.52) 

becomes 

 
 

   ˆ ˆ ˆ

R

R

j G G G dv

n G n G j G n ds


 






 
       

 

          





a J E r r M

a E E H

. (2.56) 

Since a  is arbitrary, (2.56) should hold without a . Using the reciprocity property of the 

Green's functions, we have 

      ˆ ˆ ˆ

0

R

R

j G G G dv

j G n n G n G ds

V

V









 
       

 

               


 







J M

H E E

E r

r

. (2.57) 

Using the duality relation (2.20), the magnetic field can be written as 

      ˆ ˆ ˆ

0

R

R

m
j G G G dv

j G n n G n G ds

V

V







 
       

 

              


 







M J

E H H

H r

r

. (2.58) 

Equations (2.57) and (2.58) give the expression of the fields inside region R . The 

volume integrals on the LHS's of (2.57) and (2.58) are the contribution to the fields from 

                                                                                                                                                 

 

             A B B A A B . 
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the sources existing in region R . The surface integrals on the LHS's of (2.57) and (2.58) 

are the contribution to the fields due to the fields on the boundary R . Comparing the 

expressions in the volume and surface integrals, it is apparent that the source field 

relations given by (2.46), (2.47), (2.50) and (2.51) can be maintained with the following 

definition of equivalent surface currents and charges on the boundary R : 

 
e

e

ˆ ˆ,   ,

ˆ ˆ,   .

e

e

n n

n m n  

     

     

J H M E

H E
 (2.59) 

The charge conservation relations also hold for the surface equivalent sources, 

 
e;  ,s e e s ej j m        J M  (2.60) 

where 

 ˆ
s n

n


   


. (2.61) 

On a closed surface, the following equations always hold: 

    ˆ ˆ
R R

j
n Gds n Gds

 
               E H , (2.62) 

    ˆ ˆ
R R

j
n Gds n Gds

 
              H E . (2.63) 

Equations (2.62) and (2.63) relate the equivalent charge contributions to the fields with 

the equivalent current contribution to the fields.  

In a source free region R , the field exists as if the equivalent sources given by (2.59)

existing on the boundary R  radiate in free-space or homogeneous unbounded space with 

medium characterized by that in region R . These sources radiate the exact fields inside 

region R  and null field outside region R . This is one of the fundamental concepts in EM 

theory: the equivalence theorem [30]. The equivalence theorem is used extensively in the 

subsequent development of the MFD method. 

Rewrite (2.57) and (2.58)  for a source free region R  as 

      ˆ ˆ ˆ
0R

R
j G n n G n G ds

R





                 


E r

H E E
r

, (2.64) 

      ˆ ˆ ˆ
0R

R
j G n n G n G ds

R





                


H r

E H H
r

. (2.65) 
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The field given by (2.64) and (2.65) are the secondary fields caused by some source 

illumination. These fields are called the scattered fields, which can also be written as  

 

     
1

ˆ ˆ ˆ

0

R
j G n n G n G ds

j

R

R




 
                 

 


 



 H H E

E r

r

, (2.66) 

 

     
1

ˆ ˆ ˆ

0

R
j G n n G n G ds

j

R

R




 
                

 


 



 E E H

H r

r

. (2.67) 

Define linear integral-differential operators L  and K  as 

 

 

     

2

2

2

1

1

1
,

.

R

R

R

R R

jk G G ds
k

jk Gds
k

jk G G ds
k

F r Gds r Gds







 

 
        

 

 
      

 

 
     

 

        







 

L F F F

F F

F

K F F
  

 (2.68) 

The scattered field can be written as 

      sca  E r L J K M , (2.69) 

      
1sca


 H r L M K J , (2.70) 

where the definition of the equivalent currents in (2.59) has been used, and the subscript, 

'e', for the equivalent currents are dropped for simplicity. The total field in region R  is 

given by 
inc sca E E E  and 

inc sca H H H . Equations (2.69) and (2.70) can be written 

out for every homogenous region indicated in Figure 3 to obtain the fields in that region 

as a function of the equivalent currents existing on its boundaries. When the fields are 

written for a specific region that is indexed by i , the quantities belonging to this region, 

such as E , H ,  ,  , n̂  and k , etc., are attached with a subscript i .  

The integral equations can be setup by enforcing the boundary conditions (2.11)-

(2.14) that connect the total fields on the two sides of a boundary. The boundary 
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conditions (2.11) and (2.12) are more convenient to work with because they are related to 

the surface equivalent currents that are used in the formulation. Once (2.11) and (2.12) 

are enforced, (2.13) and (2.14) are automatically satisfied because of the constraints of 

Maxwell's equations. Therefore, only the tangential component of the fields on the 

boundary is required to setup the boundary condition. In a general format, the boundary 

conditions on the boundary R  which is shared by region R  and its neighbors 
iR  can be 

written as 

 ˆ ˆ
i i i BR R

n n  
     M M E E M , (2.71) 

 ˆ ˆ
i i i BR R

n n  
     J J H H J . (2.72) 

Note that the unit normal vector n̂  points into region R , and ˆ
in  points into region 

iR . 

R  represents the region R  side of boundary R . R  represents the neighbor side of 

boundary R .   
BJ  and 

BM  are the physical surface currents on the boundary. 
BJ  is non-

zero on a boundary involving a perfect electric conductor (PEC), and 
BM  is non-zero on 

a boundary involving a perfect magnetic conductor (PMC). 
BJ  and 

BM  are zero on 

boundaries between materials with finite electric and magnetic conductance. It is possible 

to re-define 
BJ  and 

BM  to some non-zero values in order to model an impedance 

boundary condition, which is outside the scope of this work. Two commonly used 

boundary conditions are discussed here: boundaries involving PEC and boundaries 

involving only dielectrics. 

A PEC enforces zero internal fields and supports no magnetic currents. The 

boundary conditions for a PEC material interface are 

 ˆ 0
R

n 
  M E , (2.73) 

and 

 ˆ
R

n 
 J H . (2.74) 

(2.73) is equivalent to (2.71) with 0B M  and 0i M . (2.74) is equivalent to (2.72) with 

B J J  and 0i J . i  is used to index the PEC region. Equations (2.73) and (2.74) are 

not independent and either one can be used to setup the integral equations. Equation 

(2.73) results in the electric field integral equation (EFIE), and (2.74) leads to the 
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magnetic field integral equation (MFIE). Equation (2.75) and, therefore, the EFIE can be 

used for either closed or open PEC boundaries, because the conditions 0B M  and 

0i M  can be satisfied in either case. However, equation (2.74) and, therefore, the MFIE 

can only be used for closed PEC boundaries because 0i J  is not true for open PEC 

boundaries. 

Both the EFIE and the MFIE suffer from the non-uniqueness of their solutions at the 

internal resonance frequency of a PEC body [31]. It has been shown that the combined 

field integral equation (CFIE), which is given by  

  CFIE= EFIE+ 1- MFIE





, (2.76) 

where 0 1   produces unique solutions even at the resonances of the EFIE and MFIE 

formulations [31]. This is possible because the internal resonance frequencies of the EFIE 

and MFIE do not coincide. 

For a boundary between two non-PEC media, the boundary conditions are 

 ˆ ˆ 0i i i BR R
n n  

      M M E E M , (2.77) 

 ˆ ˆ 0i i i BR R
n n  

      J J H H J . (2.78) 

(2.77) and (2.78) are the PMCHWT [31, 32] formulation for a dielectric boundary. An 

alternative boundary condition for a dielectric boundary is known as the Müller 

formulation [33], which can be written as  

 ˆ ˆ2 i i iR R
n n  

     M M M E E , (2.79) 

 ˆ ˆ2 i i iR R
n n  

     J J J H H . (2.80) 

The Müller formulation has some advantages over the PMCHWT formulation for 

low contrast materials (i.e., 20r  ) [34] because it behaves as a second-kind integral 

equation and the static terms of the L-operator in (2.68) cancel in the limit as 0 r r . 

The Müller formulation has a lower condition number than the PMCHWT formulation 

for a Nyström discretization for moderate to low contrast materials [34]. 
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2.3. Fields on the boundary 

Equations (2.64) and (2.65) hold except when r  is on R . In the latter situation, the 

source and field points can coincide, and the singularity of the Green‟s function and its 

derivatives must be handled appropriately. This problem can be worked out by splitting 

the closed surface integral into two surface integrals: one of them shrinks to the field 

point in a defined limiting process, the other one expands to the original surface integral. 

Different limiting processes can be defined and the same results can be obtained [36-39]. 

Without presenting the details, the results are given here: 

 

     

     

ˆ ˆ ˆ

ˆ ˆ ˆ
2

R

R

j G n n G n G ds

PVI j G n n G n G ds









             

               





H E E

E
H E E

, (2.81) 

 

     

     

ˆ ˆ ˆ

ˆ ˆ ˆ
2

R

R

j G n n G n G ds

PVI j G n n G n G ds









              

                





E H H

H
E H H

, (2.82) 

where 
R

PVI
    means the principle value integral. Equations (2.81) and (2.82) are 

applicable to planar boundaries. When the boundary has sharp edges and the field on the 

sharp edge is evaluated, the constant 1/ 2  should be replaced with a value that includes 

the solid angle spanned by the sharp edge. The scattered field can be written as 

        ˆ ˆ ˆsca

R
j G n n G n G ds 


               E r E H E E , (2.83) 

        ˆ ˆ ˆsca

R
j G n n G n G ds 


                H r H E H H , (2.84) 

where 

  
0

1/ 2

R

R



 



r
r

r
, (2.85) 

and the integrals in (2.83) and (2.84) should be principle value integrals when Rr . 

 

2.4. Locally Corrected Nyström Method 

The matrix equations used to develop the MFD method in this work are obtained 

using the locally corrected Nyström (LCN) method [35, 40-46]. The formulation and 
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notation used in the following introduction to the LCN method closely follows the 

discussions of [35] and [43].  

Consider the integral equation used to solve for a surface current density  J r  

      ,inc

S

K ds    r r r J r , (2.86) 

where S  is a smooth surface,  inc r  is the known forcing function, and  ,K r r  is the 

kernel. The surface S  is discretized into pN  curvilinear patches that represent the 

surface contour to high order. The integral over each patch is then approximated using a 

suitable quadrature rule. The observation field is sampled at the quadrature points, 

leading to a square linear system of equations, with the mq th row defined as 

      
1 1

,
p q

m p m p p

N N

inc

q q q q q

p q

K 
 

r r r J r , (2.87) 

where 
pqr  and 

pq  are the qth abscissas and weights on the pth patch. For 

electromagnetic applications, the kernel is undefined at vanishing separation of the source 

and field points. Therefore, (2.87) is ill posed. This issue can be circumvented by the so-

called local correction method. Rewrite (2.87) as  

      
 

 
1 1

,
q q

m p m p p pp m

N N

inc

q q q q q q q

p far q p near q

K  
   

   r r r J r J r , (2.88) 

where 
 p mq  are the weights of the specialized local quadrature rule for integrating 

   ,
S

K ds   r r J r  when the underlying quadrature scheme is not enough to account for 

the singular behavior of the kernel  ,K r r . The abscissa points for the specialized, or 

local, quadrature rule are chosen to be the same as the underlying quadrature rule of the 

Nyström scheme. The weights 
 p mq  are solved by requiring that the local quadrature rule 

integrates (2.86) to the desired accuracy when the currents are replaced by the set of 

functions used to define the underlying quadrature rule. The LCN method described 

above can be shown to be equivalent to a quadrature sampled high order moment method 

[43].  
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                                 (a)                                                              (b) 

Figure 3 Arbitrary 3-D scatterers analyzed with the present method. (a) A finite 

homogenous region R  is bounded by R  with inward normal n̂ . Its neighbors, 

1R , 2R  and 3R , share the boundary R  with it. (b) An infinite homogeneous 

region R  is bounded by R  with inward normal n̂  and the surface at infinity. 

Its neighbors, 1R , 2R , 3R  and 4R , share the boundary R  with it.  
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Chapter 3. Sparse Representations of System Matrix 

 Fast direct solvers rely on a sparse representation of the system matrix. When the 

system matrix is inherently sparse, such as when the finite element method (FEM) is used 

to discretize the underlying differential equations, fast direct solvers that exploit the 

sparse structure of the matrix can be developed and applied to the standard system 

matrix. On the other hand, when integral equation formulations such as those discussed in 

Chapter 2 are used, the resulting matrix equation is dense and general, exact direct 

solution methods will have a complexity of O(N3), which is generally considered to be 

excessive for large values of N. Fortunately, the matrices derived from integral equation 

formulations of electromagnetic phenomena can be approximated by sparse 

representations that have controllable error. Direct solvers can subsequently be used to 

invert the sparse approximation to the original full matrix.  

In this chapter, the approaches to efficiently fill and store the full system matrix in a 

sparse format are reviewed. Some modifications are introduced to the original approaches 

to adapt to the needs of our applications, i.e., the development of LOGOS factorization 

and the MFD method.   

3.1. Review on Sparse Representations 

A sparse representation of a full matrix is obtained by approximating the full matrix 

to a certain error. The purpose is to save memory, both the final memory used to save the 

sparse representation and the peak memory during the process to obtain the sparse 

representation. Because the matrix is sparse, i.e. not all elements need to be saved,  any 

operations defined on it are presumably faster than those defined on the corresponding 

full matrix. To improve the efficiency of the whole algorithm, all operations, including 

that used to obtain the sparse representation of the full matrix from the mathematical 

representation, should operate only on sparse representations of the system matrix. Some 

available techniques for obtaining a sparse matrix representation from mathematical 

formulations include panel clustering [47, 48], wavelet methods [49], multipole 

expansions [3, 50, 51], interpolation [52] and the adaptive cross approximation (ACA) 

and related H-matrix methods [53-58].  
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Both panel clustering and multipole expansion methods require analytical expansion 

of the kernel function which is either inconvenient or difficult to achieve for general 

kernels. The interpolation method can be used instead of analytical expansion but the  

price paid is performance. Wavelet methods are (thus far) limited to problems where the 

underlying geometry can be described by a small number of smooth maps.  

The ACA method is an algebraic method where no expansion of the kernel function 

is needed. The proof of convergence exists for Nyström discretizations of single layer 

potential [58]. An improved version of ACA, called hybrid ACA, combines the ACA 

algorithm with an interpolation-based separation of the kernel function. It has been 

proved that the hybrid ACA converges for both single and double layer potentials of 

asymptotically smooth kernels as well as Nyström, collocation or Galerkin boundary 

element formulations [58].  

The ACA method is normally used to fill far interaction blocks in the system matrix. 

Using multilevel tree structures to decompose the underlying geometry in the problem is 

an easy way to differentiate near and far interaction blocks. The hierarchical matrix (H-

matrix) is a type of representation obtained using ACA. It has almost linear memory 

complexity [59] at low frequency but higher complexity at high frequency. Both H2-

matrix [60, 61] and MLSSM [62-64] provide more memory savings at high frequency 

due to their nested structures, which is similar to the FMM representation [65].  

This dissertation utilizes the ACA method to obtain a sparse representation of the 

system matrix. The MLSSM representation is used to achieve further compression of the 

system matrix. The two methods are discussed in the following sections.  

3.2. Multilevel Spatial Decomposition of a Geometry 

All sparse representations presented in this dissertation rely on a multilevel spatial 

decomposition of the underlying geometry. This is accomplished using an oct-tree for 

three-dimensional applications. The resulting spatial groupings are the same as those 

associated with the multilevel fast multipole method (MLFMM) [66]. However, the 

minimal group size is not limited by the wavelength in our case.  

The number of levels in the oct-tree will be denoted by L .  The individual levels are 

indexed by l , 1, ,l L  .  The level 1l   is the root level of the tree.  The root level 
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consists of a single group containing all spatial samples. The number of nonempty groups 

at the thl  level of the tree is ( )M l , and the number of spatial samples in each group is 

approximately / ( )N M l . The total number of levels, L , is chosen so that the smallest 

spatial group in each branch of the multilevel tree contains approximately twenty DOF. 

At a given level (level- l ) of the tree, those groups sharing the boundaries of the i th 

group are referred to as the level- l  near-neighbors of the i th group.  (The i th group is 

also considered to be a near-neighbor to itself.)  The remaining groups at level- l  are 

referred to as far (or non near-neighbor) groups. The groups that have the same parent 

group are called sibling groups. Sibling groups are all near-neighbor groups, but not all 

near-neighbor groups are sibling groups. In the following discussion it will be convenient 

to indicate the i th group at level- l  using the notation ( )i l .  Similarly, the notation ( )i lz  

will be used to indicate the submatrix of a level- l  matrix, lZ , associated with source 

group ( )i l .   

As an example, consider a PEC strip which is fitted into a 4-level oct-tree. The non-

empty groups at each level are indexed by the integers as indicated in Figure 4. The 

horizontal braces in Figure 4 denote the parent-children relation between groups in two 

consecutive levels of the tree. For this simple structure, any two groups at a level indexed 

by consecutive integers are near-neighbor groups. 

3.3. Adaptive Cross Approximation 

We implemented the standard ACA procedure discussed in [57] to fill sparse 

representations of the system matrix obtained from the EFIE, MFIE and CFIE 

formulations. However, the standard ACA does not work for matrices like 

 
 
 
 

A 0

0 B
 (3.1) 

or more complicated checkerboard-like structures. The reason is that the sampling of 

rows and columns passing A  can never be pivoted to sample those rows and columns 

passing B  because of the off-diagonal zero blocks. The hybrid ACA is one way to solve 

this problem but it involves many changes to an existing code to implement either the 
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interpolation or the cross approximation [58]. In lieu of such modifications, we have 

developed an alternative strategy to address this type of problem.  

In the following subsections, the standard ACA and the modified version used to 

treat matrices of the type indicated by (3.1) are discussed. 

3.3.1. Standard ACA method 

ACA is suitable to fill the matrix blocks that represent interactions between well 

separated groups. Once the underlying geometry is decomposed by an oct-tree (assuming 

a three-dimensional geometry), the system matrix, Z , can be written as: 

 
2

L
near

l

l

Z Z  (3.2) 

where 
near

lZ  is the near-neighbor interaction blocks of the system matrix at level-l.  

Figure 5 illustrates the partition of the system matrix according to (3.2). Except 4

near
Z , the 

near interaction blocks at level-l, 
near

lZ , in (3.2) can be considered as the non-near-

neighbor interaction blocks at level-(l+1), i.e., 1

near non near

l l



Z Z . Equation (3.2) can be 

rewritten as 

 
3

L
near non near

L l

l





 Z Z Z  (3.3) 

The matrix 
non near

l


Z  can be filled using the ACA. To this end, rewrite 

non near

l


Z  as 

      1
, , , ,non near non near non near non near

l l i l M l

    
 

Z Z Z Z  . (3.4) 

For each column block in (3.4), the ACA procedure given in [57] is used to obtain the 

outer product representation:  

    
 

   
1

K
Knon near H H

k ki l i l i l i i
k





  Z Z U V u v   , (3.5) 

where K  is the effective rank of the matrix 
non near

l


Z ,  i l

U  and  
H

i l
V  are rectangular full 

matrices with columns and rows given by ku  and 
H

kv , respectively. The superscript, H , 

means Hermitian conjugate. The ACA procedure is to find ku  and 
H

kv  for 1, ,k K   

adaptively. After each ku  and 
H

kv  are found, the convergence of the collective 



29 

 

approximation to the original matrix is checked by calculating how much modification 

the last ku  and 
H

kv  introduced to the approximation (3.5). The criteria of convergence 

used in [57] is 
 
 kH

k k ACA i l
u v Z , where ACA  is the tolerance for ACA fill. This 

criteria controls the relative error in the matrix block,  
non near

i l


Z , which is the non-near 

interaction part of the matrix block associated with the source group  i l . For our 

application, it is sufficient to control the relative error in the full matrix block associated 

with the source group  i l , which includes the near interaction part, because the LOGOS 

factorization discussed in the later chapters effectively compresses the full matrix block 

associated with the source group  i l . In the remainder of this section we develop an 

alternative ACA termination condition. 

Consider a simple case where the mesh contains very small density variation. We 

want to obtain a representation (3.5) for every block of the system matrix. Using (3.5), 

(3.3) can be written as 

   ,

3

L
Knear

L l l err

l

  Z Z Z Z  (3.6) 

where ,l errZ  is the error matrix caused by incomplete sampling of the original system 

matrix blocks. The total error satisfies 

 ,

3

L

err l err

l

Z Z . (3.7) 

Assume the error is distributed across all blocks homogeneously. The target of error 

control is  

 
err F

ACA

F


Z

Z
. (3.8) 

Or, 

 

 
 

 
2

2

2 ,,
3 23

2 2 2

M lLL

i l errl err FF
l i i lerr lF

ACA

F F F


   

 ZZ
Z

Z Z Z
. (3.9) 
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Since we have assumed that the error is homogeneously distributed, (3.9) can be 

satisfied by requiring that  

  

2 22

, ACAi l err FF

m n

N N






Z Z . (3.10) 

where we assume  ,i l err
Z  is a m n   rectangular matrix and the total number of unknown 

in the problem is N . The term 
m n

N N




 arises because the error allowed for a matrix 

block is proportional to the number of elements in the block. The following two 

approximations are used in the ACA tolerance control: 

  

2

,

H

k ki l err
F
Z u v , (3.11) 

 
22 near

LF F
Z Z . (3.12) 

Substituting (3.11) and (3.12) into (3.10), we have 

 H near

k k ACA L F

m n

N N






u v Z . (3.13) 

(3.13) is the tolerance control criteria we used in our implementation of ACA.  

3.3.2. Modified ACA method 

ACA cannot fill a matrix having a structure like (3.1) because any rows/columns 

intersecting the block A  will always have zero elements in the columns/rows where B  is 

saved. Because the ACA algorithm always chooses the next row/column by looking for 

the maximum absolute value in the previously sampled column/row, the matrix B  can 

never be sampled without special requirements. This deficiency of the ACA is not 

surprising, since the algorithm was developed to treat smooth kernels, and the matrix 

indicated in (3.1) has abrupt changes at the edges of A  and B .  

Fortunately, this deficiency of the ACA can be resolved by introducing some 

additional logic into the algorithm in order to force it to cover B . Before any columns are 

sampled, all row indices of the matrix block are collected as a list of overlooked rows. 

Once a column is sampled, the position of the non-zero elements are removed from the 

list of overlooked rows. The same list is built for the overlooked columns. After the 

convergence of the ACA is reached, the list of overlooked rows and columns are 
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checked. If there are still elements inside, the next row or column sample should be 

chosen in the list of overlooked rows or columns. The ACA continues until another 

convergence is reached. The check for the overlooked rows and columns are carried out 

again until there are no more overlooked rows and columns.  

This modified ACA is implemented in the development of the MFD method where 

the checker-board structured matrix blocks are possible because the Green-box contains a 

planar material surface and both EFIE and MFIE kernels are present. 

3.4. Multilevel Simply Sparse Method 

The MLSSM [62-64, 67] representation provides a representation of the system 

matrix which is asymptotically more efficient than the sparse outer product representation 

obtained from ACA. The MLSSM representation is similar to both the multilevel FMM 

and the H2 H-matrix representation [59, 60]. In this section, the structure of the MLSSM 

representation is discussed, and the procedure used to obtain the MLSSM representation 

from blocks of the ACA representation is described. 

3.4.1. Structure of MLSSM representation 

The structure of the MLSSM is indicated by the following multilevel recursion 

formula: 

  1
ˆ ,  2, , ,H

l l l l l l LZ Z U Z V     (3.14) 

In (3.14), ˆ
lZ  is the sparse matrix containing all near-neighbor interactions at level- l  of 

the Oct-tree which were not represented at a finer level of the tree.  The matrices lU  and 

lV  are rectangular, orthonormal, block diagonal matrices which effectively compress 

interactions between far groups at level- l  of the Oct-tree. The original impedance matrix 

is recovered from (3.14) when l L  (i.e., Z ZL ). When 2l  , equation (3.14) reduces 

to 

 2 2
ˆZ Z . (3.15) 
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The matrices 2U  and 2V  are not defined in this case because all interactions at level-2 

are between touching (i.e., near-neighbor) groups.  For the same reason, the recursion 

indicated by (3.14) and (3.15) is not continued to level-1. 

Taking the PEC strip shown in Figure 4 as an example, the system matrix can  be 

written as 

  4 4 3 3 2 3 4
ˆ ˆ H H

Z Z U Z U Z V V   , (3.16) 

or 

 4 4 3 4 4 3 2 3 4
ˆ ˆ H H H

Z Z U Z V U U Z V V   . (3.17) 

The three terms on the RHS of (3.17) represent the near-neighbor interaction blocks at 

levels 4, 3 and 2, respectively, that have not been represented by the finer level near-

neighbor interactions. They fit into different portions of the system matrix as shown by 

Figure 6. 4Ẑ  saves only the shaded blocks in Figure 6-(a). 4 3 4
ˆ H

U Z V
 
recovers the shaded 

blocks in Figure 6-(b), with the block diagonal matrices 4U  and 4

H
V , and the 

compressed version of 4 3 4
ˆ H

U Z V  saved in 3Ẑ . The structures of  4U , 4

H
V  and 3Ẑ  are 

shown in Figure 7. 4 3 2 3 4

H H
U U Z V V  recovers the shaded blocks in Figure 6-(c). The 

structures of 3U , 3

H
V  and 2Z  are shown in Figure 8. 

In the following discussion, we will make use of the fact that although the matrices 

1lZ  appearing in (3.14) have a level- ( 1)l   subscript, they are actually comprised of 

blocks which represent interactions between non-near-neighbor groups at level- l .  (This 

follows from the fact that the matrices lU  and 
H

lV  in (3.14) are level- l  block-diagonal 

matrices.)  This is also true of 2Z  in (3.15).  The matrix 2Z  is comprised non-near-

neighbor interactions between level- 3  groups. The interactions between groups that are 

neither near-neighbors nor non-near-neighbors are referred to as far interactions.  

3.4.2. How to Build MLSSM 

The basic procedure for building MLSSM from ACA representation is: 

1) Save the near interaction blocks at the finest level (level-L) to ˆ
LZ . Let l L . 



33 

 

2) Find the minimal source basis for the far interaction blocks,  
far

i l
Z , of each source 

group,  i l , at level-l.  

3) Find the minimal field basis for the far interaction blocks of each field group at 

level-l. This step is similar to the step-2 but the far interaction blocks are row blocks 

associated with every field group instead of column blocks associated with every source 

group. 

4) With these minimal basis, find the compressed non-near neighbor interaction 

blocks at level-l. These are the near neighbor interactions at level-(l-1). Therefore, they 

are represented symbolically by 1
ˆ

lZ  according to (3.14).  

5) Use the minimal basis obtained above to find the projected ACA representation of 

the rest of the matrix, which are the level-(l-1) far interaction matrices.  

6) Decrease the level index by one, such that 1l l  . Repeat steps 2-5 

until level-3.  

The basic procedure described above follows the recursive formula (3.14) nicely. 

However, this procedure requires that the entire ACA representation of the full system 

matrix be present in memory all at once, which creates a memory peak usage in the 

algorithm. A modified version of this procedure has been developed which lowers the 

peak memory required to build the MLSSM representation [63].  

The method discussed in [63] is used hereinafter to build the MLSSM structure 

without requiring the presence of the entire ACA structure in physical memory at any 

point in time. The idea of this method is to incorporate the non-near neighbor interaction 

blocks represented using ACA into the MLSSM representation of the far interactio n 

blocks at each level. Therefore, this method works from level-3 until the finest level.  

3.4.3. Efficiency and Accuracy of MLSSM 

The CPU Time for obtaining the MLSSM representation and the memory used for 

the representation have been reported in [63]. More examples are quoted here to 

demonstrate the efficiency and accuracy of MLSSM [68]. The examples are formulated 

using surface IE's and discretized using the locally corrected Nyström method [35] and 

[43]. 
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The first example contains a PEC sphere with radius 2λ. The EFIE formulation is 

used. The density of the mesh on the sphere is increased from 300 DOF/λ2 onwards in 

order to pack more unknowns into the system. The time used to obtain the MLSSM 

representation of the system matrix is shown in Figure 9 for three tolerances, 310 , 410  

and 510 . It is observed that the CPU cost to build the MLSSM representation is about 

linear as a function of the number of unknowns. The memory usage of this example is 

plotted in Figure 10. A better than linear memory usage can be observed. 

The second example contains a vias like structure as shown in Figure 11. The 

detailed geometric specification of this structure is given in Section 4.2.6. The density of 

the mesh on this structure is increased from 300 DOF/λ2 onwards. Figure 12 and Figure 

13 show the time used to obtain the MLSSM representation and the memory usage for 

the representation, respectively. The trends of the curves are similar to those of the first 

example. 

The third example contains a series of spheres with radii of 2λ, 2.83λ, 4λ and 5.66λ. 

The CFIE formulation is used for this example. The density of the mesh provides an 

average of 300 DOFs/λ2. Figure 14 shows the time used to build the MLSSM 

representation. The time to build the representation scales more rapidly in this case, 

approximately as   1.8O N . Figure 15 shows the memory usage of this example. The 

memory usage also scales higher than the last two examples, approximately as  1.2O N . 

These data indicate that the MLSSM representation is not as efficient for the high 

frequency case as for the low frequency cases shown in the last two examples.   

Figure 16 to Figure 18 show the relative RMS error of the MLSSM representation 

for the three cases shown above. Three tolerances are used for each case. It can be seen 

that the relative RMS error of the MLSSM representation scales roughly by the same 

factor when the tolerance is scaled. Besides the scalability of the error control, Figure 18 

shows that the relative RMS error increases as the number of unknowns increases. This is 

the case where the mesh density is kept constant and the radius of the sphere increases. It 

is still not clear why the error increases for this high frequency case. More work is being 

done to obtain better error control. 
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In the remainder of the dissertation, we will assume the existence of an MLSSM 

representation of the system matrix having a root-mean-square (RMS) error controlled by 

ssm . The LOGOS factorization will begin with this sparse MLSSM representation of the 

system matrix. 
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Figure 4. A PEC strip is fitted into a 4 level oct-tree. Due to the simple structure 

of the strip, many groups in the oct-tree are empty. The resulting tree has eight 

non-empty groups at level 4. There are four, two and one groups at levels 3, 2 

and 1, respectively. Each group at levels 3, 2 and 1 has two children as indicated 

by the horizontal braces.   

1 2 3 4 5 6 7 8 

1 2 3 4 

1 2 

1 Level 1 

Level 2 

Level 3 

Level 4 

groups 
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Figure 5. The system matrix for a PEC strip. The strip is decomposed in a 4-

level oct-tree as shown in Figure 4. 
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Figure 6. Shaded blocks indicate the pieces of Z  that are represented by the 

different terms in the MLSSM representation: (a) 4Ẑ , (b) 4 3 4
ˆ H

U Z V , (c) 

4 3 2 3 4

H H
U U Z V V . Lines are used to indicate blocks of Z  corresponding to 

interactions at levels three (large squares) and four (smaller squares). The blocks 

bordered with bold lines are different portions of Z  associated with source 

group 1 at level-4. These blocks are represented by the MLSSM representation 

as: (a)  1 4
Ẑ , (b)  4 3 1 4

ˆ H
U Z V , (c)  4 3 2 3 1 4

H H
U U Z V V . 

  

( a ) ( b ) ( c )

1 2 3 4

1

2

2

1

1 2

4

3

7 8

3

2

3 4 5 61 2

1

8

7

6

5

4



39 

 

 

Figure 7.  Level 4 SSM matrices (a): 4U ; (b): 3Ẑ  ; (c):  4

H
V . 

 

Figure 8.  Level 3 SSM matrices (a): 3U ; (b): 2Ẑ  ; (c):  3

H
V . 
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( a ) ( b ) ( c )
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Figure 9. The CPU time used to fill the MLSSM representation of the system 

matrix for a PEC sphere with radius 2λ. The EFIE formulation with Nyström 

discretization is used to obtain the matrix equation. The coarsest mesh has a 

density of 300 DOF/λ2. 
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Figure 10. The memory usage of the MLSSM representation of the system 

matrix for a PEC sphere with radius 2λ. The EFIE formulation with Nyström 

discretization is used to obtain the matrix equation. The coarsest mesh has a 

density of 300 DOF/λ2. 
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Figure 11. A vias-like geometry. It consists of U-shaped PEC strips that pass 

through rectangular holes on a PEC plate. The strips and plate are assumed to 

have zero thickness. 

  

6λ 

5λ 



43 

 

 

Figure 12. The CPU time used to fill the MLSSM representation of the system 

matrix for a vias-like structure (see Figure 11). The EFIE formulation with 

Nyström discretization is used to obtain the matrix equation.  
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Figure 13. The memory usage of the MLSSM representation of the system 

matrix for a vias-like structure (see Figure 11). The EFIE formulation with 

Nyström discretization is used to obtain the matrix equation.  
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Figure 14. The CPU time used to fill the MLSSM representation of the system matrix for 

a series of spheres with radii of 2λ, 2.83λ, 4λ and 5.66λ. The density of the mesh provides 

an average of 300 DOF/λ2. 
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Figure 15. The memory usage of the MLSSM representation of the system matrices for a 

series of spheres with radii of 2λ, 2.83λ, 4λ and 5.66λ. The density of the mesh provides 

an average of 300 DOF/λ2. 
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Figure 16. The relative RMS error the MLSSM representation of the system 

matrix for a PEC sphere with radius 2λ. The EFIE formulation with Nyström 

discretization is used to obtain the matrix equation. The coarsest mesh has a 

density of 300 DOF/λ2. 
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Figure 17. The relative RMS error of the MLSSM representation of the system 

matrix for a vias-like structure (see Figure 11). The EFIE formulation with 

Nyström discretization is used to obtain the matrix equation.  
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Figure 18. The relative RMS error of the MLSSM representation of the system 

matrices for a series of spheres with radii of 2λ, 2.83λ, 4λ and 5.66λ. The density 

of the mesh provides an average of 300 DOF/λ2. 
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Chapter 4. LOGOS Factorization 

 Integral equation-based numerical models provide an important tool for the analysis 

and design in a variety of application areas.  Traditional implementations of surface 

integral equation (IE) based models lead to dense matrix equations of the form,  

 
i

Zx F  (4.1) 

where the vector x  contains the coefficients of the sub-domain basis functions used to 

represent equivalent surface currents, and the vector 
i

F  is determined by samples of the 

source fields at points on the surface of the underlying geometry. To treat complex 

problems, it is necessary to use sophisticated methods which rely on compressed 

representations of the system matrix [3, 69].  Solution methods that rely on these 

compressed representations can be roughly categorized as either fast iterative solution 

methods [3] or fast direct solution methods [20, 21, 24, 25, 70-79].   

This dissertation works with LOGOS based fast direct solvers. The basic idea of 

LOGOS modes and the process to obtain these modes are presented in Section 4.1. The 

LOGOS modes based factorization is also presented. Section 4.2 presents an efficient 

algorithm, named ΘR factorization, which is a critical step in obtaining LOGOS modes. 

Section 4.3 discusses how the error of LOGOS factorization can be controlled. Section 

4.4 illustrate how to obtain the solution after LOGOS factorization. Finally, a multi-range 

localization procedure is  introduced in Section 4.5 to improve the efficiency of the NL-

LOGOS factorization. 

4.1. Determination of LOGOS Modes 

Let the simulation domain be denoted as S . Decompose S  into two non-

overlapping pieces, 

 1 2S S S   (4.2) 

For convenience, we will refer to 1S  and 2S  as “Region 1” and “Region 2,” respectively.  

This decomposition of S  leads to an associated decomposition of system equation 

satisfied by LOGOS modes as, 
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 1, 1,11 12

2, 2,21 22

i

m m

i

m m

    
    

     

x FZ Z

x FZ Z
, (4.3) 

where the integer subscript m  on mx  and i

mF  is used to index the LOGOS modes. A 

single LOGOS mode is defined by an excitation/solution pairing  ,i

m mF x . The subvector 

1,mx  is the part of mx  associated with Region 1, and 2,mx  is associated with Region 2. 

Matrix 
12Z  corresponds to interactions from Region 2 to 1, etc.   

Consider the determination of LOGOS modes  ,i

m mF x  which have nonzero support 

only in Region 1 (i.e., 1, 2,0,   0m m x x ).  The local condition associated with these 

modes is 

 11 1, 1,

i

m mZ x F . (4.4) 

The global condition is 

 21 1, 2,

i

m mZ x F . (4.5) 

Combining (4.4) and (4.5) provides a local-global condition 

 
1

21 11 1, 2,

i i

m m

 Z Z F F , (4.6) 

satisfied by all LOGOS modes. The condition (4.6) can be used to determine LOGOS 

modes that, to ( )O  , have sources xm  that are confined to Region 1. 

It is useful to introduce two classifications for LOGOS modes: localizing vs. non-

localizing, and overlapping vs. non-overlapping. Localizing LOGOS modes are obtained 

by requiring 2, 0i

m F  in (4.6), which requires that the associated source functions radiate 

no energy into Region 2. The additional modes obtained in the more general case 

 2, 0i

m F  are referred to as non-localizing LOGOS modes.  

The second classification (overlapping vs. non-overlapping) is used to indicate the 

domain of support of the 1,mx . In the case where the support of 1,mx
 
is somewhat larger 

than Region 1, the support of source functions defined in Region 1 will overlap with the 

support of sources defined in other spatial regions. Such modes are referred to as 

overlapping LOGOS modes. The non-overlapping case is obtained when the support is 

restricted to distinct spatial regions.  
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Combining these two classifications, we can have 4 types of LOGOS modes: 

1) NL-LOGOS modes: non-overlapping localizing LOGOS modes. 

2) OL-LOGOS modes: overlapping localizing LOGOS modes. 

3) NN-LOGOS modes: non-overlapping non-localizing LOGOS modes. 

4) ON-LOGOS modes: overlapping non-localizing LOGOS modes. 

This dissertation considers factorizations based only on the NL-LOGOS modes. NL-

LOGOS modes in region 1 are obtained by imposing (to order- ) (4.6) for the case 

2, 0i

m F , 

 
1

21 11 1, 0i

m

 Z Z F . (4.7) 

These LOGOS modes are designated as “localizing” LOGOS modes because the field 

scattered from Region 1 to Region 2 is zero to order-  ( 21 1, 0m Z x ).  

To compute localizing modes satisfying (4.7) to order-  we follow [78] and perform 

a QR decomposition on the matrix block associated with sources in Region 1, 

 11 11

1 1

21 21

   
    
   

Z Q
Z R

Z Q
, (4.8) 

where 11Q  ( 21Q ) is of the same size as 11Z  ( 21Z ), and 1R  is a square upper triangular 

matrix.  A singular value decomposition (SVD) of 11Q  provides 

 11 1 1 1

HQ u s v . (4.9) 

Let is  1, ,i n   indicate the singular values in 1s  which have been sorted in non-

increasing order. The magnitude of these singular values serves as the field strength 

multiplier by which the corresponding left singular vectors receive field radiated by the 

corresponding right singular vectors. Because 11Q  is part of an orthonormal matrix, 

1is  . Thus, the desired, order-  localizing modes are obtained from those singular 

vectors corresponding to is  that are near unity.  Let LN  indicate the number of is  

 1, , Li N   that are sufficiently close to unity to qualify as order-  localizing modes 

(the  -dependent condition used to determine LN  will be discussed below). If the 

corresponding right singular vector is denoted by 
 
1

L
v  and the rest of the singular vectors 
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1

N
v , we have

   
1 1 1

L N 
 

v = v v . The matrix 1s  has a similar representation, 

   
1 1 1

L N 
 

s s s . Therefore, 

 
1 1

1 1 1

21 1

H 
  
 

u s
Z v R

Q v
, (4.10) 

or 

    
   

   

1 1 1 1 1 11

1 1 1 1

21 1 21 1 21 1

L N

L N

L N


  

       
    

u s u s u s
Z R v v

Q v Q v Q v
, (4.11) 

Because 1v  is unitary, the column vectors of 

 

1 1 11

1

21 1 21

  
   

   

u s Q
v

Q v Q
 

are orthonormal. The large singular values (approaching unity) in 
 
1

L
s  indicate small 

values in 
 

21 1

L
Q v . The value LN  is determined such that the following approximation can 

be made 

 
 

21 1

L
Q v 0 , (4.12) 

and  

        
   

 

1 1 1 11 1

1 1 1 1 1 1 1 1

21 1

L N

L N L N

N

 
 

         
  

u s u s
Z R v v Z Λ R v

0 Q v
. (4.13) 

In (4.13), 
   1

1 1

L LΛ R v  contains the localizing LOGOS source modes, which radiate 

approximately no field into Region 2. The criteria for determining LN , which controls the 

error in the LOGOS factorization, is discussed in [80] and the details will be provided in 

Section 4.3. The same procedure can be used to find localizing source modes, 
 
2

L
Λ , in 

Region 2 which radiate approximately no field into Region 1. 
 
1

N
Λ  and 

 
2

N
Λ  are 

assigned as the orthonormal complements of 
 
1

L
Λ  and 

 
2

L
Λ , respectively. Therefore, we 

have 

 

   

   

     

     

11 12 1 1 1 1 11 12

21 22 2 2 2 2 21 22

L N L N N

L N L N N

    
    

        

Z Z Λ 0 Λ 0 u s 0 Z Z

Z Z 0 Λ 0 Λ 0 u s Z Z
. (4.14) 
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The matrix blocks on the RHS of (4.14) have been defined by matching their positions 

with the matrix multiplies on the LHS. Let  
1 1

L
P u  and  

2 2

L
P u  span the localized field 

space (they are orthonormal). The projection matrix is composed of  
1

L
P ,  

2

L
P  and their 

orthonormal complements  
1

N
P  and  

2

N
P . The complete one level factorization is  

 

  
  

   
 

 

11 12

21 22

H
L

LN

L N

H NN
N

 
            

      

P Z Z I Z
Λ Λ

Z Z 0 ZP


, (4.15) 

where  
 

 

1

2

L

L

L

 
  
  

Λ 0
Λ

0 Λ
, and similar definitions are used for  N

Λ ,  L
P  and 

 N
P . 

 

 

1

2

L

L

 
  
  

s 0
I

0 s

  is a matrix with only approximately unity diagonal elements. The 

factorization can be written as 

    
 

 

   
1

11 12

21 22

LN

L N L N

NN

  
          

    

Z Z I Z
P P Λ Λ

Z Z 0 Z


. (4.16) 

If the underlying geometry is decomposed by a multilevel tree, the groups in each 

level of the tree define the regions. At the finest level (level-L) of the tree the 

factorization is applied to the original system matrix, 
 

1

NN

L L Z Z Z , and (4.16) becomes 

      
 

 

   
1

1

LN

NN L N L NL

L L L L LNN

L





 
        

  

I Z
Z P P Λ Λ

0 Z


. (4.17) 

At a coarser level of the tree, (4.17) looks the same. Therefore, the same factorization can 

be carried out recursively on 
 NN

lZ  for , ,2l L  . 

4.2. Sparse ΘR Factorization of Z 

The most time consuming operation in the foregoing discussion is the QR 

factorization in (4.8) and the SVD in (4.9).  The QR factorization in (4.8) dominates the 

cost because the matrix block 1Z  is an N-by-m block, where N is the number of degrees 

of freedom (DOF) in the problem and m indicates the number of DOF in Region 1.  
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To avoid the large costs of this QR decomposition in computing the NL-LOGOS 

modes, it is necessary to define a more efficient strategy for obtaining the same 

information by working with a sparse representation of Z . In the following, this is 

accomplished using the ΘR factorization of the sparse MLSSM representation of Z . 

4.2.1. Definition of ΘR Factorization  

Let ( )i lΖ  denote the columns of Z  associated with sources in the level- l  group, ( )i l

. The matrix Z  can then be represented as the horizontal concatenation of these column 

blocks,  

 1( ) ( ) ( ), , , ,l i l M l
   Z Z Z Z  . (4.18) 

Performing a QR factorization [15] of each column block on the right side of (4.18), 

 ( ) ( ) ( )i l i l i lZ q r . (4.19) 

Assembling the results yields the representation 

  1( ) ( ) ( ) ( ), , , , diagl i l M l i l
   Z q q q r  . (4.20) 

In (4.20), the notation  ( )diag i lr  is used to indicate the block diagonal matrix having the 

square matrices ( )ri l  along its diagonal. 

With the definitions 

 1( ) ( ) ( ), , , ,l l i l M l
   Θ q q q  , (4.21) 

  ( )diagl i lR r , (4.22) 

Equation (4.20) can be written as 

 l lZ Θ R . (4.23) 

The factorization given by (4.23) defines the so called ΘR factorization of Z according to 

the level- l  group partitioning. Here, it is simply referred to as ΘR factorization of Z  at 

level- l  or level- l  ΘR factorization of Z . 

4.2.2. Basic Idea 

Suppose we want to find the R  Factorization of (3.17). First, partition the system 

matrix according to level-4 source groups as 
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      1 4 4 4
, , , ,

i M
Z Z Z Z     

. (4.24) 

According to (3.17), the different terms in the MLSSM representation represent different 

portions of the matrix as shown by Figure 6. The portions that make up  1 4
Z  can be 

written as  

        4 3 4 3 2 31 4 1 4 1 4 1 4
ˆ ˆ H H H

Z Z U Z V U U Z V V   , (4.25) 

where each term is indicated in Figure 6 using thickened lines.  1 4

H
V

 
is indicated using 

thickened lines in Figure 7. Equation (4.25) can also be written as the vertical 

concatenation of the three matrix terms on its RHS:  

        4 3 4 3 2 31 4 1 4 1 4 1 4
ˆ ˆ; ;H H H

Z Z U Z V U U Z V V    
, (4.26) 

where “;” indicates vertical concatenation. In (4.26) and the following discussions, the 

three matrix blocks are used to represent their  non-zero parts only (the shaded parts with 

thick boxes in Figure 6). A standard QR factorization of   1 4
Z  would provide the desired 

factor,  1 4
R . However, this is not efficient because it operates on a full matrix. 

Alternatively, we can find the Q and R factors for each of the blocks in (4.26), so that  

 

   
1 4

; ;a a b b c c

a a

b b

c c

Z Q R Q R Q R

Q 0 0 R

0 Q 0 R

0 0 Q R



   
   
       
   
   

, (4.27) 

Another QR factorization on the matrix containing only R factors in (4.27) gives 

        1 4 1 4 1 4 1 4

a

b

c

Q 0 0

Z 0 Q 0 Q R Q R

0 0 Q

 
 
    
 
 

. (4.28) 

Equation (4.28) defines the QR factorization of  1 4
Z  because  

  1 4

a

b

c

Q 0 0

Q 0 Q 0 Q

0 0 Q

 
 
    
 
 

 (4.29) 

is column orthonormal. We have used the fact that the product of two column 

orthonormal matrices is column orthonormal. Therefore, if only the factor R  is needed, 
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which can be found using aR , bR  and cR  only, the matrices aQ , bQ ,  cQ  and Q  can 

be discarded in the process of finding  1 4
R . Based on the same arguments, it is sufficient 

to find bR  and cR  from  3 1 4
ˆ H
Z V  and  2 3 1 4

H H
Z V V  , respectively, since the U  matrices in the 

MLSSM is column orthonormal. The matrices  3 1 4
ˆ H
Z V  and  2 3 1 4

H H
Z V V  can be significantly 

smaller than  4 3 1 4
ˆ H

U Z V  and  4 3 2 3 1 4

H H
U U Z V V  due to the compression used in the MLSSM 

representation. Therefore, the efficiency of finding the factor  1 4
R  is improved.  

The efficiency of finding bR  from  3 1 4
ˆ H
Z V  can also be improved. Assume level-4 ΘR 

factorization of 3Ẑ  is 3 4 4
ˆˆ ˆZ Θ R . bR  can be found by apply QR factorization on 

   1 4 1 4
ˆ H
R V . Similar techniques can be used to find cR  from  2 3 1 4

H H
Z V V . 

This strategy for finding  1 4
R  from the MLSSM representation of  1 4

Z  always 

operates on compressed data and has two important properties. First, no matrix blocks 

need to be extracted/decompressed from the sparse MLSSM representation. Furthermore, 

no additional approximation to the data structure is required to extract the required  1 4
R  

factors. 

The fact that the product of two column orthonormal matrices is column orthonormal 

will be used extensively in the following derivation of the sparse ΘR factorization 

algorithm. This allows the column orthonormal matrices on the left of the factorization to 

be discarded if only the R factors are needed. In the following, the ΘR factorization 

algorithm is introduced in further detail. This discussion primarily consists of the 

systematic, multilevel application of the ideas indicated by (4.24) to (4.29). 

4.2.3. R  Factorization Algorithm 

As shown in Section 4.2.2, given the lR  matrix of (4.23) and the level- l  MLSSM 

matrix ˆ
lZ , NL-LOGOS modes can be rapidly computed (The full matrix lΘ  is not 

needed to compute the NL-LOGOS modes). Thus, the R  factorization described here 

only explicitly computes the block-diagonal R factor, and the matrix lΘ  is never 
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explicitly formed. Our discussion of the algorithm will primarily focus on the level - L  

implementation since the multilevel generalization is obvious.  

Finally, in anticipation of additional applications of the proposed algorithms, we 

consider the slightly more general problem of determining the R  factorization of a 

projected version of the MLSSM representation of the impedance matrix.  In particular, 

let LP  indicate an arbitrary level- L  block diagonal matrix (i.e., the diagonal blocks span 

only a single group at level- L ). The R  factorization of 
H

LP Z  at level- L  is given by 

 
H

L L LP Z Θ R . (4.30) 

If L P I , then (4.30) indicates a R  factorization of Z . 

The proposed sparse R  factorization of 
H

LP Z  requires traversing the multilevel 

tree twice, first from level- L  to level- 2  (upward pass), and then from level-2  back to 

level- L  (downward pass).  In some cases, only the downward pass is required.  

However, for completeness, we discuss both the upward and downward pass in Sections 

4.2.3.1 and 4.2.3.2, respectively. 

4.2.3.1. ΘR – Upward Pass 

The upward pass is necessary only when there is a non-column-orthonormal matrix 

multiplying from the left onto the MLSSM representation of the system matrix. 

Beginning at the finest level, equation (3.14) allows 
H

LP Z  to be expressed as 

  1
ˆH H H

L L L L L L P Z P Z U Z V . (4.31) 

Due to the nested structure of MLSSM, (4.31) can also be written as 

 

1

1 2 1

1 3 2 3 1

ˆ

ˆ

ˆ+

ˆ

H H

L L L

H H

L L L L

H H H

L L L L L L

H H H H

L L L L L



  

 









P Z P Z

P U Z V

P U U Z V V

P U U U Z V V V



 

. (4.32) 

The upward pass works with a part of each term in the RHS of (4.32) and factors it such 

that 

 
H H

L L P I P , (4.33) 
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 1

H H

L L L LP U U P  , (4.34) 

 1 1 2

H H

L L L L L L  P U U U U P   , (4.35) 

 1 3 1 3 2

H H

L L L L L P U U U U U U P     , (4.36) 

where lU  is block diagonal and column orthonormal and 
H

lP  is block diagonal. The 

purpose here is to factor out matrices that are column orthonormal and leave the non-

orthonormal matrices to the right of the factorization, as indicated by (4.33) to (4.36).  

Equation (4.33) is trivial. (4.34) can be obtained by applying the ΘR factorization at 

level- L  to the matrix 
H

L LP U . The LΘ  factor is saved in LU
 
and the LR

 
factor is saved 

in 1

H

LP . While it is block-diagonal at level- L , the matrix 1

H

LP  is labeled with the 

subscript 1L  in anticipation of its use below. 

With (4.34), the LHS of (4.35) can now be written as  

 1 1 1

H H

L L L L L L   P U U U P U  . (4.37) 

The ΘR factorization at level-  1L   can be applied to 1 1

H

L L P U , with the 1LΘ  factor 

saved in 1LU
 
and 1LR

 
saved in 2

H

LP . Then (4.37) becomes 

  1 1 2

H H

L L L L L L  P U U U U P   . (4.38) 

Following the same procedure as given by (4.37) and (4.38), the upward pass can be 

carried out until level-3. 

4.2.3.2. ΘR – Downward Pass 

After the preceding upward pass, we have 

 

1 1

1 2 2 1

1 3 2 2 3 1

ˆ

ˆ

ˆ+

ˆ

H H

L L L

H H

L L L L

H H H

L L L L L L

H H H H

L L L L

 

   

 









P Z P Z

U P Z V

U U P Z V V

U U U P Z V V V



 

  



    

. (4.39) 

Equation (4.39) can be written in the same format as the MLSSM representation of Z  if 

ˆH

l lP Z  is taken as ˆ
lZ . A recursive relation similar to (3.14) can be written as 

 1 1
ˆH H H H

l l l l l l l l  P Z P Z U P Z V   . (4.40) 
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The downward pass of sparse ΘR factorization works on (4.40) and produces results 

(4.30) without explicitly forming and saving LΘ .  

The following procedures are divided into two steps: Step-I is to find the following 

ΘR factorization 

 1 1

H

l l l l P Z Θ R , (4.41) 

which is the factorization of level- l  matrix 
H

l lP Z  at level- 1l  ; Step-II is to find the 

ΘR factorization  

 
H

L L L LP Z Θ R , (4.42) 

which is the ΘR factorization of the finest level (level- L ) matrix 
H

L LP Z  at the finest 

level. Step-I is used to find the R  factors recursively from the level-2 to the second 

finest level. Step-II is used to find the R  factors at the finest level. 

a) Step-I of Downward Pass 

Performing ΘR factorization on the matrix 2 2

H
P Z  at level-3 , we have 

 2 2 3 3

H P Z Θ R . (4.43) 

At level-3, 

 3 3 3 3 3 2 2 3
ˆH H H H P Z P Z U P Z V    . (4.44) 

Substituting (4.43) into (4.44), it becomes 

 3 3 3 3 3 3 3 3
ˆH H H P Z P Z U Θ R V   . (4.45) 

Applying ΘR factorization at level-4 to 3 3
ˆH

P Z  and 3 3

H
R V , we have  

 3 3 4 4
ˆˆ ˆH P Z Θ R , (4.46) 

 3 3 4 4

H HR V V R  . (4.47) 

where  

 

 

 

1 4

4 4 1(4) (4)

4

ˆ

ˆ ˆ ˆ ˆq , ,q

ˆ

M

M

 
 

    
 
 

r 0 0

Θ R 0 0

0 0 r

  . (4.48) 

With (4.46) and (4.47), (4.45) becomes 
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 3 3 4 4 3 3 4 4
ˆ ˆH H P Z Θ R U Θ V R    . (4.49) 

Let 4 3 3 4

HΘ U Θ V   . It can be shown that 4Θ
  has the structure  

 
4 1(4) (4) (4), , , ,i M

   Θ q q q     , (4.50) 

where the column blocks associated with the level-4 groups are orthonormal. Equation 

(4.49) can be simplified as 

 3 3 4 4 4 4
ˆ ˆH  P Z Θ R Θ R  . (4.51) 

For a single level-4 source group, (4)i , the right side of (4.51) can be represented as  

 group (4)

4 4 4 4 (4) (4) (4) (4)
ˆ ˆ ˆ ˆi

i i i i  Θ R Θ R q r q r    . (4.52) 

Again, (4)
ˆ

iq  and (4)iq  are column orthonormal matrices.  Furthermore, due to arguments 

similar to those used to obtain (4.28) from (4.25), the right side of (4.52) can be factored 

as 

 (4)

(4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4)

(4)

ˆ
ˆ ˆ ˆ ˆ[ , ] [ , ]

i

i i i i i i i i i i i i

i

 
    

 

r
q r q r q q q q q r q r

r
   


, (4.53) 

where (4) (4) (4) (4)
ˆ[ , ]i i i iq q q q  is orthonormal. 

Performing the factorization indicated by (4.53) for each level-3 group, the right side 

of (4.51) can be put in the desired form, 

 3 3 4 4 4 4 4 4
ˆ ˆH   P Z Θ R Θ R Θ R  , (4.54) 

where 4R  is a level-4 block diagonal matrix with the diagonal blocks (4)ir . The 

operations from (4.45) to (4.54) can be repeated to obtain (4.41). During the process of 

factorization, the Q matrices obtained from all QR factorizations can be discarded since 

the Θ  matrices are not ultimately required for the NL-LOGOS mode computation.  

b) Step-II of Downward Pass 

After the factorizations in Step-I, we have  

 ˆH H H

L L L L L L L L P Z P Z U Θ R V  . (4.55) 

Similar to (4.46) and (4.47), we can write 

 ˆˆ ˆH

L L L LP Z Θ R , (4.56) 
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H H

L L L LR V V R  . (4.57) 

Thus, (4.55) becomes 

 

ˆ ˆ

ˆ ˆ

H H

L L L L L L L L

L L L L

L L

 

 



P Z Θ R U Θ V R

Θ R Θ R

Θ R

  

  . (4.58) 

In obtaining (4.58), arguments similar to those used in deriving (4.51) and (4.54) are used 

here. 

4.2.4. Complexity of R  Factorization 

The proposed procedure for determining (4.30) via (4.31) to (4.58) relies only on 

manipulation of diagonal and near-neighbor blocks of the MLSSM matrices lU , lV  and 

ˆ
lZ  at level- l . The full system matrix is never reconstructed. Thus, the cost of the R  

procedure is determined by the size of the blocks in lU , lV  and ˆ
lZ  at all levels. 

Because the MLSSM provides an ( )O N  representation of the impedance matrix at low 

frequencies [77], the cost to obtain (4.30) from the MLSSM representation of 
H

LP Z  is 

expected to require ( )O N  floating point operations.  Furthermore, because the proposed 

factorization procedure does not require explicit computation and storage of the Θ  

factors, the memory complexity is also expected to scale as ( )O N .  

4.2.5. Using R Factorization to Determine NL-LOGOS Modes 

Because the sparse ΘR factorization never stores the Θ  factors, all necessary 

quantities needed in the LOGOS factorization must be computed through the MLSSM 

representation of the system matrix and the R  factors obtained from the ΘR 

factorization. To illustrate how this can be accomplished, consider the simple illustration 

given in Section 4.1. As can be seen from (4.8) and (4.9), the only extra information 

required is the matrix 11Q , which is part of the unavailable Θ  matrix. Fortunately, it is 

easy to compute this matrix block using 

 
1

11 11 1

Q Z R . (4.59) 
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Once 11Q  is obtained, the LOGOS factorization discussed in Section 4.1 and in [78] can 

be continue without additional modifications. Therefore, an efficient ΘR factorization 

effectively avoids the bottleneck associated with NL-LOGOS mode calculation. 

4.2.6. Numerical Examples and Discussions 

In the following numerical examples, the NL-LOGOS factorization and solution 

methods based on the sparse ΘR factorization are applied to solve matrix equations 

obtained from a Nyström discretization of the electric field integral equation (EFIE) [35, 

43]. The MLSSM representation of the system matrix is obtained according to [63]. A 

detailed analysis of the error control provided by the NL-LOGOS factorization algorithm 

has recently been performed[80], and the results of that analysis are used in the following 

examples. 

The first case considered is plane wave scattering by long thin PEC strips. The strips 

are infinitely thin with length 200 . The width of the strips are 0.2 , 0.1 , 0.05 ,

0.025  and 0.0125 . The strips are meshed using square cells with the sides of the cells 

the same as the width of the strips. Therefore, the number of cells on the strips are 1000, 

2000, 4000, 8000 and 16000, respectively.  The CPU time used for (i) ΘR factorization at 

the finest level of the oct-tree, and (ii) the full NL-LOGOS factorization is plotted in 

Figure 19. All curves in Figure 19 scale as about  O N  because the strips have planer 

structure with large spatial extent in one dimension. Most of the localized LOGOS modes 

can be found at the finer levels of the trees. Therefore, the coarser level LOOGS 

factorization takes relatively little time, and the LOGOS factorization has a complexity 

similar to the  ΘR factorization. Different tolerances are considered for the LOGOS 

factorization, and the corresponding MLSSM representa tions are built using a tolerance 

which is 10 times tighter than the tolerance used for the LOGOS factorization. Because 

the tolerance controls the sparsity of the MLSSM representation, which affects the 

efficiency of the sparse ΘR factorization, the CPU time used by the sparse ΘR 

factorization depends on the MLSSM tolerance as can be seen in Figure 19 (Note that 

sparse ΘR factorization involves no approximations).  

The second example is a PEC sphere with radius 2 . The sphere is meshed with 

DOF densities ranging from 300 DOFs/λ2  to 4800 DOFs/λ2 . The CPU times for the ΘR 
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factorization at the finest level of the oct-tree and the full LOGOS factorization are 

plotted in Figure 20. Again, the CPU time for the finest level sparse ΘR factorization has 

 O N  complexity. However, the CPU time for the multi-level LOGOS factorization has 

 2.1O N  complexity. The higher complexity of the multi-level LOGOS factorization 

results from the fact that there are many non-localized modes at the finer levels of the 

tree. These modes increases the cost of LOGOS factorization at coarser levels. 

References [77, 78] describe a more asymptotically efficient OL-LOGOS factorization 

method for such low frequency problems using overlapped, localizing LOGOS modes. 

However, as described in [15], the sparse ΘR factorization is also required to expedite the 

calculation of OL-LOGOS modes. 

A third case is a vias-like structure (see Figure 11) which contains multiple PEC 

strips floating on both sides of a PEC plate. There are via holes on the PEC plate through 

which the PEC strips on the opposite sides of the PEC plate is connected. The PEC plate  

is of dimension 5 6  . The height of the vias is 0.5 . The width of the vias is 0.24 . 

On each side the of PEC plate, the length of the via-arms that is parallel to the plate 

measures 5 . The distance between two vias is 0.24 . The via-holes have dimension 

0.24 0.48  . The CPU times required for ΘR factorization at the finest level of the oct-

tree and for the full NL-LOGOS factorization are plotted in Figure 21. The efficiencies of 

the ΘR factorization and the NL-LOGOS factorization for the vias case are similar to 

those of the sphere case shown in Figure 20. 

The three cases studied above demonstrate the low frequency (i.e., h-refinement) 

behavior of both the ΘR factorization and the NL-LOGOS factorization on a system 

matrix obtained from the EFIE. In the following example, a series of PEC spheres with 

radii varying from 2λ to 8λ are studied. The mesh density is fixed to maintain 300 

DOF/λ2 as N  is increased. The CPU times for ΘR factorization at the finest level and for 

full NL-LOGOS factorization are plotted in Figure 22. The ΘR factorization for the 

moderate frequency case has complexity  1.5O N . The higher cost of ΘR factorization 

for the moderate frequency case as compared to that for the low frequency case is due to 

the lower compression rate on the system matrix by the MLSSM at moderate frequency. 
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In contrast, the NL-LOGOS factorization time scales somewhat more slowly than the 

low-frequency examples considered above. 

4.2.7. Summary 

A sparse R  factorization algorithm is proposed for the MLSSM representation of 

the system matrix associated with surface integral equation formulations of 

electromagnetic scattering. The R  factorization works closely with the MLSSM 

representation of the system matrix to obtain the R factors required for NL-LOGOS 

modes calculation at a given level of the oct-tree. The Θ factors are never explicitly 

formed or saved. No decompressed of any blocks of the sparse system representation is 

necessary, and no approximations are introduced by the R  factorization.  

Three dimensional numerical examples have been used to illustrate that the 

efficiency of the R  factorization algorithm depends on the complexity of the 

underlying MLSSM representation of the system matrix. At low frequencies the MLSSM 

representation has an  O N  complexity, and it has been observed that the complexity of 

the R  factorization is also approximately  O N . (The complexity of the R  

factorization at coarser levels of the oct-tree will depend on the number of localized 

modes found at finer levels of the tree, and is therefore problem dependent.) For a fixed 

discretization density of approximately 300 DOF/λ2, the complexity of both the R  

factorization and the NL-LOGOS factorization scale as approximately  1.5O N . 
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4.3. Error Control in NL-LOGOS Factorization 

The NL-LOGOS factorization is approximate due to its reliance on source functions 

that approximately localize the scattered field. For this reason, the number of localizing 

modes associated with a given region depends on the tolerance with which these modes 

need to be localized. A tighter tolerance produces a more accurate LOGOS factorization 

at the expense of higher costs in terms of both CPU time and memory. The purpose of 

this paper is to provide detailed theoretical justification for the error control provided by 

the NL-LOGOS factorization.  

Let Z  denote the factorization of Z  in (4.1) obtained using the NL-LOGOS 

factorization procedure described in [78], which provides an approximate representation 

of the inverse, 
1 1 Z Z .  The approximate solution is given by 

1x Z F . The most 

significant error is the solution error: 

 F
sol

F





x x
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, (4.60) 

where 
F

  denotes the Frobenius norm. It relates directly to the error in the inverse of the 

system matrix  
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by 
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However, neither (4.60) nor (4.61) can be obtained for practical problems due to the lack 

of a precise solution and inverse. Therefore, to control the error in solution or the inverse 

of a system matrix is not practical for most problems.  

A more practical alternative is the residual error, 
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If 
1x Z F , the residual error has the following bounds 
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where mat  is the error in the relative RMS system matrix, 

 F
mat
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Z Z
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. (4.65) 

In (4.64),  cond   indicates the condition number of a matrix, and we have used 

F F
Z Z . The purpose of this paper is to demonstrate that the NL-LOGOS 

factorization directly controls the relative RMS system matrix error given by (4.65). 

Consequently, the factorization also provides indirect control of the maximum residual 

error indicated by (4.64).   

The notations 
 

1

NN

lZ  and lZ  refer to the same matrix. They are used interchangeably, 

possibly combined with other subscripts, in the following discussions. Let the error 

introduced by the multilevel LOGOS factorization be 
 

, 1

NN

err LZ . The target error control is  

 

 

 

, 1

1

NN

err L
F

NN

L
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Z

Z
, (4.66) 

where   is the desired tolerance. It can be seen from (4.14) that during the one level 

LOGOS factorization, the system matrix is projected onto two orthogonal sub-spaces: 

one is 
 L

  spanned by the localized LOGOS source modes; and the other is 
 N

 , which 

is the orthonormal complement sub-space of 
 L

 . The current level factorization 

approximates the system matrix projected on 
 L

 . And, the subsequent multilevel 
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factorization makes approximations to the system matrix projected on 
 N

 . In order to 

control the relative error of a multilevel LOGOS factorization on a system matrix by  , it 

is enough to control the relative errors introduced in the system matrix projected onto the 

two sub-spaces simultaneously by  . The following discussion is divided into two parts: 

the first part discusses how to control the relative error of the system matrix projected 

onto 
 L

 ; the second part discusses how to control the relative error of the system matrix 

projected onto 
 N

 . The rounding errors due to computer arithmetics are not considered 

in this work. 

4.3.1. Relative Error in Sub-space 
 L

  

Before applying the projection matrix, 
   L N 

 
P P P , the level- L  LOGOS 

factorization in (4.17) can be written as 
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The error of level- L  factorization is given by 
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It can be shown that  
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, (4.69) 

where both  
†

(L)
Λ  and 

  
H

N
Λ  are block diagonal matrices. The jth block in  

†
(L)

Λ  

can be written as  
†

(L) 1 (L)( H

j j j

Λ r q ) , where 
 L

jq  and jr  are the results of the QR 

factorization on (L)

jΛ . Using (4.69), (4.68) can be written as 

 
    

†

, ,

L L

err L err LZ Z Λ . (4.70) 

The errors introduced into the system matrix blocks that correspond to different source 

groups are independent of each other because  
†

(L)
Λ  is block diagonal.  

To control the relative error in (4.70),  
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it is sufficient to control the error associated with the individual matrix block 

corresponding to the jth source group, 
jZ , in the following manner: 
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Z Λ Z Λ Λ . (4.72) 

where 
F

  means the Frobenius norm. The denominator in (4.72) is the Frobenius norm 

of the matrix jZ  projected onto 
 L

 .  The value LN  should be determined such that 

(4.72) is satisfied. The error control given by (4.72) can be simplified in the following 

ways: 

1) A Tight Control Formula 
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From (4.73) and (4.72), the error control criteria for each source group can be derived as 

  2 2

1

1
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i

i
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  . (4.74) 

2) An Alternative Tight Control Formula 
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In this case, the error control criteria for each source group is 

    
2

2 2

1

1 cond
LN

i L j

i

s N 


  
  r , (4.76) 

since    1cond condj j

 r r . 

3) An Approximate Control Formula 

This derivation is a simplified version of (4.76) by making the approximation that 

   cond 1j r . (4.77) 

(4.76) becomes 

  2 2

1

1
LN

i L

i

s N 


  . (4.78) 

4.3.2. Practical Considerations 

The condition (4.74) is too strict for all of our testing cases. Even though it provides 

good error control, it results in less localized LOGOS modes found for each group at each 

level. The efficiency of the solver is greatly affected.  The condition (4.76) is an 

alternative control criteria which depends on the condition number of jr  and therefore 

 L

jΛ . So, (4.76) could not be used to determine LN  directly. It can only be used as an 

error check after a trial LN  is provided. By comparing (4.74) and (4.76), it is apparent 

that a unified criteria should be  
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(4.79) reduces to (4.74), (4.76) and even (4.78) when  cond j LNr ,  1<cond j LNr  

and  cond 1j r , respectively. The benefit of using (4.78) is that the computation of 

 cond jr  is not required, whose cost increases as the problems size grows. In all test 

cases studied in this work, (4.78) provides good error control. However, for precise error 

control, (4.79) should be used to check the error condition. 

4.3.3. Relative Error in Sub-space 
 N

  

Continuing the factorization to coarser levels introduces additional approximations 

into the term 
 N

LZ  in (4.67). Let the collective error introduced by these subsequent 

factorizations be indicated by 
 

,

N

err LZ . It should satisfy 

 

 

      

,

1

N

err L
F

H
NN N N

L L L
F






Z

Z Λ Λ

. (4.80) 

The projection matrix, 
   

H
L NH

L L L
 
 

P P P , splits 
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The multilevel LOGOS factorization after level- L  works on 
 NN

LZ  only, and 
 LN

LZ  is left 

intact. The error control for finding localizing LOGOS modes at level- 1L   for 
 NN

LZ  

follows the same arguments provided in Section 4.3.1 above. An error control similar to 

(4.66) can be achieved such that 
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The relative tolerance 1L   is from L   used in (4.80). Comparing (4.80) and (4.82), 

and noting that    
, ,

NN N

err L err LZ Z , we have 

 1L L   , (4.83) 

where  
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The ratio   provides a scaling on the tolerance for the multilevel LOGOS factorization 

between level-  1L   and level- L . The numerator in (4.84) can be obtained as 
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where Lr
 
is a block diagonal matrix containing the R-factors obtained from the QR 

factorizations associated with each block of 
 L

LΛ . The tolerance relation between any two 

subsequent levels can be set up in the same way as that given by (4.83)-(4.85). In this 

way, the multilevel LOGOS factorization at any level can always achieve the desired 

error required by its finer level factorization.  

4.3.4. Summary on Error Control Formulas 

The error control formulas for determining localizing source modes are given by 

(4.78) or (4.79). The tolerances used in (4.78) or (4.79) for multi-level factorization 

should be scaled according to (4.83).  

The error control formula (4.78) has been used in previous works [78, 81]. An 

approximate version of (4.78),  

 
21 0.5

LNs   , (4.86) 

was also used before [78]. It is obtained by approximating (4.78) with 
2 21

LNs    and 

rewriting the relation by keeping the Taylor expansion terms up to the first order. The 
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relation, 
2 21

LNs   , is a more conservative condition than (4.78) because is  are ordered 

in non-increasing order.  

The tolerance scaling factor given by (4.84) is always larger than or equal to one. 

Therefore, the multi-level LOGOS factorization tolerance for coarser levels are relaxed. 

This factor is important to improve the efficiency of the factorization while maintaining 

the error control. 

4.3.5. Numerical Results 

To evaluate the error control criteria given by (4.75) and (4.76) we consider several 

examples of plane wave scattering from PEC targets formulated using the electric field 

integral equation (EFIE). A locally corrected Nyström method with mixed-order basis 

functions [35] is used to obtain the matrix equations. The surfaces of the PEC objects are 

meshed with quadrilateral cells. In applying the Nyström method, two sets of quadrature 

points on each cell are used to sample the two components of the surface current. Each 

set contains six quadrature points, so there are 12 DOFs (quadrature points) in every 

quadrilateral cell. All meshes are generated such that there are at least 300 degrees of 

freedom (DOF) per square wavelength. In the following discussion, condition (4.75) is 

simply referred to as the tight condition and (4.76) as the approximate condition. The 

tolerance scaling for the multilevel NL-LOGOS factorization is made using (4.83)-(4.85).  

The first example considered is plane wave scattering from long thin PEC strips. Due 

to their planer structure with large spatial extent, the strips have many localized LOGOS 

modes at the finer levels of the trees. Because the approximation in the LOGOS 

factorization is associated with the localizing modes, a larger number of approximations 

are made at fine levels of the tree for this geometry, and the error control must be 

appropriate in order to maintain the final error in factored system matrix. 

The strips considered are infinitely thin with length 200 . The width of the strips 

are 0.2 , 0.1 , 0.05 , 0.025  and 0.0125 . The strips are meshed using square cells 

with the sides of the cells the same as the width of the strips. Therefore, the number of 

cells on the strips are 1000, 2000, 4000, 8000 and 16000, respectively.  

The RMS error in the factored matrix and the residual error (with plane wave 

excitation) are plotted in Figure 23. The three different tolerances considered, 
310
, 

410
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and 510 , provide consistent improvement in the factorization errors. Due to low 

frequency breakdown of the formulation, the residual error is not as well controlled. This 

is particularly evident for the case with 16000 cells and tolerance of 310 . To reduce the 

residual error, the formulation has to be changed to improve the conditioning of the 

system matrix. Another possibility would be to precondition the formulation prior to 

factorization.  

Figure 24 plots the factorization errors obtained using the tight and approximate 

error control formulas. With the same set of tolerances, the tight condition, (4.75), 

produces consistently smaller factorization error than the approximate condition, (4.76). 

Even though the tight condition produces smaller error, it is not a preferable condition 

because it needs to evaluate the condition number of jr  in (4.76), which is time 

consuming. Furthermore, the approximate condition provides similar error control with 

less cost. Therefore, the approximate condition is used in the following cases and other 

applications.  

Another test case contains a sphere with radius 2λ.  Plane wave excitation is used. 

The surface of the sphere is meshed with different densities. The factorization errors and 

residual errors are plotted in Figure 25. Only approximate error control is used in 

obtaining the results. Consistent error control is obtained as the factorization tolerance is 

changed.  

A third case is a vias-like structure (see Figure 11) which contains multiple PEC 

strips floating on both sides of a PEC plate. There are via hols on the PEC plate through 

which the PEC strips on the opposite sides of the PEC plate are connected. The PEC plate 

is of dimension 5 6  .The height of the vias is 0.5 . The width of the vias is 0.24 . 

On each side the of PEC plate, the length of the via-arms that is parallel to the plate 

measures 5 . The distance between two vias is 0.24 . The via-holes have dimensions 

0.24 0.48  . The factorization errors and residual errors obtained using the 

approximate control criteria are plotted in Figure 26. Again, consistent error control can 

be obtained as the tolerance changes.  

Without showing the results, the cases studied above, i.e., strip, sphere and vias, have 

LOGOS factorization complexity of  O N ,  2.1O N  and  2O N , respectively. The 
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efficiency of the NL-LOGOS factorization can be improved by employing different 

formulations, such as MFIE or CFIE [78]. It was shown that the OL-LOGOS 

factorization improves the efficiency of the algorithm for all formulations [77]. 

4.4. NL-LOGOS Based Fast Direct Solution 

The NL-LOGOS factorization is derived in Section 4.1. Equation (4.17) can be 

written in a more general format as 

      
 

 

   
1

1

LN

NN L N L Nl

l l l l lNN

l





 
        

  

I Z
Z P P Λ Λ

0 Z


. (4.87) 

The inverse of (4.87) is  
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Therefore, the inverse of the system matrix is represented recursively using (4.88). 

For any number of RHS's, the solution can be obtained by multiplying the RHS's with the 

inverse of the system matrix. The efficiency of the fast direct solvers has been presented 

in [78] and the references therein.  

4.5. Multi-range Localization NL-LOGOS Factorization 

Sparse direct solution strategies for time-harmonic electromagnetic problems based 

on the use of local-global solutions (LOGOS) have been developed and improved over 

the past few years [25, 74-77, 79, 82]. The efficiency of the LOGOS factorization, which 

is the key algorithm in developing both LOGOS-based fast direct solvers and MFD 

methods, is primarily determined by the costs associated with computing the underlying 

LOGOS modes for a given system matrix. In the following, we focus on computing these 

functions for the case of a factorization based on non-overlapped, localizing LOGOS 

(NL-LOGOS) modes [78]. 

At each level of the factorization, NL-LOGOS modes span a single group at that 

level and radiate fields localized to the same group. As described in [78], when looking 

for NL-LOGOS modes at a given level, a sparse ΘR factorization must be carried out for 
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the projected system matrix at that level (the system matrix is not projected at the finest 

level). In practice, it occurs that the cost of the NL-LOGOS factorization is dominated by 

the cost to perform the ΘR factorization and subsequently compute the 
( )

Λ
L

l  at coarser 

levels of the tree. Therefore, one way to improve the efficiency of the factorization is to 

increase the number of localized modes that are obtained at finer levels. One way to 

accomplish this is to use the overlapped, localizing LOGOS (OL-LOGOS) factorization 

described elsewhere [77, 82].  While effective at lower frequencies, we have observed 

that the OL-LOGOS factorization provides little or no improvement in overall CPU 

efficiency for discretization densities on the order of 300 DOF/λ2. 

Here we consider an alternative strategy for increasing the number of modes 

determined at finer levels of the tree. This is accomplished by adding an additional step 

immediately following the NL-LOGOS mode calculation for each group at a given level. 

In particular, using a “look ahead” strategy, additional localizing LOGOS modes are 

found for each source group at a given level that produce scattered fields which are 

localized fields inside the parent of the current source group. These modes comprise a 

subset of the modes that would otherwise be determined by a calculation determined at 

the parent level. Because this extra step works with the data provided by the ΘR 

factorization performed for the current level, the cost associated with computing these 

extra modes is relatively small.  

The new procedure can be viewed as a simple extension to the original procedure 

because it finds extra localizing functions by changing the range of the field localization 

from the self-group to the parent of the source group. In this sense, the new procedure is 

referred to as a “multi-range” localization strategy. The multi-range NL-LOGOS 

factorization effectively reduces the number of non-localized modes at each level, which 

in turn reduces the cost to perform the ΘR factorization at the coarser level. 

4.5.1. Multi-range Localization 

Consider the problem of scattering from a PEC strip that is fitted into a 4-level oct-

tree. The non-empty groups at each level are indexed as indicated in Figure 31. The 

horizontal braces in Figure 4 denote the parent-child relation between groups in two 

consecutive levels of the tree. For this simple structure, any two groups at a level indexed 
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by contiguous integers are near-neighbor groups because they touch each other. Any two 

groups that have the same parent are called siblings. Siblings are near-neighbors but near-

neighbors are not all siblings. In the following discussions, the near-neighbor groups and 

the sibling groups include the self-group by default. 

Assume the system matrix has been represented by the multilevel simply sparse 

method (MLSSM) [62-64].  A sparse ΘR factorization [83] of the system matrix at level-

4 generates the block diagonal R factors and the unsaved Q factors, such that 
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where the subscript  4i  denotes the i th group at level-4. The notation  (4)diag ir  is 

used to indicate the block diagonal matrix having the square matrices (4)ir  along its 

diagonal. The notation 1(4) (4) (4), , , ,i M
  Z Z Z   represents a source partition of the 

system matrix Z  according to level-4 groups. The sparse ΘR factorization never forms 

the matrix 4Θ  explicitly. However, once 4R  is obtained, any blocks in 4Θ  can be readily 

obtained by 
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In order to find the field generated by the sources in group  4i  and localized to group 

 4i , we only need to examine the rows of  4i
q  that correspond to the observation points 

in group  4i . Let this portion of the matrix be denoted by  4
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i
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matrix denoted by  4
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self

i
Z  represents the portion of the matrix  4i

Z  

having the same source and observation points. Matrix  4i
q  can be reordered so that 

 
 

 

 

4

4

4

self

i

i others

i

 
  

  

q
q

q
, (4.91) 

where      
1

4 4 4

self self

i i i

q Z r . Following the procedure described in 4.1, the NL-LOGOS modes 

can be found for all the groups as  
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, (4.92) 

and 
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. (4.93) 

The factorization of the system matrix can be written as  

 

 

 

41 1

4 4 4 4 4 4
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LN

NN

 
 

   
  

I Z
Z P Z Λ P Λ

0 Z

 , (4.94) 

where 

 

   

   

 

 

4 4 4

4 4

4 4 4

L H N LN

H

N H N NN

   
     

      

I P ZΛ I Z
Z P ZΛ

0 P ZΛ 0 Z

 . (4.95) 

Because the localized fields and the NL-LOGOS source modes occupy the same groups, 

this type of  localization is referred to as self-group localization. The result of self-group 

localization for one group at level-4 is illustrated in Figure 27, where the shaded blocks 

represent all matrix elements that are generally nonzero to a certain tolerance. It should 

be noted that  4

others

i
q  is never needed to determine the LOGOS modes. The procedure 

described in 4.1 can be generalized by: 

i. changing the domain of the source modes,  

ii. changing the range into which the field should be localized,  

iii. a combination of (i) and (ii). 

The effect of change the domain over which the source modes are defined has previously 

been considered elsewhere [77, 82]. In particular, it has been observed that in some cases 

it is advantages to allow source modes to have nonzero support both within a given group 

and its near neighbors while still restricting the support of the scattered field to the self-
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group. The second possibility is the strategy that is discussed in detail in the next section. 

The possibility of combining these generalizations will not be considered here. 

Equations (4.92) contains NL-LOGOS source modes which localize the scattered 

fields to the self-group, as illustrated in Figure 27. The cost of the NL-LOGOS 

factorization is primarily determined by the number of non-local modes passed from 

child to parent levels.  Thus, the cost of the fac torization at each parent level can be 

reduced by finding additional localizing modes at each child level.  To this end, we 

observe that additional localizing modes can be determined for a given source group by 

enlarging the spatial region to which the scattered fields are localized. Furthermore, 

because the coarser level NL-LOGOS factorization localizes fields into the parent groups, 

it is most convenient to enlarge the field localization region to include all sibling groups.  

In this way, one can effectively determine a subset of the localizing modes associated 

with each parent group from information available at the child level.  This in turn reduces 

the CPU cost to determine localizing modes at the parent level.  Because the extra time 

spent at the child level to compute the indicated subset of parent level localizing modes is 

less than the time saved in computing modes at the parent level, this results in an overall 

time savings for the factorization. 

After the level-4 modes are determined as indicated above, we project the system 

matrix onto 
 
4

N
Λ , 

 
   
4 4 4

N N
Z Z Λ . (4.96) 

The procedure described by (4.89) to (4.92) can now be used with 
 
4Z
N

 to find the new 

source modes located in each level-4 group which localize the scattered field to the 

sibling groups.  The only significant difference is the replacement of  4

self

i
q  with  4

sibling

i
q  in 

(4.91) (The sibling groups should now be excluded from  4

others

i
q ).  Figure 28 illustrates the 

relationship between the elements of the sibling-based source modes for a given level-4 

group. 

Applying this procedure to 
 
4Z
N

 for all level-4 groups results in another set of 

LOGOS source modes represented by 
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, (4.97) 

The NL-LOGOS modes found in this way must be associated with groups at the parent 

level because the fields generated by 
 
4

Ls
Λ  are localized into the same range as the parent  

level NL-LOGOS modes.  

The projected matrix 

 
     
4 4 4

Ns N Ns
Z Z Λ . (4.98) 

contains the field that cannot be localized at the current level to either the self-groups or 

the sibling groups. The next step in the multilevel factorization consists in computing the 

level-3 self-group NL-LOGOS modes. At this point, (4.98) is projected to the LOGOS 

field modes at level-4: 

 
     

   

   

4 4

4 4 4 4 4

4 4

LN Ns

Ns N NsH H

NN Ns

 
   

  

Z Λ
P Z P Z Λ

Z Λ
. (4.99) 

The level-3 NL-LOGOS modes are found by working with  

 
     
4 4 4

NNs NN Ns
Z Z Λ  (4.100) 

at level-3. Note that with the definition 
 
4 3

NN
Z Z , (4.100) can also be written as  

 
     
4 3 4 3

NNs Ns Ns
 Z Z Λ Z . (4.101) 

After performing a ΘR factorization of 
 
3Z
Ns

 at level-3 the remaining level-3 NL-

LOGOS modes can be found as ( the superscript, 'r', means 'remaining') 
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The preliminary level-3 NL-LOGOS modes, which include the level-4 sibling-localized 

modes, 4

Ls
Λ , and the remaining level-3 NL-LOGOS source modes, 

 
3

Lr
Λ , can be written 

as  

 
       
3 4 4 3

L Ls Ns Lr 
 

Λ Λ Λ Λ . (4.103) 

In order to obtain the desired format of the projected matrix as given by (4.93) to 

facilitate the next level LOGOS factorization, the fields generated by the level -3 NL-

LOGOS modes should be orthogonal. One more step of orthogonalization makes the 

fields orthonormal and the desired level-3 NL-LOGOS modes are found at the same time. 

The orthogonalization involves a QR factorization on the matrix blocks 

    
 

3 3

Lself

i i
Z Λ QR , (4.104) 

where  3

self

i
Z  is the self-interaction matrix block of group  3i . Multiply both sides of 

(4.104) with 
1

R . The Level-3 NL-LOGOS modes is found to be  
 

 
  1

3 3

L L

i i

Λ Λ R . We 

also find  
 

3

L

i
P Q . The non-localized part of the modes can be found by taking the 

orthonormal complement of  
 

3

L

i
Λ  and  

 
3

L

i
P , respectively.  

This completes the determination of all level-3 NL-LOGOS modes with the new 

procedure which includes the step of finding the level-4 sibling-localized LOGOS modes 

at the child level. Obviously, the same procedure can be used for all levels except level-2 

and level-1 because the level-2 sibling-localized modes and level-1 localized modes are 

trivial.  

4.5.2. Numerical Results 

To evaluate the performance of the multi-range NL-LOGOS factorization we 

consider plane wave scattering from a sequence of PEC spheres having radii of 2λ, 2.83λ, 

4λ and 5.66λ. The electric field integral equation (EFIE) formulation is used, and a 

locally corrected Nyström method with mixed order basis functions is used to discretize 

the EFIE [35, 43]. The spheres are meshed using a uniform distribution of bilinear quads, 

with each quad cell having 12 quadrature points for the Nyström discretization. Each 

quadrature point represents one degree of freedom (DOF) of the electric current. The 

density of the mesh provides an average of 300 DOFs/λ2. The system is filled by using 
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the adaptive cross approximation (ACA) [56, 57] to determine the compressed MLSSM 

representation of the EFIE matrix [62-64]. The MLSSM representation of the system 

matrix is then factored using both the original NL-LOGOS factorization and the multi-

range NL-LOGOS factorization presented in this paper.  In both cases, factorization 

tolerances of 310  and 410  are used. The corresponding ACA and MLSSM tolerances 

are ten times smaller than the factorization tolerance. In all cases considered, the root-

mean-square (RMS) error between the solutions obtained using the two methods is less 

than 210 . The radar cross section (RCS) of a PEC sphere with radius 2.83λ is shown in 

Figure 29. Good agreements among the original LOGOS factorization, multi-range 

localization factorization and Mie series solution are obtained. The factorization tolerance 

used in obtaining the RCS results in Figure 29 is 310 . The CPU times required to 

perform the factorization using both the original and the proposed methods are plotted in 

Figure 30. While both methods have similar asymptotic CPU complexity, the CPU time 

required by the multi-range NL-LOGOS factorization is about 40% less than the original 

LOGOS factorization.  Similar CPU savings have been observed for other PEC targets. 

The memory used by the multi-range NL-LOGOS factorization algorithm is essentially 

unchanged from that used by the original NL-LOGOS factorization and reported in [78].  

In conclusion, The multi-range NL-LOGOS factorization reduces the cost of finding 

NL-LOGOS modes significantly. Numerical results indicate a net 40% reduction in the 

factorization time relative to the previously reported NL-LOGOS factorization algorithm 

with no change in the asymptotic complexity of the factorization time.  

The multi-range localization strategy considers the self and parent group localization. 

The range of the field localization can be further expanded to the grand-parent group 

localization and so on until level-one. However, the cost of finding multi-scale localizing 

modes increases as the localizing-field-range increases and exceeds the time saved for the 

coarser level factorizations as some point. To determine the optimal maximum field-

range that provides maximum time savings to the factorization is not studied here.  
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Figure 19. CPU time (in seconds) to perform R  factorization of MLSSM data 

structure at the finest level, and to perform the full multilevel NL-LOGOS 

factorization of the MLSSM data structure. The geometry is a long thin PEC 

strip of length 200λ. The width of the strip is the same as the side length of the 

square cells used to mesh the strip. 
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Figure 20. CPU Time (in seconds) to perform R  factorization of MLSSM data 

structure at the finest level, and to perform the full multilevel NL-LOGOS 

factorization of the MLSSM data structure.  The geometry is a PEC sphere with 

radius 2λ. 
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Figure 21. CPU Time (in seconds) to perform R  factorization of MLSSM data 

structure at the finest level, and to perform the full multilevel NL-LOGOS 

factorization of the MLSSM data structure.  The geometry is shown in Figure 11.  
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Figure 22. CPU Time (in seconds) to perform R  factorization of MLSSM data 

structure at the finest level and to perform the full multilevel NL-LOGOS 

factorization of the MLSSM data structure.  The geometries are a series of PEC 

spheres with radii increasing from 2λ to 8λ. In all cases, the discretization 

density is approximately 300 DOF/λ2.  
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Figure 23. The residual error and RMS factorization error of scattering problems 

with long, infinitely thin PEC strips of length 200 . The width of the strips are 

0.2 , 0.1 , 0.05 , 0.025  and 0.0125 . The strips are meshed using square 

cells with the sides of the cells the same as the width of the strips. 

  



88 

 

 

Figure 24. The RMS factorization error of a scattering problem with the same 

strips as those used for Figure 23. Both tight error control formulation and 

approximate error control formulation are used. 

  



89 

 

 

Figure 25. The residual error and the RMS factorization error of a scattering 

problem with a PEC sphere of radius 2 . 
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Figure 26. The residual error of a scattering problem by a vias-like structure. 
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Figure 27. Level-4 column block of the impedance matrix, (4)Zi , LOGOS 

source modes,  4
Λ

i
, and the structure of the fields generated by the localizing 

and non-localizing source modes. 
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Figure 28. The structure of a block of a projected impedance matrix, 
(N)

(4)Zi , the 

sibling LOGOS source modes, and the fields generated by the localizing and 

non-localizing portions of the sibling source modes. 
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Figure 29. RCS of a PEC sphere with radius 2.83λ. Results are obtained from 

original LOGOS factorization, multi-range localization factorization and Mie 

series solution. Factorization tolerance is 
310
. 
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Figure 30. NL-LOGOS factorization time for Nyström discretization of EFIE 

formulation of scattering from a sequence of PEC spheres. In all cases, the 

discretization density is 300 DOF/λ2. The matrix fill tolerance is ten times 

smaller than the LOGOS factorization tolerance.   

 

  

10000 20000 50000 100000 200000

10
3

10
4

10
5

Number of Unknowns

F
a
c
to

ri
z
a
tio

n
 T

im
e
 (

se
c
.)

 

 

original LOGOS, tol=10-3

multi-range localization, tol=10-3

original LOGOS, tol=10-4

multi-range localization, tol=10-4

O(N1.47) guide line



95 

 

Chapter 5. MFD Analysis using NL-LOGOS Modes 

In many critical electromagnetic applications, it is important to design relatively 

small subsystems (such as an antenna) for optimal operation on a muc h larger existing 

platform (such as an aircraft). It is also sometimes desired to modify a small region of a 

large object in order to improve its electromagnetic performance as a whole. In most of 

these scenarios, only those structures in a small, well-defined design region are modified 

during each design cycle; the remainder of the object (platform region) does not change 

from one design iteration to another. Such problems require solving the following matrix 

equation 

 
pp pd p p

dp dd d d

     
     

    

Z Z J E

Z Z J E
, (5.1) 

where the subscripts p and d represents the platform and design regions, respectively. J  

and E  are the unknown and excitation vectors, respectively. The system matrix is now 

broken up into a two-by-two block-matrix. The task here is to solve for the unknowns, J , 

or other more practical quantities that are functions of J . Most of the existing fast, high-

fidelity electromagnetic simulation tools solve large problems iteratively [3, 69, 84, 85]. 

When dealing with the design tasks described above, they have to re-solve the entire 

problem (platform + design region) in order to accurately model the in situ performance 

of the subsystem or the performance of the whole system for each new design. Except 

that the system matrix for the fixed platform region can be reused, no other information 

about the fixed platform region can be easily reused for solving the equation with 

different designs. As the platform grows, the large computational costs make this 

approach infeasible for design problems.  

Schur complement method [26] is a simple and efficient method to reuse most of the 

fixed platform information.  Using Schur complement method, the inverse of the system 

matrix in (5.1) is given by 

 

1
11

11

pp pd pppp pd

dp dd dp ppdd






     
            

Z Z I 0Z 0I Z Z

Z Z Z Z I0 X0 I
, (5.2) 

where 
1

dd dd dp pp pd

 X Z Z Z Z . (5.3) 
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In (5.2), 
ppZ  is inverted once and reused for all designs. Therefore, the design efficiency 

can be improved.  

The off-diagonal blocks, dpZ  and pdZ , of the system matrix cannot be reused in the 

Schur complement solution method as given by (5.2) because they are design dependent. 

One way to break this dependency is to introduce a fixed equivalent surface enclosing the 

design structure. According to Green's theorem [30], the direct interaction between the 

platform and design structures can be represented indirectly through the usage of the 

equivalent surface as 

 dp dx xpZ Z Z , (5.4) 

 pd px xdZ Z Z , (5.5) 

where the subscript, x, represents the equivalent surface, which will be referred to as the 

'Green-box'. With (5.4) and (5.5) written, the terms, xpZ  and pxZ , can be filled once and 

reused for all designs. The quantities in (5.2) that cannot be reused are all independent of 

the fixed platform structures. Therefore, all information related to the fixed parts of a 

design problem is reused in a method that combine the Schur complement method and 

the Green-box. Chakraborty and Jandhyala [27] reported a similar method with slightly 

different formulation and discussed its superior performance as compared to that of both 

the direct inversion method and the Schur complement methods without Green-box. The 

formulation used by the MFD method discussed in this paper differs from what used by 

Chakraborty and Jandhyala in that the equivalent currents on the Green-box never come 

into the formulation explicitly in the MFD formulation.   

One concern on introducing the Green-box to rewrite the off-diagonal blocks is how 

to deal with the structures that are intersecting with the Green-box. This problem has 

been addressed by Li and Chew [86]. Essentially, the Green-box is never used to 

represent interactions that involve mesh cells that are intersecting or near to the Green-

box; the Green-box is only used to represent interactions between mesh cells that are both 

far from the Green-box. Here, the region that is near to the Green-box is referred to as the 

buffer region. Any mesh cells whose centers fall in the buffer region are referred to as 

buffer cells. The matrix elements involving the buffer cells are all filled in directly 
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without referring to the Green-box. As a result, the system matrix looks like (See 

Appendix A for the details) 

 

pp pb px xd

bp bb bd

dx xp db dd

 
 
 
 
 

Z Z Z Z

Z Z Z

Z Z Z Z

, (5.6) 

where the subscript, b, represents the buffer region. It should be noted that the buffer 

region introduced here is actually part of the originally fixed platform region. Therefore, 

the structures in the buffer region is fixed during the design process. The subscript, p, in 

(5.6) has been used to represent the part of the platform that excludes the buffer region. 

Figure 31 illustrates the definition of the regions over a simple structure.   

The matrix (5.6) is the system matrix utilized by the MFD method to represent a 

general design problem. It reduces to the two-by-two system matrix  

 
pp px xd

dx xp dd

 
 
 

Z Z Z

Z Z Z
 (5.7) 

with the following symbolic substitutions:  

 
pp pb

pp

bp bb

 
  

 

Z Z
Z

Z Z
, (5.8) 

 
px xd

px xd

bd

 
  

 

Z Z
Z Z

Z
, (5.9) 

 dx xp dx xp db
   Z Z Z Z Z . (5.10) 

The Schur complement method of inverting the system matrix (5.7) can also be used to 

invert (5.6). In fact, it is sufficient to work with (5.7) instead of (5.6) to derive the MFD 

method. The derivation for general cases represented by (5.6) follows the same procedure 

with symbolic substitutions (5.8) to (5.10).  

As the problem size grows, both 1

pp


Z  and 

1

dd


X  in (5.2) need to be obtained using 

fast, efficient methods. Recently, various fast direct solvers based on sparse 

representation of system matrix [20, 21, 24, 25, 70-77, 79, 82, 87-93] have been 

proposed. With direct solvers, the inverse (or a representation of the inverse) of a matrix 

can be obtained. It becomes apparent that any of these methods can be combined with the 

Schur complement method  to solve the above design problems in a modular way, i.e. the 
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inverse of the platform system matrix, 1

pp


Z , can be obtained once and reused for all the 

designs.  However, the inverse of Schur complement, ddX , is difficult because it is not 

easy to obtain a sparse representation for it due to the second term in (5.3). Furthermore, 

it is not clear how different that ddX  may behaves as compared to ddZ  due to the second 

term. It is one of the purpose of this paper to show how to process ddX  using LOGOS. 

The MFD method derived in this paper also reduces the off-diagonal blocks, px xdZ Z  and 

dx xpZ Z , that representing the interaction between the platform and design structures. 

The basic idea of MFD analysis method with 2D and 3D numerical results has been 

presented earlier [94, 95]. The reduced order model (ROM) that could be derived from 

the MFD method is also discussed in [96]. This chapter presents the detailed derivation of 

the MFD analysis method based on the non-overlapping, non-radiating LOGOS 

framework [74-79], which has been used to develop an  logO N N  direct solvers for 

low frequency electromagnetic applications. 3D numerical results are used to 

demonstrate the efficiency of the MFD method and the ROM derived from it.  

5.1. Modular LOGOS Factorization of Platform Region 

Without losing generality, the system matrix (5.7) is used to illustrate the derivation 

of MFD method for simplicity in notation. The substitutions (5.8) to (5.10) can be used to 

obtain the derivation for more general cases. 

As has been discussed earlier, it is clear that any direct solvers can be used to 

implement 1

pp


Z  and Schur complement solution process can reuse 1

pp


Z  for any specific 

designs. However, the off-diagonal blocks, pdZ  and dpZ , are not processed by this 

method. For problems where the platform unknowns is more than the design unknown, 

there are many redundancies on the platform contributing to the interactions between 

platform and design structures. The LOGOS factorization discussed in this section is one 

algebraic and error-controllable way of filtering out those redundancies. At the same 

time, the LOGOS factorization also constructs 1

pp


Z .  
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The LOGOS procedure discussed in this section can be looked as a procedure to find 

the LOGOS modes for the full system matrix (5.7) even though the design structure has 

not been specified. The LOGOS modes can only exist on the platform str ucture at this 

stage. To find the non-radiating LOGOS modes on the platform structure, the first block 

column, 
pp

dx xp

 
 
 

Z

Z Z
, of the system matrix (5.7) is analyzed with the LOGOS procedure 

[78]. Since the localized non-radiating LOGOS modes on platform is required to radiate 

no energy (within prescribed tolerance) to the undetermined design structure, it becomes 

necessary to require that the localized non-radiating LOGOS modes radiate no energy 

(within prescribed tolerance) on to the Green-box. This is equivalent to work with 
pp

xp

 
 
 

Z

Z
 

during LOGOS factorization. The error introduced into the LOGOS factorization can be 

well controlled [80]. However, the energy radiated by the platform non-radiating LOGOS 

modes and received by a specific design is not guaranteed to be small because the exact 

values of dxZ  cannot be taken into account before a specific design is known. One way to 

solve this problem is to propose a few typical  design structures and find  

 max dx F
  Z , (5.11) 

where 
F

  means Frobenius norm. Assume for any subsequent designs, dx F
Z , then 

 
pp pp pp

dx xp xp xpdx

LOGOS LOGOS LOGOS


           
                 

           

Z Z ZI 0

Z Z Z Z0 Z
, (5.12) 

where  LOGOS A  is used to indicate the LOGOS modes derived from the matrix A. 

dx F
Z  dictates that the energy radiated by the platform and collected by the Green-

box is not magnified more than   times when they are received by the design structure. 

The last step in (5.12) means that the platform non-radiating LOGOS modes that do not 

radiate, within some controlled error, onto the Green-box also do not radiate into the 

design-region. Consequently, a modular factorization method for the platform region, 

taking into account the Green-box, can be obtained according to the last step of (5.12). 

The parameter   is used only for controlling the accuracy of the LOGOS modes. It does 
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not change the matrix elements.   can also be updated with 
dx F

Z  if  it is found that 

dx F
Z  for a trial design and used for the subsequent trials. 

Based on the above analysis, the LOGOS factorization for the platform region can be 

carried out by working with the platform system matrix 

 
pp px

p

xp

 
  
 

Z Z
Z

Z 0
. (5.13) 

Assume the number of levels of the tree used to decompose the platform and Green-box 

is L. At the finest level L, define 
 

, 1 ,

NN

p L p L p  Z Z Z  so that the level index used in the 

following derivation is valid for all levels. The multilevel LOGOS factorization produces 

the following LOGOS modes for pZ  at level , ,1l L   

 
   

, ,
,

L N

p l p l
p l

 
  
 

Λ Λ 0
Λ

0 0 I
, (5.14) 

and  

 
   
, ,

,

L N

p l p l
p l

 
  
 

P P 0
P

0 0 I
, (5.15) 

where the subscript p  denotes the platform region. The superscript  L  and  N  

denotes the „localized‟ and „non-localized‟ parts of the modes. Projecting 
 

, 1

NN

p lZ  onto the 

LOGOS modes, we have 

  
 

 

 

,

, , , 1 ,

,

LN

p lNNH

p l p l p l p l NN

p l



 
   

  

I Z
Z P Z Λ

0 Z

 , (5.16) 

where 

  
                 

, , , 1 , , , 1 , ,

H H
LN L NN N L N LN L

p l p l pp l p l p l px l pp l px l 

    
   

Z P Z Λ P Z Z Z
 

, (5.17) 

  
 

           

   

   

 

, , 1 , , , 1 , ,

,

,
, 1 ,

H H
N NN N N N NN N

p l pp l p l p l px l pp l px lNN

p l N
N N

xp l
xp l p l

 



   
    
     

P Z Λ P Z Z Z
Z

Z 0Z Λ 0

 


. (5.18) 

The last steps in (5.17) and (5.18) define some short forms of the corresponding terms in 

their previous steps. The double superscripts of Z in the parentheses mean that Z  is 
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multiplied by the left and right multipliers, where the first one denotes the left multiplier 

and the second one denotes the right multiplier.  The multiplier is either the „localized‟ or 

the „non-localized‟ part of the LOGOS modes. The dot symbol means no multiplier or 

identity multiplier. Now, we can factor  
 

, 1

NN

p lZ  as 

 
 

 

 

, 1

, 1 , ,

,

LN

p lNN

p l p l p lNN

p l





 
  

  

I Z
Z P Λ

0 Z
. (5.19) 

The multiple scattering between the platform and design structures happens only through 

the non-local LOGOS modes. It is contained in 
 

,

NN

p lZ , which is reduced after each level 

of factorization. At the coarsest level of LOGOS factorization, 
 

,1

N

xpZ


 and 
 

,1

N

pxZ


 in 
 

,1

NN

pZ  

consist of the left over multiple scattering interface to the design structure that cannot be 

reduced further by LOGOS criterion.  

The factorization discussed in this section is for the platform system matrix (5.13). 

The design system matrix can be defined as  

 
xd

d

dx dd

 
  
 

0 Z
Z

Z Z
. (5.20) 

Comparing (5.13) and (5.20) with the full system matrix (5.7), it can be seen that the 

matrix blocks in (5.13) related to the Green-box (with subscript x) serve as an interface to 

the design system matrix (5.20) which provides similar interfaces. Therefore, the design 

system matrix can be plugged into the platform system matrices according to (5.7). The 

factored form of the platform system matrix have more interfaces to the design system 

matrix. However, the interfaces have never been altered by the factorization. It is still 

straight forward to plug the design system matrix into the factored form of the platform 

system matrix by matching the interfaces provided by the Green-box. At the coarsest 

level of the LOGOS factorization the result of plugging design system matrix into 

platform system matrix is 

 

   

 

,1 ,1

,1

NN N

pp px xd

N

dx xp dd

 
 
  

Z Z Z

Z Z Z




. (5.21) 
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If the design structure is so small that no factorization is necessary, (5.21) can be inverted 

directly by the Schur complement method with the Schur complement of  
,1

NN

ppZ  defined 

by  

 
      

1

,1 ,1 ,1

N NN N

dd dd dx xp pp px xd



 X Z Z Z Z Z Z
 

. (5.22) 

Many problems have large number of unknowns on design structures that makes the 

direct inversion of (5.22) not practical. The next section discusses how to factor the 

design system matrix to reduce ddX  before it is inverted.  

5.2. Modular LOGOS Factorization of Design Region 

After the platform system matrix is factored and a design is specified, the following 

task is to find the inverse of the matrix given by (5.21). Because the platform structure is 

available and that the platform has already been factored, the design system matrix can be 

taken as 

 
 

,1

N

px xd
d

dx dd

 
  
 

0 Z Z
Z

Z Z



. (5.23) 

The same multilevel LOGOS factorization procedure used in the last subsection can be 

used here to factor (5.23). The difference between the design system matrix given by 

(5.23) and the platform system matrix given by (5.13) is that the design system matrix 

includes explicitly the interaction between platform and design by including the term 

 
,1

N

pxZ

. Without this term, the design region non-radiating LOGOS modes should have 

been required to radiate no energy (to prescribed tolerance) onto the enclosing Green-

box, which is apparently a too stringent requirement. With the term 
 

,1

N

pxZ


 in (5.23), the 

design region localized non-radiating LOGOS modes are required to radiate no energy (to 

prescribed tolerance) onto the non-localized LOGOS modes, which is an even weaker 

requirement than requiring that the design region localized LOGOS modes radiate no 

energy onto the platform. Weaker requirements results in more localized LOGOS modes, 

and therefore, less non-localized modes at the coarsest level. The factorization at each 

level results in the following LOGOS modes of the system 
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where the level index , ,1l L    and L  is the total number of levels of the design 

region tree, which is not necessarily the same as the platform region tree. The system 

matrix transforms according to  
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where 
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The next subsection will show that the matrix that need to be inverted finally is  

 

     

     

,1 ,1 ,1

,1 ,1 ,1

NN N N

pp px xd

N N NN
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. (5.29) 

This matrix is inverted by the Schur complement method to reuse the terms that is related 

to the platform. The Schur complement of 
 

,1

NN

ppZ  is given by  

 
            

1

,1 ,1 ,1 ,1 ,1 ,1

NN N N NN N N

dd dd dx xp pp px xd



 X Z Z Z Z Z Z
   

. (5.30) 

ddX  given by (5.30) have been reduced to include only those DOFs that are necessary to 

account for the multiple scattering between platform and design structures that is above 

the prescribed tolerance.  

5.3. Solution of Matrix Equation 

After the LOGOS factorization of the platform and design regions, the multiple 

scattering between platform and design regions have been pushed to the coarsest level of 



104 

 

the trees of platform and design regions. The only field that can go through the Green-

box from design region to the platform region is given by  
,1

N

xdZ


. This field is received by 

the terms  
,1

N

pxZ


 and  
,

L

px lZ


, where , ,1l L  . The only field that can go through the 

Green-box from platform region to the design region is given by 
 

,1

N

xpZ


. This field is 

received by the terms 
 

,1

N

dxZ


 and 
 

,

L

dx lZ


, where , ,1l L   . When plugging the factored 

form of design system matrix back into the factored form of platform system matrix, 

 
,1

N

xdZ


 is always paired with 
 

,1

N

pxZ


 and 
 

,

L

px lZ


; 
 

,1

N

xpZ


 is always paired with 
 

,1

N

dxZ


 and 
 

,

L

dx lZ


.  

To illustrate a simple solution process, the design tree is assumed to be a single level 

tree, i.e., 1L  . To make the discussion even simpler, it is assumed that the design 

system matrix is not factored at all. In another word, 
 

,1 ,1

NN

d d d Z Z Z . In this case, the 

LOGOS modes, (5.14) and (5.15), are also the LOGOS modes for the full system matrix 

(5.7). Therefore, once a specific design is specified by (5.20), the LOGOS factorization 

for the full system matrix can be obtain by modifying (5.19), (5.17) and (5.18) as 
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where 
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. (5.33) 

,p lΛ  and ,p lP  are given by (5.14) and (5.15). The inverse of the full system matrix is 

obtained recursively as 
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. (5.34) 

At level one, (5.31) yields (5.21) and it is inverted by Schur complement method. Thus, 

the inverse of the original full system matrix, 
 

1

NN

LZ Z ,  is obtained. 
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If the design system matrix involved in (5.21) is further factored using the method 

discussed in the subsection 5.2, the LOGOS modes consist of platform and design region 

LOGOS modes that are independent on each other. The platform region LOGOS modes 

(5.14) and (5.15) still results in the factorization given by (5.31) to (5.33). Let (5.21) be 

denoted by 
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The subscript 0 results from the relation 
 

,1 ,0
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p pZ Z . Let 
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L L Z Z . The design 

region LOGOS modes (5.24) and (5.25) factors (5.35) as  
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where 
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The inverse of (5.36) is given recursively by 
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At level one, 
 
0,1

NN
Z  given by (5.38) when 1l    is the final system matrix that needs  to 

be inverted using Schur complement method.  Thus, the inversion of (5.35) and thus the 

inversion of the full system matrix can be obtained. 

5.4. Reduced Order Models 

The design problem as formulated by (5.1) can be efficiently solved by combining 

the Schur complement method and the Green-box. The inverse of the system matrix can 

be written as   
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, (5.40) 

where 1

dd dd dx xp pp px xd

 X Z Z Z Z Z Z . (5.41) 

The solution for 
pJ  and dJ  can be written as  

  1 1 1 1

p pp p pp px xd dd d dx xp pp p

     J Z E Z Z Z X E Z Z Z E , (5.42) 

  1 1

d dd d dx xp pp p

  J X E Z Z Z E . (5.43) 

The solution cost for dJ  during the design process is independent of platform if the 

platform excitation pE  is known and fixed because the term 1

xp pp p

Z Z E  can be computed 

independent of the design details and reused for every designs. Therefore, the Schur 

complement method combined with Green-box produces naturally the ROM for the 

systems contained inside the Green-box.  

There are many other quantities that depends on both  pJ  and dJ , such as radar 

cross section (RCS). Let the interested quantity, F , relate to pJ  and dJ  by  

 p p d d F S J S J , (5.44) 

where pS  and dS  are referred to as the solution operators. In many cases, the interested 

quantity is known and fixed in the design process, and so does the solution operator pS . 

Substituting (5.42) into (5.44), we have 

  1 1 1 1

p pp p p pp px xd dd d dx xp pp p d d

      F S Z E S Z Z Z X E Z Z Z E S J . (5.45) 

The first term and the parts, 1

p pp px

S Z Z  and 1

xp pp p

Z Z E , in the second term in (5.45) can be 

evaluated once the platform is inverted and reused for every design. Therefore, the 

solution cost for F  during the design cycles does not depend on the size of the platform 

provided that the number of rows in the solution operator pS  does not depends on the 

size of platform. The introduction of solution operators in the Schur complement solution 

procedure is one way to build ROM for the design problems where the platform 

excitation is known and the interested quantities are fixed. These are fair requirements for 

most of the applications. 
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One special case for the interested quantity F  is that it represents 
pJ  and dJ . The 

solution operator obtained by stacking 
pS  and dS should be identity. The number of rows 

in 
pS  is the same as the number of unknowns in platform. Therefore, the solution cost 

does depends on the size of the platform. 

5.5. Numerical Results 

The high-order locally corrected Nyström (LCN) method employing the mixed-order 

basis functions [35, 40, 43] is used in this section to obtain the matrix equations from the 

electric field integral equations for the scattering problems. The scatterer surface is 

meshed using quadrilateral planer cells (So, the geometry is not discretized to high-

order). Over each cell, the mixed-order basis functions are chosen to be complete to the 

order  1 3p    and 2p   (see notations in [35]) along the two local curve linear 

coordinate directions. Two sets of basis functions are needed to expand the two current 

components flowing on the surface cell. Therefore, there are 2 sets of quadrature points 

on each cell and each set contains 6 quadrature points. The tolerance for LOGOS 

factorization used in the following examples is 
310
. 

5.5.1. The Width of Buffer Region 

There are two factors affecting the accuracy of the representation given by (5.4) and 

(5.5). One factor is the width of the buffer region that determines the minimum distance 

between the source and field points whose interactions are represented using the Green-

box. The smaller the width of the buffer region, the stronger the singular interactions 

need to be represented. The other factor is the density of sampling on the Green-box 

surface which determines how accurate the integral derived from the equivalence 

principle can be approximated. The denser the sampling is, the more accurate the 

representations, (5.4) and (5.5), are. In order to simplify the sampling process, the Green-

box is meshed using the same criteria as those used in meshing the structures. The same 

Nyström discretization scheme as that used for discretizing the integral equations are 

used to discretize the integration over the Green-box. The accuracy of the representations, 

(5.4) and (5.5), is modulated by changing the width of the buffer region.  
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In order to check the accuracy of the representations given by (5.4) and (5.5), a 

simple test case is built as shown in Figure 32. The platform and design cubes are of side 

length 0.2λ. The distance between the two cubes is Δ, which is the parameter used to 

control the accuracy of using the Green-box. The Green-box is a larger cube with the 

design cube sits at its center. One side of the Green-box runs through the middle between 

the platform and design cubes, therefore, the side length of the Green-box is 0.2λ+Δ.  

The system matrix for the structure illustrated by Figure 32 is  

 
pp pd pp px xd

dp db dx xp db

   
    
   

Z Z Z Z Z
Z

Z Z Z Z Z
. (5.46) 

The RMS errors of the different matrix blocks are given by 
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Z
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 Figure 33 shows the RMS errors defined in (5.47)-(5.49). The error decreases as the 

width of the buffer increases. In order to control the RMS error in the full system matrix 

to be less than 
310
 and 

410
, the width of the buffer should be larger than 0.2λ and 0.3λ 

respectively. The RMS error shown in Figure 33 decreases rather slowly when the width 

of the buffer is larger than 0.5λ. Denser sampling on the Green-box is necessary to reduce 

the error effectively. In the following test cases, the buffer width is kept larger than 0.3λ 

to achieve RMS error in the full system matrix to be less than 
410
. 

5.5.2. Validating MFD Method 

A PEC sphere with radius 2λ is used to validate the MFD method. Part of the sphere 

is defined as the design region and the rest is the platform region. Figure 34 shows the 

geometry and the Green-box. The cube is the Green-box with side length 2.25λ. The dark 

patch on the sphere is the design patch defined by intersecting the sphere with a cube of 
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side length 2λ. The part of the platform enclosed by the Green-box and that outside of the 

Green-box but within 0.2λ to the Green-box are defined as the buffer structure. The 

platform is discretized such that there are approximately 300 DOFS per square 

wavelength. Three different meshes are used to describe the design patch. One is of the 

same density of the platform mesh. The other two are denser (about 1200 and 4800 

DOFS per square wavelength). For this problem, the   in (5.11) is 6.8 for the normal 

design mesh and 6.9 and 7.2 for the denser design mesh.  

The RCS obtained by the MFD method is compared with the Mie series solutions in 

Figure 35. The numerical results are obtained with 1   and no significant error is 

observed. This is because the value of actual   is not large and the LOGOS factorization 

with tolerance 310  can still achieve error below 210 . The dashed curve in Figure 35 is 

obtained by MFD method without buffer region witch demonstrate large error in RCS.  

5.5.3. Efficiency of MFD Method 

In order to demonstrate the efficiency of the MFD method, a series of spheres with 

different radius is chosen. Part of the sphere is defined as the design patch. The definition 

of the design patch, the Green-box and the buffer region is the same as the last example. 

The only difference of the different spheres is their radius. The platform consists of the 

major part of the spheres. 

Figure 36 shows the number of non-localized modes at level-1 of the platform tree 

after the platform factorization. These modes contains all the fields that can go from the 

platform to the design through the Green-box. The number of these modes are limited by 

the size of the Green-box [97]. As the size of the platform grows, the number of non-

localized modes at level-1 approaches a constant number (about 510 in this case). We do 

observe that the number of non-localized modes decreases as the platform unknown 

increase from about 10000. This is because we are using the sphere as an example. When 

the sphere is small, the design part of the sphere interact strongly with most of the 

platform part of the sphere because they are near to each other. As the radius of the 

sphere increases, the design part of the sphere have nearby structures more like a plate, 

which should have less strong interactions as compared with a sphere.  
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The efficiency of the MFD method is studied by examining the time spent in a 

design cycle which includes all operations related to the design structure. Three types of 

design requirements are examined in the example. The first one requires the solution over 

the whole structure. This solution can be used to find all quantities that depends on the 

global solution of the problem, such as RCS. The second type of design requirement is to 

obtain local quantities within the Green-box. It requires the solution over the design 

structure and the buffer structure. It also needs the equivalent current distribution over the 

Green-box that represents the field radiated from platform to design structure. Because 

only the level-1 non-local LOGOS current modes on the platform radiates non-zero fields 

into the Green-box, it is enough to have the equivalent currents on the Green-box to 

represent these fields only. Let 
 

,1

N

pJ  denotes the non-local LOGOS current, the equivalent 

current on the Green-box that generate the same fields within the Green-box as 
 

,1

N

pJ  does 

is given by 

 
   

,1 ,1

N N

eq xp pJ Z J


 (5.50) 

where all the terms have been represented in the discrete form according to the Nyström 

method. The third type of design requirements is to obtain the solution over the design 

structure only. This solution can be used to obtain local quantities about the design 

structure, such as antenna's input impedance. The three requirements are referred to as 

type-I, type-II and type-III design task, respectively, in the following discussion.  

Figure 37 shows the time spent on different steps during one design cycle. The 

design matrix setup time is almost constant for all platform sizes. It depends only on the 

size of the design structure and the Green-box. For type-I design task, the time spent for 

obtaining the full current distribution over the whole structure increases almost linearly in 

the simulation range as the size of the platform increases. It is expected to increase more 

than linear as the problem size grows because the underlying problem is approaching a 

high-frequency problem.  

For type-II and type-III design tasks, the time spent on obtaining the solutions are 

independent on the size of the platform. Because the design matrix setup time is also 

constant for all platform sizes, the type-II and type-III design tasks have design cycle that 

is totally independent on the size of the platform. This nice behavior comes from the fact 
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that the DOFs that is necessary to represent the interactions between the platform and the 

small design structures are determined by the electrical size of the design structures [97]. 

The Green-box is of the similar size as the design structures. It is sufficient to represent 

the platform-'Green-box' interaction and the 'Green-box'-design interactions with DOFs 

that depends on the size of design only. Therefore, the design matrix setup time and the 

type-II and type-III solution time does not depends on the size of the platform.  

The design cycle shown in Figure 37 is dominated by the matrix setup and inverse 

time. However, this time does not depends on the number of right hand sides (RHS). The 

solution time increase with the increasing of the number of RHS. Therefore, for problems 

with many RHS, the solution time can dominate the design cycle and the reduction on the 

solution time becomes more meaningful.  

The memory usage for the MFD method is determined by the sparse representation 

of the system matrix and the LOGOS factorization results [78]. For the type-I design task, 

all data have to be available during the solution process. The memory usage is high 

during the solution process. For the type-II and type-III design tasks, only the level-1 

non-local projection of the platform system matrix is needed in the solution process (see 

(5.21)). All other data can be cleared from the memory. Due to the same argument as 

used for design timing, the memory usage during the design cycle does not depends on 

the size of the platform, too.  
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design 

Green-box 

platform  

buffer 

 

Figure 31. A design problem consists of a large fixed platform and small design 

structure. 
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design 

Green-box 

platform 

Δ 0.2λ 0.2λ 
 

Figure 32. A test case to show the effect of buffer region. The platform and 

design cubes are of side length 0.2λ. The distance between the two cubes is Δ. 

The Green-box is a larger cube with the design cube sits at its center. One side 

of the Green-box runs through the middle between the platform and design 

cubes. 
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Figure 33. The RMS error of matrices that is represented using equivalence 

principle. 
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Figure 34. A sphere with a part of it is defined as the design region. The radius 

of the sphere is 2λ. The cube is the Green-box with side length 2.25λ. The dark 

patch on the sphere is the design patch defined by intersecting the sphere with a 

cube with side length 2λ. 
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Figure 35. RCS of PEC sphere with radius 2λ.  
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Figure 36. The number of nonlocalized modes at level 1 after the platform 

factorization. These are the only modes that radiates into the Green-box. 

  

0 40 80 120 160
400

450

500

550

600

650

700

750

800

Number of Unknowns (1000)

P
la

tf
o
rm

 N
o

n
lo

c
a

liz
e

d
 M

o
d
e

s
 a

t 
le

v
e

l 1



118 

 

 

Figure 37. Performance of MFD method for design problem.  

  



119 

 

Chapter 6. Conclusions 

A modular, fast, direct analysis method has been formulated based on the LOGOS 

concept. The advantage of the proposed MFD method vis-à-vis the standard (non-

modular) LOGOS solution method is that the former approach allows the independent 

factorization of platform region. This in turn implies that matrix factors associated with 

the fixed platform region can be saved and reused during the design process. This re-use 

provides significant computational savings when analyzing problems that involve a small 

design region embedded on/within a large, fixed platform. This type of scenario is 

encountered in a number of practical applications, such as designing antennas to operate 

on a larger platform or optimizing a small part of a large circuit.  

Besides the reusability of the platform factorization, the non-radiating LOGOS 

factorization in the MFD method also improves the design efficiency by eliminating the 

weak multiple scattering modes between the platform and the design structures in an 

error controlled way. It provides an efficient way of finding the local solutions within the 

Green-box.  

The result of LOGOS factorization in the MFD method can be used to produce 

reduced order models (ROM) for design tasks that have known excitation field and fixed 

measuring quantities. 

6.1. Contributions 

The principle, non-trivial new contributions contained in this dissertation include the 

following items: 

1. A general modular, fast, direct (MFD) analysis method based on the NL-

LOGOS factorization has been developed. This LOGOS-based MFD 

method has been applied to Nyström discretizations of three-dimensional 

electromagnetic problems involving conductors and materials.  

2. A method for deriving reduced-order models (ROMs) from the MFD 

method has been described. This capability has been demonstrated 

numerically for three-dimensional electromagnetic problems. 
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3. A rigorous study in error control for NL-LOGOS factorization has been 

provided. This study has produced new error control estimates, provided 

formal justification for previously used error control strategies, and 

indicated how to properly scale the NL-LOGOS factorization tolerance 

across multiple levels. 

4. A generalization of the NL-LOGOS factorization, referred to as a multi-

range localization strategy, has been developed. It has been demonstrated 

that this strategy significantly improves the overall computational 

efficiency of the NL-LOGOS factorization. While demonstrated here for 

the NL-LOGOS factorization of IE formulations, it is expected that the 

advantages of this improvement to the LOGOS will also be useful for all 

types of LOGOS-based factorizations. This strategy may be particularly 

useful for LOGOS-based factorizations of finite element matrices. 

6.2.  Future Work 

As mentioned in the introduction, the current work is summarized by Figure 2. 

However, the work reported here has actually been performed with a view towards 

developing the more general MFD analysis and design strategy indicated in Figure 1. 

Furthermore, while the current work has focused on a specific class of problems and 

formulations (EM problems at not very high frequency, surface integral equation and 

Nyström discretization), the general MFD scheme is not necessarily restricted to these 

specifications. For these reasons, this dissertation provides the basis for the development 

of much more general MFD design and analysis methods and tools. 
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Appendix A. Green-box Setup 

Consider an electromagnetic design problem with fixed platform structures and 

variable but confined design structures as shown in Figure 38. All possible design 

structures are completely confined within a design region, d ,  with boundary dS . The 

fixed platform structures occupy the platform region, p , with boundary pS . In Figure 

38-(a), a gap, which is referred to as the buffer region, is assumed deliberately between 

the platform and design regions. For applications in which the platform and design 

regions are connected with each other (see Figure 38-(b)), the buffer region can still be 

assigned around the design region. In these cases, a portion of the platform structure will 

be contained within the buffer region. For simplicity, the derivation in Section A.1 

assumes the buffer region is empty. The more general case is discussed in Section A.2.  

A.1. Green-box for Separated Platform and Design 

Structures 

A virtual surface   (as shown in Figure 38) is built to enclose the design structure 

and passes the middle of the buffer region.   does not touch the structures in the 

platform and design regions.   is referred to as the Green-box since the derivations 

below are fundamentally based on the Green‟s Identities. The existence of the buffer 

region is not a necessary condition to derive the algorithm if the singularities associated 

with the Green-box are properly dealt with. The reason to have this buffer region is to 

avoid the time-consuming process of dealing with the strongly varying fields on the 

Green-box   when there are sources nearby. In practice, there are a lot of situations 

where platform and design structures are connected. It is shown in Section A.2 that the 

derivations here can still be used with minor modifications.  

The subscripts p , d  and x  in the following equations denotes the platform, design 

and Green-box, respectively.  Let ˆ
pn  and ˆ

dn  denote the outward normal of   with 

respect to platform and design region, respectively. Assume there are no sources other 

than a specified incident field, 
inc

E . For simplicity, only PEC platforms and designs are 

considered. Let the current distribution on the platform and design structures be denoted 
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by 
pJ  and dJ , respectively. The scattered field due to each of these sources can be 

written in terms of the magnetic vector potentials as 

  
2

0

0

k
r

j
 



 


A A
E


, (A.1) 

  r  H A


, (A.2) 

where the magnetic vector potential is given by 

      ,
S

r G d



 
   A J r r r r


, (A.3) 

and   0, / 4jk RG e R r r  is the free-space Green‟s function, R  r r . The subscript 

  can be replaced by either p  or d  here. It could also be replaced with other subscripts 

in later discussions to obtain the field generated by the corresponding source. 

Consider the equivalent problem in the region bounded by   and infinity, where the 

platform resides. On  , the equivalent currents 
d

J  and 
d

M  can be found according to 

the equivalence principle such that they produce the same fields in region p as that 

scattered by the design structures. The equivalent currents are given by 

 
on 

ˆ
d d dn 
 J H , (A.4) 

 
on 

ˆ
d d dn 
 M E . (A.5) 

The electric field due to the equivalent currents on   is  
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0

d d

d d

k
r

j

 

 

 
 

A A
E F


, (A.6) 

where 
d

A  is defined in (A.3) and the electric vector potential is defined as 

      ,
S

G d



 
   F r M r r r r . (A.7) 

Thus, the electric field at any point in the platform region can be written as  

        
d

inc

p   E r E r E r E r . (A.8) 
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Since the source and field points never meet when evaluating  
d

E r  in (A.6), the 

differential operations can be moved inside the integrals. Equation (A.6) can thus be 

rewritten as 
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. (A.9) 

The same procedure can be used to find the electric field in the design region  

        
p

inc

d   E r E r E r E r , (A.10) 

where 
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The equivalent currents 
p

J  and 
pM  are given by 

 
on 

ˆ
p p pn 
 J H , (A.12) 

 
on 

ˆ
p p pn 
 M E . (A.13) 

Following the method of moments (MoM) procedure [98], approximating the surface 

currents on the platform and design structures by a basis function expansion  

  

 

1

p dN

n np d
n

C


 J B , (A.14) 

and testing the fields on the surface of the structures by a set of testing functions, mT , a 

linear system of equations can be obtained from (A.8) and (A.10): 
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The quantities  ,p nE r  and  ,d nE r  are the electric fields due to current basis  nB r  in 

the platform and design regions, respectively. They are obtained from (A.1) and (A.3) by 

substituting nB  for  
J r  in (A.3).  ,d nE r  and  ,p nE r  are the fields due to the 

current basis nB  in the design and platform regions, respectively. Each of them has been 

obtained indirectly using (A.9) and (A.11), where the equivalent currents are now due to 

the fields radiated by a current basis nB  in the design or platform regions. If they had 

been obtained directly in the same way as  ,p nE r  and  ,d nE r , (A.15) and (A.16) 

would be the ordinary matrix equations resulting from an application of MoM to the 

EFIE.  

The equivalent currents can be obtained using (A.4), (A.5), (A.12), (A.13) and (A.1)-

(A.3). The results are  

        ,

 in 

ˆ ,
d

n

n d n

S d

n G d
        J r r r r B r r , (A.17) 

  
       2

0

,

0 in 

, ,
ˆ

d

n

n n

n d

S d

G k G
n d

j


       
    

r r B r r r B r
M r r , (A.18) 

        ,

 in 

ˆ ,
p

n

n p n

S p

n G d
        J r r r r B r r , (A.19) 

  
       2

0

,

0 in 

, ,
ˆ

p

n

n n

n p

S p

G k G
n d

j


       
    

r r B r r r B r
M r r . (A.20) 

By changing the order of integrals, the last terms of (A.15) and (A.16) can be 

rewritten as 
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and  
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After discretizing the Green-box in a similar manner as that has been done for the 

platform and design structures, the integral in (A.21) and (A.22) over Green-box can be 

written as summation of integrals over the discretized cells: 

    
1

b

b nb

N

nS S

f dr f d




 r r r


. (A.23) 

Due to the assumed gap between the platform and design structures and the position of 

the Green-box, the integral over each cell can be approximated to desired accuracy by 

proper fixed point quadrature rules. Thus, 

    
1 1
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N Q

q q

n qS

f d f 


 

 
  r r r , (A.24) 

where   and   are the abscissas and weights of a quadrature rule of order Q . Thus, 

the integral over d  and p  in (A.21) and (A.22) can be written as summations of 

functions evaluated at the abscissas on the discretized Green-box and weighted by the 

quadrature weights.  

The linear system of equations (A.15) and (A.16) can now be written in a matrix 

form as 

 
pp px xd p p

dx xp dd d d

     
          

Z Z Z J E

Z Z Z J E
. (A.25) 
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where px pJ pM
   Z Z Z , 

Jd

xd

Md

 
  
 

Z
Z

Z
,  dx dJ dMZ Z Z  and 

Jp

xp

Mp

 
  
 

Z
Z

Z
. The 

matrix elements are given by 

    , ,

 in m

pp mn m p n

S p

d Z T r E r r , (A.26) 

    , ,
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The excitation vector elements are given by 

    ,

 in m

inc

p m m

S p

r d  E T E r r


, (A.36) 

    ,

 in m
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d m m

S d

T r d  E E r r


. (A.37) 

The subscripts J  and M  represent the equivalent electric and magnetic currents, 

respectively. With (A.25) written, the Green-box has been used to separate and connect 
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the platform and design regions. The information about platform and design regions can 

now be saved separately into the platform and design matrices as 

 
0

pp px

p

xp

 
  
 

Z Z
Z

Z
, (A.38) 

and  

 
0 xd

d

dx dd

 
  
 

Z
Z

Z Z
, (A.39) 

respectively. The original matrix should be reconstructed according to (A.25). 

A.2. Green-box for Connected Platform and Design 

Structures 

Most practical problems have platform and design structures connected as shown in 

Fig. 2. The difference between Figure 38-(b) and Figure 38-(a) is the additional 

connecting structure in the buffer region. The connecting structure is actually part of the 

platform. Let the letters, p , d , pS  and dS , denote the same parts of platform and 

design structures as that in Figure 38-(a). The structure in the buffer region is denoted by 

„b’. According to the new setup of the problem, (A.8) and (A.10) should be modified to 

include the contribution from the structures in the buffer region as  

          
d

inc

p b    E r E r E r E r E r , (A.40) 

and 

          
p

inc

d b    E r E r E r E r E r . (A.41) 

where  bE r  can be obtained directly using (A.1) and (A.3) by replacing the subscript „

 ‟ with „b’. With such modifications, it can be shown that the matrix equation (A.25) 

changes to 

 

pp pb px xd p p

bp bb bd b b

dx xp db dd d d

     
          
         

Z Z Z Z J E

Z Z Z J E

Z Z Z Z J E

, (A.42) 
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where the matrix elements that are not related to the buffer region structures are still 

calculated in the same way as those in (A.25); those related to the buffer region can be 

filled in using either (A.26)or (A.27) by changing the corresponding subscripts. The 

platform and design matrices change to 
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, , 0

0 0

pp p b px

p b p b b

xp

 
 

  
 
 

Z Z Z

Z Z Z

Z

, (A.43) 

and  

 ,

,

0 0

0 0

bd

d b d

d d b dd

 
 

  
  

Z

Z Z

Z Z Z

. (A.44) 

By comparing (A.25) and (A.42), it is apparent that the formulation for the 

connected platform and design structures is a simple modification from that for well 

separated ones. This modification does not change the modular LOGOS factorization and 

solution procedures. 
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Figure 38 A design problem consists of a large fixed platform and small design 

structure. a) The platform and design structures are separated. b) The platform 

and design structures are connected.   
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