
University of Kentucky University of Kentucky 

UKnowledge UKnowledge 

Theses and Dissertations--Microbiology, 
Immunology, and Molecular Genetics 

Microbiology, Immunology, and Molecular 
Genetics 

2012 

PRION CHARACTERIZATION USING CELL BASED APPROACHES PRION CHARACTERIZATION USING CELL BASED APPROACHES 

Vadim Khaychuk 
University of Kentucky, vkhaychuk@gmail.com 

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you. 

Recommended Citation Recommended Citation 
Khaychuk, Vadim, "PRION CHARACTERIZATION USING CELL BASED APPROACHES" (2012). Theses and 
Dissertations--Microbiology, Immunology, and Molecular Genetics. 2. 
https://uknowledge.uky.edu/microbio_etds/2 

This Doctoral Dissertation is brought to you for free and open access by the Microbiology, Immunology, and 
Molecular Genetics at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Microbiology, 
Immunology, and Molecular Genetics by an authorized administrator of UKnowledge. For more information, please 
contact UKnowledge@lsv.uky.edu. 

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/microbio_etds
https://uknowledge.uky.edu/microbio_etds
https://uknowledge.uky.edu/microbio
https://uknowledge.uky.edu/microbio
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu


STUDENT AGREEMENT: STUDENT AGREEMENT: 

I represent that my thesis or dissertation and abstract are my original work. Proper attribution 

has been given to all outside sources. I understand that I am solely responsible for obtaining 

any needed copyright permissions. I have obtained and attached hereto needed written 

permission statements(s) from the owner(s) of each third-party copyrighted matter to be 

included in my work, allowing electronic distribution (if such use is not permitted by the fair use 

doctrine). 

I hereby grant to The University of Kentucky and its agents the non-exclusive license to archive 

and make accessible my work in whole or in part in all forms of media, now or hereafter known. 

I agree that the document mentioned above may be made available immediately for worldwide 

access unless a preapproved embargo applies. 

I retain all other ownership rights to the copyright of my work. I also retain the right to use in 

future works (such as articles or books) all or part of my work. I understand that I am free to 

register the copyright to my work. 

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE 

The document mentioned above has been reviewed and accepted by the student’s advisor, on 

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of 

the program; we verify that this is the final, approved version of the student’s dissertation 

including all changes required by the advisory committee. The undersigned agree to abide by 

the statements above. 

Vadim Khaychuk, Student 

Dr. Glenn C. Telling, Major Professor 

Dr. Charlotte S. Kaetzel, Director of Graduate Studies 



 

 
 
 
 
 
 
 

PRION CHARACTERIZATION USING CELL BASED APPROACHES 

 
 
 

_______________________________________________ 
 

Dissertation 
_______________________________________________ 

 
 

A dissertation submitted in partial fulfillment of the requirements for the degree of 
Doctor of Philosophy in the College of Medicine at the University of Kentucky 

 
 

By 

Vadim Khaychuk 

Lexington, Kentucky 

Director:  Glenn C. Telling, Ph.D. 

Professor of Microbiology, Immunology, and Molecular Genetics 

Lexington, Kentucky 

Copyright © Vadim Khaychuk 2012 

 

 

 



 
 
 
 
 
 
 
 

ABSTRACT OF DISSERTAION 
 

 
 

PRION CHARACTERIZATION USING CELL BASED APPROACHES 

 

Prions are the causative agents of a group of lethal, neurodegenerative conditions 
that include sheep scrapie, bovine spongiform encephalopathy (BSE), and human 
Creutzfeldt-Jakob disease (CJD). Prions are derived from the conversion of a normal, 
primarily alpha-helical, cellular prion protein (PrPC), to an infectious, beta sheet-rich 
conformer (PrPSc). Many unresolved issues surround the process of PrP conversion, and 
we know very little about cellular responses to these unique pathogens. Our lack of 
knowledge relates, in part, to the difficulty of infecting cells in vitro with prions. While 
expression of PrPC is an absolute requirement for prion propagation, I show here that not 
all cells that express PrPC are capable of propagating PrPSc. The goal of this thesis is to 
understand the role that host factors play in sustaining prion infection and to develop 
systems in which the cellular response to prion infection can be assessed. We hypothesize 
that cellular permissiveness to prion infectivity is co-dependent on unidentified additional 
cellular factors. To study the role of PrPC expression in susceptibility to prion infectivity, 
and identify these cofactors in cell culture, we utilized cells which fail to express 
endogenous PrPC, but become susceptible to prions following stable expression of PrPC. 
Following transfection of a species specific PrP expression construct and isolation of 
single cell clones, we assessed PrP expression and susceptibility to prion infectivity by 
measuring accumulation of protease resistant PrPSc. Differential gene expression studies 
suggest significant transcriptional differences between susceptible and resistant clones. 
Using three independent gene expression databases our analyses suggest that the resistant 
transcriptional profile favors cell division/cycle and chromosomal regulation pathways, 
while the sensitive transcriptional profile is involved in protein homeostasis and quality 
control. The results of these studies will not only lead to a greater understanding of PrP 
cell biology and the mechanisms of prion pathogenesis, but should ultimately lead to 
sensitive and expedient methods for detecting and characterizing prion infectivity from a 
wide range of sources. 
 
KEYWORDS:  Prions; Cellular Permissiveness; Cellular PrPC; Protease Resistant PrPSc; 
Transcriptional Differences   
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Chapter 1 

I: General Introduction to Prion Biology 

 

I-A: Prion History 

Transmissible spongiform encephalopathies (TSE's), which are commonly known 

as prion diseases, cause incurable, progressively fatal neurodegeneration in humans and 

animals. Biochemically, the propagative mechanism entails the conformational change of 

the cellular prion protein (PrPC) into the pathogenic, more stable, and partially protease 

resistant scrapie prion protein (PrPSc). The prion (PrPSc) is considered to be the central 

component to TSE. Scrapie, the prototypic prion disease affecting sheep and goats, is 

prevalent worldwide and has been known in Europe for centuries (Cuillé and Chelle 

1939). Other known animal prion diseases include bovine spongiform encephalopathy 

(BSE) affecting cattle, chronic wasting disease (CWD) of cervids, and transmissible mink 

encephalopathy (TME) affecting farmed raised mink. Human prion diseases include 

Creutzfeldt-Jacob disease (CJD), Gertsmann-Straussler-Scheinker syndrome (GSS), fatal 

familial insomnia (FFI) and Kuru (Glatzel, Stoeck et al. 2005). Currently, there is no 

medical treatment in existence for these diseases. 

Although cellular toxicity and neuronal death are universally shared features of 

protein misfolding neurodegenerative diseases such as Alzheimer’s (AD), Parkinson’s 

(PD1) and Huntington disease (HD), prion diseases are unique because of their infectious 

transmission properties (Aguzzi and Calella 2009). Human prion diseases can be 

contracted through various sources. They can originate through exposure to contaminated 

source, for example variant CJD (vCJD) through the consumption of BSE, or iatrogenic 
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(iCJD). Genetic inheritance of an autosomal dominant mutation in the PRNP gene 

(familial form) also causes disease. Lastly, prion disease in humans can be sporadic with 

an unknown etiology (sCJD) (Mead 2006).  

Early in the 20th century, sheep scrapie was described as a transmissible (Cuillé 

and Chelle 1939) disease that caused pathology in muscle (M'Gowan 1914; M'Fadyean 

1918). The novel biochemical nature of this infectious agent began to emerge in the 

1950’s and 1960’s. Specifically, filtration methodology and several denaturing 

techniques revealed that the infectious agent was small and proteinaceous (Wilson, 

Anderson et al. 1950; Alper, Haig et al. 1966; Alper, Cramp et al. 1967). Based on all the 

biochemical evidence gathered in 1967, Griffith, J.S. formulated the hypothesis that the 

infectious agent causing scrapie is a self-replicating protein (Griffith 1967). In the 1980’s, 

Dr. Stanley Prusiner’s biochemical experiments ultimately led to elucidating and 

characterizing the nature of the scrapie agent. Sifting for differences between the scrapie 

infected and uninfected brains, the endogenously expressed cellular prion protein was 

identified subsequent to purification and characterization of PrPSc, and subsequently 

demonstrated to have direct association with prion disease development. Additionally, 

because of the lack of nucleic acids and the proteinaceous properties of this infectious 

agent, Prusiner formulated the “protein only” hypothesis which defined the causative 

agent of scrapie to consist of “proteinaceous infectious particles lacking nucleic acids” or 

simply “prions”(Prusiner 1982). 

I-B: Human Prion Diseases 

 Human prion diseases cause widespread neurodegeneration and share several 

important clinical features. The symptoms are multifaceted that effect both the cognitive 
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and motor functions (Collinge 2001).  Common to all human prion diseases is the rapid 

progression of dementia, myoclonus, ataxia, vision loss, insomnia and final onset of 

akinetic mutism prior to death (Collinge 2001). CJD was described by two independent 

German doctors, neurologist Hans Gerhard Creutzfeldt and Alfons Maria Jacob 

(Creutzfeldt 1920; Jakob 1921). sCJD is the most common human prion disease. With an 

unknown etiology, sCJD occurs at rate of 1 person per million worldwide (Collinge 

2001). This disease accounts for 85% of all human TSE’s. fCJD, GSS and FFI are 

inherited through an autosomal dominant mutation in the PRNP gene, and account for 15-

20% of all presented cases (Aguzzi and Calella 2009). The etiology of acquired CJD 

varies. The consumption of BSE contaminated meat from infected cattle was 

hypothesized to directly link with the etiology of vCJD (Collinge, Sidle et al. 1996). 

Accidental transmission of prions through iatrogenic methods that include direct 

exposure through contact with contaminated neurosurgical equipment, inoculation with 

contaminated human growth hormone and/or prion contaminated corneal graft treatment 

are all example sources for acquired human prion diseases (Job, Maillard et al. 1992; 

Martínez-Lage, Poza et al. 1994; Mitrova and Belay 1999; Croes, Roks et al. 2002). 

Recent findings provided evidence for direct iatrogenic transmission of human prions 

from a preclinical vCJD patient through blood transfusion to other individuals, suggesting 

that the risk to prion exposure is significantly higher than previously thought (Peden, 

Head et al. 2004; Panigaj, Brouckova et al. 2010). Finally, Kuru, which affected the 

indigenous people of the Eastern Highlands of Papua New Guinea was transmitted 

through cannibalistic rituals (Collinge 2001). Importantly, Kuru was the first human 

prion disease to be transmitted in laboratory animals (Gajdusek, Gibbs et al. 1966). 
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I-C: Animal Prion Diseases 

 Scrapie, was described in Europe in the 18th century that became the prototypic 

experimental agent in prion research two centuries later (M'Fadyean 1918). It is readily 

transmitted in sheep and goat, although the actual mechanism of dispersion is not 

completely understood (van Keulen, Bossers et al. 2008).  Clinical and neuropathological 

characteristics vary amongst scrapie-infected animals. These differences have strong 

dependence on the genetic background of the infected animal and prion strains, which 

will be described in another section of this chapter in greater detail. The incubation time 

of ovine scrapie can range from 2 to 5 years, with death occurring within 6 months after 

the onset of clinical signs (Jeffrey and Gonzalez 2007). The most common clinical signs 

associated with scrapie is pruritus (itching), which leads to rubbing, scraping and the 

eventual loss of wool but other behavioral, and motor dysfunctional symptoms also exist 

(Jeffrey and Gonzalez 2007). Atypical scrapie in sheep and goats has recently been 

described, which differs from classical scrapie by its biochemical and neuropathological 

features (Benestad, Sarradin et al. 2003; Orge, Galo et al. 2004; Le Dur, Beringue et al. 

2005; Everest, Thorne et al. 2006; Konold, Davis et al. 2007). Major neurological signs 

of atypical scrapie include ataxia and incoordination and the absence of pruritus 

(Benestad, Sarradin et al. 2003). Polymorphism in the PRNP gene is strongly correlated 

with the animal’s susceptibility to contracting classical scrapie (Baylis and Goldmann 

2004). While, atypical scrapie is prevalent in animals that have a polymorphism that is 

linked with resistance to classical scrapie (Benestad, Arsac et al. 2008).   

BSE, also known as “Mad Cow” disease, emerged in the mid 1980’s as a 

previously unknown epidemic in cattle of Great Britain. This epidemic ravaged the 
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agricultural industry, destroying cattle farms throughout Europe (Aguzzi and Calella 

2009).  The incubation time for classical BSE ranges between 2 to 8 years (Wells, Scott 

et al. 1987; Novakofski, Brewer et al. 2005) . Transmission and biochemical studies 

revealed that classical BSE was a prion disease (Hope, Reekie et al. 1988; Collinge, 

Palmer et al. 1995). The disease peaked in the early 90’s and declined to rare occurrences 

as the dietary supplementation of protein from rendered cattle became prohibited. 

Importantly, classical BSE is considered to be the direct causative agent of vCJD, which 

has been experimentally supported through biochemical and histopathological similarities 

(Collinge, Sidle et al. 1996; Bruce, Will et al. 1997; Scott, Will et al. 1999; Clewley, 

Kelly et al. 2009). Additionally, atypical BSE was identified through active BSE 

surveillance programs in Europe (Biacabe, Morignat et al. 2008; Ducrot, Arnold et al. 

2008) and subdivided into two strains, L-type and H-type (Buschmann, Biacabe et al. 

2004; Casalone, Zanusso et al. 2004). These BSE’s differ by incubation times in cattle 

and in transmissions through transgenic mice expressing bovine PrPC, glycopatterns of 

PK digested PrPSc, and neurohistological profiles (Buschmann, Gretzschel et al. 2006). 

Chronic wasting disease (CWD) of elk, deer and moose is an emerging prion 

disease that is causing public concern. Originally described in the 1980’s as a TSE in 

captive mule deer (Williams and Young 1980), the disease has spread to free ranging 

deer, elk and moose throughout North America and South Korea. Clinical signs in 

cervids include patchy coats, a lowered head with drooping ears, weight loss, ataxia along 

with behavioral alterations (Williams and Young 1980). Central nervous system (CNS) 

assessment of CWD infected cervids shows neuronal vacuolation, neuropil spongiosis, 

astrocytic hypertrophy, hyperplasia and amyloid plaques (Williams and Young 1980; 
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Bahmanyar, Williams et al. 1985). Even though CWD affects cervids, the zoonotic 

potential of this disease has not been well characterized.  

Transmissible mink encephalopathy (TME) is a TSE of farmed mink first 

recognized in the Wisconsin and Minnesota mink farms in the late 1940’s but described 

in 1965 (Burger and Hartsough 1965; Hartsough and Burger 1965). The origin of TME is 

unknown, but is hypothesized to have originated from rendered prion infected cattle used 

as protein source to feed the animals (Marsh, Bessen et al. 1991). Transmission studies of 

Stetsonville TME into cattle produced prion disease with an incubation time of 18.5 

months, followed by back passaging the bovine TME into mink, which also resulted in 

the development of prion disease (Marsh, Bessen et al. 1991). Recent transmission 

studies compared TME, bovine passaged TME and 3 distinct natural BSE (classical, L-, 

H-type) in ovine PrPC expressing transgenic mice (TgOvPrP4) (Baron, Bencsik et al. 

2007). The results of this study, which included incubation time, lesion profiling and 

biochemical properties of the PK resistant materials demonstrated that TgOvPrP4 mice 

were susceptible to bovine passaged TME, classical BSE and L-Type BSE but not H-type 

BSE, suggesting that L-type BSE is the most likely related to TME (Baron, Bencsik et al. 

2007). Clinical signs in mink include the progressive lack of grooming, weight loss, 

ataxia and incoordination, behavioral changes, curled tail and mutilation (Hartsough and 

Burger 1965).  Neuropathology of TME includes spongiform degeneration and 

astrocytosis throughout the CNS (Hartsough and Burger 1965; Eckroade, ZuRhein et al. 

1973; Guiroy, Marsh et al. 1993). Transmission studies of TME into the Syrian golden 

hamster led to the identification of two biologically distinct prion strains, Hyper (HY) 
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and Drowsy (DY) (Bessen and Marsh 1992; Bessen and Marsh 1992), which are 

described in greater detail below.  

Other rare TSE’s described in animals include the exotic ungulate encephalopathy 

(EUE) effecting exotic zoo ruminants, and feline spongiform encephalopathy (FSE) of 

domestic and captive wild cats. Both EUE and FSE are considered to be linked to BSE 

contaminated feed sources (Cunningham, Wells et al. 1993), 

http://www.cfsph.iastate.edu. Clinical and neurohistological data supports these diseases 

to be part of the TSE disease family (Pearson, Wyatt et al. 1992; Kirkwood, Cunningham 

et al. 1993). A brief overview of prion diseases is presented in table 1. 

In summary, prions cause fatal, neurodegenerative disease that affects both 

humans and animals. Clinical manifestations of these diseases are complex which include 

both cognitive and muscle-motor deficits. The causative agent of the disease is the β-

sheet rich, protease resistant and detergent insoluble, PrPSc, derived through 

conformational conversion process from the endogenously expressed and post-

translationally modified PrPC.  Prion diseases have a broad etiological range that includes 

genetic predisposition through polymorphism in the PRNP gene, transmissibility by 

exposure to the infectious agent and/or through other ill-defined origins. The molecular 

mechanisms that govern the etiology of prion diseases are beginning to be better 

understood, which ultimately have much wider implications for our understanding of 

protein misfolding “conformational” diseases.  
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Table 1.1 Human and animal prion diseases 

Disease Host Source 
Kuru Human Ritualistic Cannibalism 
Sporadic Creutzfeldt-Jacob 
disease (sCJD) 

Human Spontaneous or somatic mutation  

Familial Creutzfeldt-Jacob 
disease (fCJD) 

Human PRNP mutations 

Iatrogenic Creutzfeldt-
Jacob disease (iCJD) 

Human Acquired accidentally from medical 
procedures 

Variant Creutzfeldt-Jacob 
disease (vCJD) 

Human Acquired from BSE  

Gertsmann-Straussler-
Scheinker syndrome (GSS) 

Human PRNP Mutations 

Fatal Familial Insomnia 
(FFI) 

Human PRNP haplotype 178N-129M 

 
Scrapie Sheep, Goats Unknown  
Transmissible Mink 
Encephalopathy (TME) 

Mink Infection from either sheep or cattle  

Chronic Wasting Disease 
(CWD) 

Cervid (Elk, 
Deer, Moose) 

Unknown  

Bovine Spongiform 
Encephalopathy (BSE) 

Cattle Unknown  

Feline Spongiform 
Encephalopathy (FSE) 

Cats BSE  

Exotic Ungulate 
Encephalopathy (EUE) 

Nyala, Kudu, 
Oryx, bison  

BSE  
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I-D: The Cellular Prion Protein 

 Unique biochemical properties associated with the infectious scrapie agent were 

crucial for the identification of the PrPC. These distinguishing properties included 

resistance towards nucleic acid inactivation (scrapie agent remained infectious) but not 

towards protein denaturation (Prusiner 1982). The partial resistance to protease 

degradation and insolubility in detergents allowed for the identification of a unique 

protein that was associated with scrapie diseased hamster brains but not in the healthy 

counterparts (Prusiner, Groth et al. 1980).  Further subcellular fractionation of scrapie 

infected hamster brains led to the purification of the protease resistant peptide that had a 

migration pattern on the SDS-PAGE yielding a size of approximately 27-30 kDa, 

designated as PrP27-30(Prusiner, Bolton et al. 1982). The purification of PrP27-30 

facilitated reverse sequencing of the amino terminal end of the polypeptide, enabling the 

identification of the host encoded gene for PrP (Oesch, Westaway et al. 1985) (Basler, 

Oesch et al. 1986). PrPC was determined to be a host-encoded protein that is located on 

chromosome 20 in humans and chromosome 2 in mice (Sparkes, Simon et al. 1986).  The 

PrP open reading frame (ORF) is confined within one exon and prior to processing and 

posttranslational modifications, the human prion protein is 253 amino acids in length 

(Kretzschmar, Stowring et al. 1986). 

I-D-1: PrPC Structure 

 PrPC peptide has two signal sequence motifs: at the N-terminus (1-22aa) for 

targeting to the endoplasmic reticulum (ER) where the protein undergoes post-

translational modification; and at the C-terminus, where the glycosylphosphatidylinositol 

(GPI) anchor is attached for cell surface presentation within lipid rafts on the plasma 
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membrane (Fig. 1.1A) (Stahl, Borchelt et al. 1987). The N-terminus of PrP spans the 

residues 23 to124 aa and is primarily unstructured (Fig. 1.1A). This region of the protein 

contains octapeptide repeats that bind copper ions (Hornshaw, McDermott et al. 1995). 

The central portion of the protein consists of a hydrophobic core that overlaps the N-

terminus, encompassing the amino acids residues 111 to 134. The hydrophobic core has a 

transmembrane tethering function (Lopez, Yost et al. 1990), which upon deletion causes 

spontaneous neurodegeneration in transgenic mice (Shmerling, Hegyi et al. 1998) 

(Chiesa, Piccardo et al. 1998) (Baumann, Tolnay et al. 2007). The C-terminus of PrP is 

the globular structured region that consists of three α-helices and two β-sheet strands 

(Fig. 1.1A) (Riek, Hornemann et al. 1996). As a glycoprotein, PrPC can present itself in a 

di-, mono- or un glycosylated form. N-linked glycosylation occurs at Asn-180 and Asn-

197 in humans (Kretzschmar, Stowring et al. 1986; Liao, Lebo et al. 1986; Bazan, 

Fletterick et al. 1987; Haraguchi, Fisher et al. 1989). Lastly, helices two and three of the 

prion protein are linked through an intramolecular disulfide bridge (Turk, Teplow et al. 

1988).   

I-D-2: PrPC Trafficking and Membrane Topology 

The GPI-anchor signal is the predominant localization motif that targets the 

protein to the plasma membrane, although two additional transmembrane topological 

designations exist (Yost, Lopez et al. 1990). These transmembrane topologies are for 

insertion into the lipid bilayer via the central hydrophobic core and are found in low-

abundance (<10%). They present themselves with either the C-terminus or the N-

terminus outwards facing the lumen while presenting the opposite end towards the 

cytoplasm, respectively designated as, CtmPrP and NtmPrP (Fig. 1.1B) (Hegde, Mastrianni 
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et al. 1998; Holscher, Bach et al. 2001; Stewart, Drisaldi et al. 2001).  The C-terminus 

topologically oriented CtmPrP retains both the N- and C-terminus signal motifs with 

predominant retention in the ER, ultimately targeting the protein for proteasomal 

degradation as demonstrated in cell culture models expressing a mutant PrP protein with 

CtmPrP characteristics (Stewart, Drisaldi et al. 2001). While transgenic mice expressing a 

mutant PrP that mimics the CtmPrP topology develop fatal neurodegeneration with 

significant neuronal loss in the cerebellum and the hippocampus (Stewart, Piccardo et al. 

2005). Cultured neurons form these transgenic mice, localize CtmPrP to the Golgi which 

differs from cell culture models that localize CtmPrP to the ER (Stewart and Harris 2005). 

Therefore, CtmPrP is hypothesized to be a toxic intermediate for neurodegeneration in 

prion disease through the induction of cellular stress pathways that ultimately cause 

apoptosis (Shi and Dong 2011). Both transmembrane proteins (NtmPrP and CtmPrP) have 

been demonstrated to reduce bcl-2-Associated X protein activity (Bax) (Lin, Jodoin et al. 

2008).  

Synthesis and posttranslational modification of PrPC occur in the ER. Once passed 

through the cell’s protein quality control mechanisms, PrPC is transported into the Golgi 

network where it is attached to lipid rafts via the GPI anchor and trafficked to the cell 

surface (Taraboulos, Raeber et al. 1992). Alternatively, improper folding of PrPC triggers 

the protein quality control mechanisms that ultimately target the protein for degradation 

through the ubiquitin-proteasome system (UPS) (Fig. 1.2) (Ma and Lindquist 2001). 

Surface retention is short lived and the protein is internalized back into the cytosol where 

it is either recycled or degraded in lysosomes (Taraboulos, Raeber et al. 1992). 

Furthermore, internalization and trafficking of PrPC appear to be mediated by both 



	   12	  

clathrin-coated pits and/or caveolin mediated endocytic mechanisms (Harris, Huber et al. 

1993; Shyng, Huber et al. 1993; Shyng, Heuser et al. 1994; Vey, Pilkuhn et al. 1996). 

Additionally, PrPC existence as a secreted protein through enzymatic cleaving at the GPI-

anchor has been reported (Hay, Prusiner et al. 1987).  The intracellular trafficking process 

of PrPC is presented in a schematic diagram of figure 1.2.  

In summary, discovery of endogenously expressed PrPC was a crucial step 

towards understanding the molecular basis of prion diseases. The unique biochemical 

properties of the infectious scrapie agent in combination with meticulous deductive 

biochemistry enabled the host-encoded gene for the prion protein to be identified 

(Prusiner, Bolton et al. 1982; Oesch, Westaway et al. 1985; Basler, Oesch et al. 1986).  

Additional experiments began to resolve the cellular biogenesis and structure of PrPC, 

thus identifying the cellular localization and structural domains of this protein (Stahl, 

Borchelt et al. 1987; Lopez, Yost et al. 1990; Riek, Hornemann et al. 1996). These 

analyses laid the foundation towards characterizing the normal physiological functions of 

PrPC, which remains an ongoing process, and more importantly its direct role as the 

etiological source/substrate for PrPSc conversion in prion diseases.    
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Figure 1.1 Schematic representations of the human cellular prion protein (PrPC) 

and PrPC’s membrane topology.  A. The prion protein consists of two signal sequences 

and three distinct domains. The N-terminal target sequence (yellow) is cleaved after 

amino acid 22 during the processing of the protein as it transits to the plasma membrane. 

The rest of the N-terminus is a charged, and primarily unstructured domain that contains 

the Cu2+-Octapeptide repeat binding motif (purple). The central domain consists of a 

hydrophobic core (HC, blue) and is associated with neurotoxicity. The C-terminal 

domain is structured and consists of three α-helices (H1, H2, and H3, orange) and two β-

sheet motifs (B1 & B2, black) flanking the first helix. PrPC undergoes post translational 

modification by glycosylation at asparagine residues (CHO, 181aa, 197aa). A stabilizing 

disulfide bridge forms between helices 2 and 3 (blue arrows, S-S). Finally, a GPI-anchor 

signal (green) that anchors the protein to the plasma membrane is at the C-terminus. B. 

PrPC’s three topological designations include the cell surface GPI-anchored PrPC, and 

two transmembrane spanning PrP’s presenting either the C- or the N- terminus to the 

surface, respectively designated CtmPrP and NtmPrP. Figure 1.1B has been adapted from a 

previously published review (Harris 2003). 
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Figure 1.1 Schematic representations of the human cellular prion protein (PrPC) 
and PrPC’s membrane topology. 
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Figure 1.2 Intracellular trafficking of PrPC. (1) PrPC is translated and targeted to the 

endoplasmic reticulum (ER) by the N-terminal signal sequence. (2-3) In the ER, PrPC 

undergoes proper folding and acquires post-translational modifications, where it is 

transported to the Golgi network for cell surface presentation in the lipid raft portion of 

the plasma membrane tethered by glycosylphosphatidylinositol (GPI) anchor. (3) 

Alternatively, subsets of newly synthesized PrPC that does not attain proper 

conformational structure are passed through protein quality control mechanisms which 

target them for degradation in the ubiquitin-proteasome system (UPS). (4) Once in the 

Golgi, PrPC is trafficked towards the cell surface in lipid-raft rich vesicles. (5) PrPC 

presentation to the cell surface and internalization is a constitutively recycling process. 

(6) Endocytosis and trafficking of PrPC is mediated through multiple endocytic 

mechanisms that include both the clathrin-coated pits and caveolae pathways. (7) 

Endocytosed PrPC not destined for recycling is trafficked from late endosomal 

compartments into lysosome for proteolytic degradation.    
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 Figure 1.2 Intracellular trafficking of PrPC  
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I-E: Prion Replication and Strain Diversity 

 

Prion Replication 

Because the novel properties of the scrapie agent distinguish it from viruses, 
plasmids, and viroids, a new term “prion” is proposed to denote a small 
proteinaceous infectious particle that is resistant to inactivation by most 
procedures that modify nucleic acids. Knowledge of the scrapie agent structure 
may have significance for understanding the causes of several degenerative 
diseases. (Dr. Stanley Prusiner,(Prusiner 1982))  
 

 Characterization of PrPSc replication and conversion is a biologically complex 

process that requires an experimentally combinatorial approach. Unlike the viral strain 

classification system, which is based on nucleic acid compositions and follows the central 

dogma of molecular biology, molecular classification of prion strains is based on the 

transfer of information through conformational changes in association with the “protein 

only” hypothesis (Fig. 1.3A). As earlier discussed, protein sequencing and reverse 

genetics facilitated the identification of the host encoded prion protein (PrPC), which laid 

the supporting foundation for the “protein only” hypothesis regarding prion diseases 

(Griffith 1967; Prusiner 1982; Prusiner, Groth et al. 1984; Westaway and Prusiner 1986). 

This hypothesis postulated that PrPC is the main substrate for the replication of the more 

stable, conformationally altered and partially protease resistant PrPSc lacking nucleic 

acids.  Under this hypothesis, there are two central models for prion replication. The 

template-directed refolding model postulates that PrPC to PrPSc conformational change 

requires the addition of an exogenous template to modulate PrPC structure to a more 

stable isoform. This reaction is driven by the continuous addition of PrPC substrate (Fig. 

1.3B). In the second model, termed “the seeded nucleation” model, PrPC and PrPSc are 

both present (Fig. 1.3C). PrPSc develops spontaneously although at an unfavorable 
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equilibrium as compared to PrPC.  The initial seeding of PrPSc is energetically 

unfavorable and extremely slow, but once PrPSc becomes ordered, the process begins to 

seed the formation of larger aggregates leading to the formation of infectious particles 

(Jarrett and Lansbury 1993).  Protein Misfolding Cyclic Amplification (PMCA) has 

provided supporting evidence towards the “protein only” hypothesis by demonstrating the 

formation of infectious PK resistant protein aggregates in vitro (explained below) 

(Saborio, Permanne et al. 2001).   

 

I-F: Prion Strains 

Describing the diversity of prion strains and the transfer of conformational 

information lacking nucleic acids to transmit and cause disease has been challenging. The 

intrinsic difficulty of describing this diversity is based on our lack of understanding 

protein-mediated conformational transfer of information. It is hypothesized that PrPSc 

acts as the template to convert the PrPC isoform (Prusiner 1982; Basler, Oesch et al. 

1986; Büeler, Aguzzi et al. 1993). This process requires that both PrP isoforms maintain 

near identical primary structure for efficient transmission, thus explaining why 

interspecies prion transmission is generally less efficient than intraspecies transmission, 

(Scott, Groth et al. 1993; Telling, Scott et al. 1994).  

At the molecular level, the diversity and specificity of individual prion strains is 

proposed to be associated with the different conformational states that the PrP molecule 

acquires. The evidence to support this hypothesis was experimentally investigated using 

biochemical and spectroscopic techniques (Safar, Wille et al. 1998; Kuczius and 

Groschup 1999; Wadsworth, Hill et al. 1999; Safar, Cohen et al. 2000). Moreover, 
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numerous PrPSc strains have been identified within mammalian prion diseases, which 

indicate that the selection process for these strains is co-dependent on several factors. The 

conformational selection model suggests that PrPSc replication is strongly dependent on 

host encoded PrP homology and thermodynamically favorable conformations of the 

outcompeting PrPSc (Collinge 1999; Collinge and Clarke 2007). Specifically, it is the 

competition between thermodynamically favorable PrPSc conformational states 

(Levinthal’s paradox on protein folding estimates 10143 possible conformation a protein 

may take, (Zwanzig, Szabo et al. 1992)), structural similarity to the host encoded PrPC, 

and the kinetic rate of conversion as compared to the rate of clearance that is mediated by 

the endogenous protein quality control mechanism that are designed to prevent 

aggregation.   

Evidence supporting conformational selection was experimentally validated using 

synthetic yeast (PSI+) prions derived from the Sup35 substrate protein, which can be 

used to adopt distinct infectious conformations in vitro (Tanaka, Collins et al. 2006). 

Using this yeast prion system, it was demonstrated that distinct conformations of the 

synthetically generated PSI+ prions had profound effects on the growth and division 

phases of prion particle formation and aggregation thus indicating that the variation in 

aggregate formation represents a mechanisms by which specific prion strain phenotype 

dominates selection (Tanaka, Collins et al. 2006).  Significantly less is understood for the 

selection and replication mechanisms in animals.         

Experimentally, prion strain properties are analyzed through transmission studies 

in animal models and subsequently assessed histologically and biochemically (Bruce, 

McBride et al. 1989). Biological prion strain characteristics are described using 
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incubation times in animal models, clinical signs at onset of disease, neuropathological 

analysis, and PrP deposition within brain sections (Bruce and Dickinson 1979; Bruce, 

McBride et al. 1989). Serial transmission and cloning of prion strains in the respective 

host is required to identify the specific phenotypic property of the infectious agent. These 

properties are influenced by the genetic background of the host and may alter upon 

interspecies transmission (Pattison 1965; Westaway, Goodman et al. 1987).  

Biochemically, prion properties are described using denaturing agents that break 

(denature) prions in a concentration dependent manner using conformational stability 

assay (Peretz, Scott et al. 2001). Protease digestion by proteinase K (PK), glycoform 

ratios and electrophoretic migration patterns on SDS-PAGE gels are characteristic 

properties used to distinguish prion strains as well (Collinge, Sidle et al. 1996). 

Furthermore, strain specificity has also been analyzed through conformational-dependent 

immuno assays and conformational alterations dictated through metal-ion occupancy 

binding assays (Safar, Wille et al. 1998; Wadsworth, Hill et al. 1999).  Although the 

molecular complexities associated with prion strains are slowly being experimentally 

defined, many unanswered questions remain regarding prion prevalence and replication 

in naturally susceptible animals.    
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Figure 1.3 Models for prion replication. A. Schematic models comparing modes of 

information transfer between the central dogma of molecular biology, and protein only 

information transfer model. B. In template directed model, conversion of PrPC (diamond) 

or an intermediate conformation PrP* (pentagon) to PrPSc (hexagon) is slow and 

irreversible. C. In the seeded nucleation model, PrPSc formation is not rate limiting, but 

the accumulation of PrPSc into an ordered nucleus is slow, once formed, it acts as the seed 

to form larger aggregates. (Come, Fraser et al. 1993) (Brown, Goldfarb et al. 1991) 

(Griffith 1967) (Jarrett and Lansbury 1993) 
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Figure 1.3 Models for prion replication.  
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I-F-1: Scrapie Strains 

Initial studies describing prion strain properties were through experimental 

transmission of sheep and goat scrapie (Pattison and Millson 1961; Pattison and Millson 

1961). Two distinct phenotypes designated “drowsy” and “scratching” appeared in goats 

after inoculating them with sheep scrapie brain pool-1 (SSBP/1). The name designations 

were based directly on behavioral patterns (Pattison and Millson 1961). The two strains 

manifested distinctly different clinical syndromes that became more evident with 

continuous passage (Pattison and Millson 1961). The diversity of prion strains in goats 

has not been well defined although it would be predicted, based on the acquired data from 

natural goat scrapie samples, that multiple strains exist. Importantly, the European active 

TSE surveillance programs have identified both “atypical” scrapie and BSE in goats 

(Eloit, Adjou et al. 2005; Le Dur, Beringue et al. 2005).   

Although the exact number of scrapie strains affecting sheep and goats remains to 

be determined, it is known that genetic polymorphism in PRNP of these animals greatly 

influences there susceptibility to disease (Hunter, Goldmann et al. 2000). Three 

polymorphic positions in sheep are particularly associated with susceptibility to scrapie: 

Valine/Alanine (V/A) at 136, Arginine/Histidine (R/H) at 154, and Glutamine/Arginine 

(Q/H) at 171 (Westaway, Zuliani et al. 1994; Clouscard, Beaudry et al. 1995; Foster, 

Wilson et al. 1996; Hunter, Foster et al. 1996). These polymorphisms have been ranked 

by their permissiveness towards scrapie. The VRQ/VRQ, ARQ/VRQ and ARQ/ARQ 

genotypes are considered to confer greatest susceptibility, while the AHQ and ARR 

genotypes confer strong resistance (Hunter, Foster et al. 1996; Dawson, Hoinville et al. 

1998; Woolhouse, Matthews et al. 1999; Matthews, Coen et al. 2001; Baylis, Goldmann 
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et al. 2002). As previously mentioned, active surveillance for scrapie in Europe identified 

new scrapie strain termed “atypical” scrapie (Benestad, Sarradin et al. 2003; Everest, 

Thorne et al. 2006), which differs from classical scrapie in several aspects. Atypical 

scrapie distinguishable properties include increased incubation time (atypical scrapie 

found in older sheep), decreased neuropathological lesions, decreased biochemical 

stability of PrPSc and a notably lower electrophoretic migratory band representing ~12 

kDa size fragment on a western immunoblots (Benestad, Sarradin et al. 2003; Luhken, 

Buschmann et al. 2007). 

I-F-2: TME Prion Strains 

TME transmission studies have provided evidence for biologically distinct prion 

strains. Transmission studies using Syrian golden hamsters model facilitated 

identification and characterization of the two TME prion strains called: HY and DY 

(Bessen and Marsh 1992; Bessen and Marsh 1992). As indicated by the name, the HY 

strain is biologically characterized through short lived hyperactive behavior in the 

infected animal that rapidly progresses to cause disease with a mean incubation time of ~ 

60 days, whereas DY infected animals present themselves with lethargic behavior and a 

delayed onset of disease with a mean incubation time of ~165 days (Bessen and Marsh 

1992). Biochemical analysis of PrPSc constituting HY and DY demonstrate strain-specific 

differences which are best described by their differential sensitivity to protease digestion 

and electrophoretic migration on sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE) (Bessen and Marsh 1992). The source of TME is 

hypothesized to be bovine prions accidentally transmitted to farm raised mink through 
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contaminated feed (Marsh, Bessen et al. 1991; Robinson, Hadlow et al. 1994; Baron, 

Bencsik et al. 2007).    

I-F-3: BSE Prions 

In addition to the classical BSE prions described earlier, international surveillance 

efforts and careful analysis of prion infected cattle tissue has led to the identification of 

two additional BSE variants that until recently have remained unknown (Jacobs, 

Langeveld et al. 2007). The identification of the “atypical” BSE L- and H-type strains 

directly resulted from rigorous testing of aged, asymptomatic cattle in European 

slaughterhouses (Buschmann, Biacabe et al. 2004; Casalone, Zanusso et al. 2004). 

Analogous to the description of “atypical” scrapie, L- and H-type BSE differ from 

classical BSE. H-type BSE is characterized by a higher molecular weight but 

conventional glycoform migration pattern of PrPSc after PK digestion (Biacabe, 

Laplanche et al. 2004). PrPSc of L-type BSE has a lower molecular weight and distinctly 

different glycoform migration pattern (Casalone, Zanusso et al. 2004). Transmission 

studies in transgenic mice expressing bovine PrP using the three BSE strains revealed 

significant differences in incubation times and deposition of PrPSc, providing further 

evidence towards the existence of unique prion strains amongst cattle (Everest, Thorne et 

al. 2006). Furthermore, due to their identification in older, asymptomatic cattle, it has 

been hypothesized that the atypical BSE strains could be the result of naturally occurring 

sporadic TSE. Evidence supporting this hypothesis was provided from a 10-year-old BSE 

H-type positive cow with a mutation (E211K) correlating to a known substitution 

frequently associated with familial-CJD (Nicholson, Brunelle et al. 2008; Richt and Hall 

2008). Lastly, the comparison of biochemical properties of PrPSc in BSE and vCJD linked 
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these two diseases, providing evidence for the abrogation of the species barrier between 

humans and domestic cattle through the ingestion of BSE contaminated food (Collinge 

1996).  

I-F-4: CWD Prions 

The characterization of prion strain diversity in cervids has recently begun to 

unravel. As with other species-specific prion diseases, CWD susceptibility is dependent 

on the genetic background of the host and the polymorphisms in PRNP (Green, Browning 

et al. 2008). Using transgenic mice expressing cervid PrPC, it was possible to successfully 

transmit CWD and characterize biological and biochemical properties of this infectious 

agent (Browning, Mason et al. 2004; LaFauci, Carp et al. 2006; Tamguney, Giles et al. 

2006; Meade-White, Race et al. 2007).   Recently, two novel CWD strains types, referred 

to as CWD1 and CWD2, were identified in natural elk field isolates in transgenic mice 

referred to as Tg(CerPrP)1536+/- mice, expressing deer PrPC (Angers, Kang et al. 2010). 

These studies demonstrated distinct strain differences based on incubation time and 

neuropathology that were composed of PrPSc with indistinguishable characteristics. In an 

attempt to understand these strain profile differences between deer and elk, it was 

hypothesized that the difference of a single amino acid in the primary structure of cervid 

PrP (deer PrPC-Q226 and elk PrPC-E226) dictates the selection and propagation stability 

of these CWD strains (Angers, Kang et al. 2010; Telling 2011). 

Concluding Summary 

 Undoubtedly, understanding the underlying mechanisms that dictate protein-

mediated conformational transfer of information in the context of protein misfolding 

diseases is important. The unique properties that allow prions to infect, propagate and 
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transfer their strain information to animal hosts without nucleic acids make them a 

tractable system in which to study general mechanisms of protein-misfolding diseases.  

Equally important to understand are the mechanisms that dictate the interactions, 

compatibility and species barriers in the selection process of a specific prion strain 

amongst a vast pool of conformationally distinct PrPSc molecules (Collinge 1999; 

Collinge and Clarke 2007). The mutability and diversity of prion strains among animals 

raises a greater concern for the zoonotic potential, as already seen with the BSE-vCJD 

connection in the mid 1990’s (Collinge, Sidle et al. 1996; Bruce, Will et al. 1997; 

Collinge 1999). The uses of transgenic mouse models, cell culture models and in vitro 

prion conversion assays have greatly enabled us to address these fundamental questions. 

 
 

II: Experimental Approaches To Analyze Prions 
 

II-A: Prnp0/0 Knockout Mice & PrPC Transgenic Mice 

Transgenic animal models have become very important tools for studying prion 

biology. These models help identify and understand the physiological function of PrPC. 

The cellular prion protein is highly conserved and has been identified in birds (Harris, 

Lele et al. 1993), reptiles (Simonic, Duga et al. 2000), amphibians (Strumbo, Ronchi et 

al. 2001) and fish (Gibbs and Bolis 1997), which would suggest significant biological 

importance. A commonly used method to elucidate the physiological function of a 

protein is to delete or mutate it, and to characterize the resulting phenotype(s) (Capecchi 

1989). Although high PrP homology and conservation among animals would suggest a 

crucial physiological function, Prnp0/0 knockout mice were not embryonic lethal and 

demonstrated normal development with no gross-phenotypic abnormalities (Büeler, 
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Fischer et al. 1992). More importantly, these knockout mice were completely resistant to 

scrapie prion infection (Büeler, Aguzzi et al. 1993; Sailer, Bueler et al. 1994). Subsequent 

phenotypic characterization of Prnp0/0 mice suggested that PrPC is functionally 

multifaceted. These functions include roles in circadian/sleep regulation (Tobler, Gaus et 

al. 1996; Tobler, Deboer et al. 1997), oxidative stress response and metal ion metabolism 

(Klamt, Dal-Pizzol et al. 2001; Wong, Liu et al. 2001; Brown, Nicholas et al. 2002; 

Singh, Kong et al. 2009), immune system signaling and phagocytosis (de Almeida, 

Chiarini et al. 2005; Ballerini, Gourdain et al. 2006), cell adhesion (Schmitt-Ulms, 

Legname et al. 2001; Malaga-Trillo, Solis et al. 2009), neuronal excitability and 

neuroprotection (Collinge, Whittington et al. 1994; Manson, Hope et al. 1995; Hoshino, 

Inoue et al. 2003; Gains, Roth et al. 2006), neurite outgrowth (Santuccione, Sytnyk et al. 

2005) and behavior (Coitinho, Roesler et al. 2003; Nico, de-Paris et al. 2005). An 

interesting study utilizing a Cre-lox system to postnatally delete PrPC in mice 

demonstrated reversal of neuropathology and improved motor and behavioral deficits 

post prion infection (Mallucci, Ratte et al. 2002; Mallucci, Dickinson et al. 2003). 

Neurological recovery and full restoration in the life span of these mice further confirm 

the importance PrPC function in vivo. 

The generation of the Prnp0/0 knockout mice facilitated the subsequent creation of 

other transgenic mouse models that express heterologous prion proteins from various 

species. These transgenic models enable scientists to address many of the unresolved 

prion biology questions, which include prion strain diversity, mechanisms of prion 

replication, species barriers and disease transmission (Scott, Foster et al. 1989; Hsiao, 

Scott et al. 1990; Telling, Scott et al. 1995; Weissmann, Fischer et al. 1998; Agrimi, 
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Nonno et al. 2008; Telling 2011). Specifically, PrPC transgenesis in mice enabled to 

experimentally address the species barrier of BSE and the zoonotic potential of CWD 

using mice expressing human PrPC(Collinge, Palmer et al. 1995; Bruce, Will et al. 1997; 

Kong, Zheng et al. 2008; Sandberg, Al-Doujaily et al. 2010). Moreover, transgenic mice 

expressing heterologous PRNP genes with polymorphic mutations have become 

functional models to assess spontaneously acquired prion diseases in humans (Telling, 

Haga et al. 1996; Mastrianni, Capellari et al. 2001; Nazor, Kuhn et al. 2005). Although 

transgenic mouse models are crucially important to understanding prion diseases and 

physiological functions of PrPC, the complexities associated with multicellular organisms 

make it difficult to address the aforementioned unknowns at the cellular level.     

II-B: Prion Cell Models 

 Cell culture models have helped characterize PrPC processing, intracellular 

trafficking, localization within cellular compartments and likely interacting molecules 

(Harris, Lesko et al. 1993; Shyng, Huber et al. 1993; Shyng, Heuser et al. 1994; Shyng, 

Lehmann et al. 1995; Pauly and Harris 1998; Taylor and Hooper 2007; Hooper 2011).  

Furthermore, cell models simplify the analysis of PrPSc conversion mechanisms by 

reducing the complexity of the system from animal tissue to monolayer cells (mouse 

brain contains ~ 7.5e7 neurons, 2.3e7 glia, 7.0e6 endothelial cells, 3~4e6 misc. cells (data 

derived from the mouse brain library database, http://www.mbl.org/)). Analysis of PrPSc 

replication in cell culture supports the identification of cellular factors that 

enhance/promote infectivity, enabling the use of these cells for anti-prion drug screening.  

The development of the Scrapie Cell Assay (SCA) for mouse-adapted prion 

strains was the “proof of principle” that demonstrates the utility of cell culture systems 
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for rapid prion titer calculation in vitro, albeit that particular assay did not include natural 

field prion isolates (Mahal, Demczyk et al. 2008). Recent improvements in this assay 

using a different cell model, validated titer calculations in CWD derived from field 

isolates, further supporting the multiple advantages cell culture models provide for prion 

analysis (Bian, Napier et al. 2010).  

Initial cell culture models for scrapie replication were developed and described in 

the 1970’s. These cells were produced by cultivating explants from scrapie-infected 

mouse brains which became known as SMB cells (Clarke and Haig 1970). Although 

these cells sustain chronic infectivity, the absence of uninfected controls was a drawback. 

The use of pentosan-sulfate to “cure” SMB cells solved this issue (Birkett, Hennion et al. 

2001). While extensive attempts have been made to infect various cell lines with prions, 

only a handful demonstrate the ability to replicate prions and accumulate PrPSc (Table 

1.2).  These cell lines break down into two key categories: their origin (neuronal/ non-

neuronal) and their ability to replicate heterologous (not of same genetic background) 

prion strains.  

II-B-1: Cell Culture Models Permissive to Experimentally Adapted Mouse Prions 

The mouse neuroblastoma (N2a) and the immortalized hypothalamic neuron 

(GT1) cell lines, both of neuronal origin, have been demonstrated to be highly permissive 

to mouse-adapted scrapie prion replication (Butler, Scott et al. 1988; Schätzl, Laszlo et al. 

1997). Sub-cloning N2a cells led to the identification of clonal populations that vary in 

susceptibility (Bosque and Prusiner 2000). Typical infection of N2a cells (ScN2a) with 

mouse-adapted PrPSc results in a fraction of cells that sustain chronic infectivity amongst 

the total population (<2%), which can be enriched through sub-cloning for susceptibility 
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(~90%) (Race, Fadness et al. 1987; Butler, Scott et al. 1988; Race, Caughey et al. 1988; 

Bosque and Prusiner 2000; Mahal, Baker et al. 2007). Furthermore, the sub-cloning 

process of a susceptible N2a cell (N2a-PK1) leads to clones that show preferential 

susceptibility towards particular prion strains (Mahal, Baker et al. 2007; Browning, Baker 

et al. 2011). Recent findings using the N2a cells to replicate heterologous CWD PrPSc, 

suggests that these cells maintain the complete repertoire of cellular factors necessary to 

maintain infectivity from various sources (Pulford, Reim et al. 2010).  

GT1 cells are highly differentiated gonadotropin-releasing hormone neurons 

which have also shown enhanced susceptibility towards replicating mouse-adapted prions 

(Table 1.2) (Schätzl, Laszlo et al. 1997). These cells express elevated amounts of PrPC 

and demonstrate enhanced sensitivity compared to N2a cells (Nishida, Harris et al. 2000). 

Furthermore, the GT1 cells do not require additional cloning for producing chronically 

infected prion cultures. The permissiveness of GT1 cells has made them a tractable tool 

for analyzing mouse-adapted prion strains in culture (Arima, Nishida et al. 2005) and 

have been reported to replicate mouse-adapted human derived CJD PrPSc (Nishida, 

Katamine et al. 2005).  

II-B-2: Cell Line Permissive to Heterologous Prions: RK13 Cells 

The propagation of natural sheep scrapie prion isolates was first demonstrated 

using transgenically modified epithelial rabbit kidney cells (RK13) expressing ovine PrPC 

(VRQ variant)(Vilette, Andreoletti et al. 2001). RK13 cells do not express endogenous 

rabbit PrPC, making them the cell culture equivalent of the Prnp0/0 knockout mouse. 

Subsequent work using these cells have shown them to be permissive towards both 

natural and mouse-adapted prion strains (Vilette, Andreoletti et al. 2001; Paquet, Sabuncu 
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et al. 2004; Paquet, Daude et al. 2007; Courageot, Daude et al. 2008; Bian, Napier et al. 

2010). RK13 cells co-expressing HIV-1 Gag and heterologous elk PrPC showed enhanced 

CWD prion replication (Leblanc, Alais et al. 2006; Bian, Napier et al. 2010). This 

enhancement was subsequently used for the cervid prion cell assay (CPCA) to titer CWD 

prions in vitro, a technique modeled after the previously described SCA for mouse-

adapted prions (Bian, Napier et al. 2010).  Additional data characterizing these cells is 

described in the subsequent chapters of this thesis. Despite all of these developments for 

replicating PrPSc in cell culture systems, cells capable of replicating naturally derived 

human prions remain to be identified. 

II-C: In Vitro PrPSc Conversion Assays 

 In vitro methods for detecting PrPSc are unconventional compared to other 

infectious agents. Standard polymerase chain reaction (PCR) assays cannot be used for 

the detection of prions because they lack nucleic acids (Prusiner 1982). Furthermore, 

standard immunological assays, such as the ELISA, cannot easily differentiate PrPSc from 

PrPC. Nonetheless, several in vitro assays have been developed for the detection of prions 

and studying the conversion PrPSc process. These conversion assays rely on methods that 

utilize PrPC as the substrate in a reaction to amplify PrPSc. The semi-quantitative analysis 

of PrPC to PrPSc conversion in vitro using these assays provides a tractable means to 

calculate conversion PrPSc kinetics. Moreover, these assays accelerate species barrier 

adaptation of PrPSc, which otherwise requires multiple transmissions in bioassays (Green, 

Castilla et al. 2008). Lastly, these conversion assays may enable the elucidation of 

cofactors that participate in the replication and conversion process.  
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Table 1.2 Cell culture models for prion replication in vitro. 
Cell Type Origin/cell type Species Prion Strain Reference 
N2a Neuroblastoma Mouse Chandler, 

Fukuoka-1, 
RML 

(Race, Fadness et al. 
1987; Butler, Scott et al. 
1988; Bosque and 
Prusiner 2000; Enari, 
Flechsig et al. 2001) 

N2a #58 Neuroblastoma Mouse Chandler, 
139A, 22L 

(Nishida, Harris et al. 
2000) 

C-1300 Neuroblastoma Mouse Chandler (Butler, Scott et al. 
1988) 

NIE-115 Neuroblastoma Mouse Chandler (Markovits, Mutel et al. 
1985) 

N2a-PK1 Neuroblastoma Mouse RML, 22L (Mahal, Baker et al. 
2007; Mahal, Browning 
et al. 2010; Browning, 
Baker et al. 2011) 

N2a-R33 Neuroblastoma Mouse 22L (Mahal, Baker et al. 
2007; Mahal, Browning 
et al. 2010; Browning, 
Baker et al. 2011) 

GT1 Hypothalamic 
cells 

Mouse Chandler, aSY-
CJD, bFU-
CJD, RML, 
22L, Fukuoka-
1 

(Rubenstein, Carp et al. 
1984; Schätzl, Laszlo et 
al. 1997; Milhavet, 
McMahon et al. 2000; 
Nishida, Harris et al. 
2000; Arjona, Simarro 
et al. 2004; Arima, 
Nishida et al. 2005; 
Nishida, Katamine et al. 
2005) 

SMB Scrapie Mouse 
Brain cells 

Mouse 139A, 
Chandler, 22F, 
79A 

(Clarke and Haig 1970; 
Birkett, Hennion et al. 
2001; Kanu, Imokawa et 
al. 2002) 

CAD5 CNS 
catecholaminergic 
cell line 

Mouse RML, 22L, 
ME7, 301C 

(Mahal, Baker et al. 
2007; Mahal, Browning 
et al. 2010; Browning, 
Baker et al. 2011) 

PC12 Pheochromocyto
ma 

Mouse 139A (Rubenstein, Carp et al. 
1984) 

SN56 Septal neuronal 
cells 

Mouse Chandler, 
ME7, 22L 

(Baron, Magalhaes et al. 
2006) 

NSC Neuronal stem 
cells 

Mouse RML, 22L (Giri, Young et al. 2006; 
Milhavet, Casanova et 
al. 2006) 
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MSC80 Schwann like 
cells 

Mouse Chandler (Follet, Lemaire-Vieille 
et al. 2002) 

HpL3-4 Hippocampal 
cells 

Mouse 22L (Maas, Geissen et al. 
2007) 

NIH/3T3, 
L929 

Fibroblasts Mouse 22L, ME7, 
RML 

(Vorberg, Raines et al. 
2004) 

MG20 Microglial Mouse Chandler, 
mouse BSE, 
ME7 

(Iwamaru, Takenouchi 
et al. 2007) 

C2C12 Myoblasts Mouse 22L (Dlakic, Grigg et al. 
2007) 

HaB Brain cells Hamste
r 

Hamster prions (Taraboulos, Serban et 
al. 1990) 

MovS Schwann like 
from Dorsal Root 
Ganglia (DRG) 

Mouse Natural sheep 
scrapie 

(Archer, Bachelin et al. 
2004) 

MDB Fibroblast Deer CWD (Raymond, Olsen et al. 
2006) 

CGNov Neuronal primary 
cultures 

Mouse Natural sheep 
scrapie 

(Cronier, Laude et al. 
2004) 

moRK13 Epithelial rabbit 
kidney cells 
(RK13) 

Rabbit Chandler, 
Fukuoka-1, 
22L, M100 

(Vella, Sharples et al. 
2007; Courageot, Daude 
et al. 2008) 

voRK13 Epithelial rabbit 
kidney cells 
(RK13) 

Rabbit Vole adapted 
BSE 

(Courageot, Daude et al. 
2008) 

ovRK13 Epithelial rabbit 
kidney cells 
(RK13) 

Rabbit Natural sheep 
scrapie 

(Vilette, Andreoletti et 
al. 2001) 

RKE21+ Epithelial rabbit 
kidney cells 
(RK13) 

Rabbit Elk isolate 
CWD 

(Bian, Napier et al. 
2010) 

RKD Epithelial rabbit 
kidney cells 
(RK13) 

Rabbit Deer isolate 
CWD 

Unpublished 

RK13-
SHa-PrPC 

Epithelial rabbit 
kidney cells 
(RK13) 

Rabbit Syrian golden 
hamster 
adapted Hyper 
TME 

Unpublished 

aSY, mouse-adapted sporadic CJD (sCJD) 
bFU, mouse-adapted Fukuoka-1 (Familial GSS) 
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The first assay developed and described to convert PrPC to PrPSc was the Cell-

Free Conversion Assay (CFCA) (Kocisko, Come et al. 1994). This assay-utilized brain 

derived PrPSc as seed and radioactively labeled PrPC, which, under the conditions 

described in the paper, created partially protease-resistant PrP molecules. The lack of 

exogenous energy sources to drive this assay is a key feature that makes it unique from 

all of the subsequently described assays. The assay was shown to be specific in 

recapitulating prion transmission barriers and strain properties (Bessen, Kocisko et al. 

1995; Kocisko, Priola et al. 1995). Yet the primary limitation of the assay is detection and 

sensitivity due to the inherent difficulty of distinguishing newly generated PrPSc from 

initially seeded material (Hill, Antoniou et al. 1999). Although recent data has been 

described using this assay to identify disease specific low-density subcellular fractions 

composed of cell membrane and cytoplasmic proteins that enhance prion protein 

misfolding (Graham, Agarwal et al. 2010).   

  Protein misfolding cyclic amplification (PMCA) was the next in vitro conversion 

assay developed to amplify PrPSc (Saborio, Permanne et al. 2001). This reaction utilizes 

crude brain extract as PrPC substrate in combination with PrPSc seed molecules, which are 

amplified through multiple cycles of sonication. Performing sequential rounds of PMCA 

enhances the sensitivity of the assay (Castilla, Saa et al. 2005), facilitating the detection 

of PrPSc from various biological and environmental sources (Castilla, Saa et al. 2006; 

Nichols, Pulford et al. 2009). This conversion assay has successfully been adapted to 

amplifying PrPSc from various animal species (Soto, Anderes et al. 2005; Kurt, Perrott et 

al. 2007; Murayama, Yoshioka et al. 2007; Green, Castilla et al. 2008; Thorne and Terry 

2008).  
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PMCA and other in vitro conversion assays, provide an approach to validate the 

prion hypothesis. Utilizing PMCA, several groups have provided evidence that 

exogenous cofactors participate in prion conversion (Geoghegan, Valdes et al. 2007; 

Kim, Cali et al. 2010; Wang, Wang et al. 2010). PMCA was used to identify the three 

minimal components required to generate infectious recombinant prions, which were 

recombinant PrP (rPrP), POPG (1-palmitoyl-2-oleoylphosphatidylglycerol) and RNA 

(Wang, Wang et al. 2010). Concurrently, others reported the production of infectious 

prions using prion-seeded bacterially-derived recombinant protein misfolding cyclical 

amplification (rPMCA) in the absence of any co-factors (Kim, Cali et al. 2010). They go 

on to support this claim through bioassay experiments using hamsters, showing that at 

primary passage the rPMCA-produced prions display variable attack rates but stabilize 

upon second passage. Finally, PMCA was used to systematically analyze potential 

cofactors involved in prion conversion within various tissue sources and the effects of 

nucleic acid depletion in the conversion process (Abid, Morales et al. 2010). This study 

provided evidence that cellular cofactors for prion conversion that localize to the lipid 

raft fractions and cytoplasmic membranes are present within all major mammalian 

organs, but are absent in lower organisms such as yeast, bacteria and flies (Abid, Morales 

et al. 2010). Additionally, treatments to deplete major classes of chemical molecules did 

not alter conversion activity, which suggests that cellular cofactors that enable prion 

conversion are numerous and diverse (Abid, Morales et al. 2010). There are several 

caveats that must be taken into account when using the PMCA assay. This is an in vitro 

assay, which cannot fully recapitulate the phenomenon of PrPC-PrPSc conformational 

switching that is associated with living organisms. The specific limitations of the assay 
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include the use of sonication to break aggregates of PrPSc, which does not recapitulate the 

cellular conversion mechanism. Moreover, this assay utilizes detergents, and cell extracts 

which are removed from the environment in which PrPC is converted.  

Finally, the Quaking-Induced Conversion Reaction (QuIC) and the real-time 

Quaking-Induced Conversion Reaction (RT-QuIC) are additional in vitro conversion 

assays utilized for identifying cellular cofactors that facilitate PrPSc conversion. This 

assay was first described in 2008, and differs from other conversion assays by methods 

used to amplify PrPSc (Atarashi, Wilham et al. 2008). In QuIC, periodic shaking replaces 

sonication. Like PMCA, QuIC can successfully discriminate between infected and 

uninfected biological samples (Atarashi, Wilham et al. 2008; Orru, Wilham et al. 2009; 

Bessen, Shearin et al. 2010). Additionally, the QuIC was improved with supplementation 

of thioflavin T (ThT) and the use of a temperature-controlled fluorescence plate reader, to 

continuously monitor of newly produced PrPSc in real time (Wilham, Orru et al. 2010). 

Due to its sensitivity, high throughput, real-time quantitation and relatively low costs, the 

QuIC assay is highly advantages for studying prion conversion in vitro.  

In summary, the approaches used for examining PrP biology have significantly 

improved our understanding the mechanisms that govern prion replication and disease. 

More generally, prion research models aid in the understanding of other conformational 

diseases such as AD and PD. The transmissibility of prions in transgenic mice expressing 

heterologous PrPC on a Prnp0/0 background recapitulates prion disease that can be 

assessed on multiple levels, this is generally not the case for AD or PD animal models. 

Moreover, transgenic animal models enable characterization of natural prion isolates, and 

model the risks associated with their transmission to other species, including humans. In 
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vivo PrPSc conversion can also be analyzed in vitro using cell culture models and cell-free 

conversion assays (Castilla, Saa et al. 2006; Green, Castilla et al. 2008; Bian, Napier et 

al. 2010; Wang, Wang et al. 2010; Goold, Rabbanian et al. 2011; Nunziante, Ackermann 

et al. 2011). Cell culture models have been useful for understanding the fundamental 

cellular biology of PrPC and for identifying cellular compartments crucial for PrPSc 

conversion (Shyng, Heuser et al. 1994; Vey, Pilkuhn et al. 1996; Pauly and Harris 1998; 

Goold, Rabbanian et al. 2011), while in vitro conversion assays provide a facile system 

for detecting, converting and generating novel PrPSc molecules (Wong, Xiong et al. 2001; 

Castilla, Saa et al. 2005; Deleault, Geoghegan et al. 2005; Castilla, Saa et al. 2006; Kurt, 

Perrott et al. 2007; Green, Castilla et al. 2008; Mays, Yeom et al. 2011).  

 
III: PrP Interacting Molecules 

The specific cellular mechanisms that support and sustain prion replication remain 

undefined. The inherent difficulty of generating infectious prions in vitro without 

exogenously added cellular components strongly argues towards the requirement of 

endogenous host factors (Supattapone, Deleault et al. 2008; Wang, Wang et al. 2010; 

Piro, Harris et al. 2011). Cellular host factors have been shown to be essential 

components for other invading pathogens, which act to enhance factors such as 

infectivity, replication and/or protection. For example, the HIV retrovirus requires the 

CD4 cell surface receptor parallel with other co-receptors for efficient entry into the host 

cell (Doms and Moore 2000), Mycobacterium tuberculosis utilizes lipid raft micro 

domains to gain entry into both phagocytic and non-phagocytic cells (Munoz, Rivas-

Santiago et al. 2009), and bacteria utilize several different adhesion molecules that 

recognize the host cell surface for internalization (Pizarro-Cerda and Cossart 2006). 
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Although the infectious entities described above, vary in composition and life cycle, they 

follow the central dogma of molecular biology (Fig. 1.3A). To explain and characterize 

the infectious protein only (PrPC-PrPSc) replication process in the cell, several important 

concepts were proposed.  

Initial experiments were designed to characterize the normal biogenesis and life 

cycle of PrPC, and to identify interacting proteins. Evidence that PrPC endocytosis was 

mediated through clathrin-coated pit internalization indicated that other proteins are 

involved (Shyng, Heuser et al. 1994). PrPC protein is predominantly GPI-anchored at the 

cell surface (Fig 1.1B) lacking a cytoplasmic domain, which suggests that active 

internalization via clathrin-coated pit endocytic mechanism could only occur if there was 

direct interaction with an extracellular domain of a proximal transmembrane protein 

(Shyng, Heuser et al. 1994).  

Other experimental evidence using chimeric-PrP molecules in vivo suggested that 

a species-specific cellular chaperone termed “Protein X” was required to for prion 

replication (Telling, Scott et al. 1995). Nuclear magnetic resonance (NMR)-derived 

structural data demonstrated variation in the putative “Protein X” binding site, implying 

that structural constraints of PrPC are also important for efficient prion conversion 

(Gossert, Bonjour et al. 2005). Additional approaches have been utilized to identify 

cellular proteins that facilitate PrPSc replication. This ongoing exhaustive search for 

interacting molecules has already helped identify both extracellular and intracellular 

proteins/molecules alongside metal ions (Brown 1999), nucleic acids (DNA/RNA) 

(Weiss, Proske et al. 1997) and glycosaminoglycans (GAG) (Priola, Caughey et al. 1994) 

that interact with PrP.  
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III-A: Protein X 

Transmission studies in transgenic mice provided evidence for the involvement of 

a third molecule termed protein X in the replication process. Initial experiments in cell 

culture to identify PrPC’s structural domains contribution towards PrPSc conversion 

provided indications that the first 66aa of the N-terminus and the GPI-anchor sequence of 

the C-terminus were unnecessary (Rogers, Yehiely et al. 1993). Additionally, prion 

infectivity data using transgenic mice supported the protein X model.  The prion species 

barrier data using transgenic mice expressing human PrPC on both wild type FVB and 

Prnp0/0 mice, indicated that endogenously expressed mouse PrPC in mice co-expressing 

human PrPC (Tg(HuPrP)FVB) inhibited the replication of human PrPSc (Fig. 1.4A) 

(Telling, Scott et al. 1995). While, expression of a human/mouse chimera PrPC (MHu2M, 

96-167aa human sequence) in transgenic mice exhibited efficient replication of human 

but not mouse PrPSc in Tg(MHu2M)Prnp0/0 although both PrPSc replicated in 

Tg(MHu2M)FVB wt mice (Fig. 1.4B) (Telling, Scott et al. 1994; Telling, Scott et al. 

1995).  These data suggested that two domains in the PrPC sequence were required for 

prion replication, including the central domain of PrPC (96aa-167aa) for PrPC-PrPSc direct 

interaction, and the C-terminal domain which binds the predicted protein X to 

stabilize/chaperone the replicative process (Fig. 1.4C) (Telling, Scott et al. 1994; Telling, 

Scott et al. 1995). Protein X was suggested to have enhanced affinity for endogenous 

mouse PrPC compared to overexpressed heterologous PrPC.  

Following the prediction that protein X binds the C-terminus of PrPC, mutations 

were introduced at positions 214 and 218 of the human/mouse chimera PrP, to assess 

their role in PrPSc formation (Kaneko, Zulianello et al. 1997). These two specific resides 
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were predicted to protrude from α-helix 3 and form a discontinuous epitope with residues 

167 and 171, a region suggested to be crucial for PrPC-PrPSc replication (Donne, Viles et 

al. 1997; James, Liu et al. 1997; Kaneko, Zulianello et al. 1997). Using the ScN2a cell 

culture model to assess PrPSc replication (Table 1.2), it was demonstrated that these 

mutations inhibited PrPSc formation, suggesting that these amino acid form an epitope for 

protein X and facilitate PrPSc conversion (Kaneko, Zulianello et al. 1997). Moreover, 

NMR analysis of residues connecting β-sheet 2 with α-helix 2 (166-175aa, Fig. 1.1A) 

demonstrates variation in structural definition amongst species within that region ranging 

from highly structured to unstructured, which coincidentally includes the residues 

predicted to interact with C-terminal positions 214 and 218 (Gossert, Bonjour et al. 

2005).  Although it is hypothesized that PrPC regions encompassing residues 166-175aa, 

215aa and 218aa are crucial for the formation of the disease related epitope protein X, the 

identification of protein X has not been possible (Telling, Scott et al. 1995; Riek, 

Hornemann et al. 1996; James, Liu et al. 1997; Kaneko, Zulianello et al. 1997; Gossert, 

Bonjour et al. 2005).  
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Figure 1.4 Schematic representation of the protein X hypothesis. A. Over expression 

of human PrPC in an FVB wt mouse referred to as Tg(HuPrP)FVB does not facilitate the 

replication and conversion of human PrPSc, while expression of human PrPC on a Prnp0/0 

background results in prion disease (not shown in figure).  These findings indicate that 

endogenously expressed mouse PrPC interferes in the replication of human prions. B. 

Inoculation of human prions into mice expressing mouse/human chimeric PrPC protein in 

a wt FVB mouse, referred to as Tg(MHu2M)FVB produces PrPSc and recapitulates prion 

disease. The chimeric PrPC was designed by replacing the central region of the mouse 

PrP protein with human sequence 96-167 aa, encompassing the hydrophobic core, β-sheet 

1, α-helix 1 and β-sheet 2 (see Figure 1.1A for schematic details). C. The replication of 

human prions in Tg(MHu2M)FVB mice indicates that a third molecule, termed protein 

X, facilitates replication through a chaperoning/stabilizing mechanism. Hence, two 

domains are deemed crucial for PrPSc replication; the central domain, which dictates the 

compatibility between the infecting PrPSc and the endogenously expressed PrPC; the C-

terminal domain (α-helices 2 and 3) dictate the interactions with protein X. (Telling, Scott 

et al. 1994; Telling, Scott et al. 1995) 
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Figure 1.4 Schematic representation of the protein X hypothesis 
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III-B: PrPC Binding Partners 

 The surface of the plasma membrane and endosomal compartment trafficking 

pathways are implicated as the primary locations for conversion of PrPC-PrPSc 

(DeArmond, Qiu et al. 1996; Marijanovic, Caputo et al. 2009; Sarnataro, Caputo et al. 

2009; Goold, Rabbanian et al. 2011; Nunziante, Ackermann et al. 2011). Many of the 

proteins that interact with PrPC are located in these cellular compartments. Table 1.3 

represents the majority of proteins that have been determined to interact with PrPC, while 

figures 1.5 and 1.6 schematically depict these interactions. The proteins described thus 

far have been experimentally validated as binding partners through multiple biophysical 

and immune-based assays. Recent studies using large-scale proteomic analysis identified 

additional PrPC interacting proteins but are not described in this section because 

validation to ascertain relevance in prion biology is lacking (Satoh, Obayashi et al. 2009; 

Zafar, von Ahsen et al. 2011). Experimentally validated evidence suggests that PrPSc 

replication includes cell-surface receptors, along with other chaperone proteins which are 

present at the surface, to support the stabilization and internalization of the PrPC-PrPSc 

complex, leading towards intracellular accumulation of infectious PrPSc with the aid of 

intracellular proteins (Table 1.3).  

III-B-1 Extracellular Interactors 

The extracellular/plasma membrane molecules identified to associate with PrP 

include receptor proteins, adhesion proteoglycans with glycosaminoglycan (GAG) 

moieties, chaperone proteins, zymogen proteolytic enzymes, metal ions and other 

aggregating peptides. These are listed in Table 1.3 and schematically presented in Figure 

1.5. These associations implicate PrP’s involvement in internalization and endocytic 
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trafficking, intracellular signal cascade activation, survival, and ion homoeostasis. 

Evidence for these functions include cell explant data demonstrating PrPC 

neuroprotective signaling potential through a cAMP/PKA-dependent pathway (Chiarini, 

Freitas et al. 2002) and conversely activating signaling cascades that induce cell death in 

vivo (Solforosi, Criado et al. 2004). These, and other observations subsequently 

described, suggests that PrP is a multifaceted protein involved in many cellular processes.  

III-B-2: PrP Internalization and Signaling From The Cell Surface 

As mentioned in previous sections, the predominant GPI-anchorage of PrP to lipid 

rafts of the PM and subsequent endocytosis using either the clathrin-coated pit- (Shyng, 

Heuser et al. 1994) and/or caveolin-mediated mechanisms (Vey, Pilkuhn et al. 1996) 

strongly advocates direct interaction with a surface receptor. Yeast two-hybrid (Y2H) 

studies revealed strong interaction between the 37-kDA laminin receptor precursor (LRP) 

and PrPC, which were subsequently confirmed in higher order eukaryotic cells. These 

studies suggested that LRP was act as the receptor and/or co-receptor for PrPC (Rieger, 

Edenhofer et al. 1997). Additional studies confirmed that both LRP and the mature 37-

kDa/67-kDa laminin receptor (LR) interact with PrPC and PrPSc at the cell surface, and in 

endosomal compartments during the internalization process (Table 1.3) (Fig. 1.5A) 

(Shmakov, Bode et al. 2000; Gauczynski, Peyrin et al. 2001; Baloui, von Boxberg et al. 

2004; Nikles, Vana et al. 2008; Kolodziejczak, Da Costa Dias et al. 2010). Furthermore, 

the use of anti-LRP/LR specific antibodies, single-chain fragment antibodies and 

polysulfated glycans inhibited prion replication in vivo (Gauczynski, Nikles et al. 2006; 

Zuber, Knackmuss et al. 2008; Zuber, Mitteregger et al. 2008; Vana, Zuber et al. 2009). 
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Collectively, these findings indicate that interactions between PrP and LRP/LR are 

functionally relevant.  

Several additional studies have revealed other transmembrane receptors proteins 

that interact with PrP, which possibly induce endosomal internalization mechanisms 

and/or initiate intracellular signaling cascades. Dystroglycan, is a transmembrane protein 

associated with the dystrophin-glycoprotein complex (DGC) that exhibited strong 

binding interaction with PrP (Keshet, Bar-Peled et al. 2000). The DGC modulates the 

activity of nitric oxide synthase (nNOS), which subsequently synthesizes nitric-oxide 

(Bredt and Snyder 1994), a neurotransmitter with crucial functions in muscle and CNS 

(Kobzik, Reid et al. 1994; Keshet, Ovadia et al. 1999). Although the exact function for 

PrP in the DGC has not been established, a protective role associated with presynaptic 

neuroprotection has been hypothesized (Keshet, Bar-Peled et al. 2000). Conversely, the 

p75 neurotrophin receptor’s affinity towards recombinant PrP peptides caused 

internalization, which subsequently induced cytotoxic effects (Fig. 1.5A, described in the 

next section) (Della-Bianca, Rossi et al. 2001). Recent experimental findings have 

revealed binding association of amyloid-β to PrPC, designating PrPC as a receptor that 

mediates cytotoxic signaling (Fig. 1.5A) (Lauren, Gimbel et al. 2009; Resenberger, 

Winklhofer et al. 2011). In addition to transmembrane receptors, internalization of PrPC 

has also been demonstrated using Cu2+ and other positively charged metal ions 

(Hornshaw, McDermott et al. 1995; Pauly and Harris 1998; Stockel, Safar et al. 1998; 

Wadsworth, Hill et al. 1999; Brazier, Davies et al. 2008; Li, Dong et al. 2009; Liu, Jiang 

et al. 2011; Stellato, Spevacek et al. 2011).  

III-B-3: Outgrowth/Adhesion and Neuroprotection Functions 
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In situ cross-linking experiments using N2a cells led to the identification of high 

molecular mass (HMM) protein complexes (200-225 kDa), which included the presence 

PrPC (Schmitt-Ulms, Legname et al. 2001). Proteomic analyses of these HMM protein 

complexes revealed the presence of neuronal adhesion molecules (N-CAM’s). 

Subsequent binding studies using N-CAM peptide-library indicated that PrPC’s N-

terminus and α-helix bound to the membrane attachment site of N-CAM (Schmitt-Ulms, 

Legname et al. 2001). Comparable levels of PrP/N-CAM complexes were identified in 

both N2a and ScN2a cells (Schmitt-Ulms, Legname et al. 2001). To ascertain the 

functional role of this PrPC-N-CAM interaction, N-CAM-deficient mice were challenged 

with scrapie prions, which resulted in prion disease with incubation time of ~122 days 

(Schmitt-Ulms, Legname et al. 2001). Elimination of N-CAM molecules in transgenic 

mice did not alter prion disease incubation time compared to control mice. Thus, the 

interaction between theses two molecules indicates a physiological function not 

associated with PrPSc conversion (Schmitt-Ulms, Legname et al. 2001). Additional 

evidence for PrPC’s interactions with N-CAM’s has implicated a physiological role in 

neurite outgrowth and adhesion (Santuccione, Sytnyk et al. 2005). These findings provide 

direct evidence of PrP interaction with N-CAM at the neuronal surface, activating N-

CAM mediated signaling through Fyn kinase activation (Santuccione, Sytnyk et al. 

2005). The disruption of this interaction using neurons deficient in N-CAM’s or PrPC, 

and/or use of anti-PrP antibodies, arrested neurite outgrowth (Santuccione, Sytnyk et al. 

2005). Additional experimental evidence has associated the extracellular matrix protein, 

Vitronectin, as another protein capable of binding PrP to induce axonal growth and 

neurite development (Hajj, Lopes et al. 2007; Hajj, Santos et al. 2009). Collectively, 
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these data strongly support a physiological role for PrP in neuronal outgrowth/adhesion 

through cooperative interaction with the N-CAM signaling receptors and extracellular 

matrix proteins (Fig. 1.5B).   

PrPC’s role in neuroprotection is mediated through the interaction with several 

proteins at the cell surface and other subcellular locations. The extracellular matrix 

protein, laminin (LN), triggers cellular responses through direct interactions with cell-

surface receptors such as integrins, to promote neurite outgrowth, regeneration and 

neuroprotection (Tomaselli and Reichardt 1988; Tashiro, Sephel et al. 1989).  To address 

PrPC’s role in neuronal development and neuroprotection, binding assays and cell culture 

experiments were utilized to identify LN’s interaction with PrPC (Graner, Mercadante et 

al. 2000). These studies demonstrated that PrPC binds LN with high affinity with epitope 

specificity towards the C-terminus of the γ-1 chain (Graner, Mercadante et al. 2000). 

Interestingly, several studies have specified the role of the γ-1 chain in neurite outgrowth 

in neocortical and hippocampal neurons (Liesi, Narvanen et al. 1989; Hager, Pawelzik et 

al. 1998). PC12 cells (Table 1.2) and explant rat-neuronal cell culture models provide 

additional data supporting the direct interaction between PrPC and LN to promote 

neuritogenesis, demonstrating direct reduction of growth in the cells upon addition of 

anti-PrP antibodies (Graner, Mercadante et al. 2000). Although these experimental 

observations support PrPC’s role as a receptor for LN to promote neuritogenesis, the 

signaling cascades governing these interactions have not been identified. It is important 

to remember that the ablation of the Prnp gene in mice does not inhibit CNS 

development (Bueler, Fischer et al. 1992), suggesting signal pathway redundancy that 

regulates these important functions. Interestingly, LN has also been shown to bind 
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amyloid-precursor protein (APP) and amyloid-β (Narindrasorasak, Lowery et al. 1992), 

which very recently was associated to directly interact with PrPC (Fig. 1.5B) (Lauren, 

Gimbel et al. 2009; Kessels, Nguyen et al. 2010; Resenberger, Winklhofer et al. 2011).  

PrPC has been reported to interact with the stress-inducible protein 1 (STI1) at the 

PM to induce neuroprotective signaling. Cell-surface binding studies, co-IP and binding 

assays confirmed these interactions, which showed that PrPC (epitope mapped residues 

113-128aa) bound STI1 with high affinity (Kd of 10e-7M) to a mapped region designated 

for neuroprotective signaling (Fig. 1.5B) (Zanata, Lopes et al. 2002). These interactions 

were confirmed using retinal explant cultures from neonatal rats and, while hypothesis 

driven interactions of PrPC, LN and ST1 to form a macromolecular complex in the 

extracellular space/cell-surface to provide cytoprotective functions were suggested but 

the exact mechanisms of the interactions were not defined (Zanata, Lopes et al. 2002). 
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Figure 1.5 Molecules associated with PrP interaction in the extracellular/plasma 

membrane space. Extracellular and cell surface molecules that demonstrate physical 

interaction with PrP are predicted to modulate functions associated with PrPC and/or 

PrPSc conversion process. These associated functions include (A) Internalization of PrP 

into the endocytic trafficking pathways (Clathrin coated pit- and/or Caveolin mediated 

mechanisms) and/or direct association with transmembrane proteins to preform receptor-

type functions (Signaling), (B) Outgrowth/adhesion and/or neuroprotection of neurons, 

and (C) Protein molecules associated with the conversion process of PrPC to PrPSc. The 

details of specific interactions between these molecules and PrP (PrPC, PrPSc), which 

include mode of interaction/binding, location specificity and references describing the 

findings, are summarized in Table 1.3. The question marks (?) in the schematic represent 

an unknown interaction/function. The asterisk (*) before Amyloid-β represents its direct 

binding with PrPC with undefined mechanisms and/or functions associated with the 

interaction. Abbreviations: Neuronal cell-adhesion molecule (N-CAM), Amyloid 

precursor like protein 1 (APLP1), Stress-induced Phosphoprotein (STI1), β-secretase 1 

(BACE1), Laminin (LN), Cellular prion protein (PrPC), Scrapie prion (PrPSc), Iron (Fe), 

Copper (Cu), Zinc (Zn), Manganese (Mn).  
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Figure 1.5 Molecules associated with PrP interaction in the extracellular/plasma 
membrane space.  
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III-B-4: PrPC-PrPSc Conversion At The Cell Surface 
 

The cell surface is hypothesized to be the predominant location for PrPSc 

conversion (Goold, Rabbanian et al. 2011). A recently identified cell surface protein 

correlated with prion conversion is Glypican-1. Glypican-1 is a PM associated, GPI-

anchored, heparin sulfate containing proteoglycan co-localized with PrPC to lipid rafts 

(Fig. 1.5C) (Cheng, Lindqvist et al. 2006). Also, the addition of Cu2+ ions stimulates 

endocytosis of PrPC, which co-internalizes Glypican-1 from the cell surface (Cheng, 

Lindqvist et al. 2006). In cell culture models, heparin was shown to displace PrPC from 

lipid rafts, directly inducing endocytosis, suggesting that heparin acts as a direct 

competitor with endogenous heparin sulphate proteoglycans (HSPG) for PrPC binding 

(Taylor, Whitehouse et al. 2009). Likewise, the depletion of glypican-1 displaced PrPC 

from lipid rafts triggering internalization into endosomal compartments. Additional co-

localization and co-immuno precipitation (co-IP) assays confirmed the interaction 

between glypican-1 and PrPC (Taylor, Whitehouse et al. 2009).  The relevance of these 

interactions to PrPSc conversion was confirmed in ScN2a cells (Table 1.2), where down 

regulation of glypican-1 showed significant reduction in PrPSc formation (Taylor, 

Whitehouse et al. 2009). Interestingly, previously published data using heparin and 

glycosaminoglycans (GAG) have exhibited an inhibitory effect on prion conversion in 

both cell culture and animal models (Kimberlin and Walker 1986; Caughey and 

Raymond 1993; Beringue, Adjou et al. 2000; Adjou, Simoneau et al. 2003). In contrast 

GAGs promote the conversion process in cell-free systems (Wong, Xiong et al. 2001; 

Deleault, Geoghegan et al. 2005).  
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GAG’s are sulfated polysaccharides that maintain a net negative charge. These 

molecules were shown to be present in amyloid plaques in CJD, GSS, and Kuru (Snow, 

Kisilevsky et al. 1989). To clarify the relationship of GAG’s with amyloid aggregates, 

functional studies were conducted to assess their role in PrPSc conversion. Like other 

HSPG’s found on the cell surface, Glypican-1 is competed out by the addition of 

exogenous GAG’s (Taylor, Whitehouse et al. 2009). Inhibition of PrPSc conversion 

occurs through an obstructive mechanism, which directly inhibits contact of cellular 

HSPG’s with PrPC. It suggests that these molecules function as direct scaffolds to 

promote interaction between PrPC and PrPSc to enhance conversion (Hooper 2011). 

Finally, siRNA depletion of glypican-1 in ScN2a cells reduced but did not completely 

inhibit PrPSc conversion (Taylor, Whitehouse et al. 2009), which suggests that PrPSc 

conversion is dependent on multiple cellular cofactors (Fig 1.5C). Although the exact 

mechanisms that govern these interactions require more experimental characterization, 

the effect of GAG’s on PrPSc conversion provides additional insight towards the global 

complexity PrPSc replication process.   

Another cellular factor exhibiting association with PrPSc conversion is 

plasminogen (PLG). Plasminogen (PLG) is a zymogen precursor to plasmin, a serine 

protease that functions to dissolve fibrin blood clots (Forsgren, Raden et al. 1987). The 

activation and conversion of PLG is mediated by the tissue plasminogen activator 

enzyme (tPA) and/or urokinase plasminogen activator (uPA) (Silverstein, Leung et al. 

1984). Interaction studies analyzing potential binding partners of PrPC have identified 

plasminogen as one of the key proteins that interacts with both PrPC and PrPSc (Fig. 1.5C) 

(Fischer, Roeckl et al. 2000; Maissen, Roeckl et al. 2001; Ryou, Prusiner et al. 2003). 
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Screening human and mouse serum for prion binding factors showed that plasminogen 

was capable of binding disease-associated PrP but not PrPC, which suggested that the 

interaction was conformation specific (Fischer, Roeckl et al. 2000). PrP devoid of bound 

copper was shown to interact with both tPA and PLG, which caused PLG activation in a 

copper-dependent manner (Ellis, Daniels et al. 2002). This PrP mediated activation of 

PLG together with copper levels was suggested to be an indicators for the kinetics of 

PrPSc conversion, therefore linking PLG as a cellular cofactor (Ellis, Daniels et al. 2002). 

In studies designed for identifying “protein X”, phage display cDNA expression library 

methods were used to establish PrPC interaction with kringle domains (Ryou, Prusiner et 

al. 2003). These kringle domains consist of ~80aa that have three intra-disulfide bonds 

between cysteine residues (Castellino and McCance 1997). PLG has five of these kringle 

domains originating in the N-terminus (Castellino and McCance 1997). Thus, an 

unbiased forward genetic screen confirmed interaction of PrPC with PLG (Ryou, Prusiner 

et al. 2003).  Recent data using PMCA supported the role of PLG in a concentration-

dependent manner to accelerate the PrPSc conversion process (Mays, Yeom et al. 2011). 

However, plasminogen-deficient (Plg-/-) mice infected with scrapie revealed no major 

effect on the survival of these infected mice (Salmona, Capobianco et al. 2005). 

Collectively, the biochemical data indicates that plasminogen is an important cofactor for 

PrPSc conversion. However, its exact role in prion disease remains to be characterized.  

 In summary, the interaction of PrPC with protein molecules at the cell surface is 

multidimensional, (Fig. 1.5) suggesting that PrPC has several important physiological 

functions that remain to be fully validated. These functions may include the activation of 
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intracellular signaling cascades, which promote neuritogenesis, neuroprotection and/or 

other intracellular roles that have not yet been defined.  

III-C: Intracellular Interactors 

 PrPC intracellular trafficking and continuous recycling to- and -from the PM (Fig. 

1.2) suggests that PrPC-PrPSc conversion is not limited to the cell surface. The specific 

intracellular compartments where this conversion occurs have not been specifically 

identified but experimental evidence supports the importance for endosomal, lysosomal 

and exosomal compartments in this process (Taraboulos, Serban et al. 1990; Borchelt, 

Taraboulos et al. 1992; Taraboulos, Raeber et al. 1992; Gilch, Winklhofer et al. 2001; 

Aguib, Heiseke et al. 2009; Nunziante, Ackermann et al. 2011). PrPC has been shown to 

interact with proteins that mediate cell survival pathways (Kurschner and Morgan 1995), 

internalization and vesicle trafficking (Borchelt, Taraboulos et al. 1992; Taraboulos, 

Raeber et al. 1992), aggregation/chaperone/protein folding responses (Fernandez-Funez, 

Casas-Tinto et al. 2009; Nunziante, Ackermann et al. 2011) and other proteins which 

have not been specified with a PrP-interacting function (Strom, Diecke et al. 2006) . A 

comprehensive list of the proteins shown to interact with PrPC within intracellular 

compartments is presented in Table 1.3 and schematically depicted in Figure 1.6.   
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Table 1.3 Prion protein interacting molecules. All data presented is formulated and 
adapted from previously published reviews (Lee, Linden et al. 2003; Fasano, Campana et 
al. 2006; Nieznanski 2010) 
PrPC Interacting 
Molecules 

PrP 
Type/Technique 

Cellular 
Location 

Function 

Extracellular/Cell Surface/Plasma Membrane 

Plasminogen 
(PLG)(Fischer, Roeckl et al. 
2000; Maissen, Roeckl et al. 
2001; Ellis, Daniels et al. 
2002; Mays and Ryou 2010) 

PrPC-PrPSc/Y2H, 
Cells, PMCA 

Extracellular
/Raft 

Zymogen 
(Plasmin 
Precursor), 
Proteolytic 
enzyme  

Laminin (LN)(Graner, 
Mercadante et al. 2000; 
Musinova, Lisitsyna et al. 
2011) 

rPrPC-PrPC/Cells 
and cell free 

Plasma 
Membrane 
(PM)/Cell 
Surface 

Neurite 
Outgrowth 

Laminin 
Receptor/Precursor 
(Rieger, Edenhofer et al. 
1997; Gauczynski, Peyrin et 
al. 2001; Hundt, Peyrin et 
al. 2001; Gauczynski, 
Nikles et al. 2006; Nikles, 
Vana et al. 2008; 
Kolodziejczak, Da Costa 
Dias et al. 2010) 

PrPC/Y2H, Cell 
lines 

Plasma 
Membrane 

Internalization 

Dystroglycan (Keshet, Bar-
Peled et al. 2000) 

PrPC/co-IP, co-
Localization, co-
Fractionate 

Plasma 
Membrane 

Copper 
Homeostasis/Unk
nown 

Vitronectin (Hajj, Lopes et 
al. 2007; Hajj, Santos et al. 
2009) 

PrPC/ Overlay, 
co-Localization, 
Binding & 
Competition 
Assay, Pull-
Down 

Plasma 
Membrane 

Axonal Growth 

Neuronal cell adhesion 
molecule (N-CAM) 
(Schmitt-Ulms, Legname et 
al. 2001; Santuccione, 
Sytnyk et al. 2005) 

PrPC/Cell lines Plasma 
Membrane, 
Caveolae 

Neurite 
outgrowth/ 
Internalization 

Glypican-1 (Taylor, 
Whitehouse et al. 2009; 
Hooper 2011) 

PrPC-PrPSc/cell 
models, Co-IP 

Lipid Rafts, 
Plasma 
Membrane 

PrPSc conversion, 
Cell 
division/growth 
Regulation 

Metalloproteinases; A 
Disintegrin And 

PrPC-PrPSc/Cell-
Culture models  

Plasma 
Membrane 

PrP Cleavage 
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Metalloproteinase 
(ADAM), Matrix 
Metalloproteinase (MMP) 
(Vincent, Paitel et al. 2001; 
Mange, Beranger et al. 
2004; Parkin, Watt et al. 
2004; Cisse, Sunyach et al. 
2005; Hooper 2005; Taylor, 
Parkin et al. 2009) 
Amyloid precursor like 
protein 1 (APLP1) 
(Yehiely, Bamborough et al. 
1997) 

rPrPC 
fragment/cDNA 
library screen 

Plasma 
Membrane 

Unknown 

Stress-Induced 
Phosphoprotein (STI1) 
(Chiarini, Freitas et al. 
2002; Zanata, Lopes et al. 
2002; Hajj, Santos et al. 
2009) 

PrPC Plasma 
Membrane 

Neuroprotection 

p75 (Della-Bianca, Rossi et 
al. 2001) 

PrPC/Cell Culture Plasma 
Membrane, 
Caveolae 

Apoptosis, 
Internalization, 
Transport 

Tetraspanin-7 (CD231) 
(Guo, Huang et al. 2008) 

PrPC/Y2H, Co-
localization, IP  

Plasma 
Membrane 

 

Glycosaminoglycan (GAG) 
(Priola, Caughey et al. 1994; 
Wong, Xiong et al. 2001; 
Pan, Wong et al. 2002) 

PrPC/Cell 
Culture, Y2H 

Plasma 
Membrane 

Internalization 

Clusterin (Xu, 
Karnaukhova et al. 2008) 

PrPC/Y2H, co-IP, 
CD 

Plasma 
Membrane, 
Cytosol, ER 

Chaperone 

Amyloid-β (Lauren, Gimbel 
et al. 2009; Balducci, Beeg 
et al. 2010; Kessels, Nguyen 
et al. 2010; Resenberger, 
Winklhofer et al. 2011; 
Tofoleanu and Buchete 
2012) 

PrPC/Aβ-Biotin 
in cell culture, 
SPR 

Plasma 
Membrane, 
Extracellular 

Transcytosis, 
Undefined 

β-secretase 1 
(BACE1)(Parkin, Watt et al. 
2007; Griffiths, Whitehouse 
et al. 2011) (Parkin, Watt et 
al. 2007; Griffiths, 
Whitehouse et al. 2011)  

PrPC/ Co-IP, 
ELISA, SPR 

Plasma 
Membrane, 
Endosomes 

Proteolytic 
enzyme cleaves 
APP 

Metal Ions (Cu, Mn, Fe, 
Zn) (Brazier, Davies et al. 

rPrPC, 
PrPC/Cyclic-

Extra-, Intra 
cellular 

Ion homeostasis, 
Internalization 
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2008; Zhu, Davies et al. 
2008; Li, Dong et al. 2009; 
Singh, Mohan et al. 2009; 
Liu, Jiang et al. 2011; 
Martin, Anantharam et al. 
2011; Pushie, Pickering et 
al. 2011; Stellato, Spevacek 
et al. 2011; Younan, 
Klewpatinond et al. 2011) 

Voltammetrics, 
UV-
Spectroscopic, 
ITC, CD 

Intracellular Interacting Molecules 
Αβ-Crystallin  (Sun, Guo et 
al. 2005) 

PrPC/Y2H, 
cDNA Library, 
co-localization, 
SPR 

Cytosol Undetermined 

Heat-Shock 60-KD Protein 
1(HSPD1/HSP60) (Stockel 
and Hartl 2001; Satoh, 
Onoue et al. 2005; 
Alexeeva, Valieva et al. 
2011) 

rPrP, PrPC/cDNA 
Library Screen, 
Cell Free 

Plasma 
Membrane 

PrP Aggregation 

Caveolin-1(Mouillet-
Richard, Ermonval et al. 
2000; Vana, Zuber et al. 
2007; Schneider, Pietri et al. 
2011) 

rPrPC/Cell lines Caveolae 
Rafts 

Signaling 

Nuclear factor erythroid 
2-like2 (Nrf2) (Yehiely, 
Bamborough et al. 1997) 

rPrP/Phage 
screen of 
expression 
library from 
brain cDNA 

Cytosol, 
Nucleus  

Unknown 

Synapsin 1b (Spielhaupter 
and Schatzl 2001) 

rPrP, PrPC/ Y2H, 
co-IP, co-
fractionation 

Cytosol, 
Vesicles 

Signaling, 
Internalization 

Growth factor receptor-
bound protein 2 (Grb2) 
(Spielhaupter and Schatzl 
2001; Lysek and Wuthrich 
2004) 

rPrP, PrPC, 
PrPSc/Y2H, co-
IP, co-
fractionation 

Cytosol, 
Nucleus, 
Vesicles 

Internalization 

Prion interactor-1 (Pint1) 
(Spielhaupter and Schatzl 
2001) 

rPrPC, PrPC/Y2H, 
cell culture 

Unknown Signaling, 
Internalization, 
Transport 

Casein Kinase II (Ck2) 
(Meggio, Negro et al. 2000; 
Negro, Meggio et al. 2000) 

rPrP, PrPC/ pull-
down, overlay, 
SPR, co-IP 

Cytosol, 
Nucleus, 
Extracellula
r Matrix 

Kinase Activity, 
Internalization 

B-cell CLL/Lymphoma rPrP, Cytosol Loss of Bcl-2 
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(Bcl-2) (Kurschner and 
Morgan 1995; Rambold, 
Miesbauer et al. 2006; 
Lisitsyn 2010) 

cytoPrP/Y2H, 
co-IP, Affinity 

function, induction 
of Apoptosis 

Glial Fibrillary Acidic 
Protein (GFAP)(Oesch, 
Teplow et al. 1990; Dong, 
Wang et al. 2008) 

rPrP, PrPC, PrPSc/ 
Pull-Down, 
Overlay, co-IP 

Cytosol Unknown 

Heat-Shock 70-KD Protein 
5 (HSPA5/Bip) (Jin, Gu et 
al. 2000) 

PrPC, Mutant 
PrP/Cell Lines 

Endoplasmi
c Reticulum 
(ER) 

Chaperoning 

Nucleic Acids (Cordeiro, 
Machado et al. 2001; 
Derrington, Gabus et al. 
2002; Deleault, Lucassen et 
al. 2003; Silva, Vieira et al. 
2011) 

PrPC/Cell 
Culture, Cell 
Free, PMCA 

Nucleus Chaperoning and 
Aggregation 

14-3-3 protein (Satoh, 
Onoue et al. 2005; Mei, Li 
et al. 2009) 

rPrP, PrPC, PrPSc/ 
Pull-Down, 
Overlay, co-IP 

Cytosol Unknown 

Neuroglobin (NGB) 
(Lechauve, Rezaei et al. 
2009) 

rPrP/Affinity Cytosol Aggregation 

Tubulin (Brown 1998; 
Brown 2000; Nieznanski, 
Nieznanska et al. 2005; 
Nieznanski, Podlubnaya et 
al. 2006; Dong, Shi et al. 
2008; Giorgi, Di Francesco 
et al. 2009; Osiecka, 
Nieznanska et al. 2009) 

rPrP, PrPC, PrPSc/ 
Pull-Down, 
Overlay, co-IP, 
co-Fractionation, 
Cross-Linking, 
Affinity 

Cytosol Oligomerization, 
Aggregation, 
Inhibition of 
Microtubule 
Assembly 

Tau (Tomoo, Yao et al. 
2005; Han, Zhang et al. 
2006; Wang, Dong et al. 
2008) 

rPrP, PrPC, PrPSc/ 
Pull-Down, co-IP 

Cytosol Reduction of 
binding to tubulin 

Aldolase C (Strom, Diecke 
et al. 2006) 

rPrP, 
PrPC/Overlay 

Cytosol Unknown 

Neurotrophin receptor-
Interacting MAGE 
Homolog (NRAGE) 
(Bragason and Palsdottir 
2005) 

rPrP, PrPC, 
cytoPrP/Pull-
Down, Y2H, co-
IP 

Cytosol Aggregation, 
Mitochondrial 
Potential 

Mahogunin (Chakrabarti 
and Hegde 2009) 

cytoPrP, 
ctmPrP/Pull-
Down, Affinity 

Cytosol Aggregation, 
Neurodegeneration 

Flotillins (Solis, Malaga- rPrP, PrPC/Y2H, Rafts, Signaling, Raft 
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Trillo et al. 2010; Wang, 
Zhou et al. 2011) 

Cell Culture Vesicles Carrier 

RAS-Associated Protein 
(Rab4, 6a, 7a) (Beranger, 
Mange et al. 2002; Zafar, 
von Ahsen et al. 2011) 

PrPC/MS/MS, co-
IP, co-
localization 

Cytosol, 
Vesicles 

Intracellular 
trafficking 

Ferritin (Mishra, Basu et al. 
2004; Sunkesula, Luo et al. 
2010) 

PrPSc/Co-IP, Co-
localization, EM 

Phagosome,
Vesicles, 
Cytoplasm 

Ion transport 
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III-C-1: Cell Survival and Apoptosis 

Initial PrPC binding studies using the Y2H system established selective binding of 

the B-cell lymphoma 2 (Bcl-2) protein to PrPC, suggesting that PrPC could have anti-

apoptotic function (Kurschner and Morgan 1995). The Bcl-2 protein is localized to the 

mitochondrial membrane with a predominant function to regulate apoptotic pathways 

(Hockenbery, Nunez et al. 1990). Thus direct binding of PrPC to Bcl-2 would imply an 

intracellular regulatory function modulating cell survival pathways (Fig. 1.6A). Targeting 

PrPC to various cellular compartments exhibited specific cytotoxicity in the cytosol 

(Rambold, Miesbauer et al. 2006). Pull-down assays confirmed that the cytosolic PrP 

selectively bound the Bcl-2 protein thus causing it to co-aggregate and be sequestered 

from its anti-apoptotic function (Rambold, Miesbauer et al. 2006). Interestingly, the 

addition of cytosolic chaperones (Hsp70 and Hsp40) interfered in the PrP/Bcl-2 

aggregation and reduced cell death (Rambold, Miesbauer et al. 2006). In contrast, other 

lines of evidence argue that cytosolic PrP is not cytotoxic in primary human neurons, but 

rather protects cells against Bax-mediated (Bcl-2 binding protein) apoptosis (Roucou, 

Guo et al. 2003).   

 The p75 receptor was previously discussed in the context of cell surface 

interaction with PrPC, but its main role as the signal transducing receptor to activate 

apoptosis in neurons has relevance for the intracellular PrP discussion. The neurotrophin 

receptor interacting melanoma antigen (MAGE) homolog (NRAGE) directly interacts 

with the cytosolic region of p75 to activate the JNK-mediated mitochondrial apoptotic 

pathway (Fig. 1.6A,C) (Salehi, Xanthoudakis et al. 2002). Interestingly, using the Y2H 

system and PrPC as bait, NRAGE was identified as an interactor and subsequently 
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confirmed to bind PrP (Bragason and Palsdottir 2005). Proteins that interact with 

NRAGE in the cytosol ultimately activate apoptotic pathways (Salehi, Xanthoudakis et 

al. 2002). Although the relevance of PrP binding to either p75 and/or NRAGE must be 

functionally determined, the coincidental affinity for both molecules that regulate cell 

survival pathways should not be disregarded. 

III-C-2: Internalization and Signaling 

Several proteins within the endosomal recycling compartments are of interest as 

PrP interactors and as cofactors that enable/enhance the PrP misfolding process. These 

proteins include the Ras-related GTP-binding protein family (Rab), which predominantly 

regulates vesicular trafficking in cells (Davies, Cotter et al. 1997). Experiments using 

dominant-negative GTPase Rab4 and Rab6a proteins exhibited increased amounts of 

PrPSc in infected cells through the inhibition of the plasma membrane recycling process 

(Beranger, Mange et al. 2002). The reduction of the Rab7a protein in cell culture by gene 

silencing methods caused PrPC accumulation in Rab9 positive endosome compartments, 

therefore implying direct interaction between the Rab proteins and PrPC (Zafar, von 

Ahsen et al. 2011).  Lastly, systematic impairment of protein trafficking in PrPSc infected 

cells, while quantitating the distribution of PrPC and PrPSc strongly designates the 

endosomal recycling compartments as the most likely site for prion conversion 

(Marijanovic, Caputo et al. 2009), providing additional evidence towards intracellular 

mechanisms governing PrP interaction and conversion process.  

Additional proteins have been described to interact with PrP inside the vesicle 

trafficking compartments. These proteins include the synapsin 1b adaptor-like 

phosphoprotein and growth factor receptor-bound protein 2 (Grb2), both involved in 
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signal transduction. They bind PrPC with high affinity, as determined with the Y2H 

system (Spielhaupter and Schatzl 2001). An additional protein identified in the complex 

with PrPC, synapsin and Grb2 was the prion-interactor 1 protein (Pint1), but the function 

of this protein remains undefined (Fig. 1.6B) (Spielhaupter and Schatzl 2001). 

As briefly alluded to earlier, PrPC has been implicated as a receptor with signal 

transduction capabilities. Since PrPC is GPI-anchored protein, which lacks a cytoplasmic 

tail to transduce signals intracellularly. Any signal transduction pathways that are 

activated upon ligand interaction with PrPC must involve an intermediate protein. Initial 

evidence for GPI-anchored cell surface proteins ability to transduce a signal was first 

demonstrated using antibody-mediated cross linking of various GPI-linked cluster of 

differentiation (CD) proteins on leukocytes, which subsequently activated protein 

tyrosine kinases (Stefanova, Horejsi et al. 1991). Applying similar experimental approach 

and logic, PrPC exhibited activation of the tyrosine kinase Fyn signal transduction 

pathway through an intermediating caveolin-1 protein (Fig. 1.6B) (Mouillet-Richard, 

Ermonval et al. 2000). In vivo, antibody-mediated crosslinking of PrPC induced neuronal 

apoptosis in the hippocampus (Solforosi, Criado et al. 2004).  Additionally, these 

antibody-mediated cross-linking techniques have revealed a spatial link between PrPC 

and microdomain-forming protein, flotillin-1 and -2, which collectively contribute 

towards PrP signaling capabilities (Solis, Malaga-Trillo et al. 2010). Interestingly, casein 

kinase 2 (Ck2), a phosphorylating enzyme involved in signal transduction pathways, was 

experimentally validated to bind PrPC and moreover phosphorylate it at the serine 154 

position of bovine PrP (Meggio, Negro et al. 2000; Negro, Meggio et al. 2000).   

III-C-3: The Interaction with Chaperones and Intracellular Aggregation 
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The implication for a host chaperone protein to mediate PrPSc conversion relates 

back to the transgenic data, which led to the protein X hypothesis (Telling, Scott et al. 

1995). Cellular chaperones play a crucial role in modulating the normal folding process 

of PrPC and subsequently become up regulated through the induction of the unfolded 

protein response (UPR) that occurs when misfolded protein induces ER stress (Martins, 

Graner et al. 1997; Shyu, Harn et al. 2002; Fernandez-Funez, Casas-Tinto et al. 2009; 

Luo, Li et al. 2010; Wilkins, Choglay et al. 2010; Shorter 2011). Cell culture models 

were used to demonstrate active binding of the ER chaperone heat shock protein 70-kDa 

(Hsp70/Bip/HSPA5) to PrPC thereby reducing cytosolic aggregate formation by 

selectively targeting these proteins for proteasomal degradation (Fig 1.6C) (Jin, Gu et al. 

2000). Subsequent in vitro data revealed that GroEL, a bacterial homolog to the heat 

shock protein 60-kDa (Hsp60) binds PrP (recombinant) and actively catalyzes aggregate 

formation of chemically denatured and/or folded rPrPC (Stockel and Hartl 2001). This 

data, collectively suggests that chaperones are crucial modulators for PrP’s intracellular 

fate. Although functionally undefined, Hsp60 was also discovered to form a molecular 

complex with PrPC and the 14-3-3 proteins both in cell culture models and in reactive 

astrocytes of human brains (Satoh, Onoue et al. 2005). The 14-3-3-protein family is a 

group of ubiquitously expressed regulatory molecules throughout eukaryotic cells, which 

have been shown to bind and interact with signaling proteins (Nielsen 1991; Xiao, 

Smerdon et al. 1995).  Although unrelated to this topic, 14-3-3 proteins have been shown 

to be present in elevated levels in the cerebrospinal fluid (CSF) of CJD patients 

(Takahashi, Iwata et al. 1999). Furthermore, biochemical and biophysical analyses in 

combination with the initial Y2H screen revealed that clusterin, a chaperone 
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glycoprotein, also interacts with PrPC (Xu, Karnaukhova et al. 2008).  These Y2H 

binding analyses facilitate the identification of interacting proteins through mutual 

affinity without providing insight in their function, which is the case for several proteins 

linked to PrP by affinity binding experiments (Fig. 1.6D).      

III-D: Other Interacting Molecules Implicated In PrPSc Conversion 

III-D-1: Nucleic Acids 

  Nucleic acids (NA) and glycosaminoglycans (GAG) molecules have 

longstanding experimental evidence to link them to the prion conversion process 

(Cordeiro, Machado et al. 2001; Deleault, Lucassen et al. 2003; Cordeiro and Silva 2005; 

Deleault, Geoghegan et al. 2005; Lima, Cordeiro et al. 2006; Gomes, Millen et al. 2008; 

Silva, Lima et al. 2008; Marques, Cordeiro et al. 2009). Early hypotheses suggested that 

nucleic acids were potential interacting partners for PrPC, and helped facilitate its 

conversion to PrPSc (Weissmann 1991). In vitro experiments have validated a 

physiological relevance between PrPC and NA (Cordeiro, Machado et al. 2001). 

Recently, studies have shown that the N-terminal domain of the prion protein interacts 

with DNA and/or RNA molecules to form toxic aggregates (Fig. 1.6) (Cordeiro, 

Machado et al. 2001; Gomes, Cordeiro et al. 2008). Moreover, the deletion of the N-

terminal domain (23-90aa) in PrPC inhibited RNA binding, and aggregate formation in 

N2a cells (Cordeiro, Machado et al. 2001; Gomes, Cordeiro et al. 2008). Highly 

structured (shs)RNA binds recombinant human prion protein (hrPrP) with high affinity, 

inducing the formation of a protease resistant complex between these molecules (Adler, 

Zeiler et al. 2003). Together, these studies indicate that nucleic acids cofactors function in 

a chaperone-type mechanism that potentially enhances the PrPSc conversion process. This 
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chaperone mechanism could entail a biochemical process that reduces the activation 

barrier for PrPSc conformational switching, upon NA binding to PrPC. Conversely, in 

vitro conversion assays provide evidence that certain DNA/RNA aptamers inhibit the 

formation of PrPSc (Sayer, Cubin et al. 2004; Sekiya, Nishikawa et al. 2005; King, Safar 

et al. 2007). The molar range affinities nucleic acids bind PrP implicate the possibility for 

an unexplored regulatory function between these molecules, which is still to be defined.  
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Figure 1.6 Molecules associated with PrP within the intracellular space of the cell. 

Various experimental approaches have identified intracellular proteins that interact with 

PrP. These approaches include direct/indirect-binding analyses that include biophysical 

affinity calculations and co-localizations within intracellular organelle compartments. 

The studies reveal that PrP interacts with proteins that modulate cell survival (A), 

followed by proteins that initiate signaling cascades along with regulating 

endocytic/exocytic and intracellular trafficking utilizing vesicle transport mechanisms 

(B). Moreover, cell-fractionations and pull-down affinity studies have facilitated the 

identification of proteins that associate with the PrPSc 

aggregation/stabilization/chaperoning process (C)). While, other proteins identified to 

interact with PrP remain without defined association in function (D). The details of 

specific interactions between these molecules and PrP (PrPC, PrPSc), which include mode 

of interaction/binding, location specificity and references describing the findings, are 

summarized in Table 1.3. Abbreviations: Heat-Shock 60-Kda Protein (Hsp60), Heat-

Shock 70-Kda Protein (Hsp70), Nuclear factor erythroid 2-like 2 (Nrf2), Growth factor 

receptor-bound protein 2 (Grb2), Prion interactor-1 (Pint1), Casein kinase II (Ck2), B-cell 

CLL/Lymphoma (Bcl-2), Glial fibrillary acidic protein (GFAP), Neuroglobin (NGB), 

Neurotrophin receptor-interacting MAGE homolog (NRAGE), RAS-Associated protein 

(Rab7a), Cellular prion protein (PrPC), Scrapie prions (PrPSc), Transmembrane-

topological C-terminus cellular prion protein (CtmPrP). 
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Figure 1.6 Molecules associated with PrP interaction within intracellular space of 
the cell. 
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Concluding Summary 

Significant amounts of data have been collected in recent years in an attempt to 

define the physiological function of PrPC and the cellular cofactors this protein interacts 

with. The biogenesis and localization of GPI-anchored PrPC would strongly implicate 

function by association with interacting proteins (Figs. 1.1, 1.2, 1.5 and 1.6). Localization 

of PrPC to lipid rafts would advocate towards a signaling/regulatory function as observed 

with other proteins that co-localize to this highly ordered plasma membrane domain 

(Staubach and Hanisch 2011). Moreover, precedence for GPI-anchored proteins to 

activate signal transduction pathways has been demonstrated (Stefanova, Horejsi et al. 

1991). Therefor the absence of a cytoplasmic tail would again indicate mandatory 

interaction with intermediate proteins. Furthermore, as PrP is endocytosed through 

clathrin- and/or caveolin mediated mechanism, more opportunity is provided to interact 

with intracellular proteins that could assume functional roles or stabilize/enhance PrPC-

PrPSc conversion (Fig. 1.5, 1.6B). The aforementioned experimental data supplies 

additional evidence to support both of these hypotheses (Marijanovic, Caputo et al. 2009; 

Goold, Rabbanian et al. 2011; Zafar, von Ahsen et al. 2011). Lastly, besides 

understanding the normal function of PrP, the interacting proteins that have already been 

identified (Table 1.3) and others yet to be discovered, will also provide insight towards 

the mechanisms that govern PrPSc conversion, aggregation and ultimately disease.  

 

 

 

Copyright © Vadim Khaychuk 2012 
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 Dissertation Research 

The main objective of my research is to gain an understanding of prion replication 

at the cellular level, and to identify host factors associated with this process. My 

overarching hypothesis is that permissiveness to prion replication is dependent on 

unidentified, endogenous factors that act in concert with PrP. By establishing novel 

cell culture systems that express heterologous PrPC from different species, I set out to 

identify and describe these factors. We utilized these cell culture models to answer the 

following questions: 

Question 1: Can prion strain diversity be characterized using in vitro cell culture 

models? 

Our initial studies describe the behavior of prion strains in cell culture using three 

different cell lines (Chapter 3). RK13 cells do not express endogenous PrPC, making 

them the ideal in vitro knockout model for genetic manipulation that is analogous to the 

Prnp0/0 mouse background used to create transgenic mouse models for bioassay analyses 

(Bueler, Fischer et al. 1992; Browning, Mason et al. 2004). Furthermore, unlike other cell 

culture systems used in prion studies that replicate only experimentally adapted mouse 

prions (Race, Fadness et al. 1987), RK13 cells are capable of replicating heterologous 

prions from different species (Chapters 3 & 4). I describe the RK13 cell’s capability to 

replicate CWD prions (Chapter 3), mouse prions, and TME, Hyper (HY) and Drowsy 

(DY) (Chapter 3). Finally, I describe the production and partial characterization of 

susceptible cells expressing genetically removable PrPC using the Cre-lox system 

(Chapter 5).  
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Question 2: Do endogenous host factors mediate the susceptibility and/or resistance to 

prions?  

  I show that cloning of RK13 cells facilitated the identification of subclones with 

wide-ranging susceptibility to PrPSc replication. Despite evidence from in vivo studies 

(Westaway, Mirenda et al. 1991; Carlson, Ebeling et al. 1994; DeArmond and Prusiner 

1996; Fischer, Rulicke et al. 1996; Telling, Haga et al. 1996), susceptibility and/or 

resistance to prion replication in cells was not solely dependent on PrPC expression levels 

(Chapter 4). To identify the molecular differences between the sensitive and resistant 

cells, we utilized representational difference analysis (RDA) and microarray technologies 

to distinguish unique genes and pathways associated with these respective phenotypes 

(Chapter 4).  
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Chapter 2 

Materials and Methods 

 

Cell Cultures: N2a, HEK293A and RK13 cells were freshly obtained from the American 

Type Culture Collection (ATCC, Manassas, VA) and maintained in 5 % CO2 at 37°C in 

Dulbeco’s modified Eagle’s medium (DMEM) (Gibco Life Technologies, Grand Island, 

NY) with 10 % fetal bovine serum (FBS) (Gibco Life Technologies, Grand Island, NY) 

and Penicillin/Streptomycin (P/S) (Gibco Life Technologies, Grand Island, NY). Cell 

clones were derived by limited dilution in 96-well plates (BD Falcon, Franklin Lakes, 

NJ) seeded with 100 µl of cell suspension containing 0.3 cells. Cells were cured of PrPSc 

by treatment with dextran sulfate-500 (DS-500) (100 ng/ml) (Sigma-Aldrich, St. Louis, 

MO), prepared in distilled water and sterilized by passage through a 0.22 µM filter 

Genomic DNA Extraction: Homogenization of Brain tissue was homogenized in buffer 

(100mM NaCl, 10mM Tris HCl pH 8.0, 25 mM EDTA, 0.5% sodium dodecyl sulphate 

(SDS), 0.1mg/ml Proteinase K concentration). Twelve ml of buffer was added per gram 

of tissue and incubated overnight at 50°C. The sample was extracted with one volume of 

phenol/chloroform (1:1), the phenol having been previously saturated with water or 

buffer. The aqueous layer was removed, and 0.5 volume of 5M-ammonium acetate and 

two volumes of 100 % ethanol was added. The DNA was precipitated and recovered by 

centrifugation at 5000 rpm for 5 min. The DNA in the pellet was dissolved and 

resuspended in 2ml of TE (10mM Tris, 1mM EDTA, pH 8.0)  

Expression Constructs: The mouse, hamster, deer and elk PrP coding sequences were 

PCR amplified with primers containing AflII and EcoRI restriction endonuclease 
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recognition sites. Digested amplicons were inserted into pIRESpuro3 vector (Clontech, 

Mountain View, CA). The PrP ORF was sequenced in the recombinant vector and 

transfected into N2a, RK13 and HEK293A cells (empty vector to produce RKV cells). 

RKE, RKD and RK13-SHaPrPC cells were further transfected with pcDNA3-gag 

expressing HIV-1 GAG precursor protein, generating RKE-, RKD-, and RK13-SHaPrP--

Gag cells. Transfected cells were grown in complete medium containing 1 µg/ml 

puromycin (Sigma-Aldrich, St. Louis, MO). Co-transfected RK13 cells expressing both 

PrP and HIV-1 Gag genes were supplemented with 1 µg/ml puromycin (Sigma-Aldrich, 

St. Louis, MO) and 1 mg/ml neomycin (Sigma-Aldrich, St. Louis, MO). Selection 

medium was changed every 3 days. 

Cell Transfection: Cells were grown to 75-80 % confluence in 6-well cell culture plates 

(BD Falcon, Franklin Lakes, NJ) and maintained in 5 % CO2 at 37°C in DMEM (Gibco 

Life Technologies, Grand Island, NY) with 10% FBS (Gibco Life Technologies, Grand 

Island, NY) and 1% Penicillin/streptomycin (PS) (Gibco Life Technologies, Grand 

Island, NY). Transfection DNA solution was made by combining 5 µl of Lipofectamine 

reagent (Invitrogen, Life Technologies, Grand Island, NY) diluted in 100 µl Opti-MEM 

(Gibco Life Technologies, Grand Island, NY) with 2.6 µg of plasmid DNA diluted in 100 

µl Opti-MEM. The 200 µl combined solution was gently mixed and allowed to incubate 

at room temperature for 30 min upon which 800 µl of Opti-MEM was added to bring the 

volume of the solution to 1.0 ml. Cells were washed 2x with 5.0 ml Opti-MEM. Each 

well to be transfected received 1ml of transfection solution and incubated in 5% CO2 at 

37°C for 5 h. The cells were supplemented with 1.0 ml of complete Opti-MEM solution 

(20% FBS, 2% PS) and replaced into the incubator for overnight (O/N) incubation in 5 % 
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CO2 at 37°C. On the following day, cells were detached from plates by trypsinization and 

scaled up to a 10-cm cell culture dish (BD Falcon, Franklin Lakes, NJ). Selection of 

transfected cells was completed with the addition of puromycin (1µg/ml), neomycin 

(1mg/ml) or a combination of both. 

Preparation Of Brain Homogenates: Brain tissues from sacrificed mice were stored 

frozen at -80°C. Ten % brain homogenizates was made in PBS lacking Ca2+ and Mg2+ on 

ice by repeated passage through 18-, 23-, and 26-gage needles. 

Infection Of Transgenic Mice: Isoflurane anesthetized mice were inoculated 

intracerebrally (IC) with 1 % elk or mouse brain homogenate. Inocula from cell cultures 

were prepared by washing confluent monolayers 2x with cold PBS, collecting cells in 

PBS by scraping, followed by three -80°C freeze and thaw cycles. Mice were inoculated 

with infected brain and cell culture preparations (infected & uninfected) containing 

equivalent amounts of PrPSc quantified by Western blot analysis. Mice were monitored 

weekly. Inoculated mice were diagnosed with prion disease displaying at least three 

clinical signs, the time from inoculation to the onset of definitive clinical signs being 

referred to as the incubation time.  

Cell infections: Cells (2 x 105) were plated into 6 well plates one day before prion 

infection. Ten % brain homogenates diluted in Opti-MEM medium to 0.2 -2% were 

added to cell monolayers, 1.0 ml per well. After 5 h, 2.0 ml of Opti-MEM medium 

containing 15 % fetal calf serum (FCS) (Gibco Life Technologies, Grand Island, NY) 

was added. Cell lysates were harvested at passage 3 for Western blotting. 

Analysis Of PrPC And PrPSc By Western Blotting: For cell culture, confluent cells were 

lysed with cold lysis buffer (50 mM Tris, pH 8.0, 150 mM NaCl, 0.5% sodium 
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deoxycholate, 0.5% Igepal CA-630) and total protein concentration was determined by 

bicinchoninic acid (BCA) assay (Pierce Biotechnology Inc., Rockford, IL). Lysates and 

brain extracts (w/v 2 % sarkosyl) were either untreated or treated with 40 µg/ml 

proteinase K (PK) (Pierce Biotechnology Inc., Rockford, IL) for 1 hr at 50°C and the 

reaction was terminated with 4 mM phenyl methyl sulfonyl fluoride (PMSF). PrPSc in cell 

culture lysates was purified by centrifugation for 1 h at 100,000 x g at 4°C. Proteins were 

separated by SDS-PAGE using discontinuous 12 % Tris-Glycine gels, and transferred to 

PVDF-FL membranes (Millipore, Billerica, MA). Membranes were blocked in Tris 

buffered saline, 0.05 % Tween (TBS-T) and 5% non-fat milk, incubated with the primary 

anti-PrP (mAb) 6H4 (Prionics AG, Schlieren-Zurich), 3F4 mAb (Covance, Cat. No. SIG-

39600) or 9E9 (Telling lab) or total protein control antibody Pan-Actin mAb-5 (Lab 

Vision Corporation, Fremont, CA), followed by HRP-conjugated sheep α-mouse IgG 

secondary antibody. Membranes were developed using ECL-plus (GE Healthcare 

Biosciences, Pittsburgh, PA), and analyzed with a FLA-5000 scanner (Fuji/ GE 

Healthcare Biosciences, Pittsburgh, PA). 

Cell Lifting Assay And Blot Development: Three passages after prion infection, cells 

were subpassaged 1:10 in a 6-well plate, which contains cell culture cover slips (25 mm 

diameter, Cat. No. 174985) (NUNC, Rochester, NY). Confluent coverslips were washed 

2x with cold PBS, and placed cell side down on nitrocellulose paper (0.45 um, Whatman, 

Cat. No. 10485375) soaked in cold lysis buffer, backed with similarly soaked blotting 

paper (Bio-Rad, Hercules, CA). Coverslips were pressed firmly for 1 min, and removed. 

Membranes were air dried for 2 h. Membranes are rewetted with cold lysis buffer, and 

incubated in cold lysis buffer containing 5 µg/ml PK for 90 min at 37°C with constant 
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shaking. PK digestion was terminated with PMSF (2 mM) for 20 min. Membranes were 

rinsed 4x with dH2O, and immersed in 3M guanidine isothiocyanate/10 mM Tris-HCl, 

pH 8.0 for 10 min, then rinsed 4x with dH2O. Membranes were blocked in TBS-T and 

5% non-fat milk, incubated with anti-PrP for 2h at room temperature, shaking. The 

membranes are than washed 3x with TBS-T, followed by the addition of HRP-conjugated 

sheep α-mouse IgG secondary antibody with 1h incubation at room temperature and 

shaking. Membranes were washed 3x with TBS-T and developed using ECL-plus (GE 

Healthcare Biosciences, Pittsburgh, PA). The blots were exposed to X-ray film and 

developed. 

Protein Level Evaluation by Densitometry Using The ImageJ Software: Western blot 

PrPC protein levels and cell-lifting PK resistant PrPSc was assessed using the densitometry 

function of the ImageJ software bundle (Abramoff 2004). The uploaded JPEG image file 

of respective membrane blots were normalized with a background correction function 

(ImageJ  Process tab  Subtract Background). The total density of each sample (lane 

or PK resistant circle from cell lift) was individually measured using the measure 

function (ImageJ  Analyze tab  Measure). Empty lanes/blot circles were used as 

background to calculate density (density value = background density value – sample 

density value).   

Histopathological studies: Brains were immersion fixed in 10% buffered formalin. 

Tissues were embedded in paraffin and 10 mm thick coronal microtome sections were 

mounted onto positively charged glass slides. Immunohistochemistry (IHC) was 

performed as previously described using anti-PrP mAb 6H4 as primary antibody and 
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IgG1 biotinylated goat anti-mouse secondary antibody (Southern Biotech). Detection was 

with Vectastain ABC reagents and slides were developed with diaminobenzidine. 

Cervid Prion Cell Assay (CPCA): Susceptible Elk21- cells in 96 well plates were 

exposed to serial dilutions of Elk CWD brain homogenates ranging from 10-2 to 10-5 in 

100 µl per well. Cell cultures were split 3x, first passage cells were split at 1:4 and 

thereafter at 1:7. Inclusion of RK13 cells stably transfected with empty vector (RKV 

cells) were used as negative controls. At final passage, 20,000 cells were filtered onto 

Multiscreen IP 96-well 0.45-µm filter plates (Elispot plates, Millipore, Billerica, MA), or 

AcroWell 96-well 0.45-µm BioTrace filter plates (Pall, East Hills,NY). Cells were 

subjected to PK digestion and denaturation with guanidiniumthiocyanate (3 M in 10 mM 

Tris-HCl, pH 8). CerPrPSc-producing cells were detected by ELISPOT using anti-PrP 

mAb 6H4, followed by AP-conjugated secondary anti-mouse IgG, and developed with 

nitro-blue tetrazolium chloride/ 5-bromo-4-chloro-3'-indolyphosphate p-toluidine salt 

(NBT/BCIP). Images were scanned with CTL ELISPOT equipment, and spot numbers 

were determined using ImmunoSpot3 software (Cellular Technology Ltd, Shaker 

Heights, OH). Statistical analyses were performed using GraphPad Prism 5.0 for Mac OS 

X software (San Diego California USA, www.graphpad.com).  

Modified Scrapie Cell Assay: Cells were infected with 0.2% (w/v) prion infected brain 

homogenate and passaged three times. At final passage, 20,000 cells were filtered onto 

Multiscreen IP 96-well 0.45-µm Elispot plates (Millipore, Billerica, MA), or AcroWell 

96-well 0.45-µm BioTrace filter plates (Pall, East Hills,NY). Cells were subjected to PK 

digestion and denaturation with guanidiniumthiocyanate (3 M in 10 mM Tris-HCl, pH 8). 

PrPSc-producing cells were detected by Elispot analysis using anti-PrP mAb 6H4, 
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followed by AP-conjugated secondary anti-mouse IgG and developed with nitro-blue 

tetrazolium chloride/ 5-bromo-4-chloro-3'-indolyphosphate p-toluidine salt (NBT/BCIP). 

Images were scanned with CTL ELISPOT equipment, and spot numbers were determined 

using ImmunoSpot3 software (Cellular Technology Ltd, Shaker Heights, OH). Statistical 

analyses were performed using GraphPad Prism 5.0 for Mac OS X software (San Diego 

California USA, www.graphpad.com). 

Transduction of Cells Expressing lox-P Flanked PrPC With Adeno-Cre-recombinase 

Viral Vector: Cells were plated in 6-well tissue culture plates (BD Falcon, Franklin 

Lakes, NJ) and grown to confluence. Cells were washed 2x with PBS, trypsinized (200µl) 

and placed into 37°C + 5 % CO2 incubator for 5 min. Cell were resuspended in 1.0 mL 

serum free DMEM. One of the 6 wells was used as the representative for counting. The 

cells from this well were saved as time point 0 prior to Adeno-Cre-GFP viral transduction 

(Vector Biolabs, Philadelphia, PA) at multiplicity of infection (MOI) of 15. Adeno-Cre-

GFP virus was suspended in Opti-MEM for a total of 0.6 ml per plate. Regular growth 

media (DMEM + 10% FBS + 1% P/S) was aspirated and diluted Ad-Cre virus (MOI 15) 

in 0.1 ml serum-free medium per well was added. The transduction reaction was 

incubated for 90 minutes in a 37°C + 5 % CO2 incubator with occasional rocking (every 

20 to 30 min). At completion of the incubation 2ml DMEM media with 2.0 % serum was 

added. Cell lysates were collected at designated time points (12h, 24h, 36h, 48h and 72h). 

Lysates were analyzed by Western blotting 

Flow Cytometry: Single-cell suspensions of RK13 cells were generated by incubating the 

cells in PBS/4 mM EDTA at 37 °C for 15 min. Cells were washed in FACS buffer (PBS, 

2 % heat-inactivated FBS), incubated for 10 min on ice in 100 µl primary antibody diluted 
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in FACS buffer (SAF-32 anti-PrP; 4 µg ml−1, Cayman Chemical, Cat. No. 189720, Ann 

Arbor, MI), washed in FACS buffer, incubated for 10 min on ice in 100 µl FITC-

conjugated secondary antibody diluted in FACS buffer (anti-mouse–FITC at 1: 200) and 

washed in FACS buffer; twenty µl propidium iodide (50 µg /ml) was added before 

analysis. 

Representational Difference Analysis (RDA):  mRNA isolation out of the RK13-MoPrP 

cells was accomplished using the Invitrogen Dynabeads mRNA Direct Kit. The basis of 

this kit is to simplify purification of total mRNA using oligo(dT)25 residues that have 

been covalently coupled to the surface of Dynabeads.  The Dynabeads are uniform, super 

paramagnetic beads, stable in the pH range of 4-13. Physical characteristics of beads are 

as follows; diameter 2.8 µm ± 0.2 µm (C.V. max 5%); Surface area: 3-7 m2/g; Density: 

Approx. 1.6 g/cm3 ; Magnetic mass susceptibility: 120±25×10-6m3/kg. RK13-MoPrP 

cells grown to 90% confluence in 10-cm cell culture dishes were washed three times with 

5.0 ml of cold (4°C) phosphate-buffered saline (PBS, Gibco). Upon the completion of 

washing the cells, 1.0 ml of Trypsin EDTA (Gibco) was added and placed for 5 min in 

37°C + 5.0% CO2 incubator to allow cells to detach from the surface. Detached cells 

were gently resuspended in PBS and pelleted in 4°C, 250xg refrigerated centrifuge for 5 

min. The supernatant was decanted and the cell pellet was gently resuspended in 5.0 ml 

of PBS. The cell pellet is resuspended in 1.25 ml of Lysis/Binding buffer (100mM Tris-

HCl (pH 7.5), 500 mM LiCl, 10 mM EDTA (pH 8.0), 1 % LiDS, 5 mM dithiothritol 

(DTT)) and pipetted several times to obtain full resuspension. Cellular DNA was sheared 

by passing lysate 3-5x through a 21-gauge needle in 2.0 ml syringe on ice. Dynabeads 

Oligo(dT)25 was thoroughly resuspended and 250 µl was transferred to 1.5 ml RNase 
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free microcentrifuge tube. The tubes were placed onto a DynaMag magnet for 30 sec 

until the Dynabead suspension was clear. The beads were washed in an equal volume of 

lysis/binding buffer and removed using the magnet. Cell lysate was added to the prepared 

Dynabeads, completely resuspended and incubated with continuous mixing for 5 min at 

room temperature. The lysate/bead mixture was placed on the magnet and incubated for 2 

min, until the solution became clear. The supernatant was removed and the beads are 

washed twice with 1.5 ml Washing Buffer A (10 mM Tris-HCl (pH 7.5), 0.15 M LiCl, 1 

mM EDTA, 0.1 % LiDS) at room temperature. The magnet was used in between steps to 

separate phases. The beads were washed twice with 1.5 ml Wash Buffer B(10 mM Tris-

HCl (pH 7.5), 0.15 M LiCl, 1 mM EDTA). Finally, the beads were washed once in 5x 

First-strand Reaction Buffer (Invitrogen, cat #11917-010). 

RDA Double-Stranded cDNA Synthesis: Double stranded cDNA for the RDA was 

synthesized using the Superscript Double-Stranded cDNA Synthesis kit (Invitrogen, Cat 

no.# 11917-010). Bead-primed mRNA and 9 µl of DEPC-treated H2O was heated to 70° 

C for 10 min and quickly chilled on ice. The samples were briefly centrifuged and 4 µl of 

5X First-strand reaction Buffer, 2ul 0.1M DTT and 1ul 10mM dNTP mix were added.  

Samples were briefly vortexed and centrifuged. The tubes were placed at 45°C for two 

min. Three µl of Superscript II Reverse transcriptase was added, mixed and incubated at 

45°C for 1 h. The reaction was stopped by transfer to ice. Second strand cDNA synthesis 

was completed by adding 91µl DEPC-H2O, 30 µl 5X second-strand reaction buffer, 3 µl 

10mM dNTP mix, 1 µl E.coli DNA ligase (10U/µl), 4 µl E.coli DNA Polymerase I (10U/ 

µl), and 1 µl E.coli RNase H (2U/ µl) in the respective order. This was mixed and 

incubated for 2h at 16°C. Two µl (10 units) of T4 DNA Polymerase were added, 
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followed by further incubation for 5 min. The tubes were placed on ice and 10 µl of 0.5 

M EDTA was added. Samples were cleaned and purified by addition of 160 µl phenol: 

chloroform: isoamyl alcohol (25:24:1), and centrifuged at room temperature for 5 min at 

14,000 x g. One hundred and forty µl of the top aqueous phase was placed into a new 1.5 

ml tube. Seventy µl of 7.5 M NH4OAc was added followed by 0.5 ml of ice-cold 

absolute ethanol. The samples were mixed and centrifuged for 20 min at 14,000 x g at 

room temperature. The supernatant was removed and the pellet was washed in 0.5 ml of 

ice-cold 70 % ethanol and centrifuged for 2 min at 14,000 x g at room temperature. The 

cDNA pellet was dried at 37°C for 10 min and resuspended in DEPC-H2O. 

Representational Difference Analysis (RDA): The RDA described in these methods is 

adapted from the following (Lisitsyn Iu 1992; Lisitsyn, Rosenberg et al. 1993; Lisitsyn, 

Leach et al. 1994). All procedures utilize RNase/DNase free water. Primers were 

synthesized by Integrated DNA Technologies Inc. The primers were de-salted and HPLC 

purified. All primers were resuspended in water at 62pmol/ µl concentration. 

RDA Primers: 

Representation: 

24-mer: R-Bgl24 – 5’-AGCACTCTCCAGCCTCTCACCGCA-3’ 

12-mer: R-Bgl12 – 5’- GATCTGCGGTGA-3’ 

Odd cycle: 

24-mer: O-Bgl24 – 5’-ACCGACGTCGACTATCCATGAACA-3’ 

12-mer: O-Bgl12 – 5’-GATCTGTTCATG-3’ 

Even cycle: 

24-mer: E-Bgl24 – 5’-AGGCAACTGTGCTATCCGAGGGAA-3’ 
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12-mer: E-Bgl12 – 5’-GATCTTCCCTCG-3’ 

Preparation of amplicons and representation: Tester and driver double-stranded (ds) 

cDNA (5 µg) synthesized from RK13 sensitive and resistant cells, clone 7 and clone 78 

respectively, were digested using 10 U DpnII restriction enzyme per microgram of ds 

cDNA (New England Biolabs (NEB)) in a total volume of 400 µl per reaction. The 

digested tester and driver samples were extracted and purified using 1 volume of phenol 

(400 µl) followed by 1 volume of phenol: chloroform: isoamyl alcohol (400 µl). Ethanol 

precipitation was performed using 1/10 volume 3M Sodium Acetate (pH 5.2), 2.5 volume 

100% ice-cold ethanol, and 20 µg glycogen and centrifuged at 4°C for 20 min. The pellet 

was washed once with 70% ethanol and air dried. The pellet was suspended was done 

using TE buffer (10mM Tris-Cl, pH 8.0, 1mM EDTA, pH 8.0) at a concentration of 0.1 

µg/µl.   

Ligation Of Adapters Onto Tester And Driver ds-cDNA: In 30 µl volume, a mixture of 2 

µl H2O, 3 µl 10x Ligase buffer (NEB), 7.5 µl 12-mer R-primer, 7.5 µl 24-mer R-primer, 

and 10 µl (1µg) ds-cDNA tester/driver digest was established in a PCR tube. The tubes 

were placed in a thermo cycler at 55°C with gradual temperature decrease to 4°C over 1 

h. One µl of 400 U/ µl T4 DNA ligase (NEB) was added, gently mixed and incubated for 

16 hours at 14°C. Samples were then transferred to 1.5ml DNase/RNase free microfuge 

tubes and resuspended with 970ul of TE buffer (1 ng/µl ds-cDNA).  

PCR-Amplification Of Driver And Tester Amplicons: A master mix was set up based on 

the following PCR reaction; 280 µl water, 40 µl 10x Taq Polymerase buffer (NEB), 32 µl 

dNTP chase solution (4 mM (each) dGTP, dATP, dTTP, dCTP), 8 µl 24-mer R-primer. 

Generally, two tester and twelve driver reactions were established. Forty µl of adapter 
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ligated DNA was added per reaction. The mix was held at 72°C in a thermal cycler for 

two min. Three µl of 5 U/µl Taq DNA polymerase was added to each reaction prior to 

thermo cycling initiation. PCR parameters were as follows; step 1: 5 min incubation at 

72°C, step 2: 20 cycles of 1 min denaturation at 95°C followed by 3 min extension at 

72°C, and step 3: final step of 10 minute extension at 72°C. Upon completion, all 

samples were combined respectively and extracted as previously described. Amplicons 

are precipitated using 1 volume of isopropanol with 20 µg glycogen followed by two 

70% ethanol washes.  Driver and tester amplicons were resuspended in TE buffer at 0.2 

to 0.4 µg/µl concentration.  

Linker Removal: One hundred and fifty µg of driver and 15 µg of tester DNA was 

digested using 10 U Bgl (NEB) restriction endonuclease in a 400 µl total volume. The 

samples was extracted and purified using ethanol as previously described and 

resuspended in 125 µl TE buffer. Concentration was measured in comparison with 

lambda DNA (NEB) standards on a 2% agarose gel. 

 

Adapter Change On Tester Amplicons:  Five µg of tester amplicon was loaded on a 1% 

agarose gel and electrophoresed to separate DNA in the range from 150 base pair (bp) to 

1500bp. Within the described range using a clean and sterile razor blade, two full slits 

were made in the gel and a 24-mm GF/C glass microfiber filter and a 6,000- to 8,000-

MWCO dialysis tubing are inserted using blunt ended forceps. Electrophoresis was 

resumed until the DNA had migrated past the filter/dialysis inserts. A collection 

apparatus was setup by puncturing a hole in the bottom of a 0.5 ml PCR tube with an 18-

gage needle and placed into a 1.5 ml microfuge tube. The filter/dialysis samples were 
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placed into the apparatus and spun at 8,000 rpm at room temperature for 5 min. The PCR 

tubes with filter/dialysis were discarded and the samples were resuspended in 400 µl 

water. The amplicons were extracted and purified, dissolved in 30 µl TE buffer, and the 

concentration was determined.  One µg of tester amplicon DNA was ligated with the O-

primer set following the same protocol as described above. Upon extraction and clean up, 

the pellet was resuspended at 10 ng/µl concentration in TE.  

Subtractive/kinetic enrichment:  

Tester: Driver ratio 

Round 1: 1:50, Round 2: 1:500, Round 3: 1:1000 

Eighty µl driver amplicon digest (0.5 µg/µl) and 80 µl tester amplicon digest (10 µg/µl) 

DNA were combined and mixed. Followed by extraction with 160 µl phenol: chloroform: 

isoamyl alcohol. Ethanol precipitation with ammonium acetate; 30 µl of 10 M 

ammonium acetate, 300 µl ice-cold 100% ethanol, 1 µl glycogen (20µg), for 10 min, 

centrifuged at 13,000 rpm for 20 min. The pellet was washed with 1.0 ml 70% ethanol 

and air dried. Four µl of 3 X EE hybridization buffer (30 mM 4-(2-hydroxethyl)-1-

piperazinepropanesulfonic acid (EPPS). pH 8.0, 3 mM EDTA) was added to pellet, 

resuspended and incubated at 37°C for 5 min, followed by 2 min of vortexing and a short 

centrifugation at maximum speed to collect sample. In a PCR tube, the resuspended 

samples were mixed with 1 µl of 5 M NaCl (preheated to 95°C). The mixture was 

incubated for 1 min at 95°C and centrifuged, followed by the addition of 35 µl mineral oil 

to overlay the samples. The tubes were incubated for an additional 4 min at 95°C for, 

followed by a 30 h incubation at 67°C to hybridize complementary strands. 
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Selective Amplification: Mineral oil was removed and the samples were gradually 

diluted to 0.1µg/ µl through the sequential addition of 8 µl of 5 µg/ µl glycogen in TE, 23 

µl TE, and 364 µl TE mixing and vortexing between each step. The adapter ends were 

filled in by mixing 275 µl water, 40 µl 10x PCR buffer (NEB) and 32 µl dNTP chase 

solution with 40 µl of diluted hybridized DNA and incubated at 72°C. Three µl of Taq 

DNA polymerase (NEB) was added with an additional 5 min incubation at 72°C. Ten µl 

of 24-mer O-primers was added and the complete mixture was amplified using the 

following parameters; step 1: 10 cycles of 1 min denaturation at 95°C followed by 3 min 

extension at 72°C, step 2; final extension at 72°C for 10 min. The samples were 

extracted, and isopropanol precipitated, and the pellet was dissolved in 40 µl water. 

Single stranded templates were digested using Mung bean nuclease (MBN, NEB); 14 µl 

water, 4 µl 10x MBN buffer, 20 µl amplified difference product and 2 µl 10 U/ µl Mung 

bean nuclease were mixed and incubated at 30°C for 30 min. One hundred and sixty µl of 

50 mM Tris-Cl, pH 8.9 was added to each sample and incubated at 98°C for 5 min to 

inactivate the MBN. A PCR mixture as described in the initial tester/driver amplification 

step was set up using the 24-mer O-primer and 40 µl of MBN treated difference product.  

The addition of Taq polymerase and thermal cycling steps are as described in the initial 

PCR setup. 

Adapter Change On The Difference Product:  PCR samples were extracted and 

isopropanol precipitated. Pellets were dissolved in 80 µl TE and the concentration 

determined. Five µg of difference product was digested using BglII restriction 

endonuclease in 200 µl total volume. Samples were brought to 400 µl total volume, 

phenol/chloroform extracted and ethanol precipitated. The DNA pellet was resuspended 
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at 0.1 µg/µl in TE. One µg of DNA solution was ligated to E-primer set in a 30 µl 

volume. The ligated product was diluted to 1.25 ng/µl in TE. 

Subsequent Subtraction/Kinetic Enrichment: The difference products were enriched in 

subsequent subtraction rounds following the described protocol with a change in ratio of 

tester: driver concentrations.  

Cloning RDA Products And Sequencing:  Following 3 rounds of RDA enrichment, the 

difference product was run out on a 1% agarose gel. Observed bands were excised and 

purified with the Promega Wizard SV gel and PCR clean up system kit (Catalog # 

A9280). Excised bands were dissolved in membrane binding solution (4.5 M guanidine 

isothiocyanate, 0.5 M potassium acetate (pH 5.0) and incubated at 65°C for 10 min. 

Dissolved samples were transferred to the SV Minicolumn, held for 1 min prior to 

centrifugation at 16,000 x g. The columns were washed with Membrane Wash Solution 

(10 mM potassium acetate (pH 5.0), 80% ethanol, 16.7 µM EDTA (pH 8.0)) twice. 

Samples were eluted from the columns with nuclease free water and collected in a 1.5 ml 

microcentrifuge tubes. Eluted RDA difference product was ligated into the pGEM-T 

vector (Promega, Madison, WI).  Ligation was setup accordingly; 5 µl 2x Rapid Ligation 

Buffer, T4 DNA ligase, 1 µl pGEM-T vector (50 ng), 2 µl RDA product, 1 µl T4 DNA 

Ligase and 1 µl water. The mixture was incubated at room temperature for 1 h.   

Transformation Of pGEM-T Ligated Difference Product: Two µl of ligated product 

was added to 50 µl of competent XL10 bacterial cells, on ice. The cells were kept on ice 

for 30 min. Heat shock was done at 42°C for 45 sec and immediately transferred to ice 

for an additional 2 min. Two hundred and fifty µl of LB (10g Tryptone, 5g Yeast extract, 

10g NaCl for 1 liter production) was added to each transformation tube and incubated for 
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1 h shaking at 37°C. One hundred µl of transformed product was spread on to 

LB/ampicillin (100µg/ml) agar plates and incubated overnight at 37°C. Colonies were 

individually picked and grown in 3ml LB/ampicillin (100ug/ml) medium. Each identified 

and expanded clone was subsequently purified by alkaline lysis plasmid isolation and 

silica column purification using the Qiagen plasmid mini prep kit (cat.no. 19064). 

DNA Sequencing Of Cloned RDA Plasmids: Purified clones were sequenced using the 

Beckman Coulter Ceq 8000 DNA Sequencer and The GenomeLab™ DTCS Quick Start 

Kit (cat.no. 608120).  Sequencing reactions were setup as follows; 9 µl dH2O, 1 µl 

pGEM-T-RDA product plasmid were mixed in 0.2 ml thin wall tubes and incubated in 

96°C for 1 min. Samples were collected by quick centrifugation, chilled on ice and 2 µl 

of T7 forward primer (1.6 µM) and 8 µl DTCS Quick Start Master mix were added. 

Thermal cycling conditions were as follows; 30 cycles of: 96°C for 20 sec, 50°C for 20 

sec and 60°C for 4 min; samples were held at 4°C. For ethanol precipitation; 5 µl of stop 

solution is applied to each sample (2 µl 3M Sodium Acetate (pH 5.2), 2 µl 100 mM Na2-

EDTA (pH 8.0) 1 µl glycogen (20 mg/ml). Sixty µl of cold 95% ethanol was added and 

immediately spun at 14,000 rpm at 4°C for 15 min. Pellets were washed twice with 200 

µl 70% ethanol followed by 5 min centrifugation at 14,000 rpm at 4°C. Pellets were air 

dried and resuspended in 40 µl Sample Loading Solution (DTCS kit). Resuspended 

samples were loaded on to sequencing 96-well plate (P/N 609801) and placed into the 

Beckman Coulter Ceq 8000 DNA Sequencer.  Consumables placed into the sequencer 

were;  

- GenomeLab DNA Separation Capillary Array 33cm x 75um (P/N 608087) 

- GenomeLab Separation Gel LPA-1 (P/N 609010 10mL for CEQ 8000; P/N   
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391438 20 ml for CEQ 8800) 

- GenomeLab Sequencing Separation Buffer (P/N 608012) 

- Sample Microtiter Plates (P/N 609801) 

- 96 Well Plates for sequencing buffer (P/N 609844) 

Sequenced data were analyzed using CEQ8000 Genetic Analysis System software, and 

nucleotide blasted against all known sequences in the National Center for Biotechnology 

Information Data Base (NCBI). 

Microarray Studies: 

The format of the microarray chip is designated as a 4x44K system, which essentially 

contains four distinct arrays on a single chip with 43,803 rabbit probes represented per 

array (http://www.genomics.agilent.com). To reduce technical variance, all of the RNA 

samples were treated, reverse transcribed, Cy-3 labeled and hybridized simultaneously. 

The data acquisition and feature extraction was performed using the Agilent’s microarray 

scanner and software.  

RNA Isolation: RNA was isolated using the Qiagen RNeasy mini kit (cat. No. 74124). 

Six RK13-DeerPrP (RKD) sensitive and six resistant clones were grown to 90% 

confluence on a 10cm cell culture plates. Cells were washed twice with PBS and 

trypsinized to detach them from the plates. The cells were resuspended in 9 ml of PBS 

and pelleted at 300 x g for 5 min at 4°C. The pellets were washed twice more with PBS.  

Pellets were then dissolved and lysed with RLT buffer (RNeasy kit). The lysates were 

passed through a blunt 20-gauge needle 5 times. One volume of 70% ethanol was added 

and mixed by pipetting. Samples were then transferred to the RNeasy spin column and 

centrifuged at 14,000 rpm for 30 sec. Seven hundred µl of RW1 buffer was added to each 
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column and centrifuged. The columns were then washed twice with 500 µl of RPE buffer 

and centrifuged once for 15 sec and the second time for 2 min at 14,000 rpm. The RNA 

was eluted with 50 µl RNase-free water and by placing the columns into new nuclease 

free 1.5 ml microcentrifuge tubes. 

Total RNA Integrity Analysis: The integrity of the isolated RNA was measured using the 

Agilent’s 2100 Bioanalyzer (p/n G2938A) and the RNA 6000 Nano Assay Kit (p/n 5067-

1511). Parts required and used in this experiment were: Chip priming station (p/n 5065-

4401), 16-pin bayonet electrode cartridge (p/n 5065-4413) and the IKA- Vortex mixer 

(model MS2-S8). RNA was quantified using the NanoDrop ND-1000 UV-VIS 

Spectrophotometer (Thermo Scientific).   

 

One-Color (Cy3) Labeling RNA: Agilent one-color spike in master mix (p/n 5188-5282) 

was developed based on Agilent’s protocol 

(http://www.chem.agilent.com/Library/usermanuals/Public/5188-5977.pdf), two hundred 

ng of total RNA (1.5 µl) was used in the labeling reaction. Two µl of diluted Spike in mix 

was added. Low input quick amp labeling kit, one color (p/n 5190-2305) was used. T7 

primer (1.8 µl) was added and denatured at 65°C for 10 min followed by a 5 min 

incubation on ice. cDNA master mix ((4.7 µl) 2 µl 5x First Strand buffer, 1 µl 0.1 M 

DTT, 0.5 µl 10 mM dNTP mix, 1.2 µl Affinity Script RNase Block Mix) was added per 

reaction and incubated at 40°C for 2 h followed by 15 min incubation at 70°C. Samples 

were transferred and held on ice. Six µl of transcription mix (0.75 µl water, 3.2 µl 5X 

transcription buffer, 0.6 µl 0.1 M DTT, 1 µl NTP mix, 0.21 µl T7 RNA Polymerase 

blend, 0.24 µl Cyanine 3-CTP) was added per reaction and incubated at 40°C for 2 h. The 
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labeled cRNA was purified using Qiagen RNeasy mini spin columns. Eighty-four µl 

nuclease free water was added to each reaction, 350 µl of Buffer RLT (cat. no. 79216) 

was added and mixed followed by 25 µl 100% ethanol. The total volume was transferred 

to the RNeasy spin column and centrifuged at 13,000 rpm for 30 sec at 4°C. The columns 

were washed twice with 500 µl buffer RPE (cat. No. 1018013). The cRNA was eluted 

with 30 µl nuclease free water. cRNA quantification was performed using the microarray 

measurement tab within the NanoDrop ND-1000 UV-VIS Spectrophotometer. The 

following measurements were recorded: Cyanine 3 dye concentration (pmol/µl), RNA 

absorbance (260nm/280nm), cRNA concentration (ng/µl). cRNA yield (µg) was 

determined as follows: ((concentration of cRNA) x 30 µl (elution volume))/1000 

Cyanine 3 incorporation was calculated: ((concentration of Cy3)/(concentration of 

cRNA))x 1000 = pmol Cy3 per µg cRNA. 

Hybridization: Agilent’s Gene Expression Hybridization Kit (p/n 5188-5242) was used. 

Blocking agent (10x) (p/n 5188-5281) was prepared by the addition of 500 µl nuclease 

free water and mixing. Fragmentation mix was prepared in a 55 µl total volume; 1.65 µg 

Cy3 labeled cRNA, 11 µl 10X blocking agent, 2.2 µl 25X fragmentation buffer, nuclease 

free water brought to 52.8 µl. Samples were incubated at 60°C for 30 min and cooled on 

ice for one min. The fragmentation reaction was stopped with the addition of 55ul 2X 

GEx Hybridization Buffer HI-RPM and mixing, being careful not to introduce bubbles 

into the solution. Samples were centrifuged for one min at room temperature 13,000 rpm. 

100 µl of hybridization sample was applied to the loaded Agilent SureHyb chamber 

assembly (cat.No. G2534A)/gasket (p/n G2534-60011) and gently placed with the Rabbit 

Gene Expression Microarray, 4x44K array (cat. No. G2519F-020908).  The complete 
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hybridization assembly was placed into the hybridization rotator (p/n G2530-60029) and 

transferred to the hybridization oven (p/n G2545A) set to 65°C. The hybridization was 

set up to run for 17 hours.  The arrays were washed with GE Wash Buffer 1 for one min 

at room temperature, and a second wash with pre-warmed (37°C) GE Wash Buffer 2 for 

one min (Gene Expression Wash Buffer Kit p/n 5188-5327). Each slide was scanned 

using the Agilent Microarray Scanner (p/n G2565BA). Agilent Feature Extraction (FE) 

Software was used to extract scanned data from each chip.  

Microarray Data Analysis:   

JMP Genomics Software: JMP Genomics was utilized for manipulation of extracted raw 

microarray data, statistical analysis, and hierarchical data clustering to ascertain gene 

significance of microarray data. Total overview of this software can be found at: 

http://www.jmp.com/software/genomics/index.shtml 

The Database for Annotation, Visualization and Integrated Discovery (DAVID): 

National Institute of Allergy and Infectious Disease (NIAID) bioinformatic database used 

for functional enrichment of identified genes. This database was used to identify 

biological themes and processes by uploading the microarray gene lists deemed 

statistically significant by the t-test, p-value of 0.05, and a fold cutoff set to 1.5. 

DAVID website address: http://david.abcc.ncifcrf.gov 

Protein Analysis Through Evolutionary Relationships (PANTHER): Gene Ontology 

Reference Genome Project - http://www.pantherdb.org/ PANTHER classification 

database is supported by the National Institute of General Medical Sciences and 

maintained by the Thomas lab at the University of Southern California. The database 

provides functional comparison and classification of up loaded genes using published 
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scientific experimental evidence and evolutionary relationships to predict function in the 

absence of direct experimental evidence. Classifications are based according to:  

Additional Bioinformatic Websites and Databases Used For Data Analysis: 

Literature Search: PubMed - http://www.ncbi.nlm.nih.gov/pubmed 

Image Analysis: ImageJ - http://rsb.info.nih.gov/ij/index.html 

Gene Sequence Identity, Homology, Protein Sequence Analysis, Secondary Structure 

Prediction and Subcellular Localization: 

ENTREZ Cross-Database Search - http://www.ncbi.nlm.nih.gov/sites/gquery 

NCBI BLAST- http://blast.ncbi.nlm.nih.gov/Blast.cgi 

ENSEMBL Genome Browser - http://uswest.ensembl.org/index.html 

GeneCards Database - http://www.genecards.org 

Universal Protein Resource (UniProt) - http://www.uniprot.org 

Protein Data Bank (PDB) - http://www.pdb.org/pdb/home/home.do 

SIB Bioinformatics Resource Portal (ExPASy) - http://expasy.org 

- YASPIN (Hidden Neural Network) secondary structure prediction 

 - http://www.ibi.vu.nl/programs/yaspinwww 

Center For Biological Sequence Analysis (CBS) - http://www.cbs.dtu.dk/services 

 TargetP (predicts the subcellular location of eukaryotic proteins) 

 ProtFun (Prediction of cellular role, enzyme class and Gene Ontology category) 

MiniMotif Miner - http://mnm.engr.uconn.edu/MNM/SMSSearchServlet 

Protein Structure Classification - http://www.cathdb.info  

Copyright © Vadim Khaychuk 2012 
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Chapter 3 

Characterization of Prion Strains in Cell Culture Systems 

 

Introduction 

The molecular characterization of prion strain properties challenging. It is the 

proteinaceous nature of prions that distinguishes them from viruses, bacteria and other 

known disease causing agents. This “protein only” molecular composition of prions 

utilizes atypical methods to replicate that differ from the standard dogma of molecular 

biology (Fig. 1.3). The absence of nucleic acids is central to the prion strain classification 

challenge. Evidence suggests that prion strain diversity relies on conformational 

differences PrPSc can acquire (Chapter 1, Section I) (Telling, Parchi et al. 1996; 

Wadsworth, Hill et al. 1999). In addition to these conformational differences, the 

structural homology between PrPC and PrPSc is also a crucial determinant of replication, 

which underlies the fundamental concept of the prion species barrier (Fig. 3.1) (Scott, 

Groth et al. 1993; Telling, Scott et al. 1994; Collinge, Palmer et al. 1995; Telling, Scott et 

al. 1995). It is the combination of these findings that dictates the conformational selection 

hypothesis for prion strain selection and diversity (Collinge 1999; Collinge and Clarke 

2007).  

Prion Species Barrier: The parameters controlling interspecies prion transmission is not 

completely understood. The prion species barrier is influenced by the host’s PrPC primary 

structure homology to the PrPSc infectious agent (Fig. 3.1A-B) (Scott, Foster et al. 1989; 

Telling, Scott et al. 1995). The prion species barrier may not be absolute, since partial 

interspecies transmission have been demonstrated in experimental animals, subsequently 
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leading to total barrier abrogation upon serial transmission (Scott, Foster et al. 1989; 

Bessen and Marsh 1992; Bruce, Will et al. 1997; Baron, Bencsik et al. 2007; Agrimi, 

Nonno et al. 2008; Sandberg, Al-Doujaily et al. 2010). The transmission of BSE to 

humans in the form of vCJD is another example of a partial species barrier (Bruce, Will 

et al. 1997; Collinge 1999; Scott, Will et al. 1999). Understanding the molecular 

determinants of prion species barriers, and factors that regulate interspecies transmission 

are crucial for disease prevention in humans and other animals. 

PrPC Interference Effect: The interference of endogenously expressed mouse PrPC to 

production of human PrPSc in Tg(HuPrP)FVB mice co-expressing mouse and human PrP 

was discovered during transmission of human prions to these mice (Fig. 3.1C) (Telling, 

Scott et al. 1995).  Earlier studies using Tg mice co-expressing hamster and mouse PrPC 

did not exhibit similar interfering effects, since there mice inoculated with hamster prions 

succumbed to disease (Scott, Foster et al. 1989). Although the differences in 

susceptibility for heterologous prions between these studies remains to be fully explained, 

it is hypothesized that primary structure homology between mouse in hamster PrPC is 

closer than that of mouse in human PrPC.  

Heterologous PrPSc In Cell Culture: Methods used to characterize strains include 

incubation time in animals, clinical signs at the onset of disease, and neuropathological 

profiling of PrPSc (Bruce and Dickinson 1979; Bruce, McBride et al. 1989). 

Biochemically, strains maybe characterized by analyzing their glycoform ratios of PrPSc, 

protease sensitivity of PrPSc, migration of PrPSc in SDS-PAGE, and conformational 

stability of PrPSc following treatment with denaturing agents.  
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Current methods used for CWD prion analysis consists of bioassays and/or in 

vitro PMCA conversion assays (Green, Castilla et al. 2008). Developing robust cell-

culture models will provide additional insights into CWD prions at the cellular level. The 

studies described in this chapter aim to characterize and enhance in vitro cell culture 

models for prion strain analysis. Upon prion challenge, we attempt to isolate cells with 

capability to chronically sustain CWD. The prion strains used for these analyses are 

designated in table 3.1. The cells that were utilized include the rabbit kidney epithelial 

cells (RK13), mouse Neuroblastoma N2a cells and the human embryonic kidney 293 

cells. Besides identifying cells capable of interspecies prion replication, these cell culture 

model studies recapitulated the prion species barrier and PrPC interference effects 

previously demonstrated using transgenic animal models (Scott, Groth et al. 1993; 

Telling, Scott et al. 1995).  

 The neuroblastoma (N2a) cell line replicates experimentally adapted RML 

mouse-scrapie prions (Race, Fadness et al. 1987; Butler, Scott et al. 1988). Detailed 

characterization revealed that a subset of cells within the total culture efficiently replicate 

prions (<2%) (Race, Fadness et al. 1987; Race, Caughey et al. 1988; Bosque and Prusiner 

2000). Clonal selection of N2a cells sensitive to prion replication enhanced PrPSc 

production by 80-90% (Race, Caughey et al. 1988). Through clonal selection and 

transgenesis of the N2a cells, we aimed to create cells that are sensitive towards natural 

prion isolates. 

RK13 cells do not express endogenous rabbit PrPC, therefore making them the in 

vitro cell culture model analogous to the well-established PrPC knock out (Prnp0/0) mouse 

(Büeler, Fischer et al. 1992; Büeler, Aguzzi et al. 1993). The absence of endogenous PrPC 
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in these cells can be applied towards genetic modulation and infectivity analyses using 

heterologous PrP’s. The replication of naturally derived prion isolates without adaptation 

in mice was achieved using the RK13 cells (Vilette, Andreoletti et al. 2001). Genetic 

modulation of the RK13 cells to express ovine PrPC resulted in chronic propagation of 

scrapie directly derived from sheep (Vilette, Andreoletti et al. 2001).  
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Figure 3.1 The prion species barrier and PrP interference. (A) Inoculation of wild 

type FVB mice with human prions does not cause disease, demonstrating a prion species 

barrier between mouse and human. (B) Expression of human PrP (HuPrP) on a Prnp0/0 

background, replicates the heterologous human prions and recapitulates disease. Thus, 

expression of human PrP in Tg mice abrogates the species barrier between the two 

species. (C) Co-expression of human and mouse PrP does not facilitate human prion 

replication, demonstrating interference by the endogenously expressed mouse PrPC. 

(Telling, Scott et al. 1995) 
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Figure 3.1 The prion species barrier and PrP interference. 
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RESULTS 

Section I: Prion Species Barriers, Interference and the Attempt to Propagate 

Chronic Wasting Disease (CWD) in Cell Culture 

 

N2a Cells Recapitulate The Prion Species Barrier And Demonstrate The PrP 

Interference Effect 

N2a cells were single-cell cloned using limited dilution. Individual clones were 

infected with mouse-adapted RML scrapie prions and PrPSc accumulation was assessed 

(Chapter 4, Fig. 4.2B). N2a sub-clone #2 exhibited high sensitivity for RML replication. 

The uninfected counterpart of this clone was selected for the subsequent transfection with 

deer and elk PrPC.  Transfection of the eukaryotic expression vector (pIRESpuro) 

genetically engineered to express elk or mule deer PrPC resulted in stable expression of 

these proteins in the N2a clone (Fig. 3.2).  Expression of cervid specific PrPC was 

determined using the 9E9 monoclonal antibody (mAb). The 9E9 mAb was developed and 

epitope mapped within our lab (unpublished, Telling lab). Figure 3.2 exhibits 9E9 mAb 

specific recognition of elk and mule deer PrPC but not the endogenously expressed mouse 

PrPC in the un-transfected N2a sub-clone #2. Actin expression is used as a control for 

total protein (Fig. 3.2).  

To determine N2a cell susceptibility to CWD, we infected elk and deer expressing 

cells with CWD isolates (Table 3.1). Each isolate used in the study was bioassayed and 

sub-passaged in transgenic mice expressing cervid PrPC (Tg(deerPrP)1536+/- and 

Tg(elkPrP)5037+/-) (Fig. 3.3). The cell-lift assay was used to rapidly detect production of 

PrPSc. This assay is ~150-fold more sensitive for identifying prion infected cells than 
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standard cell lysate analysis by western immuno blotting (Bosque and Prusiner 2000). 

Figures 3.3A-F represents scanned x-ray film images obtained from the cell-lifting assay.  

The positive and negative controls for the experiments are shown in figures 3.3C 

and 3.3F. N2a cells were either mock infected with PBS (negative control) or infected 

with RML prions (positive control). N2a cells co-expressing elk or deer PrPC were also 

infected with RML. The sharp dark signal exhibited by the RML infected cells (positive 

controls) depicts the normal signal intensity of PrPSc replicating cells (Fig. 3.3C and 

3.3F). The mock-infected negative controls demonstrated complete absence of PK 

positive material, confirming the uncontaminated purity of the parental N2a cell line (Fig. 

3.3 C, F).  RML infected cells showed robust production of PrPSc, confirming the highly 

sensitive phenotype of the parental sub-clone. Of interest, co-expression of cervid PrPC 

did not alter the sensitivity to RML prion replication (Fig. 3.3 C, F).     

The heightened sensitivity of these cells for RML prions indicates that the cellular 

machinery for replication are present and operational. We therefore hypothesized that 

these cofactors would facilitate CWD replication in the cervid PrPC over-expressing cells. 

N2a cells expressing mule deer (N2aD-PrP) or elk PrPC (N2aE-PrP) were infected with 

0.2% (w/v) CWD brain homogenates obtained from Tg(deerPrP)1536+/- (Fig. 3.3A and 

3.3D) or Tg(elkPrP)5037+/- (Fig. 3.3B and 3.3F) infected mice (Table 3.1). N2aD-PrP 

cells failed to replicate CWD prions (Table 3.1). The lack of PK resistant PrPSc, as 

analyzed by the cell-lifting assay, confirmed these findings (Fig. 3.3A-B). N2aE-PrP cells 

also exhibited resistance towards CWD prions. These cells did not demonstrate PrPSc 

conversion after CWD infection with isolates passaged in Tg(deerPrP)1536+/- mice (Fig. 

3.3D). Select CWD isolates derived from Tg(elkPrP)5037+/- mice showed a weakly 
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positive PrPSc signal in N2aE-PrP cells (Fig. 3.3E). These CWD isolates include 73784, 

CWD pool, 012-09442, and 012-02212, which were originally derived from diseased elk 

(Table 3.1). The PrPSc positive N2aE-PrP cells were expanded for further analysis. Total 

cell lysates were processed for western blotting. The results revealed no detectable PrPSc 

after PK digestion within the expanded cell populations (Fig. 3.3G). N2aE-PrP cells 

demonstrate CWD resistance similar to N2aD-PrP. We conclude that N2aE-PrP and 

N2aD-PrP cells are resistant to CWD infection and that clonal selection was not 

sufficient to render N2a cells susceptible to CWD (Fig. 3.3). The data gathered using 

these cells recapitulate the originally described in vivo observations that demonstrate the 

prion species barrier using transgenic mice (Telling, Scott et al. 1995). Similar to mice, 

the murine cell line readily replicates mouse-adapted prions, irrespective of the presence 

of over-expressed heterologous PrPC protein. Conversely, over-expression of the 

heterologous PrPC is not sufficient to replicate prions that are homologous to that species. 

Our data indicate that the endogenous mouse PrPC hinders the replication of heterologous 

CWD prions by CerPrPC.  

  



	   102	  

Figure 3.2 Stable expression of cervid PrPC in N2a cells. N2a cells were transfected 

with pIRESpuro-elk PrPC/-mule deer PrPC using lipid-based methods. Transfected cells 

were grown in selection media and assessed for cervid PrPC expression by western 

blotting. The cervid specific 9E9 mAb (Telling et al., unpublished) was used to detect 

cervid PrPC. Actin expression is used for total protein control (Pan-Actin mAb-5, Lab 

Vision Corporation, Fremont, CA).  
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Figure 3.2 Stable expression of cervid PrPC in N2a cells.  
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Table 3.1 Prion strains used for cell culture infectivity analysis. 

Prion Strain Origin Host -
Source 

Species Adapted 

Chronic Wasting Disease (CWD) 
D10 Colorado Mule 

deer 
Tg(deerPrP)1536+/-  & Tg(elkPrP)5037+/- 
mice 

D92 Colorado Mule 
deer 

Tg(deerPrP)1536+/-  & Tg(elkPrP)5037+/- 
mice 

73784-7 Wyoming Elk Tg(deerPrP)1536+/-  & Tg(elkPrP)5037+/- 
mice 

CWD Pool  Colorado  Mule 
Deer 

Tg(deerPrP)1536+/-  & Tg(elkPrP)5037+/- 
mice 

012-09442 Colorado Elk Tg(deerPrP)1536+/-  & Tg(elkPrP)5037+/- 
mice 

BALA-01 Canada Elk Tg(deerPrP)1536+/-  & Tg(elkPrP)5037+/- 
mice 

001-403022  Colorado Elk Tg(deerPrP)1536+/-  & Tg(elkPrP)5037+/- 
mice 

BALA-04 Canada Elk Tg(deerPrP)1536+/-  & Tg(elkPrP)5037+/- 
mice 

001-44720 Colorado Elk Tg(deerPrP)1536+/-  & Tg(elkPrP)5037+/- 
mice 

012-02212 Colorado Elk Tg(deerPrP)1536+/-  & Tg(elkPrP)5037+/- 
mice 

Hamster-Adapted Transmissible Mink Encephalopathy (TME) 
Hyper (HY) Wisconsin Mink Syrian golden hamster 
Drowsy (DY) Wisconsin Mink Syrian golden hamster 

Mouse-Adapted Scrapie 
Rocky 
Mountain 
Laboratories 
(RML) Scrapie 

Montana Sheep Mouse 
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Figure 3.3. Mouse N2a cells expressing cervid PrPC are not permissive to CWD 

prions. N2a cells expressing deer PrPC were infected with 0.2% (w/v) natural CWD 

isolates (D10, D92, 7378-47, CWD pool, 012-09441, BALA01, 001-40322, BALA04, 

001-44720, 012-02212) adapted to (A) Tg1536+/- mice expressing deer PrPC or (B) 

Tg5037+/- mice expressing elk PrPC, and assessed for infectivity after three passages in 6-

well cell culture plates by cell lifting assay. On third passage, cells were grown to 

confluence on NUNC cell culture cover slips (25mm diameter, Cat. No. 174985). The 

cells were directly transferred to cold lysis buffer soaked nitrocellulose membranes. The 

membrane was treated with PK (5 µg/ml), denatured with 3M guanidine isothiocynate, 

immunoprobed with 9E9 mAb (A,B,D,E,G) or 6H4 mAb (C, F) and signal visualized 

with X-ray film. (C,F) Cell lift assay control samples demonstrated lack of prion 

contamination (mock infected with PBS) and N2a sensitivity to mouse adapted RML 

prions. The N2a cells expressing Elk PrPC were infected with 0.2% (w/v) natural CWD 

isolates (D10, D92, 7378-47, CWD Pool, o12-09441, BALA01, 001-40322, BALA04, 

001-44720, 012-02212) adapted to (D) Tg1536+/- mice expressing deer PrPC or (E) 

Tg5037+/- mice expressing elk PrPC. G. PrPSc positive cells within the N2a-ElkPrPC cells 

were expanded, sub-passaged and screened for PK resistant material by Western blotting 

using the 9E9 mAb. PK +/- designates digested samples (+) or un-digested (-). RKE cells 

are RK13 cells expressing elk-PrPC which maintain chronic CWD infectivity (described 

in Fig. 2.4).  
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Figure 3.3. Mouse N2a cells expressing cervid PrPC are not permissive to CWD 
prions 
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Breaking the Prion Species Barrier: RK13 Cells (RKE21+) Expressing Elk PrPC 

Replicate Natural CWD Prions 

To enhance their propensity to replicate prions, we genetically engineered RK13 

cells to stably co-express HIV-1 Gag protein concurrently with PrPC. The basis for the 

addition of HIV-1 Gag came from earlier published data providing evidence of positive 

enhancement for scrapie prion infectivity upon retroviral infection (Leblanc, Baas et al. 

2004; Leblanc, Alais et al. 2006). The molecular mechanisms that govern retroviral 

enhancements of PrPSc replication remain to be defined. The following CWD replication 

studies with genetically modulated RK13 cells were conducted in cooperation with Dr. 

Jifeng Bian (Bian, Napier et al. 2010). 

Two separate cell line were created that over-express elk PrPC. The two stably 

transfected cell lines were designated as RKE (expressing elk PrPC only) and RKE-Gag 

(co-expressing elk PrPC and HIV-1 Gag) (Fig. 3.4). The CWD elk isolate designated 012-

09442 (Table 3.1), was used to infect and serially passage both cell lines. CerPrPSc 

accumulation was assessed by PK treatment and subsequent western blotting and/or cell 

lift assay (Fig. 3.4A-B). RKE cells showed diminishing amounts of CerPrPSc replication 

by passage five, which was lost completely by passage seven, shown by the left western 

blot in figure 3.4A. Conversely, the RKE-Gag cells continued to accumulate and replicate 

CerPrPSc for over 67 passages (Fig. 3.4A). Direct comparison of cervid PrPSc replication 

by western blotting and cell lifting suggests that there is an approximate ~2 fold increase 

of CerPrPSc in the RKE-Gag cells (Fig. 3.4B). These results suggest that HIV-1 Gag is 

modulating the cells to efficiently replicate prions. The CWD chronically infected RKE-

Gag cell line is referred to as Elk21+.  
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Elk21+ cells were cured of CWD prions by treatment with DS-500, a method that 

has previously been described in use for other cell lines (Ladogana, Casaccia et al. 1992; 

Caughey and Raymond 1993). The cured cells are referred to as Elk21-. These Elk21- 

cells remained CerPrPSc negative for the remaining passages. Cured Elk21- cells 

demonstrated sensitivity to CWD replication upon reinfection (Fig. 3.4I).  

After 58 passages Elk21+ cells were further cloned by limited dilution. The 

process of cell cloning generated 3 CerPrPSc positive clones and 11 negative clones. Re-

challenging negative cloned cells with CWD prions resulted in 10 of the 11 clones being 

re-infected (Fig. 3.4I).  

Strain stability in cell culture was determined by bioassay. Cell extracts from 

chronically infected Elk21+ cells passaged twenty-five consecutive rounds were used to 

confirm strain stability of the CWD 012-09442 isolate. CWD infected cell extracts from 

Elk21+ were ic injected into Tg(elkPrP)5037+/- mice. The natural elk CWD isolate 012-

09442 was used as a positive control. Elk21+ cell extract injected mice developed prion 

disease with a mean incubation time of 112±1 days, while the natural isolate produced 

disease with a mean incubation time of 126±2 days (Fig. 3.4C). Negative controls for the 

bioassay included uninfected RKE-Gag cell extract, Elk21-, and Elk21 subclones 3 and 9 

(Fig. 3.4C). The cured cell extract controls of the bioassay confirmed the dextran sulfate-

500 treatment cured cells of prions infectivity.  

Cell extract preparations used in the bioassay were normalized for total protein 

equivalents by the bicinchronic acid (BCA) protein assay (Thermo Fischer-Scientific, 

Rockford, IL). Western blot analysis revealed that the glycosylation and electrophoretic 

migration patterns between Elk21+ cell lysate and Tg(elkPrP)5037+/- brain homogenate 
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differed (Fig. 3.4D).  Histopathological analysis of brain sections from mice inoculated 

with Elk21+ cell extract demonstrated diffuse and granular deposition of CerPrPSc (Fig. 

3.4E-F), which is similar to previously published reports (Angers, Seward et al. 2009). 

The negative control, RKE-Gag cell extract injected mice displayed a disease free 

histopathological profile (Fig. 3.4G-H). 
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Figure 3.4 Characterization of CWD replication in RK13 cells. A. RK13 cells 

expressing Elk-PrPC (RKE) did not sustain CWD infectivity (Elk isolate 012-09442) as 

compared to the RKE cells co-expressing HIV-1 Gag (Elk21+), which subsequently 

became chronically infected. B. Enhanced Cervid PrPSc replication was demonstrated in 

Elk21+ cells by both Western blotting and cell lifting, HIV-1 Gag expression indicates a 

~2 fold increase in PrPSc. C. After 25 passages, the Elk21+ cells were bioassayed in 

Tg5037+/- mice expressing elk PrP.  The Elk21+ cell extract is represented by filled 

circles, Elk CWD 012-09442 in Tg5037 are filled squares, uninfected RKE-Gag cells are 

open circles, cured Elk21- cells with DS-500 treatment after 13 passages (open triangles) 

and after 30 passages (filled triangles), Elk21 subclone 3 are open diamonds and subclone 

9 are filled squares. D. Western blot representing CerPrP (100µg and 50µg total protein), 

CerPrPSc (200µg, 100µg, and 50µg total protein) generated in Elk21+ cells and Tg5037 

mice inoculated with Elk21+ cell extract. E-H. Representation of CerPrPSc deposition in 

the hippocampus (E,G) and the thalamus (F,H) of Tg5037 mice that were inoculated 

with Elk21+ extract (E,F) or RKE-Gag (G,H) uninfected control. I. The susceptibility to 

CWD prions (isolate 012-09442), upon reinfection to individual clonal cells derived from 

the cured Elk21+ cells (clone 3, clone 9 and Elk21-) was assessed by western blotting. For 

each analyzed cell line, the first two lanes represent mock infection with PBS treatment 

and the second two lanes represent infection through exposure to CWD brain 

homogenate. Molecular mass markers represent 37, 25 and 20 kDa, top to bottom.  
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Figure 3.4 Characterization of CWD replication in the RK13 cell culture system.  
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 The sensitivity of Elk21+ cell to CWD prions facilitated the development of an in 

vitro cell assay for prion titer determination, which call the cervid prion cell assay 

(CPCA). Similar to the commonly used viral plaque assay for viral titer determination 

(Dulbecco and Vogt 1953), the CPCA calculates PrPSc accumulation on an individual cell 

basis using a dilution range of the PrPSc inoculum. The CPCA methodology is adapted 

from earlier described scrapie cell assay (SCA) that is used to calculate mouse-adapted 

scrapie prion titers with highly susceptible N2a clones (Klohn, Stoltze et al. 2003; Mahal, 

Demczyk et al. 2008). The major limitation of the SCA is the inability to use natural 

prion isolates, therefore making the CPCA a unique assay for its utility in calculating 

natural CWD isolates without the murine adaptation prerequisite (Klohn, Stoltze et al. 

2003; Bian, Napier et al. 2010).  

The basis of the assay is to infect cells with serially diluted increments of 

infectious prion material, in a 96-well format. The cells are passaged for three 

consecutive rounds. At confluence of the third passage, the cells are counted and 

transferred to a 96 well, 0.45µm filter-ELISPOT plate (Millipore, Billerica, MA) where 

they are fixed to the plate membrane. These plates are then PK digested and treated with 

guanidinium thiocyanate (GITC) denaturation, followed by an enzyme linked immune-

sorbent assay-like (ELISA) developing procedure. The plates are scanned and quantified 

using the CTL-ELISPOT plate reader and the ImmunoSpot3 software (Cellular 

Technology, Ltd, Shaker Heights, OH). Figure 3.5A illustrates a representative read out 

of positive and negative wells upon final development.  
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The dose response relationship in Elk21+ cells to CWD prions was determined 

using elk CWD prions titrated in transgenic mice (Browning, Mason et al. 2004; Angers, 

Seward et al. 2009). Infected Elk21+ cells were assessed for titer infectivity at the dilution 

range of 10-2 to 10-5 (Fig. 3.5B-C). The double logarithmic plots in figure 3.5B, 

demonstrates a linear response to the dilutions ranging from 10-3 to 10-4.4. Positive cell 

count, representing CerPrPSc-producing cells, is reflective of prion titers. Furthermore, an 

increased dose-response for CWD passaged in the Tg(elkPrP)5037+/- versus the CWD 

passaged in Tg(deerPrP)1536+/-, signify higher titers in the former samples. Different 

CWD isolates were used to infect Elk21+ cells to determine and compare CPCA prion 

titers to previously acquired bioassay data (Fig. 3.5C). In our calculations, we estimate 

that 100 µl of 10-2.5 dilution of elk CWD pool yields 300 spots in the well of an ELISPOT 

plate, which is the reference point used to determine the response index in the SCA 

(Mahal, Baker et al. 2007). This calculated reference point corresponds to 106.0 CPCA 

units/g. The titers calculated using the CPCA with various elk CWD inocula provided 

values of 106.3, 106.3 and 106.6 units/g of brain (Fig. 3.5C). The CPCA titration data was 

less than one log difference compared to the previously published bioassay titers 

(Browning, Mason et al. 2004; Angers, Seward et al. 2009). Consequently the CPCA is a 

viable in vitro alternative to the bioassay for calculating prion infectivity titers, which 

could reduce animal use and costs associated with these studies.  
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Figure 3.5 Quantification of CWD infectivity using the RKE cell line in a Cervid 

Prion Cell Assay (CPCA).  A. Representation of developed wells in the Millipore 

ELISPOT plates of the CPCA. B. Demonstration of the double logarithmic plot of spot 

number versus brain homogenate dilution. CPCA using the Elk21- cells has a linear 

response to pooled elk CWD brain homogenate (open circles) and CWD passaged in Tg 

mice (filled circles). Data representative of 6 separate experiments. C. Plots of PrPSc 

positive cells as a function of log dilution of CWD prion inocula. The numerical counts 

of positive cells reflect the prion titer. Three-hundred counted spots is the point used to 

determine the response index which corresponds to 106.0 CPCA units/g brain.  
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Figure 3.5 Quantification of CWD infectivity using the RKE cell line in a Cervid 
Prion Cell Assay (CPCA).   
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Heterologous PrPC Expression On a PrP-null Background Does Not Guarantee Prion 

Sensitivity: HEK293A Cells Resist CWD Replication   

 The human embryonic kidney-293 cells (HEK293A) were derived from the 

transformation of normal human embryonic kidney cells and are a commonly used cell 

line for various molecular analyses (Graham, Smiley et al. 1977). Similar to the RK13 

cells, we found that HEK293A cells do not express detectable levels of endogenous PrPC 

(Fig. 3.6A) (Ramljak, Asif et al. 2008). Therefore, we hypothesized that the introduction 

and over-expression of a heterologous PrPC on a PrP-null background would permit 

prion. We also reasoned that attaining chronic CWD infectivity with 293 cells could aid 

in the identification of human-specific cellular components involved in interspecies 

transmission. Consequently, the HEK293A cells could provide an in vitro model to 

ascertain the zoonotic potential of CWD.  

Stably transfected 293 cells were created with using the pIRESpuro-deer PrPC 

open reading frame (ORF) expression vector. Stable expression of deer PrPC in 293 cells 

was assessed using western immuno-blotting with mAb 9E9 (Fig. 3.6A). HEK293A-

Deer-PrPC cells were infected with the deer CWD D92 isolate (Table 3.1). The cells were 

infected using the standard 0.2% (w/v) CWD mixture and serially passaged four times 

prior to PrPSc assessment. Collected cell lysates were PK treated and electrophoretically 

separated on a 12%-SDS-PAGE. HEK293A-Deer-PrPC cells did not produce detectable 

PrPSc implicating resistance towards prion replication (Fig. 3.6B). In addition, 

HEK293A-Deer-PrPC cells were shown to be resistant to other CWD and 293 cells 
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expressing Mouse PrPC were also found to be resistant to mouse RML prions (data not 

shown).  

Section Summary: Three distinct cell lines were used to characterize and generate in vitro 

prion cell models. The N2a cell line has been well characterized for its ability to replicate 

mouse-adapted scrapie prions (Table 1.2). Through clonal selection of cells sensitive to 

prion replication, we reasoned that genetic modulation to introduce cervid-PrPC could 

permit the replication of heterologous CWD-CerPrPSc. However, N2a cells remained 

resistant to CWD prions, while maintaining their sensitivity for RML prions. Our results 

indicate that the molecular basis for this resistance maybe an interference effect by mouse 

PrP on CWD prion conversion of CerPrPC, as observed in Tg mouse models (Fig. 3.1) 

(Telling, Scott et al. 1995). 

 RK13 cells permitted replication of CWD prions after modifications to express 

elk-PrPC. The absence of endogenous PrPC in RK13 cells allows over-expression of 

species-specific PrPC similar to Tg mice on a Prnp0/0 background. In addition to elk-PrPC, 

introduction of HIV-1 Gag was shown to enhance PrPSc replication. In this way, we 

created a cell line chronically infected with CWD prions, called Elk21+ cells (Bian, 

Napier et al. 2010). CWD prion production in Elk21+ cells was confirmed by bioassay in 

Tg mice.  

 Finally, the lack of endogenously expressed PrPC in the HEK293 cells was not 

sufficient to facilitate CWD prion replication upon stable expression of cervid PrPC, 

indicating that PrPC expression is not the only determining factor for cells to replicate 

foreign prions. Our results suggest that sensitivity of cells to prions is co-dependent on 

PrPC expression and endogenously expressed factors.          
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Figure 3.6 Stable expression of cervid PrPC and assessment of CWD replication in 

HEK 293A Cells. A. HEK 293A cells were stably transfected with the pIRESpuro-Deer 

PrPC ORF expression vector. B. HEK293A cells were infected with CWD deer isolate 

D92 and passaged for four consecutive rounds. PrPSc replication in HEK293A-DeerPrPC 

cells was assessed following PK digestion, SDS-PAGE separation and Western blotting. 

Monoclonal antibody 9E9 was used to probe Western blot for PK resistant material. PK 

+/- nomenclature designates digested samples (+) or un-digested (-).   
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Figure 3.6 Stable expression of cervid PrPC and assessment of CWD replication in 
HEK 293A Cells. 
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Section II: Replication of Biologically Cloned Hyper (HY) and Drowsy (DY) 

Hamster-Adapted TME Prion Strains in Cell Culture 

 Transmissible mink encephalopathy (TME) prion strains, Hyper (HY) and 

Drowsy (DY) were derived from ranch-raised mink in Stetsonville, Wisconsin and sub-

passaged in Syrian golden hamsters.  These prion strains have been well described and 

biologically cloned (Bessen and Marsh 1992; Bessen and Marsh 1992). These two prion 

strains differ in disease incubation times, histopathological deposition of PrPSc, 

behavioral phenotypes (HY –highly active, hyper, DY-lethargic, slow) and biochemically 

(protease sensitivity, glycoform migration patterning) (Bessen and Marsh 1992). In 

accordance with in vivo data, HY prions have rapid replication kinetics as compared to 

DY, yielding high titers (Bessen and Marsh 1992). The end stage titers of HY and DY, 

were 109.5 LD50/g and 107.4 LD50/g, respectively (Bessen and Marsh 1992). We used the 

RK13 cells to create an in vitro model to study the molecular characteristics that define 

HY and DY. 

Expression Of Hamster PrPC In RK13 And N2a Cells: Genomic DNA extracted from 

Syrian golden hamster (SHa) brain tissue was used to isolate, sequence and clone the SHa 

PrP ORF into the pIRESpuro expression vector. RK13 cells and N2a cells were stably 

transfected, and bulk populations expressing SHaPrPC were created (Fig. 3.7A). 

Monoclonal antibody 3F4 was used to detect SHaPrPC expression. In addition, site-

directed mutagenesis was used to generate the L42 epitope (W144Y) within the SHaPrP 

ORF. The specific epitope for L42 occurs in human, cattle, sheep, goat, dog, cat, mink, 

rabbit and guinea pig PrP, but not hamster, mouse or rat PrP (Vorberg, Buschmann et al. 
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1999). By generating this epitope in the SHaPrP ORF, we aimed to measure de novo 

prion replication in cell cultures (Fig. 3.7A).  

To assess susceptibility to HY and DY, RK13-SHaPrP cells were infected with 

0.2% (w/v) HY and DY Syrian golden hamsters. RK13-SHaPrP cells were permissive for 

HY replication, but not the DY strain (Fig. 3.7A). Of interest, the electrophoretic 

migration patterns of CerPrPSc in Elk21+ cells (Fig. 3.4) and HY-PrPSc differ when 

compared to CWD- or HY-PrPSc derived from brain homogenates (Fig. 3.7B). The HY- 

and DY- from infected hamster brains were used as positive controls on Western blots 

(Fig. 3.7B) (Bessen and Marsh 1992).  

Continuous passage of HY-infected RK13-SHaPrP cells resulted in the loss of PK 

resistant PrPSc in later passages. The capacity of RK13-SHaPrP cells to replicate HY-

prions was confirmed using the cell-lifting assay (Fig. 3.8B). Repeated infectivity 

experiments using these prion strains produced consistent results. HY PrPSc consistently 

became undetectable between the seventh and ninth passage, while DY infected cells 

remained PrPSc free throughout the studies (Fig. 3.7B & 3.8B). These cell culture studies 

demonstrate differences in susceptibility of RK13-SHaPrP cells to HY and DY strains.   

N2a cells expressing SHa-PrPC were also infected with HY and DY prions. 

Unlike RK13 cells, the N2a cells did not replicate HY or DY prions (Fig. 3.7C and 3.8A).  

Although signal can be seen in PK+ lanes of the infected cells in figure 3.7C, incomplete 

protease digestion is the likely cause of this signal. The more sensitive cell-lifting assay 

confirms the lack of PrPSc in N2a SHa-PrP cells (Fig. 3.8A). In contrast, N2a SHa-PrP 

cells were capable of replicating RML prions (Fig. 3.8A).  Using mAb 6H4, we show 
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robust accumulation of PrPSc in RML-infected N2aSHa-PrP cells, but not RK13SHa-PrP 

cells (Fig. 3.7D & 3.8B).  
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Figure 3.7 Characterization of HY and DY prion replication in cell culture. A. Stable 

expression of Syrian hamster PrPC (SHa-PrPC, Accession number K02234.1) in RK13 

and N2a cells. Both cell lines were transfected with the pIRESpuro-SHa-PrPC expression 

vector (Clonetech Laboratories, Inc) and verified using the hamster/human PrPC specific 

mAb 3F4 (Covance, Cat. No. SIG-39600). Actin expression is used for total protein 

control (Pan-Actin mAb-5, Lab Vision Corporation, Fremont, CA). Bulk selected (B) 

RK13 cells and (C) N2a cells expressing SHa-PrPC were infected with 0.2%(w/v) HY 

and/or DY brain homogenate. Accumulation of PrPSc was assessed after three passages 

by Western blotting using mAb 3F4. D. RK13 and N2a cells expressing SHa-PrPC were 

infected with 0.2% (w/v) mouse adapted RML scrapie brain homogenate and passaged 

three consecutive rounds: PrPSc was detected by Western blotting using mAb 6H4. The 

L42 designation in the figures represents the cell line expressing SHa-PrPC with a site 

directed mutation at the 144 amino acid residue position (W144Y).  
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Figure 3.7 Characterization of HY and DY prion replication in cell culture. 
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Figure 3.8 Characterization of HY and DY prion replication by cell-lifting assay. (A) 

N2a-SHaPrPC/ N2a-SHaPrPC-L42 and (B) RK13SHaPrPC were infected with 0.2%(w/v) 

HY, DY prions, or mouse adapted RML prions and assessed for infectivity after three 

passages in 6-well cell culture plates by cell lifting assay. On third passage, cells were 

grown to confluence on cell culture cover slips. The cells were directly transferred to cold 

lysis buffer soaked nitrocellulose membrane. The membrane was treated with PK 

(5µg/ml), denatured with 3M-guanidine isothiocyanate, immunoprobed for the 

accumulation of PrPSc with mAb 3F4 or mAb 6H4 antibodies(Bosque and Prusiner 

2000)(Bosque and Prusiner 2000)(Bosque and Prusiner 2000)(Bosque and Prusiner 

2000)(Bosque and Prusiner 2000)(Bosque and Prusiner 2000). Dotted lines represent the 

boundaries of the coverslip.  
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Figure 3.8 Characterization of HY and DY prion replication by cell-lifting assay. 
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Production and Characterization of RK13 Cells Co-Expressing SHa-PrPC & HIV-1 Gag 

RK13SHa-PrP cells were transfected with HIV-1 Gag. After selection of stable 

HIV-1 gag expression, cells were infected with 0.2% (w/v) HY or DY infected brain 

homogenates and passaged for three rounds. At third passages the bulk-infected cell 

population was single-cell cloned by limited dilution. Individual clones were identified 

and consolidated to seven, 96-well cell culture plates, creating a total population of 672 

clones (Fig. 3.9A). Of these 672 clones, 23 clones (3.4%) infected with HY exhibited a 

positive signal for PrPSc, while all 672 clones from the DY infection remained PrPSc 

negative (Fig. 3.9A).  

A modified-scrapie cell assay was used to rapidly determine and identify PrPSc 

positive clones (Fig. 3.9B). Confluent clones grown in the 96-well cell culture plates 

were counted and 20,000 cells were transferred to the 96 well, 0.45µm filter-ELISPOT 

plates. Unlike the CPCA or the SCA (Mahal, Demczyk et al. 2008; Bian, Napier et al. 

2010), this approach does not utilize log dilutions of infectious material. Equal amounts 

of the infectious agent were used (0.2% w/v HY or DY brain homogenate).  

All 23 PrPSc positive clones infected with HY prions were expanded by serial 

passage to larger culture conditions for assessment of PrPSc production. Western 

immuno-blotting was used in subsequent analyses. At fifth passage, 8 out of 23 (35%) 

RK13SHaPrPC-HY infected clones lost detectable PrPSc (Fig 3.9C top blots). By the tenth 

passage, none of the clones exhibited detectable PK resistant PrPSc (Fig 3.9C, middle 

blots). We continued to passage the 23 RK13SHaPrPC-HY clones for 10 more passages, 

but PrPSc remained absent in all 23 clones after the 20th passage (Fig. 3.9C, lower blots).   
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We hypothesized the eventual loss of HY-PrPSc in the 23 RK13 SHa-PrPC-Gag 

clones was due to reduced expression of HIV-1 Gag. Expression of HIV-1 Gag was 

assessed for each clone through Western blotting using the p24 mAb (MAB880-A; 

Chemicon, Cat. No. 9876543). While expression of HIV-1 Gag varied between clones, it 

did not correlate with HY-PrPSc replication (Fig. 3.9D).  

Section Summary: The results from this section show the versatility of RK13 cells to 

support replication of various prions from different species. Engineering of the RK13 

cells to express hamster PrPC permitted replication of HY- but not DY- prions, thus 

providing the means to differentiate these strains cell culture techniques. Our data 

indicate that cloning is a crucial step for identifying individual cells expressing the 

appropriate cellular co-factors for prion replication. 

N2a cells demonstrate a similar resistant phenotype towards HY and DY as 

described in the CWD infection studies (Chapter 3, section I). In addition, the co-

expression of hamster PrPC in N2a-SHaPrP cells did not hinder the replication of mouse-

adapted RML prions. In this respect, these results differ from the behavior of Tg mice 

expressing SHa and mouse PrP, which are capable of replicating SH prions (Scott, Foster 

et al. 1989).   
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Figure 3.9 Transient replication of HY prions in RK13Gag-SHaPrP cells. A. Single-

cell RK13 clones co-expressing SHa-PrPC and HIV-1 Gag, infected with 0.2% (w/v) HY 

or DY prions, assayed by a modified Scrapie cell assay. B. Wells representing PrPSc 

positive wells (clones) selected for further expansion and continuous passage. C. RK13-

SHaPrPC cells positively identified for HY replication by the SCA were expanded and 

serially passaged. The clones replicated HY for ten passages post infection. Immunoblots 

were assessed using mAb 3F4. D. Expression of HIV-1 Gag was assessed for each clone 

along with actin expression for total protein control. A total of 23 PrPRes positive clones 

were identified. Upon expansion of these clones, some lost PrPSc. Ten of the 23 clones 

analyzed are represented.   
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Figure 3.9 Transient replication of HY prions in RK13Gag-SHaPrP cells. 
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Discussion 

 

 To summarize our findings: (i) Expression of cervid PrPC in human 293 and N2a 

cells was not sufficient to sustain CWD replication. (ii) N2a cells co-expressing cervid 

PrPC remained susceptible to mouse-adapted RML scrapie prions. (iii) RK13 cells 

engineered to express elk PrPC (RKE-cells) transiently replicated CWD prions. (iv) RKE 

cells (Elk21+) were enhanced to sustain CWD prion replication co-expression of HIV-1 

Gag and cloning. (v) Expression of SHa PrPC and subsequent infection HY and DY 

prions in RK13 cells resulted in the transient replication of HY but not DY prions. (vi) 

N2a cells expressing SHa-PrPC did not replicate HY or DY prions but replicated mouse-

adapted scrapie RML prions.   

Prion Replication and The Prion Species Barrier In Cell Culture: All analyzed cells in 

these studies ectopically expressed heterologous PrPC. The stable over-expression of PrPC 

did not necessarily confer sensitivity to prions, even within cells that are known for their 

prion replication capabilities. Previously published data support the notion that PrPC 

expression alone is not sufficient for effective prion replication (Graham, Smiley et al. 

1977; Telling, Scott et al. 1995; Raeber, Sailer et al. 1999; Bosque and Prusiner 2000). In 

vivo data implies that the efficiency of PrPSc replication is strongly influenced by its 

structural homology to PrPC, which is the underlying basis for the prion species barrier 

(Fig. 3.1) (Telling, Scott et al. 1995). RK13 cells expressing Elk PrPC sustained CWD 

prion replication, following the addition of HIV-1 Gag (Fig. 3.4). RK13 cells expressing 

SHa-PrPC were susceptible to HY-prions (Fig. 3.9), thus abrogating another species 

barrier in cell culture. Both the N2a and the RK13 cells have previously been shown to 
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efficiently replicate prions (Race, Fadness et al. 1987; Vilette, Andreoletti et al. 2001). 

Expression of endogenous PrPC is the marked difference between N2a and RK13 cells, 

which is present in the former and undetectable in the latter.  This absence of endogenous 

PrPC in RK13 cells and their ability to propagate prions from different species produces a 

system that is analogous to the Tg-mouse model (Fig. 3.1) (Telling, Scott et al. 1995). 

However, ectopic expression of PrPC on a null background does not guarantee 

susceptibility to prions, which was established with the HEK293A cells inability to 

replicate CWD (Fig. 3.6)   

Endogenous PrP Interference In Cell Culture: In addition to the structural homology 

prerequisites of the PrP molecules, the presence of two different (species) PrPC proteins 

could sometimes impose an interfering effect on PrPSc replication (Scott, Foster et al. 

1989; Telling, Scott et al. 1995). The selection of an N2a clonal population that is highly 

sensitive to mouse-adapted RML does not guarantee replication of prion strains derived 

from other species. Similar to the Tg-mice data (Telling, Scott et al. 1995), over-

expression of cervid- or hamster- PrPC in the presence of endogenous mouse PrPC does 

not permit the replication of prions that are structurally homologous to the over-expressed 

transgene, indicating that endogenous PrPC is interfering in the conversion process. More 

importantly, the interfering effect is unidirectional because cells over-expressing the 

heterologous PrPC transgene continue to maintain full susceptibility for RML, which 

depends on conversion of mouse PrPC to PrPSc (Fig. 3.3 and Fig. 3.7). Selection of N2a 

cells that lack endogenous PrPC expression, was shown to enable CWD prion replication 

upon ectopic cervid PrPC expression, thus further supporting the PrP interfering effect 

(Pulford, Reim et al. 2010). 
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A species-specific molecule, termed protein X, is hypothesized to act as cofactor 

that selectively binds and chaperones the PrPC-PrPSc conversion (Fig. 1.4) (Telling, Scott 

et al. 1995). Thus, protein X’s preferential binding for endogenous PrPC could effectively 

sequester it from interacting with the heterologous PrPC-PrPSc conversion process, 

consequently making the cells resistant (Fig. 3.3 and Fig. 3.7). Though hamster prion 

infectivity studies using Tg-mice co-expressing both murine- and hamster-PrPC 

efficiently replicated PrPSc and succumbed to prion disease (Scott, Foster et al. 1989), 

N2a-SHa-PrPC cells did not recapitulate these observations (Fig. 3.7 and Fig. 3.9). One 

possible explanation for these discrepancies is the difference in hamster prion strain used 

in previous work (Sc237 comparable to HY and DY here). Also, PrP interference was not 

a factor in these studies because hamster-PrP expressing mice on wt-background did 

replicate hamster PrPSc (Scott, Foster et al. 1989). The mechanisms governing these 

observations are not fully understood but were hypothesized to be related by close 

homology of murine and hamster PrPC sequence.      

Ectopic Expression of PrPC is Not Sufficient for PrPSc Conversion: In transgenic mice, 

the inactivation of the endogenous Prnp gene with subsequent introduction of a 

heterologous PrPC abrogates the prion species barrier (Telling, Scott et al. 1995). 

Furthermore, an inverse relationship exists between the expression level of PrPC and 

incubation time of prion disease in mice (Westaway, Mirenda et al. 1991). While PrPC is 

absolutely necessary for prion replication (Büeler, Aguzzi et al. 1993), the ectopic 

expression of PrPC in certain tissues/cells of Prnp0/0 mice is not sufficient to sustain PrPSc 

(Raeber, Sailer et al. 1999). Likewise, cell culture data exhibit discernable variances 

towards PrPSc replication that is unrelated to endogenous PrPC expression levels (Race, 
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Caughey et al. 1988; Bosque and Prusiner 2000). Besides the PrP requirement, this data 

collectively implies that additional cofactors are involved in the prion replication process. 

Both RK13 and HEK293A cells lack endogenous PrPC expression, but only one of these 

cells has the ability to replicate the prions tested here (Fig. 3.4 and Fig. 3.6). Ectopic 

over-expression of cervid-PrPC did not facilitate conversion of CerPrPSc in HEK293. In 

fact, the HEK293A cells demonstrated complete resistance towards CWD and RML 

prion replication. The RK13 cells do replicate CWD prions but only after clonal selection 

and the effect of HIV-1-Gag. In addition to CWD prion replication, we show here that 

RK13 cells also replicate hamster prions (HY), which suggests that the cellular factors 

are universally applicable to the PrPSc replication process.  

Enhancement of PrPSc Replication by HIV-1 Gag: The retroviral element, HIV-1 Gag 

enhanced the susceptibility of RK13 cells to CWD infection (Bian, Napier et al. 2010).  

Earlier studies have shown that retroviral infection of cells enhanced scrapie infectivity 

and extracellular release of PrPSc by the accelerated formation of Gag-recruited detergent 

resistant microdomain (DRM)/lipid raft vesicles within the endosomal trafficking 

compartments (Leblanc, Alais et al. 2006). Coincidentally, PrPC traffics and co-localizes 

to the same cellular compartments that the retrovirus uses for assembly and release (Fig. 

1.2) (Shyng, Moulder et al. 1995; Vey, Pilkuhn et al. 1996; Ott 1997; Cimarelli and 

Darlix 2002; Demirov and Freed 2004; Fevrier, Vilette et al. 2004; Pelchen-Matthews, 

Raposo et al. 2004).  

The Gag-polyprotein primary function is to direct viral-particle assembly and 

budding release using a non-lytic pathway, keeping the host cell viable for continuous 

viral production (Demirov and Freed 2004). This polyprotein consists of four structural 
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components that become part of the mature virus. These components consist of matrix 

protein (MA), capsid (CA), nucleocapsid (NC) and p6 (Gottlinger 2001). Each 

component has a distinct role in the assembly process. The matrix protein (MA) is a 

guided target for the plasma membrane, while the CA manages the protein-protein 

interactions of the assembly process (Gottlinger 2001). The role of NC is to guide and 

couple the newly generated RNA to the assembling virus (Gottlinger 2001). These three 

components are shared among all identified retroviruses, while p6 is a unique C-terminus 

domain found only in primate retrovirus (HIV-1) (Demirov and Freed 2004). The p6 

domain’s core function is to recruit cellular proteins to assist the budding and release of 

the newly formed virus (Yu, Matsuda et al. 1995). In addition to the recruitment process 

of cellular proteins, the p6 domain is vital for releasing the budding virus from the cell 

surface (Gottlinger, Dorfman et al. 1991). The exact mechanism that p6 uses to achieve 

this process is not fully understood but the highly conserved sequence motifs of p6 

domain indicate a close functional connection to the ubiquitin proteasome system (UPS) 

(Patnaik, Chau et al. 2000; Schubert, Ott et al. 2000; Strack, Calistri et al. 2000). The 

components of Gag are activated by proteolytic cleavage of the polyprotein in the late 

stages of viral assembly and collectively function by recruiting cellular factors, 

modulating the intracellular trafficking mechanisms and distorting the plasma membrane 

(Demirov and Freed 2004), all of which are implicated in the PrPC-PrPSc conversion 

process (Caughey, Raymond et al. 1991; Borchelt, Taraboulos et al. 1992; Taraboulos, 

Raeber et al. 1992; Shyng, Heuser et al. 1994; Peters, Mironov et al. 2003; Fevrier, 

Vilette et al. 2004; Sarnataro, Caputo et al. 2009; Taylor, Whitehouse et al. 2009; Solis, 

Malaga-Trillo et al. 2010; Goold, Rabbanian et al. 2011). 
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Thus, HIV-1 Gag’s enhancement of PrPSc replication could be a multifaceted 

process involving several cellular mechanisms/pathways. At the cell surface, the 

distortion of the plasma membrane (PM) by Gag could accelerate PrPSc conversion by 

modulating the physical surface area of contact for PrPC-PrPSc. Recent reports have 

suggested that conversion of PrPSc predominantly occurs at the cell-surface and very 

rapidly, within one minute of exposure (Goold, Rabbanian et al. 2011). Besides PM 

modulation, the release of empty buds/vesicles mediated by Gag could accelerate 

dispersion of newly formed PrPSc to uninfected neighboring cells by exocytosis 

(Campbell, Crowe et al. 2001; Fevrier, Vilette et al. 2004; Pelchen-Matthews, Raposo et 

al. 2004). Furthermore, because PrPSc conversion can also occur intracellularly, it is 

probable that Gag partakes within those sites of conversion as well (Borchelt, Taraboulos 

et al. 1992; Shyng, Huber et al. 1993; Shyng, Heuser et al. 1994; Vey, Pilkuhn et al. 

1996; Beranger, Mange et al. 2002; Peters, Mironov et al. 2003; Vella, Sharples et al. 

2007). Of potential interest to the PrPSc conversion process is the role of the p6 domain. 

In addition to potentially being the direct PrP interacting protein during the vesicle 

recruitment and formation process, this domain also modulates proteasome degradation 

pathways (Patnaik, Chau et al. 2000; Schubert, Ott et al. 2000; Strack, Calistri et al. 

2000). This interaction of p6 and the UPS could indirectly skew the protein homeostasis 

machinery in favor of the PrPC-PrPSc misfolding process.  

The deregulation of UPS from correcting conformationally misfolded proteins by 

p6 could enhance PrPSc formation by several mechanisms. During normal biogenesis of 

PrPC, misfolded PrP protein is delivered to the proteasome system for refolding or 

degradation (Ma and Lindquist 2001; Yedidia, Horonchik et al. 2001). The induction of 
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ER-stress and proteasomal dysfunction causes the cell to accumulate and aggregate PrP 

molecules (Ma, Wollmann et al. 2002). It has been shown that ER stress and proteasomal 

inhibition leads to the accelerated accumulation of PrPSc (Nunziante, Ackermann et al. 

2011). Therefore, p6’s hijacking of the UPS could produce a scenario where, in addition 

to the introduction of exogenous PrPSc from an infectious inoculum source, the cell is 

also accumulating its own, spontaneously generated aggregated-PrP molecules. Of course 

this would be a rare event, which would explain why clonal selection is so crucial for 

identification of cells that become chronically infected with CWD prions. Conversely, 

preoccupying the UPS could also simply distract the cellular protein aggregation defense 

mechanisms to give PrPSc free range on all available PrPC substrate without interference. 

These Gag enhancement mechanisms have not been experimentally addressed, but could 

differ based on the prion strain used in the infection analysis. An example demonstrating 

the difference would be the RK13-SHaPrPC-Gag cells inability to chronically replicate 

HY prions.             

Concluding Remarks: The development of these cell culture models facilitates prion 

infectivity analysis in more depth. Many questions in prion biology remain unanswered. 

Molecular prion strain properties are difficult to characterize using complex organisms 

such as mice. Thus, analysis of prion infectivity at the cellular level reduces this 

complexity and allows characterization of PrPSc replication in better detail. Furthermore, 

besides identifying the mechanisms that dictate PrPSc replication, cell culture models will 

help pinpoint cofactors that contribute to this process. Of the three cell lines described in 

this chapter, RK13 cells show promise as a universal cell model for PrPC-PrPSc 

conversion studies. The ability of these cells to replicate prions from different sources can 
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be used to generate cell based screening assays, elucidate cellular differences between 

strains and identify cofactors responsible for the permissiveness to convert PrPC to PrPSc. 

It is clear from our work, and previous studies that sensitivity towards prions clonally 

varies between clones from the same parent cell. In the subsequent portion of this thesis, 

the phenotypic differences that dictate cellular permissiveness to prion replication begin 

to be addressed using genomic transcriptional analysis approaches.  
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Chapter 4 
Identification Of Host Factors That Confer Susceptibility to Prions   

 

Introduction 

Prion Replication In Vivo: The proposal of a proteinaceous infectious agent that 

replicates without nucleic acids (Alper, Cramp et al. 1967; Griffith 1967) was 

substantiated with the identification of PrPSc and its normally expressed isoform, PrPC 

(Fig. 1.3) (McKinley, Bolton et al. 1983; Oesch, Westaway et al. 1985; Barry, Kent et al. 

1986; Basler, Oesch et al. 1986). Strong evidence to support the notion that 

conformational conversion of PrPC to PrPSc causes prion disease was provided with the 

creation of Prnp0/0 knockout mice (Büeler, Fischer et al. 1992). Mice lacking PrPC did not 

generate PrPSc and were resistant to prion disease (Büeler, Aguzzi et al. 1993). In 

addition, Prnp0/0 knockout mice did not exhibit any obvious developmental or behavioral 

abnormalities (Büeler, Fischer et al. 1992). The ablation of the gene and lack of gross 

phenotypic abnormalities in the Prnp0/0 knockout mice indicated that (i) PrPC is not an 

embryonic lethal gene and (ii) PrPC loss-of-function is not the cause of neuronal death in 

prion diseases (Büeler, Fischer et al. 1992). In contrast, over expression of this PrP in 

mice accelerates prion replication (Westaway, Mirenda et al. 1991). Finally, ectopic 

expression of species specific PrPC on the Prnp0/0 background permitted numerous 

studies that improved our understanding of prion species barriers, replication kinetics in 

vivo, PrPSc tissue distribution/tropism and neurological deficits (Telling, Scott et al. 1995; 

Telling, Haga et al. 1996; Bruce, Will et al. 1997; Asante, Linehan et al. 2002; Browning, 

Mason et al. 2004; Tamguney, Giles et al. 2006; Green, Castilla et al. 2008; Angers, 

Seward et al. 2009; Angers, Kang et al. 2010). However, while animal models tell us that 
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PrPC is required for disease, identification of additional cofactors that are involved in this 

process is more challenging. Furthermore, not all tissues/cells derived from Prnp0/0 mice 

have the ability to replicate prions upon ectopic expression of PrPC, additional proof 

towards cofactor requirements (Raeber, Sailer et al. 1999).  

Prion Replication In Vitro: Expression of PrPC is not sufficient to sustain chronic prion 

infectivity in cell culture without additional, unidentified factors (Bosque and Prusiner 

2000; Courageot, Daude et al. 2008; Lawson 2008; Bian, Napier et al. 2010). N2a cells, 

which are known to replicate mouse-adapted RML prions, vary in their susceptibility, 

regardless of expressed PrP levels (Bosque and Prusiner 2000). Studies characterizing 

N2a infectivity have demonstrated that only 1 out 144 or roughly 0.7% cells sustain 

chronic infectivity (Race, Fadness et al. 1987; Race, Caughey et al. 1988). This strongly 

implies that cellular permissiveness to prion replication is co-dependent on unidentified 

host factors for catalytic transformation of PrPC into PrPSc to occur.   

We hypothesize that ectopic clones of RK13 cells would vary in susceptibility to 

prion infection, and that susceptibility and resistant clones would vary in levels of 

expression of required genes.  

Transcriptional analysis to elucidate host factors involved in prion replication: 

Identifying clonally distinct phenotypes (susceptible/resistant towards prion replication) 

amongst RK13 cells permits molecular level investigations to elucidate transcriptional 

differences that confer these phenotypes. We utilized two transcription-profiling 

approaches to elucidate these phenotypic differences, namely the representational 

difference analysis (RDA), and full genome microarray transcription scanning. RDA is a 

subtractive hybridization based method that provides insights into the transcriptional 
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differences between clonal populations. On the other hand, microarray analyses provide a 

global perspective of transcriptional differences between the sensitive and resistant 

clones. Both approaches are subsequently described in greater detail. 

Transcription Profiling Using Subtractive Hybridization Methods: Representational 

Difference Analysis (RDA):  In an attempt to identify specific transcriptional differences 

between sensitive and resistant clones, the first approach we used was the RDA (Vinnik 

and Lisitsyn 1993; Lisitsyn, Leach et al. 1994). The benefit of using this approach is its 

unbiased ability to identify unique transcripts without specific or known primers to 

initiate the search. The technique becomes advantageous when applied towards the RK13 

system and its poorly annotated rabbit genome. RDA is a PCR based technique that uses 

subtractive hybridization to remove homologous transcripts shared between two DNA 

sources, referred to as “tester” and “driver” DNA. Total RNA is purified from two 

compared populations and mRNA is sub-purified for reverse transcription to cDNA. 

Generally, the “driver” DNA is supplied at various ratios in excess of the “tester” DNA to 

remove as many homologous transcripts as possible, leaving only the non-homologous 

transcripts for identification. By using this technique we aimed to identify and 

characterize unique transcripts in sensitive and resistant RK13 sub-clones. 

Transcription Analysis Using DNA Microarray Technology: DNA microarrays, also 

known as DNA chips or gene chips, are essentially a large collection of oligonucleotide 

probes that have been attached to a solid surface. The attached oligonucleotide probes 

vary in length, which depends on target DNA source to be hybridized. Moreover, the 

probes used for the chips represent different aspects of genetic information from a target 

organism. This experimental design for the microarray chip can target expression level 
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variations, detect single nucleotide polymorphisms (SNP’s), genotype and identify 

mutations in specific tissue sources (Churchill 2002; Oleksiak, Churchill et al. 2002). The 

microarray’s sizeable probe capacity facilitates high-throughput investigations (Churchill 

2002).   

The primary principle of microarray technology is based on the hybridization of a 

fluorescently labeled target sample (cDNA, cRNA) to probe immobilized oligonucleotide 

sequences. The typical microarray experiments begin with RNA isolation from target 

tissue/cell source. The RNA is than quantified and analyzed for purity. Pure RNA is 

reverse transcribed and fluorescently labeled by sequential enzymatic reactions to 

produce microarray hybridizing nucleic acids for detection. The target sample is 

hybridized to the chips and put through stringency washes to remove poorly hybridized 

samples. Finally, a scanner is used to read the chips and quantitatively calculate the total 

strength of the hybridized signal intensity.  

There are several challenges associated with the microarray methodology and the 

bioinformatic analysis of the data. These challenges come up for consideration prior to-, 

during- and post- experiments. They include: the biological complexity of the 

experimental design and the statistical significance that has to be attained to gain valid 

conclusions; standardization of the protocol for consistency of data acquisition; statistical 

analysis of the large data sets, which include normalization methods to remove 

background noise and identification of statistical significance; accuracy and precision of 

the hybridized probe, and the gene it matches; lastly, the handling and distribution of 

data, which is a major bottleneck for microarray experimentation due to a lack of 

standardized bioinformatic platforms and extremely large data sets that require immense 
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storage capacity and significant computing power (Simon 2009; Kim, Zakharkin et al. 

2010).  

Prion Disease Transcription Profiling: Initial transcription profiling of prion diseases 

utilized subtractive cloning of single stranded cDNA libraries derived from scrapie-

infected mouse and/or hamster brains. These studies identified three specific transcripts 

that were present in abundance, the transcripts identified were the glial fibrillary acidic 

protein, metallothionein II, and the B chain of α-crystallin (Wietgrefe, Zupancic et al. 

1985; Duguid, Rohwer et al. 1988). The follow up studies using a similar approach 

confirmed the original findings and in addition, identified transferrin and sulfated 

glycoprotein-2 (clusterin) (Duguid, Bohmont et al. 1989). Subsequently, differential gene 

expression of transferrin, sulfated glycoprotein-2, glial fibrillary acidic protein and 

metallothionein were also detected in hippocampal regions of Alzheimer’s disease (AD) 

and Pick disease (PD2) (Duguid, Bohmont et al. 1989), thus linking these genes with 

other known neurodegenerative diseases (Duguid, Bohmont et al. 1989). The search for 

specific genes associated with neurodegeneration during the progression of prion disease 

continued with an improved technique of the time called the “mRNA differential display” 

method. This technique helped identify five more genes missed by previous analyses that 

include cathepsin S, the C1q B-chain of complement, apolipoprotein D, and scrapie-

responsive genes ScRG-1 and ScRG-2 (Dandoy-Dron, Guillo et al. 1998).  

Improvement in gene expression technology expanded and improved the studies 

searching for gene-specific changes associated with prion diseases. A high-throughput 

analysis using cDNA microarray chips identified 158 differentially expressed genes in 

the CNS of prion-infected mice (Booth, Bowman et al. 2004). These microarrays 
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facilitated analysis of gene expression changes throughout the progression of the disease 

that include early, middle (preclinical) and late (clinical) stage time points. The gradual 

gene expression data collected over the described stages of disease link biological 

processes with progression of neurodegeneration on a transcriptional level (Booth, 

Bowman et al. 2004). Similar studies using these profiling techniques reported additional 

genes that were associated with inflammation and stress response (Brown, Webb et al. 

2004; Riemer, Neidhold et al. 2004; Xiang, Windl et al. 2004). Expression analysis of 

prion infected but preclinical (170 days post infection (dpi)) mouse hippocampus 

revealed 78 novel genes to be differentially expressed, specific that region of the brain 

(Brown, Rebus et al. 2005). These novel genes were reported to associate with 

perturbation of ER, up regulation of glycosylation enzymes, chaperones, protein 

trafficking and cellular degradation machinery.  

In addition to the newly identified genes that associate with preclinical phase of 

prion disease in mice, the stringent mathematical conditions (fold change >1.5 and p-

value < 0.01) applied towards microarray data set signal processing confirmed 

differential expression of genes that have been reported in previous studies (Brown, 

Rebus et al. 2005). These findings therefore validate transcription profiling as a viable 

technique to monitor molecular changes during prion pathogenesis (Duguid, Rohwer et 

al. 1988; Dandoy-Dron, Guillo et al. 1998; Booth, Bowman et al. 2004; Brown, Webb et 

al. 2004).  

A recent study compared gene expression differences from mice infected with 

three different mouse-adapted scrapie prion strains (ME7, 22L & RML), therefore taking 

a global perspective of molecular events that occur in prion diseases (Skinner, Abbassi et 
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al. 2006). The results from those studies revealed a total of 400 genes differentially 

regulated during the symptomatic (clinical) stage and 22 genes during the preclinical 

stage, averaged out between all three prion strains. Significant differences of gene 

expression were reported within each prion strain as well (Skinner, Abbassi et al. 2006). 

These expression profiling studies were expanded for natural prion diseases, which 

include gene expression analysis in cattle post BSE infection (Khaniya, Almeida et al. 

2009; Almeida, Basu et al. 2011; Panelli, Strozzi et al. 2011), natural scrapie in sheep 

(Filali, Martin-Burriel et al. 2011; Gossner, Foster et al. 2011), and human CJD (Baker, 

Martin et al. 2002; Sugaya, Nakamura et al. 2002; Baker and Manuelidis 2003; Xiang, 

Windl et al. 2005; Mead, Poulter et al. 2009; Medina, Hatherall et al. 2009).       

In vitro experiments analyzing the transcriptional response to prion infection have 

thus far produced sub-optimal results that lack the consistency in vivo data exhibited 

(Doh-ura, Perryman et al. 1995; Satoh and Yamamura 2004; Greenwood, Horsch et al. 

2005; Julius, Hutter et al. 2008). Initial cell culture experiments analyzing gene 

expression differences between infected (ScN2a) and un-infected N2a cells utilized 

cDNA library subtractive-hybridization techniques as described for the in vivo studies 

(Doh-ura, Perryman et al. 1995). Five specific genes with altered mRNA expression were 

identified in the ScN2a cells that included: chromogranin B, intracisternal-A particle 

envelope, ornithine decarboxylase antizyme, heat shock protein 70 and one gene not 

previously described (Doh-ura, Perryman et al. 1995). The identified transcripts were 

present in both cell types (ScN2a & N2a) and did not indicate a unique association with 

scrapie infection of the cells.  
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A different approach was used on cells that do not express endogenous PrPC. To 

assess the effect ectopic expression of PrP has on a non-PrP expressing cell, HEK293 

cells were genetically modified to express PrP and then transcriptionally profiled (Satoh 

and Yamamura 2004). Microarray screen revealed 33 genes to be differentially expressed 

after PrP over-expression. These genes were linked with various neuronal functions that 

might be associated with undefined PrPC-mediated neurodegeneration mechanisms 

(Satoh and Yamamura 2004).  

Large-scale gene expression analysis to identify differences between infected and 

uninfected neuroblastoma cells (ScN2a/N2a) and hypothalamic neuronal cells (GT1) 

revealed inconclusive results that were based on transcriptional variation of infected and 

uninfected cells derived from different neuronal sources (Greenwood, Horsch et al. 

2005). Likewise, the absence of a universal transcriptional response to persistent prion 

infection within three murine cell lines led to the conclusion that prion infection does not 

induce transcriptional alterations in an in vitro setting, which implicate that genes that 

render the cells susceptible to prion replication are present prior to exposure (Julius, 

Hutter et al. 2008). Collectively, these studies examined differential gene expression that 

compared differences before and after prion infection and the effect PrPC imposed on 

cells that do not normally express this gene (Doh-ura, Perryman et al. 1995; Satoh and 

Yamamura 2004; Greenwood, Horsch et al. 2005; Julius, Hutter et al. 2008). A 

mechanistic perspective towards prion replication and endogenous gene expression to 

identify cofactors was not considered.  
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In our study, we compare clonal cells derived from a common parental cell, that 

phenotypically differ in the susceptibility to replicating prions. Our primary aims are to 

identify genetic variance that distinguish these phenotypes.  

 

RESULTS 

 

Section I: Identification and Characterization of Susceptible/Resistant RK13 Clones 

Expressing Murine PrPC (RKM) 

RKM Clonal Selection: We stably transfected RK13 cells with an expression vector 

containing the murine PrPC ORF, using the pIRESpuro expression vector. Individual 

clones were generated by limited dilution cloning. Seventy-eight single cell RK13 

(RKM) clones were identified. Clonal populations were expanded and passaged onto 10-

cm cell culture plates. PrPC expression in the RKM clones was assessed by Western 

immuno-blotting using mAb 6H4 (Fig. 4.1A). RKM clones exhibited differential 

expression and processing of PrPC (Fig. 4.1A). PrPC protein levels were evaluated by 

densitometry analysis (Fig. 4.1E), using ImageJ image analysis software (Abramoff 

2004). The intensity of each protein band on the Western blot was measured and recorded 

(Table 4.1).  

The variation of PrPC expression is represented in figure 4.1E.  To address 

whether PrPC expression levels correlated with prion infectivity in cell culture, the cloned 

RKM cells were infected with mouse-adapted RML scrapie prions.  

RKM/N2a Clone Infection With RML Scrapie:  
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The RKM’s tolerance toward prion replication was assessed using the cell-lift 

assay and mSCA (described in chapter 3). Individual RKM clones were infected with 

0.2% (w/v) mouse-adapted RML scrapie diseased-BH in a 48-well cell culture format. 

The cells were passaged for three consecutive rounds, and analyzed for PK resistant PrPSc 

by the cell-lifting assay. The RKM clones exhibited various levels of cellular 

permissiveness to prion replication, ranging from robust infectivity to complete resistance 

(Fig. 4.1B and Fig. 4.1F). Of the 78 RKM clones infected with RML, 8 (10%) were 

resistant, 15 (19%) were partially resistant (show weak signal), 18 (23%) were 

moderately sensitive, and were 37 (47%) are highly sensitive (Fig. 4.1B). PK resistant 

signals from the cell lifting membranes were evaluated using densitometry analysis, 

which is graphically and numerically presented in figure 4.1F and table 4.1.  

Limited dilution cloning was used to identify 14 N2a single-cell clones, which 

were subject to similar experimental approaches used on the RKM cell. The RML 

infected N2a (ScN2a) clones were segregated based on susceptibility: 4 (29%) 

completely resistant sub-clones, 5 (36%) partially resistant sub-clones and 5 (36%) highly 

susceptible sub-clones (Fig. 4.1C). The dotted lines in figures 4.1B and 4.1C were added 

to represent the location of individual clones that demonstrated resistance towards PrPSc 

replication, exhibited by the absence PK resistant material.  

The mSCA was used to confirm the cell lifting data and semi-quantify the results. 

The 78 RKM clones were infected with 0.2% RML using the mSCA format (described in 

chapter 3) and passaged three consecutive rounds in a 96-well cell culture plate post 

infection. These RML-infected cells were transferred (20,000 total cells) to the 96-well 

ELISPOT plate and developed. Figure 4.1D represents the individual well readout using 
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the mSCA, while figure 4.1G graphically demonstrates the susceptibility of cells to RML 

based on the averaged spot counts. The positive control used for the mSCA were RKM 

cells chronically infected with RML and designated with a plus sign (+) in Fig. 4.1D. The 

negative control was RK13 cells transfected with an empty expression vector referred to 

as RKV and designated by a negative sign (-) in Fig. 4.2C. The clones were infected in 

triplicate to establish an average spot count (Fig. 4.1D). Quantitation of PrPSc production 

using the mSCA was determined by counting individual spots from each well, which is 

presented by a numerical value directly above the well (Table 4.1). The averaged 

numerical data of the mSCA and of the cell lifting densitometry data was statistically 

applied to ascertain correlation between PrPC expression level and clonal susceptibility to 

replicating RML prions.  

PrPC expression levels did not correlate with prion susceptibility in the RKM cell 

culture model. RKM clones 41 and 47 do not express PrPC and have no detectable levels 

of PrPSc (Figs. 4.1A-B, 4.1E-G)(Table 4.1), while RKM clones 8 and 18 express low 

levels of PrPC and exhibit moderate production of PrPSc (Figs. 4.1A-B, 4.1E-G). RKM 

clones 1, 5, 61, 76 and 78 exhibit robust expression of PrPC by Western blot, however 

they did not accumulate PrPSc (Fig. 4.1A and 4.1B) (Table 4.1).  

The coefficient of determination (R2) was assessed using linear regression to 

calculate the correlation between PrPC expression and PrPSc positive clones (Fig. 4.1H 

and Fig. 4.1I). Comparing the correlation between the evaluated densities of PrPC (Fig. 

4.1A) and PrPSc (Fig. 4.1B) resulted in a R2 value of 0.01317 (Fig. 4.1H), which strongly 

suggests the absence of a relationship between cellular PrP expression levels and 

susceptibility for sustaining chronic prion infectivity. The RKM clone sensitivity by cell 
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lifting assay (Fig. 4.1B) was confirmed using the mSCA (Fig. 4.1D, exemplary 

representation of the assay). Specifically, RKM clones 7, 18, 19, 35, 36, 37, 38, 43, 51, 

52, 60, 62, 65, 68 and 75 reveal increased RML susceptibility, while RKM clones 5, 8, 

41, 47, 69 and 78 remained mostly PrPSc negative (Fig. 4.1B & 4.1D). The correlation 

comparison of PrPC expression to mSCA averaged PrPSc-positive cell counts generated 

the R2 value of 0.003517 (Fig. 4.1I). Collectively, our data suggests that PrPC expression 

levels in the RKM clones do not dictate cellular susceptibility for RML, and although 

PrPC expression is required for infectivity, supplementary host factors are also involved 

in the PrPSc replication process.   
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Figure 4.1 RKM clonal variability towards PrPC expression and RML susceptibility. 

A. 78 clones were identified through limited dilution single-cell cloning. PrPC expression 

was assessed by western blotting using mAb 6H4. Actin expression in the lower panel 

represents total protein control. Single cell (B) RKM subclones and (C) N2a subclones 

were infected with 0.2% (w/v) mouse-adapted RML scrapie prions diseased mouse brain 

homogenate (BH), and assayed for prion susceptibility in 24-well cell culture plates by 

the cell lifting assay. The cells were grown to confluence on cell culture cover slips. 

Confluent cells were transferred to cold lysis buffer soaked nitrocellulose membrane. The 

membrane was treated with PK (5µg/ml), denatured with 3M guanidine isothiocyanate, 

immunoprobed mAb 6H4. The dark circles represent PK resistant material. D. 

Representation of the semi-quantitative modified scrapie cell assay to assess prion 

replication in the RKM subclones (examples include clones 1,7,8,9,18,19 &20). RKV 

(vector only) and chronically infected RKM cells represent the negative (-) and positive 

controls (+), respectively. The clones were seeded to 96-well cell culture plates (20,000 

cells/well) and infected with 0.2% (w/v) mouse-adapted RML scrapie prions. On third 

passage after infection, the cells were trypsinized and counted. Twenty thousand cells 

were transferred to the 96-well ELISPOT filter plates. The plates were treated with PK 

(5µg/ml), denatured with 3M guanidine isothiocyanate, immunoprobed with mAb 6H4 

primary and an Alkaline-Phophatase (AP)-conjugated anti-mouse secondary antibody. 

The combination of NBT (nitro-blue tetrazolium chloride) and BCIP (5-bromo-4-chloro-

3'-indolyphosphate p-toluidine salt) was used to detect PrPSc positive cells. Each 96-well 

plate was scanned using the CTL-ImmunoSpot plate reader and quantification of positive 

signal was achieved with the ImmunoSpot Software. (E-F). Western blot PrPC expression 
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levels (E) and PK resistant PrPSc from cell lifting membranes (F) were quantified using 

the ImageJ analysis software package. The y-axis represents the densitometric value 

subtracted from the background of the scanned membrane. The densitometry values used 

for the bar graphs are listed in Table 4.1. The x-axis represents the 78 RKM clones in 

order from left to right (1…78). PrPC expression does not correlate with susceptibility 

towards replicating RML prions. Linear regression was used to calculate the coefficient 

of determination (R2) between PrPC expression (x-axis) to (H) cell-lifting PK resistant 

PrPSc (y-axis) and (I) modified scrapie cell assay PrPSc-spot counts from infected clones 

(y-axis). GraphPad Prism Software was used to graph data points (Table 4.1) and 

calculate R2.  
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Figure 4.1 RKM clonal variability towards PrPC expression and RML susceptibility. 
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Figure 4.1 RKM clonal variability towards PrPC expression and RML susceptibility 
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Table 4.1 Summary of RML prion replication amongst cloned RKM cells using 
three distinct assays for assessment (Abramoff 2004) 

  
  

RKM$
clone PrPC 

PK+$
Cell$
Li0 

PK+$
SCA 

RKM$
clone PrPC 

PK+$
Cell$Li0 

PK+$
SCA 

RKM$
clone PrPC 

PK+$Cell$
Li0 

PK+$
SCA 

1 1.2E+07 0.0E+00 150.67 31 6.8E+06 1.3E+05 14.67 61 4.4E+06 9.8E+02 0 

2 8.2E+06 7.7E+04 5 32 5.6E+06 1.4E+06 45.67 62 5.3E+06 1.5E+06 801.67 

3 1.0E+07 4.2E+05 66.5 33 4.3E+06 1.3E+06 112.33 63 7.1E+06 1.4E+05 41.67 

4 1.2E+07 5.9E+05 27.16 34 4.1E+06 1.9E+05 0 64 9.6E+06 1.2E+06 58.67 

5 9.3E+06 5.8E+03 6.5 35 5.0E+06 1.2E+06 177.33 65 5.6E+06 1.7E+06 326.67 

6 1.2E+07 7.6E+05 122.5 36 3.5E+06 1.5E+06 229 66 1.3E+07 1.4E+06 71.67 

7 8.6E+06 1.3E+06 706.83 37 8.8E+06 1.3E+06 473 67 1.9E+06 8.3E+05 81.67 

8 0.0E+00 8.5E+04 2.5 38 2.8E+06 1.4E+06 195.66 68 9.9E+06 1.7E+06 358 

9 9.6E+06 7.1E+05 17.83 39 9.2E+06 1.2E+06 125.66 69 0.0E+00 1.3E+02 0 

10 6.0E+06 1.2E+06 43.5 40 7.1E+06 1.3E+06 28.33 70 9.1E+06 1.7E+06 52.67 

11 3.8E+06 1.2E+06 27.17 41 0.0E+00 5.7E+03 5.33 71 9.7E+06 1.6E+06 32 

12 9.8E+06 1.3E+06 142.83 42 8.6E+06 5.6E+05 105 72 2.7E+06 1.1E+06 8.67 

13 4.4E+06 2.5E+05 9.83 43 9.0E+06 1.3E+06 591.66 73 3.1E+05 6.1E+05 475.67 
14 1.1E+07 1.3E+06 394.5 44 9.0E+06 8.3E+05 104.66 74 2.9E+06 1.2E+06 65.34 

15 9.7E+06 3.9E+05 47.83 45 7.6E+06 1.4E+06 62.33 75 6.5E+06 1.6E+06 802.67 

16 6.8E+06 1.2E+06 51.5 46 1.1E+07 1.2E+06 59.33 76 9.3E+06 1.1E+03 15 

17 1.2E+07 1.1E+06 10.5 47 0.0E+00 8.9E+03 0 77 6.8E+06 7.1E+05 19.67 

18 2.5E+06 1.5E+06 972.5 48 6.6E+06 5.7E+04 47.66 78 5.1E+06 3.0E+03 0 

19 7.9E+06 1.4E+06 956.83 49 9.6E+06 5.3E+05 79.33 

20 1.0E+07 8.1E+04 3.5 50 5.9E+06 1.3E+05 55.33 

21 1.0E+07 1.1E+06 16.83 51 4.6E+06 1.5E+06 366.33 

22 1.1E+07 1.0E+06 16.83 52 8.4E+06 1.4E+06 241 

23 8.5E+06 1.9E+05 23.83 53 8.2E+06 1.3E+06 224.33 

24 8.8E+06 1.3E+06 89.67 54 4.9E+06 1.4E+05 83.66 

25 8.3E+06 1.8E+05 0 55 8.0E+06 6.7E+05 70 

26 4.6E+06 7.5E+05 5.16 56 6.9E+06 9.2E+05 74 

27 8.0E+06 4.9E+04 7.16 57 4.6E+06 4.5E+05 17.66 

28 5.9E+06 1.4E+06 69.16 58 6.2E+06 4.5E+04 47.33 

29  1.2E+07 4.6E+04 0.16 59 9.7E+06 1.3E+06 110.33 

30 8.1E+06 4.5E+04 11.16 60 7.2E+06 1.5E+06 386.66 
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To ascertain chronic replication of RML prions, certain RKM clones were chosen 

for expansion and continuous passage. RKM clones 7, 14, 18, 19 and 43 were chosen for 

their sensitivity and RKM clones 29, 34, 61 and 78 were selected for their resistance to 

RML. Each clone was passaged 20 times and assessed for sustained production of PK 

resistant PrPSc. The RML sensitive clones (7, 14, 18, 19 and 43) chronically sustained a 

steady state of PK resistant PrPSc, whereas the resistant RKM clones (29, 34, 61 and 78) 

exhibited no detectable PK resistant PrPSc (Fig. 4.2A).  

To address whether the sensitive/resistant phenotypes of cells reflect differences 

in cell surface presentation of PrPC, two clones with similar PrPC expression levels and 

distinct prion susceptibility (sensitive/resistant) were selected for cell surface presentation 

comparison analysis. The two RKM clones selected for the study were clone 7 (RML 

sensitive) and clone 78 (RML resistant) (Figs. 4.1 and 4.2A).  Surface expression of PrPC 

was analyzed in both clones by flow cytometry. The mAb SAF-32 targeted to the 

octapeptide-repeat region located at the N-terminus of the PrPC (Fig. 1.1A) was utilized 

for this purpose. The flow cytometric data reveal no differences in cell surface expression 

of PrPC between the two clones  (Fig. 4.2B).   
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Figure 4.2 Accumulation of PK-resistant PrP and PrPC surface expression in RML 

susceptible and resistant RKM clones. A. RML sensitive (7, 14, 18, 19, & 43) and 

resistant (29, 34, 61 & 78) clones cell lysates were PK digested and analyzed by Western 

immuno blotting after 20 passages. RKV (vector only) and chronically infected RKM 

cells represent the negative (-) and positive controls (+), respectively.  PrPSc was detected 

using mAb 6H4. B. PrPC cell surface expression was assessed in RML sensitive (RKM 

clone 7, green line) and resistant (RKM clone 78, red line) and compared to the non-PrPC 

expressing RK13 control (blue line) by flow cytometry. The SAF-32 mAb was used for 

cell surface detection of PrPC. The y- and x-axis of the histogram represents the cellular 

counts and the mean fluorescent intensity (MFI) of PrPC, respectively. (C) Subsequent 

RML-susceptibility analyses of uninfected RKM clones (7 & 78) revealed RKM-78 

(Resistant) ability to replicate low-levels of PK resistant PrPSc. The Western blot 

represents cell lysate analysis after 12 passage rounds. PrP was detected using mAb 6H4.  
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Figure 4.2 Accumulation of PK-resistant PrP and PrPC surface expression in RML 
susceptible and resistant RKM clones. 
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Transcriptional Profiling By RDA: RKM clones 7 and 78 were utilized as the 

representative clones for transcriptional profiling by RDA. The two clones were 

subjected to three successive rounds of subtractive hybridization and amplification. The 

stringency of hybridization was increased with each round (Fig. 4.3).  The final enriched 

PCR products of RKM 7 and RKM 78 were separated using 2% agarose DNA gel 

electrophoresis (Fig. 4.3).  Distinct PCR bands were identified for both subtractive 

reactions and exhibited specific migration patterns in the range of 150 bp - 400 bp (Fig. 

4.3). These DNA bands were carefully excised, purified and cloned into the pGEM-T 

vector. The cloned products were transformed into competent bacterial cells and grown 

on antibiotic selective agar plates. A total of 98 individual colonies were picked between 

the two clonal RDA products. Plasmids were purified from these colonies and 

subsequently sequenced to identify specific transcripts. A total of eight unique non-

homologous transcripts were recognized between the susceptible and resistant clones 

(Table’s 4.2 and 4.3).  
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Figure 4.3 RDA for the identification of differentially expressed genes in RKM 

subclones. The 2% agarose gels represent sequential subtractive hybridization coupled to 

PCR-mediated enrichment for differentially expressed transcripts in susceptible (RKM7) 

and resistant (RKM78) clones. Representation of two nearly identical DNA pools is 

generated in round 1, followed by subtractive/kinetic enrichment for distinct difference 

product in rounds 2 and 3. For each round, lane (A) represents RKM 7 (susceptible) clone 

as the tester (cDNA limited) cDNA amplifying non-homologous sequences unique to that 

cell that is subtracted by RKM 78 (resistant) clone driver (cDNA added in access). Lane 

(B) is the subtractive/kinetic enrichment in reverse order of (A). The tester:driver 

stringency ratios were increased for each subtractive round as follows: Round 1: 1:50, 

Round 2: 1:500, Round 3: 1:1000 
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Figure 4.3 RDA for the identification of differentially expressed genes in RKM 
subclones. 
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 RDA Identified Transcripts From RKM Clone 7 (Sensitive): Four specific transcripts 

were identified in RKM clone 7 by RDA profiling. Three of these four transcripts are 

either hypothetical and/or conserved hypothetical sequences. Thus, they completely lack 

functional data to support their existence. The criteria used by the National Center for 

Biotechnology Information (NCBI) to categorizes identified sequences as hypothetical 

proteins are based on one of two factors. The protein is deemed hypothetical if its 

sequence is homologous to genes of unknown function in the NCB database and/or no 

known homologs exist (Sivashankari and Shanmughavel 2006). All three proteins were 

derived from the Oryctolagus cuniculus (rabbit) genomic sequences annotated using the 

gene prediction method, GNOMON and supported by EST evidence. The GNOMON 

gene prediction method is used to predict and annotate genes from poorly unannotated 

genomes. A complete overview of GNOMON and the NCBI eukaryotic gene prediction 

tool is available on the NCBI website 

(http://www.ncbi.nlm.nih.gov/projects/genome/guide/gnomon.shtml). 

The hypothetical protein with accession number XM_002722317 has not been 

characterized (Table 4.2). The NCBI nucleotide database search indicates that this 

predicted protein is 343 amino acids in length and has an approximate molecular weight 

of 37-kDa (Table 4.3). This novel protein has orthologs throughout mammalian species 

but has not been functionally analyzed in any of them. The Homo sapiens (human) 

ortholog is 351 amino acids long and belongs to the uncharacterized protein family 0692 

(UPF0692). The Universal Protein Resource (UniProt) database analysis of this protein 

indicates that it exists at the protein level (subsection of protein attributes descriptor), is 

found on human chromosome 19, has three potential splice variants and is 
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posttranslationally modified with the attachment of a phosphate at a serine residue in the 

c-terminus of the peptide (316 aa, phosphorylated) (Gerhard, Wagner et al. 2004; 

Grimwood, Gordon et al. 2004; Ota, Suzuki et al. 2004; Dephoure, Zhou et al. 2008). In 

addition to the UniProt data mining, structure and localization prediction analyses were 

done using the ExPASy bioinformatic resource portal (http://expasy.org/tools/). TargetP  

(http://www.cbs.dtu.dk/services/TargetP/), a bioinformatic tool used to predict 

subcellular location of eukaryotic proteins indicates that this protein could localize to the 

mitochondria (mitochondrial targeting sequence) and/or vesicles of the secretory 

pathways (by signal sequence) (Emanuelsson, Nielsen et al. 2000). YASPIN secondary 

structure prediction tool (http://www.ibi.vu.nl/programs/yaspinwww/) predicts that this 

hypothetical protein is predominantly coiled due to a proline-rich composition (Lin, 

Simossis et al. 2005). In addition to the overall coiled structure, 7 α-helices and 8 β-

sheets are predicted to span the entire protein (Table 4.3).  Thus, although the protein has 

not been experimentally analyzed, the predicted attributes (evolutionary conservation, 

phosphorylation site, and highly structured) suggest that it has a physiological function 

that has yet to be defined. Moreover, as a unique transcript identified in RKM clone 7, 

this peptide could be one of the unidentified cofactors that are responsible for the prion 

susceptibility phenotype.  

The second hypothetical protein recognized by the RDA has the accession 

number of XM_002723849 (Table 4.2). Like the above-mentioned hypothetical protein, 

this transcript has not been described and has not been shown to exist at the protein level. 

Additional bioinformatic database searches indicate that all data collected in regards to 

this protein is predicted and preliminary (Di Palma F. 2009).  If this protein does exist, it 
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would be 533aa (488aa predicted) in length and have an approximate mass of 54.3-kDa 

(Table 4.3) (UniProtKB sequence analysis, http://www.uniprot.org/uniprot/G1TFK2). 

TargetP analysis indicates that this protein would localize to the mitochondria 

(Emanuelsson, Nielsen et al. 2000).  YASPIN secondary structure prediction analysis 

indicates that this protein is predominantly unstructured but does have one short α-helix 

domain (~6aa) at the N-terminus and two short β-sheet domains (13aa and 4aa) at the C-

terminus (Lin, Simossis et al. 2005). Furthermore, NCBI BLASTp analysis reveals that 

the C-terminus of this novel protein is homologous (7% of total protein) to a human 

integral membrane transporter protein with an accession number of CAB81951. This 

protein is also categorized as hypothetical but has more descriptors that indicate its 

primary function is involved with anti-apoptotic signaling (Liu 2000). 

The third predicted transcript identified by RDA is categorized as a conserved 

hypothetical protein, meaning that its sequence is homologous to proteins that already 

have designated biological function. This protein is identified in the NCBI database by 

the accession number of XM_002723594 (Table 4.2) and is predicted to function as a 

signal transducer with kinase activity (http://www.ncbi.nlm.nih.gov/protein/291414786). 

UniProt analysis extrapolates this protein to have serine/threonine kinase activity, signal 

transducing activity and ATP binding affinity (http://www.uniprot.org/uniprot/G1TSK1). 

This hypothetical protein is large, it spans for 1,295aa and has molecular weight of 139.7-

kDa (Table 4.3)(Di Palma F. 2009). The protein is predicted to have the PAS domain that 

contains serine/threonine kinase activity. PAS domains are evolutionary conserved 

signaling domains found in proteins which tend to function by associating with specific 
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cofactors (Ponting and Aravind 1997).  Structurally, this protein is predicted to have 25 

α-helices and 37 β-sheets (Lin, Simossis et al. 2005). 

The fourth unique transcript identified by the RDA in the RKM 7 susceptible 

clone is the rabbit MT-2 processed gene for metallothionein (accession number 

X07791.1). Described as a pseudogene without associated function, the transcript belongs 

to the family of low molecular weight (7 kDa), heavy metal-binding proteins with high 

cysteine content (Table 4.2). Metallothionein proteins generally localize to the Golgi and 

are assumed to confer protection against oxidative stress regulating metal homeostasis in 

the cell (Blindauer and Leszczyszyn 2010).     
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Table 4.2 Transcripts identified by RDA in the prion susceptible RKM 7 clone 

 

  

Accession # Susceptible RKM 7 Function 

XM_002723849  hypothetical protein 
LOC100353326 

Not characterized, novel protein. 
Partially homologous to an integral membrane 
transporter protein [Homo sapiens].  Associated 
with anti-apoptosis  signaling 

XM_002723594  PAS domain containing 
serine/threonine kinase 
(LOC100338542), 
mRNA 

PAS domains regulate the function of many 
intracellular signaling pathways in response to 
both extrinsic and intrinsic stimuli 

XM_002722317 hypothetical protein 
LOC100338446 

Not characterized, novel protein 

X07791.1 Rabbit MT-2 processed 
gene for metallothionein 

Pseudogene,  family of low molecular weight, 
heavy metal-binding proteins characterized by a 
high cysteine content 
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Table 4.3 Bioinformatic Prediction and Analysis Of RDA Identified Hypothetical 
Proteins 

*Databases employed for analysis: Minimotif Miner 3.0, ProtFun 2.2, CATH v3.4, 
YASPIN, BLAST (Lin, Simossis et al. 2005; Balla, Thapar et al. 2006; Di Palma F. 
2009; Rajasekaran, Balla et al. 2009; Mi, Merlin et al. 2012)  

LOC100338446 –  
XM_002722317 

LOC100338542 –  
XM_002723594 

XM_002722317 XM_002723594 XM_002723849 

Predicted 
Residues 

1-113aa, 114-222aa (A)1-114, (B)47-131, 
132-321, 322-364 

NA 

Size (AA/
kDa) 

343aa/37-kDa 1,295aa/139.7-kDa 533aa/54.3-kDa 

Functional 
Category 

Biosynthesis of 
Cofactors/
Translation 

Purines/Pyrimidines, 
Biosynthesis of 

Cofactors, Central 
Intermediary 
Metabolism 

Translation 

Enzyme-
Class 

Enzyme-Lyase Enzyme-Ligase/
Hydrolase 

Non-enzyme 

Gene 
Ontology 

Transcription/
Growth Factor 

Structural Protein, 
Transcription 

Regulation, Growth 
Factor 

Transcription-
Regulation 

Secondary 
Structure 
Prediction 

(7) α-helix, (8) β-
sheet  

(25) α-helix, (37) β-
sheet  

Unstructured 

Domains Extracellular, 
Tyrosine-Protein-
Kinase Receptor-
like, Titin-like, 

IGSF-like 
Fibronectin-like, 

Tenascin-X, 
Filamin-like 

PAS, MAPK-like, 
Protein Kinase, 

Tyrosine-Protein-
Kinase-Fyn, Serine/
Threonine protein 

kinase  

No Predicted Domains 

Notable 
Motif 

Binds EVH1(WH1), 
WW(PRP40 

&Fe65), SH3, 
Endothiapepsin, 

Rhodopsin, Protein 
Modification 

Targets, 
Phosphorylation 

Sites 

Binds NAD,NADP, 
FAD, Cullin, Ubiquitin, 

SH3, Rhodopsin, 
Ankrin B,  eIF4E, 

Protein Modification 
Targets, 

Phosphorylation Sites 
 

Binds ATP, NADP, 
DNA Proteolysis by 
Furin, Modification 

Signals 
(Phosphorylation, 
Trafficking to ER, 

Endocytosis) Protein 
Binding  

LOC100353326 – 
XM_002723849 

No 
Predicted 
Structure 

A B

Predicted 
Structure  
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RDA Identified Transcripts From RKM Clone 78 (Resistant): Similarly to RKM clone 7, 

RDA transcription profiling of RKM clone 78 (resistant) identified four unique 

transcripts (Table 4.4). These transcripts were unrelated to the transcripts identified in 

RKM clone 7. The transcripts unique to RKM clone 78 have enzymatic functions, which 

are associated with protein degradation, chaperone protein folding and endogenous 

retroviral elements.   

A transcript homologous to the rabbit endogenous retrovirus H (RERV-H) 

(accession number AF480925) was identified using RDA in RKM clone 78. PCR 

screening of human tissue led to the identification of RERV-H, considered to be a novel 

human retrovirus (Griffiths, Venables et al. 1997). Subsequent cloning studies revealed 

the correct origin of RERV-H to originate from European rabbits (Griffiths, Voisset et al. 

2002). This endogenous retrovirus is genome encoded and maintains highly conserved 

ORF for the gag, pro and pol retroviral elements (Griffiths, Voisset et al. 2002). 

Although functional characterization is still absent for this endogenous retrovirus, in vitro 

analysis has revealed that the RERV-H viral protease (PR, pro ORF) is active if 

recombinantly generated (Voisset, Myers et al. 2003).  Retroviral proteases are 

functionally classified in the aspartic protease enzyme family (Wlodawer and Gustchina 

2000), and have been identified in a wide range of living organisms (Davies 1990; Hill 

and Phylip 1997). 

The chaperonin-containing TCP-1 subunit gamma (CCT3), a transcript identified 

in RKM clone 78, belongs to the molecular chaperone complex called the TCP1 ring 

(TRiC) (Table 4.4). The predominant function of this chaperonin is to facilitate actin and 

tubulin folding (Kubota, Hynes et al. 1994). This 60kDa protein is an evolutionary 
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conserved member of a heat shock/chaperonin family with strong relation to Hsp60 

(Kubota, Hynes et al. 1995). The CCT complex has been shown to promote activation of 

the anaphase-promoting complex (APC/C) by directly interacting with cell-division cycle 

protein 20 (Cdc20), a regulator of cell division (Camasses, Bogdanova et al. 2003). The 

direct interaction of CCT with Cdc20 positively regulates cell division, causing the cell 

cycle to progress (Camasses, Bogdanova et al. 2003). 

The plasma alpha-1-antiprotease S-1 protein (accession number D16104.1) and 

mannose-binding protein associated serine protease-3 (MASP-1/3) (accession number 

XM_002716369.1) were two proteins identified in RKM clone 78 and associated with 

enzyme regulatory activity. Plasma alpha-1-antiproteases are glycoproteins that inhibit 

serine proteases, which include trypsin, chymotrypsin, elastase and plasmin (Travis and 

Salvesen 1983; Potempa, Watorek et al. 1986). Unlike other plasma alpha-1-

antiproteases, the rabbit alpha-1-antiprotease S-1 has been characterized to protect trypsin 

from inactivation by other protease inhibitors (Saito and Sinohara 1993). While, MASP-

1/3 is a serine protease that is involved in the lectin pathway activation complex of 

complement (Stover, Lynch et al. 2003). The function of this protease has not been 

determined but the related MASP-1 has been determined to cleave C3 and C2, while 

MASP-2 cleaves C4 and C2 complement components to produce the C3 convertase, 

C4BC2B (Matsushita, Thiel et al. 2000). Complement is an indispensable constituent of 

the innate immune response. Furthermore, complement activation has been demonstrated 

to facilitate prion infection in vivo (Klein, Kaeser et al. 2001) with a converse effect upon 

depletion (Mabbott, Bruce et al. 2001).  
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Section Summary: RK13 cells expressing mouse PrPC were individually cloned from a 

bulk selected cell culture population. The individual clones were assessed for PrPC 

expression level and susceptibility to replicating RML scrapie prions (Fig. 4.1). Although 

required, the variability of PrPC expression amongst clonally selected RKM cells was the 

only determining factor for prion susceptibility (Fig. 4.1), and there was no correlation 

between PrPC expression levels and PrPSc accumulation (Fig. 4.1). Several RKM clones 

were isolated that conferred the susceptible or resistant phenotype for RML prions (Fig. 

4.2). These clones were continuously passaged to determine their ability to sustain 

chronic infectivity. PrPC cell-surface presentation was assessed in individual clones 

bestowing the RML sensitive or resistant phenotypes (Fig. 4.2), but no difference in PrPC 

surface presentation was observed. We applied RDA assay to assess transcriptional 

differences between these clones. A total of eight unique transcripts were identified 

between the sensitive and resistant clones (Tables 4.2 & 4.4). In the midst of the RDA 

analysis, it was discovered that RKM-78 (resistant clone) had the ability to replicate low-

levels of PK resistant PrPSc (Fig. 4.2C).   
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Table 4.4 Transcripts identified by RDA in the prion resistant RKM 78 clone  

 

  

Accession 
# 

Resistant  RKM 78 Function 

AF480925  rabbit endogenous retrovirus H Contains Functional gag, pro & pol  

XM_00271
5377 

chaperonin-containing TCP-1 subunit 
gamma (CCT3) mRNA 

molecular chaperone called TCP1 ring complex 
(TRiC) plays a role in actin and tubulin folding 

D16104.1 mRNA for plasma alpha-1-
antiproteinase S-1, complete cds 

Protects Trypsin from inactivation 

XM_00271
6369.1 

mannose-binding protein 
associated serine protease-3 
(MASP-1/3), mRNA 

Serine protease involved in complement 
activation 
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Section II: The Identification of CWD Susceptible and Resistant RK13-Deer PrPC 

(RKD) Clones  

Isolation And Characterization Of Sensitive And Resistant Clones: RKD clonal cells were 

generated using the multi-step stable transfection process to co-express deer PrPC and 

HIV-1 Gag (Fig. 4.4A). CWD sensitivity of clones was determined. RKD cells were 

cloned by limited dilution and infected with 0.2% (w/v) CWD isolate 012-09442 

passaged through Tg(deerPrP)1536+/- mice (Table 3.1). RKD6 clone demonstrated 

susceptibility to CWD but could not sustain chronic replication of CWD prions. RKD6 

cells were re-transfected with HIV-1 Gag , and the resulting RKD6-Gag cells were re-

infected with CWD isolate 012-09442 and cloned by limited dilution. This resulted in the 

isolation of the 5E9 clonal cell line, which chronically replicates CWD prions (Fig. 

4.4A). Subsequently, the 5E9 RKD clone was cured of CWD prions by single cell 

cloning, which enabled the identification of sub-clones that were either resistant or 

susceptible to CWD prions (Fig. 4.4A).  A total of 20 5E9 sub-clones were identified 

using this procedure (10 susceptible and 10 resistant). Of those 20, 12 5E9 RKD sub-

clones (6 sensitive and 6 resistant) were chosen for subsequent confirmation of 

susceptibility and microarray transcriptional profiling.  

Confirmation of Susceptibility In RKD Subclones: Confirmation of CWD prion 

susceptibility was a prerequisite to transcriptional profiling. Twelve clones were re-

infected with CWD prions and passaged three rounds. At passage three, Western blotting 

was used to assess PrPSc accumulation. Six chosen 5E9 RKD-resistant (RKD-R) clones 

remained free of PK resistant CerPrPSc material (Fig. 4.4B, left blot), while the sensitive 

5E9 RKD cells (RKD-S) reconfirmed their ability to accumulate PK resistant CerPrPSc 



	   173	  

(Fig. 4.4B, right blot). Equal amount of total protein was used throughout the experiment 

(Fig. 4.1B & C). PrP density measurements showed similar amount of PrPC expression 

among the twelve RKD clones with only RKD-S cells replicating CWD prions.    

The twelve CWD prion infected 5E9 RKD clones were continuously passaged to 

monitor prion replication in later passages. At the 12th passage, the sub-clones were re-

screened for PK resistant CerPrPSc accumulation by Western blotting (Fig. 4.4C). RKD-R 

cells remained CerPrPSc negative, (Fig. 4.4C, left blot). However, RKD-S3 and RKD-S6 

sub-clones became CerPrPSc negative by the 12th passage (Fig. 4.4C, right blot), raising 

the possibility for a cellular phenotype that supports incomplete expression of the 

necessary host factors required for CWD prion susceptibility (Fig. 4.4C). 

Microarray Transcription Profiling: Previous data suggests there is no change in 

differential gene expression in cell cultures pre- and post- prion exposure (Julius, Hutter 

et al. 2008), indicating that endogenous prion host factors are always present. Total RNA 

was isolated from RKD sub-clones prior CWD prion re-infection. Microarray analysis 

was not initiated until the susceptibility phenotypes were reconfirmed. Isolated RNA was 

reversed transcribed, Cy-3 labeled, and hybridized to microarray chips for gene 

expression analysis, after CWD prion susceptibility confirmation.  

Statistical Analysis of Microarray Data: The rabbit 4x44K chip used in these studies is 

shown in figure 4.5A. Acquired expression data from RKD clonal cells was Log2 

transformed and normalized using robust multichip average (RMA) normalization 

method (Bolstad, Irizarry et al. 2003; Smyth, Yang et al. 2003; Kerr and Churchill 2007). 

Log2 transformation of microarray spot intensities and ratios is a prerequisite to data 

normalization processing. The transformation creates independence between intensity 
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variation and absolute magnitude of the data set (Smyth, Yang et al. 2003). Taking base 2 

log of all spot intensity data from microarray scans completes this transformation. 

Normalization of microarray data removes background noise from nonspecific binding of 

fluorophores and reduces variances introduced by physical flaws of the printed chips. 

These normalization methods produced smoothed gene expression data sets that could be 

used in statistical analyses. The smoothed data sets were analyzed for mathematical 

stringency to determine significance.   
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Figure 4.4 Molecular characterizations of RKD subclones. A. Schematic of molecular 

characterization steps used to identify CWD prion susceptible and resistant RKD clonal 

cells. Western blot analysis representing RKD-R and RKD-S cells infected with 0.2 % 

(w/v) CWD prion brain homogenate, isolate CWD 012-09442 passaged through 

Tg1536+/- mice, post (B) 3 and (C) 12 passages. The total protein amount used for 

analysis was 15µg for PK(-) lanes and 1000µg for PK(+) lanes. The mAb 9E9 was used 

to detect PrP signal. The designation of each clone goes by the letter indicating it’s 

phenotype; resistant (R) or sensitive (S), and by a number indicating individual sub-

clones (R1…R6, S1….S6). (D) Western blot PrPC and PK resistant CerPrPSc expression 

levels were quantified using the ImageJ analysis software package The y-axis represents 

numerical densitometry value subtracted from the background of the scanned membrane. 

The x-axis represents the resistant (R) and sensitive (S) RKD clones. Blue bars represent 

total PrPC expression without PK treatment. Red bars represent the density of PK+ 

material CerPrPSc.  
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Figure 4.4 Molecular characterizations of RKD subclones. 
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Figure 4.4 Molecular characterizations of RKD subclones. 
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To increase stringency and remove false positive and false negative data, 

restrictions were set to eliminate saturated or near background gene signal intensities. 

Statistical stringency was set by two distinct parameters, which were t-test p-values and 

fold-cutoff (FC) change. Most stringent of analyses used a t-test p-value of ≤ 0.001 and a 

FC of ≥ 2.0 (Fig. 4.5B, Tables 4.5 and 4.6), while the least stringent analysis used t-test 

p-value of ≤ 0.05 and a FC of ≥ 1.5. The volcano plot exhibited in figure 4.5B graphically 

represents genes that were either above or below the higher stringency threshold. The y-

axis of the volcano plot represents t-test p-values, while the horizontal dotted line 

spanning the graph represents p-value threshold of 0.001. The line signifies all events 

(black dots - genes), which were statistically significant and relevant for further analysis. 

The x-axis of the volcano plot represents FC change, signifying the averaged gene probe 

intensities of RKD-R gene expression results directly compared to RKD-S gene 

expression (Fig. 4.5B). In summary, the higher the signal is above red line in either 

direction, the more significant it is to the overall analysis.      

 A relationship model to predict mathematical correlation between each RKD 

clone was established using the principal component analysis (PCA). The PCA is an 

orthogonal transformation tool used for investigative data analysis and assist in predictive 

model construction (Jolliffe 2002; Peterson 2002). This procedure is purely mathematical 

and does not consider biological significance. The differences identified were based of 

numerical intensities for each individual probe representing the RKD subclones analyzed. 

The data samples were spatially clustered in two dimensions to demonstrate relationship 

similarities (Fig. 4.5C). The numbers on the graph represent distinct RKD sub-clones and 

the colors represents susceptibility phenotype for CWD prions (RKD-S = Red and RKD-
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R = Blue) (Fig. 4.5C). The PCA data demonstrates distinct clustering of sensitive and 

resistant clones (Fig. 4.5C). Spatial distribution of clusters graphically represents 

variation of gene expression profiles between each clone. The resistant clones cluster into 

three distinct groups to the left quadrants of the PCA1 x-axis and the four sensitive clones 

distinctively cluster to the right of the PCA1 x-axis. Thus demarcating a phenotypic 

difference between the two groups, albeit two of the sensitive clones (RKD-S 3&4) plot 

closer to the resistant clusters (Fig. 4.5C). The PCA graph gives a global glimpse into the 

distribution of acquired microarray raw data. Differential distribution of RKD subclones 

by PCA is first to suggest the possibility for multiple factors/pathways that are involved 

to cause prion susceptibility in RKD subclonal cells. Bioinformatic analysis of 

normalized gene intensity data is required to acquire additional detail and significance 

associated with the PCA findings.   

 Cluster analysis is a technique utilized to establish phylogenetic relationships 

between evolutionary conserved genes from various species. Hierarchical cluster analysis 

algorithm was used to graphically represent RKD normalized microarray data (Fig. 

4.5D). The hierarchical cluster data was analyzed by sequentially comparing rows 

(genes) from each column (RKM clones) side by side. Hypothesis for experimental 

relationship and significance was determined by analyzing both variables. Ten 

differential gene clusters were identified using this method (Fig. 4.5D). Gene clustering 

data exhibited in figure 4.5D was based on a statistical stringency threshold of p-value ≤ 

0.05 and FC ≥1.5. This analysis provided a more global perspective on the physiological 

conditions occurring in RKD cells.  
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Analysis Of Normalized Microarray Data: The hierarchal cluster analysis revealed genes 

that were associated with various cellular functions. To derive these associated functions, 

genes from each cluster were systematically annotated and database mined. Database 

mining revealed specific protein functions associated with endomembrane system 

trafficking, proteolysis, protein maintenance, protein biosynthesis, cell division and metal 

ion binding. Moreover, these annotated clusters provide insight to target pathways that 

could be important prion replication. In particular, the distinct clustering of RKD-S3 and 

RKD-S6 demonstrate an interesting reflection of phenotypic variation and instability 

(Fig. 4.5D). These two clones were considered susceptible by primary and secondary 

CWD prion infection studies but with continuous passages lost detectable PK resistant 

CerPrPSc (Fig. 4.4B and Fig. 4.4C). Hierarchal cluster visual analysis of S3 and S6 

clearly demonstrates a distinct clustering pattern, which they share with both resistant and 

sensitive counterparts (Fig. 4.5D). These findings suggest that clones S3 and S6 represent 

a “quasi-“sensitive species that lacks the full repertoire of host factors required for 

chronic replication of CWD prions. Subsequent bioinformatic analyses were used to 

confirm these microarray data findings.  
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Figure 4.5 Microarray statistical data analysis of differential gene expression in 5E9 

RKD CWD prion subclones. A. Representative image of the Rabbit Gene expression 

4x44k microarray chip B. Statistical volcano plot of significantly expressed genes from 

RKD-R cells subtracted from RKD-S cells with stringency thresholds set to a p-value 

≤0.001 and FC ≥2.0. The x-axis represents FC and the y-axis represents p-value. The red 

line on the plot was set for p-value 0.00, all black dots (genes) above the line were 

statistically significant. C. Principal component analysis (PCA) of the 12 RKD clones in 

two-dimensional schematic. Red numbers represent RKD-S clones and blue numbers 

represent RKD-R clones. The PCA correlates each mathematical component (RKD 

Microarray normalized signal intensity) and clusters it in multi-dimensional coordinates 

to demonstrate the relationship and internal structure of a complex data set. D. Heat map 

of hierarchical gene clustering using the microarray data derived from the 12 RKD 

clones. A graphical representation of gene expression similarities. Each column 

represents individual RKD clones, labeled at the bottom of the heat map. The rows 

represent specific probes (genes). The intensity of red indicates high expression to the 

sample mean and the blue low expression. Ten clusters were identified, from top to 

bottom.   
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Figure 4.5 Microarray statistical data analysis of differential gene expression in 5E9 
RKD CWD prion subclones.  

  

  

Blue = Resistant Red = Sensitive 

           R1  R2  R3 R4  R5   S3  S6    R6     S4   S1  S5  S2 
                   RKD Clones: Resistant (R) & Sensitive (S)       

 RKD Hierarchal Cluster !

"!!!!!!!!!!!!!!!!!!!+!

D C 

Probes 209 88 38 21 13 446 135 38 49 16 1,053 

Cluster 1 2 3 4 5 6 7 8 9 10 Total 

Diff of Treatment= (Sensitive) – (Resistant) 
A B 

Rabbit Gene expression 4x44k microarray 



	   183	  

Gene List Development and Annotation: Several gene lists were derived from the 

microarray analyses. The gene selection criteria to develop the lists were based on the 

following: averaged total gene signal intensities ((R1+R2+R3…R6)/6) for each 

individual gene and statistical thresholds (mentioned earlier). A total of 100 differentially 

expressed genes were identified using stringent conditions set to t-test p-value ≤ 0.001 

and FC of ≥ 2.0 (Table 4.5). RKD-R clones exhibited 32-up and 68-down regulated genes 

using this threshold parameter (Table 4.5). This statistical stringency leaves no doubt that 

the genes were differentially expressed, therefore making them primary targets for future 

validation. These 100 annotated genes are listed in their entirety in tables 4.6 and 4.7. 

Reduction of statistical stringency to p-values of ≤ 0.05 and FC of ≥ 1.5 resulted in a 

larger gene list used to gain a global perspective of biological processes (Table 4.5). A 

total of 1,375 genes were derived using this statistical stringency parameter.  

The ongoing rabbit genome-sequencing project made gene annotation of our data 

challenging. Manual ortholog data mining using multiple database search engines were 

used to derive the described gene lists. Completing the annotation of these lists required 

careful extraction and conversion of rabbit gene probes to mouse or human ortholog gene 

identification names, and symbols. In addition to identifying functional roles of these 

orthologs, the ortholog conversion enabled the use of gene ontology databases to assess 

pathway connections and interacting molecules. These databases are currently limited to 

human and/or mouse annotations.  
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Table 4.5 Summarization of identified and annotated genes lists by microarray 
experiments.  
 

 
 
  

Analysis RKD-R (Resistant) Up 
Regulated Genes 

RKD-S (Sensitive) 
Up Regulated 
Genes  

Fold Cutoff 2.0 
Pval 0.001 32 Genes 68 Genes 

Fold Cutoff 1.5 
Pval 0.05 664 Genes 711 Genes 

FC1.5 Cross 
referenced to Prion 
Disease Database 

(PDDB)  

132 Genes 182 Genes 

PDDB – The total identified genes from the FC1.5 data subset is cross 
referenced to the differentially expressed genes identified from in vivo 
studies following RML infection at 6, 10, 14, 18, 20 and 22 weeks post 
inoculation. 
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Functional Correlation Of Gene Data Using Gene Association/Prediction Databases:   

Large-scale analysis of microarray data requires access to genomic databases that 

maintain gene annotation with reference to peer-reviewed literature. In addition, these 

databases require immense computational power to cross-reference the users gene/probe 

names against the validated/annotated genes of the database. The databases applied to our 

microarray analysis include the Protein ANalysis Through Evolutionary Relationships 

(PANTHER) and the Database for Annotation, Visualization and Integrated Discovery 

(DAVID). The PANTHER database functions by applying user’s input gene data and 

cross-referencing it through all data published in scientific journals containing 

experimental evidence as validating support. Moreover, this database also utilizes 

evolutionary relationships to predict function (http://www.pantherdb.org/). This database 

has several classification systems that are sub-categorized into the following; Gene 

families and subfamilies, Gene ontology classes, PANTHER Protein classes and 

Pathways.   

The DAVID database provides users with comprehensive mathematical tools that 

assist in functional annotation and understand large gene lists derived specifically from 

transcription profiling experiments (http://david.abcc.ncifcrf.gov). This database enables 

identification of enriched biological themes, gene relationship and simplifies data sets by 

removing genes that are redundant. In addition, DAVID also cross-references other 

databases for pathway information, rapid literature searches and structural information. 

Furthermore, DAVID converts gene identifier between species, a beneficial function to 

our study. Although the conversion of identifiers comes with a caveat that assumes the 
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genes have previously been annotated, a hurdle to overcome with the poorly annotated 

rabbit genome.  

Uploading the 1,375 RKD differentially expressed genes into PANTHER 

database provided the global perspective into the difference of physiological functions 

between sensitive and resistant cells (Fig. 4.6). Extrapolating the data from PANTHER 

and DAVID databases establishes biological function associations to analyze by 

validation in RKD clones. The summaries of the functions are exhibited by percentages 

of total genes compared to biological parameters and constraints established through 

respective databases (Fig. 4.6). The molecular functions that associate with differentially 

expressed RKD gene predominantly participate in binding activity (33%), catalytic 

activity (30%) or could not be classified (34%) by PANTHER (Fig. 4.6A), while cellular 

processes were divided between metabolism (39%), cell communication (21%), transport 

(29%) and unclassified (29%) (Fig. 4.6B). Pathway predictions using PANTHER has 

enabled the identification of 38 differentially expressed genes associating with protein 

misfolding diseases such as AD, PD and HD (Fig. 4.6C).  

Although simplified, DAVID database analyses provide the most comprehensive 

insight into cellular physiological differences between RKD clones (Fig. 4.6D). 

Metabolic processes involved with protein maintenance, intracellular trafficking and 

plasma membrane delivery of glycosylphosphatidylinisotol (GPI)- anchored proteins 

represented RKD-R down regulated genes. RKD-R and RKD-S gene expression profile 

have inverse relationship, down-regulated genes in RKD-R were upregulated in RKD-S 

cells and vice versa. Hence, protein maintenance processes that were down-regulated in 

RKD-R, dominate the expression profile of the RKD-S cells (Fig. 4.6D). Suggesting that 
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primary selection of host factors for validation should include protein that regulate 

homeostasis, intracellular trafficking and lipid raft PrP co-localized proteins. Our in vitro 

data provides support and allows the opportunity to validate these gene expression 

interpretations. In contrast, DAVID investigation of RKD-R upregulated genes reveals 

the enrichment of cell division and DNA replication processes (Fig. 4.6D). Therefore, 

higher rate of cell division in resistant cells generates unfavorable condition for prion 

replication. We have not analyzed the rate of cell division between RKD-R and RKD-S 

cells. 
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Figure 4.6 Bioinformatic analysis of 1,375 RKD-R differentially expressed genes. A. 

Graphical representation of molecular function percentage representing the complete 

gene list developed through the PANTHER database. B. Clustering percentage of the 

differentially expressed genes associated to a cellular process developed through the 

PANTHER database. C. PANTHER database pathway prediction clustering graph. Total 

of 1168 gene IDs were mapped. Classification specificities are based on published 

literature association predictions. D. Graph representing the separation of differentially 

expressed genes based on positive/negative expression values to demonstrate clustered 

functionality using the DAVID database.  
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Figure 4.6 Bioinformatic analysis of the 1,375 RKD-R differentially expressed genes. 
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Figure 4.6 Bioinformatic analysis of the 1,375 RKD-R differentially expressed genes. 
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Figure 4.6 Bioinformatic analysis of the 1,375 RKD-R differentially expressed genes. 
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Section Summary: RKD cells were genetically modified to express Deer PrPC and HIV-1 

Gag, similar to ELK21+ cells. Limited dilution cloning was used to derive CWD prion 

susceptible and resistant RKD clones (Fig. 4.4A). RKD clonal susceptibility to CWD 

prions was the phenotypic basis used to select cells for transcriptional profiling analyses 

(Fig. 4.4B). Differential gene expression was assessed using rabbit gene expression 

microarray chips (Fig. 4.5A). Twelve clones were transcriptionally profiled using 

microarrays. Transcriptional profiling revealed a significant difference in gene expression 

between RKD-R and RKD-S clones (Fig. 4.5B,C and D). Continuous passage of CWD 

prion infected clones subsequently revealed the loss of PK resistant CerPrPSc material in 

RKD-S3 and S6 clones, which also exhibited a unique, and distinguishing gene 

expression profile (Fig. 4.4C and Fig. 4.5D). Averaging signal intensities and applying 

statistical stringency thresholds led to the development of a dual-parameter based gene 

lists (Table 4.5). Global characterization of differentially expressed genes was achieved 

using DAVID and PANTHER bioinformatic databases (Fig. 4.6). These analyses of 

differentially expressed genes are discussed in the proceeding sections of this thesis.   
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Discussion 
 

Section I 

PrPC Expression and Clonal Susceptibility Towards PrPSc Replication: Several studies 

have demonstrated the primary role of PrPC as the substrate for PrPSc conversion and 

prion disease but few have addressed the underlying factors that allow or inhibit 

processes at the cellular level. N2a cell culture studies showed that prion susceptibility 

was a rare event (~0.7% N2a cells accumulate PrPSc) (Race, Fadness et al. 1987). 

Additional prion infectivity experiments using N2a cells identified sub-clonal populations 

that exhibit susceptibility variation (Bosque and Prusiner 2000). These findings suggest 

that susceptibility in clonal cells does depend on PrPC expression level in cells. In 

contrast, in vivo data demonstrates a direct correlation between expression level and 

PrPSc accumulation and a inverse relationship for incubation time of disease (Westaway, 

Mirenda et al. 1991). The findings from cell culture studies suggest that additional 

cofactors are involved to confer cell permissiveness to prion conversion and replication. 

Ectopic expression of PrPC in cells cultured from Prnp0/0 mice do not support prion 

replication, although ectopic expression of PrPC in Prnp0/0 mice replicate prions and 

succumb to disease (Raeber, Sailer et al. 1999).  To extend these findings and identify 

additional host factors, we chose to use genetically modulated RK13 cells that ectopically 

express PrPC. 

Our findings suggest that PrPC expression levels do not correlate with cellular 

susceptibility to replicating prions (Fig. 4.1 and Fig. 4.4). RKM clonal susceptibility 

confirms the absolute requirement of PrPC expression for sustaining prion replication. 

RK13 cells replicate prions derived from mice, hamster, ovine and cervid (both elk and 
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deer) but vary in efficiency (Vilette, Andreoletti et al. 2001; Bian, Napier et al. 2010). 

RKM cells became readily infected with RML prions, while Elk21+ and RKD cells 

require supplemental factors and multiple cloning to identify CWD prion permissive cells 

(Fig. 4.1, Fig. 4.4 and Chapter 3). This suggests that the efficiency of replicating prions is 

stochastically rare, that is phenotypically selected through cloning. Clonal selection for 

CWD prion susceptibility was also shown using genetically modulated N2a cells that 

ectopically expressed CerPrPC (Pulford, Reim et al. 2010). Our data also shows that 

cellular conversion factors required for replicating prions is universally shared in these 

cells. Without endogenous PrPC interference, cells may or may not have the 

supplementary conversion factors. We also show that these conversion factors were 

partially active in subclones but not sufficient to chronically sustain the replicative 

process (Fig. 4.4C and Fig. 4.5D). The occurrence of partial susceptibility was 

demonstrated by RKD clones S3 and S6 (Fig. 4.4). These clones were deemed CWD-

prion susceptible at third passage after infection but lost detectable PK resistant CWD-

CerPrPSc by twelfth passage (Fig. 4.4B and C). The loss of prion infectivity in later 

passages with permissive cell lines is not new, but the distinct transcriptional profile 

exhibited by these cells revealed a striking difference (Fig. 4.5D). The gene clustering of 

these two particular clones showed similarities with both sensitive and resistant RKD 

clones, indicating that the cells partially expressed the repertoire of genes that are 

required to sustain prion replication but not sufficient enough to maintain it (Fig. 4.4B-C 

and Fig. 4.5C-D).  

Distinguishing Clonal Variation Through PrPC Cell-Surface Presentation Analysis: 

Besides total PrPC expression, intracellular trafficking and surface presentation 
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mechanisms may also determine susceptibility in cells. Prion conversion is hypothesized 

to predominantly occur on the cell surface (Caughey, Race et al. 1989; Caughey and 

Raymond 1991; Caughey, Raymond et al. 1991; Taraboulos, Raeber et al. 1992; Shyng, 

Huber et al. 1993; Goold, Rabbanian et al. 2011). Initial pulse-chase labeling experiments 

and phosphatidylinositol-specific phospholipase C (PIPLC) treatments were used to 

release PrPC from the cell surface (Borchelt, Scott et al. 1990). These studies revealed 

that PrPC and PrPSc have differential biogenic stability, and half-life based on their 

accessibility for degradation. Moreover, the differences between these molecules 

occurred after post-translational modifications (Borchelt, Scott et al. 1990; Stahl, 

Borchelt et al. 1990). Topological experiments in ScN2a cells using PIPLC and trypsin 

protease suggested that PrPSc was generated from a cell-surface precursor (Caughey and 

Raymond 1991). Recently, ectopic expression of epitope-tagged PrP in N2a cells lacking 

endogenous PrPC revealed rapid PrPSc conversion mainly occurring at the plasma 

membrane (Goold, Rabbanian et al. 2011). We hypothesized that prion susceptibility 

differences were caused by inefficient cell-surface presentation of PrPC by resistant cells. 

We used flow cytometry to determine the answer to this question, and discovered similar 

cell surface presentation of PrPC. Equal expression of total PrP and similar surface 

presentation in clonal cells suggests that phenotypic difference is at the transcriptional 

level.    

The Search For Prion Host Factors Using RDA To Transcriptionally Profile Clonal 

Cells: Transcriptional differences between sensitive and resistant RKM clones were 

analyzed using RDA. The RDA facilitates the identification of unique transcripts from 

two nearly identical cDNA pools without the requirement of an annotated starting point 
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in the genome. RDA was used as a pilot experiment to transcriptionally profile RKM 

clones. High-throughput molecular tools that are common use for mouse and human 

genome analysis were still lacking for the rabbit genome. Hence, prior to making large 

investments into customized gene chips and transcriptional sequencing, we aimed at 

using experimentally proven and unbiased techniques to identify differences between 

prion susceptible and resistant clones. RDA does not require an annotated genome to 

perform the subtractive screening, which was the primary limitation with RKM cells.  

As a pilot study, one respective clone from each susceptibility phenotype was 

selected for analysis. RDA identified transcripts were statistically insignificant (n=1). 

Moreover, subsequent prion infectivity results revealed incomplete resistance by RKM 

clone 78 (Fig. 4.2C), which led us away from pursuing this approach any further. We 

concluded that customized microarray expression analysis was a better experimental 

approach to take. The transcripts that were identified by RDA are listed in Tables 4.2 and 

4.4. The genes that are encoded by the identified transcripts represent single targets for 

elucidating the mechanisms that dictate cellular susceptibility. In addition, three RDA 

identified transcripts lack characterization data because they were computationally 

predicted. Basic characterization of these hypothetical proteins was completed using 

bioinformatic data mining approach (Table 4.3).  

Unique Prion Susceptibility Transcripts 

Uncharacterized Hypothetical Proteins: Three hypothetical proteins were identified as 

ORF’s in the Oryctolagus cuniculus (rabbit) genomic sequences, which was annotated 

using the GNOMON gene prediction method and supported by EST evidence (Di Palma 

F. 2009). The predicted proteins range in amino acid length (343-1,295aa) and molecular 
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weight (~37 – 140-kDa) (Table 4.3). Structural calculation analysis indicates secondary 

and tertiary structure formation with functional associations in two of the three proteins 

(Table 4.3), while hypothetical protein LOC100353326 appears lack secondary structure. 

Roughly 7% of LOC100353326 protein’s amino acid sequence is homologous to a 

human integral membrane transporter protein with an accession number of CAB81951. 

This integral membrane transporter protein has been associated with anti-apoptotic 

functions. Interestingly, several studies have implied PrP to have biological functions 

associated with anti-apoptotic activity (Kurschner and Morgan 1995; Chiarini, Freitas et 

al. 2002; Zanata, Lopes et al. 2002; Li and Harris 2005). If this hypothetical protein has a 

functional role in protecting the cell from apoptosis, than it would be reasonable to 

hypothesize that resistance to cellular toxicity of accumulating PrPSc enables survival of 

sensitive cells in an otherwise unfavorable condition. Whereas the resistant cell 

population lack this anti-apoptotic property and cannot survive PrPSc accumulating 

cytotoxicity. In contrast, resistant cells do not die upon prion exposure, suggesting that 

toxicity from accumulating PrPSc is exacerbated in cells that are actively replicating the 

infectious agent. Therefore, susceptible cell must activate protective mechanisms while 

the prion conversion and accumulation of PrPSc is occurring. Enhanced anti-apoptotic 

activity in the permissive clone could be one of several cellular phenotypes that enable 

prion replication. 

LOC100338542 protein (XM_002723594) was the largest of the hypothetical 

proteins recognized in the study (Table 4.2 and 4.3). Sequence prediction analysis 

revealed a conserved PAS-domain containing serine/threonine kinase activity. The PAS-

domain containing serine/threonine kinases are evolutionary conserved signaling 
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molecules that are activated in response to stimuli (Rutter, Michnoff et al. 2001). Normal 

signal detection by PAS-protein domains is through an interaction with an associated 

cofactor (Ponting and Aravind 1997). In addition, sensory functions of these PAS-

proteins regulate metabolic homeostasis (Schlafli, Borter et al. 2009). The relative size 

and structure of this protein could implicate a very important intracellular function in 

RK13 cells that should be characterized (Table 4.3). The predicted signaling capabilities 

of this PAS-domain containing protein could be the intracellular PrP interacting molecule 

involved in unidentified regulating signaling pathways that control prion replication.  

All descriptive records pertaining to hypothetical LOC100338446 protein is 

nonexistent in NCBI database. Analyzing this protein with various bioinformatic 

prediction programs has revealed several interesting characteristics, which could be used 

in future validation studies. The protein, if expressed, would have higher order 

conformational structure and maintain a molecular weight of 37-kDa (Table 4.3). It 

would have enzymatic activity regulating some form of homeostatic processes. Similar to 

LOC100338542, this protein’s interactions with PrP could involve the regulation of 

unidentified signaling cascades regulating PrP conversion (protein homeostasis) or 

cellular tolerance/survival in response to PrPSc-induced aggregation toxicity.   

Unique Prion Resistant Transcripts 

Up Regulation Of Proteolytic Enzymes: The sequence encoding endogenous rabbit 

retrovirus H (Accession # AF480925) was a product detected in RKM 78 resistant clones 

(Table 4.4). These viral remnants from the rabbit genome encode retroviral elements gag, 

pro and pol (Griffiths, Voisset et al. 2002). Retroviral element HIV-1 Gag was shown to 

enhance prion susceptibility and stabilized chronic infectivity in Elk21+ cells (Bian, 
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Napier et al. 2010). In contrast to Elk21+ cells, RKM-78 cells were phenotypically 

resistant, suggesting that other retroviral elements could have reverse effects on PrPSc 

accumulation. Characterization studies of the rabbit endogenous retrovirus H show that it 

encodes a functional protease, referred to as RERV-H protease (Voisset, Myers et al. 

2003).  The RERV-H protease is an aspartic protease that cleaves the Gag polyprotein 

precursor (Voisset, Myers et al. 2003). Other well-characterized eukaryotic aspartic 

proteases include pepsin, cathepsins and renins (Szecsi 1992). Proteolytic cleavage and 

processing of PrP molecules have been described and associated with normal and 

aggregation based toxicity states of the protein (Zhang, Spiess et al. 2003; Luhr, 

Nordstrom et al. 2004; Yadavalli, Guttmann et al. 2004; Dron, Moudjou et al. 2010). 

These proteases have been described in the context of prion infectivity and resistance. 

Cathepsins B and L have been shown to degrade prions in GT1-1 neuronal cells (Luhr, 

Nordstrom et al. 2004). It is therefore reasonable to hypothesize that RERV-H could 

facilitate resistance within RKM-78 clone using a similar mechanisms.  

The mannose-binding protein associated serine protease-3 (MASP-1/3, accession 

# XM_002716369.1) is another proteolytic enzyme identified in RKM 78 resistant clone 

(Table 4.4). The mannose-binding protein associated serine protease-3 (MASP-1/3) has a 

role in complement activation processes (Iwaki, Kanno et al. 2011). Similar to Proteinase 

K, MASP-1/3 is a serine protease enzyme that could proteolytically digest PrPC proteins. 

Upregulation of this protease in resistant cells could interfere in the conversion process 

by actively interfering in formation of the PrPC-PrPSc complex. Rabbit plasma alpha-1-

antiprotease S-1, another RDA identified transcript (Table 4.4), protects trypsin (serine 

protease) from being inactivated by proteolytic inhibitors (Saito and Sinohara 1993). The 
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abundance of proteolytic enzymes in the resistant clone could signify another cellular 

mechanism involved in prion sustainability.  This mechanism could involve subcellular 

trafficking of PrPC to lysosomal compartments where it undergoes rapid degradation by 

these upregulated proteolytic enzymes. Rapid degradation of the primary PrP substrate 

for PrPSc conversion results in a cellular phenotype that confers resistance to prion 

infectivity. In vivo, these enzymes perform diverse physiological functions but in vitro 

upregulation simply results in cellular resistance to prions. 

Chaperones and PrPC Folding: The chaperonin-containing TCP-1 subunit gamma 

(CCT3, accession # XM_002715377) mRNA identified in RKM 78 clone belongs to the 

molecular chaperone family of proteins called TCP1 ring complex (TRiC) which 

participate in actin and tubulin folding (Walkley, Demaine et al. 1996). Molecular 

chaperones are vital to intracellular protein homeostasis. They modulate correct protein 

folding and/or cause misfolded or dysfunctional proteins to be degraded. Chaperone 

proteins have previously been implicated with cellular prion replication (Kenward, Hope 

et al. 1994; Lindquist, Patino et al. 1995; Kenward, Landon et al. 1996; DebBurman, 

Raymond et al. 1997; Shyu, Harn et al. 2002; Allen, Wegrzyn et al. 2005; Tutar, Song et 

al. 2006; Lian, Zhang et al. 2007; Loovers, Guinan et al. 2007; Shorter and Lindquist 

2008; Guinan and Jones 2009; Wang, Zhou et al. 2011).  The distinct expression of this 

chaperone transcript in resistant cells suggests for the possibility of a selected pathway 

involved in protein processing which, if carefully regulated would cause attenuation of 

protein aggregation and toxicity.   

Summary: RDA data regarding hypothetical proteins and other recognized proteins were 

just brief, hypothesis driven predictions that require extensive validation. It is difficult to 
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elaborate further on these proteins this data is statistical insignificant and resistant cells 

considered resistant, subsequently replicated RML prions. These were n = 1 analyses that 

would require more RDA screens incorporating various combinations of sensitive and 

resistant clones. Moreover, additional subtractive hybridization analysis would also be 

required of the parental RK13 cell line genetically un-modulated to express foreign 

proteins. The application of microarray gene expression profiling to prion sensitive and 

resistant clones allowed us to attain statistically confident data that RDA analyses were 

unable to do. In addition, this high-throughput method also provided a global perspective 

on cellular functions and pathways occurring amongst the two phenotypically distinct cell 

populations.     

Section II 

Gene Annotation And Selection: Microarray gene expression experiments pose a major 

challenge after completing the initial data acquisition step. This challenge originates from 

vast amounts of data single gene expression experiment generates. Mining acquired data 

for meaningful information becomes even more challenging if the expression results of 

the microarray do not have an annotated genome to work with. This was a major 

challenge we encountered working with the rabbit gene expression microarray chips. 

Manual gene annotation was prerequisite to formulating and selecting genes for 

discussion and future analysis. This was an extremely time consuming process requiring 

the use of multiple databases to cross-reference microarray gene probe identification 

numbers with associated Genbank entries, followed by mouse/human ortholog search and 

conversion. The mouse/human ortholog genes were subsequently used to compile the 

final version of each list and were used as the basis for downstream bioinformatic 
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database analyses. Inconsistency in gene nomenclature was another challenge confronted 

during this phase of research. The existence of multiple names and symbols for single 

genes makes literature cross-referencing very difficult. For example, during the cross-

referencing annotation process of gene list formulation, a microarray rabbit probe id 

matches a gene in the ensembl genome browser by the name of Ribosomal protein SA 

(gene symbol RPSA). This ortholog information was logged and data-entered into the 

primary gene list. The issue of multiple gene names reappears when the annotated list is 

explored for differentially expressed genes that have associations with prion biology. 

RPSA is represented in the ensembl database with the identification of 

ENSMUSG00000032518, which shows that this gene has multiple nomenclature and is 

also known as the 67-kDa Laminin Receptor-1 (LAMR1, LAMBR), a protein proposed 

as a major interactor of PrP (Rieger, Edenhofer et al. 1997; Gauczynski, Peyrin et al. 

2001; Hundt, Peyrin et al. 2001; Gauczynski, Nikles et al. 2006; Nikles, Vana et al. 2008; 

Kolodziejczak, Da Costa Dias et al. 2010). Therefore using RPSA gene symbol to scan 

the annotated gene would not return results indicating importance and the upregulation of 

67-kDa Laminin Receptor-1 amongst clonal cells would be overlooked. In actuality, this 

protein was over-expressed in the CWD prion permissive RKD-S cells (Table 4.10). This 

issue of multiple gene names/symbols does not emerge when using mouse or human 

microarrays because the annotations have been well characterized. The preliminary 

selections of genes for future validation analysis were chosen based on mathematical 

significance threshold parameters, which enabled us to identify and connect genes in a 

hypothesis driven prediction analysis (Tables 4.6 and 4.7). The subsequent discussion of 
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predicted genes associated with prion replication stem from these primary selection 

criteria. 

Cross-Referencing Gene Expression Data To The Prion Disease Databases (PDDB): To 

establish a link between the microarray-identified genes and prion disease, we utilized the 

Prion Disease Database (PDDB) for comparison analysis. The PDDB retains documented 

gene expression profiles from mice of different genetic backgrounds, infected with 

different mouse-adapted scrapie strains. This systems approach measured gene 

expression of mouse brains pre- and post- prion infection. Expression was measured 

using microarray technology over the complete prion disease incubation timeline. The 

primary time points analyzed and presented in the PDDB were of 6, 10, 14, 18, 20 and 22 

weeks post infection. The 1,375 RKD annotated genes were uploaded and compared into 

the PDDB.  This scan returned a total of 314 (23%) RKD differentially expressed genes 

matching annotated genes within PDDB (Table 4.5). Of these 314 matched genes, 132 

were down regulated, while 182 genes were upregulated in RKD-R cells (Table 4.5). 

Furthermore, of 314 matched genes, 32 genes (10%) have previous publications 

associated with prions. These genes are presented in tables 4.8 and 4.9.   

RKD-R Down Regulated/RKD-S Up Regulated Genes And Vice-Versa: Sixty-eight genes 

were identified to be significantly down regulated in RKD-R cells (up-regulated in RKD-

S cells) using t-test p-values of ≤ 0.001 and FC of ≥ 2.0 (Table 4.6). The chosen genes 

consequently discussed were selected based on biological relationship to protein 

misfolding and associational linkage to PrP based of PDDB cross-reference results. The 

biological relationships include pathways hypothesized to regulate intracellular protein 

homeostasis, endocytic trafficking and exocytic transport. Cellular mechanism regulating 
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metal ion homeostasis and transport were also considered in the rationale for gene 

selection. DAVID and PANTHER database analyses also demonstrated a clear 

demarcation of gene expression between the sensitive and resistant RKD clones (Fig. 

4.6). Therefore gene selection was partially directed with those data in observance. 

Cross-reference analysis of genes identified by DAVID database to the high stringency 

gene list helped identify several interesting gene targets. We chose to specifically target 

autophagy-related 4a protein (Atg4a), eukaryotic translation initiation factor 2-alpha 

kinase 2 (eIF2ak2), small heat shock protein 8 (HSPB8), chaperonin containing T-

complex polypeptide 1, subunit 6A (CCT6a), cyclophilin peptidyl-prolyl isomerase 

(Ppil4), Ceruloplasmin (CP), protein C (PROC), alpha-1-Acid glycoprotein (Orm1), 

protocadherin-alpha 1 (Pcdha1), and adaptor-related protein complex AP-1, sigma 3 

(Ap1S3) (Table 4.6 and 4.7). These genes were used as starting points to subsequently 

analyze the larger gene list containing 1,375 genes. The following discussion assembles 

and connects the expressed genes to develop a hypothesis driven prediction on the 

phenotypic characteristics that mediate cellular susceptibility to prions.  

Autophagy: The direct translation of autophagy is “self (auto)-eating (phagy-to eat)”. In 

the context of cell biology, autophagy is a catabolic process used by cells during stress 

(Yorimitsu and Klionsky 2005). This mechanism can further be subdivided into three 

distinct processes, which include macroautophagy, microautophagy and chaperone-

mediated autophagy (CMA) (Khalfan and Klionsky 2002; Reggiori and Klionsky 2002; 

Massey, Kiffin et al. 2004). The mechanisms that dictate the induction of autophagy have 

not been fully characterized but the basic process of macro- and micro- autophagy entails 

the engulfment of cytosol by newly-formed double membraned structure called the 
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autophagosome (Fig. 4.7A) (Horst, Knecht et al. 1999; Klionsky and Ohsumi 1999; 

Klionsky 2005). The autophagosomes subsequently fuses with lysosomes at which point 

the autophagosome content is degraded by lysosomal enzymes (Fig. 4.7A). CMA 

autophagy does not require the formation of autophagosomal structures because the 

targeted proteins are directly translocated into lysosomes (Massey, Kiffin et al. 2004). 

Approximately ~30 genes (Atg) have been described to be directly linked to autophagy 

(Klionsky, Cregg et al. 2003). Autophagy is a tightly regulated process that may be 

selective or non-selective, and causes deleterious effects if skewed in either direction 

(Komatsu, Ueno et al. 2007). Moreover, autophagy deregulation is linked to protein 

aggregation and protein misfolding diseases, making it a primary target mechanism for 

our differential gene expression analyses (Anglade, Vyas et al. 1997; Anglade, Vyas et al. 

1997; Kegel, Kim et al. 2000; Petersen, Larsen et al. 2001; Goldberg 2003; Yu, Cuervo et 

al. 2005).      

Protein Homeostasis, Macroautophagy Induction and CerPrPSc Replication: The 

aforementioned predictions made by DAVID led us to initiate the search for genes 

involved in intracellular protein homeostasis. Autophagy-related 4a protein (Atg4a) and 

small heat shock protein 8 (HSPB8) were two genes that instantly stood out as possible 

candidates for further investigation. At the time of selection, there was no prior 

knowledge of a linking relationship between the two genes and were considered to not be 

interdependent. Using HSPB8 as the primer in researching functional association to 

protein misfolding, it was discovered that this particular small heat shock protein has a 

very unique function that can initiate macroautophagy and/or CMA (Massey, Zhang et al. 

2006).  
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Chaperone proteins are important modulating factors in protein misfolding 

diseases. HSPB8 was discovered to be significantly upregulated in cells permissive to 

prion replication (Table 4.6). This protein belongs to the small heat-inducible heat shock 

chaperone protein family sharing the highly distinctive α-crystallin domain characteristic 

of other proteins in the family (Chowdary, Raman et al. 2004).  Several different names 

have been used to describe this protein, which include HSPB8, Hsp22, H11 kinase, and 

E2IG1. This protein is 196aa in length and has a molecular mass of 21.6 kDa (Hu, Chen 

et al. 2007). Like other small-heat shock proteins, HSPB8 is activated by cellular stress 

and exhibits protein-folding chaperone activity (Chowdary, Raman et al. 2004). 

Moreover, HSPB8 has been shown to specifically interact with kinase proteins, causing it 

to become phosphorylated in the process (Benndorf, Sun et al. 2001). In particular, 

protein kinase C (PKC), mitogen-activated kinase (MAPK) and eukaryotic translation 

initiation factor 2-alpha kinase (eIF2ak) phosphorylate HSPB8, a crucial characteristic to 

the proceeding discussion. In addition to these physiological functions, HSPB8 exhibits 

association with several protein misfolding diseases that include distal hereditary motor 

neuropathy type II (dHMNII), AD, HD and ALS (Fontaine, Sun et al. 2006; Wilhelmus, 

Boelens et al. 2006; Crippa, Carra et al. 2010; Crippa, Sau et al. 2010; Kwok, Phadwal et 

al. 2011). Protein misfolding and cellular toxicity associated with HSPB8 is directly 

linked to the induction of autophagy and containment of protein aggregation (Carra, 

Seguin et al. 2008; Carra, Brunsting et al. 2009; Carra, Boncoraglio et al. 2010; Crippa, 

Sau et al. 2010). Autophagy pathway induction by HSPB8 requires a co-chaperone 

protein called Bcl2-associated athanogene 3 protein (BAG3) (Carra, Seguin et al. 2008). 
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The Bcl2-associated athanogene (BAG) protein family are co-chaperones 

functionally attributed to regulating protein quality control with heat shock proteins 

(Hcs/HSP70) (Takayama and Reed 2001). Three BAG proteins were differentially 

expressed between the sensitive and resistant RKD cells (Table 4.10). BAG3 protein, the 

co-chaperone of HSPB8 was up regulated in RKD-S cells while BAG2 and BAG6 were 

both down regulated (Table 4.10). A molecular link has been made between protein 

degradation during the aging process and BAG3 expression (Gamerdinger, Hajieva et al. 

2009). During cellular aging, mechanisms that dictate degradation of polyubiquitinated 

protein gradually switch from proteasomal pathways to macroautophagic degradation 

processes, shown by the gradual shift in expression ratio levels of BAG1 to BAG3 

(Gamerdinger, Hajieva et al. 2009). In addition to this ratio change, ubiquitin-binding 

proteins involved in the UPS mechanisms together with higher cathepsin activity were 

also observed. Interestingly, BAG1 has been described to functionally link Hsc/HSP70 to 

the proteasome using a unique ubiquitin-like domain (UBL), a domain that is found in 

one other BAG protein, BAG6 (-1.62-FC in RKD-S, Table 4.10) (Luders, Demand et al. 

2000). The down regulation of BAG6 in RKD-S cells provide additional evidence to 

suggest that the proteasomal mechanisms geared for maintaining proper protein-folding 

are skewed to cause malfunction. If BAG6 has UPS-related functions (Luders, Demand et 

al. 2000) and BAG3 induces autophagy specially targeted for protein aggregation (Carra, 

Seguin et al. 2008), both mechanisms closely related to the prion replication process than 

BAG2 must also be a crucial component relating to prion cellular susceptibility. Indeed, 

BAG2 functionally inhibits the chaperone-associated ubiquitin ligase CHIP (Arndt, 

Daniel et al. 2005). Ubiquitin-ligase CHIP links molecular chaperones to the UPS system 
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and is vital to the overall protein folding and degradation process in eukaryotic cells 

(Murata, Minami et al. 2001; Esser, Alberti et al. 2004; Shimura, Schwartz et al. 2004; 

Esser, Scheffner et al. 2005). Notably, CHIP’s main function is to attach ubiquitin-

derived signals to chaperone-bound protein clients for one of two reasons; (i) normal 

conformational regulation of protein folding (Xu, Marcu et al. 2002; Westhoff, Chapple 

et al. 2005) and more importantly (ii) recognizing aggregation-prone proteins for quality 

control purposes (Murata, Minami et al. 2001; Shimura, Schwartz et al. 2004). Thus, 

RKD-S cells down regulate two proteins (BAG2 and BAG6) that strongly associate with 

targeting proteins for proteasomal degradation and up regulate BAG3, which selectively 

targets protein degradation by autophagy. Experimental evidence suggests that protein 

aggregation is correlated with the presences of both HSPB8 and BAG3, and absent of 

other heat shock proteins, indicating preferential specificity towards aggregation-

mediated stress response (Carra, Seguin et al. 2008; Carra, Brunsting et al. 2009; Carra, 

Boncoraglio et al. 2010; Seidel, Vinet et al. 2012) 

The formation of HSPB8-BAG3 complex leads to the phosphorylation of 

eIF2ak2, which consequently shuts down protein synthesis and initiates autophagy (Fig. 

4.7) (Carra, Brunsting et al. 2009). In response to misfolded protein stress, activated 

eIF2ak2 reduces the influx of nascent proteins into the ER and stimulates upregulation of 

chaperone proteins (Zhanataev, Lisitsyna et al. 2009). Autophagy initiation by eIF2ak2 is 

a direct response to misfolded proteins, which include PrPC-PrPSc conversion. Moreover, 

proteasomal dysfunction and ER stress enhances the trafficking of prion protein 

aggregates, triggering accumulation of PK resistant PrPSc (Nunziante, Ackermann et al. 



	   209	  

2011). The aggregation of the Htt-Poly-(Q) protein in HD also activates the eIF2ak2 

autophagy response (Peel, Rao et al. 2001).  

DAVID bioinformatic gene analysis uncovered a difference in cell growth and 

division between the sensitive and resistant RKD cells (Fig. 4.6). The activation of 

macroautophagy through HSPB8-BAG3 mediated phosphorylation of eIF2ak could 

provide the explanation to the results obtained from DAVID analysis. If RKD-S cells 

were preferentially skewed towards eIF2ak-mediated autophagy activation, than the 

logical side effect would be complete shutdown of protein translation and growth arrest. 

For that reason, microarray gene expression analysis would filter the cell division genes 

into the RKD-R group.  To extrapolate this beyond the bioinformatic interpretations and 

put it into the context of prion replication, transient growth arrest mediated by the 

aforesaid protein-folding stress responses also provides the time required to efficiently 

convert PrPC to PrPSc. Earlier cell culture studies have indicated that cell division strongly 

influences cellular ability to accumulate PrPSc (Ghaemmaghami, Phuan et al. 2007).  

Looking back at the annotated gene lists, we discovered that both BAG3 (1.54-

FC, p-value of ≤ 0.05 and a FC of ≥ 1.5) and eIF2ak2 (2.73-FC, p-value of ≤ 0.001 and a 

FC of ≥ 2.0) were upregulated in RKD-S cells (Table 4.6 and 4.10). Interestingly, the 

HSPB8-BAG3 complex initiates the autophagy mechanisms along with stress-induced 

translational arrest independent from the normal ER stress response other chaperone 

proteins utilize for dealing with protein misfolding (Carra, Brunsting et al. 2009).  The 

chaperone proteins normally associated to protein misfolding response are the 70-kDa 

heat shock protein family (HSPA), DNAJ proteins and BAG1 (Cuervo and Dice 1998), 
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which coincidentally have been down regulated in RKD-S cells (Table 4.10). Indicating a 

mechanistic shift in the protein maintenance processes.  

HSP70 proteins have been shown to significantly reduce α-Synuclein (α-Syn) 

aggregation, fibril formation and cellular toxicity in both mouse and drosophila PD 

models (Klucken, Shin et al. 2004; McLean, Klucken et al. 2004; Auluck, Meulener et al. 

2005; Dedmon, Christodoulou et al. 2005; Outeiro and Kazantsev 2008; Outeiro, Putcha 

et al. 2008). Heat-shock 70-kDa protein 12A (HSPA12A, 2.09-FC) and heat-shock 70-

kDa protein 2 (HSPA2, 3.89-FC) were upregulated in RKD-R cells (Table 4.10, Fig. 4.7). 

The upregulation of these proteins could be pertinent to the resistance phenotype, which 

is based on the described functional characterization studies. Coincidentally, HSPA2 

(3.89-FC in RKD-R) is predominantly co-localized to the cell-surface, the primary 

location predicted for PrPSc conversion (Goold, Rabbanian et al. 2011), while HSPA12A 

is cytoplasmic. Overall, HSPA12A and HSPA2 have not been well characterized, 

therefore it is difficult to speculate further on their exact function in RKD-R cells.  

Whereas the abovementioned 70-kDa chaperone proteins were down regulated in 

RKD-S cells, the reverse was true for the 90-kDa heat shock proteins (HSPB family) 

(Fig. 4.7 and Table 4.10). Dual upregulation of HSP90B1 (1.6 FC) and HSP90AB1 (1.53 

FC) in RKD-S cells also has applicability towards the mechanisms governing cellular 

permissiveness to prion replication (Table 4.10, Fig. 4.7). Blocking HSP90 from 

phosphorylating tau in the tauopathy mouse model demonstrated significant reduction of 

tau aggregate formation (Dickey, Kamal et al. 2007), suggesting that the presence of 

HSP90 proteins could enhance aggregate formation. In addition to enhancing tau 

aggregation, HSP90 has also been linked with Rab11a GTPase in recycling and secreting 
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aggregated α-Syn from cells (Liu, Zhang et al. 2009). Rab GTPase mediated intracellular 

trafficking and recycling of endosomal, lysosomal, and exosomal vesicles also has 

relevance to intracellular prion replication (Borchelt, Taraboulos et al. 1992; Fevrier, 

Vilette et al. 2004; Marijanovic, Caputo et al. 2009).   

Additional chaperone like genes differentially expressed in RKD-S cells were the 

chaperonin containing T-complex polypeptide 1, subunit 6A (CCT6a) and subunit 2 

(CCT2a) (Table 4.10 and Fig. 4.7B). The chaperonin protein family separates into two 

sub-categories, group I and group II. Group I chaperonins are predominantly located in 

the mitochondria and group II are cytosolic (Mukherjee, Conway de Macario et al. 2010).  

Both CCT proteins belong to the group II chaperonin family. Each subunit of this 

complex has an approximate 52-65kDa molecular mass, but becomes 970kDa when 

formed into the hetero-oligomeric complex (Schwartz, Kittelberger et al. 2000). The 

primary function of this and other family proteins is to assist proper protein folding and 

reduce aggregation. Interestingly, an in vivo study analyzing the complete transcription 

profile of prion-infected mice revealed that CCT6A is one of few chaperone proteins 

upregulated in the time-course of infection (Sorensen, Medina et al. 2008). In addition, 

CCT6a and CCT2 have been linked to modulate Htt-mediated polyglutamine expansion, 

aggregation and cellular toxicity (Kitamura, Kubota et al. 2006; Tam, Geller et al. 2006; 

Teuling, Bourgonje et al. 2011). CCT6a is upregulated, while CCT2 is down regulated in 

RKD-S cells. Although, specific roles in prion replication for these proteins have not 

been determined.  

The initial stages of protein misfolding, CMA mechanism is the dominating 

process by which cells clear aggregate-prone proteins (Cuervo and Dice 1998). CMA 
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does not rely on autophagosome formation to degrade misfolded proteins, instead 

HSP/DNAJ/BAG1 complex forms at the membrane of a lysosome that inadvertently 

interacts with the constitutively active HSPA (70-kDa) chaperone to induce selective 

protein degradation (Cuervo and Dice 1998). Degradation of misfolded proteins using 

CMA mediated autophagy is limited to small aggregates and does not have the capacity 

to break down larger protein aggregate structures (microaggregates) (Ravikumar, Duden 

et al. 2002). Cellular response to microaggregates is macroautophagy, which HSPB8-

BAG3 complex activates. Therefore, the acquired microarray data indicates two 

divergent mechanisms are occurring within RKD cells. The resistant RKD-R cells are 

utilizing the UPS and CMA systems very efficiently to disallow the formation of PrPSc 

aggregates. This is implied from the overexpressed HSPA, DNAJ and BAG2&6 proteins 

(Table 4.10). While RKD-S cells are actively shutting-down these systems and inducing 

macroautophagy in attempt to clear PrPSc replication and dispersion, which is indicated 

by the upregulated HSPB8, BAG3, eIF2ak proteins (Table 4.10). Pausing to think about 

these scenarios and how they relate to the abovementioned experimental evidence, it 

would seem that these processes are reversed. The initiation of macroautophagy is the 

exact response a cell would require to efficiently clear large protein aggregates such as 

the ones formed by PrPSc aggregates and not the contrary. Macroautophagy studies in AD 

have shown that autophagosome vacuoles accumulate in dystrophic neurites in the late 

stages of disease and maintain beta-amyloid (Abeta) proteins (Nixon, Wegiel et al. 2005; 

Yu, Cuervo et al. 2005). Moreover, targeting mTOR1 (primary inhibitor of autophagy) 

with inhibitors such rapamycin increases autophagosome formation and the accumulation 

of Abeta-filled autophagic vacuoles (AVs) (Yu, Cuervo et al. 2005). The buildup of 
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intracellular Abeta levels in AVs of dystrophic neurites could link autophagy 

deregulation with promoting Abeta aggregation in AD patients.  Additional reports have 

revealed that deregulating the HSPB8-BAG3 autophagy mechanisms significantly 

enhances protein aggregation (Carra, Boncoraglio et al. 2010). Thus, it is feasible that the 

selected RKD-S clones are deregulating these protein homeostatic processes to efficiently 

replicate and sustain PrPSc aggregated molecules. But how would this deregulation allow 

prions to accumulate and infect other cells?  Macroautophagy exponentially generating 

infectious PrPSc seeds is one hypothesis that could explain these observations. Indeed, 

others have previously indicated that skewing autophagy is counterproductive and toxic 

to cells (Nixon, Wegiel et al. 2005; Yu, Cuervo et al. 2005; Heiseke, Aguib et al. 2010; 

Nunziante, Ackermann et al. 2011). The exposure of PrPSc aggregate-fibrils to the 

lysosomal enzymes would induce fragmentation of the fibrils to smaller and more 

infectious molecules. Previous reports comparing PrPSc fibril size to infectivity have 

demonstrated that infectivity and conversion was most efficient with PrP-fibrils 300-

600kDa in size or approximately 14-28 PrP molecules (Silveira, Raymond et al. 2005).  

Additional evidence to support the autophagy-based PrPSc replication scenario is 

the upregulation of lysosomal enzyme cathepsin L1 (CTSL, 2.1-FC) in RKD-S cells. 

CTSL has previously been associated with various neurodegenerative protein misfolding 

diseases, which includes TSE (Diedrich, Minnigan et al. 1991; Kegel, Kim et al. 2000; 

Zhang, Spiess et al. 2003; Brown, Webb et al. 2004; Polyakova, Dear et al. 2009). Prion 

infectivity studies in N2a cells revealed a significant increase of cathepsins B and L in the 

ScN2a infected cells as compared to the uninfected counterparts, consequently leading to 

the hypothesis that lysosomal proteases participate and enable intracellular conversion of 
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PrPSc (Zhang, Spiess et al. 2003). In vitro experiments that proteolytically cleaved PrP 

with Cathepsin S produced N-terminally cleaved protein (PrP94-233) molecule, which 

readily converted isoform conformation from α-helix to β-sheet rich (Polyakova, Dear et 

al. 2009). Moreover, the β-sheet rich PrP94-233 molecules formed thioflavin-T positive 

aggregate species reminiscent of PrP species shown to be highly toxic in mouse models 

(Shmerling, Hegyi et al. 1998; Baumann, Tolnay et al. 2007). Recently published data 

analyzing endogenous proteolytic cleavage of PrPSc in cell culture and tissue 

demonstrated that both cathepsin B and L were the primary enzymes responsible for 

cleaving PrPSc (Dron, Moudjou et al. 2010). Notably, this study utilized RK13 cells for 

the cell culture portion of the experiments, providing strong support towards the 

relevance of CTLS over expression in the RKD-S cells.  

Cyclophilin Ppil4 is a peptidyl-prolyl isomerase with attributed function of 

catalyzing the interconversion between cis and trans isomers of proline (Fischer, Bang et 

al. 1984; Zeng, Zhou et al. 2001). The Ppil4 gene is upregulated in RKD-S cells 

determined by high statistical stringency analysis (2.11-FC, Table 4.6). Its selection for 

functional validation is based on its proposed functions to behave as a chaperone 

involved in cellular maintenance of protein homeostasis (Fischer and Will 1990). Ppil 

proteins have been implicated in several signaling pathways but the basic biochemical 

function of the Cyclophilin enzyme is not fully understood (Davis, Walker et al. 2010). 

Peptidyl-prolyl cis-trans isomerases have previously been described as potential 

chaperones to PrPC with associations as a possible factor in GSS (Cohen and Taraboulos 

2003). It was experimentally demonstrated that cells treated with Cyclosporin A (CsA), 

an inhibitor of cyclophilins, induced accumulation of misfolded PrP in aggresomes 
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(Cohen and Taraboulos 2003). Moreover, cyclophilins associated with prion aggregation 

to specific cellular compartments designated ‘juxta nuclear quality control compartment’ 

(JUNQ) and the ‘insoluble protein deposit’ compartment (IPOD) (Ben-Gedalya, 

Lyakhovetsky et al. 2011). These cellular compartments were shown to actively recruit 

chaperones for quality control purposes. In addition to chaperone activity, human 

cyclophilins have also been determined as essential interacting partners for the HIV-1 

Gag polyprotein during infection, with a suggested role in the un-coating process (Qi, 

Yang et al. 2008; Schaller, Ocwieja et al. 2011). This HIV-1 Gag interacting function of 

Ppil4 is especially relevant because all susceptible cell lines described thus far stably co-

express HIV-1 Gag (Elk21+ & RKD). Therefore, Ppil4 could be the endogenously 

expressed protein linking HIV-1 Gag with the enhanced susceptibility phenotype 

exhibited by both RKD-S and Elk21+ cells.  

Autophagy-related 4a protein (Atg4a) is a cysteine protease protein associated 

with oxidative stress response and detoxification autophagy pathway (Scherz-Shouval, 

Shvets et al. 2007). Atg4a is 398 aa in length and is predominantly a cytoplasmic 

protease responsible for intracellular degradation processes (Marino, Uria et al. 2003). 

The Atg4a protein is vital for cellular survival under stress conditions, protecting the cell 

from entering apoptosis (Ohsumi 2001; Marino, Uria et al. 2003; Codogno and Meijer 

2005; Scherz-Shouval, Shvets et al. 2007). Besides the direct link with autophagy and 

overexpression in RKD-S cells, the functions within the autophagy pathway this protein 

associates with makes it an appropriate to the overall hypothesis driven discussion. 

Although autophagy is characterized as non-selective self-degradation mechanism, recent 

studies have shown that certain proteins are highly selected for autophagy-mediated 
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degradation (Ohsumi and Mizushima 2004; Kim, Rodriguez-Enriquez et al. 2007; Farre, 

Manjithaya et al. 2008).  In both selective and non-selective autophagy processes, there 

exists two ubiquitin-like protein conjugating systems, which are mediated through either 

Atg12 or Atg8 proteins (Ohsumi 2001). While Atg12-mediated conjugation is primarily 

involved in the formation of a multi-protein (Atg12-Atg5-Atg16) complex that guides 

autophagosome membrane formation, Atg8 conjugation facilitates the progression of 

non-specific autophagy and vacuole targeted (Vt) autophagy (highly-selective) pathways 

(Kirisako, Ichimura et al. 2000; Hutchins and Klionsky 2001).  Atg4 is vital to the Atg8-

conjugating system (Kirisako, Ichimura et al. 2000). As a cysteine protease, Atg4 cleaves 

Atg8 from the membrane-lipid complex it is bound to (phosphatidylethanolamine (PE)) 

(Ichimura, Kirisako et al. 2000). This cleavage event allows Atg8 to sequentially go 

through the multi-step conjugating system to form another membrane integral Atg8-PE 

complex. Unlike the Atg12 complex, Atg8-PE complex is continuously recycled by a 

second Atg4 cleavage event which liberates Atg8 to reform new complexes and 

consequently mediate the specificity of the autophagosome formation and size (Kirisako, 

Baba et al. 1999). Moreover, Atg8-PE also behaves as a scaffold to enable membrane 

expansion for larger vesicle formation. Recent studies have provided evidence indicating 

a direct correlation between the levels of Atg8, size and autophagosomal expansion 

(Nakatogawa, Ichimura et al. 2007; Xie, Nair et al. 2008; Xie, Nair et al. 2008). Thus, 

Atg4 over expression in RKD-S cells helps drive selective autophagy that has the 

potential ability for expanding the autophagosomes to accommodate large CerPrPSc 

aggregates.    
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Recapping the supporting evidence for the hypothesis driven prediction regulating 

prion susceptibility: The introduction of CWD prions to RKD-S cells causes the 

upregulation of HSPB8 and BAG3, which forms a co-chaperone complex that 

phosphorylates eIF2ak (Fig. 4.7B). The activation of eIF2ak causes RKD-S cells to shut 

down protein translation and become temporarily growth arrested. Concurrently, the 

second mechanism activated by eIF2ak is the induction of macroautophagy (Fig. 4.7A), 

which seems to be independent of the UPS and CMA response (Fig 4.7B). This non-

canonical response is indicated by the active down regulation of HSPA (70-kDa), DNAJ 

and BAG (2 & 6) proteins that are normally involved in the classic UPS response (Table 

4.10). Selective autophagy in RKD-S cells mediated by the Atg4’s release of Atg8-PE 

complex generates CerPrPSc-fibril filled autophagosomes that seclude the infectious 

microaggregates from becoming toxic to the cell. Replication and infectivity of CerPrPSc-

fibrils is ensued when the autophagosome docks and fuses with lysosomes abundantly 

filled with Cathepsins and other proteases that are upregulated in RKD-S cells. Instead of 

clearing CerPrPSc-fibrils, the matured autophagosome-lysosome complex cleaves 

CerPrPSc-fibrils into smaller, more infectious molecules that are subsequently released 

intracellularly and/or exocytosed out to infect neighboring cells (Fig 4.7B). Upregulation 

of Rab GTPases by RKD-S cells is additional evidence strongly supporting this 

hypothesis (Table 4.10, Fig 4.8B). In either case, proteolytic digestion and reduction of 

CerPrPSc microaggregates releases the cells from growth arrest, which in turn allows 

RKD-S to divide and exponentially replicate CWD prions.         
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Figure 4.7 Autophagy and PrPSc Replication. A. Schematic representation of 

Macroautophagy (Autophagy) induction. Different stimuli induce intracellular 

autophagy, which range from homeostatic organelle/protein maintenance to stress 

responses induced by exogenous sources (Infection, Starvation, and Reactive Oxygen 

Species (ROS). The multi-step process initiates with cytosolic membrane isolation 

collecting and sequestering molecules. This progressive cytosolic membrane forms a 

mature autophagosome containing molecules destined for degradation. Molecule 

degradation is achieved when the autophagosome docks and fuses with lysosomes, 

releasing lysosomal proteolytic enzymes to ensue degradation (Klionsky 2005; Nair and 

Klionsky 2005; Reggiori and Klionsky 2005; Yorimitsu and Klionsky 2005; Moreau, Luo 

et al. 2010). B. Hypothesis driven schematic using differentially expressed RKD genes to 

predict the intracellular mechanisms regulating prion replication. Significant upregulation 

of HSPB8, BAG3, eIF2ak, Atg4a (Table 4.6) in the CWD prion permissive RKD-S cells 

imply the induction autophagy. HSPB8-BAG3 induce the phosphorylation of eIF2ak, 

which subsequently induces the complete shut down of translation and stimulates 

autophagy (A non-canonical stimulation irrespective of HSP70 and ubiquitin ligase 

activation) (Carra, Brunsting et al. 2009). Autophagy induction leads to 

activation/deactivation of other chaperone proteins involved in stabilizing protein folding 

(Red color genes indicate upregulation (ex. HSPB8), black color (ex. BAG2) indicate 

down regulation in RKD-S cells). The continuous stimulation of this process in 

combination with cell growth arrest (translational shut down) enables PrPSc infectious 

seed production enhancing cellular infectivity(Silveira, Raymond et al. 2005; Heiseke, 

Aguib et al. 2010). Full Gene names and functions are described in table 4.10.        
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Figure 4.7 Autophagy and PrPSc Replication. 
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Table 4.6 Differentially down regulated gene expression in RKD-R cells as 
compared to the RKD-S cells. Robust multichip average (RMA) and quantile 
normalization methods were used for signal normalization and false-positive signal noise, 
respectively. Significance and stringency was set to p-value 0.001 and fold change cutoff 
of 2.0, respectively. Abbreviations, Fold Change (FC), Not Associated (NA), 
Endoplasmic Reticulum (ER), plasma membrane (PM) 

Gene Name Gene 
Symbol 

FC 
(-) 

Cell Process Component 

Amiloride-
sensitive cation 
channel 2 

Accn2 2.57 Cation transport PM, synapse 

Helicase-like 
transcription 
factor 

Hltf 2.06 Chromatin 
modification, 
metabolic process 
transcription DNA 
dependent 

Nucleus 

Autophagy-related 
4A 

Atg4a 2.78 Autophagy, 
metabolic transport, 
protein transport, 
proteolysis 

Cytoplasm 

Hepatitis A virus 
cellular receptor 1 

Hvcr1 2.38 Phagocytosis, 
mycotoxin, nutrient 

Cell surface, 
membrane, phagocytic 
vesicle 

Solute carrier 
family 25 member 
20 

Slc25a2
0 

3.0 Carnitine shuttle, 
transport 

Membrane, 
mitochondrial inner 
membrane 

Interferon gamma 
receptor 1 

Ifngr1 2.52  ER, membrane, 
postsynaptic density, 
vesicle 

F-box protein 32 Fbxo32 3.55 Muscle atrophy Nucleus 
ABI gene family, 
member 3 (NESH) 
binding protein 

Abi3bp 2.91 Extracellular matrix 
organization, 
positive regulation 
of cell-substrate 
adhesion 

Extracellular 
matrix/space, 
interstitial matrix 

RalBP1 associated 
Eps domain 
containing protein 

Reps1 2.04 NA Coated pit, plasma 
membrane 

F-box protein 30 Fbxo30 2.43 Protein 
ubiquitination 
(computational 
estimation)  

Cellular component 

T cell receptor 
alpha variable 
12d-1 

Trav12
d-1 

2.90 NA NA 

BCL2-associated Bclaf1 2.01 Positive regulation Cytoplasm, Nucleolus, 
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transcription 
factor 1 

of Apoptosis nucleus 

Peptidyl-prolyl 
isomerase 
(cyclophilin)-like 4 

Ppil4 2.11 Protein folding, 
protein peptidyl-
prolyl isomerization 

Cellular component, 
nucleus 

ADP-ribosylation 
factor-like 8B 

Arl8b 2.05 Cell cycle/division, 
chromosome 
segregation, mitosis 

Cytoplasm, 
cytoskeleton, 
endosome, lysosome, 
membrane, midbody, 
spindle midzone 

Docking protein 1 Dok1 3.16 MAPKKK cascade, 
Ras protein signal 
transduction, 
intracellular protein 
kinase cascade 

Cytoplasm 

Solute carrier 
family 6, member 
5 

Slc6a5 3.46 Amino acid 
transmembrane 
transport, glycine 
transport 

Integral to membrane, 
Membrane 

Discoidin, CUB 
and LCCL 
domain containing 
2 

Dcbld2 3.43 Cell adhesion, 
negative regulation 
of cell growth 

Cell surface, Integral to 
plasma membrane 

RIKEN cDNA 
9030625A04 gene 

903062
5A04Ri
k 

2.31 Biological  Cellular component 

Eukaryotic 
translation 
initiation factor 2-
alpha kinase 2 

Eif2ak2 2.73 ER unfolded protein 
response, 
phosphorylation, 
positive regulation 
of apoptosis, protein 
autophosphorylation, 
virus-infected cell 
apoptosis 

Intracellular, nucleus, 
soluble fraction 

Crystallin, beta B2 Crybb2 2.08 Visual perception NA 
Enoyl Coenzyme 
A hydratase 
domain containing 
1 

Echdc1 2.28 Metabolic  Cellular 

Protein kinase, 
cAMP dependent 
regulatory, type II 
alpha 

Prkar2a 2.63 Phosphorylation, 
protein, regulation of 
protein kinase 
activity 

T-tubule, cAMP-
dependent protein 
complex, centrosome, 
cytoplasm, 
insoluble/soluble 
fraction perinuclear 
region of cytoplasm, 
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PM  
RIKEN cDNA 
1700011H14 gene 

170001
1h14Ri
k 

2.17 Biological Cellular 

Relaxin 1 Rln1 21.3
7 

G-protein signaling, 
regulation of NO 
mediated signaling 

NA 

EFR3 homolog A Efr3a 2.07 Cell-cell adhesion Cornified envelope, 
intracellular, Plasma 
membrane  

FYN binding 
protein 

Fyb 3.47 NOT mast cell 
activation 

Cytoplasm, nucleus 

Family with 
sequence 
similarity 110, 
member C 

Fam11
0c 

2.13 Biological Cellular-component, 
cytoplasm, 
cytoskeleton, 
microtubule 

Hairy/enhancer-
of-split related 
with YRPW motif 
2 

Hey2 2.54 Notch signaling, 
negative regulation 
of transcription 

Nucleus 

Glia maturation 
factor, beta 

Gmfb 6.11 NA Intracellular 

Splicing factor 3b, 
subunit 5 

Sf3b5 2.00 RNA 
splicing/processing 

U12-type spliceosomal 
complex, Nucleus 

Vanin 3 Vnn3 2.26 Nitrogen compound 
metabolic process,  

Membrane Anchored, 
extracellular space, PM 

Activated 
leukocyte cell 
adhesion molecule 

Alcam 9.85 Cell adhesion, motor 
axon guidance 

Axon, External side of 
PM, neuronal cell body 

Interferon induced 
with helicase C 
domain 1 

Ifih1 2.52 Metabolic process, 
regulation of 
apoptosis, response 
to virus 

Cytoplasm, 
intracellular, nucleus 

Ribonuclease, 
RNase A family, 1 

Rnase1 9.51 Metabolic NA 

Myelin 
transcription 
factor 1-like 

Myt1l 3.40 Cell differentiation, 
nervous system 
development, DNA-
dependent 
transcriptional 
regulation 

Nucleus 

Adenosine 
deaminase, tRNA-
specific 2, TAD2 
homolog 

Adat2 5.13 tRNA processing Cellular component 

Nuclear receptor Ncoa7 2.53 Cell wall Intracellular, nucleus 
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coactivator 7 macromolecule 
process, DNA-
dependent regulation 
of transcription 

Ceruloplasmin Cp 3.23 Copper ion 
transport, oxidation-
reduction process,  

Anchored to PM, 
extracellular 
region/space 

Adenosine 
deaminase 

Ada 2.45 Cell adhesion, 
negative regulation 
of apoptosis, 
inflammatory 
response 

Cell junction, cell 
surface, cytoplasm, 
cytoplasmic vesicle, 
extracellular space, 
lysosome, membrane,  

PPPDE peptidase 
domain containing  

Pppde1 2.19 NA NA 

Monoacylglycerol 
O-acyltransferase 
3 

Mogat3 2.29 Glycerol metabolic 
process, lipid 
biosynthetic process 

ER membrane, 
membrane 

Heat shock 
protein 8 

Hspb8 4.23 Response to stress Cytoplasm, 
intracellular, nucleus 

2'-5' 
oligoadenylate 
synthetase-like 2 

Oasl2 7.24 NA Cellular component 

Hypothetical 
protein LOC73112 

311000
3A17Ri
k 

2.39 NA NA 

TNFAIP3 
interacting protein 
1 

Tnip1 2.07 Glycoprotein 
biosynthetic  

Cytoplasm, nucleus 

cDNA sequence 
BC016495 

BC016
495 

2.01 Phosphorylation Cellular component 

Interferon-
induced protein 
with 
tetratricopeptide 
repeats 1 

Ifit1 6.43 Cellular response to; 
dsRNA, interferon-
alpha/beta, 
intracellular 
transport of viral 
proteins in host cell 

Cytoplasm 

Eukaryotic release 
factor 3 

Hbs1l 2.09 NA NA 

Sterile alpha motif 
domain containing 
4B 

Samd4
b 

2.04 NA NA 

RAR-related 
orphan receptor 
alpha 

Rora 2.93 cGMP metabolic 
process, NO 
biosynthesis, 
positive regulation 
of transcription 

Nucleus 
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regulation  
Transmembrane 
protein 89 

Tmem8
9 

3.05 NA Integral to membrane 

Myeloblastosis 
oncogene 

Myb 3.79 G1/S transition of 
mitotic cell cycle, 
calcium ion 
transport, chromatin 
remodeling,  

Nucleus 

Receptor 
transporter 
protein 3 

Rtp3 3.78 Protein targeting to 
membrane 

cytoplasm 

Family with 
sequence 
similarity 126, 
member B 

Fam12
6b 

4.41 NA Intracellular 

Eukaryotic 
translation 
initiation factor 
4E member 3 

Eif4e3 2.11 Regulation of 
translation 

Cytoplasm 

human 
immunodeficiency 
virus type I 
enhancer binding 
protein 2 

Hivep2 2.44 Signal transduction, 
DNA dependent 
transcription 

Intracellular, nucleus, 
transcription factor 
complex 

Vanin 2 Vnn2 4.10 NA NA 
RAS guanyl 
releasing protein 1 

Rasgrp
1 

3.17 Cell differentiation, 
intracellular signal 
transduction, 

Golgi, cytoplasm, ER, 
PM 

CD47 antigen (Rh-
related antigen, 
integrin-associated 
signal transducer) 

CD47 2.02 Cell adhesion, 
migration, 
opsonization, cell 
proliferation, 
phagocytosis, signal 
transduction 

Extracellular vesicular 
Exosome, PM 

Androgen-induced 
1 

Aig1 2.03 NA Integral to membrane 

RNA binding 
motif protein 5 

Rbm5 2.41 RNA splicing, 
positive regulation 
of apoptosis 

Nucleus, spliceosomal 
complex 

Chaperonin 
containing Tcp1, 
subunit 6a (zeta) 

CCT6a 2.07 Cellular protein 
metabolic process 

Cytoplasm 

Ring finger 
protein 222 

RNF22
2 

2.42 NA Membrane 

Zinc finger 
protein 684 

Znf684 2.05 DNA-dependent 
regulation of 

Nucleus 
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transcription 
T-cell surface 
glycoprotein 

CD1e 2.63 Antigen processing 
and presentation 

Golgi, early/late 
endosome, PM, 
Lysosomal lumen 

Nucleus 
accumbens 
associated 1, BEN 
and BTB (POZ) 
domain containing 

Nacc1 2.11 Induction of 
apoptosis,  

Cytoplasm, 
intracellular membrane 
bound organelle, 
nuclear body 

Tenascin C Tnc 2.78 Cell adhesion, 
positive regulation 
of cell proliferation 
and gene expression 

Basement membrane, 
extracellular 
region/space, 
proteinaceous 
extracellular matrix 

Cell growth 
regulator with 
ring finger domain  

Cgrrf1 2.12 Cell cycle arrest NA 

 

  



	   226	  

Auxiliary Proteins Correlated To Prion Susceptibility: Differentially expressed proteins 

that interact with PrP molecules at the cell surface are also important to discuss in the 

context of prion susceptibility. Although mentioned already, it is important to reiterate 

that PrPC-PrPSc initial interaction and conversion occurs at the cell-surface of the plasma 

membrane (Stahl, Borchelt et al. 1987; Goold, Rabbanian et al. 2011; Hooper 2011). It is 

crucial to identify and characterize differentially regulated proteins that interact with PrP 

in lipid rafts and within intracellular compartments that would involve trafficking to and 

from the plasma membrane. In the last section of the introductory chapter is a 

comprehensive list of proteins that have been attributed to interact with PrPC and/or PrPSc 

(Table 1.3). Using that list as reference, both high and low stringency RKD gene lists 

(Table 4.5) were searched for matching proteins from that list (Table 1.3) or share 

homologous resemblance to those described proteins. This investigation led to the 

discovery of genes that have previously been reported on with association to PrP and 

potentially novel genes. The extrapolated genes are listed in table 4.10.  

Proteins At The Cell-Surface PrPC-PrPSc Interface 

PrP Receptors/Interactors: PrPC is a glycoprotein tethered to the plasma membrane by a 

GPI-anchor, which requires interacting proteins for internalization and perhaps signaling 

(Stahl, Borchelt et al. 1987; Caughey and Raymond 1991; Stefanova, Horejsi et al. 1991; 

Borchelt, Taraboulos et al. 1992; Taraboulos, Raeber et al. 1992; Shyng, Huber et al. 

1993; Shyng, Heuser et al. 1994; Vey, Pilkuhn et al. 1996). Gene list analysis has 

revealed several proteins previously shown to interact with PrP or co-localize together. 

These differentially expressed genes include the 37-kDa/67-kDa laminin receptor 1 

(Lamr1), apolipoprotein receptors (LRP1 and LRP3), adhesion molecules protocadherin-
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Alpha 1 (Pcdha1), cadherin 9 (CDH9), activated leukocyte cell adhesion molecule 

(ALCAM), integrins (ITGB), glycoproteins (CD36, CD47, ORM1) and 

metalloproteinases (ADAM & MMP’s) (Table 4.10 and Fig. 4.8A).  

PrPC-PrPSc Complex Stabilization: The 37-kDa/67-kDa laminin receptor 1 (LAMR1) is 

upregulated in RKD-S cells (Table 4.8, 4.10 and Fig. 4.8A). Several studies have linked 

direct interaction of LAMR1 with both PrPC and PrPSc, acting as internalization receptor 

(Kolodziejczak, Da Costa Dias et al. 2010; Mbazima, Da Costa Dias et al. 2010). The 

interaction of PrP with LAMR1 in RKD-S cells could have a multifaceted effect on the 

cells, which subsequently enables prion replication to ensue. The first and most obvious 

scenario involves the ability of these proteins to physically interact (Gauczynski, Peyrin 

et al. 2001). This interaction could stabilize the PrPC-PrPSc complex, which would 

possibly require the participation of other adhesion/receptor proteins (LRP, CDH9, 

ALCAM) that are also upregulated by RKD-S cells (Fig. 4.8A) (Santuccione, Sytnyk et 

al. 2005; Gauczynski, Nikles et al. 2006; Taylor and Hooper 2007; Mbazima, Da Costa 

Dias et al. 2010). Although, stabilization of PrPC-PrPSc by these adhesion proteins would 

not be sufficient to drive the conversion process forward. Coincidentally, RKD-S cells 

also over express metalloproteinases that have been experimentally validated for their 

ability to cleave both forms of PrP molecules (Table 4.10, Fig. 4.8A) (Cisse, Sunyach et 

al. 2005; Taylor, Parkin et al. 2009). Upregulated ADAM-9 has been shown to indirectly 

induce ectodomain PrP shedding through ADAM10, and therefore could influence the 

replication process (Cisse, Sunyach et al. 2005). Although, ectodomain shedding process 

exhibited by ADAM9-10 does not seem to have a direct effect on regulating prion 
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conversion (Taylor, Parkin et al. 2009). Nonetheless, joint interaction between the 

described proteins could have the additive effect that is favorable for prion conversion.  

In addition, the microarray data indicates that clusterin (CLU) is also upregulated 

in RKD-S cells. The clusterin (Clu) gene encodes a secreted chaperone protein that is 

attributed with cellular debris clearance, protein aggregation induction and inhibition of 

apoptosis (Jones and Jomary 2002; Zhang, Kim et al. 2005; Materia, Cater et al. 2011; 

Wyatt, Yerbury et al. 2011). Especially relevant to the discussion is clusterin’s ability to 

maintain and stabilize unfolded proteins in a quasi-conformation state without inducing 

the protein to refold (Yerbury, Poon et al. 2007). Clusterin’s interaction with cell surface 

receptors stimulates internalization and consequent activation of lysosomal degradation 

processes (Wyatt and Wilson 2010). This characteristic strongly complements the 

aforementioned discussion on autophagy activation and PrPSc replication in RKD-S cells. 

In addition, this protein has been associated with AD, severity of disease, pathology and 

amyloid plaque formation (DeMattos, O'Dell M et al. 2002; Yerbury, Poon et al. 2007; 

Nuutinen, Suuronen et al. 2009; Thambisetty, Simmons et al. 2010; Schrijvers, Koudstaal 

et al. 2011; Schurmann, Wiese et al. 2011; Thambisetty, An et al. 2012). Clusterin 

exhibits direct interaction with PrP and has previously been linked with reducing the 

incubation time of prion disease (Kempster, Collins et al. 2004; Xu, Karnaukhova et al. 

2008). Thus, it is feasible to hypothesize that the combinatorial interaction between the 

laminin receptor (LAMR1), adhesion proteins (ALCAM, CDH9, LRP), 

metalloproteinases (ADAM 1, 8, 9 & MMP/MME) and extracellular chaperone, clusterin 

(CLU), strongly supports the formation of PrPC-PrPSc replicative complex (Fig. 4.8A). 
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Laminin receptor’s capacity for internalization collectively with clusterin’s ability 

to trigger internalization is the second possible mechanism/process in which RKD-S 

maintain prion susceptibility.  In this process, we build onto the predicted cell surface 

mechanisms. PrPC-PrPSc is stabilized by the cell surface proteins, at which point LAMR1 

and CLU act out their secondary functions in the conversion process. These processes 

include subcellular internalization and activation of intracellular chaperones through 

misfolded stress response mechanisms (Fig. 4.8A-B). Besides internalization, LAMR1 

and CLU both exhibit anti-apoptotic survival signaling capacities (Trougakos, Lourda et 

al. 2009; Vana, Zuber et al. 2009). Thus, at the interface of prion internalization, LAMR1 

and CLU trigger additional survival pathways that keep the cell from entering apoptosis. 

These pathways involve genes that have been upregulated in RKD-S cells (Table 4.10). 

The genes regulate pathways involved in cellular survival mechanisms, which include 

ataxin 7 (ATXN7), tumor necrosis factor receptor subfamily member 1B (TNFRSF1B), 

nuclear factor kappa B subunit -2 (NFKB2), and eIF2ak2 (Table 4.10).  

In addition, RKD-S cells recruit other proteins to assist in the process. PDDB 

cross-referencing enabled the identification of the calcium-dependent, membrane-binding 

protein, called Copine (Cpne8) (Table 4.8, 4.10 and Fig. 4.8B). The function of Cpne8 

remains to be determined, but inferred to participate in membrane trafficking. Copine 

family of proteins are Ca2+-dependent phospholipid-binding proteins involved with 

membrane trafficking (Tomsig and Creutz 2002). It is probable that Cpne8, LAMBR1 

and PrPC co-localize and form an interaction. The mechanisms of this interaction to assist 

PrPSc replication is hard to predict but the upregulation of Cpne8 during the course of 

prion disease in mice has been reported indicating some sort of connection between these 
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proteins (Lloyd, Maytham et al. 2010). Consequently, RKD-S cells upregulate, what 

seems to be the right combination of cell-surface proteins to efficiently stabilize, 

chaperone and internalize prion molecules.   

Ceruloplasmin (CP), upregulated gene in RKD-S cells is not associated with 

protein homeostasis but could be crucial to prion replication. CP is an alpha-2-

glycoprotein that binds 95% of copper in the human serum (Ortel, Takahashi et al. 1984). 

The primary functions of this protein include iron homeostasis and neuronal survival with 

profound expression throughout the central nervous system (Klomp, Farhangrazi et al. 

1996). Co-localization to lipid rafts and metal ion binding functions similar to PrPC was 

the basis for selecting this protein for further analysis (Koschinsky, Chow et al. 1987; 

Mukhopadhyay, Attieh et al. 1998). CP has been demonstrated to mediate iron and 

manganese oxidation and transfers it to the plasma transferrin (Tfn) protein (Jursa and 

Smith 2009), which coincidentally has also been linked to the prion protein 

internalization mechanisms (Sunyach, Jen et al. 2003). Furthermore, this glycoprotein has 

been linked with other protein misfolding neurodegenerative disorders such as AD, PD 

and ALS (Loeffler, LeWitt et al. 1996; Vassiliev, Harris et al. 2005; Squitti, Quattrocchi 

et al. 2007; Capo, Arciello et al. 2008; Squitti, Quattrocchi et al. 2008; Texel, Xu et al. 

2008; Torsdottir, Kristinsson et al. 2010; McNeill and Chinnery 2011; Olivieri, Conti et 

al. 2011). In addition, CP has been shown to interact with serine proteases and 

apolipoproteins to induce CP-mediated neuro-aggregation in P19 neuro-embryonic stem 

cells (Maltais, Desroches et al. 2003; Ducharme, Maltais et al. 2010). In vitro models 

using ROS in conjunction with CP have shown to induce efficient aggregation of α-Syn 

(Kim, Choi et al. 2002). This type of activity adds pertinence to the overall phenotype of 
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the prion sensitive cell. Collectively, RKD-S cells upregulate ApoE proteins (LRP), 

extracellular proteases (ADAM’s & MMP/MME’s, Chymase (CMA1-serine protease)) 

and extracellular chaperones (CLU) concurrently with CP.  We hypothesize that these 

upregulated proteins are needed for optimal PrPC-PrPSc conversion (Table 4.10 and Fig. 

4.8). Copper chaperone for superoxide dismutase (CCS) is also upregulated by RKD-S 

cells (Table 4.10 and Fig 4.8B). This protein shares functional similarity to CP through 

regulation of metal ion homeostasis and copper ion transporting (Fig. 4.8B) (Suazo, 

Olivares et al. 2008). Co-localization of PrPC, CCS and CP to the cell surface and 

cytosolic metal ion transport suggests importance in the global scheme of host 

modulations that enhance and/or select specific cells sensitive to prion replication. 

The cell-surface protein expression in RKD-R cells somewhat differs. RKD-R 

cells upregulate adhesion proteins and metalloproteases that are different from RKD-S 

cells (Fig. 4.8A). Unlike RKD-S, RKD-R cells upregulate serine protease enzymes that if 

activated have the capability to digest PrPC.  Moreover, other RKD-R expressed 

glycoproteins could indirectly inhibit PrPSc replication at the cell-surface interphase 

keeping the cells free from internalizing the infectious agent. For example, alpha-1-Acid 

glycoprotein (Orm1) is localized to the plasma membrane of RKD-R cells. Orm1 is a 41-

45-kDa acute phase plasma-glycoprotein that is prevalent during inflammation (Treuheit, 

Costello et al. 1992). This protein has been shown to interact with the plasminogen 

activator inhibitor-1 protein by stabilizing its function in inhibiting plasminogen 

activation (Fournier, Medjoubi et al. 2000; Boncela, Papiewska et al. 2001). This 

stabilization of plasminogen activator inhibitor-1 by Orm1 to reduce plasminogen 

production is indirectly relevant because plasminogen has been hypothesized to be one of 
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the cofactors associated with PrPSc conversion (Fischer, Roeckl et al. 2000; Maissen, 

Roeckl et al. 2001; Ryou, Prusiner et al. 2003; Mays and Ryou 2010; Mays, Yeom et al. 

2011). Then, overexpression of Orm1 by RKD-R could inadvertently reduce plasminogen 

output by the cell, which would destabilize PrPC-PrPSc conversion.  

An additional glycoprotein expressed by RKD-R cells that could infer resistance 

is protein C (PROC) (Table 4.7 and Fig. 4.8A). PROC is a predominantly inactive serine 

protease that is dependent on vitamin K to become active (Clouse and Comp 1986). The 

protein is 419 aa long and has several function domains that give it both receptor binding 

and proteolytic properties (Mosnier and Griffin 2006). It was first described in the 

context of protealytically inactivating blood coagulation factors Va and VIIIa (Mammen, 

Thomas et al. 1960), but recently been associated with cytoprotective properties that 

include regulatory gene expression functions, anti-inflammatory, anti-apoptotic and 

endothelial barrier protective functions (Mosnier, Zlokovic et al. 2007). Cytoprotective 

properties are preformed though the interaction with the endothelial protein c receptor 

(EPCR) and the protease-activated receptor-1 (PAR-1), causing the activation of 

downstream regulatory pathways that modulate cellular response to stress (Mosnier, 

Zlokovic et al. 2007). Activated PROC has been established to upregulate expression of 

tumor necrosis factor receptor superfamily proteins and bone morphogenic proteins 

(Riewald, Petrovan et al. 2002), which are also upregulated in RKD-R cells. Furthermore, 

PROC maintains enzymatic protease similar to PK, a proteolytic enzyme used for 

digesting PrPC and biochemically detecting PrPSc. Over-expression of PROC could bring 

on the unintentional digestion of PrPC substrate prior the PrPSc conformational conversion 

step, making the cells phenotypically resistant. Ultimately, the pleiotropic functions of 
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PROC make it an attractive target for validation as a potential resistance factor 

responsible for inhibiting PrPC-PrPSc conversion.  

Protocadherin-Alpha 1 (Pcdha1) is a Ca2+-dependent cell adhesion molecule 

upregulated in RKD-R cells (Table 4.7, 4.10 and Fig 4.8A), which is normally expressed 

in neurons of the central nervous system (CNS) (Yagi and Takeichi 2000). The 

protocadherin gene family is composed of approximately 60 genes (Nollet, Kools et al. 

2000; Yagi and Takeichi 2000). Besides cell adhesion functions, differential expression 

of protocadherins amongst neurons is hypothesized to provide neuronal identity at the 

cell surface. Protocadherins have been demonstrated to undergo proteolytic cleavage by 

both metalloproteinases and γ-secretase (Haas, Frank et al. 2005; Hambsch, Grinevich et 

al. 2005), enzyme previously linked to protein misfolding diseases (Turner and Nalivaeva 

2007; Zhang, Ma et al. 2011). The cadherin proteins concurrently with other cell 

adhesion proteins have been implicated as probable interacting partners for PrPC 

(Gauczynski, Hundt et al. 2001; Aguzzi, Baumann et al. 2008; Malaga-Trillo, Solis et al. 

2009). Ultimately, overexpression of this protein in RKD-R clones could have a 

functional implication towards the resistance.  

Activation Of Intracellular Transport: The mechanisms of prion trafficking in 

relationship to subcellular PrPSc replication have stimulated great interest in current prion 

research. Microarray analysis suggests discrete transport mechanisms between RKD-S 

and RKD-R cells. RKD-R cells upregulate genes that involve caveolae- and clathrin- 

mediated endocytic transport, whereas RKD-S cells upregulate genes involved in 

modulating intracellular vesicle docking, fusion and transport (Table 4.10 and Fig. 4.8B). 

These two scenarios depict the conditions that drastically alter membrane topology and 
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composition. PrPC has been shown to utilize both clathrin and/or the caveolin mechanism 

as vehicles of transport from the surface to the endosomal compartments (Taraboulos, 

Raeber et al. 1992; Vey, Pilkuhn et al. 1996; Peters, Mironov et al. 2003; Sunyach, Jen et 

al. 2003; Sarnataro, Caputo et al. 2009). RKD-R cells modulate endocytic pathways that 

subsequently cause continuous turnover of the plasma membrane. Henceforth, enhanced 

turnover of the plasma membrane reduces the interaction kinetics between PrPC and PrPSc 

at the cell surface, precluding the occurrence for efficient PrPSc conversion. This is 

implied by RKD-R upregulation of caveolin (CAV2, 1.87-FC), flotilins (FLOT1, 2.95-

FC), clathrin (CLTC, 1.92-FC), sortilin (SORT1, 1.76-FC), sorting Nexin 17 (AP1B, 

1.76-FC), adaptor-related protein complex AP-1, sigma 3 (AP1S3, 2.20-FC) and ras-

associated protein 15 (RAB15, 2.02-FC). The aforementioned implications of the plasma 

membrane as the primary location for PrPSc conversion makes these differentially 

expressed genes additional targets for susceptibility assessment (Goold, Rabbanian et al. 

2011).  

While the plasma membrane is being turned over in RKD-R cells, RKD-S cells 

are utilizing intracellular vesicle recycling mechanisms to continuously traffic PrPSc 

aggregate-fibrils to and from autophagosomal/lysosomal compartments. It is 

hypothesized that one replicative interphase of PrPSc is within the transporting vesicles 

that recycle PrPC-PrPSc molecules from the surface (Caughey and Raymond 1991; Goold, 

Rabbanian et al. 2011). This mechanism could than be linked to the abovementioned 

autophagy scenario which enable prion replication to proceed. Continuous intracellular 

transport of PrPSc molecule to lysosomal degradation compartments induces aggregate-

fibril fractionation into smaller and more infectious molecules (Table 4.10 and Fig. 4.8B) 
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(Silveira, Raymond et al. 2005; Vella, Sharples et al. 2007; Marijanovic, Caputo et al. 

2009). The upregulation of RAB (1a, 7, 7a, 7L1, 8b), ADP-ribosylation factors (ARL8B), 

Ras-like family (RASL12), aminophospholipid transporters (ATP8B1), Exosome 

components (EXOC5), syntaxins (STX1B) and vesicle transport and docking proteins 

(VAPA) strongly support the intracellular PrPSc recycling prediction (Table 4.10 and Fig. 

4.8B). These genes specifically associate with intracellular vesicle traffic.  

Connecting The Dots: The Collective Mechanisms That Make Cells Prion Susceptible: 

Numerous cellular mechanisms/pathways must be activated to enable efficient PrPSc 

conversion and prion replication. Starting at the cell surface where the initial PrPC-PrPSc 

contact is made, we hypothesize the conditional presence of protein groups with distinct 

functions to set off PrPSc conversion. These cell surface proteins must include PrP-

binding receptors with cytoplasmic domains to enable the internalization of PrPC-PrPSc. 

Followed by proteolytic enzymes, which modulate the conversion process, extracellular 

chaperones for enhanced stability and metal ion binding proteins for dual function that 

include stabilization and membrane translocation (Fig 4.8A). As the conversion proceeds 

forward, and becomes internalized, the cell must exponentially increase output of PrPSc 

seed. This process is achieved by activating endosome-recycling proteins that induce 

continuous formation of vesicles. Simultaneously, the cell also activates a very selective 

protein misfolding response that does not require the recruitment of the proteasome 

degradation pathways but rather utilizes the already activated lysosomes through 

macroautophagy-mediated mechanisms. This non-canonical autophagy response 

transiently arrests cell growth, creating the ideal cytoplasmic conditions to form PrPSc 

aggregate-fibrils. Without cell division taking place, the infectious PrPSc-fibrils grow at 
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an exponential rate. The cells survive this cytoplasmic stress using two additional 

mechanisms. First, anti-apoptotic pathways are activated by both cell-surface receptors 

and intracellular proteins involved in the already activated autophagy pathway. Second, 

the autophagosome-lysosome fused compartments break apart the large PrPSc aggregates 

into smaller less toxic entities. Coincidentally, these smaller less-cytotoxic PrPSc 

aggregate molecules are more inclined to reinitiate PrPC-PrPSc conversion. The break 

down of the large aggregate fibrils also releases the cell from growth arrest, allowing it to 

divide. Eventual initiation of cell division releases the infectious PrPSc molecules into the 

extracellular space, which subsequently causes neighboring cells to also become infected. 

Resumed cell division generates additional clones which posses all the proper conversion 

factors to enable prion replication and survive. These conclusions are inferred entirely 

from comparing published literature on the topics to the acquired gene expression results. 

Future validation studies are required to prove or disprove the described hypothesis of 

cellular mechanisms that dictate prion susceptibility.    
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Figure 4.8 RKD differentially expressed genes targeted for cell-surface presentation 

and intracellular transport. A. Schematic representation of differentially expressed 

genes that co-localize to the cell surface of RKD cells. Proteins depicted on the left and 

labeled in red represent identified genes that were upregulated in PrPSc sensitive RKD-S 

cells. Proteins depicted on the right and labeled in black represent identified genes that 

were up regulated in PrPSc resistant RKD-R cells. B. Schematic depiction of RKD’s 

differentially expressed genes regulating intracellular vesicle transport and recycling. (1) 

PrPC-PrPSc interaction at the cell surface initiates the conversion process. (2) Continuous 

intracellular transport cycling of PrPC to and from the surface facilitates intracellular 

PrPSc conversion. (3) Endocytic delivery of the PrPC-PrPSc complex activates protein-

stress response, which consequently induces macroautophagy and chaperone-mediated 

autophagy, mechanisms that stabilize and enhance prion conversion. (4) Autophagosome 

transporting large PrPSc aggregates dock and fuse with lysosomal vacuoles to initiate 

degradation. Large PrPSc-aggresomes are fractured to produce smaller, more infectious 

PrPSc molecules. (5) The smaller infectious PrPSc particles are either exocytosed or 

become intracellular seeding material.  Red-labeled genes represent upregulation in 

RKD-S cells while black-labeled genes represent upregulation in RKD-R cells.      
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Figure 4.8 RKD differentially expressed genes targeted for cell-surface presentation 
and intracellular transport. 
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Table 4.7 Differentially upregulated gene expression in RKD-R cells as compared to 
the RKD-S cells. Robust multichip average (RMA) and quantile normalization methods 
were used for signal normalization and false-positive signal noise, respectively. 
Significance and stringency was set to p-value 0.001 and fold change cutoff of 2.0, 
respectively. Abbreviations, Fold Change (FC), Not Associated (NA), Endoplasmic 
Reticulum (ER) 

Gene Name Gene 
Symbol 

FC 
(+) 

Cell Process Component 

Nucleolar protein 
with MIF4G domain 
1 

Nom1 2.05 RNA metabolic 
process 

Nucleolus 

Sulfatase modifying 
factor 2 

Sumf2 2.01 NA ER 

Orosomucoid 1 Orm1 5.45 Acute-Phase 
response, 
regulation of 
immune system, 
transport 

Extracellular region 

Protein-tyrosine 
sulfotransferase 1 

Tpst1 2.38 Metabolic process Golgi, membrane 

BEN domain 
containing 6 

Bend6 2.23 NA NA 

Pro-
opiomelanocortin-
alpha 

Pomc 4.52 Cell-cell signaling, 
neuropeptide 
signaling 

Cytoplasm, 
extracellular region, 
stored secretory 
granule 

Plastin-1 Pls1 3.60 NA Cytoplasm 
Single-stranded 
DNA binding 
protein 2 

Ssbp2 3.23 DNA dependent 
transcriptional 
regulation 

Cytoplasm & nucleus 

P450 (cytochrome) 
oxidoreductase 

Por 2.03 Internal peptidyl-
lysine acetylation, 
negative regulation 
of; apoptosis, 
caspase activity 

ER, membrane, 
microsome, 
mitochondrion, 
soluble fraction 

Procollagen lysine, 
2-oxoglutarate 5-
dioxygenase 2 

Plod2 2.61 Oxidation-
reduction process 

ER, Membrane 

Cell cycle regulator 
Mat89Bb homolog 

493342
4B01Ri
k 

2.77 Cell cycle NA 

Protocadherin alpha 
1 

Pcdha1 2.07 NA Membrane fraction 

Centrosomal 
protein 72 

Cep72 2.83 Gamma-tubulin 
complex 

Centrosome, 
cytoplasm,  
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localization, 
spindle 
organization 

Bone morphogenetic 
protein 4 

Bmp4 3.28 SMAD protein 
transduction, 
activation of 
MAPKK, 

Cytoplasm, 
extracellular region, 
membrane bounded 
vesicles, 
proteinaceous  

Ankyrin3  Ank3 4.79 Establishment of 
protein 
organization,  

Basolateral plasma 
membrane, synapse 

Thiopurine 
methyltransferase 

Tpmt 2.64 Metabolic process, 
methylation 

Cytoplasm, soluble 
fraction 

Guanine nucleotide 
binding protein, 
gamma 10 

Gng10 9.96 G-protein coupled 
receptor signaling 

Heterotrimeric G-
Protein complex, PM 

Adaptor-related 
protein complex AP-
1, sigma 3 

Ap1s3 2.20 Endocytosis, 
intracellular 
protein transport,  

Golgi, coated pits, 
cytoplasmic vesicle, 
membrane coat 

Protein aurora 
borealis 

672046
3M24R
ik 

2.01 Cell cycle NA 

Lymphocyte 
cytosolic protein 1 

Lcp1 3.46 Actin filament 
assembly, 
intracellular 
protein transport 

Actin cytoskeleton, 
cell junction, 
phagocytic cup, PM  

Suppressor of 
cancer cell invasion 

Scai 2.25 Negative 
regulation of; Rho 
protein signal 
transduction 

Cytoplasm, 
membrane, nucleus 

HEAT repeat 
containing 5A 

Heatr5a 2.12 NA NA 

Tumor necrosis 
factor receptor 
superfamily, 
member 21 

Tnfrsf2
1 

2.38 Apoptosis, signal 
transduction 

Axon, cytoplasm, 
membrane 

Retinoblastoma 
binding protein 7 

Rbbp7 2.02 DNA replication, 
negative regulation 
of cell growth,  

ESC/E(Z) complex, 
NuRD complex, 
Nucleus 

Ubiquitin-
conjugating enzyme 
E2M 

Ube2m 2.15 Positive regulation 
of neuron 
apoptosis, 
ubiquitination 

NA 

Protein C  Proc 5.29 Cellular protein 
metabolic process, 
peptidyl-glutamic 

Golgi, ER, 
extracellular, PM 
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acid carboxylation, 
Proteolysis 

Parathyroid 
hormone 1 receptor 

Pthr 2.48 Activation of 
Phospholipase C 
activity by GPCR 
signaling coupled 
to IP3 second 
messenger 

Basolateral, PM  

Discs, large homolog 
2 

Dlg2 3.16 Neuronal ion 
channel clustering, 
receptor clustering 

Cytoplasm, 
membrane fraction, 
neuronal cell body 

Membrane protein, 
palmitoylated 7 

Mpp7 2.24 Positive regulation 
of protein complex 
assembly 

Adherens junction, 
membrane, tight 
junction 

Zinc finger protein 
397 

Zfp397 2.02 Regulation of 
transcription 

Nucleus 

Vascular endothelial 
growth factor C 

Vegfc 2.86 Cell 
differentiation, 

Extracellular, 
membrane 

Protocadherin 1 Pcdh1 2.57 Calcium-
dependent cell-cell 
adhesion 

Cell-cell junction,  
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Table 4.8 Prion Disease Database (PDDB) cross-referenced RKD-R down regulated 
genes associated with published prion literature. 

Gene Name Gene 
Symb

ol 

Function 

40S ribosomal protein 
SA/Laminin receptor 1 

RPSA/
Lamr1 

Cytoplasmic domain, extracellular domain, 
laminin binding, laminin receptor, 
translation regulator 

Clusterin/Apolipoprotein CLU Coiled-coil domain, Ku70 protein binding 
domain, nuclear localization sequence, 
protein binding, signal binding, ubiquitin 
protein ligase binding 

Aldolase C ALDO
C 

Cytoskeletal protein binding, enzyme, 
fructose-bisphosphate aldolase, protein 
binding 

Complement Factor B CFB Alternative-complement-pathway, C3/C5 
convertase, peptidase, serine endopeptidase 

Ataxin 7 ATXN
7 

Chromatin binding, glutamine repeat 
domain, nuclear export signal, protein 
binding 

Eukaryotic translation 
initiation Factor 2-Alpha 
Kinase 2 

EIF2A
K2 

Phosphotrensferase, ATP-binding domain, 
basic and catalytic domains, coiled-coil 
domain, dimerization domain, protein 
binding, protein kinase, protein phosphatase 
2A, intrinsic regulator, protein 
serine/threonine kinase 

Copper Chaperone for 
Superoxide Dismutase 

CCS Copper ion binding, transporter, enzyme, 
protein binding, superoxide dismutase, 
copper chaperone, zinc ion binding 

Tumor Necrosis Factor 
Receptor Subfamily 
Member 1B 

TNFR
SF1B 

Cytoplasmic, cytosolic tail, extracellular and 
intracellular domains, pre-ligand assembly 
domain, transmembrane receptor, tyrosine 
kinase 

TATA Box Binding 
Protein like Protein 1 

TBPL
1 

Beta-transducin protein family located at the 
pH resistant lipid raft fraction, plasma 
membrane 

Small Nuclear 
Ribonucleoprotein 
Polypeptide N 

SNRP
N 

Protein binding 
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V-REL Avian 
Reticuloendotheliosis 
Viral Oncogene 

RELB Transcription co-repressor, transcription 
regulator 

Protein Kinase C, Zeta 
Form 

PRKC
Z 

Potassium channel regulator, protein kinase 
C, protein serine/threonine kinase 

Protein Kinase C, Delta PRKC
D 

Protein kinase binding, protein kinase C, 
protein serine/threonine kinase 

Polo-like Kinase 3 PLK3 Protein binding, protein kinase , protein 
serine/threonine kinase 

Phospholipase A2, Group 
II D 

PLA2
G2D 

Enzyme, phospholipase A2 

Nuclear Factor Kappa B 
Subunit 2 

NFKB
2 

Transcription co-activator, transcription 
regulator 

Nuclear Factor, 
Interleukin 3-Regulated 

NFIL3 Transcription co-repressor, transcription 
factor, transcription regulator 

Interferon Gamma 
Receptor 1 

IFNG
R1 

STAT binding domain, transmembrane 
domain, transmembrane receptor 

Immediate-Early 
Response 3 

IER3 Fxfp sequence, nuclear localization 
sequence, protein binding 

Endoglin ENG Activin binding, protein binding, 
cytoplasmic, cytosolic tail, extracellular 
domain, galactose binding, 
glycosaminoglycan binding 

Copine 8 CPNE
8 

Calcium-binding membrane-binding protein 
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Table 4.9 Prion Disease Database (PDDB) cross-referenced RKD-R up regulated 
genes associated with published prion literature.     

Gene Name Gene 
Symbol 

Function 

TATA Box Binding 
Protein 

TBT Activation domain, core domain, DNA binding 
domain, inhibitory DNA-binding domain, p53- 
binding domain, polyglutamine repeat, 
transcriptional regulator 

Complement 
Component 4 
Binding Protein 
alpha 

C4BPA Protein Binding 

X-Box Binding 
Protein 1 

XBP1 DNA Binding, pXBP(U) degradation motif, 
transcription factor, transcription regulator 

Adenylate Cyclase 3 ADCY
3 

Calcium/Calmadulin-response adenylate cyclase, 
protein binding 

Myristoylated 
alanine-rich Protein 
Kinase C substrate 

MARC
KS 

Protein kinase C substrate 

Mitotic Arrest-
Deficient 2 

MAD2
L1 

Protein binding, protein homodimerization 

Ccto-NOX disulfide-
Thiolexchanger 2 

ENOX
2 

Enzyme, protein disulfide oxidoreductase 

Amyotrophic 
Lateral Sclerosis 2 
(juvenile) 
Chromosome 
region, candidate 2 

ALS2C
R4 

Transmembrane protein 237, protein binding 

Apoptosis-inducing 
Factor 
Mitochondrion-
associated, 3 

AIFM3 Caspase activator, enzyme, protein binding, 
thioredoxin-disulfide reductase 

Casein Kinase II 
Beta 

CSNK2
B 

Acidic loop domain, destruction box, kinase, 
positive regulatory domain, protein binding, 
receptor binding, transcription factor binding, 
zinc-finger domain 

Clathrin Heavy 
Polypeptide 

CLTC Ankyrin binding, clathrin trimerization domain, 
globular tail domain, heat shock protein binding. 
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Table 4.10 Extrapolated gene list grouped by functional association. Negative sign in 
the FC column indicates down regulation of gene expression in the RKD-Resistant clone 
(Up-regulated in RKD-Sensitive) Abbreviations, Fold Change (FC), Not Associated 
(NA), Endoplasmic Reticulum (ER), Plasma Membrane (PM) 

Protein/Gene 
Symbol 

FC 
 

Function/Class 
 

Localization 

Transport/Trafficking-Mechanisms 
ADP-ribosylation 

factor-like 
8B/ARL8B -‐2.12	  

Lysosome motility, 
Intracellular Protein 

Transport/GTP-
Binding 

Late-Endosome,	  Lysosome	  
Cytoplasm	  

Ras-associated 
protein 1A/ RAB1A	   -‐1.60	   Endocytic 

Transport/GTP-binding	  
Vesicle	  transport/ER-‐

Golgi	  
Ras-associated 

protein 7A/ RAB7A -1.56 Endocytic 
Transport/GTP-binding 

Late-Endosome, lysosome 

Ras-associated 
protein 7/ RAB7 -1.57 Endocytic 

Transport/GTP-binding 
Late-Endosome, lysosome 

Ras-associated 
protein 8B/ RAB8B -1.56 Transport/GTPase Membrane, Cytoplasmic 

side 
Ras-associated 

protein 7 Like-1/ 
RAB7L1 

-1.52 Transport/GTPase 
Membrane, Cytoplasmic side 

Caveolin-2/ CAV2 1.87 Caveolae/Scaffold Lipid Rafts/Vesicle 
Flotillin-1/ FLOT1 2.95 Caveolae/Scaffold Caveolae-Vesicle 
Ras-Like Family 

12/ RASL12 -1.58 Transport/GTP-binding Membrane/ Intracellular 

Ras-related 
protein, M-Ras/ 

MRAS 
-1.63 Signaling/GTP-binding 

PM 

Ras-associated 
protein 15/ RAB15 2.02 Transport/GTPase Vesicle-Membrane 

Clathrin, Heavy 
Chain/ CLTC 1.92 Trafficking/ Structural Cytoplasmic vesicles 

Sortilin-1/ SORT1 1.76 Signaling/Sorting 
Receptor 

ER, Endosomes, Lysosomes 

Sorting Nexin 17/ 
AP1B 1.76 

Trafficking-
Sorting/Receptor-
Binding (LRP1) 

Endosome, Cytoplasm, 
Golgi 

Adaptor-Related 
Protein 1, Subunit 

3/ AP1S3 
2.2 

Trafficking-
Sorting/Clathrin 

Binding 

Endosomes, Vesicle 

ATPase, 
Aminophospholipid 
Transporter, Class 
I, type 8B, member 

1/ ATP8B1 

-3.56 Aminophospholipid 
Transport/ATPase 

Membrane 
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Huntingtin/ HTT 1.78 Microtubule-Transport Cytoplasm 
Copine 8/ CPNE8 -1.68 Membrane Trafficking/ 

Phospholipid Binding 
PM 

Copine 9/ CPNE9 -1.54 Membrane Trafficking/ 
Phospholipid Binding 

PM 

Solute Carrier 
Family11, Member 

2/ DMT1 -2.23 

Metal 
Transport/NEDD4 

Proteasome-
Degradation 

Endosome, Lysosome, 
Lysosome Membrane 

Ceruloplasmin/ CP -3.37 Ion-Transport/ 
Metalloprotein 

Extracellular Space, PM 

Superoxide 
dismutase copper 
chaperone/ CCS 

-1.69 Ion Transport to SOD 
Cytoplasm 

ATPase Type 
13A3/ ATP13A3 -1.65 Cation Transport Membrane 

Bicaudal D 
homolog 1/ BICD1 2.29 Transport/Motor 

Protein Recruitment 
ER-Golgi 

Exosome 
Component 8/ 

EXOSC8 
1.87 RNA Degradation 

Nucleus, Cytoplasm 

Exocyst 
Component 5/ 

EXOC5 
-1.80 Transport, Exocytic 

Vesicle Docking 

Cytoplasm 

Exosome 
Component 3/ 

Exosc3 
1.58 RNA Degradation 

Nucleus, Cytoplasm 

TNFAIP3 
interacting protein 

3/ TNIP3 -3.41 

HIV-1 Matrix Protein 
Interaction 

(GAG)/Virion 
Incorporation 

Intracellular, Nucleus, 
Cytoplasm 

TNFAIP3 
interacting protein/ 

TNIP -2.07 

HIV-1 Matrix Protein 
Interaction 

(GAG)/Virion 
Incorporation 

Intracellular, Nucleus, 
Cytoplasm 

Syntaxin 1B/ 
STX1B -1.69 Vesicle 

Transport/Docking 
Membrane 

VAMP (vesicle-
associated 
membrane 

protein)-associated 
protein A, 33kDa/ 

VAPA 

-1.59 Vesicle Transport/ 
Membrane Fusion 

ER Membrane, Vesicles 

Chromatin-
modifying protein 

2a/ CHMP2A 
1.51 

ESCRT-
III/Degradation of 
Surface receptor 

Late Endosome Membrane 
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proteins/MVB 
formation/HIV-1 Gag 

(p6) 

Cell Adhesion/Plasma-Membrane	  
67-kDa Laminin 
receptor 1/ 
LAMR1/RPSA 

-‐1.89	   Cell	  Adhesion/Signaling 
Receptor	  

PM,	  Cytoplasm	  

Tenascin –C/ TNC -2.8 Extracellular 
Matrix/Neurite 

Outgrowth 

Extracellular Space 

Neural precursor 
cell expressed, 

developmentally 
down-regulated 9/ 

NEDD9 

-2.11 
Docking/ Tyr- 

Kinase Signaling Focal 
Adhesion 

Cytoplasm, Golgi, 
Projection 

Integrin, beta 1/ 
ITGB1 

1.78 Collagen Receptor/Focal 
Adhesion 

Membrane 

Integrin, beta 4/ 
ITGB4 

1.7 Laminin Receptor Membrane 

RAS p21 protein 
activator/ RASA1 

1.62 GTPase-Activating Cytoplasm 

A Disintegrin and 
Metalloproteinase 

with 
Thrombospondin 

Motifs 8/ 
ADAMTS8 

2.37 

Metalloproteinase 
/COMP Degradation 

 

Extracellular Space 
 

Motifs 12/ 
ADAMTS12 

1.83 

Motifs 17/ 
ADAMTS17 

1.77 

Low density 
lipoprotein 

receptor-related 
protein 1/ LRP1 

-1.81 
Endocytic Receptor/APP 

Regulation/Signaling 

Membrane, Coated-Pits 

Matrix 
Metallopeptidase 

16/ MMP16 

-1.52 Extracellular matrix 
Endopeptidase 

Extracellular Space, Cell-
Surface 

 

Matrix 
Metallopeptidase 

13/ MMP13 

-3.17 
Collagen Degradation 

Matrix 
Metallopeptidase 2/ 

MMP2 

-2.5 Extracellular matrix 
Endopeptidase/ Interacts 

with TIMP2 
A Disintegrin and -3.3 Metalloproteinase/Extrav
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Metalloproteinase 
Domain 8/ ADAM8 

asation 

Motifs 1/ 
ADAMTS1 

-2.78 Metalloproteinase/ 
Proteoglycan cleavage 

A Disintegrin and 
Metalloproteinase 

Domain 9/ ADAM9 

-1.8 Metalloproteinase/Zinc 
Protease, cell-cell 

interaction 
Motifs 9/ 

ADAMTS9 
-2.56 Metalloproteinase/ 

Cleaves Aggregating 
Proteoglycans 

Membrane 
Metallo-

Endopeptidase/ 
MME 

-6.45 
Thermolysin/ Elastase 

Activity 

Cell Membrane 

Tissue inhibitor of 
metalloproteinases 

2/ TIMP2 

-2.11 Inactivation of MMP 
(1,2,3,7,8,9,10,13,14,15,1

6,19) 

Secreted 

Protein C/ PROC 5.3 Serine Protease ER, Golgi, PM, 
Extracellular  

Low density 
lipoprotein 

receptor-related 
protein 3/ LRP3 

3.64 

Predicted Receptor 

Membrane, Coated-Pits 

Chymase-1/ CMA1 -2.14 EM Degradation/ 
Protease 

Secreted 

Activated leukocyte 
cell adhesion 

molecule/ ALCAM 

-2.75 Adhesion/Neurite 
extension 

Membrane 

Glycoprotein IIIb/ 
CD36 

-2.54 Thrombospondin 
Receptor/Adhesion/Fatty 

Acid Transport 

Membrane 

CD47 glycoprotein/ 
CD47 

-2.02 Adhesion/ Membrane 
Transport 

Membrane 

Cadherin-9/ CDH9 -1.70 Ca2+ dependent Adhesion Membrane 
Protocadherin 1/ 

PCDH1 
2.58 Adhesion Cell Junction, Membrane 

Protocadherin 
alpha subfamily C, 

2/ PCDHAC2 

2.07 
Ca2+ dependent Adhesion 

Membrane 

Tetraspanin-29/ 
CD9 

1.87 Adhesion/ 
Transmembrane 

Glycoprotein 

Membrane 

Plastin-1/ PLS1 3.60 Actin-Binding Cytoplasm 
Lipoma-preferred 

partner/ LPP 
-1.66 Adhesion/ Scaffolding 

Protein 
Cytoplasm, Membrane, Cell 

Junction 
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Ubiquitin-Proteasome Pathway/Protein Degradation/Apoptosis	  
Cathepsin L1/ 

CTSL 
-2.1 Protein Degradation 

/Cysteine Proteinase 
Lysosome 

Palmitoyl-protein 
hydrolase 1/ PPT1 

-1.62 Lipid-modified Protein 
Degradation 

Lysosome 

Programmed cell 
death 2/ PDCD2 

1.59 DNA-Binding 
Regulatory/ Survival 

Nucleus 

Apoptosis-inducing 
factor, 

mitochondrion-
associated, 3/ 

AIFM3 

2.76 

Caspase-dependent 
Apoptosis 

Mitochondrion 

Neural precursor 
cell expressed, 

developmentally 
down-regulated 4/ 

NEDD4 

-1.86 E3-Ubiquitin 
Ligase/Receptor 

Internalization and 
Degradation 

Cytoplasm, Membrane, 
Endosome, Exosome 

Ataxin 7-Like/ 
ATXN7L1 

-1.78 NA NA 

Ataxin 7/ ATXN7 -1.72 Histone Modification Cytoplasm, Nucleus 
Ubiquitin-

conjugating 
enzyme E2H/ 

UBE2H 

-1.59 Ubiquitin Acceptor/ 
Misfolded Protein 
Degradation UPS 

Cytoplasm, Nucleus, 

Ubiquitin protein 
ligase E3A/ UBE3A 

-1.6 E3-Ubiquitin Acceptor/ 
UPS 

Cytoplasm, 

Ubiquitin specific 
peptidase 18/ 

USP18 

-3.84 Deubiquitinating 
protease 

Cytoplasm, Nucleus 

Ubiquitin specific 
peptidase 4/ USP4 

-1.52 Deubiquitinating 
protease/ER Quality 

Control 

Cytoplasm, ER 

Ubiquitin-
conjugating 

enzyme E2M/ 
UBE2M 

2.15 
Ubiquitin Acceptor-

NEDD8/UPS 

Cytoplasm 

Proteasome 
(prosome, 

macropain) 26S 
subunit, non-

ATPase, 5/ PSMD5 

1.55 

Chaperone/26s 
Proteasome/UPS 

Proteasome Complex 

Proteasome 
(prosome, 

macropain) 26S 

1.51 Chaperone/26s 
Proteasome/UPS 

Proteasome Complex 
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subunit, ATPase, 6/ 
PSMC6 

Ubiquitin specific 
peptidase 5 

(isopeptidase T)/ 
USP5 

1.64 Ubiquitin thiolesterase 
activity/ positive 

regulation ubiquitin-
dependent protein 

catabolic process UPS 

Cytoplasm 

BCL2-associated 
transcription factor 

1/ BCLAF1 

-2.00 Death-promoting 
transcriptional repressor 

Cytoplasm, Nucleus 

CASP8 and FADD-
like apoptosis 

regulator/ CFLAR 

-1.69 Apoptosis Regulation/ 
TNFRSF-triggered 

apoptosis 

Cytoplasm 

TP53 apoptosis 
effector/ PERP 

-1.97 TP53-dependent 
apoptotic pathway 

Membrane, Golgi 

F-box protein 32/ 
FBXO32 

-3.76 Ubiquitin-protein ligase 
activity/UPS 

Ubiquitin ligase complex 

F-box protein 10/ 
FBXO10 

1.55 Ubiquitin-protein ligase 
activity/UPS 

Ubiquitin ligase complex 

F-box protein 48/ 
FBXO48 

-2.13 NA NA 

F-box protein 21/ 
FBXO21 

1.68 Ubiquitin-protein ligase 
activity/UPS 

Ubiquitin ligase complex 

F-box protein 42/ 
FBXO42 

-1.52 Ubiquitin-protein ligase 
activity/UPS 

Ubiquitin ligase complex 

Ring-‐Finger	  
Protein	  

139/RFN139	  

-‐1.50	   E3-ubiquitin ligase/ 
negative regulator of 

Growth 

ER	  Membrane	  

Ring-‐Finger	  
Protein	  4/RFN4	  

1.56	   E3-ubiquitin 
ligase/Protein 
degradation	  

Cytoplasm	  

Ring-‐Finger	  
Protein	  

217/RFN217	  

-‐1.95	   E3-ubiquitin 
ligase/Protein 
degradation	  

Membrane	  

Ring-‐Finger	  
Protein	  

123/RFN123	  

-‐1.88	   E3-ubiquitin ligase/ 
proteasome-mediated 

degradation of CDKN1B	  

Cytoplasm	  

Chaperone/Protein Homeostasis	  
Clusterin/ CLU -1.67 Extracellular 

Chaperone/Stress-
Induced Aggregation 

PM, ER, Vesicle, 
Cytoplasm 

HtrA serine 
peptidase 4/ 

HTRA4 

-1.78 Chaperone Serine 
Protease 

Extracellular 
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Chaperonin 
containing T-

complex subunit 6/ 
CCT6A 

-2.01 
Molecular Chaperone/ 

Actin/Tubulin 

Cytoplasm 

BCL2-associated 
athanogene 3/ 

BAG3 

-1.54 Inhibits HSP70/Anti-
Apoptotic 

Cytoplasm 

Heat shock 22kDa 
protein 8/ HSPB8 

-3.78 Chaperone/ Binds 
BAG3 (Cofactor)/ 
Macroautophagy 

Cytoplasm 

Heat shock protein 
90kDa beta 

(Grp94), member 
1/ HSP90B1 

-1.6 
Chaperone/ ERAD/ 
Process & Transport 

ER 

Heat shock protein 
90kDa alpha 

(cytosolic), class B 
member 1/ 
HSP90AB1 

(HSP83) 

-1.53 

Protein Maturation 
Chaperone 

Cytoplasm 

Chaperonin 
containing T-

complex subunit 2 
(beta)/ CCT2 

1.77 
Molecular Chaperone/ 

Actin/Tubulin 

Cytoplasm 

Protein 
phosphatase 4, 

regulatory subunit 
1/ PPP4R1 

1.89 
Protein Phosphorylation/ 

Signaling 

NA 

J-domain-
containing protein 

disulfide isomerase-
like protein/ 
DNAJC10 

1.78 

Protein Folding /Co-
Chaperone with HSPA5 

ER, Secreted 

Heat shock 70kDa 
protein 12A/ 
HSPA12A 

2.09 
Chaperone/UPS 

Cytoplasm 

Heat shock 70kDa 
protein 2/ HSPA2 

3.89 Chaperone Cell-Surface, 
Mitochondrion 

BCL2-associated 
athanogene 2/ 

BAG2 

1.68 Inhibits HSP70/Anti-
Apoptotic 

Cytoplasm 

BCL2-associated 
athanogene 6/ 

BAG6 

1.62 Apoptotic 
Chaperone/Interacts 

with HSPA2 and 
AIFM1 

Cytoplasm/BAT3 Complex 

FK506-binding -‐1.82	   Accelerates protein ER	  
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protein 14/FKBP14 folding/ peptidyl-prolyl 
cis-trans isomerase 

FK506-binding 
protein 
3,25kDa/FKBP3	  

1.71	   Accelerates protein 
folding/ peptidyl-prolyl 

cis-trans isomerase	  

Membrane	  

Signaling/Transcription Activation Pathway	  

Lipopolysaccharide
-induced TNF 
factor/ LITAF 

-1.83 
Apoptosis, Signaling 

Lysosome, Golgi, 
Membrane 

Frizzled family 
receptor 6/ FZD6 

-1.81 Wnt-Signaling Membrane 

Amyloid beta 
precursor protein 
binding protein 1, 

59kDa/ 
NAE1(APPBP1) 

1.62 

Cell-Surface Signaling/ 
Apoptosis 

Membrane 

Interferon 
regulatory factor 7/ 

IRF7 

-4.83 
Transcriptional activator 

Cytoplasm 

Eukaryotic 
translation 

initiation factor 2C, 
3/ EIF2C3 

-1.58 
RNA-mediated gene 

silencing (RNAi) 

Cytoplasm 

Eukaryotic 
translation 

initiation factor 2-
alpha kinase 3/ 

EIF2AK3 

-1.50 

Phosphorylates/ unfolded 
protein response (UPR) 

ER 

Eukaryotic 
translation 

initiation factor 2-
alpha kinase 2/ 

EIF2AK2 

-3.92 Autophosphorylated 
protein serine/threonine 

kinase, Autophagy 
Induction 

Cytoplasm 

Protein kinase C, 
delta/ PRKCD 

-1.81 Protein serine/threonine 
kinase 

Cytoplasm, Membrane 

Protein kinase C, 
zeta/ PRKCZ 

-1.95 Protein serine/threonine 
kinase 

Cytoplasm, Membrane 

p38/ CRK -1.60 Adapter-protein Cytoplasm, PM 
Casein kinase II 

beta subunit/ 
CSNK2B 

1.86 Protein serine/threonine 
kinase 

Cytoplasm, Nucleus 

Cyclin-dependent 
kinase 8/ CDK8 

1.72 Protein serine/threonine 
kinase/ Transcription 

Activation 

Nucleus 
Cytoplasm 

 Cyclin-dependent 1.53 
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kinase 16/ CDK16 Transport Exocytosis 
 Cyclin-dependent 

kinase-like 2 
(CDC2-related 

kinase)/ CDKL2 

1.50 

Mitogen-activated 
protein kinase 12/ 

MAPK12 

1.76 

Mitogen-activated 
protein kinase-

activated protein 
kinase 3/ 

MAPKAPK3 

-1.68 

Mitogen-activated 
protein kinase 1 

interacting protein 
1-like/ 

MAPK1IP1L 

-1.54 

Mitogen-activated 
protein kinase-

activated protein 
kinase 5/ MAP3K5	  

-‐
1.81	  

Phosphorylates and 
activates MAP2K4 and 

MAP2K6/Apoptosis 
Induction	  

	  

Protein kinase, 
cAMP-dependent, 
regulatory, type II, 

alpha/ Prkar2a 

-2.62 Binds Anchoring 
Proteins/Regulates 
protein transport 

Cytoplasm, Membrane 

A kinase (PRKA) 
anchor protein 12/ 

AKAP12 

-2.04 

Anchoring protein/ 
subcellular 

compartmentation of 
PKA and PKC 

Cytoplasm 
A kinase (PRKA) 
anchor protein 13/ 

AKAP13 

-1.66 

A kinase (PRKA) 
anchor protein 11/ 

AKAP11 

1.67 

Autophagy-Related Genes	  
Programmed cell 

death 6 interacting 
protein/ PDCD6IP 

-1.98 Cell Death 
Inhibitor/HIV-1 

Budding/Apoptosis-
Autophagy Adhesion 

Cytoplasm 

Polo-like kinase 4/ 
PLK4 

2.34 Serine/threonine-protein 
kinase/ Cell Division 

Regulation 

Cytoplasm, Nucleus, 
Membrane 

Kinase 3/ PLK3 -1.61 
SNF-related 

serine/threonine-
-1.55 Serine/threonine-protein 

kinase / mediator of 
Nucleus 
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protein kinase/ 
SNRK 

neuronal 
Apoptosis 

Functional 
spliceosome-

associated protein 
79/ THOC5 

2.07 
Nuclear export of 

HSP70 mRNA 

Nucleus, Cytoplasm 

Myosin, heavy 
chain 10/ Myh10 

1.65 Motor Protein Cytoplasm 

Ubiquitin-like 
modifier 

activating enzyme 
2/ UBA2 

1.6 
E1 ligase / Ubiquitin 
mediated proteolysis 

Nucleus 

Vimentin/ Vim -1.81 Intermediate 
filament/Lysosomal 

Transport 

Cytoplasm 

F-box protein 30/ 
FBXO30 

-2.45 Ubiquitin-protein ligase 
activity/UPS 

Ubiquitin ligase complex 

Autophagy-related 
cysteine 

Endopeptidase/ 
ATG4a 

-2.78 
Cysteine protease 

required for autophagy 

Cytoplasm 

Apurinic-
apyrimidinic (AP) 

endonuclease 1/ 
Apex1 

1.56 Cellular response to 
oxidative stress/ 

endodeoxyribonuclease 

Nucleus, Cytoplasm 

Microtubule 
associated 

monoxygenase, 
calponin and LIM 

domain/ Mical1 

-1.63 
Cytoskeletal regulator 

that connects NEDD9 to 
intermediate filaments 

Cytoplasm 

TATA element 
modulatory factor 

1/ Tmf1 

-1.77 STAT3 degradation/ 
RAB6-dependent 

retrograde transport 
process/Inhibits TBP 

ER, Golgi, Cytoplasm, 
Nucleus 

Ataxia 
telangiectasia and 

Rad3 related/ 
ATR 

1.56 Serine/threonine protein 
kinase/ Activated by 

DNA damage 

Nucleus 

Transformation/tr
anscription 

domain-associated 
protein/ TRRAP 

1.59 
Adapter protein/ 

Transcription factor 

Nucleus 

BCL2-
antagonist/killer 1/ 

BAK1 

2.13 
Apoptosis Regulator 

Mitochondrion 

Disks large 1.55 Guanylate kinase Cytoplasm, PM 
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homolog 3/ Dlg3 activity/ negative 
regulation of cell 

proliferation 
Syntrophin, alpha 

1/ SNTA1 
1.74 Adapter protein/ 

Regulation of secretory 
granules 

Cytoplasm, PM, Vesicles, 
Cell Junction 

Syntrophin, beta 2/ 
SNTB2 

1.5 

Ras-associated 
protein 1A/ RAB1A 

-1.6 Transport/GTPase ER, Golgi 

Sequestosome 1/ 
SQSTM1 

-1.75 Adapter protein binds 
ubiquitin, 

Regulation of 
Signaling cascades 

through ubiquitination 

Cytoplasm, Late endosome, 
Nucleus 

Karyopherin alpha 
1/ KPNA1 

-1.52 Nuclear protein import 
adapter protein 

Cytoplasm, Nucleus 
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Chapter 5 
Discussion & Future Directions 

 

Prion Infectivity Using Different Cell Culture Models: In these studies, we utilized cell 

culture models to characterize prion strain diversity and initiated the search for 

endogenous host factors that confer prion susceptibility. Three different cell lines were 

genetically modulated to ectopically express heterologous PrPC, which were used for 

infection studies with species specific PrPSc. These cell lines included the HEK293A, 

N2a and RK13 cells. Several heterologous PrPC’s were chosen for ectopic expression in 

the cells. These expressed proteins included cervid (elk/deer), hamster and mouse. Prion 

infections used infectious isolates derived from the respective species to keep the PrPC 

primary sequence equivalent to the prion isolate.   

 The cell culture infection experiments recapitulated in vivo results demonstrating 

prion species-barrier and interfering effect of endogenously expressed PrPC. N2a cells 

demonstrated resistance towards replicating CWD and hamster-adapted TME prions. No 

inhibition for replicating mouse-adapted RML scrapie prions was showed 

notwithstanding the cells over-expressed the ectopic PrPC transgene. Endogenous 

expression of PrPC in N2a cells appeared to interfere with the co-expressed heterologous 

PrPC for the cellular host factors that mediate the replicating process, which is 

reminiscent of the initial in vivo studies exhibiting the interfering effect (Telling, Scott et 

al. 1994; Telling, Scott et al. 1995).  We hypothesized that prion replication was inhibited 

as a result of endogenous interference of mouse PrPC. Recent studies have demonstrated 

N2a capacity to replicate heterologous CWD prions. Isolation of N2a cells lacking 

endogenous PrPC expression permitted transient CWD prion replication (Pulford, Reim et 
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al. 2010). Several steps were taken to identify CWD prion susceptible N2a cells. First, 

these cells were sorted five individual times to identify a population of N2a cells that do 

not express detectable PrP levels. Second, the sorted cells were genetically modulated to 

ectopically express cervid PrP. These methods allowed the identification of cells with the 

capacity to convert and replicate CWD prions. It is not surprising that the abrogation of 

endogenous PrP resulted in heterologous replication of prions because these cells have 

been well established to generally be permissive towards prions. This method, closely 

recapitulates the in vivo PrP interference data (Telling, Scott et al. 1995), except for 

N2a’s inability to sustain CWD prion infectivity (personal communication with Dr. 

Zabel). Together, this data suggests that N2a cells express and maintain the host 

conversion factors that are required for prion replication.  

The inability to sustain detectable levels of PK resistant CerPrPSc in N2a cells led 

us to try RK13 cells next. These cells do not express endogenous PrPC and have 

previously been shown to replicate ovine derived prions (Vilette, Andreoletti et al. 2001). 

Initial experiments demonstrated inefficient CWD prion replication using these cells. To 

enhance RK13 cells we exploited previously published evidence suggesting retroviral 

elements enhance scrapie infection (Leblanc, Alais et al. 2006). RK13 cells were 

genetically modulated to co-express HIV-1 Gag and cervid (elk/deer) PrPC. This 

modification permitted the cells to replicate both elk and deer CWD-prions. In addition to 

replicating CWD-prions, RK13 cells readily replicated mouse-adapted RML-prions, and 

demonstrated the capacity to replicate SHa HY-prions but not DY-prions. Unlike N2a 

cells, the interference of endogenous PrPC were not an issue with RK13 cells, but other 

similarities could be drawn. Similar to CWD prion replicating N2a cells (Pulford, Reim 
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et al. 2010), our RK13 cells lost prion infectivity with certain strains upon continuous 

passage. RKE cells not expressing HIV-1 Gag eventually lost CWD prion infectivity and 

RK13 cells expressing SHaPrP lost infectivity with HY with irrespective of HIV-1 Gag 

expression. It would be interesting to test the effects HIV-1 Gag would have on N2a cells 

that lack endogenous PrP because the neuronal origins of N2a cells enhanced with Gag 

could lead to new cell line considerably more prion susceptible than any characterized 

cell line we currently have to work with.      

We reasoned that ectopic expression of PrPC in other cells lacking endogenous 

expression of PrP would also enable them to replicate prions. HEK293 cells were used in 

similar infectivity experiment to follow up the proposed hypothesis. Unlike RK13 cells, 

HEK293 cells did not exhibit the capacity to replicate prions. The lack of detectable PK 

resistant PrPSc material in 293 cells provided supplementary evidence to support the 

hypothesis that PrPC expression alone is not sufficient to sustain prion infectivity. 

Moreover, cells derived from Prnp0/0 mice genetically modulated to ectopically express 

PrPC exhibited similar prion susceptibility outcomes (Raeber, Sailer et al. 1999). 

Similarly, PrPC expression levels in cells known for their susceptibility do not 

automatically confer prion susceptibility. Beyond that, cellular susceptibility to prions in 

general is a rare event, which in some, not most cases requires extensive cellular cloning 

to identify the single cell with “all the conversion tools” to efficiently replicate prions 

without inducing apoptosis (Butler, Scott et al. 1988; Race, Caughey et al. 1988; Bosque 

and Prusiner 2000; Bian, Napier et al. 2010).  

Our RK13 characterization studies led us to discover that single cell cloning is 

crucial to sustaining chronic infectivity. Incidentally, the abovementioned work using 
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N2a cells exhibited evidence suggesting significant variation in prion susceptible N2a 

cells (Bosque and Prusiner 2000).  This phenotypic variation towards prion susceptibility 

could be used as a cellular tool to identify host factors responsible for the modulating 

effects.  Conforming these observations to our cell culture system, we identified 78 RK13 

(RKM) clones that differentially expressed Mouse PrPC. Several methods were used to 

characterize these clones for total PrPC expression. Mouse-adapted RML-prions infection 

revealed diverse susceptibility amongst individual clones. Similar expression of PrPC in 

conjunction with differential susceptibility led us to formulate the working hypothesis for 

subsequent experiments, which states that, while expression of PrPC is required for 

infectivity, it is not sufficient to render the cell permissive. Therefore, endogenous host 

factors are necessary to sustained prion replication.  

Transcriptional Differences Amongst PrPSc Susceptible And Resistant Clones: Two 

experimental approaches were used to identify differences in the molecular basis for 

susceptibility amongst clonal cells. Both methods relied on transcriptional difference 

between cell lines to help elucidate the protein and/or pathways that enable prion 

replication. RDA was used as a pilot approach to analyze two phenotypically distinct 

clones sensitive or resistant to RML prions. We were able to isolate several unique 

transcripts. The isolated transcripts encoded hypothetical and/or poorly annotated 

proteins. Furthermore, subsequent analysis of the two clones revealed phenotypic 

reversion. The resistant clone exhibited permissiveness to prions, which led us towards a 

newer and quicker microarray method. The lack of throughput, statistical insignificance 

and experimental setback led us to abandon this approach. 
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We utilized high-throughput microarray genome analysis as the second 

experimental to identify transcriptional differences between clones. Clonal cells that were 

susceptible and/or resistant to CWD-prion were characterized prior to microarray 

profiling. As part of our experimental design, we isolated the RNA for transcriptional 

analysis from uninfected clones. Previously studies have showed that the transcription 

stability of cells pre- and post- prion infection were not altered (Julius, Hutter et al. 

2008). Therefore, transcriptional differences that dictate clonal susceptibility are 

constitutively active.  In the time course of the study, two clones deemed susceptible lost 

detectable CerPrPSc implying an incomplete molecular phenotype for susceptibility. This 

was subsequently confirmed with microarray results. 

Microarray transcriptional profiling revealed significant difference between 

susceptible and resistant clones. Two distinct criteria were set to identify unique 

transcripts, which include FC differences and statistical t-test p-value stringency cut-off. 

The derivation of gene lists for prediction based analyses required the use of 

mathematical confinements to set selection stringency. The most stringent mathematical 

confinements utilized t-test p-value of ≤0.001 and FC of ≥2.0. These values generated a 

list consisting of 100 differentially regulated genes, listed in tables 4.6 and 4.7. 

Stringency reduction to the p-value of ≤0.05 and FC of ≥1.5 generated a gene lists 

consisting of 1,375 differentially expressed genes. Both lists enabled us to gain insight 

into the global perspective of the cellular physiology.  

The primary difficulty with the microarray analysis was gene annotation. The 

rabbit genome is poorly annotated, which required manual conversion of each rabbit gene 

to the mouse/human ortholog. Subsequently, the second challenge of microarray analysis 
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is acquiring meaningful information from the derived gene lists. The annotated rabbit 

gene lists were bioinformatically analyzed using three different databases. These 

databases include the Prion Disease Database (PDDB), Database for Annotation, 

Visualization and Integrated Discovery (DAVID) and Protein ANalysis THrough 

Evolutionary Relationships (PANTHER). Using PDDB, we identified 314 genes that 

matched in vivo longitudinal gene expression studies characterizing prion pathogenesis. 

In addition, a handful of matched genes have experimental evidence that functionally 

connects them to prion disease. These genes are listed in tables 4.8 and 4.9. Unlike 

PDDB that is designed to deal with prion disease associations only, DAVID and 

PANTHER are designed to deal with large-scale transcriptional microarray data sets. 

Gene pathway association and function analyses by DAVID and PANTHER databases 

reveal metabolic pathways involved in protein homeostasis and cell division as primary 

targets for subsequent validation.  

The Phenotype Of A PrPSc Susceptible Cell:  The gene expression data indicate that prion 

sensitivity in RKD cells stem from pathways that regulate protein homeostasis. These 

pathways include differentially regulated genes that partake in protein folding, 

degradation, trafficking and cellular compartmentalization sorting. On the other hand, 

cellular resistance amongst RKD clones is indicated by accelerated cell division. 

Experimental precedence to both of these observations has been established but it is 

highly possible that a combination of these attributes concurrently with prion strains 

dictates the outcome of susceptibility (Ghaemmaghami, Phuan et al. 2007; Nunziante, 

Ackermann et al. 2011). In vivo, prions preferentially propagate in post-mitotic neurons 

of the CNS. It is intuitive that continuous cell division would eventually cause prions to 
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dilute out beyond detectability, however cells in culture growing at various rates maintain 

the ability to replicate prions (Butler, Scott et al. 1988; Race, Caughey et al. 1988; 

Bosque and Prusiner 2000; Ghaemmaghami, Phuan et al. 2007; Nunziante, Ackermann et 

al. 2011). Both exogenous and endogenous factors dictate susceptibility.  Therefore, 

cellular capacity to chronically sustain detectable PrPSc depends on a highly interrelated 

balancing act between cellular mechanisms that maintain protein synthesis, protein 

degradation, cell division and compatibility of the infecting prion strain. Our microarray 

results suggest that CWD prion resistant clones upregulate gene clusters that modulate 

and promote cell division. We have not experimentally addressed cell division rate 

differences between the sensitive and resistant clones. Earlier studies have shown that 

cell division actively dilutes detectable levels of PK resistant PrPSc, reducing the total 

amount by half after each division (Race, Fadness et al. 1987). Moreover, systematic 

analysis comparing cell division to prion replication kinetics revealed direct evidence for 

steady-state reduction of prion levels in rapidly dividing cells (Ghaemmaghami, Phuan et 

al. 2007). Interestingly, the steady-state reduction of prions by cell division was not 

absolute indicating that other cellular mechanisms were undertaking the task to sustaining 

low-levels of prions.  

Our sensitive cells upregulate proteins that control mechanisms responsible for 

protein. Careful analysis of the gene lists revealed macroautophagy as one of the 

prevalent pathway activated in susceptible cells. This upregulated autophagy pathway 

does not rely on the classical stress response proteins. The genes upregulated by RKD-S 

cells activate a selective non-canonical pathway specific to aggregation-prone proteins. 

Moreover, this pathway has a secondary function that transiently arrests cell growth. 
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Aggregated protein response and growth arrest makes this pathway pertinent to the global 

phenotype of the prion sensitive cell. In addition to autophagy activation, other chaperone 

proteins were also upregulated by sensitive cells. It is likely that a skewed stress response 

in susceptible cells is mediating the overall PrPSc conversion process. To support this 

hypothesis, recently published findings indicate that proteasomal dysfunction and 

endoplasmic reticulum stress in prion infected cells leads to enhanced accumulation of 

PrPSc (Nunziante, Ackermann et al. 2011). By inducing ER stress and impairing 

proteasomal regulatory pathways in cells, significant increase of misfolded protein 

fractions were observed. Furthermore, the accumulated PrPSc was efficiently trafficked to 

the plasma membrane using intracellular vesicle transport mechanisms. These studies 

imply that ER environment together with protein quality control mechanisms tightly 

modulate PrP maturation and PrPSc formation (Nunziante, Ackermann et al. 2011). 

Understanding the cellular mechanisms that render cells susceptible to prion replication 

could be used to explore mechanisms that govern other protein misfolding 

proteinopathies.  

Prion Propagation Under Cell Free Conditions: Several in vitro assays have been 

described, which use purified components to catalyze PrPC to PrPSc conversion and 

propagate infectious prions (Kocisko, Priola et al. 1995; Saborio, Permanne et al. 2001; 

Wong, Xiong et al. 2001; Deleault, Geoghegan et al. 2005; Atarashi, Moore et al. 2007; 

Deleault, Harris et al. 2007; Abid, Morales et al. 2010; Kim, Cali et al. 2010; Wang, 

Wang et al. 2010). These assays rely on using PrPC substrate that has been purified from 

brain tissue or generated recombinantly in bacteria combined with PrPSc to seed the 

converting reaction. The CFCA was first to show that PrPC could be converted to PrPSc in 
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the absence of cellular factors but the reaction required a 50-fold molar excess PrPSc, 

which makes it highly inefficient (Kocisko, Come et al. 1994). Mammalian prions have 

also been generated using recombinant SHaPrP (rPrPPMCA) in a seeded PMCA reaction 

using 263K hamster purified PrP27-30 (Kim, Cali et al. 2010). The infectivity of these 

prions was confirmed by bioassay, which resulted in variable attack rates, and long 

incubation times, suggesting low prion titer. Although infectious prions can be generated 

without additional cofactors, the low infectivity titers suggest that the process is 

inefficient. Therefore suggesting that even in a cell free system, prions require additional 

cofactors to accelerate the conversion process.  

This in vitro prion conversion data compliments our prion cell culture system 

because it demonstrates de novo generation of infectious prions is rare event requiring 

cofactors. Therefore, supplementing cofactors into the prion conversion reaction may 

accelerate or enhance the process. This is supported by findings that show how additional 

cofactors can be applied to enhance PrPSc conversion efficiency (Abid, Morales et al. 

2010; Kim, Cali et al. 2010; Wang, Wang et al. 2010). PMCA was crucial in identifying 

cofactor components that accelerate prion conversion. RNA molecules were first to show 

enhancement of prion conversion by PMCA (Deleault, Lucassen et al. 2003).  

Subsequent studies using an overnight rapid shaking incubation assay demonstrated that 

optimal prion amplification could be achieved using polyanions that include RNA and 

HSPG’s (Deleault, Geoghegan et al. 2005). RNA length (>4kb) and not the source was 

the important determinant of enhancing amplification. Several conclusions were made 

from this data (Deleault, Geoghegan et al. 2005). First, adoption of a supporting structure 

in 3D space was the probable mechanisms that regulated polyanions enhancement of 
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PrPSc conversion in vitro. Second, the structure or scaffold that was forming by these 

polyanions in 3D space was of specific length/size. Finally, once the amplified fibrils 

reached a certain size in the scaffolded structure, disaggregation would occur causing the 

fibrils to break and generate smaller, more infectious particle to drive the amplification 

reaction forward (Deleault, Geoghegan et al. 2005;Silveira, Raymond et al. 2005). 

Upregulation of cell-surface proteins in RK13 susceptible cells coincide with these 

hypothesis driven predictions. The upregulated receptor, adhesion, enzyme and 

chaperone proteins discussed in Chapter 4, were predicted to execute scaffolding and 

stabilization functions in the PrPC-PrPSc conversion process. The polyanion-enhancing 

component data was applied towards successfully generating unseeded de novo infectious 

prions (rPrP-res) with bacterially expressed rPrP, anion-phospholipids, and RNA using 

PMCA (Wang, Wang et al. 2010). Like rPrPPMCA, rPrP-res ability to cause prion disease 

was confirmed by bioassay.  

The generation of de novo prions using rPrP with the addition of lipids and RNA 

molecules suggest that different molecules may help without specificity to enhance prion 

conversion. Therefore, it is probable that within the confinements of a susceptible cell, 

several molecules of different composition, work together to allow prion accumulation to 

occur. Our predicted cofactor data supports this hypothesis. The scenario our susceptible 

RK13 cells reveal requires the combination of extra- and intracellular components to 

become activated for prions to accumulate. The intracellular recycling proteins combined 

with overly activated macroautophagy would provide plenty of anion-phospholipids and 

cytoplasmic RNA molecules to enhance PrPSc conversion (Figs. 4.7 and 4.8). 

Investigation for cellular components that mediate prion replication activity led to several 
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interesting discoveries, which helps provide experimental evidence to support our data 

(Abid, Morales et al. 2010). To address species-specificity of cellular prion conversion 

factors, brain homogenates from various species, including Prnp0/0 mice, was used in 

PMCA to show efficient prion amplification (Abid, Morales et al. 2010). This finding 

indicates that prion conversion factors are not species specific, because extracts from 

every species used in the experiment efficiently amplified SHa-PrPSc. The PMCA data is 

analogues to our system, which uses rabbit cells to replicate CWD, HY and RML prions, 

again demonstrating the lack of species-specificity. Secondly, extracts derived from 

various tissue sources (heart, liver, kidney, heart, muscle and brain) were applied to 

PMCA experiments demonstrating efficient conversion irrespective of tissue source 

(Abid, Morales et al. 2010). Another similarity can be drawn to our data, we use cells that 

are of kidney epithelial origin and not neuronal origin.  

Lastly, it is the third and fourth PMCA experiment of this report that provides 

experimental evidence to support our predicted prion susceptibility cofactor data (Abid, 

Morales et al. 2010). Using cellular fractions for PMCA, it was shown that lipid rafts 

were the dominant conversion factors that achieved successful amplification. This can be 

correlated to our prediction because every mechanism described in our hypothesis driven 

prediction has association with membranes and perhaps lipid rafts. At cell surface, where 

the initial PrPC-PrPSc interaction occurs, the upregulated proteins described in Chapter 4 

localize to lipid rafts, which also happen to be one of the criterion for selecting the 

molecules from the 1,375 gene list. Once internalized, the upregulated intracellular 

recycling proteins have all been predicted to regulate membrane formed vesicles to dock, 

fuse and trafficking molecules intracellularly. Concurrently, the primary indication of 
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macroautophagy activation is the formation of autophagosomes, which require 

intracellular double-layered membrane formation to enclose the molecules destined for 

degradation. The described processes that occur in susceptible cells require lipid 

membranes.  

The chemical nature of conversion factors was determined using sequential 

inactivation of molecule classes (proteins, nucleic acids, HSPG...etc.) in supplemental 

extracts used for PMCA (Abid, Morales et al. 2010).  The results of these experiments 

revealed that inactivation of single molecule classes did not inhibit prion replication. This 

implies that the composition of converting cofactors cannot be specified to individual 

molecules. It is more probable that various molecule classes work together to positively 

enhance prion conversion. Our gene expression data supports the described PMCA data. 

The mechanisms that enhance prion replication in susceptible cells are complex, and are 

likely to use various pathways and proteins. Beyond the predicted process hypothesized 

to regulate prion susceptibility, other physiological factors should also be considered. 

These factors should include pH conditions that are inside and outside the cell, 

temperature fluctuations, and the presence of ROS. Any one of those factors alone or 

combined could have affect cells capacity to replicate and sustain prions.          

Cellular Aneuploidy: This study is not without caveats that must be addressed in future 

experiments. One such caveat is the genetic composition of transformed cells. 

Transformed cells tend to be aneuploidy, which have considerable variation in 

chromosomal number. Approaches to circumvent and validate this drawback would be to 

increase the n-value of samples analyzed. Moreover, It will be crucial to identify clonal 

populations that exhibit susceptibility phenotypes to prion strains from different species. 
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The use of next-generation sequencing technology for transcriptome analysis could help 

validate the findings and consolidate identified host factors. Consequently, any 

endogenous protein that is deemed a cofactor in prion replication will have to be 

functionally validated both in vitro and in vivo to demonstrate its role in the process. 

Consequently, the aneuploid genetic composition will become irrelevant if the protein is 

validated. 

 
Future Direction 

Secondary Confirmation Of Target Gene Expression: The first approach towards taking 

this data forward is secondary confirmation of the genes identified in the microarray 

experiments. Genes listed in table 4.10 are the ideal targets for preliminary validation. 

Table 4.10 represent carefully selected genes involved in pathways relevant to protein 

homeostasis. These experiments should include quantitative real-time PCR (qRT-PCR) 

assay to confirm the differential expression of genes discussed in chapter 4. The 

measuring expression levels of target genes would have to be achieved in susceptible, 

resistant and un-transfected parent cell line. Furthermore, the qRT-PCR analysis could be 

done at several time points of infection. This mode of validation has the potential to be 

used in both animal tissues and cell culture models. A different approach to validate 

possible target genes is through western immunoblotting. This method would indicate 

that the cell is making the target protein. Although, this form of analysis would require a 

specific antibody for the protein in question, which is not always available. Both 

approaches provide rapid results to support or negate the microarray results.      
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Cell-Culture Based Experiments: Following secondary confirmation, cell culture based 

analyses can be used to assess predicted host factor capacity to modulate prion 

infectivity. For example, PrPSc-resistant clones could be genetically modulated to over-

express genes associated with PrPSc susceptibility. These might include the 

macroautophagy genes such as HSPB8, BAG3 and/or eIF2ak or vesicular transport genes 

such as the Rab genes. Preceding the infectivity experiments, all transfected genes would 

have to be assessed for stable expression. These genetically modified PrPSc resistant cells 

would then be infected with PrPSc and assessed for susceptibility using the standard PK 

resistance western-immuno blotting readout. Inversely, inhibitors of these pathways 

could be applied to PrPSc susceptible cells in an attempt to cure cells of infectivity. In 

addition to inhibitors, gene-silencing approaches using siRNA techniques can also be 

applied to cure PrPSc infected cells. Co-immuno precipitation (co-IP) is an approach, 

which can be used to ascertain physical interactions between target genes and PrP 

molecules. Co-localization studies using light microscopy can be applied to determine 

cellular processes that are modulating replication. This combination of assays would be 

beneficial for identifying cellular sites for PrPSc replication.  

It will be imperative to produce additional cell lines with similar PrPSc phenotypes 

from other species. RK13 cellular permissiveness towards replicating prions is a 

characteristic, which can be applied towards generating sensitive cell line (Vilette, 

Andreoletti et al. 2001; Bian, Napier et al. 2010). In initial attempts to develop such a cell 

line, we utilized the Cre-Lox recombination system to selectively interchange species 

specific PrPC ORF in a clonally selected RK13 cell. The Cre-Lox site-specific 

recombination system is originally derived from bacteriophage P1, which utilizes the 
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Cre-recombinase enzyme to remove stretches of DNA flanked by recognition sequences 

(loxP) in an enzyme-mediated cleavage and ligation mechanism (Sauer 1987). We 

engineered a PrPC expression vector with flanking loxP sites. This construct is referred to 

as the floxed-PrPC ORF (Fig. 5.1A). The construct allows selective deletion of PrPC from 

cells through the use of Cre-recombinase. The floxed-Mouse-PrPC was cloned into 

pIRESpuro expression vector and stably transfected into RK13 cells (floxed-RKM cells). 

The proper positioning of loxP sites and expression of murine PrPC was verified using 

adeno-viral vector carrying the Cre-recombinase transgene at the multiplicity of infection 

(MOI) of 15. The cells were kept in minimally supplemented media to reduce the growth 

rate for 8 days. Lysate samples were collected for analysis at designated time points (Fig. 

5.1B). This proof-of-principle experiment validates normal expression and processing of 

loxP-flanked PrPC (Fig. 5.1B).  

Clones of floxed-murine PrPC cells were derived by limited dilution cloning 

technique. Clones were infected with mouse-adapted RML and at third passage assessed 

using the mSCA. Floxed-RKM-11D4 clone was chosen for further studies as the most 

sensitive PrPSc clone. Infected (RML) and uninfected cells were treated with the Ad-Cre 

viral vector (MOI 15) and the kinetics of prion reduction was measured over a 72h time 

frame (Fig. 5.1C). Western blot results revealed reduction of PrPSc in the RML infected 

11D4 cells as the expression of PrPC is reduced (Fig. 5.1C). The data implies that PrPSc 

persistence in RK13 cells goes beyond PrPC deletion. 
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Figure 5.1 Generating a prion permissive susceptible cell line. A. Schematic 

representation of the PrPC ORF with the addition of Lox-p (floxed) and restriction 

endonuclease sites for versatile cloning into various expression and/or transgenic vectors. 

The red (BsiWI, NheI, BglII, FseI) and blue (HindIII, AflII, EcoRI, SalI) boxes represent 

restriction sites for down stream cloning strategies. The green box represents the addition 

of the Kozak consensus sequence for initiation of the translation process. B. RK13 cells 

expressing the floxed-mouse PrPC ORF expression vector (RKM Floxed), pIRESpuro-

mouse PrPC (RKM7, clonaly selected and described in Chapter 3) or pIRESpuro-vector 

only control (RKV) were transduced with the Adeno viral vector carrying the Cre-

recombinase (Ad-Cre) trans gene at the MOI of 15. Cell lysates were collected at 

designated time points represented by numerical values on the blot (in hours). PrPC 

expression was detected by western blotting using mAb 6H4. Actin expression is used for 

total protein control Pan-Actin mAb-5. C. Time course (72h) assessment of PrPC and 

PrPSc reduction in RKM, RKV, 11D4 (Single cell RKM-floxed clone) and 11D4-RML 

(Chronically infected with mouse adapted RML scrapie) post Adeno virus transduction 

(Ad-Cre (Cre-recombinase), MOI of 15). PrP was detected by western blotting using 

mAb 6H4.  
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Figure 5.1 Generating a prion permissive susceptible cell line 
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High-Throughput Analysis: Next-generation sequencing technology can be used to 

profile the transcriptome quantitatively with incredible accuracy. Although, microarray 

gene expression profiling is very informative, it is not without limitations. Microarray 

limitations are both technical and biological in type. Transcriptional sequencing 

drastically bypasses both types of limitations. Transcriptional sequence output designates 

numerical frequency of each transcript within each clone, which can subsequently be 

averaged and correlated to other analyzed samples. Transcriptional screening can be 

complemented with the use of protein array experiment for additional validation 

purposes.  

Other biochemical approaches that can be used to identify and validate the 

cellular host factors would include the in vitro conversion assays discussed in the 

introduction. Particularly the use of protein misfolding cyclical amplification (PMCA) 

and the real-time quaking induced conversion assay (RT-QuIC). Using PMCA, 

subcellular fractions purified from cells could be used to identify infectious cellular 

compartments. Subsequently, amplified fractions would become subject to proteomic 

analysis for comparison using tandem mass spectrometry to elucidate composition of 

these fractions. Moreover, the RT-QuIC assay can be used to measure the kinetics of 

prion replication from these identified sub-cellular fractions.  

In conclusion, high throughput experiments using prion cell culture models will 

provide greater insight into the mechanism that drive neurodegenerative disease at the 

cellular level. Ultimately, PrPSc modulating host factors identified at in cells would have 

to be applied and validated in vivo.  

Copyright © Vadim Khaychuk 2012 
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