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ABSTRACT OF DISSERTATION 

 
DISCOVERY OF GZ-793A, A NOVEL VMAT2 INHIBITOR AND POTENTIAL 

PHARMACOTHERAPY FOR METHAMPHETAMINE ABUSE  
 

Methamphetamine abuse is a serious public health concern affecting 

millions of people worldwide, and there are currently no viable 

pharmacotherapies to treat methamphetamine abuse.  Methamphetamine 

increases extracellular dopamine (DA) concentrations through an interaction with 

the DA transporter (DAT) and the vesicular monoamine transporter-2 (VMAT2), 

leading to reward and abuse.  While numerous studies have focused on DAT as 

a target for the discovery of pharmacotherapies to treat psychostimulant abuse, 

these efforts have been met with limited success.  Taking into account the fact 

that methamphetamine interacts with VMAT2 to increase DA extracellular 

concentrations; the focus of the current work was to develop novel compounds 

that interact with VMAT2 to inhibit the effects of methamphetamine.  Lobeline, 

the principal alkaloid found in Lobelia inflata, inhibits VMAT2 binding and 

function.  Inhibition of VMAT2 was hypothesized to be responsible for the 

observed lobeline-induced inhibition of methamphetamine-evoked DA release in 

striatal slices and decrease in methamphetamine self-administration in rats.  

Lobeline has recently completed Phase Ib clinical trials demonstrating safety in 

methamphetamine abusers.  Lobeline is also a potent inhibitor of nicotinic 

acetylcholine receptors (nAChRs), limiting selectivity for VMAT2.  Chemical 

defunctionalization of the lobeline molecule afforded analogs, meso-transdiene 

(MTD) and lobelane, which exhibited decreased affinity for nAChRs.  MTD, an 



 

 

unsaturated analog of lobeline, exhibited similar affinity for VMAT2 and increased 

affinity for DAT compared to lobeline.  Conformationally-restricted MTD analogs 

exhibited decreased affinity for DAT compared to MTD, while retaining affinity at 

VMAT2.  One analog, UKMH-106 exhibited high affinity and selectivity for 

VMAT2 and inhibited METH-evoked DA release from striatal slices.  

Unfortunately, the MTD analogs exhibited poor water solubility which limited 

further investigation of these promising analogs. Importantly lobelane, a 

saturated analog of lobeline, exhibited increased affinity and selectivity for 

VMAT2 compared to lobeline.  To improve water solubility, a N-1,2-

dihydroxypropyl (diol) moiety was incorporated into the lobelane molecule.  GZ-

793A, an N-1,2-diol analog, potently and competitively inhibited VMAT2 function, 

exhibiting over 50-fold selectivity for VMAT2 over DAT, serotonin transporters 

and nAChRs.  GZ-793A released DA from preloaded synaptic vesicles, fitting a 

two-site model with the high-affinity site inhibited by tetrabenazine and reserpine 

(classical VMAT2 inhibitors), suggesting a VMAT2-mediated mechanism of 

release.  Further, low concentrations of GZ-793A that selectively interact with 

high-affinity sites on VMAT2 to evoke DA release, inhibit methamphetamine-

evoked DA release from synaptic vesicles. Results showed that increasing 

concentrations of GZ-793A produced a rightward shift in the METH concentration 

response; however, the Schild regression revealed a slope different from unity, 

consistent with surmountable allosteric inhibition. In addition, GZ-793A 

specifically inhibited methamphetamine-evoked DA release in striatal slices and 

methamphetamine self-administration in rats.  To examine the possibility that GZ-



 

 

793A produced DA depletion, the effect of a behaviorally active dose of GZ-793A 

on DA content in striatal tissue and striatal vesicles was determined.  GZ-793A 

administration did not alter DA content in striatal tissue or vesicles and 

pretreatment with GZ-793A prior to methamphetamine administration did not 

exacerbate the DA depleting effects of methamphetamine.  Importantly, GZ-793A 

was shown to protect against methamphetamine-induced striatal DA depletions.  

Thus, GZ-793A represents an exciting new lead in the development of 

pharmacotherapies to treat methamphetamine abuse.   
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CHAPTER ONE 
 
 

Introduction 

I. Methamphetamine Background 

Methamphetamine (METH; N-methyl-1-phenylpropan-2-amine; Fig.1) is a 

highly addictive psychostimulant and N-methyl derivative of amphetamine 

(AMPH; Fig 1). Structurally METH is characterized by a phenyl ring connected to 

a secondary amine by an ethyl side chain with a methyl group on the α-carbon.  

METH exists in two stereoisomers with the S(+)-enantiomer being more 

biologically active than the D(+)-enantiomer (Cruickshank and Dyer, 2009).  

METH was first synthesized from ephedrine in 1893 by Japanese chemist, 

Nagai Nagayoshi (Anglin et al., 2000).  In 1919, Akira Ogata first synthesized the 

crystalline form through a reduction of ephedrine with red phosphorus and iodine 

(Anglin et al., 2000).   METH use became widespread beginning with soldiers in 

World War II for its ability to increase energy, alertness, and appetite suppression 

(Gonzales et al., 2009).  In the years following World War II, METH and related 

stimulant use increased in young adults, particularly students and blue collar 

workers for the performance-enhancing benefit (Anglin et al., 2000).  The U.S. 

Food and Drug Administration approved METH under the trade name “desoxyn” 

in 1944 for the treatment of narcolepsy, depression, alcoholism and hay fever 

(Berman, et al., 2009; Steinkellner et al., 2011).  METH and related stimulants 

were available over-the-counter until the late 1950’s, significantly contributing to 

its use and abuse (Anglin et al., 2000).  The use of prescribed METH increased 
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rapidly, reaching a peak with over 31 million prescriptions in 1967 (Anglin et al. 

2000).  The medicinal uses of METH were more tightly regulated with the 

passage of the Comprehensive Drug Abuse Prevention and Control Act of 1970, 

which limited the indications for which METH can be prescribed (Gonzales et al., 

2009).  The U.S. government classifies METH as a schedule II controlled 

substance with strict regulations governing its use.  METH is recognized as a 

highly addictive substance which is only available through a prescription that 

cannot be refilled.  Currently METH is only approved for clinical use in the 

treatment of attention-deficit hyperactivity disorder (ADHD), nacrolepsy and 

obesity (Sulzer et al., 2005).   

As a result of the restricted prescribed use and production of METH, illicit 

METH production began in the early 1960’s in clandestine laboratories in the 

Western U.S. (Anglin et al., 2000).  In the 1970’s and 1980’s, METH use 

continued to grow with increased popularity amongst motorcycle gangs with an 

influx of crystallized METH (“ice”) into Hawaii and California from Southeast Asia 

(Gonzales et al., 2009).  METH was easily synthesized with common household 

products and precursors found in over-the-counter cold and allergy medicine 

(Derlet and Heischober, 1990; Barr et al., 2006). Due to the relative ease of 

production of METH and the availability of METH precursors, illicit production 

increased rapidly in the 1990’s.  Both small clandestine labs and larger “super 

labs” began to arise in locations across the U.S., Mexico and Canada (Barr et al., 

2006).  In 2000, the U.S. Federal Drug Enforcement Agency seized over 6,300 

illegal METH labs in the U.S. and the number of lab seizures increased 25% 
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between 2001 to 2005, with the peak number of reported METH lab seizures 

occurring in 2004 (Sulzer et al., 2005; United Nations Office on Drugs and Crime, 

2007).  Not surprisingly, METH is the most commonly synthesized illegal drug in 

the U.S., with an estimated world-wide synthesis of over 2.9 billion doses of 

METH (100 mg) in 2005 (United Nations Office on Drugs and Crime, 2007).  

More recent figures show that the number of METH lab seizures increased 26% 

from 2008 to 2009 (United Nations Office on Drugs and Crime, 2011). 

As a result of the rise in METH production, the U.S. government passed 

numerous laws and regulations, such as the Combat Methamphetamine 

Epidemic Act in 2005.  This act limited the consumer availability of precursors 

such as pseudoephedrine, which are used in the illicit production of METH 

(Gonzales et al., 2009).  Despite these efforts to control and limit supplies 

needed for METH production, METH use continues to rise in the U.S.. While 

METH use was traditionally popular among blue collar adult males, METH abuse 

has increased in popularity among women, students and young professionals 

(Gettig et al., 2006).  Further, METH use has increased in homosexual and 

bisexual males, as METH is known to increase sexual performance (Gettig et al., 

2006).  METH use is often involved with risky sexual behavior and is highly 

prevalent in people with human immunodeficiency virus (HIV; Yamamoto et al., 

2010).   Thus, a significant health risk persists in these individuals.  According to 

a 2008 Drug and Alcohol Services Information System report, AMPHs were the 

primary cause of over 170,000 substance abuse emergency room admissions, 

with over 80% of these cases involving METH (DASIS, 2008).  In 2009, the 
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number of people illicitly using METH in the past month increased 59% 

compared to 2008 (NSDUH, 2009).   

 

Currently, METH is the second most abused illicit drug in the world, after 

marijuana, with an estimated global usage at 15-16 million users (Krasnova and 

Cadet, 2009; Cruickshank and Dyer, 2009).  Over half of the world’s METH use 

occurs in Asia, while use is increasing in other regions of the world such as Africa 

and South America (United Nations Office on Drugs and Crime, 2011). Thus, 

METH abuse represents a world-wide health concern. 

II. Clinical Pharmacology of METH 

METH is a highly addictive psychostimulant with deleterious health risks 

associated with its use.  METH is commonly referred to as “meth”, “glass”, “go”, 

“speed”, “crystal”, or  “ice”, and is available in many different forms including 

tablet, powder, free base, and crystallized form (Derlet and Heischober, 1990; 

Anglin et al, 2000).  METH can be taken orally, smoked, snorted (insufflation) or 

injected to obtain its stimulatory and euphoric effects (Karila et al., 2010).  The 

onset of the effects of METH is dependent on the method of administration.  The 

effects of METH are almost immediate following intravenous injection or 

smoking, while effects are seen within 5 and 20 minutes following snorting or oral 

ingestion, respectively (Anglin et al., 2000). 
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METH acts as a central nervous system (CNS) stimulant, producing 

increased alertness, energy, self-esteem, respiration, hyperthermia, sexuality 

and euphoria, as well as decreased appetite (Derlet and Heischober, 1990; 

Gonzales et al., 2009). While METH elicits similar effects to that of cocaine, the 

half-life of METH is much longer than other stimulants with a range from 8 to 12 

hours (Gonzales et al., 2009; Karila et al., 2010).    

Acute physical side effects of METH include increased blood pressure, 

tachycardia and hyperthermia, while psychological effects include increased 

agitation, aggression, anxiety, insomnia, hallucinations and paranoia (Barr et al., 

2006; Cruickshank and Dyer, 2009). Consumption of high doses of METH can 

lead to renal and liver failure, cardiac arrhythmias, heart attacks, strokes, 

psychosis, delirium, seizures and death (Krasnova and Cadet, 2009). Chronic 

METH use leads to serious health risks from impaired cardiovascular function, 

e.g., hypertension, coronary heart disease, stroke and sudden cardiac death 

(Hanson, 2002; McGee et al., 2004; Kaye et al., 2007).  In addition to these 

cardiovascular events, chronic use of METH has been associated with 

neurological symptoms such as anxiety, depression, social isolation, and 

reductions in attention, memory and cognition (Simon et al., 2000; Sekine et al., 

2001; Freese et al., 2002; Salo et al., 2007; Darke et al., 2008; Krasnova and 

Cadet, 2009). Disruption of METH use in those abusing the drug repeatedly 

leads to METH- related withdrawal symptoms such as depression, anxiety, 

disturbed sleep, reduced energy, hyperphagia, and increased METH craving 
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(Gossop et al., 1982; Srisurapanont et al., 1999; Zweben et al., 2004; Homer et 

al., 2008; McGregor et al., 2008).      

III. Dopamine and Reward 

a. Dopamine Pathways  

Psychostimulants such as METH, cocaine and nicotine elicit their 

stimulant and rewarding effects through activation and modulation of the 

mesolimbic, mesocortical and nigrostriatal dopamine (DA) pathways (Di Chiara et 

al., 2004; Wise, 2009).  The mesolimbic DA pathway is characterized by neurons 

originating in the ventral tegmental area and innervating the nucleus accumbens 

(NAc), ventral palladium and amygdala (Fig 2).  The mesocortical DA pathway 

originates in the ventral tegmental area (VTA) and projects to the prefrontal 

cortex (Fig 2).  The mesolimbic and mesocortical DA pathways are involved in 

motivation, reward, emotion and cognition (Wise, 1978; Simon et al., 1980; Di 

Chiara and Imperato, 1988; Pierce and Kumaresan, 2006).  Modulation of DA 

neurotransmission in the NAc and medial prefrontal cortex is important in primary 

reward, learning and cue-associated reinforcement (Everitt and Robbins, 2005; 

Chen et al., 2010). The nigrostriatal DA pathway originates in the substantia 

nigra and innervates the striatum (Fig 2).  This pathway is involved in movement, 

motor control and conditioning (Robertson and Robertson, 1989; Everitt and 

Robbins, 2005).  While these pathways were originally referenced as being 

anatomically and functionally distinct, they actually overlap and often share 

functionalities (Bjorklund and Dunnett, 2007; Wise, 2009).  Thus, DA 
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neurotransmission in the mesolimbic, mesocortical and nigrostriatal pathways 

play important roles in the rewarding properties of abused psychostimulant drugs 

(Everitt and Robbins, 2005; Wise, 2009).    

b. DA 

DA (Fig. 1) is a catecholamine neurotransmitter involved in reward, 

emotion and movement.  The biosynthesis of DA is shown in Fig 3.  DA 

biosynthesis begins with the hydroxylation of the amino acid L-tyrosine by 

tyrosine hydroxylase (TH) to form L-dihydroxylphenylalanine (L-DOPA) in the 

axon terminals of DA neurons.  TH requires the cofactors, Fe2+, O2 and 

tetrahydropteridine and the hydroxylation of L-tyrosine is the rate-limiting step in 

the biosynthesis of DA (Cooper et al., 2003).  L-DOPA is then decarboxylated by 

DOPA-decarboxylase to form DA.  The action of DOPA-decarboxylase requires 

pyridoxal phosphate (vitamin B6) as a cofactor and also occurs in the cytoplasm 

of the axon terminals (Cooper et al., 2003).  Following synthesis, DA is stored in 

synaptic vesicles in the presynaptic axon terminal until ready to be used.   DA 

can be stored in large dense core vesicles (LDCV) or small synaptic vesicles 

(SSV).  LDCVs are located away from the synaptic cleft, while SSVs are located 

near the synapse or “active zone” (Ludwig and Leng, 2006).  As such, LDCVs 

are sometimes referred to as the non-readily releasable pool of vesicles, while 

SSVs are referred to as the readily releasable pools.  When a DA neuron is 

stimulated, an action potential travels into the axon terminal opening voltage 

gated Ca2+ ion channels, leading to the influx of Ca2+ into the terminal (Cooper et 
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al., 2003).  Sensors on SSVs are activated by increases in Ca2+ ion 

concentrations, leading to exocytosis (Ludwig and Leng, 2006).  In exocytosis, 

vesicles fuse with the synaptic plasmalemma membrane and release the 

contents (DA) of the vesicles into the synaptic cleft.  Exocytosis is a rapid 

process, occuring within milliseconds of vesicle fusion (Almers et al., 1991).  

Exocytosis is followed by endocytosis where the empty vesicle is internalized and 

refilled with DA (Sudhof, 2004).  Once in the cytosol, DA can bind to pre and 

postsynaptic receptors, undergo metabolism, or be taken back up into the 

presynaptic terminal by the DA transporter (DAT). 

c. DA Receptors 

Following DA release into the synaptic cleft, DA can bind to pre and 

postsynaptic DA receptors (Fig 3).  There are two types of DA receptors in the 

brain, D1- like and D2-like receptors.  Both types of DA receptors are 

metabotropic G-protein coupled receptors, consisting of 7 transmembrane 

domains (TMDs).  Activation of D1-like receptors increases production of cyclic 

adenosine monophosphate (cAMP) by stimulating adenylate cyclase while 

activation of D2-like receptors inhibits adenylate cyclase decreasing cAMP 

production. D1-like receptors consist of D1 and D5 receptors, while D2-like 

receptors consist of D2, D3 and D4 receptors.  D1 and D2 receptors are more 

abundant in the brain, being present 10-100 times more than D3, D4, and D5 

receptors (Hurley and Jenner, 2006).  D1 receptors are located primarily in the 

striatum and cortex (more abundant in the striatum than the cortex), while D5 
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receptors are located primarily in the hippocampus, thalamus and hypothalamus.  

D2 receptors are located in the striatum and cortex, while D3 receptors are 

located primarily in the island of Calleja, nucleus accumbens and olfactory 

tubercle, and D4 receptors are in cortex (Hurley and Jenner, 2006). Both D3 and 

D4 receptors have decreased expression in the striatum. In addition to 

postsynaptic localization of D2 receptors, D2 receptors are located on the 

presynaptic membrane where they act as autoreceptors modulating DA 

neurotransmission through a negative-feedback mechanism.  Activation of D2 

autoreceptors on midbrain neurons increases K+ conductance through activation 

of coupled K+ channels, hyperpolarizing DA neurons and reducing DA 

neurotransmission (Lacey et al., 1987; Cass and Zahniser, 1991).  Activation of 

D2 autoreceptors on presynaptic terminals decreases DA synthesis through an 

inhibition of adenylate cyclase activity, subsequently decreasing cAMP-induced 

activation of TH (Onali and Olianas, 1989; Onali et al., 1992).   

d. DA metabolism 

DA is inactivated by undergoing metabolism in both the synaptic cleft and 

presynaptic terminal.  DA is metabolized by two main enzymes, catechol-O-

methyl transferase (COMT) and monoamine oxidase (MAO). DA is metabolized 

into 3-methoxy-4-hydroxyphenylacetaldehyde by COMT in the synaptic cleft.  3-

methoxy-4-hydroxyphenylacetaldehyde can then be further metabolized into 

homovanillic acid by MAO.  An alternate metabolic pathway is the metabolism of 

DA into dihydroxyphenylacetic acid (DOPAC) by MAO in the presynaptic terminal 
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(Fig 3).  Additionally, DOPAC can then be metabolized into homovanillic acid by 

COMT.    

e. DA Transporter 

In addition to metabolism, DA is inactivated by being transported back into 

the presynaptic terminal through DAT (Fig 3). As such, DAT regulates DA 

neurotransmission by determining DA concentrations in the synaptic cleft 

available for postsynaptic receptor stimulation. While DAT exhibits affinity for DA, 

DAT also transports other substrates into DA nerve terminals such as AMPH, 

METH, methylenedioxymethamphetamine, tyramine, 5-HT, norepinephrine, and 

1-methyl-4-phenylpyridinium (MPP+).  Numerous DAT inhibitors have been 

synthesized including cocaine, methylphenidate, GBR-12909, GBR-12935, WIN 

35,428, nomifensine, buproprion, and mazindol (Cooper et al., 2003; Torres et 

al., 2003). 

 DAT consists of 620 amino acid residues arranged in 12 hydrophobic 

TMDs spanning the plasma membrane (Torres et al., 2003).  The N and C 

termini of DAT are both located in the cytoplasm on the interior side of the 

plasma membrane.  Additionally, a large extracellular loop exists between TMDs 

3 and 4, possessing multiple glycosolation sites available for post-translational 

modification (Torres et al., 2003). The structural regions involved in substrate 

translocation are controversial. Using chimeric constructs of DAT and the 

norepinephrine transporter (NET), Giros and colleagues discovered that the first 

five TMDs were involved in substrate translocation (Giros et al., 1994).  Using 
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similar techniques, Amara and colleagues concluded that TMD4 through TMD8 

were important for substrate translocation (Buck and Amara, 1995).  Studies 

using chimeras made from human and bovine DAT found that TMD3 was 

involved in determining DA affinity (Lee et al., 1998).  Specifically, site-directed 

mutagenesis studies showed that the phenylalanine residue in TMD3 is crucial 

for the binding of DA (Chen et al., 2001).  Recently, utilizing the crystal structure 

of the leucine transporter, a related sodium dependent transporter, a 3-D model 

of DAT was constructed as a structural template (Indarte et al., 2008).  Using this 

model and performing docking studies, Indarte and colleagues determined that 

TMDs 1 and 6 combine with TMDs 3 and 8 to form the binding pocket for DA 

(Indarte et al., 2008).  DAT inhibitors and substrates are proposed to bind to 

different regions of DAT protein.  Cocaine and related phenyltropane analogs 

inhibit DA uptake through a proposed interaction with TMDs 5-8, while GBR 

inhibitors (GBR-12909 and 12935) are proposed to interact with TMDs 1 and 2 

(Giros, et al., 1994; Vaughan and Kuhar, 1996; Vaughan et al., 1999).   

DAT is localized on DA neurons, at the cell bodies, on axonal membranes 

and perisynaptically at nerve terminals (Pickel et al., 1996; Hersch et al., 1997; 

Torres et al., 2003; Mengual and Pickel, 2004).  In the brain, DAT is found in 

striatum, nucleus accumbens, olfactory tubercle, cingulated cortex, frontal cortex, 

lateral habenula and on cell bodies in the VTA and substantia nigra (Ciliax et al., 

1995; Torres et al., 2003).  In regions where DAT is present in low levels such as 

the prefrontal cortex, DA is transported out of the synapse through the NET 

(Moron et al., 2002). DAT is also found outside the brain in the body periphery.  
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DAT has been found in the stomach, pancreas and kidney, and in these 

locations, DAT inactivates peripheral DA involved in paracrine and autocrine 

signaling (Eisenhofer, 2001). 

DAT is a member of the SLC6 family of Na+/Cl- dependent transporters, 

which also includes NET and serotonin transporter (SERT).  Transport of DA 

through DAT is driven by the Na+ gradient from the Na+/K+ transporting ATPase 

and accompanied by the co-transport of Na+ and Cl- ions (Cooper et al., 2003; 

Torres et al., 2003).  The stoichiometry of substrate transport is the co-transport 

of two Na+ ions and one Cl- ion for each DA molecule (Krueger, 1990).  

Traditionally, DA transport was thought to occur through an “alternating access 

model” of transport (Jardetzky, 1966).  In this model, DA and co-substrates (ions) 

bound to the outward facing binding site of the transporter.  Then, the transporter 

underwent a conformational change in which the binding site with the bound DA 

and ions face the cytosol, where DA and ions were released into the cytosol. 

Transport of DA generates an electrochemical current which can be measured 

using voltage clamp and can be blocked by transporter inhibitors (Sonders et al., 

1997; Torres et al., 2003).  The existence of transport-mediated currents and the 

reliance on electrochemical gradients provides evidence for a transporter-

mediated channel-like mechanism of substrate and ion transport (Sonders and 

Amara, 1996).  In this model of transport, DAT undergoes a conformational 

change in which DAT protein acts as a single channel opening, allowing the 

passage of DA and ions through the plasma membrane.  The probability of these 

openings is increased by the presence of substrates and ions (Sonders and 
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Amara, 1996).  Additionally, DAT transporter currents may play a role in 

membrane depolarization and regulation of DA release. Utilizing patch clamp 

recordings, DA transport through DAT was shown to be accompanied by an 

inward current (mediated by Cl- ion flow) that elicited an excitatory response, 

leading to an increase in DA neuron firing rate (Ingram et al., 2002).  Thus, the 

ion channel-like current flow through DAT protein modulates membrane potential 

and DA release from DA neurons. 

Numerous studies utilizing DAT knock-out (KO) mice have been 

performed demonstrating the importance of DAT in DA neurotransmission and 

the mechanism of action of psychostimulants (Gainetdinov, 2008).  DAT KO mice 

exhibit decreased weight gain and long term survival rates compared to wild-type 

(WT) mice, due to the decreased food intake in DAT deficient mice (Giros, et al., 

1996).  As expected, the lack of DA clearance by DAT in DAT KO mice resulted 

in an increased extracellular DA. In DAT KO mice, DA persists in the extracellular 

compartment 100-300 times longer compared to WT mice (Giros, et al., 1996; 

Jones et al., 1998a). Further, DAT KO mice exhibited a 5-fold increase in 

extracellular DA levels and 20-fold decrease in tissue DA concentrations due to 

the disruption of the DA reuptake and recycling (Gainetdinov et al., 1998; Jones 

et al., 1998a).  As expected, DAT KO mice exhibit increased locomotor activity 

compared to WT mice, presumably due to the increased concentration and 

action of extracellular DA (Giros et al., 1996).  In addition to disrupting DA 

clearance, DA synthesis rates were doubled in DAT KO mice compared to WT 

mice (Jones et al., 1998a).  Interestingly, TH levels were 90% lower in DAT KO 



 

14 

 

mice compared to WT, suggesting an increase in efficiency to synthesize DA in 

DAT KO mice (Jones et al., 1998a).  Consistent with these results, D2 receptor 

expression was decreased by 45% in DAT KO mice compared to WT mice, 

which could further explain the increase in DA synthesis as D2 autoreceptors 

inhibit DA synthesis by decreasing TH activity (Giros et al., 1996; Jones et al., 

1999).  DAT KO also altered DA metabolism by COMT which was increased by 

400% in DAT KO mice compared to WT mice (Jones et al., 1998a). 

Studies utilizing DAT KO mice have contributed also to the understanding 

of the mechanism of action of psychostimulants.  Unlike in WT mice, AMPH or 

cocaine treatment did not increase locomotor activity in DAT KO mice, 

suggesting a role for DAT in the mechanism of action of these drugs (Giros et al., 

1996).  Consistent with these results, AMPH or cocaine treatment did not 

increase extracellular DA in the striatum of DAT KO mice, and behavioral studies 

demonstrated that DAT KO mice exhibit decreased cocaine self-administration 

rates compared to WT mice (Jones et al., 1998b; Gainetdinov, 2008; Thomsen et 

al., 2009).  In contrast, microdialysis experiments show that AMPH and cocaine 

increase extracellular DA in the NAc in DAT KO mice (Carboni et al., 2001). 

Further, DAT KO mice self-administer cocaine and exhibit conditioned place 

preference for AMPH, despite lacking the presumed pharmacological target of 

cocaine and AMPH (Rocha et al., 1998, Budygin et al., 2004). Thus, even though 

DAT is one of the pharmacological targets of AMPH and cocaine, evidence exists 

for the role of other neurotransmitter transporters such as SERT, NET and the 
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vesicular monoamine transporter (VMAT) in the rewarding effects of these drugs 

(Budygin et al., 2004; Gainetdinov, 2008).   

DAT function is regulated by multiple post-translational modifications and 

protein-protein interactions.  Analysis of the amino acid sequence of DAT reveals 

multiple sites of phosphorylation and other post-translational modifications such 

as glycosylation and ubiquitination (Torres et al., 2003; Jayanthi et al., 2007).  

Phosphorylation by kinases such as protein kinase C (PKC), cAMP-dependent 

protein kinases, mitogen-activated protein kinases, and tyrosine kinases 

modulate DAT activity.  Studies utilizing phorbol 12-myristate 13-acetate, which 

activates PKC, have demonstrated that phosphorylation by PKC reduces DAT 

transport activity by altering DA surface levels (Vaughan et al., 1997; Zhang et 

al., 1997; Zhu et al., 1997).  PKC-dependent endocytosis of DAT is also 

mediated by ubiquitination of DAT on the amino terminus of DAT (Miranda et al., 

2007; Miranda and Sorkin, 2007).  Further, PKC-mediated DAT trafficking is 

characterized by internalization through a clathrin-associated endocytosis 

mechanism that is dynamin dependent (Daniels and Amara, 1999).  Constitutive 

internalization and recycling of DAT, which is important for membrane 

homeostasis, is also mediated by a clathrin-dependent mechanism (Sorkina et 

al., 2005).  Furthermore, recent research illustrates that residues 60-65 on the N-

terminal domain are important for the prevention of clathrin-dependent 

constitutive internalization of DAT (Sorkina et al., 2009).  In addition, other 

kinases such as protein kinase A (PKA), Ca2+/calmodulin-dependent kinases and 

tyrosine kinases have been shown to upregulate DAT surface expression 
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(Zahniser and Doolen, 2001).  Substrates such as DA, AMPH and METH, as well 

as reactive oxygen species and nitric oxide have been shown to decrease DAT 

surface expression through a PKC-mediated mechanism; while D2 receptor 

agonists and DAT inhibitors, such as cocaine, increase DAT cell-surface 

expression (Zahniser and Doolen, 2001; Cervinski et al., 2005). Further, DAT has 

been shown to interact with other proteins such as the D2 receptor, syntaxin 1A, 

synaptogyrin-3, and α-synuclein, which can further modulate DAT trafficking and 

function (Lee et al., 2001, 2004, 2007; Egana et al., 2009, Eriksen et al., 2010).   

f. Vesicular Monoamine Transporter 

Once transported back into the presynaptic nerve terminal, DA is 

metabolized into DOPAC by MAO.  However, DA that is not metabolized by MAO 

is repackaged into synaptic vesicles by the vesicular monoamine transporter 

(VMAT; Fig 3).  VMAT belongs to the major facilitator and solute carrier 

superfamily of transporters (Pao et al., 1998; Eiden et al., 2004). VMAT exists in 

humans in two isoforms, VMAT1 and VMAT2, encoded by separate genes 

SLC18A1 and SLC18A2, respectively (Eiden and Weihe, 2011).  VMAT1 is 

located primarily in endocrine cells found in adrenal medulla chromaffin cells and 

absent in adult neuronal cells.  Conversely, VMAT2 is located in neuronal cells of 

the CNS as well as in sympathetic adrenal chromaffin cells and neurons in the 

intestine and stomach (Peter et al., 1995).   VMAT2 is expressed in all 

monoamine neurons primarily localized to cell bodies and axon terminals, and is 

responsible for packaging DA, serotonin (5-HT), norepinephrine (NE), 
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epinephrine (E) and histamine into small synaptic vesicles.  Thus, VMAT2 

represents a vital protein in regulating neuronal monoamine transmission.  

VMAT2 KO mice have been generated to elucidate the importance of 

VMAT2 function in neurotransmission.  Homozygous VMAT2 KO mice were born 

without complication, suggesting that VMAT2 was not important in gestation and 

birth (Takahashi et al., 1997).  However, most of the homozygous KO mice died 

on the first day due to a lack of feeding, with 100% mortality by postnatal day 14 

(Takahashi et al., 1997; Fon et al., 1997). Heterzygous VMAT2 KO mice 

survived, exhibiting ~50% less VMAT2 binding compared to WT mice (Takahashi 

et al., 1997).  Monoamine levels in VMAT2 KO mice were significantly decreased 

compared to WT mice, while no differences in brain structure and DA neuronal 

projections were found (Fon et al., 1997). Interestingly, DA synthesis was 

increased in VMAT2 KO mice; however DA metabolite levels were similar to 

those found in WT mice, demonstrating the importance of VMAT2 in 

sequestering newly synthesized DA into vesicles to prevent degradation (Fon et 

al., 1997; Wang et al., 1997).  

VMAT2 transports monoamines from the cytosol into vesicles against a 

high concentration gradient (>105; Wimasalena, 2010).  To accomplish this, 

VMAT2-mediated transport utilizes electrochemical and transmembrane pH 

gradients (~1.5 units) generated by a V-type ATPase (Kirschner, 1962; 

Schuldiner, 1994).  ATPases, found in virtually all eukaryotic cells and 

organelles, utilize the hydrolysis of ATP to drive the transport of protons across a 
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membrane (Nelson et al., 2000).  In VMAT2, the ATPase generates a H+ 

electrochemical gradient, acidifying the interior lumen of the synaptic vesicle 

(Yelin and Schuldiner, 2000).  VMAT2, utilizing an antiport transport mechanism, 

couples the efflux of two protons out of the vesicle to the transport of one 

substrate molecule into the vesicular lumen (Knoth et al., 1981; Schuldiner, 1994; 

Schuldiner et al., 1995; Parsons, 2000).  Specifically, the efflux of the first proton 

from the vesicular lumen elicits a conformational change in the transporter, which 

exhibits high affinity monoamine binding sites on the cytosolic face.  Following 

monoamine binding, the efflux of the second proton generates a conformational 

change in the transporter, in which the monoamine-bound face of the transporter 

is toward the vesicular lumen.  In this orientation, monoamine-binding affinity is 

now reduced, allowing the release of the monoamine into the vesicle.  In addition 

to the proton gradient, VMAT2-mediated transport in synaptic vesicles is also 

dependent upon cytosolic amine concentrations, extra vesicular media and the 

number of transporters in the vesicular membrane (Wimalasena, 2011).   

Studies examining VMAT2 kinetic uptake parameters determined that the 

order of substrate uptake efficiency was 5-HT>DA>E>NE (Wimalasena, 2011). 

Similar to DAT, VMAT2 transports MPP+, sequestering MPP+ from the cytosol 

into synaptic vesicles which protects the neuron from MPP+-induced toxicity (Liu 

et al., 1992).  In addition, AMPH and related compounds are also transported by 

VMAT, which plays a critical role in their mechanism of action (Sulzer et al., 

2005). Numerous studies have focused on the ability of two well known inhibitors 

of VMAT2, reserpine and tetrabenazine (TBZ).  Reserpine (Fig. 1) is an indole 
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alkaloid historically used to treat high blood pressure. Reserpine inhibits 

monoamine uptake at VMAT2 with high affinity and can be surmounted by 

increasing concentrations of substrate, indicative of competitive inhibition 

(Schuldiner et al., 1995). Further, reserpine binding is modulated by the 

transmembrane pH gradient (Yelin and Schuldiner, 2000; Wimalasena, 2011).  

Reserpine binds to the high affinity substrate binding site inhibiting the efflux of 

H+ thereby preventing the conformational change necessary to transport the 

ligand into the vesicular lumen.  Reserpine becomes trapped in the active site 

and is not readily dissociated.  With reserpine in the active site, VMAT2 cannot 

efflux another proton to return the transporter to its active, high affinity state 

(Schuldiner et al., 1995).  Therefore, reserpine has been classified as an 

irreversible inhibitor of VMAT function.  

TBZ (Fig. 1) is a benzoquinolizine derivative, marketed as Xenazine, and 

currently FDA approved to treat Huntington’s chorea. TBZ inhibits monoamine 

uptake with high affinity, however unlike reserpine, TBZ is proposed to interact 

with a site distinct from the substrate site (Pletscher, 1977; Scherman and Henry, 

1984; Schuldiner, 1994).  This conclusion is based upon studies showing that 

TBZ binding is 1) not dependent on the pH gradient, 2) not inhibited by reserpine 

binding at reserpine concentrations that inhibit substrate transport and 3) 

substrates (5-HT, DA, NE) displace TBZ only at concentrations 100-fold higher 

than their affinity for the substrate site (Scherman and Henry, 1984). Unlike 

reserpine, TBZ is relatively short acting with respect to inhibition of VMAT2 

function.  Radiolabeled TBZ and its derivative dihydrotetrabenazine (DTBZ) have 
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been used extensively to study VMAT2 binding, regulation, distribution and 

expression (Yelin and Schuldiner, 2000).   

In addition to exhibiting different tissue distribution, VMAT1 and VMAT2 

also display different affinities for substrates and inhibitors.  VMAT2 has been 

shown in cell expression systems to exhibit 4-5-fold higher affinity for DA, 5-HT, 

NE, and E compared to VMAT1 (Peter et al., 1994).   Despite the difference in 

affinities for monoamines between the two isoforms of VMAT, the rank order of 

affinities is similar for both transporters (Yelin and Schuldiner, 2000).  

Interestingly, both isoforms exhibit affinity not different from one another for 

MPP+ and AMPH, but VMAT2 exhibits over two orders of magnitude higher 

affinity for histamine compared to VMAT1 (Peter et al., 1994).  In regards to 

inhibitors, both VMAT1 and VMAT2 exhibit similar affinity for reserpine (Ki = 

0.034 and 0.012 µM, respectively).  Conversely, VMAT2 exhibits high affinity for 

TBZ; Ki = 0.097 µM), while VMAT1 exhibits low affinity for TBZ (Ki = > 20 µM; 

Wimalasena, 2011).  

Similar to DAT, VMAT2 consists of 12 TMDs.  Despite this similarity and 

the fact that both proteins transport common substrates, VMAT2 and DAT share 

little structural homology (Hoffman et al., 1998).  VMAT is a 70 kDa glycoprotein 

located within the membrane of synaptic vesicles. While both VMAT1 and 

VMAT2 are derived from different genes, they exhibit high structural homology 

(~60%; Adam et al., 2008; Wimalasena, 2011).  Sequence analysis of VMAT2 

reveals a 521 amino acid protein, with both the N and C termini facing outward 
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towards the cytoplasm (Liu et al., 1992; Yelin and Schuldiner, 2000).  A large 

hydrophilic loop occurs between TMDs 1 and 2 facing the interior lumen of the 

vesicle, which is presumed to be involved in post-translational modification and 

regulation, as this loop contains multiple sites for glycosylation (Yelin and 

Schuldiner, 2000).   Further, four aspartic residues in TMDs 1, 6, 10 and 11 (Asp 

34, Asp 267, Asp 404, and Asp 431), as well as a lysine residue in TMD 2 (Lys 

139), are important in transporter function and substrate and reserpine binding 

(Yelin and Schuldiner, 2000).  His419 (between TMD 10 and 11) has also been 

shown to play an important role in monoamine transport, possibly through H+ 

translocation and energy coupling required for transport (Wimasalena, 2010). 

Studies using chimeras have shown that regions encompassing TMDs 5-8 and 

TMDs 9-12 are important for the high affinity interaction with monoamines and 

TBZ (Peter et al., 1996).   

Similar to DAT, VMAT2 can undergo post-translational modifications 

regulating VMAT2 function, expression and localization.  Studies utilizing 

pheochromocytoma cells of the rat adrenal medulla (PC12) showed that 

treatment with cAMP down regulated vesicular monoamine transport, suggesting 

a role of phosphorylation in the modulation of VMAT activity (Nakanishi et al. 

1995).  In Chinese hamster ovary, PC12 and COS cells, casein kinase I and II 

phosphorylated the carboxyl-terminus of VMAT2, but not VMAT1, suggesting a 

difference in the regulation of the two isoforms (Krantz et al., 1997).  Further 

phosphorylation in VMAT2 affected the subcellular localization and membrane 

trafficking of VMAT (Krantz et al., 1997).  Using PC12 cells, Hersh and 
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colleagues found that in the presence of PKA, VMAT2 is preferentially sorted to 

LDCVs and not to SSVs (Yao et al., 2004).  Interestingly, the effect of PKA on 

VMAT2 sorting is not due to phosphorylation of the protein, but rather 

glycosylation of the C terminus (Yao et al., 2004). In addition to action by 

kinases, G-proteins have been shown to regulate VMAT2 activity.  Guanosine-

triphosphate-bound G-proteins inhibited both monoamine uptake and reserpine 

binding in PC12 cells (Ahnert-Hilger et al., 1998; Holtje et al., 2000).  This 

inhibition of uptake is attenuated by increasing monoamine concentrations, 

suggesting that G-protein mediated inhibition is through an effect on monoamine 

affinity for the transporter (Ahnert-Hilger et al., 2000).  Similar to results seen in 

the phosphorylation studies, VMAT2 was more susceptible to regulation by G-

proteins compared to VMAT1 (Holtje et al., 2000).  More recent studies utilizing 

site-directed mutagenesis have shown that the first intracellular loop is 

responsible for G-protein-mediated regulation of VMAT activity (Brunk et al., 

2006). Collectively, these studies demonstrate that intravesicular monoamine 

concentration can modulate VMAT activity, regulating vesicular filling and 

subsequently affecting neurotransmission. 

IV.  METH mechanism of action 

As discussed previously, METH is an N-methyl derivative of AMPH.  

METH and AMPH exhibit similar rewarding effects, pharmacokinetic properties, 

and mechanism of action to release DA in brain (Sulzer et al., 2005). Many initial 

studies concerning the rewarding effects and mechanism of action of AMPH-like 
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stimulants utilized AMPH, while studies examining DA neurotoxicity were 

performed using METH (Sulzer et al., 2005).  In the subsequent discussion of the 

mechanism of action of METH, early mechanistic studies using AMPH will be 

discussed, in addition to studies using METH, as both drugs employ the same 

mechanism of action to increase extracellular DA and elicit reward.      

a. METH action at plasma membrane transporters 

Experiments utilizing DAT KO mice provide evidence for a role of other 

monoamine transporters such as SERT and NET in addition to DAT in the 

mechanism of action of AMPH and METH (Budygin et al., 2004; Gainetdinov, 

2008).  Similar to DAT, SERT is a plasma membrane transporter belonging to the 

Na+/Cl- dependent transporter SLC6 family (Rothman et al., 2003).  Unlike DA 

transport through DAT, one molecule of 5-HT is transported with only one Na+ 

ion and one Cl- ion (Gu et al., 1998).  Structurally, SERT is composed of 630 

amino acid residues arranged into 12 hydrophobic TMDs, with both N and C 

termini located in the cytoplasm and characterized by a large extracellular loop 

between TMDs 3 and 4 (Rudnick, 2006).  Substrate binding and translocation is 

believed to occur through an interaction with TMDs 1, 3, 6 and 8, while inhibitors 

are proposed to interact with same domains (Rudnick, 2006).  SERT is located 

primarily on serotoninergic neurons, as well as peripheral locations such as the 

lung, placenta and platelets (Jayanthi et al., 2007).  In the brain, SERT is located 

on 5-HT nerve cell bodies originating primarily from the dorsal and medial raphe 

nucleus, SN, VTA and hypothalamus (Hoffman et al., 1998).  5-HT and DA 
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containing neurons co-innervate many brain regions.  Thus SERT is found in 

striatum, cortex and hippocampus (Hoffman et al., 1998). In brain, SERT 

functions to terminate the action of 5-HT through the transport of 5-HT from the 

extracellular space into the presynaptic terminal, where it is metabolized or 

repackaged into vesicles by VMAT2.  5-HT functions in the CNS as a regulator of 

mood, sleep, memory, appetite, thyroid function, gastrointestinal function, and 

sexual drive (Jacobs and Azmitia, 1992).  Dysfunction of 5-HT signaling is linked 

to numerous psychiatric disorders such as depression, suicide, alcoholism, and 

violence (Jayanthi et al., 2007).  Numerous inhibitors of SERT function have 

been used in the treatment of depression and mood stabilization, such as 

fluoxetine, paroxetine, sertraline, and citalopram (Rudnick, 2006). 

Similar to DAT and SERT, NET is a plasma membrane transporter 

belonging to the SLC6 family of Na+/Cl- dependent transporters.  The 

stoichiometry of NE transport is similar to SERT in that one Na+ ion and one Cl- 

ion is co-transported with one molecule of NE (Gu et al., 1998).  NET is 

structurally homologous to DAT and SERT, and is composed of 617 amino acid 

residues arranged into 12 TMDs (Torres et al., 2003).       Similar to DAT and 

SERT, the N and C termini of NET are located in the cytoplasm and a large 

extracellular loop exists between TMDs 3 and 4 (Torres et al., 2003).  Studies 

utilizing chimeric DAT and NET proteins showed that TMDs 1-5 and 9-12 are 

important for substrate translocation, and TMDs 6-8 are important for interaction 

with uptake inhibitors such as cocaine, desipramine and nortryptiline (Giros et al., 

1994).  NET is located on cell bodies and axon terminals of noradrenergic 
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neurons originating from the locus coeruleus and innervating the hippocampus 

and cortex (Torres et al., 2003).  NET also has been found in peripheral 

locations, such as placenta, lung, adrenal glands and vas deferens (Torres et al., 

2003; Jayanthi et al., 2007).  NET functions primarily to terminate the action of 

NE through the transport of NE from the extracellular space into presynaptic 

terminals.  NE acts as a regulator of attention, arousal, learning, memory, and 

mood as well as being involved in depression, aggression, thermal regulation 

and autonomic functioning (Jayanthi et al., 2007).  Thus, modulation of NET 

plays an important role in many diseases and pharmacotherapies.  NET 

inhibitors such as atomoxetine, reboxetine, desipramine, and mazindol have 

been used in the treatment of depression, attention-deficit hyperactivity disorder, 

drug abuse and other mental illnesses (Zhou, 2004).   

The rewarding effects of AMPH-like compounds are a result of the ability 

of these compounds to increase extracellular monoamine levels. The first 

evidence that AMPH elicits its effects through a release of catecholamines from 

the presynaptic terminal was introduced by Burn and Rand in 1958.  These 

studies demonstrated that AMPH increased blood pressure in animals, but this 

effect was blocked by the treatment of reserpine, a catecholamine-depleting 

agent, suggesting that AMPH acts by increasing catecholamine concentrations 

(Burn and Rand, 1958).  Additional results from this study demonstrated that 

cocaine blocked AMPH-induced release of catecholamines, providing the first 

evidence that AMPH-induced monoamine release involves plasma membrane 

transporters (Burn and Rand, 1958).  Early studies demonstrated that AMPH 
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inhibited [3H]monoamine uptake into rat synaptosomes and slices, further 

demonstrating an interaction of AMPH with plasma membrane transporters 

(Ross and Renyi, 1964, 1966; Coyle and Snyder, 1969).  Initial evidence that 

AMPH is a substrate for monoamine transporters in the brain was found in 

studies utilizing PC12 rat chromaffin cells.  Using radiolabled AMPH, Bonisch 

demonstrated that AMPH was transported in a manner similar to that of NE, 

dependent upon Na+ and Cl- gradient and blocked by plasma membrane 

transporter inhibitors cocaine and desipramine (Bonisch, 1984).  Follow-up 

studies using rat striatal synaptosomes demonstrated that AMPH uptake was 

saturable with a Km of 97 nM and a Vmax of 3.0 fmol/mg/min (Zaczek et al., 1991).  

Therefore, one mechanism by which AMPH increases monoamine 

concentrations is by inhibiting uptake of monoamines into presynaptic terminals 

by acting as a substrate.  These early studies examining AMPH uptake through 

monoamine transporters were complicated by the physiochemical properties of 

AMPH (Sulzer et al., 2005).  Due to the lipophilicity of AMPH, AMPH and related 

compounds also enter presynaptic terminals through passive diffusion (Fig 4; 

Fischer and Cho, 1979; Sieden et al., 1993).  

In addition to inhibiting monoamine uptake through plasma membrane 

transporters as a substrate, AMPH also elicits a non-exocytotic release of 

monoamines from monoaminergic neurons (Fig 4).  Early studies using 

radiolabeled monoamines demonstrated that AMPH released monoamines in rat 

brain tissue (Glowinski and Axelrod, 1966; Brodie et al., 1969).  The ability of 

AMPH to release DA from neurons is dependent on both a plasmalemmal and 
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vesicular component.  Pifl and colleagues performed [3H]DA release studies 

utilizing cell lines that expressed DAT only, VMAT2 only and both DAT and 

VMAT2 (Pifl et al., 1995). Results from this study showed that DAT expression 

was essential for DA release, as the cell expressing VMAT2 alone did not 

release DA and the extent of DA release was larger in the cell expressing both 

DAT and VMAT2. Further evidence for the importance of DAT in the mechanism 

of action of AMPH was provided by Jones and colleagues in 1998.  Using DAT 

KO mice and fast scan cyclic voltammetry, it was shown that AMPH-mediated 

DA release was DAT dependent, as AMPH-mediated DA release was not seen in 

DAT KO mice (Jones et al., 1998).  Thus, DAT plays an important role in the 

effects of AMPH.    

AMPH-induced release of DA via DAT has been hypothesized to follow a 

facilitated exchange diffusion mechanism (Paton, 1973; Arnold et al., 1977; 

Fischer and Cho, 1979). Based upon a glucose-mediated transport mechanism, 

AMPH is translocated into the cytosol from the extracellular space as a substrate 

for DAT (Stein, 1968).  As AMPH is released in the cytosol, high affinity DA 

binding sites on DAT are exposed, enabling the high concentrations of cytosolic 

DA to bind.  One molecule of DA is expected to bind and be released in the 

extracellular space when the transporter returns to the external face. Reverse 

transport by this mechanism is dependent upon Na+ concentrations and follows a 

one-to-one AMPH molecule to DA molecule ratio.  While support for this 

mechanism is widely found in the literature, results from some studies cannot be 

explained by this hypothesis.  Sulzer and colleagues found that AMPH directly 
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injected into neurons of the pond snail, Planorbis corneus, induced reverse 

transport of DA into the extracellular space (Sulzer et al., 1995). In this 

experiment, AMPH was not transported into the neuron through DAT, but DA 

was still released in a non-exocytotic, reverse transport mechanism.  Additionally, 

increasing cytosolic Na+ concentrations reversed transport of DA through DAT in 

the absence of AMPH (Khoshboeui et al., 2003).  Further, why DA preferentially 

binds to the cytosolic face of the transporter and not AMPH, is not explained, as 

AMPH is not reverse transported out of the neuron, despite interacting with the 

same site on DAT.  Thus, evidence exists for an alternative mechanism of 

AMPH-induced DA release through DAT.   

Recent studies have provided evidence for AMPH-evoked DA release 

through DAT by a channel-like mechanism.  Utilizing patch clamp recordings of 

Xenopus oocytes expressing DAT, it was demonstrated that DAT exhibits 

transport and leak-associated currents derived from the conductance of 

monoamine transport (Sonders et al., 1997).  Other monoamine transporters, 

such as NET and SERT have been shown to exhibit similar ion conductance with 

associated monoamine transport (Galli et al., 1998).  Channel-like DA release in 

the presence of AMPH was demonstrated by Galli and colleagues in 2005 

(Kahlig et al., 2005).  In this study, AMPH-induced ionic currents were measured 

using patch clamp and amperometric recordings from human embryonic kidney 

cell lines expressing DAT.  Results from this study showed that AMPH releases 

DA from neurons through DAT in two ways, a slow, exchange mediated 

mechanism and a fast, channel-like mechanism.  Release of DA through the 
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channel-like mechanism is characterized by fast bursts of DA efflux containing a 

large number of DA molecules in each channel-like event.  Interestingly, unlike 

AMPH, the endogenous substrate DA, could not evoke these channel-like 

events.  Thus, AMPH could be evoking DA release through DAT in a facilitated 

exchange diffusion or channel-like mechanism to increase extracellular DA 

concentrations. 

In addition to evoking DA release through DAT, AMPH and METH also 

modulate DAT uptake and expression.  Synaptosomal DA uptake in striatum was 

significantly reduced 1 hr following an acute high dose of METH (15 mg/kg; 

Fleckenstein et al., 1997).  This reduction in DAT function is characterized by a 

decrease in maximal uptake (Vmax), with no effect on affinity for DA (Km).  

However, total DAT binding was not altered, suggesting that METH altered cell 

surface localization of DAT through a trafficking mediated mechanism.  Others 

have shown that METH-induced DAT internalization is PKC-dependent and 

similar to substrate-mediated internalization through clathrin-coated vesicles 

(Saunders et al., 2000; Cervinski et al., 2005; Schmitt and Reith, 2010).  

Interestingly, the effect of METH to internalize DAT was not seen in the 

synaptosomes prepared from the nucleus accumbens, suggesting regional 

modulation of DAT expression and potentially activity (Kokoshka et al., 1998).  In 

addition to the differential regional regulation, the observed changes are also 

dependent on time following METH treatment.  Results from the Gnegy and 

colleagues showed that exposure to 3 µM AMPH increased DAT cell surface 

expression levels 70% within 30 sec of exposure and expression remained 
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elevated for 1 min (Johnson et al., 2005).  Thus, AMPH and METH rapidly 

increase DAT activity immediately following exposure, but decrease DAT 

expression after 20 min, suggesting that AMPH and METH regulate DAT activity 

in a complex manner dependent upon time and brain region.   

Utilizing fluorescence resonance energy transfer microscopy, DAT was 

shown to oligomerize in the endoplasmic reticulum and remain oligomerized 

while trafficking to the plasma membrane (Sorkina et al., 2003).  Interestingly, 

substrates such as AMPH and METH dissociate the DAT oligomers suggesting a 

possible role in AMPH-mediated DAT trafficking (Chen and Reith, 2008).  Results 

from this study suggest that DAT in the plasma membrane is present in oligomer 

and monomer forms, and AMPH promotes the formation of monomers resulting 

in increased DAT internalization.  

In summary, DAT plays an important role in the stimulant effects of 

abused drugs, specifically METH.  Through the reversal of DAT function, METH 

releases DA into the extracellular space leading to its abuse.  Furthermore, 

METH can modulate DAT activity through various mechanisms, such as 

phosphorylation or altered formation of DAT oligomers.  The extensive research 

on METH and DAT has provided a greater understanding of the mechanism of 

action of METH and will hopefully contribute to the development of a successful 

pharmacotherapy for METH abuse.        

b. METH at VMAT2 
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In addition to the effect of METH on DAT, METH interacts with VMAT2 to 

increase extracellular DA levels (Fig 4).  As discussed previously, results from 

Pifl and colleagues showed that while DAT was necessary for AMPH-induced DA 

release, cells expressing both DAT and VMAT2 exhibited greater and more 

sustained release compared to cell expressing just DAT (Pifl et al., 1995).  Using 

neuronal cultures from VMAT2 KO mice, neurons lacking VMAT2 exhibited 

significantly decreased AMPH-evoked DA release compared to WT neurons (Fon 

et al., 1997).  Thus, the effect of AMPH on vesicular DA stores is critical in the 

mechanism of AMPH-induced DA release.   

AMPH acts to redistribute DA from presynaptic vesicular stores to the 

cytosol, where it can be reverse transported into the extracellular space through 

DAT (Sulzer et al., 2005).  Low concentrations of AMPH (doses less than 1 

mg/kg) are hypothesized to release DA available in the cytosol, while higher 

concentrations of AMPH (doses greater than 5 mg/kg) are hypothesized to 

interact with vesicular pools and VMAT2 to redistribute DA to cytosolic pools to 

then be released into the extracellular space (Seiden et al., 1993).  Evidence for 

a redistribution of DA from vesicles to the cytosol was provided by Sulzer and 

colleagues in 1995.  Direct injection of AMPH into DA neurons of Planorbis 

corneus increased cytosolic DA and decreased vesicular DA concentrations 

(Sulzer et al., 1995).  Further, quantal DA release following injection of AMPH 

was reduced by >50%, supporting AMPH-induced decreases in vesicular DA 

storage.  Elevated cytosolic DA induces reverse transport leading to DA release 

into the extracellular space, 
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One mechanism of AMPH-induced increases in cytosolic DA is the 

inhibitory effect of AMPH on DA uptake into vesicles.  AMPH inhibits the uptake 

of monoamines into synaptic vesicles (Knepper et al., 1988).  AMPH is a 

substrate for VMAT2, competing with reserpine for the VMAT2 substrate uptake 

site (Peter et al., 1994; Erickson et al., 1996).  In addition to displacing reserpine 

binding, AMPH also displaces TBZ binding to VMAT2, providing a mechanism for 

AMPH-induced inhibition of vesicular monoamine uptake (Gonzalez et al., 1994). 

Thus, one mechanism by which AMPH increases cytosolic DA concentrations is 

through an inhibition of DA uptake at VMAT2.   

In addition to inhibiting DA uptake at VMAT2, AMPH evokes DA release 

from vesicular stores to increase cytosolic DA concentrations (Sulzer et al., 

2005).  As a substrate for VMAT2, AMPH acts to release DA from vesicles 

through an interaction with VMAT2.  Similar to the facilitated exchange diffusion 

model hypothesized for AMPH-induced DA release through DAT, AMPH evokes 

DA efflux through VMAT2 and may do so via a similar mechanism.  Under this 

proposed mechanism, transport of AMPH into vesicles would increase 

accessibility to DA binding sites on the inner-facing surface of the transporter.  

Subsequently, the bound DA will then be reverse transported out of the vesicle 

and into the cytosol (Sulzer et al., 2005).    Several studies have shown that 

vesicles “leak” monoamines into the cytosol (Floor et al., 1995).  Further, this 

efflux of DA from synaptic vesicles is independent of uptake blockade, as TBZ 

did not inhibit this DA efflux (Floor et al., 1995). In addition, low concentrations of 

AMPH evoke DA release from synaptic vesicles that is not dependent on the 
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electrochemical H+ gradient (Floor and Meng, 1996).  Thus, in addition to 

inhibiting DA uptake through VMAT2, AMPH simultaneously evokes the efflux of 

DA from vesicles, increasing cytosolic DA. 

In addition to a VMAT2-mediated mechanism, AMPH is also proposed to 

release DA from vesicles through a “weak base” effect (Sulzer et al., 2005).  As 

discussed previously, uptake of monoamines through VMAT2 is coupled to a H+ 

electrochemical gradient.  Intravesicular monoamine concentration is estimated 

to be around 500 mM, while cytosolic concentrations are only 25 µM (Johnson, 

1988).  Thus, VMAT2 uses an H+ gradient to transport monoamines against a 

140,000 to 1 concentration gradient.  The H+ gradient is produced and 

maintained by the activity of the ATPase proton pump.  Consequently, the interior 

lumen of synaptic vesicles is acidic with an interior pH around 5.5 (Johnson, 

1988; Fleckenstein et al., 2007).  AMPH is a lipophilic weak base, exhibiting a 

pKA of 9.88 (Mack and Bonisch, 1979).  In addition to active transport through 

VMAT2, AMPH also diffuses across the synaptic membrane due to its lipophilicity 

(Peter et al., 1995; Sulzer et al., 2005).  In the vesicular lumen, AMPH becomes 

protonated, causing the vesicular lumen to become more alkaline, which disrupts 

the pH gradient needed to provide the energy for monoamine transport.  The first 

evidence for this mechanism was provided using the fluorescent weak base 

quinacrine in real-time estimation of internal pH of isolated chromaffin vesicles. In 

this study, AMPH was shown to alkalinize vesicular pH, leading to decreased DA 

uptake and increased DA release from vesicles (Sulzer and Rayport, 1990).  

Further evidence for the weak base effect was seen with other weak bases, such 
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as ammonium chloride, chloroquine, and bafilomycin, which are known to disrupt 

pH gradients in neuronal cells.  Incubation with these compounds increased 

vesicular DA release and decreased vesicular DA content as a result of the 

alkanization of the vesicular lumen and disruption in the pH gradient (Sulzer et 

al., 1993; Mundorf et al., 1999; Sulzer and Pothos, 2000).   

Despite considerable evidence for the weak base effect of AMPH to 

release vesicular DA, several arguments to this proposed mechanism exist.  

Lower concentrations of AMPH have been shown to release DA from synaptic 

vesicles, independently of the electrochemical pH gradient (Floor and Meng, 

1996).  Specifically, synaptic vesicles loaded with [3H]DA exposed to 3 µM AMPH 

rapidly released over 70% of DA, while the pH gradient was only decreased by 

12% (Floor and Meng, 1996).  Further evidence arises from the fact that 

bafilomycin A1, an ATPase inhibitor, decreased the pH gradient 2-fold more than 

AMPH, but only released DA half as fast as AMPH (Floor and Meng, 1996).  

Another important caveat to the weak base mechanism is that the S(+) 

stereoisomer of AMPH is more effective in promoting DA release than the R(-) 

stereoisomer, despite having the same effect on vesicular pH (Peter et al., 1994). 

Interestingly, the S(+) isomer of AMPH binds with higher affinity to VMAT2 which 

could account for the ability of the S(+) isomer to preferentially release DA, 

further supporting a VMAT2-mediated mechanism of vesicular DA release 

(Erickson et al., 1996; Sulzer et al., 2005).  Taken together, these results suggest 

that the alkalization of vesicles alone cannot fully explain AMPH-induced DA 

release from synaptic vesicles.   
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Similar to the effect on DAT, AMPH and METH treatment can modulate 

VMAT2 activity. Multiple high doses of METH (10 mg/kg, s.c. x 4) significantly 

decreased DA uptake at VMAT2 at both 1 hr or 24 hrs following treatment 

(Brown et al., 2000; Hogan et al., 2000).  Further, DTBZ binding to VMAT2 was 

also reduced in striatal vesicles, but not in total striatal homogenates, suggesting 

a redistribution of VMAT2 protein within the presynaptic terminal (Hogan et al., 

2000; Fleckenstein et al., 2007).  Western blot analysis revealed that multiple 

high doses of METH (10 mg/kg x 4) decreased by 80%VMAT2 immunoreactivity 

in cytoplasmic striatal vesicles (Riddle et al., 2002).  Further, redistribution of 

VMAT2 was not retained in the synaptosomal fraction, suggesting that METH 

decreases VMAT2 function by trafficking VMAT2 containing vesicles out of 

presynaptic terminal.  METH-induced decreases in VMAT2 immunoreactivity in 

the striatum were also found by Yamamoto and colleagues further supporting 

METH-induced VMAT2 redistribution (Eyerman and Yamamoto, 2005).  Thus, 

METH modulates VMAT2 function by altering the subcellular distribution of 

VMAT2 protein in the presynaptic terminal.   

c. METH at MAO 

Under physiological conditions, cytosolic DA is rapidly metabolized into 

DOPAC by MAO.  In addition to the redistribution of DA into the cytosol from 

vesicular stores, AMPH inhibits the enzymatic activity of MAO in the cytosol (Fig 

4; Mantle et al., 1976). AMPH is a competitive and reversible low affinity inhibitor 

of MAO (Sulzer et al., 2005).  Thus, in the presence of AMPH, DA is not 
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metabolized into DOPAC in the cytosol.  The increased DA in the cytosol is 

available for reverse transport through DAT.  AMPH itself is not a substrate for 

MAO oxidation (Sulzer et al., 2005). 

d.  METH on DA synthesis  

In addition to the ability of AMPH to increase cytosolic DA concentrations 

by redistributing DA from vesicles and inhibiting MAO, AMPH also increases 

synaptosomal DA synthesis (Sulzer et al., 2005).  Using radiolabeled tyrosine, 

AMPH was demonstrated to exacerbate TH enzymatic activity to increase DA 

biosynthesis (Kuczenski, 1975).  Interestingly, the AMPH-induced increase in DA 

biosynthesis was found in striatum, but not in the nucleus accumbens or olfactory 

tubercle, suggesting regional specific modulation of TH activity (Demarest et al., 

1983).  In addition to inhibiting DA uptake into vesicles, releasing DA from 

vesicles and inhibiting DA metabolism by MAO, AMPH increases DA synthesis to 

increase cytosolic DA concentrations available for reverse transport, which can 

lead to AMPH-induced neurotoxicity.   

V. METH-induced neurotoxicity 

Acute and repeated METH use is characterized by a decrease in 

behavioral and cognitive functions, as well as deficits in attention, memory and 

decision making (Krasnova and Cadet, 2009).  These neurological changes are 

thought to be mediated in part through the neurotoxic effect of METH on 

monoamine signaling. 
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Utilizing neuroimaging techniques as well as other assays, the neurotoxic 

effects of METH have been shown in numerous animal models (monkeys, rats, 

and mice) and in humans studies.  Both acute and high doses of METH have 

been shown to decrease DA, 5-HT and NE levels in the striatum, cortex, nucleus 

accumbens, and hippocampus in monkeys and rodents (Seiden et al., 1976, 

Kogan et al., 1976; Ricaurte et al., 1980; Bakhit et al., 1981; Fumagalli et al., 

1998; Graham et al., 2008).  A similar decrease in monoamine levels was 

observed in autopsied brains of human METH users (Wilson et al., 1996; 

Moxzczynska et al., 2004).  Decreases in DAT and SERT levels following METH 

administration were also observed in both animal models and humans (Wagner 

et al., 1980; Fumagalli et al., 1999; Melega et al., 2000; Armstrong and Noguchi, 

2004; Volkow et al., 2001; Sekine et al., 2003).  In addition to changes in plasma 

membrane transporters, decreases in VMAT2 function and immunoreactivity 

were observed following METH administration (Riddle et al., 2002; Guilarte et al., 

2003; Segal et al., 2005; Eyerman and Yamamoto 2005, 2007).  METH also 

decreases DA and 5-HT synthesis, as evidenced by decreases in TH and 

tryptophan hydroxylase activity in rodents and humans (Seiden et al., 1976; 

Hotchkiss et al., 1979; Wilson et al., 1996).  Thus, METH mediates numerous 

changes in monoamine neuron function, significantly altering neuronal signaling.   

DA and oxidative stress plays an important role in METH-induced 

neurotoxicity (Cadet and Krasnova, 2009).  The importance of DA in METH-

induced neurotoxicity is demonstrated by experimental results showing that α-

methyl-p-tyrosine (AMPT), which decreases DA synthesis, protects against 
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METH-neurotoxicity (Krasnova and Cadet, 2009).  Further, heterozygous VMAT2 

KO mice exhibit exacerbated METH-induced neurotoxicity compared to WT mice, 

as evidenced by prolific DA neurodegeneration and significant decreases in DA, 

DOPAC, and DAT levels in the brain (Fumagalli et al., 1999; Guillot et al., 2008).  

These studies provide support for the importance of DA in METH-induced 

neurotoxicity and the important role VMAT2 plays to prevent the neurotoxic 

effects of METH by sequestering DA into vesicles.   

METH acts to increase cytosolic and extracellular DA concentrations, as 

previously discussed above. Cytosolic DA is rapidly auto-oxidized to form DA 

quinones, leading to the production of superoxide radicals and hydrogen 

peroxides (Krasnova and Cadet, 2009).  Further, DA metabolism into DOPAC by 

MAO also produces hydrogen peroxides which can lead to the generation of 

reactive oxygen species (ROS) causing oxidative stress in the neuron.  Due to 

the lack of free electrons, hydrogen peroxide does not have an oxygen radical, 

but readily interacts with metal ions such as iron, leading to the production of 

highly toxic hydroxyl radicals (Cadet and Brannock, 1998).  Hydroxyl radicals are 

very reactive and can cause damage to nucleic acids, amino acids in proteins 

and phospholipids, damaging lipid membranes (Cadet and Brannock, 1998).  

Moreover, METH has been shown to decrease levels of antioxidants and free 

radical scavengers in DA neurons, limiting the ability of DA neurons to decrease 

oxidative stress (Yamamoto et al., 2010).  
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 In addition to oxidative stress, METH has also been shown to induce 

neuronal damage through an excitotoxic mechanism.  METH administration 

increases glutamate release in the striatum (Nash and Yamamoto, 1992). 

Increased glutamate signaling increases intracellular calcium, which stimulates 

the activity of calcium-dependent enzymes to produce free radicals and nitric 

oxide (Yamamoto et al, 2010). Nitric oxide reacts with superoxide radicals to form 

peroxynitrite, which damages DNA and proteins (Krasnova and Cadet, 2009).  

Nitric oxide and peroxynitrite have also been shown to activate apoptotic 

pathways leading to neuronal death and impairment of mitochondrial and 

endoplasmic reticulum function (Yamamoto et al., 2010).   

 An important aspect of METH-induced neurotoxicity is the effect of METH 

on body and brain temperature.  High doses of METH induce hyperthermia and 

this increase in temperature is associated with an increase in striatal DA content 

depletion (Bowyer et al., 1994). Support for the role of hyperthermia is provided 

by results showing that high doses of METH administered in a cold environment 

did not decrease striatal DA levels, while METH treatment at normal room 

temperatures significantly decreased DA levels (Ali et al., 1994).  Hyperthermia is 

proposed to increase ROS formation and glutamate neurotransmission, both 

leading to oxidative stress and neuronal damage (Yamamoto et al., 2010).  

Drugs such as AMPT, MK-801, and 2-deoxyglucose attenuate the neurotoxic 

effects of METH through the ability to attenuate METH-induced hyperthermia 

(McCann and Ricaurte, 2004).  Further, hyperthermia plays a role in METH-

induced increases in blood-brain barrier (BBB) damage (Bowyer and Ali, 2006).  
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METH-induced BBB damage then can lead to neuronal damage and 

degeneration as well as enhanced vulnerability to environmental toxins and 

infections (Krasnova and Cadet, 2009; Cadet and Krasnova, 2009; Yamamoto et 

al., 2010) 

VI.  Treatment Options for METH abuse 

a. Cognitive and Behavioral Therapy 

Currently there are no approved medications to treat METH abuse.  Thus, 

cognitive and behavioral therapy is vital for the treatment of METH abuse. 

Cognitive and behavioral therapy (CBT) employs learning and conditioning in 

aiding METH abstinence (Lee and Rawson, 2008).  While different forms of CBT 

exists, CBT employs self- and group-help that integrate several intervention 

techniques such as providing information and assistance on use cessation as 

well as withdrawal and depression symptoms in an effort to prevent relapse 

(Rawson et al., 2002; Baker et al., 2005; Lee and Rawson, 2008).  Contingency 

management (CM) is a behavioral therapy aimed at reducing METH use by 

providing positive reinforcement in exchange for drug abstinence (Prendergast et 

al., 2006; Roll et al., 2006).  This behavioral technique is similar to operant 

conditioning in that performance of a behavioral task (drug abstinence in this 

situation) results in the delivery of a reward.  Positive reinforcement is usually in 

the form of a monetary reward. CM has exhibited moderate effectiveness in 

reducing METH use (Shoptaw et al., 2006; Roll, 2007).  In addition to METH, CM 

therapies have been used in promoting abstinence from multiple drugs such as 
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cocaine, nicotine, alcohol, opiates and marijuana (Prendergast et al., 2006).  

Despite the limited success of CBT and CM, behavioral therapies are not 

efficacious universally (Vocci and Appel, 2007).  Thus, the development of 

pharmacological treatment strategies would be highly beneficial in the treatment 

of METH abuse.   

b. Plasma Membrane Transporters as a Therapeutic Target 

METH elicits its rewarding effects, in part, through an interaction with DAT, 

as previously discussed above.  As such, numerous studies have focused on 

monoamine transporters in the development of pharmacotherapies to treat 

METH abuse.  The antidepressant, buproprion inhibits DA and NE uptake 

through DAT and NET, and represents an effective therapy in nicotine cessation 

(Richmond and Zwar, 2003).  By increasing monoamine levels, buproprion is 

hypothesized to alleviate withdrawal symptoms associated with METH 

abstinence (Karila et al., 2010). Initial clinical studies showed that buproprion 

attenuates cue-induced cravings for METH (Newton et al., 2006).  Despite this 

decrease in METH cravings, buproprion was not effective in reducing METH use 

following a 12-week treatment program (Shoptaw et al., 2008; Karila et al., 2010).   

In a manner similar to buproprion, methylphenidate (MPD) was 

hypothesized to be efficacious in treating METH abuse.  MPD is a “gold-

standard” treatment for childhood attention deficit hyperactivity disorder (ADHD; 

Patrick et al., 2005).  MPD inhibits DA and NE uptake through DAT and NET 

inhibition to increase extracellular monoamine concentrations.  While the effect of 
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MPD is similar to that of cocaine, MPD exhibits decreased abuse liability due to 

different pharmacokinetic properties (Volkow et al., 1999; Yano and Steiner, 

2007).  Initial clinical trials examining the effect of MPD on AMPH abuse showed 

that MPD was efficacious in reducing intravenous AMPH use in patients with 

severe AMPH dependence (Tiihonen et al., 2007).  

In addition to DAT and NET inhibitors, selective serotonin reuptake 

inhibitors (SSRIs) have been proposed as treatments for METH abuse.  As 

discussed previously, METH interacts with SERT to increase extracellular 5-HT 

concentrations.  Considering the role that SSRIs play in mood stabilization and 

the treatment of depression, the use of SSRIs in the treatment of withdrawal-

associated depression is warranted (Karila et al., 2010).  SSRIs have also been 

shown to alter DA signaling.  Studies measuring the electrical activity of DA 

neurons showed that SSRIs such as sertaline, paroxetine and fluvoxamine 

inhibited DA firing rates and dopaminergic function (Di Mascio et al. 1998).   

Further, studies utilizing KO mice showed that SERT is involved in the rewarding 

effects of psychostimulants.  Psychostimulants produced rewarding effects in 

DAT KO mice, but did not produce reward in mice deficient in both DAT and 

SERT, suggesting a role of SERT in the rewarding effects of psychostimulants 

(Rocha et al., 1998; Sora et al., 2001).  Consistent with this hypothesis, 

fluoxetine, a SSRI, attenuated METH conditioned place preference and METH-

induced locomotor sensitization (Takamatsu et al., 2006).  Clinical trials 

determining the ability of fluoxetine to treat METH abuse revealed that fluoxetine 

failed to demonstrate efficacy in attenuating METH use (Karila et al., 2010).  
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Preliminary clinical studies with paroxetine found that paroxetine treatment 

reduced METH-associated cravings (Piasecki et al., 2002).  Future studies will be 

needed to determine the efficacy of SSRIs in the treatment of METH 

dependence. 

c. DA receptors as therapeutic targets 

Modulation of DA receptors has been proposed as a potential treatment 

strategy for METH abuse (Karilla et al., 2010).  Risperidone, an atypical 

antipsychotic, acts as a D2 and 5-HT2a receptor antagonist and has been shown 

to improve cognitive function (Meredith et al., 2009).  Clinical trials examining the 

efficacy of risperidone in the treatment of METH dependence were recently 

conducted and results indicated that risperidone was well tolerated and 

associated with a decrease in METH use and an increase in cognition and 

memory in METH users (Meredith et al., 2009).  These results are promising but 

further studies are needed to determine the efficacy of risperidone in the 

treatment of METH abuse.     

In addition to D2 receptor antagonists, D2 receptor partial agonists are 

proposed to be efficacious in the treatment of METH abuse.  The idea behind the 

use of D2 partial agonism in METH dependence focuses on the dual use of 

partial agonists to increase DA signaling during METH abstinence (when 

withdrawal symptoms are present) and to act as an antagonist on D2 receptors 

when METH is used (relapse; Lile et al., 2005). Initial clinical trials determining 

the efficacy of aripiprazole, a D2 and 5-HT1a partial agonist, in AMPH 
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dependence showed that ariprazole decreased the subjective effects of AMPH 

(Lile et al., 2005; Stoops et al., 2006).  Results from more recent clinical trials 

with aripiprazole in the treatment of METH and AMPH dependence have shown 

that aripiprazole exacerbated METH-related cravings and increased AMPH use 

compared to placebo groups (Tiihonen et al., 2007; Newton et al., 2008).  In 

contrast to ealier studies, the recent results suggest that aripiprazole increases 

METH cravings leading to increased use.  While the subjective effects play an 

important role in predicting drug use, many other factors are involved in the 

manifestation of drug abuse.  Thus, future studies to determine the utility of 

apiprazole as a pharmacotherapy for METH abuse are needed. 

d. 5-HT receptors as therapeutic targets 

5-HT increases DA release in NAc, prefrontal cortex, striatum and VTA 

through an interaction with 5-HT1 and 5-HT3 receptors (Guan and McBride, 1989; 

Arborelius et al., 1993; Benloucif et al., 1993; Parsons and Justice, 1993; Prisco 

et al., 1994).  Thus, modulation of 5-HT signaling through 5-HT receptor 

antagonism could inhibit the effects of METH by decreasing DA release (Vocci 

and Appel, 2007; Karilla et al., 2010).  Consistent with this hypothesis, 

mirtazapine, a 5-HT3 and 5-HT2a receptor antagonist, decreased METH-induced 

conditioned place preference, METH behavioral sensitization and cue-induced 

responding for METH in rats (McDaid et al., 2007; Herrold et al., 2009; Graves 

and Napier, 2011).  However, clinical trials determining the effect of mirtazapine 

for the treatment of METH withdrawal symptoms failed to show efficacy 
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compared to placebo (Cruickshank et al., 2008).  Even though mirtazapine did 

not affect METH withdrawal symptoms, future studies determining the effect of 

mirtazapine and other modulators of 5-HT neurotransmission on METH use 

should be investigated.  In addition to importance of 5-HT in depression and 

mood balance as part of potential withdrawal symptoms, 5-HT also modulates 

DA signaling and could be a viable target for the development for treatments of 

METH abuse.    

Ondansetron, a 5-HT3 receptor antagonist has also been hypothesized to 

inhibit the rewarding effects of METH.  Ondansetron, co-administered with DA 

agonist, pergolide inhibited METH-induced behavioral sensitization and METH-

induced reinstatement in rats (Davidson et al., 2007).  Moreover, ondansetron 

was shown to attenuate METH-induced reductions in food intake in mice (Ginawi 

et al., 2005).  Clinical trials determining the efficacy of ondansetron in the 

treatment of METH dependence failed to reveal a significant effect of 

ondansetron to attenuate METH use or withdrawal symptoms (Johnson et al., 

2008).  

e. GABA neurotransmitter system as a therapeutic target 

gamma-Aminobutyric acid (GABA) is an inhibitory neurotransmitter in the 

brain primarily functioning to modulate neuronal excitability (Cooper et al., 2003).  

GABA interacts with GABA receptors in the brain which are comprised of GABAA 

receptors that act as ligand gated ion channels, and GABAB receptors, which act 

as metabotrophic G-protein coupled receptors. GABAA receptor activation leads 
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to the opening of Cl- channels, while GABAB receptor activation leads to the 

opening of K+ channels, resulting in hyperpolarization of the cell membrane and a 

decrease in neuronal firing (Cooper et al., 2003). DA neurons in the ventral 

palladium receive GABA inputs from the NAc which play an important role drug 

reward and abuse (Zahm et al., 1985; Koob, 1992; Bardo, 1998).  Specifically, 

activation of GABA receptors in the ventral palladium decreases DA release and 

signaling (Gong et al., 1998).  Thus, by decreasing DA neurotransmission, 

modulation of GABA neurotransmission could attenuate the reinforcing effects of 

abused drugs.  Consistent with this hypothesis, GABA receptor agonists have 

been used in the treatment of cocaine, heroin, nicotine, METH, and alcohol 

(Cousins et al., 2000; Vocci and Appel, 2007; Karila et al., 2010).  Baclofen, a 

GABAB receptor agonist, decreased AMPH-induced increases in extracellular DA 

in the NAc and decreased AMPH self-administration in rats (Brebner et al., 

2005).  Further, baclofen improved METH-induced decreases in memory and 

cognition (Arai et al., 2008, 2009). Gabapentin, a nonselective GABA receptor 

agonist, attenuated METH-induced hyperlocomotion, conditioned place 

preference and behavioral sensitization (Itzhak and Martin, 2000; Kurokawa et 

al., 2011).  Clinical trials however, revealed that baclofen and gabapentin were 

not effacious in decreasing METH use (Heinzerling et al., 2006).  Vigabatrin 

(gamma-vinyl-GABA) increases GABA transmission through inhibition of GABA 

metabolism by GABA transaminase (Gerasimov et al., 1999).  Vigabatrin 

pretreatment inhibited METH-induced increases in NAc DA release and 

reinstatement of METH-induced conditioned place preference (Gerasimov et al., 
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1999; DeMarco et al., 2008).  Results from clinical trials revealed that vigabatrin 

decreased METH use in METH-dependent users (Brodie et al., 2004).  Thus, 

GABA neurotransmission may represent a useful therapeutic target in developing 

pharmacotherapies for METH abuse.     

f. Acetylcholine neurotransmitter system as a therapeutic target 

Acetylcholine (ACh) is a neurotransmitter involved in both the central and 

peripheral nervous systems (Cooper et al., 2003).  In the peripheral nervous 

system, ACh functions to regulate the autonomic nervous system activity and 

skeletal muscle contraction.  In the central nervous system, ACh is important in 

reward, learning, and memory (Miwa et al., 2011).  Removal of cholinergic 

neurons in NAc by immunotoxin treatment decreased ACh signaling in the NAc, 

leading to an increase in the rewarding effects of cocaine (Hikida et al., 2001).  

Thus, an increase in ACh signaling is hypothesized to decrease the rewarding 

effects of psychostimulants (Karila et al., 2010).  Cholinesterase inhibitors such 

as donepezil and rivastigmine inhibit acetylcholinesterase, the enzyme 

responsible for the degradation of acetylcholine, to increase the action of 

acetylcholine.  Donepezil treatment attenuated cue- and drug-induced METH 

reinstatement in rats (Hiranita et al., 2006).  Preliminary clinical trials examining 

the effects of rivastigmine on METH users revealed that rivastigmine reduced 

METH-induced increases in blood pressure as well as METH-induced cravings in 

METH users (De la Garza et al., 2008).  Additional clinical trials are needed to 

determine the effectiveness of cholinesterase inhibitors for the treatment of 
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METH, but preliminary reports suggest a possible clinical benefit in the treatment 

of METH abuse (Karila et al. 2010).   

g. Opioid receptors as therapeutic targets 

Opioid receptors are G-protein coupled receptors found in the CNS and 

gastrointestinal tract, consisting of three main receptor subtypes (µ, δ, κ; Dhawan 

et al., 1996).  Opioid receptors are involved in pain and interact with endogenous 

peptides such as enkephalins, dynorphins and endorphins, as well as other 

agonists such as morphine, sufentanil, and fentanyl (Dhawan et al., 1996).  

Antagonists such as naltrexone and naloxene inhibit the action of opioid peptides 

and stimulation by opioid receptor agonists (Dhawan et al., 1996).  Morphine and 

endogenous opiates interact with opioid receptors to increase extracellular DA 

release in the NAc, leading to reward and abuse (Koob et al., 1998).  Opioid 

receptors are also involved in psychostimulant reward and reinforcement (Chiu et 

al., 2006).  Naltrexone pretreatment attenuated AMPH-induced increases in 

locomotor activity, and naloxone pretreatment decreased AMPH conditioned 

place preference (Trujillo et al., 1991; Balcells-Olivero and Vezina, 1997).   

Further, naltrexone treatment inhibited METH-induced behavioral sensitization in 

mice and cue-induced METH reinstatement in rats trained to self-administer 

METH (Chiu et al., 2005; Anggardiredja et al., 2004).  Clinical trials report that 

naltrexone decreased the subjective effects of AMPH (Jayaram-Lindstrom et al., 

2004).  More recent results revealed that naltrexone decreased AMPH use and 

cravings in AMPH users (Jayaram-Lindstrom et al., 2008).  Thus, antagonism of 



 

49 

 

opioid receptors may represent an effective therapeutic target in the treatment of 

METH abuse.    

h. VMAT2 as therapeutic target 

 VMAT2 represents a primary target in the mechanism of action of METH 

(Sulzer et al., 2005).  METH inhibits DA uptake at VMAT2 and promotes DA 

release from vesicles to increase cytosolic DA.  Thus, pharmacological agents 

that modulate VMAT2 function or act to redistribute DA from presynaptic 

vesicles, thereby limiting vesicular and cytosolic DA available for METH-induced 

reverse transport, may be efficacious for the treatment of METH. Consistent with 

this hypothesis, VMAT2 heterzygous KO mice showed decreased AMPH-

induced conditioned place preference (Takahashi et al., 1997).  Further, VMAT2 

inhibition by TBZ pretreatment decreased METH-induced hyperactivity (Kuribara, 

1997).  However, additional studies examining the effects of TBZ on METH have 

shown that high doses of TBZ nonspecifically inhibited METH self-administration 

in rats, while low doses increased METH self-administration (Meyer et al., 2011).   

Nevertheless, VMAT2 inhibition may represent a novel therapeutic target for the 

development of pharmacotherapies to treat METH abuse.   

VII. Lobeline 

a. Background and Historical Uses 

(-)-Lobeline (2R,6S,10S-lobeline; Fig. 1) is the principal alkaloid found in 

Lobelia inflata, a biannual or annual flowering plant grown primarily in Eastern 
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North America.  The herb was named after famous French botanist, Matthias de 

Lobel (Felpin and Lebreton, 2004).  While the entire plant is harvested and used 

in the extraction of alkaloids, the seeds contain the highest percent of the 

alkaloid, lobeline (Krochmal and Krochmal, 1973; Dwoskin and Crooks, 2002).  

Lobelia has also been called “Indian tobacco” because Native Americans used to 

chew and smoke the dried leaves of lobelia to obtain the CNS effects of the 

alkaloids (Millspaugh et al., 1974)  Lobelia is also known as “puke weed”, 

“gagroot”, and “vomit wort” presumably from its emetic side effects.  While the 

species of plant was identified by Linneaus in 1741, Lobelia was not used 

medicinally until its introduction in 1813 for its use in the treatment of asthma by 

the botanic physician, Reverend D. Cutler (Millspaugh, 1974).  In addition to the 

respiratory stimulant effects used for the treatment of asthma, Lobelia extracts 

have historically been used as an expectorant, emetic, anti-spamodic, diuretic 

and muscle relaxant (Dwoskin and Crooks, 2002).   

Lobeline is the most biologically active alkaloid of more than 20 alkaloids 

found in Lobelia (Felpin and Lebreton, 2004). Structurally, lobeline is 

characterized by a central piperdine ring with two phenylethyl side chains 

attached at the 2- and 6-positions of the piperdine ring.  Lobeline possesses a 

hydroxyl moiety on the 8-position and a keto moiety on the 10-position of the 

phenylethyl side chains.  Lobeline has three chiral centers, at the 8-position on 

the side chain and the 2- and 6-positions of the piperdine ring.    
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The first known therapeutic use of lobeline was the treatment of asthma 

due to the powerful respiratory stimulant effect of lobeline (King et al., 1928).   In 

addition to the respiratory stimulant effects, lobeline has been shown to offer 

expectorant benefits (Felpin and Lebreton, 2004).  Due to these effects, lobeline 

has been used in treatment of pneumonia, whooping cough, bronchitis, and 

asphyxsia from narcotic, morphine, and alcohol poisoning (Dwoskin and Crooks, 

2002).  In addition, lobeline has also been tested for potential benefits as a 

smoking cessation agent.  The earliest use of lobeline as a smoking cessation 

agent was shown in 1936 (Dorsey, 1936).  Numerous pharmacological agents 

containing lobeline, such as CigArest, Nicoban, NicFit, Bantron and Smoker’s 

Choice have been used as smoking cessation aids, but were deemed ineffective 

by the FDA (Felpin and Lebreton, 2004).  Results from numerous clinical trials 

have shown that lobeline is not effective as a smoking cessation agent (Stead 

and Hughes, 2000).  One potential reason for the ineffectiveness of lobeline as a 

smoking cessation agent is its poor bioavailability (Schneider and Olsson, 1996).  

As such, sublingual formulations of lobeline have been tested for their efficacy in 

attenuating nicotine use (Glover et al., 2010).  Results from these studies 

however, demonstrated that lobeline is ineffective as a smoking cessation agent. 

b. Pharmacology 

While lobeline and nicotine are not structurally similar, they exhibit many 

similar effects.   Lobeline interacts with the autonomic ganglia, producing various 

sympathetic and parasympathetic effects.  Lobeline induces tachycardia and 
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hypertension, as well as increased salivation and gastric mobility (Dwoskin and 

Crooks, 2002).  Lobeline acts at the emetic center in the CNS and directly 

irritates the gastrointestinal tract causing nausea and vomiting (Felpin and 

Lebreton, 2004).  In addition, lobeline has been shown to improve learning and 

memory in rats, as well as improve performance in sustained attention tasks 

(Decker et al., 1993; Brioni et al., 1993; Terry et al., 1996).   

Lobeline exhibits its nicotine-like effects through interactions with nicotinic 

acetylcholine receptors (nAChRs).  Lobeline exhibits high affinity (Ki = 4 nM) at 

α4β2* nAChRs (* indicates putative nAChR assignment), as probed by 

[3H]nicotine binding studies (Damaj et al., 1997).  Unlike nicotine, repeated 

exposure to lobeline does not result in an upregulation of α4β2* nAChRs (Bhat et 

al., 1991).  Further, studies have shown that lobeline acts as an antagonist at 

α4β2* nAChRs as lobeline inhibits nicotine-evoked Rb+ efflux from rat thalamic 

synaptosomes (Miller et al., 2000).  Lobeline also displaces 

[3H]methyllycaconitine (MLA) binding (Ki = 11.6 µM), suggesting an interaction 

with α7* nAChRs (Miller et al., 2004).  Further, functional studies utilizing 

Xenopus oocytes demonstrated that lobeline was an antagonist at α7* nAChRs 

(Briggs and McKenna, 1998).  In addition to antagonism at α4β2* and α7* 

nAChRs, lobeline also inhibits nicotine-evoked [3H]NE release from cultured fetal 

rat locus coeruleus cells, suggesting antagonism at α3β4* nAChRs. Lobeline has 

also been shown to antagonize nAChRs mediating nicotine-evoked DA release, 

as lobeline inhibits nicotine-evoked [3H]DA release from striatal slices (Miller et 

al., 2000).  While the exact nAChR subunits responsible for nicotine-evoked DA 
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release are controversial, several nAChR subtypes are proposed to be involved 

including α4β2*, α6β2*, α4α6β2*, and α6β3β2* (Champtiaux et al., 2003; 

Salminen et al., 2004).  Lobeline also evokes [3H]DA and [3H]NE release from 

striatal and hippocampal slices, respectively; however release was not mediated 

by nAChRs, as release was not sensitive to the noncompetitive nAChR 

antagonist, mecamylamine (Clarke and Reuben, 1996; Kiss et al., 2001).   

In addition to an interaction at nAChRs, lobeline also interacts with VMAT2 

(Fig 5).  Lobeline inhibits [3H]DTBZ binding in whole brain homogenates and 

[3H]DA uptake in striatal vesicles with similar potency (IC50 ~ 0.9 µM; Teng et al., 

1997, 1998).  Lobeline also inhibits [3H]DA uptake at DAT (IC50 = 80 µM), 

exhibiting 90-fold higher potency at VMAT2 compared to DAT (Teng et al.,1997).  

In addition to the inhibition of DA uptake at VMAT2, lobeline also releases [3H]DA 

from preloaded synaptic vesicles (Nickell et al., 2011).  Similar to METH, lobeline 

interacts with VMAT2 to redistribute DA from vesicles, increasing cytosolic DA 

concentrations.  Unlike METH, however, lobeline does not inhibit MAO, as high 

concentrations of lobeline evoked DOPAC overflow, rather than DA (Teng et al., 

1997). Lobeline redistributes DA from synaptic vesicles into the cytosol where it 

can then be metabolized by MAO into DOPAC, limiting the DA available for 

METH-induced reverse transport. Thus, due to the interaction with VMAT2, 

lobeline has been proposed to inhibit the neurochemical effects of METH 

(Dwoskin and Crooks, 2002). Consistent with this hypothesis, lobeline inhibited 

AMPH-evoked DA release from striatal slices in the same concentration range 

that lobeline interacted with VMAT2 (0.1 -1 µM; Miller et al., 2001).  In respect to 
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behavioral experiments, lobeline pretreatment attenuated AMPH- and METH-

induced hyperlocomotor activity and the discriminative stimulus effects of METH 

in rats (Miller et al., 2001).  Further, lobeline decreased METH self-administration 

in rats and this inhibition was not surmounted by increasing concentrations of 

METH (Harrod et al., 2001).  Importantly, lobeline is predicted to have low abuse 

liability, as lobeline is not self-administered and does not produce conditioned 

place preference in rats (Fudala and Iwamoto, 1986; Harrod et al., 2003).  Based 

upon these preclinical findings, lobeline is currently undergoing clinical trials to 

determine effectiveness as a pharmacotherapy for METH abuse.  Results from 

recently completed Phase Ib clinical trials demonstrated that sublingual lobeline 

was safe in METH addicted individuals (Jones et al, 2007).  Despite these 

encouraging results, some problems with lobeline exist.  The half-life of lobeline 

is relatively short however (~50 min), requiring multiple dosings (Miller et al., 

2003). Further, lobeline interacts with multiple targets in the CNS such as 

nAChRs.  Thus, recent focus has been on the development of lobeline analogs 

with better pharmacokinetic profiles and increased selectivity for VMAT2.     

c. meso-Transdiene 

meso-Transdiene (MTD) is a defunctionalized (i.e. keto and hydroxyl 

moieties removed), unsaturated analog of lobeline (Fig 1; Zheng et al., 2005a).  

MTD exhibited low affinity for α4β2* and α7* nAChRs, as probed by [3H]nicotine 

and [3H]MLA binding (Ki >100 µM for both subtypes; Miller et al., 2004).  These 

results suggest that the hydroxyl and keto groups on the phenyethyl side chains 
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are important for potent nAChR binding affinity.  Compared with lobeline, MTD 

was found to exhibit similar affinity for the [3H]DTBZ binding site and [3H]DA 

uptake site on VMAT2 (Ki = 9.88 and 0.54 µM, respectively; Zheng et al., 2005a; 

Nickell et al., 2010).  Unfortunately, MTD exhibited high affinity for DAT (Ki = 0.58 

µM), which has been associated with a potential for abuse liability (Miller et al., 

2004).  MTD inhibited METH-evoked DA overflow from rat striatal slices with 

potency not different from lobeline (IC50 = 0.44 and 0.42 µM, respectively; Nickell 

et al., 2010). Interestingly, MTD exhibited ~20% greater inhibitory activity 

compared to lobeline in inhibiting METH-evoked DA release (Imax = 76.3 and 

56.1%, respectively; Nickell et al., 2010).  The ability of MTD to decrease METH 

self-administration is unknown.  Unfortunately, chemical defunctionalization 

decreased the water solubility of MTD compared to lobeline. 

d. Lobelane 

Lobelane is a defunctionalized, saturated analog of lobeline (Fig 1; Zheng 

et al., 2005a).  Similar to MTD, lobelane exhibits low affinity for α4β2* and α7* 

nAChRs, as probed by [3H]nicotine and [3H]MLA binding (Ki = 77.3 and 43.1 µM, 

respectively; Miller et al., 2004).  Lobelane exhibits affinity for [3H]DTBZ binding 

(Ki = 0.97 µM) not different from lobeline (Zheng et al., 2005a).  Interestingly, 

lobelane exhibits increased potency to inhibit [3H]DA uptake at VMAT2 (Ki = 

0.045 µM) compared to lobeline (Nickell et al., 2010).  Compared to lobeline, 

lobelane exhibited higher affinity for DAT (Ki = 1.57 µM; Nickell et al., 2010).  

Lobelane inhibited METH-evoked DA release with potency not different from 
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lobeline (IC50 = 0.65; Nickell et al., 2010).  Similar to MTD, lobelane exhibited 

~20% greater inhibitory activity compared to lobeline in inhibiting METH-evoked 

DA release (Imax = 76.3 and 56.1%, respectively; Nickell et al., 2010).  Further, 

lobelane pretreatment dose-dependently decreased METH self-administration in 

rats; however tolerance developed to this behavioral effect after repeated 

dosings (Neugebauer et al., 2007).  Similar to MTD, chemical defunctionalization 

resulted in decreased water solubility compared to lobeline.  

VIII. Hypothesis and Specific Aims 

The purpose of the current research is to identify analogs of MTD and 

lobelane with improved selectivity for inhibition of VMAT2 function, in an effort to 

develop pharmacotherapies for METH abuse.  This thesis describes the results 

from an iterative drug discovery effort consisting of two sets of analogs, 3,5-

disubstituted MTD analogs and N-1,2-dihydroxypropyl (diol) lobelane analogs.  

Results from initial structure activity relationships (SAR) determining the ability of 

these analogs to interact with VMAT2, DAT, SERT, and nAChRs are reported.  

The ability of the most VMAT2 selective analogs to inhibit METH-evoked DA 

release was determined to select the lead analogs from each series (UKMH-106 

and GZ-793A).  In addition, mechanistic studies were conducted to further 

identify the effect of GZ-793A on VMAT2 and METH-evoked DA release.  Finally, 

initial DA neurotoxicity evaluations were conducted with GZ-793A to determine 

the effect of GZ-793A on DA content.   
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The hypothesis of this thesis is that selective VMAT2 inhibition by lobeline 

analogs will inhibit the effects of METH.  The specific hypotheses and aims for 

this project were: 

Hypothesis 1:  3,5-Disubstituted MTD analogs inhibit VMAT2 function, 

and VMAT2-selective MTD analogs inhibit METH-evoked DA release from 

striatal slices. 

Specific Aims: 

1) Determine the ability of MTD to decrease METH self-administration in 

rats. 

2) Determine the selectivity of MTD analogs to inhibit VMAT2 function in 

vitro. 

3) Determine the ability of MTD analogs to inhibit METH-evoked DA 

release in striatal slices in vitro. 

Hypothesis 2:  N-1,2-Diol analogs of lobelane inhibit VMAT2 function, 

and VMAT2 selective analogs inhibit METH-evoked DA release from striatal 

slices. 

Specific Aims: 

1) Determine the selectivity of N-1,2-diol analogs to inhibit VMAT2 

function in vitro.  
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2) Determine N-1,2-diol lobelane analogs to inhibit METH-evoked DA 

release in striatal slices in vitro. 

Hypothesis 3:  GZ-793A interacts with VMAT2 to release DA from striatal 

vesicles and inhibits METH-evoked DA release from striatal vesicles. 

Specific Aims: 

1) Determine the ability of GZ-793A to release DA from striatal vesicles in 

vitro. 

2) Determine the ability of GZ-793A to inhibit METH-evoked DA release 

from striatal vesicles in vitro. 

Hypothesis 4:  VMAT2 inhibition by GZ-793A does not alter striatal DA 

content and GZ-793A protects against METH-induced DA depletions in striatal 

tissue and vesicles. 

Specific Aims: 

1) Determine the effect of acute and repeated GZ-793A on DA content in 

striatal tissue and vesicle preparations. 

2) Determine the effect of acute and repeated GZ-793A pretreatment on 

acute and repeated METH-induced DA content depletion in striatal 

tissue and vesicle preparations. 

 



 

59 

 

H
N

CH3

CH3

Methamphetamine

NH2

CH3

Amphetamine

N
CH3

CH3

O

O

CH3

CH3

H
O

H

Tetrabenazine

O

O

O

O

O

NN
H

O

H3C

H H

H

O
CH3

CH3

H3C

CH3O

O
H3C

Reserpine

N

CH3
HCl

meso-Transdiene

N

CH3
HCl

Lobelane

NH2
HO

HO

Dopamine

N

CH3
HCl

OH O

Lobeline

Fig. 1.  Chemical Structures (Chapter 1) 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

60 

 

Fig. 2.  Sagittal view of rodent brain showing DA pathways (as indicated by solid 
lines). 
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Fig. 3.  Schematic diagram of DA nerve terminal.   
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Fig. 4.  Schematic diagram of DA nerve terminal in the presence of 
methamphetamine (METH). 
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Fig. 5.  Schematic diagram of DA nerve terminal in the presence of lobeline 
(LOB). 
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CHAPTER TWO 

 

MTD Analogs Inhibit VMAT2 Function and METH-evoked DA Release 

Portions of this chapter have been published in the manuscript: 

Horton DB, Siripurapu KB, Norrholm SD, Deaciuc AG, Hojahmat M, Culver JP, 
Crooks PA, Dwoskin LP.  Lobeline and meso-transdiene analogs: 
interaction at neurotransmitter transporters and nicotinic receptors. J 
Pharm Exp Ther, 336:940-951, 2011. 

 

Chapter reprinted with permission of the American Society for Pharmacology and 
Experimental Therapeutics.  All rights reserved. 

 

I. Introduction 

METH abuse is a serious public health concern (NSDUH, 2008). 

Pharmacotherapies are not available to treat METH abuse.  Efforts have focused 

on the DAT as a therapeutic target (Dar et al., 2005; Howell et al., 2007; Tanda 

et al., 2009), because METH interacts with DAT to increase extracellular DA 

concentrations, leading to its reinforcing properties (Wise and Bozarth, 1987; Di 

Chiara and Imperato, 1988; Di Chiara et al., 2004).  DAT translocates DA from 

the extracellular space into presynaptic terminals, whereas METH reverses DAT 

translocation to increase DA extracellularly (Fischer and Cho, 1979; Liang and 

Rutledge, 1982; Sulzer et al., 1995).  This approach has not led to therapeutic 

agents for METH abuse, although several DAT inhibitors currently are 

undergoing clinical trials.  
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A largely unexplored target of METH action is VMAT2.  By interacting with 

VMAT2, METH increases cytosolic DA concentrations available for translocation 

by DAT to the extracellular compartment (Sulzer and Rayport, 1990; Sulzer et al., 

1995; Pifl et al., 1995).  The current research focuses on the discovery of novel 

compounds which interact with VMAT2 and inhibit the pharmacological effects of 

METH.  Lobeline, the major alkaloid of Lobelia inflata, inhibits VMAT2 function 

(Teng et al., 1997, 1998), has high affinity for [3H]DTBZ binding sites on VMAT2 

(Kilbourn et al., 1995; Miller et al., 2004) and decreases AMPH-evoked DA 

release from rat striatal slices (Miller et al., 2001). However, lobeline is not 

selective for VMAT2, acting as a nAChR antagonist with low affinity for DAT and 

SERT (Damaj et al., 1997; Flammia et al., 1999; Miller et al., 2000, 2004).  

Lobeline also decreases METH-induced hyperactivity, behavioral sensitization 

and self-administration in rats (Harrod et al., 2001; Miller et al., 2001).  

Importantly, lobeline is not self-administered, indicating lack of abuse liability 

(Harrod et al., 2003).  Based on these preclinical findings, lobeline is being 

evaluated as a treatment for METH abuse.  Initial Phase Ib clinical trials report 

that lobeline is safe in METH addicts (Jones et al., 2007).    

Lobeline has a central piperidine ring with phenyl rings attached at C-2 

and C-6 of the piperidine ring by ethylene linkers containing hydroxyl and keto 

functionalities at the C8 and C10 positions on the linkers, respectively (Fig. 6).  

Potency and selectivity for VMAT2 were improved based on SARs, with the 

emergence of two new lead compounds, i.e., lobelane and MTD (Zheng et al., 

2005a; Nickell et al., 2010).  Lobelane is a lobeline analog with defunctionalized 
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(hydroxyl and keto groups of lobeline eliminated from the linkers) and saturated 

linkers.  Subsequent reports described the preclinical evaluation of lobelane as 

well as analogs based on the lobelane structural scaffold (Beckmann et al., 2010; 

Nickell et al., 2011).  MTD is a lobeline analog with defunctionalized and 

unsaturated (double bonds) linkers (Fig. 6).  Compared with lobeline, MTD was 

found to exhibit similar affinity for the [3H]DTBZ binding site on VMAT2 and 

decreased affinity for nAChRs, thus revealing increased selectivity for VMAT2 

(Zheng et al., 2005a).  Also, MTD inhibited METH-evoked DA overflow from rat 

striatal slices (Nickell et al., 2010).  However, MTD exhibited high affinity for DAT 

(Miller et al., 2004), which has been associated with potential for abuse liability.  

Furthermore, MTD has limited solubility, diminishing its potential for development 

as a pharmacotherapy for METH abuse.   

To extend the previous work, the current study determined if MTD 

decreases METH self-administration in rats.  The current SAR also identified 

analogs based on the MTD scaffold that potently and selectively inhibit VMAT2 

function, and had both low affinity for DAT and increased water solubility 

compared to MTD.  These analogs were designed as more rigid, 

conformationally-restricted analogs of MTD, in which the phenylethylene 

substituents in the MTD structure were incorporated into the piperidine ring 

system (Fig. 7).  This structural change reduces the molecular weight and the 

number of rotational carbon bonds from four in MTD to two in the current 

analogs.  Other changes included: 1) altering the geometry of the C5 double 

bond from E to Z; 2) lengthening the linker units at C3 and C5 of the piperidine 
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ring; 3) adding aromatic substituents to the phenyl moieties; and 4) replacing the 

phenyl rings with heteroaromatic rings, such as thiophene or furan.  Affinity for 

VMAT2 was retained despite these structural alterations, and importantly, 

selectivity for VMAT2 was improved. These novel analogs were evaluated further 

for their ability to inhibit METH-evoked DA release from superfused rat striatal 

slices, and constitute new leads in the discovery of novel treatments for METH 

abuse.  

The hypothesis of this chapter is that 3,5-disubstituted MTD analogs will 

inhibit VMAT2 function and VMAT2 selective MTD analogs will inhibit METH-

evoked DA release from striatal slices.    

II. Methods 

IIa. Animals.  Male Sprague-Dawley rats (200–250 g, Harlan, 

Indianapolis, IN) were housed two per cage with ad libitum access to food and 

water in the Division of Laboratory Animal Resources at the University of 

Kentucky (Lexington, KY).  Experimental protocols involving the animals were in 

accord with the 1996 NIH Guide for the Care and Use of Laboratory Animals and 

were approved by the Institutional Animal Care and Use Committee at the 

University of Kentucky.   

IIb. Chemicals.  [3H]Nicotine (L-(-)-[N-methyl-3H]; specific activity, 66.9 

Ci/mmol), [3H]dopamine ([3H]DA; dihydroxyphenylethylamine, 3,4-[7-3H]; specific 

activity, 28 Ci/mmol), and [3H]5-hydroxytryptamine ([3H]5-HT; hydroxytryptamine 

creatinine sulfate 5-[1,2-3H(N)]; specific activity, 30 Ci/mmol) and Microscint 20 
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LSC-cocktail were purchased from PerkinElmer, Inc. (Boston, MA).  

[3H]Dihydrotetrabenazine ([3H]DTBZ; (±)alpha-[O-methyl-

3H]dihydrotetrabenazine; specific activity, 20 Ci/mmol) and [3H]methyllycaconitine 

([3H]MLA; ([1,4(S),6β,14,16β]-20-ethyl-1,6,14,16-tetramethoxy-4-[[[2-([3-3H]-

methyl-2,5-dioxo-1-pyrrolidinyl)benzoyl]oxy]-methyl]aconitane-7,8-diol; specific 

activity, 100 Ci/mmol) were obtained from American Radiolabled Chemicals, Inc. 

(St. Louis, MO).  Diazepam and ketamine were purchased from N.L.S. Animal 

Health (Pittsburgh, PA).   Acetonitrile, ATP-Mg2+, benzaldehyde, 2,4-

dichlorobenzaldehyde, 4-methoxybenzaldehyde, 4-methylbenzaldehyde, furan-2-

carbaldehyde, furan-3-carbaldehyde, trans-cinnamaldehyde, catechol, DA, 

DOPAC, disodium ethylenediamine tetraacetate (EDTA), ethylene glycol 

tetraacetate (EGTA), ethyl acetate, fluoxetine HCl, 1-(2-(bis-(4-

fluorophenyl)methoxy)ethyl)-4-(3-phenylpropyl)piperazine (GBR 12909), α-D-

glucose, N-[2-hydroxyethyl]piperazine-N’-[2-ethanesulfonic acid] (HEPES), 

hexane, MgSO4, methanol, methylene chloride, 1-methyl-4-piperidone, pargyline 

HCl, polyethyleneimine (PEI), KOH, potassium tartrate, sodium borohydride, 

NaOH, Na2SO4, sucrose, silica gel (240-400 mesh), and trifluoroacetic acid were 

purchased from Sigma-Aldrich, Inc. (St. Louis, MO).  L-Ascorbic acid and 

NaHCO3 were purchased from Aldrich Chemical Co. (Milwaukee, WI). CaCl2, 

KCl, K2PO4, MgCl2, NaCl, and NaH2PO4 were purchased from Fisher Scientific 

Co. (Pittsburgh, PA).  Thiophene-2-carbaldehyde and thiophene-3-carbaldehyde 

were purchased from Acros Organics USA (Morris Plains, NJ).  Preparative TLC 

plates (250 µM silica layer, organic binder, no indicator) were purchased from 
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Dynamic Adsorbents Inc. (Atlanta, GA).  Chloroform-D was purchased from 

Cambridge Isotope Laboratories, Inc. (Andover, MA).  Complete counting cocktail 

3a70B was purchased from Research Products International Corp.  (Mount 

Prospect, IL).  (2R,3S,11bS)-2-Ethyl-3-isobutyl-9,10-dimethoxy-2,2,4,6,7,11b-

hexahydro-1H-pyrido[2,1-a]isoquinolin-2-ol (Ro-4-1284) was a generous gift from 

Hoffman-LaRoche Inc. (Nutley, NJ).  

IIc. General Synthetic Methodology for the UKMH Analogs. A 

mixture of 1-methyl-4-piperidone (1.0 eq, 10.2 mmol), the appropriately 

substituted aromatic aldehyde (2.1 eq, 21.42 mmol), and potassium hydroxide 

(2.1 eq, 21.42 mmol) were stirred in methanol (20 ml) at ambient temperature for 

4 h. The resulting yellow precipitate was collected by filtration and washed with 

cold methanol to yield the crude 3,5-disubstituted-1-methylpiperidin-4-one (9.17-

9.83 mmol; 89.9-96.4% yield).  Without further purification, the crude 3,5-

disubstituted-1-methylpiperidin-4-one product was added to a pre-equilibrated 

mixture of sodium borohydride (4 eq.) and trifluoroacetic acid (16 eq.) in a 1:1 

mixture of dichloromethane and acetonitrile.  The mixture was stirred at ambient 

temperature for 4-8 h until TLC and GC-MS analysis revealed that all of the 

starting material was consumed.  The reaction mixture was then diluted with 

dichloromethane, and 2 M aqueous sodium hydroxide solution was added drop-

wise with stirring to afford a pH of 10.  The organic layer was then separated, 

dried over anhydrous sodium sulfate, filtered, and the filtrate evaporated to 

dryness under vacuum.  The reaction yielded a mixture of mainly the 3Z,5Z- and 

3Z,5E-geometrical isomers of the 3,5-disubstituted-1-methylpiperidines, as well 
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as other minor geometric double bond combinations; both these isomers could 

be separated by silica gel column chromatography or by preparative TLC, 

utilizing a 10:1 hexane:ethyl acetate solvent mixture. Utilizing this general 

procedure, the UKMH series of analogs shown in Fig. 6 were prepared and fully 

characterized for structural identity and purity, as determined by TLC, GC-MS, 1H 

NMR and 13C NMR analysis.  

IId. METH Self-administration.  Behavioral experiments were 

conducted using previously described methods (Neugebauer et al., 2007). 

Operant conditioning chambers (ENV-008, MED Assoc., St. Albans, VT) were 

enclosed within sound-attenuating compartments (ENV-018M, MED Assoc.). 

Each chamber was connected to a personal computer interface (SG-502, MED 

Assoc.), and chambers were operated using MED-PC software.  A 5  4.2 cm 

recessed food tray was located on the response panel of each chamber. Two 

retractable response levers were mounted on either side of the recessed food 

tray (7.3 cm above metal rod floor).  A 28V, 3-cm diameter, white cue light was 

mounted 6 cm above each response lever. 

 Rats were trained briefly to respond on a lever for food reinforcement. 

Immediately after food training, rats were allowed free access to food for 3 days.  

Rats were anesthetized (100 mg/kg ketamine and 5 mg/kg diazepam, i.p.) and 

catheters were implanted into the right jugular vein, exiting through a dental 

acrylic head mount affixed to the skull via jeweler screws. Drug infusions were 

administered i.v. (0.1 ml over 5.9 sec) via a syringe pump (PHM-100, MED 

Assoc.) through a water-tight swivel attached to a 10 ml syringe via catheter 
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tubing, which was attached to the cannulae mounted to the head of the rat. 

Following a one-week recovery period from surgery, rats were trained to press 

one of two levers for an infusion of METH (0.05 mg/kg/infusion). Each infusion 

was followed by a 20-sec time out signaled by illumination of both lever lights. 

The response requirement was gradually increased to a terminal fixed ratio 5 (FR 

5) schedule of reinforcement.  Each session was 60 min in duration. Training 

continued until responding stabilized across sessions. Stable responding was 

defined as less than 20% variability in the number of infusions earned across 3 

successive sessions, a minimum of a 2:1 ratio of active (drug) lever responses to 

inactive (no drug) lever responses, and at least 10 infusions per session. Once 

stability was reached, an acute dose (0, 3.0, 5.6, 10 or 17 mg/kg) of MTD was 

administered (s.c.) 15 min prior to the session according to a within-subject Latin 

square design.  Two maintenance sessions (i.e., no pretreatment) were included 

between each test session to ensure stable responding throughout the 

experiment.   

IIe. Food-Maintained Responding.  Briefly, rats were trained to 

respond on one lever (active lever) for food pellet reinforcement (45 mg pellets, 

BIO-SERV, #F0021, Frenchtown, NJ), while responses on the other lever 

(inactive lever) had no programmed consequence.  Location (left or right) of the 

active and inactive levers was counterbalanced across rats. The response 

requirement was gradually increased, terminating at an FR 5.  Following lever 

training, a 20-sec signaled time out (illumination of both lever lights) was included 

following each pellet delivery. Time out following each pellet delivery was 
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instituted to be consistent with the METH self-administration procedure. Each 

food-reinforced session lasted 60 min. Training continued until responding 

stabilized across sessions. Stable responding was defined as less than 20% 

variability in the number of pellets earned across 3 successive sessions, and a 

minimum of a 2:1 ratio of active lever responses to inactive lever responses. 

After the stability criteria were reached, an acute dose of MTD (17 mg/kg) was 

administered (s.c.) 15 min prior to the 60-min session. Two maintenance 

sessions (i.e., no pretreatment) were included between test sessions to ensure 

stable responding throughout the experiment. 

IIf. [3H]Nicotine and [3H]MLA Binding Assays.  Analog-induced 

inhibition of [3H]nicotine and [3H]MLA binding was determined using published 

methods (Miller et al., 2004).  Whole brain, excluding cortex and cerebellum, was 

homogenized using a Tekmar polytron (Tekmar-Dohrmann, Mason, OH) in 20 

volume of ice-cold modified  Krebs’-HEPES buffer, containing: 2 mM HEPES, 

14.4 mM NaCl, 0.15 mM KCl, 0.2 mM CaCl2·2H2O and 0.1 mM MgSO4·7H2O, pH 

7.5.  Homogenates were centrifuged at 31,000 g for 17 min at 4 oC (Avanti J-301 

centrifuge, Beckman Coulter, Fullerton, CA).  Pellets were resuspended by 

sonication (Vibra Cell, Sonics & Materials Inc, Danbury, CT) in 20 volumes of 

Krebs’-HEPES buffer and incubated at 37 oC for 10 min (Reciprocal Shaking 

Bath Model 50, Precision Scientific, Chicago, IL).  Suspensions were centrifuged 

using the above conditions.  Resulting pellets were resuspended by sonication in 

20 volumes buffer and centrifuged at 31,000 g for 17 min at 4 oC.  Final pellets 

were stored in incubation buffer, containing: 40 mM HEPES, 288 mM NaCl, 3.0 
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mM KCl, 4.0 mM CaCl2·2H2O, and 2.0 mM MgSO4·7H2O, pH 7.5.  Membrane 

suspensions (100-140 µg protein/100 µl) were added to duplicate wells 

containing 50 µl analog (7-9 concentrations, 1 nM – 0.1 mM, final concentration 

in assay buffer), 50 µl of buffer, and 50 µl of [3H]nicotine or [3H]MLA (3 nM; final 

concentration) for a final volume of 250 µl, and incubated for 1 h at room 

temperature.  Nonspecific binding was determined in the presence of 10 µM 

cytisine or 10 µM nicotine for the [3H]nicotine and [3H]MLA assays, respectively.  

Reactions were terminated by harvesting samples on Unifilter-96 GF/B filter 

plates presoaked in 0.5% PEI using a Packard Filter Mate Harvester (Perkin 

Elmer, Inc.).  Samples were washed 3 times with 350 l of ice-cold buffer.  Filter 

plates were dried for 60 min at 45 oC, bottom-sealed and each well filled with 40 

l of Microscint 20 cocktail.  Bound radioactivity was determined via liquid 

scintillation spectmometry (TopCount NXT scintillation counter; PerkinElmer, 

Inc.).    

IIg. Synaptosomal [3H]DA and [3H]5-HT Uptake Assays.  Analog-

induced inhibition of [3H]DA and [3H]5-HT uptake into rat striatal and hippocampal 

synaptosomes, respectively, was determined using modifications of a previously 

described method (Teng et al., 1997).  Brain regions were homogenized in 20 ml 

of ice-cold 0.32 M sucrose solution containing  5 mM NaHCO3 (pH 7.4) with 16 

up-and-down strokes of a Teflon pestle homogenizer (clearance ~ 0.005”). 

Homogenates were centrifuged at 2,000 g for 10 min at 4 °C, and resulting 

supernatants centrifuged at 20,000 g for 17 min at 4 °C. Pellets were 

resuspended in 1.5 ml of Krebs’ buffer, containing: 125 mM NaCl, 5 mM KCl, 1.5 
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mM MgSO4,
 1.25 mM CaCl2, 1.5 mM KH2PO4, 10 mM α-D-glucose, 25 mM 

HEPES, 0.1 mM EDTA, with 0.1 mM pargyline and 0.1 mM ascorbic acid 

saturated with 95% O2 /5% CO2, pH 7.4). Synaptosomal suspensions (20 µg 

protein/50 µl) were added to duplicate tubes containing 50 µl analog (7-9 

concentrations, 0.1 nM – 1 mM, final concentration in assay buffer) and 350 µl of 

buffer and incubated at 34 °C for 5 min in a total volume of 450 µl. Samples were 

placed on ice and 50 µl of [3H]DA or [3H]5-HT (10 nM; final concentration), was 

added to each tube for a final volume of 500 µl.  Reactions proceeded for 10 min 

at 34°C and were terminated by the addition of 3 ml of ice-cold Krebs’ buffer.  

Nonspecific [3H]DA and [3H]5-HT uptake were determined in the presence of 10 

µM GBR 12909  and 10 µM fluoxetine, respectively.  Samples were rapidly 

filtered through Whatman GF/B filters using a cell harvester (MP-43RS; Brandel 

Inc.).  Filters were washed 3 times with 4 ml of ice-cold Krebs’ buffer containing 

catechol (1 μM).  Complete counting cocktail was added to the filters and 

radioactivity determined by liquid scintillation spectrometry (B1600 TR scintillation 

counter; PerkinElmer, Inc.).   

IIh. [3H]DTBZ Vesicular Binding Assays.  Analog-induced inhibition 

of [3H]DTBZ binding,  a high affinity ligand for VMAT2, was determined using 

modifications of a previously published method (Teng et al., 1998).  Rat whole 

brain (excluding cerebellum) was homogenized in 20 ml of ice-cold 0.32 M 

sucrose solution with 10 up-and-down strokes of a Teflon pestle homogenizer 

(clearance ~ 0.008”). Homogenates were centrifuged at 1,000g for 12 min at 4 °C 

and resulting supernatants were centrifuged at 22,000g for 10 min at 4 °C.  
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Resulting pellets were osmotically shocked by incubation in 18 ml of cold water 

for 5 min.  Osmolarity was restored by adding 2 ml of 25 mM HEPES and 100 

mM potassium tartrate solution.  Samples were centrifuged (20,000g for 20 min at 

4°C), and then 1 mM MgSO4 solution was added to the supernatants.  Samples 

were centrifuged at 100,000g for 45 min at 4°C.  Pellets were resuspended in 

cold assay buffer, containing: 25 mM HEPES, 100 mM potassium tartrate, 5 mM 

MgSO4, 0.1 mM EDTA, and 0.05 mM EGTA, pH 7.5.  Assays were performed in 

duplicate in 96-well plates. Vesicular suspensions (15 µg protein/100 µl) were 

added to wells containing 50 µl analog (7-9 concentrations, 0.01 nM – 0.1 mM, 

final concentration in assay buffer), 50 µl of buffer, and 50 µl of [3H]DTBZ (3 nM; 

final concentration) for a final volume of 250 µl and incubated for 1 hr at room 

temperature.  Nonspecific uptake was determined in the presence of 50 µl of 20 

µM Ro-4-1284.  Reactions were terminated by filtration onto Unifilter-96 GF/B 

filter plates (presoaked in 0.5% PEI). Filters were washed 3 times with 350 µl of 

ice-cold buffer, containing: 25 mM HEPES, 100 mM potassium-tartrate, 5 mM 

MgSO4, and 10 mM NaCl, pH 7.5. Filter plates were dried, bottom-sealed and 

each well filled with 40 µl of scintillation cocktail (MicroScint 20; PerkinElmer, 

Inc.). Radioactivity on the filters was determined by liquid scintillation 

spectrometry.  

IIi. Vesicular [3H]DA Uptake Assay.  Analog-induced inhibition of 

[3H]DA uptake into rat striatal vesicles was determined using modifications of a 

previously published method (Teng et al., 1997).  Previous reports from our 

laboratory show that this vesicle preparation contains <1% contaminating 
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membrane fragments (Teng et al., 1997).  Striata were homogenized in 14 ml of 

ice-cold 0.32 M sucrose solution containing  5 mM NaHCO3 (pH 7.4) with 10 up-

and-down strokes of a Teflon pestle homogenizer (clearance ~ 0.008”).  

Homogenates were centrifuged at 2,000 g for 10 min at 4 °C and resulting 

supernatants centrifuged at 10,000 g for 30 min at 4 °C. Pellets were 

resuspended in 2.0 ml of 0.32 M sucrose and were transferred to tubes 

containing 7 ml of milliQ water and homogenized with 5 up-and-down strokes.  

Homogenates were transferred to tubes containing 900 μl of 0.25 M HEPES and 

900 μl of 1.0 M potassium tartrate solution and centrifuged at 20,000 g for 20 min 

at 4 ºC.  Resulting supernatants were centrifuged at 55,000 g for 60 min at 4 ºC.  

Subsequently, 100 μl of 1 mM MgSO4, 100 μl of 0.25 M HEPES and 100 μl of 1.0 

M potassium tartrate were added to the supernatant and centrifuged at 100,000 g 

for 45 min at 4 ºC.  Final pellets were resuspended in assay buffer, containing: 25 

mM HEPES, 100 mM potassium tartrate, 50 μM EGTA, 100 μM EDTA, and 1.7 

mM ascorbic acid, 2 mM ATP-Mg2+, pH 7.4.  Vesicular suspensions (10 µg 

protein/100 µl) were added to duplicate tubes containing 50 µl analog (7-9 

concentrations, 1 nM – 0.1 mM, final concentration in assay buffer), 300 µl of 

buffer, and 50 µl of [3H]DA (0.1 µM; final concentration) for a final volume of 500 

µl and incubated for 8 min at 34 °C.  Nonspecific [3H]DA uptake was determined 

in the presence of 10 µM Ro-4-1284.  Samples were filtered rapidly through 

Whatman GF/B filters using the cell harvester and washed 3 times with assay 

buffer containing 2 mM MgSO4 in the absence of ATP.  Radioactivity retained by 

the filters was determined as previously described.   
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IIj. Kinetics of Vesicular [3H]DA Uptake.  Vesicle suspensions were 

prepared as described above; striata were pooled from 2 rats.  Vesicular 

suspensions (20 µg protein/50 µl) were added to duplicate tubes containing 25 µl 

analog (final concentration approximating the Ki), 150 µl of buffer, and 25 µl of 

[3H]DA (1 nM – 5 μM; final concentration) for a final volume of 250 µl, and 

incubated for 8 min at 34 °C.  Nonspecific [3H]DA uptake was determined in 

samples containing 10 µM Ro4-1284.  Samples were processed as previously 

described.   

IIk. Endogenous DA Release Assay.  HPLC-EC determination of DA 

release was performed by Kiran Siripurapu, Ph.D.. Rat coronal striatal slices (0.5 

mm thick) were prepared and incubated in Krebs’ buffer, containing: 118 mM 

NaCl, 4.7 mM KCl, 1.2 mM MgCl2, 1.0 mM NaH2PO4, 1.3 mM CaCl2, 11.1 mM -

D-glucose, 25 mM NaHCO3, 0.11 mM L-ascorbic acid and 0.004 mM EDTA, pH 

7.4, saturated with 95% O2/5% CO2 at 34 ºC in a metabolic shaker for 60 min 

(Teng et al., 1997).  Each slice was transferred to a glass superfusion chamber 

and superfused at 1 ml/min for 60 min with Krebs’ buffer before sample 

collection. Two basal samples (1 ml) were collected at 5-min and 10-min time 

points. Each slice was superfused for 30 min in the absence or presence of a 

single concentration of analog (0.1 -10 M) to determine analog-evoked DA and 

DOPAC overflow, and remained in the buffer until the end of the experiment.  

METH (5 M) was added to the buffer after 30 min of superfusion, and slices 

were superfused for 15 min, followed by 20 min of superfusion in the absence of 

METH.  In each experiment, a striatal slice was superfused for 90 min in the 
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absence of both analog and METH, serving as the buffer control condition.  In 

each experiment, duplicate slices were superfused with METH in the absence of 

analog, serving as the METH control condition.  The concentration of METH was 

selected based on pilot concentration-response data showing a reliable response 

of sufficient magnitude to allow evaluation of analog-induced inhibition.  Each 

superfusate sample (1 ml) was collected into tubes containing 100 l of 0.1 M 

perchloric acid.  Prior to HPLC-EC analysis, ascorbate oxidase (20 µl, 168 U/mg 

reconstituted to 81 U /ml) was added to 500 µl of each sample and vortexed for 

30 s, and 100 µl of the resulting solution injected onto the HPLC-EC.   

The HPLC-EC consisted of a pump (model 126 Beckman Coulter, Inc, 

Fullerton, CA) and autosampler (model 508 Beckman Coulter, Inc), an ODS 

Ultrasphere C18 reverse-phase 80 × 4.6 mm, 3-µm column and a Coulometric-II 

detector with guard cell (model 5020) maintained at +0.60 V and analytical cell 

(model 5011) maintained at potentials E1 = -0.05 V and E2 = +0.32 V (ESA Inc., 

Chelmsford, MA).  HPLC mobile phase (flow rate, 1.5 ml/min) was 0.07 M 

citrate/0.1 M acetate buffer pH 4, containing: 175 mg/l octylsulfonic acid sodium 

salt, 650 mg/l NaCl and 7% methanol.  Separations were performed at room 

temperature, and 5-6 min was required to process each sample. Retention times 

of DA or DOPAC standards were used to identify respective peaks.  Peak 

heights were used to quantify the detected amounts of analyte based on 

standard curves.  Detection limit for DA and DOPAC was 1-2 pg/100 µl.  

IIl. Data Analysis.  For the behavioral experiments, one-way ANOVA 

with dose as a within-subject factor was used to determine if MTD altered METH 
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self-administration.  Dunnett’s post-hoc tests were used to compare each MTD 

dose to the saline control.  A single paired-sample t-test was used to determine 

the effects of MTD on food-maintained behavior.   

For the neurochemical experiments, specific [3H]nicotine, [3H]MLA and 

[3H]DTBZ binding and specific [3H]DA and [3H]5-HT uptake were determined by 

subtracting the nonspecific binding or uptake from the total binding or uptake.  

Analog concentrations producing 50% inhibition of specific binding or uptake 

(IC50 values) were determined from concentration effect curves via an iterative 

curve-fitting program (Prism 5.0; GraphPad Software Inc., San Diego, CA).  

Inhibition constants (Ki values) were determined using the Cheng-Prusoff 

equation (Cheng and Prusoff, 1973).  For kinetic analyses, Km and Vmax were 

determined using one-site binding curves.  Paired two-tailed t-tests were 

performed on the arithmetic Vmax and the log Km values to determine significant 

differences between analog and control conditions.  Pearson’s correlation 

analysis determined the relationship between affinity for the [3H]DTBZ binding 

site and vesicular [3H]DA uptake. 

For endogenous neurotransmitter release assays, fractional release was 

defined as the DA or DOPAC concentration in each sample divided by the slice 

weight.  Basal DA or DOPAC outflow was calculated as the average fractional 

release of the two basal samples collected 10 min prior to addition of analog to 

the buffer.  Analog-evoked DA or DOPAC overflow was calculated as the 

average fractional release during the 30 min period of analog exposure prior to 

METH addition to the buffer.  Analog-evoked DA or DOPAC overflow was 
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analyzed by one-way repeated-measures ANOVA.  Time course for analog-

induced inhibition of METH-evoked fractional DA or DOPAC release was 

analyzed by two-way ANOVA with concentration and time as repeated-measures 

factors. If a concentration x time interaction was found, one-way ANOVAs were 

performed at each time point at which METH-evoked DA release above basal 

outflow.  When appropriate, one-way ANOVAs were followed by Dunnett’s post 

hoc test to determine concentrations of analog that decreased METH-evoked DA 

fractional release.  Furthermore, one-way ANOVA was performed on the peak 

response of METH-evoked fractional release at each analog concentration.  The 

log IC50 value was generated using an iterative nonlinear least squares curve-

fitting program (PRISM version 5.0).   Statistical significance was defined as p < 

0.05. 

III. Results 

IIIa. MTD decreases METH self-administration without altering 

food-maintained responding.  The effect of MTD on METH self-administration 

is illustrated in Fig. 8 (top panel).  One-way ANOVA revealed a dose-related 

effect of MTD on the number of METH infusions earned (F4,16 = 4.86, p < 0.05). 

Dunnett’s test revealed that the high dose of MTD (17 mg/kg) decreased the 

number of METH infusions earned compared to control.  Tolerance developed to 

the ability of MTD to decrease METH self-administration on the second day of 

treatment.  The effect of the acute high dose of MTD (17 mg/kg) on food-

maintained responding is illustrated in Fig. 8 (bottom panel).  MTD did not 

decrease responding for food (p = 0.414).  Thus, the high dose of MTD 
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specifically decreased METH self-administration; however, tolerance developed 

to this effect.  

IIIb. MTD analogs do not inhibit [3H]nicotine and [3H]MLA binding. 

Concentration-response curves and Ki values for lobeline, MTD, and the series of 

MTD analogs to inhibit [3H]nicotine and [3H]MLA binding to whole brain 

membranes, compared with nicotine (positive control), are provided in Fig 9 (top 

and bottom panels, respecitively) and Table 1.  Ki  values for nicotine were 3 nM 

and 370 nM at the [3H]nicotine and [3H]MLA binding sites, respectively, 

consistent with previous reports (Flammia et al., 1999).  Ki values for lobeline 

were 4 nM and 6.26 µM at the [3H]nicotine and [3H]MLA binding sites, 

respectively, also consistent with previous reports (Zheng et al., 2005a).  Ki 

values for MTD were >100 µM at both [3H]nicotine and [3H]MLA binding sites, as 

previously observed (Miller et al., 2004). None of the MTD analogs in this series 

inhibited [3H]nicotine or [3H]MLA binding. 

IIIc. MTD analogs inhibit synaptosomal [3H]DA uptake.  

Concentration-response curves and Ki values for lobeline, MTD, and the series of 

MTD analogs to inhibit [3H]DA uptake into striatal synaptosomes, compared with 

GBR 12909 (positive control), are provided in Fig. 10 and Table 1.  The Ki value 

for GBR 12909 to inhibit [3H]DA uptake was 0.97 nM, consistent with previous 

reports (Reith et al., 1994).  The Ki value for lobeline to inhibit [3H]DA uptake was 

28.2 µM, whereas the defunctionalized unsaturated compound MTD exhibited a 

200-fold higher potency (Ki = 100 nM) compared to lobeline, in agreement with 

previous observations (Miller et al., 2004).  MTD analogs in the current series 
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exhibited 50-1000-fold lower potency (Ki > 5 µM) than MTD at DAT. Of note, the 

2,4-dichlorophenyl analogs, UKMH-105 and UKMH-106, exhibited 60-fold lower 

potency (Ki = 6.27 and 6.90 μM, respectively) than MTD. Thus, this series of 

MTD analogs exhibited lower affinities for DAT compared to the parent 

compound.   

 

IIId. MTD analogs inhibit synaptosomal [3H]5-HT uptake. 

Concentration-response curves and Ki values for lobeline, MTD, and the series of 

MTD analogs to inhibit [3H]5-HT uptake into hippocampal synaptosomes, 

compared with fluoxetine (positive control), are provided in Fig. 11 and Table 1.  

The Ki value for fluoxetine to inhibit [3H]5-HT uptake was 6.5 nM, consistent with 

previous reports (Owens, 2001).  The Ki value for lobeline to inhibit [3H]5-HT 

uptake was 46.8 µM, whereas MTD exhibited 6-fold higher potency (Ki = 7 µM) 

compared to lobeline, in agreement with previous observations (Miller et al., 

2004).  The majority of the MTD analogs had Ki values not different from MTD; of 

note, the 2,4-dichlorophenyl analogs, UKMH-105 and UKMH-106, exhibited low 

potency at SERT (Ki = 18.3 and 20.7 μM, respectively).  Exceptions include 

UKMH-101 (no phenyl substituents), UKMH-107 (a 4-methoxyphenyl analog), 

UKMH-108 (a 4-methylphenyl analog), and UKMH-112 (a 3-furanyl analog), 

which exhibited 10-fold higher potency at SERT compared to MTD.   

IIIe. MTD analogs inhibit [3H]DTBZ binding at VMAT2.  

Concentration-response curves and Ki values for lobeline, MTD, and the series of 
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MTD analogs to inhibit [3H]DTBZ binding to whole brain membranes, compared 

with Ro-4-1284 (positive control), are provided in Fig. 12 and Table 1.  The Ki 

value for Ro-4-1284 to inhibit [3H]DTBZ binding was 28 nM, consistent with a 

previous report (Cesura et al., 1990).  The Ki value for lobeline to inhibit 

[3H]DTBZ binding was 2.04 µM, whereas MTD exhibited a 5-fold lower potency 

(Ki = 9.88 nM) compared to lobeline, consistent with previous observations 

(Zheng et al., 2005a).  The majority of analogs in the series were equipotent 

inhibiting [3H]DTBZ binding compared with MTD (Table 1).  An exception was 

UKMH-109 (2-thiophenyl analog), which exhibited 10-fold lower potency at the 

[3H]DTBZ binding site compared to MTD.  Of note, UKMH-105 and UKMH-106, 

the 2,4-dichlorophenyl double bond isomers, exhibited geometrically specific 

inhibition of [3H]DTBZ binding (Ki = 4.60 and 41.3 μM, respectively).  

IIIf. MTD analogs inhibit [3H]DA uptake by VMAT2.  Concentration-

response curves and Ki values for lobeline, MTD, and the series of MTD analogs 

to inhibit [3H]DA uptake into striatal vesicles, compared with Ro-4-1284 (positive 

control), are provided in Fig. 13 and Table 1.  The Ki value for Ro-4-1284 to 

inhibit [3H]DA uptake was 18 nM, consistent with a previous report (Nickell et al., 

2011).  The Ki value for lobeline to inhibit [3H]DA uptake by VMAT2 was 1.27 µM, 

which was not different from that for MTD (Ki = 0.46 µM), consistent with previous 

observations (Nickell et al., 2010).  The majority of the analogs in this series were 

equipotent with MTD inhibiting [3H]DA uptake at VMAT2 (Table 1).  Of note, the 

2,4-dichlorophenyl  isomers, UKMH-105 and UKMH-106, were two of the most 

potent analogs in the series, with Ki values of 0.22 and 0.32 µM, respectively.   
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Fig. 14 illustrates Ki values for inhibition of vesicular [3H]DA uptake as a 

function of Ki for inhibition of [3H]DTBZ binding for lobeline, MTD and the series 

of MTD analogs.  Correlation analysis revealed no relationship between these 

parameters probing VMAT2 (Pearson’s correlation coefficient r = 0.42, p = 0.13).   

IIIg. UKMH-105 and UKMH-106 competitively inhibit [3H]DA uptake 

at VMAT2.  UKMH-105 and UKMH-106 were 20- to 450-fold selective for VMAT2 

over DAT, SERT and 4β2* and 7* nAChRs.  UKMH-105 and UKMH-106 had 

10- to 100-fold higher affinity in the VMAT2 functional assay compared with the 

VMAT2 binding assay. To further evaluate these two analogs, kinetic analyses of 

[3H]DA uptake at VMAT2 were conducted to determine the mechanism of 

inhibition, i.e., competitive or noncompetitive, compared with parent compounds 

(MTD and lobeline).   Kinetic assays revealed an increased Km value and no 

change in Vmax for each compound (Fig. 15) compared to control, indicating a 

competitive mechanism of action.    

IIIh. UKMH-106 inhibits METH-evoked endogenous DA release, 

while UKMH-105 does not. The ability of UKMH-105 and UKMH-106 to evoke 

DA release from superfused striatal slices is illustrated in Figs. 16 and 17.  

Analysis of the effect of UKMH-105 on DA release prior to the addition of METH 

to the buffer (20-40 min of sample collection) showed no main effects of 

concentration (F5,29 = 0.47, p > 0.05) and  time (F4,29 = 1.01, p > 0.05), and no 

concentration x time interaction (F20,29 = 0.67, p > 0.05).  Thus, UKMH-105 alone 

did not evoke DA release.  Similarly, UKMH-106 did not alter DA release (no 

main effect of concentration (F4,43 = 0.12, p > 0.05) and showed no time x 
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concentration interaction (F16,43 = 1.57, p > 0.05)).  A main effect of time was 

found (F4,43 = 6.78, p < 0.05), revealing that fractional release increased slightly 

across the 20 min exposure period in both the absence and presence of UKMH-

106.  Both UKMH-105 and UKMH-106 also had no effect on DOPAC fractional 

release across the time period (Fig. 18).  

The ability of UKMH-105 and UKMH-106 to decrease METH-evoked DA 

release is illustrated also in Figs. 16 and 17.  A two-way repeated measures 

ANOVA on fractional DA release during exposure to UKMH-105 and METH 

revealed no main effect of concentration (F5,29 = 0.65, p > 0.05) and no 

concentration x time interaction (F25,29 = 0.45, p > 0.05); however, a main effect 

of time (F5,29 = 15.4, p < 0.0001) was observed, which reflects the increase in 

fractional release evoked by METH in the absence and presence of UKMH-105.  

Similar results were obtained with DOPAC, although in the absence and 

presence of UKMH-105, DOPAC fractional release was decreased in response 

to METH (Fig. 18).  Thus, UKMH-105 did not alter the effect of METH on DA or 

DOPAC fractional release. 

In a concentration-dependent manner, UKMH-106 decreased METH-

evoked DA release (Fig. 17).  Two-way repeated-measures ANOVA on fractional 

DA release during exposure to UKMH-106 and METH revealed a main effect of 

concentration (F4,43 = 7.61,  p < 0.0001) and time (F5,43 = 23.0, p < 0.0001), and a 

concentration x time interaction (F20,43 = 1.68, p < 0.05).  Post hoc analysis 

revealed that, UKMH-106 (1.0 and 3.0 µM) decreased METH-evoked DA release 

compared to control at 50-55 min and 50-60 min, respectively.  The 
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concentration response for UKMH-106 to inhibit METH-evoked DA release at 

peak response is illustrated also in Fig 17.  IC50 and Imax values were 0.38 ± 

0.13 µM and 50.2 ± 15.5%, respectively.  One-way ANOVA on peak response 

data revealed a concentration-dependent effect of UKMH-106 (F4,43 = 3.11, p < 

0.05).  Post hoc analysis revealed that 3 µM UKMH-106 inhibited the DA peak 

response.  In contrast to the ability of UKMH-106 to decrease METH-evoked 

fractional DA release, fractional DOPAC release was not altered (Fig. 18).   

 

IV. Discussion 

In the current study, MTD was shown to decrease METH self-

administration specifically, but only at the highest dose evaluated, and tolerance 

developed rapidly to this effect.  Taking into account this encouraging finding, but 

tempered by the limitations associated with the development of tolerance, 

modifications to the MTD molecule were evaluated in search of preclinical 

candidates for the treatment of METH abuse.  SAR identified several 

conformationally-restricted MTD analogs with high affinity and selectivity for 

VMAT2.  Structural modifications included lengthening the linker units, 

introduction of 4-methoxy, 4-methyl, or 2,4-dichloro substituents into the phenyl 

rings, or replacement of the phenyl rings with thiophene or furan rings.  Effects of 

altering the geometry of the double bond at the C5-position of the piperidine ring 

were evaluated in analogs with either a lengthened linker unit or an aromatic 2,4-

dichloro substituted phenyl ring.  Affinity for VMAT2 was retained, and increases 
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in selectivity for VMAT2 over DAT were found.  The most selective analogs 

inhibited METH-evoked DA release in a geometrically specific manner.   

Conformational restriction in combination with both E and Z geometries at 

the C5 position of the piperidine ring (UKMH-101 and UKMH-102, respectively) 

did not alter affinity for VMAT2 binding and uptake sites.  Lengthening the linker 

units, regardless of E or Z geometry (UKMH-103 and UKMH-104, respectively), 

or adding aromatic 4-methoxy or 4-methyl substituents (UKMH-107 and UKMH-

108, respectively), did not alter VMAT2 binding and function.  Adding aromatic 

electron-withdrawing 2,4-dichloro groups in combination with E or Z geometries 

at the C5-postion on the piperidine ring (UKMH-105 and UKMH-106, 

respectively) afforded equipotent inhibition of uptake compared to MTD.  In 

kinetic analyses, UKMH-105 and UKMH-106 increased Km, and did not alter 

Vmax, indicating competitive inhibition of DA uptake.  Although no differences in 

affinity for VMAT2 uptake sites were observed, geometrically-specific inhibition of 

[3H]DTBZ binding was observed.   Specifically, UKMH-106 (3Z, 5Z geometry) 

had 10-fold lower affinity than UKMH-105 (3Z, 5E geometry) at the [3H]DTBZ 

binding site.  In contrast, double bond geometry was not a contributing factor to 

affinity for VMAT2 binding or uptake in analogs (UKMH-101 and UKMH-102) with 

no phenyl ring substituents, or analogs (UKMH-103 and UKMH-104) with 

lengthened linker units and no phenyl ring substituents.  While E geometry was 

better tolerated than Z geometry at the VMAT2 binding site, double bond 

geometry was not a factor for affinity at the VMAT2 uptake site.    
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Substitution of the phenyl rings with thiophene or furan moieties afforded 

analogs with equipotent or 10-fold lower affinity for VMAT2 binding and uptake 

sites, compared with MTD.  Position of the heteroaromatic ring was a factor 

influencing affinity.  Specifically, 3-substituted analogs were equipotent at VMAT2 

binding and uptake sites compared with MTD, whereas 2-substituted analogs 

exhibited 10-fold lower potency.  These results suggest that VMAT2 can 

accommodate analogs in which furanyl and thiophenyl rings have been 

substituted for phenyl rings, with the 3-position better tolerated than the 2-

position.  

The current results provide examples of structural modifications that 

dissociate affinity for the VMAT2 binding site from that for the VMAT2 substrate 

site and support previous observations showing a lack of correlation between 

affinities for these sites (Nickell et al., 2011).  The best examples from the current 

series of analogs are the 2,4-dichlorophenyl analogs (UKMH-105 and UKMH-

106) which were equipotent at the VMAT2 uptake site, yet exhibited a 10-fold 

difference in affinity at the binding site.  Thus, these findings support an 

interaction at two alternate sites on VMAT2 associated with distinct 

pharmacophores.     

One goal was to discover MTD analogs with greater selectivity for VMAT2 

over DAT.  MTD had low affinity (Ki>100 μM) at α4β2* and α7* nAChRs, and 

inhibited DA uptake by DAT (Ki=500 nM) and 5-HT uptake by SERT (Ki=8.9 µM; 

Miller et al., 2004).  Psychostimulant-induced inhibition of DAT function resulted 

in increases in extracellular DA, leading to reward and abuse (Ritz et al., 1987; 
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Williams and Galli, 2006).  Affinity of MTD for DAT (Ki=100 nM; current study) is 

similar to that for cocaine and methylphenidate (Ki=300 and 100 nM, 

respectively; Han and Gu, 2006), suggesting that MTD may have abuse liability.  

Reducing affinity for DAT is imperative to avoiding abuse liability. Analogs in the 

current series had reduced affinity (50-1000-fold) at DAT compared to MTD.  

Substitution of the phenyl rings with 3-thiophenyl and 3-furanyl rings resulted in 

the greatest decreases in DAT affinity.  Thus, the current analogs have increased 

selectivity for VMAT2 over DAT, compared to MTD, and would be predicted to 

have reduced abuse liability. 

Since MTD had moderate affinity for SERT (Miller et al., 2004), affinity of 

the MTD analogs for SERT also was evaluated.  Introduction of aromatic 4-

methoxy or 4-methyl substituents into the phenyl rings of MTD resulted in a 5-10-

fold increased affinity for SERT compared with MTD.  The remaining structural 

changes to MTD did not alter affinity at SERT compared with MTD.   

Since the 2,4-dichlorophenyl analogs, UKMH-105 and UKMH-106, 

exhibited high affinity and selectivity for inhibiting VMAT2 function, these 

compounds were evaluated for their ability to decrease METH-evoked DA 

release. Alone, these analogs did not evoke DA release. UKMH-106, but not 

UKMH-105, inhibited METH-evoked DA release. Inhibition of DA uptake by the 

analogs at the VMAT2 substrate site does not explain the C5 Z-selective 

inhibition of the effect of METH on VMAT2.  UKMH-105 and UKMH-106 

equipotently inhibited DA uptake by VMAT2, but exhibited C5 Z-selective 

inhibition of METH-evoked DA release, suggesting that these two geometrical 
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isomers interact with different sites on VMAT2 to inhibit DA uptake and METH-

evoked DA release.  Only, the Z double bond geometry at the C5 position of the 

piperidine ring (UKMH-106) was tolerated by the DA release site, whereas the 

DA uptake site also tolerated the C5 E geometry (UKMH-105).  Thus, the VMAT2 

site mediating METH-evoked DA release is restricted in its ability to 

accommodate both geometrical isomers compared to the VMAT2 uptake site.  

While the mechanism by which METH releases DA from synaptic vesicles 

is not understood fully, potential mechanisms include weak base effects of 

METH, which disrupt vesicular proton gradients and METH effects at the VMAT2 

substrate site (Sulzer et al., 2005).  Although having different double bond 

geometries, UKMH-105 and UKMH-106 are expected to have comparable pKa’s, 

inconsistent with the weak base hypothesis as an explanation for differential 

effects in decreasing METH-evoked DA release.  However, current observations 

are consistent with a previous report showing differential effects of the AMPH 

optical isomers (Arnold et al., 1977; Fisher and Cho, 1979), despite having the 

identical pKa’s, which again does not support the weak base hypothesis (Sulzer 

et al., 2005). Thus, UKMH-106 may inhibit METH-evoked DA release through an 

interaction with VMAT2 and not via a weak-base mechanism.   

One caveat of the current study is that inhibitory effects of the analogs on 

DA uptake and METH-evoked DA release were evaluated using different 

preparations, isolated vesicles and more intact slices, respectively.  One 

alternative is that the analogs may inhibit METH-evoked DA release by 

interacting with DAT in the slice.  Cytosolic DA is transported to the extracellular 
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compartment through a METH-induced reversal of DAT (Fischer and Cho, 1979).  

However, UKMH-106 inhibited METH-evoked DA release 18-fold more potently 

than inhibition of DAT function, making it unlikely that inhibition of DAT is 

responsible for the decrease in METH-evoked DA release. If inhibition of DAT 

was responsible, then both UKMH-105 and UKMH-106 would be expected to 

decrease METH-evoked DA release, since they are equipotent inhibiting DAT.   

A concern regarding the approach of developing VMAT2 inhibitors as 

treatments for METH abuse is the potential for neurotoxicity, as increased 

cytosolic DA levels can lead to oxidative stress.  METH, inhibits DA uptake at 

VMAT2, promotes DA release from vesicles, inhibits monoamine oxidase, and 

produces DA deficits due to increased formation of reactive oxygen species 

(Fleckenstein et al., 2007).  To the contrary, lobeline protects against METH-

induced neurotoxicity (Eyerman and Yamamoto, 2005).  Further, METH-addicted 

individuals given lobeline in phase II clinical trials exhibited no adverse effects 

(Jones, 2007), and TBZ (a classical VMAT2 inhibitor) is FDA-approved for the 

treatment of Huntington’s chorea (Frank, 2010). Thus, precedent for the clinical 

use of VMAT2 inhibitors exists.  Nevertheless, evaluation of the potential 

neurotoxicity of these analogs using animal models will be an integral component 

of the drug development process for these candidate treatments for METH 

abuse.    

In summary, the current results extend our previous research by showing 

that MTD decreases METH self-administration without altering food-maintained 

responding, demonstrating that inhibition of VMAT2 function translates to a 
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promising behavioral result. However, MTD has relatively low water solubility, 

diminishing drug-likeness, and has high affinity (100 nM) for DAT, which may 

result in abuse liability.  Current results show that incorporation of the 

phenylethylene moiety of MTD into the piperidine ring system, and the addition of 

aromatic dichloro substituents, results in a novel candidate compound, UKMH-

106, which has improved water-solubility and reduced affinity for DAT, SERT, 

and nAChRs, thereby increasing selectivity for VMAT2. Moreover UKMH-106 

decreased the effect of METH to evoke DA release. Thus, the current research 

utilizing a classical pharmacological approach has identified a novel lead 

compound that shows promise as a pharmacotherapy to treat METH abuse, a 

devastating problem for which there are no available treatments.   
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Table 1. Affinity values (Ki) of MTD analogs, lobeline, MTD and standard 
compounds for nicotinic receptors, DAT, SERT, and VMAT2 binding and 

function.  

a 
n = 3-4 rats; 

b
ND, not determined; 

c 
data taken from Zheng et al., 2005a; 

d
data taken from Miller et al., 

2001; (3Z,5E)-3,5-dibenzylidene-1-methylpiperidine (UKMH-101); (3Z,5Z)-3,5-dibenzylidene-1-
methylpiperidine (UKMH-102); [(3Z,5E)-1-methyl-3,5-bis((E)-3-phenylallylidene)piperidine (UKMH-103); 
(3Z,5Z)-1-methyl-3,5-bis((E)-3-phenylallylidene)piperidine (UKMH-104); (3Z,5E)-3,5-bis(2,4-
dichlorobenzylidene)-1-methylpiperidine (UKMH-105); (3Z,5Z)-3,5-bis(2,4-dichlorobenzylidene)-1-
methylpiperidine (UKMH-106); (3Z,5Z)-3,5-bis(4-methoxybenzylidene)-1-methylpiperidine (UKMH-107); 
(3Z,5Z)-1-methyl-3,5-bis(4-methylbenzylidene)-piperidine (UKMH-108); (3Z,5Z)-1-methyl-3,5-bis(thiophen-2-
ylmethylene)piperidine (UKMH-109); (3Z,5Z)-1-methyl-3,5-bis(thiophen-3-ylmethylene)piperidine (UKMH-
110); (3Z,5Z)-3,5-bis(furan-2-ylmethylene)-1-methylpiperidine (UKMH-111); (3Z,5Z)-3,5-bis(furan-3-
ylmethylene)-1-methylpiperidine (UKMH-112) 

Compound 

[3H]Nicotine 
Binding 
Ki ± SEM 

(μM) 

[3H]MLA  
Binding 
Ki ± SEM 

(μM) 

DAT 
[3H]DA  
Uptake 

Ki ± SEM 
(μM) 

SERT 
[3H]5-HT 
Uptake 

Ki ± SEM 
(μM) 

VMAT2 
[3H]DTBZ  
Binding 
Ki ± SEM 

(μM) 

VMAT2 
[3H]DA  
Uptake 

Ki ± SEM 
(μM) 

Nicotine 
0.003 ± 
0.0002 a

 
0.37 ± 0.08 

a NDb NDb NDb NDb 

GBR 12909 NDb NDb 
0.00097 ± 
0.0001 a 

ND ND ND 

Fluoxetine ND ND ND 
0.0065 ± 
0.0001 a 

ND ND 

Ro-4-1284 ND ND ND ND 
0.028 ± 
0.003 a 

0.018 ± 
0.002 a 

Lobeline 
0.004 ± 
0.0001 

6.26 ± 1.30 28.2 ± 6.73 46.8 ± 3.70 2.04 ± 0.26c 1.27 ± 0.46 

MTD >100d >100d 0.10 ± 0.01 7.00 ± 1.30 9.88 ± 2.22c 0.46 ± 0.11 

UKMH-101 >100 >100 11.5 ± 1.90 0.71 ± 0.09 31.8 ± 5.84 0.88 ± 0.19 

UKMH-102 >100 >100 25.1 ± 2.93 1.37 ± 0.09 12.3 ± 4.70 0.22 ± 0.05 

UKMH-103 >100 >100 16.2 ± 1.20 2.10 ± 0.51 20.3 ± 3.73 0.79 ± 0.18 

UKMH-104 >100 >100 5.25 ± 0.46 2.67 ± 0.51 15.0 ± 5.22 0.88 ± 0.26 

UKMH-105 >100 >100 6.27 ± 0.60 18.3 ± 7.50 4.60 ± 1.70 0.22 ± 0.01 

UKMH-106 >100 >100 6.90 ± 1.10 20.7 ± 4.90 41.3 ± 14.3 0.32 ± 0.12 

UKMH-107 >100 >100 68.2 ± 6.93 0.51 ± 0.05 7.27 ± 2.28 1.03 ± 0.19 

UKMH-108 >100 >100 39.0 ± 16.3 0.61 ± 0.08 3.42 ± 0.26 0.33 ± 0.08 

UKMH-109 >100 >100 >100 16.3 ± 4.10 91.3 ± 26.2 2.27 ± 1.13 

UKMH-110 >100 >100 58.1 ± 18.7 13.4 ± 4.10 10.4 ± 2.62 0.36 ± 0.12 

UKMH-111 >100 >100 >100 16.1 ± 2.91 32.6 ± 6.79 3.82 ± 1.99 

UKMH-112 >100 >100 5.50 ± 0.26 0.71 ± 0.19 15.5 ± 1.61 0.58 ± 0.08 
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Fig. 6.  Chemical structures of lobeline, MTD, and MTD analogs 

incorporating the phenyethylene moiety of MTD into the piperidine ring 

system with the addition of various phenyl ring substituents. For clarity of 

presentation, compounds are grouped according to structural similarity.  (top) 

Lobeline, MTD and MTD analogs with no phenyl ring additions; (middle) MTD 

analogs with dichloro, methoxy, or methyl additions; (bottom) MTD analogs with 

heteroaromatic phenyl ring substitutions. 
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Lobeline, meso-transdiene, and MTD analogs with no phenyl ring substituents

MTD analogs with dichloro, methoxy, or methyl aromatic substituents

MTD analogs containing heteroaromatic rings
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Fig 7.   Incorporating the phenylethylene moiety of MTD into the piperdine 

ring of the analogs affords a novel more rigid molecule.   For all analogs in 

the series, the phenyethylene substituents in the MTD structure (left) were 

incorporated into the piperidine ring system to afford analogs (right) with a similar 

number of carbons between the piperidine nitrogen and the phenyl rings.  This 

structural change reduces the molecular weight and the number of rotational 

carbon bonds (curved arrows) from four in MTD to two in the MTD analogs, 

affording a novel, more conformationally-restricted structure.  
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Fig 8. MTD decreases METH self-administration, however tolerance 

develops to this effect.  MTD does not alter food-maintained responding.  

Effect of acute MTD (closed circles) and repeated MTD (open circles) on METH 

self-administration (top panel).  Effect of the high dose of MTD (17.0 mg/kg) on 

food-maintained responding (bottom panel).  Data are expressed as mean ± 

S.E.M. number of METH infusions (0.05 mg/kg/infusion) or number of pellets 

earned during 60-min sessions (n = 5-6).   *indicates p < 0.05 compared to 

control. 
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Fig 9.  MTD analogs do not inhibit [3H]nicotine binding and [3H]MLA binding 

to whole brain membranes.  Data represent the ability of analogs to displace 

[3H]nicotine and  [3H]MLA binding (top and bottom panel, respectively).  

Nonspecific [3H]nicotine binding and nonspecific [3H]MLA binding were 

determined in the presence of 10 μM cytisine and 10 μM nicotine, respectively.  

Control represents [3H]nicotine and [3H]MLA binding in the absence of analog 

(56.8 ± 4.22 and  69.7 ± 2.67 fmol/mg protein, respectively).  n = 3-4 rats/analog. 
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Fig. 10.  Structural modifications to MTD afford analogs with decreased 

affinity for DAT.  Analogs are grouped according to structural similarity of the 

aromatic rings.   (top) Lobeline, MTD and MTD analogs with no aromatic ring 

substituents; (middle) MTD analogs with dichloro, methoxy, or methyl aromatic 

substituents; (bottom) MTD analogs containing heteroaromatic rings.  MTD is 

repeated in all 3 panels for purpose of comparison.  Nonspecific [3H]DA uptake 

was determined in the presence of 10 μM GBR 12909.  Control (CON) 

represents specific [3H]DA uptake in the absence of analog (35.0 ± 1.55 

pmol/mg/min).  Legend provides analogs in order from highest to lowest affinity.  

n = 4 rats/analog.   
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Fig. 11.  MTD analogs inhibit [3H]5-HT uptake into rat hippocampal 

synaptosomes.   Analogs are grouped according to structural similarity of the 

aromatic rings.  (top) Lobeline, MTD and MTD analogs with no aromatic ring 

substituents; (middle) MTD analogs with dichloro, methoxy, or methyl aromatic 

substituents; (bottom) MTD analogs containing heteroaromatic rings. MTD is 

repeated in all 3 panels for purpose of comparison.  Nonspecific [3H]5-HT uptake 

was determined in the presence of 10 μM fluoxetine.  Control (CON) represents 

specific [3H]5-HT uptake in the absence of analog (1.67 ± 0.09 pmol/mg/min).  

Legend provides compounds in order from highest to lowest affinity.   n = 4 

rats/analog.   
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Fig 12.  MTD analogs inhibit [3H]DTBZ binding to vesicle membranes from 

rat whole brain preparations.  Analogs are grouped according to structural 

similarity of the aromatic rings. (top) Lobeline, MTD and MTD analogs with no 

aromatic ring substituents; (middle) MTD analogs with dichloro, methoxy, or 

methyl aromatic substituents; (bottom) MTD analogs containing heteroaromatic 

rings. MTD is repeated in all 3 panels for purpose of comparison.  Nonspecific 

[3H]DTBZ binding was determined in the presence of 10 μM Ro-4-1284.  Control 

(CON) represents specific [3H]DTBZ binding in the absence of analog (5.01 ± 

0.10 pmol/mg protein). Analogs are arranged in order from greatest potency to 

least potency.  n = 4 rats/analog.   
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Fig 13. MTD analogs inhibit [3H]DA uptake into rat striatal vesicles.  Analogs 

are grouped according to structural similarity of the aromatic rings.  (top) 

Lobeline, MTD and MTD analogs with no aromatic ring substituents; (middle) 

MTD analogs with dichloro, methoxy, or methyl aromatic substituents; (bottom) 

MTD analogs containing heteroaromatic rings. MTD is repeated in all 3 panels for 

purpose of comparison. Nonspecific [3H]DA uptake was determined in the 

presence of 10 μM Ro-4-1284.  Control (CON) represents specific vesicular 

[3H]DA uptake in the absence of analog (29.3 ± 1.38 pmol/mg/min).  Legend 

provides compounds in order from highest to lowest affinity.   n = 4 rats/analog.   
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Fig 14.  Inhibition of [3H]DTBZ binding does not predict inhibition of [3H]DA 

uptake at VMAT2.  Data presented are Ki values from analog-induced inhibition 

of [3H]DTBZ binding and [3H]DA uptake at VMAT2 (Figs. 12 and 13, 

respectively).  Pearson’s correlation analysis of these data revealed a lack of 

correlation (Pearson’s r = 0.42; p = 0.13) between the ability of analogs to inhibit 

[3H]DTBZ binding and [3H]DA uptake at VMAT2.   
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Fig 15.  Lobeline, MTD and MTD analogs competitively inhibit [3H]DA 

uptake  into vesicles prepared from rat striatum.   Concentrations of lobeline 

(0.25 µM), MTD (0.23 µM), UKMH-105 (0.11 µM), and UKMH-106 (0.16 µM) 

approximated the Ki values for inhibiting [3H]DA uptake into isolated synaptic 

vesicles obtained from the data shown in Fig. 13.  Km (top panel) and Vmax 

(bottom panel) values are mean ± S.E.M. (* p < 0.05 different from control; ** p < 

0.01 different from control; n = 4-7 rats/analog) 
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Fig 16.  UKMH-105 does not inhibit METH-evoked endogenous DA release 

from striatal slices.  Fractional DA release represents the amount of DA in each 

5-min sample.  Slices were superfused with UKMH-105 after 10 min collection of 

basal samples, as indicated by the arrow and analog remained in the buffer until 

the end of the experiment.  METH (5 µM) was added to the buffer for 15 min as 

indicated by the horizontal bar.  Fractional release data are expressed as mean ± 

S.E.M. pg/ml/mg of the slice weight. n = 5 rats.   
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Fig 17.  In a concentration-dependent manner, UKMH-106 inhibits METH-

evoked DA release in striatal slices.  Fractional DA release (top panel) 

represents the amount of DA in each 5-min sample.  Slices were superfused with 

UKMH-106 after 10 min collection of basal samples, as indicated by the arrow 

and analog remained in the buffer until the end of the experiment.  METH (5 µM) 

was added to the buffer for 15 min as indicated by the horizontal bar.  

Concentration-response curve (bottom panel) was derived from peak response 

data for each concentration of UKMH-106.  Fractional release and peak 

response data are expressed as mean ± S.E.M. pg/ml/mg of the slice weight.  

For fractional release: *p < 0.05 different from METH alone.  For peak response: 

*p < 0.05 different from peak response of METH alone (CON).  n = 8 rats 
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Fig 18.  UKMH-105 and UKMH-106 do not alter DOPAC release.  Fractional 

DOPAC release represents the amount of DOPAC in each 5-min sample.  Slices 

were superfused with UKMH-105 (top panel) or UKMH-106 (bottom panel) after 

10 min collection of basal samples, as indicated by the arrow and analog 

remained in the buffer until the end of the experiment.  METH (5 µM) was added 

to the buffer for 15 min as indicated by the horizontal bar.  Fractional release 

data is expressed as mean ± S.E.M. pg/ml/mg of the slice weight.  n = 8 rats 
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CHAPTER THREE 

 

Novel N-1,2-Dihydroxypropyl Analogs of Lobelane Inhibit VMAT2 Function 
and METH-evoked DA Release 

Portions of this chapter have been published in the manuscript: 

Horton DB, Zheng G, Siripurapu KB, Deaciuc AG, Crooks PA, Dwoskin 

LP.  N-1,2 dihydroxylpropyl analogs of lobelane as novel vesicular 

monoamine transporter (VMAT2) inhibitors and potential treatments for 

methamphetamine abuse.  J Pharm Exp Ther, 339: 286-297, 2011. 

Chapter reprinted with permission of the American Society for Pharmacology and 
Experimental Therapeutics.  All rights reserved. 

I. Introduction 

METH is a highly addictive stimulant with robust rewarding properties 

leading to its abuse.  METH use continues to be a major health concern in the 

United States, with 100,000 new users in the United States every year (NSDUH, 

2008). To date, there are no approved therapeutics for METH abuse.  METH acts 

at both the DAT and VMAT2 to increase extracellular DA concentrations (Sulzer 

et al., 2005). Specifically, METH reverses DA translocation by DAT to increase 

extracellular DA concentrations leading to reward (Fischer and Cho, 1979, Liang 

and Rutledge, 1982; Wise and Bozarth, 1987; Di Chiara and Imperato, 1988). 

Numerous studies have focused on DAT as a therapeutic target for the 

development of treatments for psychostimulant abuse (Grabowski et al., 1997, 

Dar et al., 2005; Howell et al., 2007; Tanda et al., 2009). However, this approach 

to drug discovery has thus far not resulted in viable efficacious therapeutics for 

METH abuse.  
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METH inhibits DA uptake at VMAT2 and stimulates DA release from 

presynaptic vesicles, which presumably increases cytosolic DA concentrations 

(Sulzer and Rayport, 1990; Sulzer et al., 1995; Pifl et al., 1995).  Taking into 

account VMAT2 as a component of the mechanism of action of METH, our 

research focus has been the discovery of novel therapeutic agents that target 

VMAT2.  SARs have been generated to elucidate novel pharmacophores that 

modify VMAT2 function with the aim of developing effective treatments for METH 

abuse (Zheng et al., 2005a,b; Nickell et al., 2010a,b; Horton et al., 2010; Crooks 

et al., 2010).   

Lobeline (Fig. 19), the principal alkaloid in Lobelia inflata, inhibits the 

neurochemical and behavioral effects of METH through its interaction with 

VMAT2 (Teng et al., 1997, 1998; Miller et al., 2001, Harrod et al., 2001; Dwoskin 

and Crooks, 2002; Nickell et al., 2010). Lobeline inhibits [3H]DTBZ binding to  

VMAT2 (Ki = 0.90 μM), [3H]DA uptake at VMAT2 (Ki = 0.88 μM; Teng et al., 

1997, 1998) and METH-evoked DA release (IC50 = 0.42 μM), supporting the 

tenet that VMAT2 is a viable therapeutic target for the development of treatments 

for METH abuse. In further support of this hypothesis, lobeline decreases METH 

self-administration in rats (Harrod et al., 2001).  Importantly, lobeline is not self-

administered (Harrod et al., 2003), suggesting that it will not have abuse liability.  

Recently, lobeline has completed Phase Ib clinical trials demonstrating safety in 

METH abusers (Jones, 2007).   

Initial SAR around the lobeline pharmacophore revealed that lobelane 

(Fig. 19), a chemically defunctionalized, saturated analog of lobeline, 
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competitively inhibited DA uptake at VMAT2 and exhibited increased affinity and 

selectivity for VMAT2 compared with lobeline (Miller et al., 2001; Nickell et al., 

2010). Lobelane inhibited METH-evoked DA release and decreased METH self-

administration; however, tolerance developed to the latter behavior effects 

(Neugebauer et al., 2007; Nickell et al., 2010).  Unfortunately, lobelane exhibits 

decreased water solubility and diminished drug likeness properties due to its 

decreased polarity resulting from removal of the keto and hydroxyl functionalities 

of lobeline.   

In the current study, the N-methyl moiety of the central piperidine ring of 

lobelane was replaced with a chiral N-1,2-dihydroxypropyl (N-1,2-diol) moiety to 

improve water solubility and enhance drug-likeness properties. Based on 

computational modeling, this structural modification was predicted to enhance 

water solubility. VMAT2 binding and function was determined following 1) 

replacement of the N-methyl moiety with a chiral N-1,2-diol moiety, 2) alteration 

of the configuration of the N-1,2-diol moiety, and 3) incorporation of phenyl ring 

substituents into the analogs.  Specifically, incorporation of 2-methoxy, 3-

methoxy, 4-methoxy, 3-flouro, 2,4-dichloro, and 3,4-methylenedioxy substituents 

into both phenyl rings, or replacement of the phenyl rings with naphthalene or 

biphenyl rings, were evaluated. To assess VMAT2 selectivity, SAR was 

generated for inhibition of DAT and SERT function.  Analogs with highest 

potency for inhibiting DA uptake at VMAT2 and with at least 10-fold selectivity 

were evaluated for inhibition of METH-evoked DA release from superfused 
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striatal slices. GZ-793A emerged as a potent, selective and drug-like VMAT2 

inhibitor to be further developed as a treatment for METH abuse. 

The hypothesis of this chapter is that N-1,2-diol analogs of lobelane will 

inhibit VMAT2 function and VMAT2 selective lobelane analogs will inhibit METH-

evoked DA release from striatal slices.    

II. Methods 

IIa. Animals.  Male Sprague-Dawley rats (200–250g, Harlan, 

Indianapolis, IN) were housed two per cage with ad libitum access to food and 

water in the Division of Laboratory Animal Resources at the University of 

Kentucky (Lexington, KY).  Experimental protocols involving the animals were in 

accord with the 1996 NIH Guide for the Care and Use of Laboratory Animals and 

were approved by the Institutional Animal Care and Use Committee at the 

University of Kentucky.     

IIb. Chemicals.  [3H]Dopamine ([3H]DA; dihydroxyphenylethylamine, 

3,4-[7-3H]; specific activity, 28 Ci/mmol), and [3H]5-hydroxytryptamine ([3H]5-HT; 

hydroxytryptamine creatinine sulfate 5-[1,2-3H(N)]; specific activity, 30 Ci/mmol) 

and Microscint 20 LSC-cocktail were purchased from PerkinElmer, Inc. (Boston, 

MA).  [3H]Dihydrotetrabenazine ([3H]DTBZ; (±)alpha-[O-methyl-

3H]dihydrotetrabenazine; specific activity, 20 Ci/mmol) was obtained from 

American Radiolabled Chemicals, Inc. (St. Louis, MO). ATP-Mg2, catechol, DA, 

disodiumethylenediamine tetraacetate (EDTA), ethylene glycol tetraacetate 

(EGTA), fluoxetine HCl, 1-(2-(bis-(4-fluorophenyl)methoxy)ethyl)-4-(3-
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phenylpropyl)piperazine (GBR 12909), α-D-glucose, S-glycidol, R-glycidol, N-[2-

hydroxyethyl]piperazine-N’-[2-ethanesulfonic acid] (HEPES), MgSO4, pargyline 

HCl, polyethyleneimine (PEI), KOH, potassium tartrate and sucrose were 

purchased from Sigma-Aldrich, Inc. (St. Louis, MO).  L-Ascorbic acid and 

NaHCO3 were purchased from Aldrich Chemical Co. (Milwaukee, WI). 

Ammonium hydroxide, CaCl2, diethyl ether, KCl, K2PO4, methylene chloride, 

methanol, MgCl2, NaCl and NaH2PO4 were purchased from Fisher Scientific Co. 

(Pittsburgh, PA).  Ethanol was purchased from Pharmco-AAPER Alcohol and 

Chemical Co., (Shelbyville, KY). Complete counting cocktail 3a70B was 

purchased from Research Products International Corp. (Mount Prospect, IL).  

(2R,3S,11bS)-2-Ethyl-3-isobutyl-9,10-dimethoxy-2,2,4,6,7,11b-hexahydro-1H-

pyrido[2,1-a]isoquinolin-2-ol (Ro-4-1284) was a generous gift from Hoffman-

LaRoche Inc. (Nutley, NJ).  

IIc. General synthetic procedure for N-1,2-diol analogs.  Based on 

computational modeling utilizing ACD/ADME algorithms (www.acdlabs.com), 

replacement of the N-methyl moiety on the central piperidine ring with a N-1,2-

diol moiety was predicted to enhance water solubility. For example, a 365% 

increase in water solubility was predicted as a consequence of replacing the N-

methyl group in para-methoxyphenyl lobelane (GZ-252C) with an N-1,2-diol 

moiety in GZ-793A (solubility of 2.0 and 7.3 mg/ml in water, respectively; 

structures in Fig. 19 and Nickell et al., 2011). Synthesis of (R)-3-(2,6-cis-

diphenethylpiperidin-1-yl)propane-1,2-diol (GZ-745A), which contains a N-1,2(R)-

dihydroxylpropyl group, and (S)-3-(2,6-cis-diphenethylpiperidin-1-yl)propane-1,2-
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diol (GZ-745B), which contains a N-1,2(S)-dihydroxylpropyl group, was 

accomplished by reacting nor-lobelane with S-glycidol or R-glycidol in ethanol, 

respectively. The phenyl ring-modified nor-lobelane analogs were synthesized 

using previously reported methods (Zheng et al., 2005b), and the latter analogs 

served as intermediates for the synthesis of the current series of analogs via 

reaction with S-glycidol or R-glycidol in ethanol [i.e., (R)-3-[2,6-cis-di(3-

methoxyphenethyl)piperidin-1-yl]propane-1,2-diol (GZ-790A), (R)-3-[2,6-cis-di(3-

fluorophenethyl) piperidin-1-yl]propane-1,2-diol (GZ-791A), (R)-3-[2,6-cis-di(2-

methoxyphenethyl) piperidin-1-yl]propane-1,2-diol (GZ-792A), GZ-793A, (R)-3-

[2,6-cis-di(1-naphthylethyl)piperidin-1-yl]propane-1,2-diol (GZ-794A), (R)-3-[2,6-

cis-di(2,4-dichlorophenethyl)piperidin-1-yl]propane-1,2-diol (GZ-795A), (R)-3-

[2,6-cis-di(4-biphenylethyl)piperidin-1-yl]propane-1,2-diol (GZ-796A), and (R)-3-

[2,6-cis-di(3,4-methylenedioxyphenethyl)piperidin-1-yl]propane-1,2-diol (GZ-

797A), and the respective enantiomers (S)-3-[2,6-cis-di(3-

methoxyphenethyl)piperidin-1-yl]propane-1,2-diol (GZ-790B), (S)-3-[2,6-cis-di(3-

fluorophenethyl)piperidin-1-yl]propane-1,2-diol (GZ-791B), (S)-3-[2,6-cis-di(2-

methoxyphenethyl)piperidin-1-yl]propane-1,2-diol (GZ-792B), (S)-3-[2,6-cis-di(4-

methoxyphenethyl) piperidin-1-yl]propane-1,2-diol (GZ-793B), (S)-3-[2,6-cis-di(1-

naphthylethyl)piperidin-1-yl]propane-1,2-diol (GZ-794B), (S)-3-[2,6-cisdi(2,4-

dichlorophenethyl)piperidin-1-yl]propane-1,2-diol (GZ-795B), (S)-3-[2,6-cis-di(4-

biphenylethyl)piperidin-1-yl]propane-1,2-diol (GZ-796B), and (S)-3-[2,6-cis-di(3,4-

methylenedioxyphenethyl)piperidin-1-yl]propane-1,2-diol (GZ-797B)]. The final 

products were purified by silica gel column chromatography [eluting with 
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methylene chloride/methanol/ammonium hydroxide, 30:1:0.2 (v/v/v)], followed by 

recrystallization from ethanol and diethyl ether after conversion into salt forms. 

Structures and purities of the analogs were determined by 1H-NMR, 13C-NMR, 

mass spectrometry, HPLC, and combustion analysis. 

IId. Synaptosomal [3H]DA and [3H]5-HT uptake assays.  Analog-

induced inhibition of [3H]DA and [3H]5-HT uptake into rat striatal and hippocampal 

synaptosomes, respectively, was determined using modifications of a previously 

described method (Chapter 2, Horton et al., 2011a). Brain regions were 

homogenized in 20 ml of ice-cold 0.32 M sucrose solution containing  5 mM 

NaHCO3 (pH 7.4) with 16 up-and-down strokes of a Teflon pestle homogenizer 

(clearance ~ 0.005”). Homogenates were centrifuged at 2,000 g for 10 min at 4 

°C, and resulting supernatants centrifuged at 20,000 g for 17 min at 4 °C. Pellets 

were resuspended in 1.5 ml of Krebs’ buffer, containing: 125 mM NaCl, 5 mM 

KCl, 1.5 mM MgSO4,
 1.25 mM CaCl2, 1.5 mM KH2PO4, 10 mM α-D-glucose, 25 

mM HEPES, 0.1 mM EDTA, with 0.1 mM pargyline and 0.1 mM ascorbic acid, 

saturated with 95% O2 /5% CO2, pH 7.4). Synaptosomal suspensions (20 µg 

protein/50 µl) were added to duplicate tubes containing 50 µl analog (7-9 

concentrations, 0.1 nM – 1 mM, final concentration in assay buffer) and 350 µl of 

buffer and incubated at 34 °C for 5 min in a total volume of 450 µl. Samples were 

placed on ice and 50 µl of [3H]DA or [3H]5-HT (10 nM; final concentration) was 

added to each tube for a final volume of 500 µl.  Reactions proceeded for 10 min 

at 34°C and were terminated by the addition of 3 ml of ice-cold Krebs’ buffer.  

Nonspecific [3H]DA and [3H]5-HT uptake were determined in the presence of 10 



 

124 

 

µM GBR 12909 and 10 µM fluoxetine, respectively.  Samples were rapidly filtered 

through Whatman GF/B filters using a cell harvester (MP-43RS; Brandel Inc.). 

Filters were washed 3 times with 4 ml of ice-cold Krebs’ buffer containing 

catechol (1 mM). Complete counting cocktail was added to the filters and 

radioactivity determined by liquid scintillation spectrometry (B1600 TR scintillation 

counter; PerkinElmer, Inc.).   

IIe. [3H]DTBZ vesicular binding assays.  Analog-induced inhibition of 

[3H]DTBZ binding,  a high affinity ligand for VMAT2, was determined using 

modifications of a previously published method (Chapter 2, Horton et al., 2011a). 

Rat whole brain (excluding cerebellum) was homogenized in 20 ml of ice-cold 

0.32 M sucrose solution with 10 up-and-down strokes of a Teflon pestle 

homogenizer (clearance ~ 0.008”). Homogenates were centrifuged at 1,000 g for 

12 min at 4 °C and resulting supernatants were centrifuged at 22,000 g for 10 

min at 4 °C.  Resulting pellets were osmotically lyzed by incubation in 18 ml of 

cold water for 5 min.  Osmolarity was restored by adding 2 ml of 25 mM HEPES 

and 100 mM potassium tartrate solution. Samples were centrifuged (20,000 g for 

20 min at 4°C), and then 1 mM MgSO4 solution was added to the supernatants.  

Samples were centrifuged at 100,000 g for 45 min at 4°C. Pellets were 

resuspended in cold assay buffer, containing 25 mM HEPES, 100 mM potassium 

tartrate, 5 mM MgSO4, 0.1 mM EDTA, and 0.05 mM EGTA, pH 7.5. Assays were 

performed in duplicate using 96-well plates. Vesicular suspensions (15 µg 

protein/100 µl) were added to wells containing 50 µl analog (7-9 concentrations, 

0.01 nM – 0.1 mM, final concentration in assay buffer), 50 µl of buffer, and 50 µl 
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of [3H]DTBZ (3 nM; final concentration) for a final volume of 250 µl and incubated 

for 1 hr at room temperature.  Nonspecific binding was determined in the 

presence of 50 µl of 20 µM Ro-4-1284. Reactions were terminated by filtration 

onto Unifilter-96 GF/B filter plates (presoaked in 0.5% PEI). Filters were washed 

3 times with 350 µl of ice-cold buffer containing: 25 mM HEPES, 100 mM 

potassium-tartrate, 5 mM MgSO4, and 10 mM NaCl, pH 7.5. Filter plates were 

dried, bottom-sealed and each well filled with 40 µl of scintillation cocktail 

(MicroScint 20; PerkinElmer, Inc.). Radioactivity on the filters was determined by 

liquid scintillation spectrometry.  

IIf. Vesicular [3H]DA uptake assay.  Analog-induced inhibition of 

[3H]DA uptake into rat striatal vesicles was determined using modifications of a 

previously published method (Chapter 2, Horton et al., 2011a). Striata were 

homogenized in 14 ml of ice-cold 0.32 M sucrose solution containing 5 mM 

NaHCO3 (pH 7.4) with 10 up-and-down strokes of a Teflon pestle (clearance ~ 

0.008”). Homogenates were centrifuged at 2,000 g for 10 min at 4 °C and 

resulting supernatants centrifuged at 10,000 g for 30 min at 4 °C. Pellets were 

resuspended in 2.0 ml of 0.32 M sucrose and were transferred to tubes 

containing 7 ml of milliQ water and homogenized with 5 up-and-down strokes 

using the above homogenizer.  Homogenates were transferred to tubes 

containing 900 μl of 0.25 M HEPES and 900 μl of 1.0 M potassium tartrate 

solution and centrifuged at 20,000 g for 20 min at 4 ºC. Resulting supernatants 

were centrifuged at 55,000 g for 60 min at 4 ºC.  Subsequently, 100 μl of 1 mM 

MgSO4, 100 μl of 0.25 M HEPES and 100 μl of 1.0 M potassium tartrate were 



 

126 

 

added to the supernatant and centrifuged at 100,000 g for 45 min at 4 ºC. Final 

pellets were resuspended in assay buffer, containing 25 mM HEPES, 100 mM 

potassium tartrate, 50 μM EGTA, 100 μM EDTA, and 1.7 mM ascorbic acid, 2 

mM ATP-Mg2+, pH 7.4.  Vesicular suspensions (10 µg protein/100 µl) were added 

to duplicate tubes containing 50 µl analog (7-9 concentrations, 1 nM – 0.1 mM, 

final concentration in assay buffer), 300 µl of buffer, and 50 µl of [3H]DA (0.1 µM; 

final concentration) for a final volume of 500 µl and incubated for 8 min at 34 °C. 

Nonspecific [3H]DA uptake was determined in the presence of 10 µM Ro-4-1284. 

Samples were filtered rapidly through Whatman GF/B filters using the cell 

harvester and washed 3 times with assay buffer containing 2 mM MgSO4 in the 

absence of ATP. Radioactivity retained by the filters was determined as 

previously described.   

IIg. Kinetics of vesicular [3H]DA uptake.  Vesiclar suspensions were 

prepared as described above except that striata were pooled from 2 rats. 

Vesicular suspensions (20 µg protein/50 µl) were added to duplicate tubes 

containing 25 µl analog (final concentration approximating the Ki from inhibition 

curves for each analog), 150 µl of buffer, and 25 µl of various concentrations of 

[3H]DA (1 nM – 5 μM; final concentration) for a final volume of 250 µl, and 

incubated for 8 min at 34 °C. Nonspecific [3H]DA uptake was determined using 

10 µM Ro4-1284. Samples were processed as previously described.   

IIh. Endogenous DA release assay.  HPLC-EC determination of DA 

release was performed by Kiran Siripurapu, Ph.D.. Rat coronal striatal slices of 

0.5 mm thickness were prepared and incubated in Krebs’ buffer, containing 118 
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mM NaCl, 4.7 mM KCl, 1.2 mM MgCl2, 1.0 mM NaH2PO4, 1.3 mM CaCl2, 11.1 

mM -D-glucose, 25 mM NaHCO3, 0.11 mM L-ascorbic acid and 0.004 mM 

EDTA, pH 7.4, saturated with 95%O2/5%CO2 at 34 ºC in a metabolic shaker for 

60 min (Chapter 2, Horton et al., 2011a). Each slice was transferred to a glass 

superfusion chamber and superfused with Krebs’ buffer at 1 ml/min for 60 min 

before sample collection. Two basal samples (1ml) were collected at the 5-min 

and 10-min time points. To determine the ability of analog to evoke DA overflow, 

each slice was superfused for 30 min in the absence or presence of a single 

concentration of analog (0.3 -10 M); analog was included in the buffer until the 

end of the experiment.  METH (5 M) was added to the buffer after 30 min of 

superfusion, and slices were superfused for an additional 15 min with METH, 

followed by 20 min of superfusion in the absence of METH.  In each experiment, 

a striatal slice was superfused for 90 min in the absence of both analog and 

METH, serving as the buffer control condition. In each experiment, duplicate 

slices were superfused with METH in the absence of analog, serving as the 

METH control condition.  The METH concentration was selected based on pilot 

concentration-response data showing a reliable response of sufficient magnitude 

to allow evaluation of analog-induced inhibition. Each superfusate sample (1 ml) 

was collected into tubes containing 100 l of 0.1 M perchloric acid. Prior to 

HPLC-EC analysis, ascorbate oxidase (20 µl, 168 U/mg reconstituted to 81 U/ml) 

was added to 500 µl of each sample and vortexed for 30 s, and 100 µl injected 

onto the HPLC-EC. The HPLC-EC consisted of a pump (model 126, Beckman 

Coulter, Inc, Fullerton, CA) and autosampler (model 508 Beckman Coulter, Inc), 
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an ODS Ultrasphere C18 reverse-phase 80 × 4.6 mm, 3-µm column, a 

Coulometric-II detector with guard cell (model 5020) maintained at +0.60 V, and 

an analytical cell (model 5011) maintained at potentials E1 = -0.05 V and 

E2 = +0.32 V (ESA Inc., Chelmsford, MA). HPLC mobile phase (flow rate, 1.5 

ml/min) was 0.07 M citrate/0.1 M acetate buffer pH 4, containing 175 mg/l 

octylsulfonic acid sodium salt, 650 mg/l NaCl and 7% methanol. Separations 

were performed at room temperature, and 5-6 min were required to process each 

sample. Retention times of DA standards were used to identify respective peaks.  

Peak heights were used to quantify the detected amounts of analyte based on 

standard curves. Detection limit for DA was 1-2 pg/100 µl.  

IIi. Data analysis.  Specific [3H]DTBZ binding and specific [3H]DA and 

[3H]5-HT uptake were determined by subtracting the nonspecific binding or 

uptake from the total binding or uptake, respectively. Analog concentrations that 

produced 50% inhibition of the specific binding or uptake (IC50 values) were 

determined from the concentration-effect curves via an iterative curve-fitting 

program (Prism 5.0; GraphPad Software Inc., San Diego, CA). Inhibition 

constants (Ki values) were determined using the Cheng-Prusoff equation.  For 

kinetic analyses, Km and Vmax were determined using one-site binding curves. 

Paired two-tailed t-tests were performed on the arithmetic Vmax and the log Km 

values to determine significant differences between analog and control (absence 

of analog). Pearson’s correlation analysis determined the relationship between 

affinity for the [3H]DTBZ binding site and vesicular [3H]DA uptake. 
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For endogenous neurotransmitter release assays, fractional release is 

defined as the DA concentration in each sample divided by the slice weight.  

Basal DA outflow was calculated as the average fractional release of the two 

basal samples collected 10 min prior to addition of analog to the buffer. Intrinsic 

DA overflow was calculated as the sum of the increases in fractional release 

above basal outflow during superfusion with analog alone (in the absence of 

METH). One-way repeated-measures ANOVAs determined concentration-

dependent effects on DA overflow.  Peak DA fractional release evoked by METH 

was determined from the time course.  Analog-induced inhibition of METH-

evoked fractional DA release was evaluated using one-way repeated-measures 

ANOVA. When appropriate, Dunnett’s post hoc test determined concentrations of 

analog that significantly decreased the effect of METH.  Log IC50 value for each 

analog was generated using an iterative nonlinear least squares curve-fitting 

program (PRISM version 5.0). Statistical significance was defined as p < 0.05. 

III. Results 

IIIa. N-1,2-Diol analogs inhibit [3H]DA uptake at DAT.  Concentration-

response curves for GBR 12909, cocaine, lobeline, lobelane, and the N-1,2-diol 

analogs to inhibit [3H]DA uptake into striatal synaptosomes are illustrated in Fig. 

20. Ki values for GBR 12909, cocaine, lobeline, and lobelane (Table 2) are 

consistent with previously reported findings (Reith et al., 1994; Han and Gu, 

2006; Nickell et al., 2011). Replacement of the N-methyl in lobelane with a N-1,2-

diol moiety generally afforded analogs that were 1 to 10-fold less potent (Ki = 

1.43-9.5 μM) at DAT compared to lobelane.  Alteration of the configuration of the 
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N-1,2-diol and incorporation of phenyl ring substitutents did not alter affinity for 

DAT. Of note, lead analogs, GZ-793A (4-methoxyphenyl-N-1,2(R)-diol analog) 

and GZ-794A (1-naphthalene-N-1,2(R)-diol analog) inhibited [3H]DA uptake with 

potencies not different from lobelane.   

IIIb.  N-1,2-Diol analogs inhibit [3H]5-HT uptake at SERT.   

Concentration-response curves for fluoxetine, lobeline, lobelane, and the N-1,2-

diol analogs to inhibit [3H]5-HT uptake into hippocampal synaptosomes are 

illustrated in Fig. 21. Ki values for fluoxetine, lobeline and lobelane (Table 2) are 

consistent with previously reported findings (Owens, 2001; Miller et al., 2004). 

Generally, replacement of the N-methyl moiety with the N-1,2-diol moiety, 

alteration of the configuration of the N-1,2-diol and incorporation of phenyl ring 

substitutents did not alter affinity for SERT (Ki = 0.94 -11.0 μM vs 3.6 μM).  

Exceptions include the 1-naphthalene enantiomers, GZ-794A and GZ-794B (Ki = 

0.31 and 0.16 µM, respectively), which afforded a 10-20-fold increase in potency 

compared with lobelane.  Of note, the lead compound, GZ-793A, exhibited 

potency not different from lobelane. 

IIIc. N-1,2-Diol analogs inhibit [3H]DTBZ binding at VMAT2.  

Concentration-response curves for Ro-4-1284, lobeline, lobelane, and the N-1,2-

diol analogs to inhibit [3H]DTBZ binding to whole brain membranes are illustrated 

in Fig. 22, and Ki values are provided in Table 2. The Ki value for Ro-4-1284 to 

inhibit [3H]DTBZ binding is consistent with previously reported results (Cesura et 

al., 1990).  Generally, replacement of the N-methyl moiety with the N-1,2-diol 

moiety, alteration of the configuration of the N-1,2-diol and incorporation of 
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phenyl ring substitutents did not alter affinity for the DTBZ site on VMAT2 (Ki = 

0.46-5.6 μM vs 0.97 μM). Of note, GZ-794A (1-naphthalene N-1,2(R)-diol analog) 

exhibited potency not different from lobelane. Exceptions include the 4-

methoxyphenyl enantiomers (GZ-793A and GZ-793B) and the 2,4-dichlorophenyl 

enantiomers (GZ-795A and GZ-795B), which exhibited 8-10-fold lower potency 

compared with lobelane. Also, GZ-796A and GZ-796B, the 4-biphenyl 

enantiomers, exhibited 90-100-fold lower potency than lobelane.   

IIId. N-1,2-Diol analogs inhibit [3H]DA uptake at VMAT2.  

Concentration-response curves for Ro-4-1284, lobeline, lobelane, and the N-1,2-

diol analogs to inhibit [3H]DA uptake into striatal vesicles are illustrated in Fig. 23. 

Ki values for Ro-4-1284, lobeline and lobelane (Table 2) are consistent with 

previous reports (Nickell et al., 2011). Replacement of the N-methyl moiety with 

the N-1,2-diol and incorporation of the phenyl ring substituents resulted in a 5-45 

fold lower potency inhibiting [3H]DA uptake at VMAT2 compared to lobelane. 

Exceptions include GZ-793A (4-methoxyphenyl N-1,2(R)-diol analog) and GZ-

794A (1-naphthalene N-1,2(R)-diol analog), which were equipotent with lobelane.  

Generally, the R-configuration of the N-1,2-diol analogs was more potent than 

the S-configuration inhibiting VMAT2 function. Correlation analysis revealed no 

correlation between the Ki values for inhibiting [3H]DA uptake at VMAT2 and 

[3H]DTBZ binding at VMAT2 (Pearson’s correlation coefficient r = 0.37, p = 0.13, 

Fig. 24).  

IIIe. N-1,2-Diol analogs inhibit [3H]DA uptake at VMAT2 

competitively.  To elucidate the mechanism of inhibition at VMAT2, i.e. 
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competitive or noncompetitive, kinetic analyses of [3H]DA uptake at VMAT2 were 

conducted using the most potent analog inhibitors of VMAT2 function, i.e., GZ-

793A and GZ-794A. GZ-793A had relatively low affinity for the [3H]DTBZ binding 

site, whereas GZ-794A had high affinity for this site. For comparison, kinetic 

analysis of GZ-796A was performed to evaluate the mechanism of inhibition of 

an analog with moderate potency inhibiting DA uptake at VMAT2, but low 

potency at the [3H]DTBZ binding site. Results show an increased Km value with 

no change in Vmax for each analog compared to control (Fig. 25), indicating a 

competitive mechanism of action.   

IIIf. N-1,2-Diol analogs inhibit METH-evoked endogenous DA 

release.  In the absence of METH, GZ-793A, GZ-794A and GZ-796A did not 

evoke DA overflow above basal outflow (one-way repeated measures ANOVA: 

F5,29 = 0.31, F5,29 = 1.32, F5,29 = 0.48, respectively, ps > 0.05).  Importantly, GZ-

793A, GZ-794A and GZ-796A inhibited METH-evoked DA release in a 

concentration-dependent manner (Fig. 26; repeated measures one-way 

ANOVAs: F5,29 = 4.55, F5,29 = 3.16, and F5,29 = 3.03, respectively, ps < 0.05). 

Even though GZ-793A and GZ-794A inhibited DA uptake at VMAT2 equipotently, 

GZ-793A was 25-fold less potent than GZ-794A inhibiting METH-evoked DA 

release.  Further, GZ-793A exhibited ~35% greater inhibitory activity compared 

with GZ-794A. Although GZ-796A had 25-fold lower potency than either GZ-

793A or GZ-794A inhibiting DA uptake at VMAT2, GZ-796A was equipotent with 

GZ-794A and 10-fold less potent than GZ-793A inhibiting METH-evoked DA 
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release. Inhibitory activity of GZ-796A (Imax = 56%) was not different than that 

exhibited by GZ-794A.   

IV. Discussion 

The current study reports on an iterative process of drug discovery aimed 

at identifying a novel lead candidate for the treatment of METH abuse. Rationale 

for VMAT2 as the pharmacological target evolved from the observation that 

METH interacts with this presynaptic protein to inhibit DA uptake into presynaptic 

vesicles. Inhibition of VMAT2 increases cytosolic DA levels available for METH-

induced reverse transport by DAT, leading to an increase in extracellular DA 

(Sulzer, 2005). Through an interaction with VMAT2, lobeline inhibits the 

neurochemical and behavioral effects of METH (Teng et al., 1997, 1998; Miller et 

al., 2001, Harrod et al., 2001; Dwoskin and Crooks, 2002; Nickell et al., 2010).  

Lobelane, a lobeline analog with greater selectivity for VMAT2, decreased both 

METH-evoked DA release (IC50 = 0.65 µM; Imax = 73.2%; same experimental 

conditions as the current work)  and METH self-administration (Zheng et al., 

2005a; Neugebauer et al., 2007; Beckmann et al., 2010; Nickell et al., 2010, 

2011). Unfortunately, further development of lobelane as an effective 

pharmacotherapy was hindered by unacceptable drug-likeness properties. The 

current study identified novel analogs of lobelane incorporating a N-1,2-diol 

moiety into the molecule to specifically enhance its drug-likeness properties. GZ-

793A emerged as a potent, VMAT2-selective, drug-like lead candidate for the 

treatment of METH abuse. 
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The current SAR provided several insights regarding the optimization of 

the pharmacophore for inhibition of VMAT2 function (Tables 2 and 3). Merely 

replacing the N-methyl group of lobelane with a N-1,2(R)-diol moiety (GZ-745A) 

resulted in a 4-fold decrease in VMAT2 inhibitory potency. Also, the specific 

configuration of the N-1,2-diol moiety is a factor determining potency to inhibit DA 

uptake at VMAT2. The R enantiomer of N-1,2-diol analogs bearing no phenyl 

substituents, and those containing 3-flourophenyl, 3-methoxyphenyl, 4-

methoxyphenyl or 3,4-methylenedioxyphenyl moieties exhibited 4-6-fold higher 

inhibitory potency  compared to the corresponding S enantiomer.  These results 

indicate that the pharmacophore for inhibition of VMAT2 function has a 

configurational restriction at the chiral N-1,2-diol moiety in the current series of 

analogs. Furthermore, N-1,2-diol analogs of lobelane with 3-fluoro, 2,4-dichloro, 

2-methoxy, 3-methoxy, or 3,4-methylenedioxy substituents in both phenyl rings, 

or in which the phenyl rings were replaced with 1-naphthalene or 4-biphenyl 

rings, exhibited a 4 to 34-fold lower potency compared to lobelane, and a 3 to 66-

fold lower potency compared to the corresponding N-methyl substituted analog. 

Thus, although N-methyl analogs with substituents on the phenyl rings retained 

potency as inhibitors of VMAT2 relative to lobelane, introduction of these 

substituents into the phenyl rings in the N-1,2-diol analogs resulted in reduced 

potency. Exceptions include the two lead N-1,2(R)-diol analogs, GZ-793A (4-

methoxyphenyl analog) and GZ-794A (1-naphthalene analog), which inhibited 

VMAT2 with potencies not different from either lobelane or the corresponding N-

methyl analogs.  These results indicate that for GZ-793A and GZ794A, structural 
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modifications which enhanced drug-likeness did not alter VMAT2 inhibitory 

potency.   

The use of [3H]DTBZ to probe interaction with VMAT2 has been 

established in rodent models and in evaluation of patients with specific 

pathologies (Lehericy et al., 1994; Kilbourn et al., 1995). However, studies have 

reported that inhibition of VMAT2 function does not correlate with affinity for the 

[3H]DTBZ binding site on VMAT2 (Chapter 2, Horton et al., 2011a; Nickell et al., 

2011). These studies evaluated the SAR for conformationally restricted MTD 

analogs and for a series of phenyl ring substituted lobelane analogs. Results 

obtained from the current series of novel N-1,2-diol analogs are consistent with 

the latter observations, i.e., a correlation was not observed between VMAT2 

binding and uptake. Together, the SAR indicates that [3H]DTBZ binding site is 

more tolerant of structural alterations relative to the uptake site on VMAT2. One 

analog in the current series (GZ-796A, the 4-biphenyl N-1,2(R)-diol analog) 

inhibited DA uptake at VMAT2, but did not inhibit [3H]DTBZ binding, consistent 

with previous results that 4-biphenyl nor-lobelane as well as several extensively 

aromatized N-methyl lobelane analogs inhibited VMAT2 function, but not 

[3H]DTBZ binding (Nickell et al., 2011). Thus, analogs in these structural series 

appear to interact with two distinct sites on VMAT2.  

Although VMAT2 and plasma membrane transporters (e.g., DAT and 

SERT) belong to two different transporter families and exhibit little structural 

homology (Liu and Edwards, 1997), these proteins are promiscuous and 

translocate DA and 5-HT (Norrholm et al., 2007), suggesting that there are 
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similarities in the substrate sites between these transporters. Since the parent 

compound lobelane exhibited only 15-fold selectivity for VMAT2 over DAT and 

SERT, it was imperative to assess interaction of the N-1,2-diol analogs with DAT 

and SERT to ascertain selectivity for VMAT2. Only the 1-naphthalene analogs 

exhibited a 10-fold higher potency inhibiting SERT compared with lobelane, 

whereas the remainder of the series of N-1,2-diol analogs exhibited affinity not 

different from lobelane at both DAT and SERT. Configuration of the N-1,2-diol 

moiety influenced potency to inhibit VMAT2 function, but did not influence 

potency at DAT and SERT. 

The next critical step in our drug discovery approach is to determine the 

ability of the lead compounds to inhibit the neurochemical effects of METH. 

Representative analogs of the N-1,2(R)-diol series were evaluated for their ability 

to decrease METH-evoked DA release in striatum. The leads, GZ-793A and GZ-

794A, which exhibited the highest potency for inhibition of VMAT2 function, and 

GZ-796A, which inhibited VMAT2 function but not [3H]DTBZ binding, were 

chosen for evaluation. All three N-1,2(R)-diol analogs did not evoke DA overflow 

in the absence of METH (had no intrinsic activity) and inhibited METH-evoked 

DA release in a concentration-dependent manner.  These preclinical results 

support the further evaluation of these analogs for development as potential 

pharmacotherapies for METH abuse. 

The current results suggest that GZ-793A, GZ-794A and GZ-796A interact 

with VMAT2 to inhibit the pharmacological effects of METH.  However, the order 

of potency for inhibition of VMAT2 function (GZ-793A = GZ-794A > GZ-796A) 
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was different from the order of potency for inhibition of METH-evoked DA release 

(GZ-794A > GZ-796A > GZ-793A).  Furthermore, correlation analysis with a 

limited number of structurally-related compounds (GZ-793A, GZ-794A, GZ-796, 

lobelane, lobeline, MTD, UKCP-110; , cis-2,5-di-(2-phenethyl)-pyrrolidine 

hydrochloride and UKMH-106) for which data are available from both assays 

(current study; Miller et al., 2001, 2004; Nickell et al., 2010; Beckmann et al., 

2010; Chapter 2, Horton et al., 2011a) reveal a lack of correlation between 

affinity for inhibition of DA uptake at VMAT2 and ability to inhibit METH-evoked 

DA release. There are several alternative explanations for this lack of correlation. 

First, variability in the physicochemical properties between the analogs may 

explain the lack of correlation between affinity for VMAT2 and efficacy for 

inhibition of METH-evoked DA release from slices.  Such physicochemical 

properties are expected to differentially affect the ability of the analogs to 

distribute across cell membranes to reach its intracellular target. Further, VMAT2 

has greater accessibility in the vesicular preparation compared to the more intact 

slice preparation in which cell membranes impede analog accessibility.  

Another possibility is that the analogs may be interacting with an alternate 

site on VMAT2 other than the DA uptake site to inhibit METH-evoked DA release. 

Research demonstrates that the extracellular and intracellular faces of DAT 

expresses distinct sites for DA translocation that are regulated differentially 

(Gnegy, 2003), which provides precedence for alternate recognition sites on 

VMAT2 that mediate uptake of DA and METH-evoked release of DA from the 

vesicle. Thus, the analogs may have different affinities for these alternative sites 
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on VMAT2 which may explain the lack of correlation between affinity for VMAT2 

and efficacy for inhibition of METH-evoked DA release from slices.  

Further, the analogs may be interacting with an alternative target other 

than VMAT2, i.e., nicotinic receptors, to inhibit METH-evoked DA release.  

Lobeline interacts with both α4β2* and α7* nicotinic receptors; however, chemical 

defunctionalization (i.e., removal of the keto and hydroxyl groups from the phenyl 

ring side chains) of the lobeline molecule (affording analogs such as lobelane 

and the N-1,2-diol analogs) exhibit little or no affinity for α4β2* and α7* nicotinic 

receptors (Miller et al., 2001; Zheng et al., 2005a; Beckmann et al., 2010; 

Chapter 2, Horton et al., 2011a).  Further, GZ-793A does not inhibit nicotinic 

receptors mediating nicotine-evoked DA release (unpublished observations).  An 

alternative potential site of analog interaction is DAT. GZ-793A, GZ-794A and 

GZ-796A exhibit affinity for DAT within the concentration range that inhibits 

METH-evoked DA release. However, the observation that GZ-793A is not self-

administered in rats diminishes support for an interaction with DAT as its 

mechanism of action (Beckman et al., 2011). Finally, the observation that these 

analogs are 10 to 50-fold more potent at VMAT2 than at DAT provides support 

for VMAT2 as the pharmacological target.  

Of the series, GZ-793A, the 4-methoxyphenyl N-1,2(R)-diol analog, 

exhibited the best profile with the greatest selectivity (50-fold) for VMAT2 and 

maximal inhibition (86%)  of the effect of METH.  The N-1,2(R)-diol moiety in GZ-

793A improved water solubility compared with its N-methyl counterpart, GZ-

252C. Importantly, GZ-793A has been shown recently to decrease METH self-
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administration and METH conditioned-place preference, without altering food 

maintained responding (Beckmann et al., 2011), providing preclinical data which 

support its potential utility as a novel pharmacotherapy for METH abuse. Results 

from these preclinical studies provide support for GZ-793A as a lead compound 

in the search for pharmacotherapies to treat METH abuse.  
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Table 2. Affinity values (Ki) of N-1,2-diol analogs, lobeline, lobelane and 
standard compounds for DAT, SERT, and VMAT2 binding and function 

Compound 

DAT 
[3H]DA  Uptake 

Ki ± SEM 
(μM) 

SERT 
[3H]5-HT 
Uptake 

Ki ± SEM 
(μM) 

VMAT2 
[3H]DTBZ  
Binding 
Ki ± SEM 

(μM) 

VMAT2 
[3H]DA  Uptake 

Ki ± SEM 
(μM) 

Standards 

GBR 12909 0.0009 ± 0.0001 a NDb NDb NDb 

Cocaine 0.48 ± 0.07 ND ND ND 

Fluoxetine NDb 0.007 ± 0.0001 a ND ND 

Ro-4-1284 0.04 ± 0.005 0.02 ± 0.003 0.03 ± 0.003 a 0.02 ± 0.002 a 

Lobeline, lobelane and N-1,2-diol analogs 

Lobeline 28.2 ± 6.73 46.8 ± 3.70 2.04 ± 0.26c 1.27 ± 0.46 

Lobelane 1.05 ± 0.03 3.60 ± 0.35 0.97 ± 0.19c 0.067 ± 0.007 

GZ-745A 0.60 ± 0.06 8.43 ± 2.80 0.56 ± 0.08 0.19 ± 0.05 

GZ-745B 1.08 ± 0.12 11.0 ± 3.12 1.28 ± 0.13 0.86 ± 0.12 

N-1,2-Diol analogs containing 1-naphthyl or 4-biphenyl substituents 

GZ-794A 1.43 ± 0.14 0.31 ± 0.08 0.31 ± 0.07 0.033 ± 0.002 

GZ-794B 1.57 ± 0.16 0.16 ± 0.04 0.13 ± 0.01 0.08 ± 0.01 

GZ-796A 8.33 ± 1.46 5.30 ± 0.96 >100 0.79 ± 0.23 

GZ-796B 3.43 ± 0.63 2.55 ± 0.77 90.2 ± 9.70 2.25 ± 1.30 

N-1,2-Diol analogs containing aromatic methoxy or methylene-dioxy substituents 

GZ-790A 3.80 ± 0.69 3.14 ± 1.18 0.46 ± 0.22 0.14 ± 0.02 

GZ-790B 6.67 ± 2.15 8.03 ± 2.30 2.73 ± 0.68 0.52 ± 0.04 

GZ-792A 2.90 ± 0.23 1.33 ± 0.46 1.04 ± 0.73 0.49 ± 0.06 

GZ-792B 4.77 ± 1.03 0.94 ± 0.14 1.87 ± 0.69 0.79 ± 0.08 

GZ-793A 1.44 ± 0.27 9.36 ± 2.74 8.29 ± 2.79 0.029 ± 0.008 

GZ-793B 3.40 ± 0.82 10.4 ± 2.75 7.74 ± 2.34 0.18 ± 0.04 

GZ-797A 2.46 ± 0.16 2.10 ± 0.70 1.30 ± 0.05 0.16 ± 0.04 

GZ-797B 2.21 ± 0.31 2.63 ± 0.60 5.61 ± 0.62 0.76 ± 0.04 

N-1,2-Diol analogs containing aromatic halogeno substituents 
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GZ-791A 0.25 ± 0.07 1.32 ± 0.46 1.00 ± 0.16 0.19 ± 0.06 

GZ-791B 0.62 ± 0.05 2.87 ± 0.50 1.08 ± 0.38 1.03 ± 0.16 

GZ-795A 3.87 ± 0.89 2.15 ± 0.38 10.4 ± 0.65 0.14 ± 0.04 

GZ-795B 9.50 ± 2.53 1.86 ± 0.39 13.9 ± 0.38 0.09 ± 0.04 

a n = 3-4 rats; bND, not determined;  c data for [3H]DTBZ binding for lobeline and 
lobelane taken from Nickell et al., 2010 
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Table 3. Summary of comparisons between phenyl ring substituted N-1,2-
diol and respective N-methyl analog.  

 

 

a 
NA, Not Applicable; 

 b 
data taken from Nickell et al., 2011; GZ-250C, 2,6-bis(2-(3,4-

methylenedioxyphenyl)ethyl)-1-methylpiperidine hydrochloride;GZ-252C, paramethoxy-phenyl 
lobelane or 2,6-bis(2-(4-methoxyphenyl)ethyl)-1-methylpiperidine hydrochloride; GZ-260C, 2,6-
bis(2-(2,4-dichlorophenyl)ethyl)-1-methylpiperidine hydrochloride; GZ-261C, 2,6-bis(2-(3-
methoxyphenyl)ethyl)-1-methylpiperidine hydrochloride; GZ-272C, 2,6-bis(2-(biphenyl-4-yl)ethyl)-
1-methylpiperidine hydrochloride; GZ-273C, 2,6-bis(2-(2-methoxyphenyl)ethyl)-1-methylpiperidine 
hydrochloride; GZ-275C, 2,6-bis(2-(3-fluorophenyl)ethyl)-1-methylpiperidine hydrochloride 

. 

Compound 
Phenyl Ring 
Substituent    

Configuration 
of the N-1,2-

diol  

VMAT2  
[
3
H]DA 

Uptake           
(Ki; µM) 

Selectivity 
for VMAT 
over DAT 
or SERT 

N-Methyl 
Analog 

VMAT2  
[
3
H]DA 

Uptake        
(Ki; µM) 

Ratio of  
VMAT2 

Uptake for the 
N-1,2-diol 

relative to the 
N-methyl 
analog  

Ratio of  
VMAT2 

Uptake for 
the N-1,2-

diol relative 
to lobelane 

Lobelane NA
a
 NA

a
 0.067 15.6 NA

a
 NA

a
 NA

a
 NA

a
 

GZ-745A No Change R 0.19 3.16 
Lobelan

e 
0.067 2.84 2.84 

GZ-745B No Change S 0.86 1.26   12.8 12.8 

GZ-794A Naphthalene R 0.033 9.39 
GZ-

258C
b
 

0.091
b
 0.36 0.49 

GZ-794B Naphthalene S 0.080 2.00   0.88 1.19 

GZ-796A Biphenyl R 0.79 6.70 
GZ-

272C
b
 

0.034
b
 23.2 11.8 

GZ-796B Biphenyl S 2.25 1.13   66.2 33.6 

GZ-790A 3-Methoxy R 0.14 22.4 
GZ-

261C
b
 

0.030
b
 4.67 2.09 

GZ-790B 3-Methoxy S 0.52 12.8   17.3 7.76 

GZ-792A 2-Methoxy R 0.19 2.71 
GZ-

273C
b
 

0.026
b
 7.31 2.84 

GZ-792B 2-Methoxy S 0.79 1.19   30.4 11.8 

GZ-793A 4-Methoxy R 0.029 49.7 
GZ-

252C
b
 

0.015
b
 1.93 0.43 

GZ-793B 4-Methoxy S 0.18 18.9   12 2.69 

GZ-797A 
3,4-Methylene 

Dioxy 
R 0.16 13.1 

GZ-
250C

b
 

0.043
b
 3.72 2.39 

GZ-797B 
3,4-Methylene 

Dioxy 
S 0.76 2.90   17.7 11.3 

GZ-791A 3-Flouro R 0.19 1.32 
GZ-

275C
b
 

0.093
b
 2.04 2.84 

GZ-791B 3-Flouro S 1.03 0.60   11.1 15.4 

GZ-795A 2,4-Dichloro R 0.14 15.4 
GZ-

260C
b
 

0.016
b
 8.75 2.09 

GZ-795B 2,4-Dichloro S 0.090 20.7   5.63 1.34 
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Lobeline, lobelane and N-1,2-diol analogs 

N-1,2-diol analogs containing 1-naphthyl or 4-biphenyl substituents

N-1,2-diol analogs containing aromatic methoxy or methylenedioxy substituents

N-1,2-diol analogs containing aromatic halogeno substituents
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Fig. 19.  Chemical structures of lobeline, lobelane and N-1,2-diol analogs.  

For clarity of presentation, compounds are grouped according to structural 

similarity of substituent additions to the phenyl rings:  lobeline, lobelane and N-

1,2-diol; N-1,2-diol analogs containing 1-naphthyl or 4-biphenyl substituents; N-

1,2-diol analogs containing aromatic methoxy or methylenedioxy substituents; N-

1,2-diol analogs containing aromatic halogeno substituents.   
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Fig. 20.  N-1,2-Diol analogs inhibit [3H]DA uptake into rat striatal 

synaptosomes.  For clarity of presentation, compounds are grouped according 

to structural similarity of substituent additions to the phenyl rings:  standards, 

lobeline, lobelane and N-1,2-diol analogs (top left panel), N-1,2-diol analogs 

containing 1-naphthyl or 4-biphenyl substituents (top right panel), N-1,2-diol 

analogs containing aromatic methoxy or methylenedioxy substituents (bottom left 

panel), or N-1,2-diol analogs containing aromatic halogeno substituents (bottom 

right panel).  Nonspecific [3H]DA uptake was determined in the presence of 10 

μM GBR 12909.  Control (CON) represents specific [3H]DA uptake in the 

absence of analog (19.3 ± 0.94 pmol/mg/min).  Legend provides compounds in 

order from highest to lowest affinity.  n = 4 rats/analog.   
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Fig. 21.  N-1,2-Diol analogs inhibit [3H]5-HT uptake into rat hippocampal 

synaptosomes.  For clarity of presentation, compounds are grouped according 

to structural similarity of additions to the phenyl rings:  standards, lobeline, 

lobelane and N-1,2-diol analogs (top left panel), N-1,2-diol analogs containing 1-

naphthyl or 4-biphenyl substituents (top right panel), N-1,2-diol analogs 

containing aromatic methoxy or methylenedioxy substituents (bottom left panel), 

or N-1,2-diol analogs containing aromatic halogeno substituents (bottom right 

panel).  Nonspecific [3H]5-HT uptake was determined in the presence of 10 μM 

fluoxetine.  Control (CON) represents specific [3H]5-HT uptake in the absence of 

analog (0.56 ± 0.06 pmol/mg/min).  Legend provides compounds in order from 

highest to lowest affinity.   n = 4 rats/analog.   
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Fig 22.  N-1,2-diol analogs inhibit [3H]DTBZ binding to vesicle membranes 

from rat whole brain preparations.  For clarity of presentation, compounds are 

grouped according to structural similarity of additions to the phenyl rings:  

standards, lobeline, lobelane and N-1,2-diol analogs (top left panel), N-1,2-diol 

analogs containing 1-naphthyl or 4-biphenyl substituents (top right panel), N-1,2-

diol analogs containing aromatic methoxy or methylenedioxy substituents 

(bottom left panel), or N-1,2-diol analogs containing aromatic halogeno 

substituents (bottom right panel).  Nonspecific [3H]DTBZ binding was determined 

in the presence of 10 μM Ro-4-1284.  Control (CON) represents specific 

[3H]DTBZ binding in the absence of analog (0.41 ± 0.01 pmol/mg protein). 

Legend provides compounds in order from highest to lowest affinity.  n = 4 

rats/analog.  Previous results for lobeline and lobelane were obtained from 

Nickell et al., 2010.   
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Fig 23. N-1,2-diol analogs inhibit [3H]DA uptake into vesicles prepared from 

rat striatum.  For clarity of presentation, compounds are grouped according to 

structural similarity of additions to the phenyl rings:  standards, lobeline, lobelane 

and N-1,2-diol analogs (top left panel), N-1,2-diol analogs containing 1-naphthyl 

or 4-biphenyl substituents (top right panel), N-1,2-diol analogs containing 

aromatic methoxy or methylenedioxy substituents (bottom left panel), or N-1,2-

diol analogs containing aromatic halogeno substituents (bottom right panel).  

Nonspecific [3H]DA uptake was determined in the presence of 10 μM Ro-4-1284.  

Control (CON) represents specific vesicular [3H]DA uptake in the absence of 

analog (34.1 ± 1.18 pmol/mg/min).  Legend provides compounds in order from 

highest to lowest affinity.   n = 4 rats/analog.   
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Fig 24.  Lack of correlation between N-1,2-diol analogs inhibition of 

[3H]DTBZ binding and [3H]DA uptake at VMAT2.  Data presented are Ki values 

obtained from concentration-response curves for analog-induced inhibition of 

[3H]DTBZ binding and [3H]DA uptake at VMAT2 (Figs. 21 and 22, respectively).  

Pearson’s correlation analysis revealed a lack of correlation (Pearson’s 

correlation coefficient r = 0.37; p = 0.13) between the ability of N-1,2-diol analogs 

to inhibit [3H]DTBZ binding to VMAT2 and to inhibit [3H]DA uptake at VMAT2.  
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Fig 25.  N-1,2-Diol analogs competitively inhibit [3H]DA uptake into vesicles 

prepared from rat striatum.   Concentrations of GZ-793A (0.029 µM), GZ-794A 

(0.060 µM), and GZ-796A (0.79 µM) approximated the Ki values for inhibiting 

[3H]DA uptake into isolated synaptic vesicles obtained from the data shown in 

Fig. 22.  Km (top panel) and Vmax (bottom panel) values are mean ± S.E.M. (** p < 

0.01 different from control; *** p < 0.001 different from control; n = 4 - 7 

rats/analog)  
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Fig 26. In a concentration-dependent manner, GZ-793A, GZ-794A, and GZ-

796A inhibit METH-evoked peak DA fractional release from striatal slices.  

Peak response data are expressed as mean ± S.E.M. pg/ml/mg of the slice 

weight.  Slices were superfused with analog (10 nM – 10 µM) and after a 10 min 

collection to determine intrinsic activity, METH (5 µM) was added to the buffer for 

15 minutes.  Analog remained in the buffer until the end of the experiment. *p < 

0.05 different from METH alone (CON).  n = 5 rats 
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CHAPTER FOUR 

 

GZ-793A, a Novel VMAT2 Inhibitor that Probes Multiple Sites on VMAT2 as 
a Potential Treatment for METH Abuse 

Portions of this chapter have been submitted for publication in the manuscript: 

Horton DB, Zheng G, Crooks PA, Dwoskin LP.  GZ-793A interacts with the 
vesicular monoamine transporter-2 to inhibit the effect of 
methamphetamine. J Neurochem, submitted, 2011. 

 

I. Introduction  

METH abuse is a serious public health concern.  According to the 2010 

National Survey on Drug Use and Health, over 350,000 people in the United 

States reported using METH in the past month (NSDUH, 2011). Currently, no 

FDA-approved pharmacotherapies are available to treat METH abuse. METH 

produces reward by increasing extracellular DA concentrations through DAT-

mediated reverse transport (Fischer and Cho, 1979; Wise and Bozarth, 1987; Di 

Chiara and Imperato, 1988). METH is transported into the synaptic vesicles via 

VMAT2 and/or passively diffuses across the vesicular membrane (Peter et al. 

1995).  METH inhibits DA uptake at VMAT2, promotes DA release from synaptic 

vesicles and inhibits monoamine oxidase leading to increases in cytosolic DA 

available for DAT-mediated reverse transport (Sulzer and Rayport 1990; Pifl et 

al. 1995; Sulzer et al. 2005).  METH is transported into vesicles through VMAT2 

and simultaneously releases DA from synaptic vesicles, similar to the facilitated 

diffusion exchange model of DA release at DAT (Fischer and Cho, 1979; Sulzer 

et al. 2005).  Thus, the primary site of METH action is VMAT2, which increases 



 

157 

 

cytosolic DA available for reverse transport of DAT to increase extracellular DA 

concentrations leading to reward. 

 Based on the role of VMAT2 in METH effects, drug discovery efforts have 

focused on VMAT2 as a pharmacological target for the development of novel 

compounds to treat METH abuse. Lobeline (Fig. 27), the principal alkaloid of 

Lobelia inflata, inhibits [3H]DTBZ binding to VMAT2, [3H]DA uptake at VMAT2, 

and METH-evoked DA release from striatal slices (Teng et al. 1997, 1998; Nickell 

et al. 2010). Lobeline inhibits METH-induced hyperactivity, behavioral 

sensitization and METH self-administration in rats, supporting its potential as a 

treatment for METH abuse (Harrod et al. 2001, 2003; Dwoskin and Crooks, 

2002).  Lobeline has been evaluated in clinical trials for this indication (Jones, 

2007).  Importantly, lobeline has limited selectivity for VMAT2, also having high 

affinity for nicotinic acetylcholine receptors (Damaj et al. 1997; Miller et al. 2004).   

 Structure activity relationships revealed that lobelane (Fig. 27), a 

saturated, chemically defunctionalized lobeline analog, exhibited low affinity for 

nicotinic receptors and enhanced affinity and selectivity for VMAT2 compared to 

its parent compound (Miller et al. 2004; Nickell et al. 2010). Lobelane also 

inhibited METH-evoked DA release from striatal slices and decreased METH 

self-administration in rats (Neugebauer et al. 2007; Nickell et al. 2010). However, 

tolerance developed to the behavioral effects of lobelane (Neugebauer et al. 

2007). The physicochemical properties of lobelane were not optimal, including 

low water solubility, which limited development with respect to clinical 

investigation.  
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 Structural modification of lobelane was pursued with the aim of improving 

water solubility. Replacement of the N-methyl group of lobelane with a N-propan-

1,2-diol moiety afforded the lead analog, GZ-793A [R-N-(1,2-dihydroxypropyl)-

2,6-cis-di-(4-methoxyphenethyl)piperidine hydrochloride] (Fig. 27). GZ-793A 

potently and selectively inhibited DA uptake at VMAT2, increasing the Km value 

with no change in Vmax, indicative of a competitive mechanism of inhibition 

(Chapter 3, Horton et al. 2011). Further, GZ-793A decreased METH-evoked DA 

release from striatal slices, without altering field stimulation- and nicotine-evoked 

DA release, indicating specific inhibition of the effects of METH (Chapter 3, 

Horton et al., 2011; unpublished observations). Importantly, GZ-793A specifically 

decreased METH self-administration without altering food-maintained responding 

(Beckmann et al. 2011).  Thus, the ability of GZ-793A to inhibit METH in vitro 

translated into efficacy against METH in the in vivo animal model.  However, the 

cellular mechanism underlying the GZ-793A-induced inhibition of METH both in 

vitro and in vivo has not been evaluated fully.  The current study determined the 

ability of GZ-793A to inhibit the effects of METH to release DA from isolated 

synaptic vesicles. Considering that VMAT2 is a primary target for the mechanism 

of action of METH, the ability of GZ-793A to evoke [3H]DA release and inhibit 

METH-evoked [3H]DA release from vesicles was investigated, and these effects 

were compared to those of the classical VMAT2 inhibitors, TBZ and reserpine. 

The hypothesis of this chapter is that GZ-793A interacts with VMAT2 to 

release DA from striatal vesicles and inhibit METH-evoked DA release from 

striatal vesicles.    
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II. Methods 

IIa. Animals.  Male Sprague-Dawley rats (200–250g, Harlan, 

Indianapolis, IN) were housed two per cage with ad libitum access to food and 

water in the Division of Laboratory Animal Resources at the University of 

Kentucky (Lexington, KY).  Experimental protocols involving the animals were in 

accord with the 1996 NIH Guide for the Care and Use of Laboratory Animals and 

were approved by the Institutional Animal Care and Use Committee at the 

University of Kentucky. 

IIb. Materials.  [3H]Dopamine ([3H]DA; dihydroxyphenylethylamine, 3,4-

[7-3H]; specific activity, 28 Ci/mmol) was purchased from PerkinElmer, Inc. 

(Boston, MA, USA).  ATP-Mg2+, DA, EDTA, EGTA, HEPES, MgSO4, 

polyethyleneimine (PEI), KOH, potassium tartrate, reserpine and sucrose were 

purchased from Sigma-Aldrich, Inc. (St. Louis, MO, USA). Ascorbic acid and 

NaHCO3 were purchased from Aldrich Chemical Co. (Milwaukee, WI, USA). 

Complete counting cocktail 3a70B was purchased from Research Products 

International Corp.  (Mount Prospect, IL, USA). TBZ was a generous gift from 

Hoffman-LaRoche Inc. (Nutley, NJ, USA).   

 IIc.   Vesicular [3H]DA release assay.  GZ-793A- and METH-evoked 

vesicular [3H]DA release were determined using previously described methods 

(Nickell et al., 2011). Briefly, striata were homogenized in 14 ml of ice-cold 0.32 

M sucrose solution containing 5 mM NaHCO3 (pH 7.4) with 10 up-and-down 

strokes of a Teflon pestle homogenizer (clearance, ~ 0.008”). Homogenates were 
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centrifuged at 2,000 × g for 10 min at 4 °C and resulting supernatants centrifuged 

at 10,000 × g for 30 min at 4 °C. Pellets were resuspended in 2.0 ml of 0.32 M 

sucrose and were transferred to tubes containing 7 ml of milliQ water and 

homogenized with 5 up-and-down strokes of the Teflon pestle homogenizer. 

Homogenates were transferred to tubes containing 900 μl of 0.25 M HEPES and 

900 μl of 1.0 M potassium tartrate solution and centrifuged at 20,000 × g for 20 

min at 4 ºC. Resulting supernatants were centrifuged at 55,000 × g for 60 min at 

4 ºC. Subsequently, 100 μl of 1 mM MgSO4, 100 μl of 0.25 M HEPES and 100 μl 

of 1.0 M potassium tartrate were added to the supernatant and centrifuged at 

100,000 × g for 45 min at 4 ºC. Pellets were resuspended in 2.7 ml of assay 

buffer, containing: 25 mM HEPES, 100 mM potassium tartrate, 50 μM EGTA, 100 

μM EDTA, and 1.7 mM ascorbic acid, 2 mM ATP-Mg2+ (pH 7.4). Then, [3H]DA 

(300 μl of 0.3 μM) was added and samples incubated for  8 min at 37 ºC. 

Following incubation, samples were centrifuged at 100,000 × g for 45 min at 4 ºC 

and resulting pellets were resuspended in a final volume of 4.2 ml of assay 

buffer. [3H]DA-preloaded vesicles (180 μl) were added to duplicate tubes in the 

absence or presence of various concentrations (1 nM – 1 mM; 20 μl) of GZ-793A, 

METH or reserpine, for a final volume of 200 µl and incubated for 8 min at 37 °C. 

Reactions were terminated by the addition of 2.5 ml of ice-cold assay buffer and 

rapid filtration through Whatman GF/B filters. Samples were washed 3 times with 

assay buffer containing 2 mM MgSO4 in the absence of ATP. Radioactivity 

retained by the filters was determined by liquid scintillation spectrometry (B1600 

TR scintillation counter; PerkinElmer, Inc.). GZ-793A-, METH- or reserpine-
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evoked [3H]DA release was calculated for each test compound concentration by 

subtracting the radioactivity remaining on the filter in the presence of compound 

from the amount of radioactivity remaining on the filter in the absence of 

compound (control samples). 

 To determine if GZ-793A-induced [3H]DA release from striatal synaptic 

vesicles was inhibited by TBZ (TBZ-sensitive) or reserpine (reserpine-sensitive), 

[3H]DA-preloaded synaptic vesicles (180 μl) were added to duplicate tubes 

containing a range of concentrations (1 nM – 1 mM) of GZ-793A in the absence 

and presence of TBZ (35 nM) or reserpine (50 nM), and incubated (final volume, 

200 μl) for 8 min at 37 ºC.  Samples were processed as previously described.  

To determine if METH-induced [3H]DA release from striatal synaptic 

vesicles was TBZ- or GZ-793A-sensitive, [3H]DA-preloaded synaptic vesicles 

(180 μl) were added to duplicate tubes containing a range of concentrations (1 

nM – 1 mM) of METH in the absence and presence of TBZ (30 nM – 10 μM) or 

GZ-793A (7 nM - 1μM), and incubated (final volume, 200 μl) for 8 min at 37 ºC.  

Samples were processed as previously described.  

 To determine if GZ-793A-induced inhibition of METH-evoked DA release 

was the result of a rate-dependent slow-offset dissociation, [3H]DA-preloaded 

synaptic vesicles (180 μl) were added to duplicate tubes containing a range of 

concentrations (1 μM – 1 mM) of METH in the absence and presence of GZ-

793A (1 μM), and incubated (final volume, 200 μl) for either 8 min or 15 min at 37 

ºC.  Samples were processed as previously described.      
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IId.  Data analysis.  EC50 values for GZ-793A, METH and reserpine 

were determined from the concentration-effect curves via an iterative curve-fitting 

program (Prism 5.0; GraphPad Software Inc., San Diego, CA). EC50 values for 

GZ-793A evoked [3H]DA  release in the presence of TBZ or reserpine were 

determined also using the Prism 5.0 curve-fitting program  TBZ-induced and GZ-

793A-induced inhibition of METH-evoked [3H]DA release were analyzed using 

separate two-way repeated-measures ANOVA. If significant TBZ x METH or GZ-

793A x METH interactions were found, one-way ANOVAs followed by Dunnetts’s 

post hoc test were performed at each METH concentration to determine the 

concentrations that decreased METH-evoked [3H]DA release. To determine if the 

various concentrations of TBZ or GZ-793A increased the log EC50 value or 

decreased the Emax for METH compared to the values for these parameters in the 

absence of inhibitor (control), one-way ANOVAs were conducted followed by 

Dunnett’s post hoc test. Schild analyses were performed using the dose ratios 

(DR) obtained by dividing the EC50 for METH-evoked [3H]DA release in the 

presence of inhibitor by that in the absence of inhibitor. Log (DR-1) was plotted 

as a function of log inhibitor concentration to provide the Schild regression. The 

data were fit by linear regression and the slope determined and linearity was 

assessed using Prism 5.0.  Significant difference from unity was concluded if the 

95% confidence intervals (CI) of the slope did not include unity (Kenakin, 2006).    

To determine if the effect of GZ-793A to inhibit METH was rate dependent, 

a three-way repeated-measures ANOVA was performed. If significant 

interactions were found, follow-up ANOVAs were performed to identify the source 
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of the interaction. Differences between EC50 values and between Emax values 

were determined using repeated-measures two-way ANOVAs. For all analyses, 

significance was defined as p < 0.05.   

III. Results    

IIIa. GZ-793A evoked [3H]DA release from striatal vesicles.   GZ-

793A-evoked [3H]DA release from isolated striatal synaptic vesicles is illustrated 

in Fig. 28. Nonlinear regression of the GZ-793A concentration-response revealed 

a two-site model of GZ-793A interaction with VMAT2 (R2 = 0.89, p < 0.001; Hi 

and Low EC50 = 14.3 ± 4.46 nM and 33.0 ± 4.00 µM, respectively; Hi and Low 

Emax = 37.5 ± 4.32% and 86.1 ± 2.69% vesicular [3H]DA content, respectively). 

To evaluate inhibition of the effect of GZ-793A on DA release, the highest 

concentration (35 nM) of TBZ that did not evoke DA release from isolated 

vesicles was chosen (Nickell et al., 2011). TBZ inhibited only the effect of GZ-

793A to release DA via the Hi affinity sites on VMAT2 (Fig. 28).  Nonlinear 

regression revealed a one-site model of GZ-793A interaction with VMAT2 in the 

presence of TBZ (R2 = 0.95, p < 0.001; EC50 = 23.7 ± 6.53 µM).  

The effect of reserpine to increase [3H]DA release from vesicles was 

determined (Fig. 29). Nonlinear regression of the reserpine concentration 

response revealed a significant fit to a one-site model (R2 = 0.25, p < 0.001; EC50 

= 1.44 ± 0.47 µM, Emax = 28.4 ± 7.48%). The highest concentration (50 nM) of 

reserpine that did not evoke DA release from isolated vesicles was chosen to 

evaluate if GZ-793A-evoked [3H]DA release was reserpine sensitive. 
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Concentration response for GZ-793A-evoked [3H]DA release from striatal 

vesicles in the absence and presence of reserpine (50 nM) is illustrated in Fig. 

28. Reserpine inhibited only the effect of GZ-793A to release DA via the Hi 

affinity sites on VMAT2. Nonlinear regression revealed a one-site model of GZ-

793A interaction with VMAT2 in the presence of reserpine (R2 = 0.92, p < 0.001; 

EC50 = 20.2 ± 3.17 µM).   

IIIb. TBZ inhibits METH-evoked [3H]DA release from striatal 

vesicles.  The concentration response for METH to evoke [3H]DA release from 

synaptic vesicles was analyzed using nonlinear regression and a significant fit to 

a single site model was found (R2 = 0.95, p < 0.001;Fig. 30).  The EC50 value for 

METH was 8.93 ± 1.36 µM and Emax was 87.4 ± 1.37% (Table 4), consistent with 

our previous findings (Nickell et al., 2011). Based on our previous concentration 

response (Nickell et al., 2011), a full range of TBZ concentrations were chosen to 

evaluate the ability of TBZ to decrease METH-evoked [3H]DA release from 

synaptic vesicles. TBZ produced a rightward shift in the METH concentration-

response, consistent with surmountable inhibition.  A linear fit (r2 = 0.79, p < 

0.001) to the Schild regression revealed a slope (s = 0.92 ± 0.33) not significantly 

different from unity, consistent with competitive inhibition (Fig. 30, inset). Two-

way repeated measures ANOVA revealed a main effect of METH (F11,209 = 435, p 

< 0.0001) and TBZ (F4,19 = 7.61, p < 0.001), and a METH × TBZ interaction 

[F44,209 = 12.8, p < 0.0001). To further evaluate the interaction, one-way ANOVAs 

were conducted at each METH concentration to determine the TBZ concentration 

which decreased release (Table 5; METH 3 µM, F4,20 = 3.96, p < 0.05; 10 µM, 
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F4,20 = 18.2, p < 0.0001; 30 µM, F4,20 = 31.1, p < 0.0001; 100 µM, F4,20 = 46.4, p < 

0.0001; 300 µM, F4,19 = 29.3, p < 0.0001; 1 mM, F4,30 = 9.39, p < 0.001). Post hoc 

analyses revealed that at 3 µM METH, only 10 µM TBZ significantly decreased 

METH-evoked [3H]DA release.  At 10 µM - 1 mM METH, TBZ (100 nM, 1 µM, 

and 10 µM) significantly decreased METH-evoked [3H]DA release.   Analysis of 

the log EC50 for METH-evoked [3H]DA release revealed that TBZ (100 nM - 10 

µM) increased the METH EC50 value (Table 4; F4,20 = 43.6, p < 0.0001).  

IIIc. GZ-793A inhibits METH-evoked [3H]DA release from striatal 

vesicles.  The concentration response for METH to evoke [3H]DA release from 

synaptic vesicles is illustrated in Fig. 31. Using nonlinear regression a significant 

fit to a one-site model was obtained for the METH concentration response (R2 = 

0.90, p < 0.001). The EC50 value for METH was 19.5 ± 5.19 µM and Emax was 

88.0 ± 1.21% (Table 4), in agreement with our previous findings (Nickell et al., 

2011).  Fig. 31 also illustrates that concentrations of GZ-793A, which selectively 

interact with the Hi-affinity site on VMAT2 (Fig. 28), inhibited the METH-evoked 

[3H]DA release. A rightward shift in the METH concentration-response curve was 

evident with increasing concentrations of GZ-793A, consistent with surmountable 

inhibition. A linear fit (r2 = 0.95, p < 0.001) to the Schild regression revealed a 

slope (s = 0.49 ± 0.08) significantly different from unity based on the 95% 

confidence interval (CI: 0.15 to 0.83), consistent with allosteric inhibition (Fig. 31, 

inset). Analysis of the concentration response by two-way repeated measures 

ANOVA revealed main effects of METH (F11,308 = 821, p < 0.001) and GZ-793A 

(F4,28 = 8.82, p < 0.001), and a METH × GZ-793A interaction (F44,308 = 8.13, p < 
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0.001). To further evaluate the interaction, one-way ANOVAs were conducted at 

each METH concentration to determine the GZ-793A concentrations which 

decreased release (Table 5; METH 1 µM, F4,30 = 3.31, p < 0.05; 3 µM, F4,30 = 

9.10, p < 0.0001; 10 µM, F4,30 = 12.9, p < 0.0001; 30 µM, F4,30 = 20.4, p < 0.0001; 

100 µM, F4,30 = 25.1, p < 0.0001; 300 µM, F4,28 = 15.6, p < 0.0001; 1 mM, F4,30 = 

7.12, p < 0.001). Post hoc analyses revealed that at 1 µM METH, only 1 µM GZ-

793A significantly decreased [3H]DA release and at 3 µM METH, GZ-793A (70 

nM, 100 nM, and 1 µM) significantly decreased [3H]DA release. At higher 

concentrations of METH, GZ-793A (70 nM – 1 µM) significantly decreased 

METH-evoked [3H]DA release. Analysis of the log EC50 for METH-evoked [3H]DA 

release revealed that GZ-793A (70 nM - 1 µM) increased the METH EC50 value 

(Table 4; F4,30 = 26.6, p < 0.0001). 

IIId. GZ-793A-induced inhibition of METH-evoked [3H]DA release 

was not rate-dependent.  To provide further evidence regarding the mechanism 

of GZ-793A inhibition of the effect of METH at synaptic vesicles, additional 

experiments determined if the GZ-793A-induced inhibition of METH-evoked 

[3H]DA release was rate-dependent.  The highest concentration of GZ-793A (1 

µM), shown to selectively interact with the Hi-affinity site on VMAT2 (Fig. 28), 

was evaluated for inhibition of METH-evoked [3H]DA release after 8- and 15-min 

incubation (Fig. 32). Three-way repeated measures ANOVA revealed a main 

effect of METH F4,32 = 498, p < 0.0001) and GZ-793A (F1,8 = 62.2, p < 0.0001), 

and a METH × GZ-793A interaction (F4,32 = 39.2, p < 0.0001); however, no main 

effect of time or interactions of  METH × time, GZ-793A × time or METH × GZ-
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793A × time were observed.  Increasing the incubation time from 8 to 15 min did 

not alter EC50 or Emax for METH-evoked [3H]DA release. 

IV. Discussion 

METH inhibits DA uptake at VMAT2 and evokes DA release from synaptic 

vesicles increasing intracellular DA concentrations available for METH-induced 

reverse transport via DAT to ultimately increase extracellular DA concentrations 

(Sulzer et al., 2005). The lead compound emerging from our iterative drug 

discovery approach, GZ-793A, decreases METH-evoked DA release from 

superfused striatal slices and decreases METH self-administration in rats 

(Beckmann et al. 2011; Chapter 3, Horton et al. 2011b). The cellular mechanism 

underlying the GZ-793A-induced inhibition of METH’s effects has not been 

elucidated fully. The current results show that GZ-793A potently released [3H]DA 

from isolated striatal synaptic vesicles. GZ-793A-induced release was mediated 

by two sites on VMAT2, i.e., a Hi-affinity, TBZ- and reserpine-sensitive site, and a 

Low-affinity, TBZ- and reserpine-insensitive site. Moreover, GZ-793A inhibited 

METH-evoked [3H]DA release from vesicles by interacting with the Hi-affinity 

VMAT2 site. Thus, GZ-793A inhibits the effects of METH at VMAT2, which may 

underlie the previously reported GZ-793A-induced decrease in METH self-

administration. 

Previous research from our laboratories demonstrated that GZ-793A 

potently (Ki = 29 nM) and competitively inhibits [3H]DA uptake at VMAT2 using 

isolated synaptic vesicle preparations. Interestingly, GZ-793A exhibited a 285-

fold higher affinity for the DA translocation site compared with the [3H]DTBZ 
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binding site (Ki = 8.29 µM), suggesting that the inhibition of DA uptake is not via 

an interaction at the DTBZ site on VMAT2 (Chapter 3, Horton et al. 2011b). TBZ 

and reserpine have been shown to act at two different sites on VMAT2 (Yelin and 

Schuldiner, 2000). Relative to the classical VMAT2 inhibitors, GZ-793A was 

found to be equipotent with TBZ and reserpine inhibiting DA uptake at VMAT2, 

but was 1-2-orders of magnitude less potent than TBZ and reserpine at the 

[3H]DTBZ binding site (Partilla et al., 2006; Chapter 3, Horton et al., 2011b; 

Meyer et al., 2011; Nickell et al., 2011), consistent with these sites being 

different.  

Since GZ-793A exhibited a higher affinity for the DA translocation site 

compared with the [3H]DTBZ binding site on VMAT2, GZ-793A inhibition of 

METH-evoked [3H]DA release appeared to be due to inhibition of DA uptake at 

VMAT2. However, GZ-793A was significantly more potent (365-fold) inhibiting 

[3H]DA uptake into vesicles than it was inhibiting  METH-evoked DA release from 

striatal slices, warranting further evaluation of the cellular mechanism underlying 

the pharmacological effects of GZ-793A. Our working hypothesis was based on 

the idea that METH interacts with an extravesicular site on VMAT2 to inhibit DA 

uptake into the vesicle, and with an intravesicular site on VMAT2 to evoke DA 

release from the vesicle (Fig. 33). The current results show that GZ-793A also 

releases DA from the synaptic vesicle, presumably by interacting with 

intravesicular sites on VMAT2. Moreover, the biphasic concentration-response 

curve for GZ-793A to release [3H]DA supports an interaction with two different 

intravesicular sites, a Hi-affinity site and a Low-affinity site (Fig. 28). The current 
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results also show that the intravesicular Hi-affinity site for GZ-793A was both 

TBZ- and reserpine-sensitive.  The Low-affinity site was insensitive to both TBZ 

and reserpine, suggesting that the Low-affinity site may represent a nonspecific 

effect of GZ-793A, e.g., disruption of the proton gradient responsible for retention 

of DA in the synaptic vesicle (Sulzer et al. 2005).  The ability of TBZ and 

reserpine to inhibit GZ-793A-evoked DA release at the intravesicular Hi-affinity 

site appears to be via an allosteric interaction, since TBZ and reserpine act at 

different sites on VMAT2 (Pletscher, 1977; Darchen et al., 1989; Yelin and 

Schuldiner, 2000). Thus, TBZ and reserpine may conformationally change the 

VMAT2 protein resulting in inhibition of GZ-793A-evoked DA release.  

Concentration-response curves for both TBZ and reserpine to release DA 

were consistent with a one-site model of interaction (current results; Nickell et al., 

2011), further indicating that GZ-793A acts differently than the classical VMAT2 

standards at the DA release site on VMAT2. Although GZ-793A, TBZ and 

reserpine were equipotent at the extravesicular DA translocation site on VMAT2, 

the order of potency for DA release via the intravesicular site on VMAT2 was GZ-

793A > TBZ > reserpine, suggesting that DA uptake and DA release are 

mediated by two different sites on VMAT2. Of note, GZ-793A interacts with the Hi 

affinity site mediating DA release across the same concentration range that it 

inhibits DA uptake by VMAT2 (Hi affinity DA release site, EC50 = 15 nM; DA 

uptake site, Ki = 29 nM; current results; Chapter 3, Horton et al., 2011b). 

Differential protein kinase C regulation of DA uptake and release sites on DAT 

(Gnegy, 2003) provides precedence for alternate recognition sites on VMAT2 
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that mediate DA uptake into and DA release from the vesicle. Thus, GZ-793A 

interacts with at least 3 sites on VMAT2 (Fig. 33), i.e., the intravesicular DA 

release site, the extravesicular DA uptake site and the extravesicular DTBZ 

binding site.  

 The goal of the current work was to identify compounds which have 

efficacy decreasing the neurochemical effects of METH as potential 

pharmacotherapeutics to treat METH abuse. METH evokes DA release from 

synaptic vesicles increasing the concentration of cytosolic DA available for 

reverse transport by DAT, leading to an increase in DA in the extracellular space 

(Sulzer et al. 2005). The current results demonstrate that low concentrations of 

the lead compound GZ-793A, that selectively interact with Hi-affinity sites on 

VMAT2 to evoke DA release, inhibit METH-evoked DA release from striatal 

synaptic vesicles. Results show that increasing concentrations of GZ-793A 

produced a rightward shift in the METH concentration response; however, the 

Schild regression revealed a slope different from unity, consistent with 

surmountable allosteric inhibition. Precedence for surmountable allosteric 

inhibition has been provided by previous research on nicotinic and muscarinic 

acetylcholine receptor antagonists (Tucek and Proska, 1995; Kukkonen et al., 

2004; Wooters et al., 2011).  Interpretations of concentration-response curves 

using Schild regression analysis are unambiguous with receptor binding data 

relative to functional data (Kenakin, 1993). However, the distinction between 

ligand-gated ion channel receptors and transporters has become blurred with a 

greater understanding of these proteins (Sonders and Amara, 1996; Galli et al., 
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1996; Sonders et al., 1997). In accordance with the characteristics of an 

allosteric mechanism of inhibition (Kenakin, 2006), the shift to the right in the 

concentration response for METH-evoked DA release via VMAT2 should be 

diminished, as the allosteric site becomes saturated with increasing GZ-793A 

concentrations. Current results show a 5-fold shift in EC50 as the GZ-793A 

concentration progressed from 7 to 70 nM, but only a 1-2-fold shift was apparent 

with GZ-793A concentrations ranging from 70 to 1000 nM, consistent with an 

allosteric mechanism. Further support for surmountable allosteric inhibition of 

METH-evoked DA release by GZ-793A is derived from the current observation 

that the inhibitory effect of GZ-793A was not rate dependent, as evidenced by no 

differences in the METH concentration-response curves in the presence of GZ-

793A with increasing incubation time. Thus, GZ-793A inhibits METH by 

producing a conformational change in the VMAT2 protein, reducing the affinity of 

METH for the intravesicular DA release site, without altering efficacy of METH to 

release DA. 

While GZ-793 shares pharmacological characteristics with the classical 

VMAT2 inhibitors, TBZ and reserpine, there are also notable differences in their 

interaction with VMAT2. First, although GZ-793A, TBZ and reserpine are 

equipotent and completely inhibit DA uptake at the extravesicular site on VMAT2 

(Partilla et al., 2006; Chapter 3, Horton et al., 2011b; Nickell et al., 2011), the 

inhibition produced by reserpine is irreversible (Rudnick et al., 1990), whereas 

inhibition produced by TBZ and GZ-793A is not (Near, 1986; data not shown).  

TBZ has been classified as a noncompetitive inhibitor of the DA uptake site on 
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VMAT2 (Scherman and Henry, 1984); however, our results indicate that TBZ 

inhibits DA uptake through a surmountable allosteric mechanism (Nickell et al., 

2011). GZ-793A inhibition of DA uptake at VMAT2 also has been shown to be 

surmountable (Chapter 3, Horton et al., 2011b); although a Schild analysis has 

not been carried out to determine if GZ-793A-induced inhibition of DA uptake is 

via an allosteric or orthosteric mechanism. Second, these compounds differ in 

the order of potency for interaction at the extravesicular DTBZ binding site on 

VMAT2 (TBZ>reserpine>GZ-793A; Partilla et al., 2006; Chapter 3, Horton et al., 

2011), supporting the interpretation that GZ-793A acts differently than TBZ and 

reserpine. Third, with respect to the intravesicular DA release sites, GZ-793A 

exhibited a different pattern for the concentration response compared to that for 

TBZ and reserpine. Specifically, the concentration-response curves for GZ-793A 

to evoke DA release from synaptic vesicles fit a two-site model of interaction, 

while those for TBZ and reserpine fit a one-site model. Further, GZ-793A 

released DA with greater efficacy (Emax = 88%) than either TBZ or reserpine 

(Emax = 48.5 and 28.4%, respectively), suggesting that GZ-793A has greater 

access to the ATP-associated pool of DA within the synaptic vesicles. Moreover, 

GZ-793A inhibited METH-evoked DA release at the Hi affinity DA release site via 

a surmountable allosteric mechanism, while TBZ-induced inhibition of METH-

evoked DA release is consistent with a competitive mechanism of action. Taken 

together, GZ-793A exhibits a unique pharmacological profile in terms of its 

interaction with VMAT2.   
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In summary, GZ-793A likely interacts with at least three distinct sites on 

VMAT2: 1) the extravesicular DTBZ binding site (low affinity), 2) the 

extravesicular DA uptake site (high affinity) and 3) intravesicular DA release sites 

(high and low affinity).  GZ-793A inhibits METH-evoked DA release from synaptic 

vesicles via a surmountable allosteric mechanism.  As such, GZ-793A inhibits 

METH-induced increases in cytosolic DA by interacting with VMAT2. There are a 

limited number of available compounds that interact with VMAT2. The addition of 

GZ-793A to our armamentarium has augmented our understanding of VMAT2 

function and has identified a specific pharmacological target to prevent METH’s 

neurochemical action. GZ-793A represents a lead in the development of novel 

therapeutics for the treatment of METH abuse. 
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Table 4.  Summary of EC50 and Emax for METH-evoked [3H]DA release in the 
absence and presence of TBZ or GZ-793A 

 

 EC50 (µM) Emax (%) 

TBZ on METH-evoked [3H]DA release  

TBZ (0 nM) 8.93 ± 1.36 82.1 ± 1.21 

TBZ (30 nM) 9.89 ± 2.44 83.4 ± 1.23 

TBZ (100 nM) 45.5 ± 12.7 * 72.0 ± 1.39 

TBZ (1 µM) 185 ± 31.1 * 88.1 ± 4.55 

TBZ (10 µM) 366 ± 115 * 91.9 ± 10.3 

GZ-793A on METH-evoked [3H]DA release 

GZ-793A (0 nM) 18.9 ± 5.21 85.7 ± 1.22 

GZ-793A (7 nM) 11.6 ± 1.37 86.2 ± 0.90 

GZ-793A (70 nM) 56.3 ± 6.16 * 80.7 ± 3.50 

GZ-793A (100 nM) 62.4 ± 8.10 * 82.7 ± 2.33 

GZ-793A (1 µM) 119 ± 12.2 * 79.1 ± 4.02 

*p<0.05 different from [3H]DA release in the presence of METH alone and 
absence of TBZ or GZ-793A. 
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Table 5.  Summary of TBZ and GZ-793A concentrations that significantly 
decreased METH-evoked [3H]DA release compared to control. 

METH  TBZ GZ-793A 

1 nM - - 

10 nM - - 

100 nM - - 

300 nM - - 

1 µM - 1 µM 

3 µM 10 µM 70 nM, 100 nM, 1 µM 

10 µM 100 nM, 1 µM, 10 µM 70 nM, 100 nM, 1 µM 

30 µM 100 nM, 1 µM, 10 µM 70 nM, 100 nM, 1 µM 

100 µM 100 nM, 1 µM, 10 µM 70 nM, 100 nM, 1 µM 

300 µM 100 nM, 1 µM, 10 µM 100 nM, 1 µM 

1 mM 100 nM, 1 µM, 10 µM 100 nM, 1 µM 
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Fig. 27.  Chemical structures of lobeline, lobelane, GZ-793A, TBZ, 

reserpine. Lobeline is the principal alkaloid found in lobelia inflata. Lobelane is 

the chemically defunctionalized, saturated analog of lobeline. GZ-793A is a para-

methoxy analog of lobelane incorporating an N-propan-1,2-diol moiety. TBZ is a 

benzoquinolizine compound and VMAT2 inhibitor proposed to interact with a site 

distinct from the DA uptake site on VMAT2. Reserpine is an indole alkaloid and 

VMAT2 inhibitor, proposed to interact with the DA uptake site on VMAT2. 
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Fig. 28.  GZ-793A-evoked [3H]DA release from striatal vesicles fits a two-site 

model; DA release mediated by the high affinity site is TBZ- and reserpine-

sensitive. Data represents the ability of GZ-793A to evoke [3H]DA release from 

striatal vesicles in the absence (closed circles) and presence of TBZ (35 nM; 

open squares) or reserpine (50 nM, closed triangle). Control (CON) represents 

[3H]DA release in the absence of GZ-793A. Data are mean (± S.E.M) [3H]DA 

release as a percentage of the control. n = 4-8 rats/experiment.   
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Fig. 29. Reserpine evoked [3H]DA release from striatal synaptic vesicles. 

Data represents the ability of reserpine to evoke [3H]DA release from striatal 

vesicles. GZ-793A-evoked [3H]DA release (10 µM and 100 µM) was included as 

a positive control in the experiment (data not shown). Control (CON) represents 

[3H]DA release in the absence of reserpine. Data are mean (± S.E.M) [3H]DA 

release as a percentage of the control.  n = 5 rats. 
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Fig. 30.  TBZ inhibits METH-evoked [3H]DA release from striatal vesicles. 

Data represents the ability of TBZ to inhibit METH-evoked [3H]DA release from 

striatal vesicles. Control represents [3H]DA release in the absence of METH and 

TBZ. Data are mean (± S.E.M) [3H]DA release as a percentage of the control. n = 

4-9 rats/experiment. Inset shows the Schild regression; log of DR−1 is plotted as 

a function of log of TBZ concentration.  

 

 

 

 

 

 

 

 

 

 

 

 

0

20

40

60

80

100

-9 -8 -7 -6 -5 -4 -3 -2CON

TBZ  (0 nM)

TBZ (30 nM)

TBZ (100 nM)
TBZ (1 M)

TBZ (10 M)

 

-9 -8 -7 -6 -5 -4
-3

-2

-1

0

1

2

3

Slope = 0.92  0.33

log [TBZ] (M)

lo
g

 (
D

R
-1

)

log [METH] (M)

V
e

s
ic

u
la

r 
[3

H
]D

A
 R

e
le

a
s
e

(%
 a

b
o

v
e
 c

o
n

tr
o

l)



 

180 

 

Fig. 31.  GZ-793A inhibits METH (METH)-evoked [3H]DA release from striatal 

vesicles. Data represents the ability of GZ-793A to inhibit METH-evoked [3H]DA 

release from striatal vesicles. Control represents [3H]DA release in the absence 

of METH and GZ-793A. Data are mean (± S.E.M) [3H]DA release as a 

percentage of the control. n = 4-10 rats/experiment. Inset shows the Schild 

regression; log of DR−1 is plotted as a function of log of GZ-793A concentration.  
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Fig 32.  GZ-793A-induced inhibition of METH-evoked DA release is not rate-

dependent. Data represents the ability of METH to evoke [3H]DA release from 

striatal vesicles following 8 min incubation in the absence (closed circle) and 

presence of GZ-793A (1 µM; closed square) or following 15 min incubation in the 

absence (open circles) and presence of GZ-793A (1 µM; open square). Control 

(CON) represents [3H]DA release in the absence of METH and GZ-793A. Data 

are mean (± S.E.M) [3H]DA release as a percentage of the control.  n = 3 rats.  
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Fig 33.  GZ-793A interacts with multiple sites on VMAT2. GZ-793A interacts 

with the   extravesicular [3H]DTBZ binding site (open square) with low affinity, the 

extravesicular [3H]DA uptake site (closed circle) with high affinity, and 

intravesicular [3H]DA release sites (TBZ- and reserpine-sensitive Hi-affinity site, 

closed triangle; TBZ- and reserpine-insensitive Low-affinity site, open triangle). 

Also illustrated is the proposed intravesicular site mediating GZ-793A-induced 

inhibition of METH-evoked DA release. 
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CHAPTER FIVE 

 

Acute and Repeated GZ-793A Does Not Alter DA Content and GZ-793A 
Pretreatment Protects Against METH-Induced DA Content Depletion 

Portions of this chapter have been submitted for publication in the manuscript: 

Siripurapu KB, Horton DB, (co-first authors) Zheng G, Crooks PA, Dwoskin LP.  
GZ-793A does not exacerbate methamphetamine-induced dopamine 
depletions in striatal tissue and striatal vesicles.  Eur J Pharmacol, 
submitted, 2011. 

 

I. Introduction  

METH is a highly addictive psychostimulant and currently no 

pharmacotherapies have been approved to treat its abuse. METH produces 

reward by increasing extracellular DA levels via VMAT2 and DAT interactions (Di 

Chiara and Imperato, 1988; Sulzer et al., 2005). Cytosolic DA levels are 

increased via inhibition of DA uptake at VMAT2 and by stimulation of vesicular 

release (Sulzer et al., 1995; Pifl et al., 1995). Reverse transport through DAT 

releases the cytosolic DA into the extracellular space (Fischer and Cho, 1979; 

Liang and Rutledge, 1982). Considerable effort has focused on VMAT2 as a 

pharmacological target in the discovery of compounds for treatment of METH 

abuse (Dwoskin and Crooks, 2002; Crooks et al., 2011; Wimalasena et al., 

2011).  

Lobeline, the major alkaloid of Lobelia inflata, interacts with VMAT2 to 

inhibit the neurochemical and behavioral effects of METH (Fig. 34; Miller et al., 

2001; Harrod et al., 2001; Dwoskin and Crooks, 2002). However, lobeline is 
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nonselective, exhibiting high affinity for nicotinic receptors (Damaj et al., 1997).  

Structure-activity relationships revealed that chemical defunctionalization of 

lobeline affords lobelane, an analog with decreased water solubility, but 

increased potency and selectivity for VMAT2 (Fig. 34; Miller et al., 2004). 

Furthermore, lobelane decreased METH-induced DA release from striatal slices 

and METH self-administration in rats (Neugebauer et al., 2007; Nickell et al., 

2010). Unfortunately, tolerance developed to the behavioral effects of lobelane 

(Neugebauer et al., 2007).  

Structural modification of lobelane afforded GZ-793A (Fig. 34), which has 

increased water solubility, while retaining potency and selectivity for VMAT2 

(Chapter 3, Horton et al., 2011b). GZ-793A inhibits METH-evoked DA release 

from striatal slices without altering electrical field stimulation- or nicotine-evoked 

DA release, indicating specific inhibition of METH. Also, GZ-793A decreases 

METH self-administration and conditioned place preference without altering food 

maintained responding (Beckmann et al., 2011). Thus, GZ-793A represents a 

new lead in the discovery of novel pharmacotherapeutics to treat METH abuse. 

Classical VMAT2 inhibitors (e.g., reserpine, an irreversible VMAT2 

inhibitor) deplete striatal DA content (Cleren et al., 2003), suggesting that GZ-

793A may produce similar effects.  METH also depletes striatal DA content, 

which serves as an index of dopaminergic neurotoxicity (Krasnova and Cadet, 

2009). Furthermore, VMAT2 heterozygous knockout mice exhibit increased 

METH-induced neurotoxicity compared to wild-type mice (Fumagalli et al., 1999).  

Conversely, reversible VMAT2 inhibitors are neuroprotective against 
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dopaminergic toxicity.  For example, tetrabenazine and lobeline attenuate 

dopaminergic neurotoxicity (Cleren et al., 2003; Eyerman and Yamamoto, 2005). 

As such, since GZ-793A interacts with VMAT2, it is imperative to evaluate the 

potential of this compound for both exacerbation and/or neuroprotection of 

METH-induced dopaminergic neurotoxicity.  The outcome of these studies will 

provide important insights regarding the further development of GZ-793A as a 

lead compound for the treatment of METH abuse.  

The hypothesis of this chapter is that VMAT2 inhibition by GZ-793A will 

not alter striatal DA content and GZ-793A pretreatment will protect against 

METH-induced DA content depletions in striatal tissue and vesicles.    

II. Materials and Methods 

IIa.   Animals.  Male Sprague-Dawley rats (200-250g, Harlan, 

Indianapolis, IN) were housed two per cage with ad libitum access to food and 

water in the Division of Laboratory Animal Resources at the University of 

Kentucky (Lexington, KY, USA). Experimental protocols involving the animals 

were in accord with the 1996 NIH Guide for the Care and Use of Laboratory 

Animals and were approved by the Institutional Animal Care and Use Committee 

at the University of Kentucky.  

IIb.  Chemicals.  CaCl2, citric acid, MgCl2, KCl, K2PO4, NaHCO3 and 

NaH2PO4 were purchased from Fisher Scientific Co. (Pittsburgh, PA, USA). 

Ascorbic acid, ascorbate oxidase, DA, EDTA, EGTA, d-glucose,  HEPES, METH, 

MgSO4, octane sulphonic acid, potassium tartrate, NaCl and sucrose were 
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purchased from Sigma-Aldrich (St. Louis, MO, USA). GZ-793A was synthesized 

according to previously reported methods (Chapter 3, Horton et al., 2011b).   

IIc.   Experimental Design.  To determine the effect of acute GZ-793A 

on DA content in striatal tissue and vesicles, GZ-793A (15 mg/kg; s.c) or saline 

was administered.  The GZ-793A dose was selected based upon behavioral 

studies showing efficacy to decrease METH self-administration and conditioned 

place preference (Beckmann et al., 2011). To determine the effect of acute GZ-

793A alone on DA content, GZ-793A or saline was administered s.c. and striata 

(8 and 65 mg) were obtained 0.3, 1.3, 8, or 24 hr post-injection for tissue and 

vesicular DA content assays, respectively. To determine the interaction of acute 

GZ-793A with METH, GZ-793A (15 mg/kg; s.c.) or saline was injected 20 min 

prior to METH (0, 5 or 10 mg/kg; i.p.), and 3 days later, striata were obtained for 

tissue  and vesicular DA content assays. Doses of METH and the time point 

following administration were chosen based on previous findings (Xi et al., 2009). 

The effect of repeated 7-day pre-treatment with GZ-793A (15 mg/kg, once 

daily; s.c) on the acute METH (10 mg/kg; i.p) induced depletion of DA content 

was determined. METH was administered 20 min after the last GZ-793A dose on 

Day 7. Striata were obtained 3 days subsequently.  The effect of GZ-793A (15 

mg/kg; s.c) pre-treatment on striatal DA depletion induced by a METH treatment 

regimen (7.5 mg/kg x 4, 2-hr injection intervals; i.p.) traditionally used to deplete 

DA (Stephans and Yamamoto, 1996; Chapman et al., 2001; Eyerman and 

Yamamoto, 2005) was determined.  GZ-793A or saline was administered 20 min 

prior to each dose of METH. Striata were obtained 7 days after the last 
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treatment. Doses of METH and the pre-treatment time point following 

administration were chosen based on previous findings (Eyerman and 

Yamamoto, 2005). Also, the effect of GZ-793A (15 mg/kg; s.c) post-treatment on 

striatal DA depletion induced by METH (7.5 mg/kg x 4 at 2 hr injection intervals; 

i.p) was determined. GZ-793A or saline was administered 5 and 7 hr after each 

dose of METH. Striata were obtained 7 days after the last treatment. Doses of 

METH and the post-treatment time point following administration were chosen 

based on previous findings (Eyerman and Yamamoto, 2005). 

IId. Tissue and vesicle preparation for DA content assay.  Striata from 

each rat were used to prepare both tissue (8 mg) and vesicle (65 mg) 

preparations for the content assay. Striata were sonicated in 1 ml of 0.1 M 

perchloric acid and the suspension centrifuged at 20,000 g for 30 min. 

Supernatants (50 µl) were injected into the HPLC with electrochemical detection 

to determine tissue DA content.  

Striatal vesicle preparations were prepared as previously reported 

(Chapter 2, Horton et al., 2011a). Striata  were homogenized in 14 ml of ice-cold 

0.32 M sucrose solution containing 5 mM NaHCO3 (pH 7.4) with 10 up-and-down 

strokes of a Teflon pestle homogenizer (clearance = 0.008”). Homogenates were 

centrifuged at 2,000 g for 10 min at 4 °C and resulting supernatants centrifuged 

at 10,000 g for 30 min at 4 °C. Pellets were resuspended in 2.0 ml of 0.32 M 

sucrose and were transferred to tubes containing 7 ml of milliQ water and 

homogenized with 5 up-and-down strokes. Homogenates were transferred to 

tubes containing 900 μl of 0.25 M HEPES and 900 μl of 1.0 M potassium tartrate 
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solution and centrifuged at 20,000 g for 20 min at 4 ºC. Resulting supernatants 

were centrifuged at 55,000 g for 60 min at 4 ºC. Subsequently, 100 μl of 1 mM 

MgSO4, 100 μl of 0.25 M HEPES and 100 μl of 1.0 M potassium tartrate were 

added to the supernatant and centrifuged at 100,000 g for 45 min at 4 ºC. Final 

pellets were resuspended in 1.2 ml of milliQ water. Vesicle suspensions were 

sonicated at 4o C for 5 min and centrifuged at 20,000 g for 15 min. Supernatants 

(50 µl) were injected into the HPLC with electrochemical detection for 

determination of vesicular DA content. 

IIe.  DA content determination by HPLC with electrochemical 

detection.  HPLC-EC determination of DA content was performed by Kiran 

Siripurapu, Ph.D.. HPLC with electrochemical detection consisted of a pump and 

auto-sampler (508 Beckman Coulter, Inc., Fullerton, CA, USA) and an ODS 

ultrasphere C18 reverse-phase column (80 × 4.6 mm, 3-µm ESA Inc., 

Chelmsford, MA, USA). Analytes were detected with a coulometric-II detector 

with guard cell (model 5020) maintained at +0.60 V and an analytical cell (model 

5011) maintained at potentials E1 = 0.05 V & E2 = +0.32 V (ESA, Inc).  The 

mobile phase was 0.07 M citrate/0.1 M acetate buffer (pH 4) containing, 175 mg/l 

octylsulfonic acid-sodium salt, 650 mg/l of NaCl and 7% methanol. Separations 

were performed at room temperature at a flow rate of 1.5 ml/min, and 5-6 min 

were required to process each sample. Retention times of DA and 

dihydroxyphenylacetic acid (DOPAC) standards were used to identify peaks.  

Peak heights were used to quantify detected amounts on the basis of standard 

curves. Detection limits for DA and DOPAC were 1 and 2 pg/100 µl, respectively. 
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Peak integrations and analyses were performed by using 32 karat software 

(Beckman Coulter, Inc.). 

IIf.  Data analysis.  DA content was expressed as mean ± S.E.M. 

ng/mg wet weight for striatal tissue content assays and ng/mg protein for 

vesicular content assays.  The effect of acute GZ-793A on DA content was 

analyzed using a two-way ANOVA with GZ-793A treatment and time as between-

subjects factors.   

Both the concentration effect of METH to deplete striatal DA content and 

the effect of acute GZ-793A pre-treatment on METH depletion were analyzed 

using a two-way ANOVA, with GZ-793A pre-treatment and METH dose as 

between-subject factors.   

The effect of repeated GZ-793A pre-treatment on depletion of DA content 

induced by acute METH treatment was analyzed using a two-way ANOVA 

followed by Tukey’s post hoc analysis to determine significant differences 

between the treatment groups and respective controls. The effect of GZ-793A 

pre-treatment on DA depletion induced by repeated METH was analyzed using a 

two-way ANOVA, followed by Tukey’s post hoc analysis to determine differences 

between treatment groups and respective controls. The effect of repeated METH 

treatment followed by GZ-793A was analyzed using a two-way ANOVA followed 

by Tukey’s post hoc analysis to determine differences between treatment groups 

and respective controls. Statistical analyses were conducted using SPSS 

(version 17.0; SPSS Inc., Chicago, IL, USA) and GraphPad PRISM (version 5.0; 
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Graph Pad Software, Inc., San Diego, CA, USA). Statistical significance was 

defined as p < 0.05. 

III. Results 

IIIa.  GZ-793A does not alter striatal DA content.  DA content in 

striatal tissue and vesicles 0.3, 1.3, 8 and 24 hr following GZ-793A treatment is 

provided in Table 6. Analysis of striatal DA content by two-way ANOVA failed to 

reveal a main effect of GZ-793A treatment (F1,56 = 1.45, p > 0.05] or a GZ-793A 

treatment x time interaction F3,56 = 0.06, p > 0.05); however a main effect of time 

(F3,56 = 10.6, p < 0.05) was observed. Analysis of vesicular DA content by two-

way ANOVA also failed to reveal main effects of GZ-793A treatment (F1,56 = 0.04, 

p > 0.05) and time (F3,56 = 1.25, p > 0.05), and no GZ-793A treatment x time 

interaction (F3,56 = 0.76, p > 0.05).   

IIIb.  Acute GZ-793A pre-treatment attenuates the acute METH-

induced decrease in striatal tissue and vesicular DA content. Fig. 35 

illustrates the effect of GZ-793A pre-treatment on METH-induced decreases in 

striatal tissue and vesicular DA content (top and bottom panel, respectively). 

Analysis of DA content in striatal tissue by two-way ANOVA failed to reveal a 

main effect of GZ-793A pre-treatment F1,42 = 3.39, p > 0.05) and no GZ-793A x 

METH interaction (F2,42 = 1.66, p > 0.05); however, a main effect of METH dose 

(F2,42 = 6.96, p < 0.05) was found.   

Analysis of vesicular DA content by two-way ANOVA revealed main 

effects of GZ-793A pre-treatment (F1,42 = 4.56, p < 0.05) and METH dose F2,42 = 
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3.54, p < 0.05) and a GZ-793A x METH interaction (F2,42 = 3.31, p < 0.05). 

Further evaluation of the effect of METH in saline pre-treated rats by one-way 

ANOVAs revealed a main effect of METH dose (F2,21 = 9.51, p < 0.05). Post hoc 

analysis revealed that METH (5 and 10 mg/kg) significantly decreased DA 

content in striatal vesicles compared to the respective saline control.  Also, one-

way ANOVA on the dose effect of METH following GZ-793A pre-treatment did 

not reveal a main effect of METH dose (F2,21 = 0.44, p > 0.05). The latter result 

demonstrates that GZ-793A pre-treatment attenuated the METH-induced 

decrease in DA content in striatal vesicles.    

IIIc.  Repeated GZ-793A pre-treatment attenuates the acute METH-

induced decrease in striatal tissue or vesicular DA content.  The effect of 

repeated GZ-793A pre-treatment on the acute METH (10 mg/kg) induced 

decrease in striatal tissue and vesicular DA content is illustrated in Fig. 36 (top 

panel and bottom panel, respectively). Analysis of DA content in striatal tissue 

following GZ-793A pre-treatment and acute METH by two-way ANOVA revealed 

a main effect of METH treatment (F1,35 = 4.29, p < 0.05) and a GZ-793A x METH 

interaction (F1,35 = 6.58, p < 0.05); however, a main effect of GZ-793A pre-

treatment (F1,35 = 0.60, p > 0.05) was not found.  Post hoc analysis revealed that 

DA content was decreased in the saline + METH group compared to the saline 

control group.  Also, striatal DA content in both the GZ-793A + saline and the GZ-

793A + METH groups were not different from the saline control group. Thus, 

repeated GZ-793A alone did not decrease striatal DA content and repeated GZ-

793A attenuated the METH-induced decrease in striatal DA content.   
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Analysis of vesicular DA content following GZ-793A pre-treatment and 

acute METH treatment by two-way ANOVA revealed a GZ-793A x METH 

interaction (F1,36 = 4.87, p < 0.05); however, main effects of GZ-793A pre-

treatment (F1,36 = 0.54, p > 0.05) and METH treatment (F1,36 = 3.51, p > 0.05) 

were not found. Post hoc analysis revealed that vesicular DA content in the 

saline + METH group was decreased relative to the saline control group.  

Furthermore, vesicular DA content for both the GZ-793A + saline group and the 

GZ-793A + METH group was not different from that for the saline control group. 

Thus, repeated GZ-793A alone did not alter vesicular DA content and repeated 

GZ-793A pre-treatment attenuated the METH-induced decrease in vesicular DA 

content.  

IIId.  GZ-793A pre-treatment does not exacerbate DA depletion in 

striatal tissue or vesicles induced by METH (7.5 mg/kg x 4). The effect of GZ-

793A pre-treatment on striatal DA depletion induced by METH (7.5 mg/kg x 4, 2-

hr injection intervals) is provided in Fig. 37 and Table 7. Analysis of DA content in 

striatal tissue by two-way ANOVA revealed a main effect of METH treatment 

(F1,36 = 14.2, p < 0.05); however, no main effect of GZ-793A pre-treatment (F1,36 

= 0.21, p > 0.05) and no GZ-793A x METH interaction (F1,36 = 2.94, p > 0.05) was 

observed. Striatal DA content was decreased in both the saline + METH and GZ-

793A + METH treatment groups compared to the saline control group; and 

moreover, the GZ-793A + METH group was not different from the saline + METH 

group. Thus, repeated GZ-793A pre-treatment (15 mg/kg x 4) did not alter the 
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depletion in striatal DA content induced by a METH regimen traditionally 

employed to deplete striatal DA.   

Analysis of vesicular DA content by two-way ANOVA failed to reveal main 

effects of GZ-793A pre-treatment (F1,36 = 0.86, p > 0.05), METH (F1,36 = 2.15, p > 

0.05), and GZ-793A x METH interaction (F1,36 = 1.00, p > 0.05).  

IIIe.  GZ-793A post-treatment does not exacerbate depletion of 

striatal tissue or vesicular DA content induced by METH (7.5 mg/kg x 4).  

The effect of GZ-793A treatment 5 hrs and 7 hrs after METH (7.5 mg/kg x 4, 2-hr 

injection intervals) on striatal tissue and vesicular DA content is provided in Fig. 

38 and Table 8, respectively. Analysis of DA content in striatal tissue by two-way 

ANOVA revealed a main effect of METH (F1,19 = 52.0, p < 0.05), but no main 

effect of GZ-793A post-treatment (F1,19 = 0.18, p > 0.05) and no GZ-793A x 

METH interaction (F1,19 = 0.32, p >0.05). Striatal DA content was decreased in 

both the METH + saline and METH + GZ-793A treatment groups compared to 

the saline control group; and moreover, the GZ-793A + METH group was not 

different from the saline + METH group. Thus, repeated post-treatment with GZ-

793A (15 mg/kg) did not alter the depletion in striatal DA content induced by 

METH (7.5 mg/kg x 4).   

Analysis of vesicular DA content by two-way ANOVA failed to reveal main 

effects of GZ-793A pre-treatment (F1,19 = 0.19, p > 0.05), METH treatment (F1,19 

= 0.22, p > 0.05) and no GZ-793A x METH interaction effect (F1,19 = 1.25, p > 

0.05) was observed.  
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IV.    Discussion 

In a concentration-dependent manner, GZ-793A potently and selectively 

inhibits VMAT2 function and evokes DA release from vesicles (Chapter 3, Horton 

et al., 2011a; Chapter 4, Horton et al.,2011c). Despite the ability of GZ-793A to 

alter VMAT2 function, the current results show that GZ-793A administered 

acutely and repeatedly did not alter striatal DA content across a 24 hr time period 

following treatment with a behaviorally relevant dose. Importantly, GZ-793A 

inhibits METH-evoked DA release from striatal vesicles and slices (Chapter 3, 

Horton et al., 2011b; Chapter 4, Horton et al., 2011c). Moreover, these in vitro 

observations translated to the whole animal model, since GZ-793A decreased 

METH self-administration (Beckmann et al., 2011).  The current results further 

show that acute and repeated GZ-793A pre-treatment attenuated the acute 

METH-induced decrease in striatal DA content.  Pertinent to the development of 

GZ-793A as a lead compound for the treatment of METH abuse, GZ-793A did 

not exacerbate DA depletion induced by a repeated high dose regimen of METH. 

Thus, the ability of GZ-793A to decrease METH self-administration is not 

accompanied by an exacerbation of METH-induced dopaminergic neurotoxicity.  

These results further advance GZ-793A as a preclinical lead in the development 

of pharmacotherapies to treat METH abuse.    

GZ-793A is a structural synthetic analog of lobeline, the major alkaloid 

from Lobelia inflata. Similar to the current findings with GZ-793A, previous work 

showed that lobeline, across a wide dose range, did not alter striatal DA content 

during the 24-hr period following its acute or repeated administration (Miller et al., 
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2001). Importantly, both lobeline pre-treatment and post-treatment was shown to 

attenuate DA depletion induced by a neurotoxic regimen of METH (Eyerman and 

Yamamoto, 2005).  

In the current study, acute METH (5 and 10 mg/kg) decreased striatal 

tissue and vesicular DA content consistent with previous results (Xi et al., 2009).  

Acute and repeated GZ-793A pre-treatment attenuated the DA depletion induced 

by acute METH treatment (5 and 10 mg/kg). Recent studies show that GZ-793A 

decreases METH-evoked DA release from vesicles via a surmountable allosteric 

mechanism (Chapter 4, Horton et al., 2011c), which thereby may have limited the 

METH-induced striatal DA depletion.  An alternative explanation is that GZ-793A 

may interact with DAT to attenuate the METH-induced DA depletion. DAT 

inhibitors, including GBR-12909, buproprion and mazindol, attenuate METH-

induced depletion of striatal DA content by inhibiting METH-evoked DA release 

(Marek et al., 1990; Stephans and Yamamoto, 1994). Similarly, GZ-793A may 

interact with DAT to inhibit METH-induced reverse transport (release) of DA and 

the METH-induced decrease in striatal DA content.  However, GZ-793A is 50-fold 

more potent inhibiting VMAT2 function than inhibiting DAT function (Chapter 3, 

Horton et al., 2011b). Furthermore, the observation that GZ-793A is not self-

administered in rats (Beckmann et al., 2011), diminishes support for an 

interaction with DAT as the underlying mechanism for its ability to attenuate 

METH toxicity.  

Although GZ-793A attenuated the DA depletion induced by acute METH, 

GZ-793A did not alter DA depletion in striatal tissue induced by a neurotoxic 



 

196 

 

regimen of METH in contrast with the neuroprotection afforded by lobeline. This 

difference in neuroprotection between GZ-793A and lobeline may be due to the 

doses chosen to evaluate the interaction with METH. The GZ-793A dose (15 

mg/kg) was chosen due to its behavioral relevance, i.e., this dose decreased 

METH self-administration in rats (Beckmann et al., 2011). Conversely, a high 

dose (10 mg/kg) of lobeline was evaluated for interaction with METH (Eyerman 

and Yamamoto, 2005); this high dose was shown to nonspecifically decrease 

METH self-administration (Harrod et al., 2001). In this regard, a higher dose of 

GZ-793A also may attenuate the dopaminergic depletion induced by the 

neurotoxic regimen of METH.  Another potential explanation for the difference in 

neuroprotection between GZ-793A and lobeline may be that lobeline also acts as 

a nicotinic receptor antagonist, whereas GZ-793A does not (Damaj et al., 1997; 

Flammia et al., 1999; Miller et al., 2004; Siripirapu et al., 2011). Furthermore, 

support for the involvement of nicotinic receptors in lobeline neuroprotection is 

the observation that methyllycaconitine, an α7 nicotinic receptor antagonist, 

protected against METH-induced dopaminergic neurotoxicity (Northrop et al., 

2011). Thus, the selectivity of GZ-793A for VMAT2 and the lack of interaction 

with nicotinic receptors could explain the difference between GZ-793A and its 

parent compound to attenuate the dopaminergic neurotoxicity induced by METH.   

Although the neurotoxic regimen of METH (7.5 mg/kg x 4) depleted DA in 

striatal tissue content, vesicular DA content was not depleted significantly. 

Furthermore, although vesicular DA was depleted by ~40% three days following 

acute METH (10 mg/kg), striatal vesicles were not depleted significantly seven 
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days after the neurotoxic regimen of METH.  These results support the concept 

that vesicular DA stores are more resilient to depletion induced by METH 

compared with striatal tissue DA, and that compensation may have occurred by 7 

days to restore vesicular DA levels. The current results are in contrast with a 

recent study reporting that vesicular DA was depleted by 50% 7 days following 

METH (10 mg/kg x 4) administration (Northrop et al., 2011). Methodological 

differences between the studies may be responsible for the contrasting 

observation, i.e., different doses of METH employed, and different procedures for 

vesicle preparation. Nonetheless, GZ-793A did not potentiate the ability of METH 

to deplete vesicular DA content. Furthermore, the METH regimen (7.5 mg/kg x 4) 

employed in the current study depleted DA content in the striatal tissue, and this 

depletion was not exacerbated by GZ-793A pre-treatment or post-treatment. 

Thus, GZ-793A did not protect, but also did not exacerbate, the dopaminergic 

neurotoxicity induced by repeated high dose METH.  

In summary, results from the current study demonstrate that acute or 

repeated GZ-793A alone does not alter DA content in striatal tissue or vesicles. 

Furthermore, GZ-793A pre-treatment attenuates the acute METH-induced 

decrease in DA content, and importantly, does not exacerbate DA depletion 

following repeated high dose METH administration. Thus, behaviorally relevant 

doses of GZ-793A did not alter DA content when administered alone, and did not 

exacerbate striatal DA depletion induced by METH.  In conclusion, GZ-793A 

represents an exciting preclinical lead candidate for the treatment of METH 

abuse.    
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Table 6. Striatal tissue and vesicular DA content at various time points 
following saline or GZ-793A (15 mg/kg) treatment.   

  

Tissue DA Content  

(ng/mg tissue) 

Vesicular DA Content  

(ng/mg protein) 

Time (hrs) Saline GZ-793A Saline GZ-793A 

0.3 3.03 ± 0.58 2.36 ± 0.49 0.28 ± 0.06 0.32 ± 0.14 

1.3 4.65 ± 0.77 4.15 ± 0.61 0.18 ± 0.01 0.14 ± 0.05 

8 1.97 ± 0.52 1.75 ± 0.32  0.09 ± 0.003 0.08 ± 0.01 

24 5.25 ± 0.59 4.56 ± 0.87 0.07 ± 0.01 0.06 ± 0.01 

 

Data are mean ± S.E.M.; n = 8 rats/treatment 
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Table 7. The effect of GZ-793A pretreatment (15 mg/kg) 20 minutes prior to 
a traditional  regimen of METH administration (7.5 mg/kg x 4; every 2 hrs) 
on striatal vesicular DA content.  

Treatment Group 

Vesicular DA Content 

(ng/mg protein) 

Saline/Saline 0.11 ± 0.01 

GZ-793A/Saline  0.13 ± 0.01 

Saline/METH 0.10 ± 0.01 

GZ-793A/METH 0.09 ± 0.1 

 

Data are mean ± S.E.M.; n = 10 rats/treatment 
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Table 8. The effect of GZ-793A post-treatment (15 mg/kg) 5 and 7 hrs after a 
traditional regimen of METH administration (7.5 mg/kg x 4; every 2 hrs) on 
striatal vesicular DA content.  

Treatment Group 

Vesicular DA Content 

(ng/mg protein) 

Saline/Saline 0.10 ± 0.01 

Saline/GZ-793A  0.08 ± 0.01 

METH/Saline 0.08 ± 0.01 

METH/GZ-793A 0.09 ± 0.01 

 

Data are mean ± S.E.M.; n = 5-6 rats/treatment 
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Fig. 34.  Chemical structures of lobeline, lobelane, and GZ-793A.  Lobeline is 

the principle alkaloid found in Lobelia inflata.  Lobelane is the defunctionalized, 

saturated analog of lobeline.  GZ-793A is a 4-methoxyphenyl analog of lobelane 

incorporating an N-1,2-diol moiety.    
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Fig. 35.  Acute GZ-793A pre-treatment attenuates acute methamphetamine-

induced decreases in striatal tissue or vesicular dopamine content.  Data 

are shown as ng/mg tissue and ng/mg protein for tissue (top panel) and vesicles 

(bottom panel), respectively and expressed as mean ± S.E.M. *p < 0.05 different 

from saline control. n = 8-12 rats/treatment.    
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Fig. 36. Repeated GZ-793A pre-treatment attenuates acute 

methamphetamine-induced decreases in striatal tissue or vesicular 

dopamine content.   Data are shown as ng/mg tissue and ng/mg protein for 

tissue (top panel) and vesicles (bottom panel), respectively and expressed as 

mean ± S.E.M. *p < 0.05 different from saline control. n = 10 rats/treatment.    
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Fig. 37. GZ-793A pre-treatment (15 mg/kg) 20 min prior to a traditional 

regimen of methamphetamine administration (7.5 mg/kg x 4, 2-hr injection 

intervals) does not exacerbate methamphetamine-induced decreases in 

striatal tissue dopamine content.  Data are shown as ng/mg tissue and 

expressed as mean ± S.E.M. *p < 0.05 different from saline control. n = 10 

rats/treatment. 
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Fig. 38. GZ-793A post-treatment (15 mg/kg) 5 and 7 hrs after a traditional 

regimen of methamphetamine administration (7.5 mg/kg x 4, 2-hr injection 

intervals) does not exacerbate methamphetamine-induced decreases in 

striatal tissue dopamine content.   Data are shown as ng/mg tissue for tissue 

and expressed as mean ± S.E.M. *p < 0.05 different from saline control. n = 5-6 

rats/treatment.    
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CHAPTER SIX 

 

Discussion and Conclusions 

I. Review 

METH is the second most abused illicit drug in the world after marijuana, 

with over 25 million METH abusers worldwide (United Nations Office on Drugs 

and Crime, 2007; Cadet and Krasnova, 2009; Cruickshank and Dyer, 2009). 

METH is the most commonly synthesized illegal drug in the U.S., contributing to 

its widespread use (Cadet and Krasnova, 2009).  AMPHs were the primary 

cause of over 170,000 substance abuse emergency room admissions, with over 

80% of these cases involving METH (DASIS, 2008).  METH abuse also 

represents a significant financial burden, costing the U.S. $23.4 billion in 2005 

due to health care, law enforcement, and social welfare costs (Gonzales et al., 

2010). In 2009, the number of people using METH in the past month increased 

59% (NSDUH, 2009). Despite increased METH use, there are currently no 

pharmacotherapies approved for the treatment of METH abuse.  Thus, METH 

abuse presents a serious public health concern. 

METH elicits its rewarding and stimulant effects by increasing extracellular 

DA levels in the brain through an interaction with DAT and VMAT2 (Fischer and 

Cho, 1979; Seiden et al., 1993; Pifl et al., 1995; Sulzer et al., 1995; Jones et al., 

1998; Sulzer et al., 2005).  Specifically, METH acts as a substrate for DAT, 

inhibiting DA uptake into the presynaptic terminal.  In the presynaptic terminal, 
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METH inhibits DA uptake at VMAT2 and promotes DA release from vesicles, 

leading to an increase in cytosolic DA concentrations available for reverse 

transport through DAT.  Taking into consideration the role DAT plays in the 

mechanism of action of METH, numerous studies have been conducted 

examining the potential utility of DAT inhibitors such as buproprion and 

methylphenidate in the treatment of METH dependence.  Unfortunately, results 

regarding the effectiveness of these treatments are inconclusive (Newton et al., 

2006; Tiihonen et al., 2007; Vocci and Appel et al., 2007; Gonzales et al., 2009; 

Karila et al., 2010).  Recent studies have focused on VMAT2 as a therapeutic 

target for the development of treatments for METH abuse (Dwoskin and Crooks, 

2002; Zheng et al., 2005a; Vocci and Appel et al., 2007; Karila et al., 2010). 

Lobeline, the principal alkaloid of Lobelia inflata, inhibits [3H]DTBZ binding 

and [3H]DA uptake at VMAT2 (Teng et al., 1997, 1998). In addition to inhibiting 

VMAT2 function, lobeline promotes a release of DA from preloaded synaptic 

vesicles (Nickell et al., 2011). Similar to METH, lobeline redistributes DA from 

vesicles to the cytosol.  Unlike METH however, lobeline does not inhibit MAO 

and does not reverse DAT (Teng et al., 1997; Dwoskin and Crooks, 2002).  

Through the interaction with VMAT2 and redistribution of DA in the presynaptic 

terminal, lobeline is hypothesized to limit the DA available for reverse transport 

by METH.  In support of this hypothesis, lobeline inhibited AMPH-evoked DA 

release from striatal slices in the same concentration range that lobeline interacts 

with VMAT2.  Further, lobeline pretreatment inhibited METH-induced increases in 

locomotor activity and METH self-administration in rats (Miller et al., 2001; 
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Harrod et al., 2001). Importantly, lobeline is not self-administered in rats and 

does not produce conditioned place preference, suggesting limited abuse liability 

(Harrod et al., 2003).  Recently, lobeline has passed Phase Ib clinical trials, 

demonstrating safety in METH users (Jones et al., 2007).  Unfortunately, lobeline 

exhibits a short half-life and lacks selectivity for VMAT2 over nAChRs.   

Structure activity relationships revealed that chemical defunctionalization 

of the lobeline molecule (i.e. removal of keto and hydroxyl groups) afforded 

analogs, MTD and lobelane which exhibited increased affinity for VMAT2 and 

decreased affinity for nAChRs (Miller et al., 2004; Zheng et al., 2005a; Nickell et 

al., 2011).  In addition to exhibiting increased selectivity for inhibition of VMAT2 

function, MTD and lobelane inhibited METH-evoked DA release from striatal 

slices (Nickell et al., 2011).  To extend these findings, results from the current 

research revealed that MTD decreased METH self-administration without altering 

food maintained responding.  However, MTD inhibited METH self-administration 

only at the highest dose tested and tolerance developed to this effect.  

Considering the high affinity of MTD for DAT (Ki = 0.10 µM), it is likely that the 

MTD-induced attenuation of METH self-administration was a result of high affinity 

inhibition of DAT function by MTD.  Through inhibiting DAT function, MTD could 

act to inhibit METH-induced reverse transport of DA through DAT.  Similar to 

MTD, lobelane pretreatment decreased METH self-administration in rats, but 

tolerance developed to this behavioral effect after repeated treatment 

(Neugebauer et al., 2007). In addition, both MTD and lobelane exhibited 

decreased water solubility compared to lobeline due to the removal of the keto 
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and hydroxyl moieties of the lobeline molecule.  Thus, the purpose of this 

dissertation research was to identify analogs of MTD and lobelane that exhibited 

increased water solubility and VMAT2 selectivity in an effort to develop novel 

therapeutics to treat METH abuse.    

 

The first aim of this dissertation was to determine the selectivity of 3,5-

disubstituted MTD analogs to inhibit VMAT2 function over DAT, SERT, and 

nAChRs.  Conformationally restricting the MTD molecule by incorporating the 

phenylethylene substituents into the piperdine ring afforded analogs with 

increased selectivity for VMAT2 compared to the parent analog, MTD. Unlike 

MTD, MTD analogs in this series exhibited decreased affinity for DAT, 

suggesting a decreased potential for abuse liability compared to MTD.  UKMH-

106, a 2,4-dichlorophenyl MTD analog competitively inhibited VMAT2 function 

with over 20-fold selectivity for VMAT2 over DAT, SERT and nAChRs.  

Furthermore, UKMH-106 decreased METH-evoked DA release from striatal 

slices in a concentration-dependent manner.  Interestingly, UKMH-105, a 2,4-

dichlorophenyl MTD analog and geometrical isomer of UKMH-106, did not inhibit 

METH-evoked DA release from striatal slices despite exhibiting equipotency for 

inhibition of VMAT2 function compared to UKMH-106. These results suggest that 

the site on VMAT2 mediating METH-evoked DA release is less accommodating 

to the double bond geometry of MTD analogs compared to the DA uptake site on 

VMAT2.  Nonetheless, conformationally restricting the MTD molecule afforded 
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analogs with increased selectivity for inhibition of VMAT2 function compared to 

MTD and UKMH-106 decreased METH-evoked DA release from striatal slices.   

The second aim was to determine the selectivity of N-1,2-diol lobelane 

analogs to inhibit VMAT2 function over DAT and SERT.  Replacement of the N-

methyl moiety with a chiral N-1,2-diol moiety on the piperdine nitrogen of 

lobelane afforded analogs with increased water solubility compared to lobelane.  

GZ-793A, the 4-methoxyphenyl N-1,2(R)-diol analog, and GZ-794A, the 1-

naphthalene N-1,2(R)-diol analog, competitively inhibited [3H]DA uptake at 

VMAT2 with affinity not different from that exhibited by lobelane.  Further, both 

analogs inhibited METH-evoked DA release from striatal slices in a 

concentration-dependent manner, however GZ-793A exhibited ~35% greater 

inhibitory activity compared to GZ-794A. Thus, GZ-793A emerged as the lead 

analog of the series, exhibiting over 50-fold selectivity for inhibition of VMAT2 

function and inhibiting METH-evoked DA release from striatal slices.  

To further identify the cellular mechanism underlying GZ-793A-induced 

inhibition of the effects of METH, the third aim determined the ability of GZ-793A 

to release DA from vesicles and inhibit METH-evoked DA release from vesicles.  

GZ-793A evoked [3H]DA release from synaptic vesicles with high affinity and the 

concentration-response curve fit a two-site model of interaction.  GZ-793A-

evoked DA release at the Hi affinity site was TBZ- and reserpine-sensitive, while 

release at the Low affinity site was TBZ- and reserpine-insensitive.  GZ-793A 

concentrations that interact with the Hi affinity site inhibited METH-evoked [3H]DA 

release from striatal synaptic vesicles.  Increasing concentrations of GZ-793A 
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produced a rightward shift in the METH concentration-response and Schild 

regression analysis revealed a slope significantly different from unity, consistent 

with a surmountable allosteric mechanism of action.  Thus, GZ-793A likely 

interacts with at least three distinct sites on VMAT2: 1) the extravesicular DTBZ 

binding site (low affinity), 2) the extravesicular DA uptake site (high affinity) and 

3) intravesicular DA release sites (high and low affinity).   

The fourth aim was to determine the effect of GZ-793A on striatal DA 

content and the ability of GZ-793A to protect against METH-induced DA content 

depletion.  Results from this initial DA neurotoxicity evaluation revealed that 

acute or chronic GZ-793A did not alter DA content from striatal tissue or vesicles, 

suggesting that the ability of GZ-793A to inhibit the neurochemical and 

behavioral effects of METH is not due to a GZ-793A-induced neurotoxicity effect 

on DA content.  GZ-793A pretreatment (15 mg/kg) prior to acute METH (5 and 10 

mg/kg) attenuated METH-induced depletion of DA content.  Conversely, GZ-

793A pretreatment prior to repeated high doses of METH (4 x 10 mg/kg) did not 

protect against nor exacerbate METH-induced decreases in DA content.  These 

preliminary studies suggest that GZ-793A may offer neuroprotective benefits 

against acute METH-induced depletions in DA content.  

II. Comparisons Between 3,5-Disubstituted MTD analogs and N-1,2-Diol 

Lobelane Analogs. 

The current research reports on the findings from an iterative drug 

discovery approach with the goal of identifiying selective VMAT2 inhibitors to 
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inhibit the rewarding effects of METH.  This dissertation research focused on two 

sets of lobeline analogs, 3,5-disubstituted MTD analogs and N-1,2-diol lobelane 

analogs.  MTD, the parent of the first series of analogs, exhibited high affinity for 

DAT, limiting selectivity for VMAT2. Conformational restriction of the MTD 

molecule, as well as various structural changes to the phenyl rings including the 

addition of 4-methoxy, 4-methyl, and 2,4-dichloro to the phenyl ring or 

replacement of the phenyl rings with thiophene or furan rings, afforded analogs 

with 50-1000-fold decreased affinity for DAT compared to MTD.  Importantly, 

structural modifications did not alter affinity for the DA uptake site on VMAT2, 

thereby increasing selectivity for VMAT2 compared to MTD.  UKMH-106 

emerged as the lead analog of the series exhibiting the highest potency and 

selectivity to inhibit VMAT2 function.  UKMH-106 decreased METH-evoked DA 

release from striatal slices in a concentration-dependent manner.  UKMH-106 

exhibited poor water solubility however, similar to that of MTD, which limited 

further development. Thus, the focus of the research project shifted to identifying 

analogs with increased water solubility in addition to VMAT2 selectivity.   

Replacement of the N-methyl moiety of lobelane with a chiral N-1,2-diol 

moiety on the piperdine nitrogen of lobelane afforded analogs with increased 

water solubility compared to lobelane.  In addition to the incorportation of the N-

1,2-diol moiety, various structural modifications to the phenyl rings were 

performed including the addition of 2-methoxy, 3-methoxy, 4-methoxy, 3-flouro, 

2,4-dichloro, or 3,4-methylenedioxy moieties to both phenyl rings or replacement 

of both phenyl rings with naphthalene or biphenyl moieties. While the analogs 
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exhibited similar affinity for DAT and SERT compared to lobelane, most analogs 

exhibited decreased potency to inhibit VMAT2 function.  Exceptions included GZ-

793A, the 4-methoxyphenyl N-1,2(R)-diol analog, and GZ-794A, the 1-

naphthalene N-1,2(R)-diol analog, which exhibited potency to inhibit VMAT2 

function not different from lobelane.  Both GZ-793A and GZ-794A decreased 

METH-evoked DA release from striatal slices, however GZ-793A exhibited ~35% 

greater inhibitor activity compared to GZ-794A.  Further, GZ-793A exhibited 5-

fold greater selectivity for inhibition of VMAT2 function compared to GZ-794A.  

Thus, GZ-793A emerged as the lead analog of the series.   

Compared to UKMH-106, GZ-793A exhibited 2.5-fold greater selectivity 

for inhibition of VMAT2 function and 35% greater inhibitory activity to inhibit 

METH-evoked DA release from striatal slices.  Additionally, GZ-793A exhibited 

increased water solubility compared to UKMH-106 due to the incorportation of 

the N-1,2-diol moiety.  Thus, GZ-793A emerged as the lead analog of both series 

of analogs and became the focus of the mechanistic vesicular DA release 

experiments and DA content studies. 

III. Mechanisms Underlying GZ-793A-induced Inhibition of METH-evoked 

DA Release from Synaptic Vesicles. 

GZ-793A concentrations that interacted with the Hi affinity site on VMAT2 

inhibited METH-evoked DA release from striatal synaptic vesicles.  Increasing 

concentrations of GZ-793A produced a rightward shift in the METH concentration 

response without altering maximal DA release suggesting a surmountable 
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mechanism of inhibition.  Further, Schild regression analysis revealed a slope 

significantly different from unity, suggesting an allosteric mechanism.  Thus, GZ-

793A produces a conformational change in the VMAT2 protein which reduces the 

affinity of METH for the intravesicular DA release site without altering the efficacy 

of METH to release DA. Precendence for surmountable allosteric inhibition is 

seen with nicotinic and muscarinic acetylcholine receptor antagonists (Tucek and 

Proska, 1995; Kukkonen et al., 2004; Wooters et al., 2011).   

One hallmark characteristic of allosteric inhibiton is saturability (Kenakin, 

2006).  The effect of allosteric inhibitors to shift the concentration-response curve 

of the agonist to the right is diminished as the allosteric site is saturated with 

increasing concentrations of inhibitor.  The current results show that a 5-fold shift 

in EC50 was seen between GZ-793A concentrations of 7 and 70 nM, however, 

only a 1-2 fold shift was seen between GZ-793A concentrations of 70 nM to 1000 

nM.  Thus, the effect of GZ-793A to decrease the potency of METH to evoke 

vesicular DA release became saturated with increasing concentrations of GZ-

793A, consistent with allosteric modulation.  Further support for an allosteric 

inhibition mechanism is given by the finding that the inhibitory effect of GZ-793A 

was not rate dependent, as increasing the incubation time did not alter METH-

evoked DA release in the presence of GZ-793A.   

Interpretations of concentration-response curves and Schild regression 

analyses used in the classification of antagonists are considerably more 

straightforward in binding studies compared to functional data (Kenakin, 1993).  

In the current study, agonist response was measured as METH-evoked [3H]DA 
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release from synaptic vesicles through an interaction with VMAT2. Considering 

the differences between receptors and transporters, the use of receptor-based 

models to interpret antagonism derived from experiments measuring transporter-

mediated release is ambiguous. However, studies measuring electrochemical 

currents have demonstrated that substrate flux through transporters is 

accompanied by ion flow and electrical current, suggesting that transporters 

exhibit functions similar to ligand-gated ion channels (Sonders and Amara, 1996; 

Galli et al., 1996; Sonders et al., 1997).  Thus, precedence exists for the use of 

receptor based models in the classification of antagonist mechanisms at 

transporters.    

Alternatively, VMAT2 could exist in multiple conformations that exhibit 

different affinities for METH. GZ-793A could preferentially bind an outward-facing 

transporter conformation, which decreases affinity for METH, without altering DA 

release.  By selectively binding to the outward-facing conformation, GZ-793A 

stabilizes the GZ-793A-bound transporter conformation, which would allow for a 

shift in the potency of METH to evoke DA release, without altering maximal 

response. Evidence for different confirmations of VMAT2 has been shown for the 

differential binding of reserpine and TBZ on VMAT2 (Darchen et al., 1989). 

An alternative explanation for GZ-793A-induced inhibition of METH-

evoked DA release is through an interaction with the [3H]DA uptake site.  GZ-

793A exhibits high affinity for the [3H]DA uptake site on VMAT2 (Ki = 29 nM) and 

through this interaction, GZ-793A could elicit a conformational change in the 

VMAT2 protein which decreases the affinity of the DA release site for METH, but 
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does not alter the efficacy of METH to release DA.  In addition to allosterically 

modulating the DA release site, GZ-793A could be inhibiting METH-evoked DA 

release from vesicles through a blockade of VMAT2 function.  DAT inhibitors, 

such as nomifensine, inhibit METH-evoked DA release though blockade of 

reverse transport through DAT (Sulzer et al., 1993, 1995).  In a similar manner, 

GZ-793A could be interacting with the [3H]DA uptake site to inhibit the uptake of 

METH into vesicles, thereby decreasing METH-evoked DA release.  METH acts 

as a substrate at VMAT2, being taken up into vesicles in a manner similar to DA 

(Peter et al., 1994; Erickson et al., 1996).  In the facilitated diffusion mechanism 

of DA release, the uptake of METH through VMAT2 elicits a conformational 

change in VMAT2 that exposes DA binding sites on the inner-facing side of the 

transporter and enables the reverse transport of DA into the cytosol (Sulzer et al., 

2005).  Thus, GZ-793A could decrease METH-induced reverse transport of DA 

through VMAT2 through inhibiting the uptake of METH into vesicles.  This 

explanation is unlikely, however, as GZ-793A-induced inhibition of the DA uptake 

site was consistent with competitive inhibition, while Schild regression analysis 

revealed that GZ-793A-induced inhibition of METH-evoked DA release was not 

consistent with a competitive inhibition.   

GZ-793A-induced inhibition of uptake of METH into vesicles could 

presumably decrease METH-induced DA release by the weak base effect as 

well.  Decreasing accumulation of METH in synaptic vesicles would prevent the 

alkanalization of the vesicular lumen, preventing the disruption of the pH gradient 

by METH and subsequently, METH-evoked DA release.  Even though GZ-793A 
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inhibited the active transport of METH through VMAT2, METH can also passively 

diffuse across the vesicular membrane.  As a lipophilic weak base, high 

concentrations of METH diffuse across the vesicular membrane to alkanalize the 

vesicular lumen, disrupt the pH gradient and release DA (Peter et al., 1995; 

Sulzer et al., 2005).  This explanation is supported by the finding that even higher 

concentrations of GZ-793A (1µM) that completely inhibit VMAT2 function did not 

completely inhibit METH-evoked DA release.  Thus, METH-evoked DA release 

that is not inhibited by GZ-793A could be occurring non-specifically through a 

weak base effect.   

An alternative site of interaction for the GZ-793A-induced inhibition of 

METH-evoked DA release is the [3H]DTBZ binding site.  TBZ inhibited METH-

evoked DA release from striatal vesicles across a similar concentration range 

compared to GZ-793A.  However, Schild regression analysis of TBZ-induced 

inhibition of METH-evoked DA release was consistent with a competitive 

mechanism of inhibition, unlike GZ-793A.  Further, GZ-793A and TBZ inhibited 

METH-evoked DA release from vesicles in the same concentration range even 

though GZ-793A exhibits 600-fold lower affinity for inhibiting [3H]DTBZ binding 

compared to TBZ.  If GZ-793A-induced inhibition of METH-evoked DA release 

was mediated through an interaction with the DTBZ binding site, then TBZ would 

be expected to inhibit METH-evoked DA release from vesicles at much lower 

concentrations, considering the significant difference in affinity for the [3H]DTBZ 

binding site between GZ-793A and TBZ.  Moreover, GZ-793A inhibited METH-

evoked DA release from striatal vesicles at concentrations lower than the 
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concentrations that GZ-793A interacts with the [3H]DTBZ binding site.  GZ-793A 

exhibits low affinity at the [3H]DTBZ binding site (Ki = 8.29 µM), but inhibits 

METH-evoked DA release at concentrations around 70 nM.  Thus, it is unlikely 

that the GZ-793A- and TBZ-induced inhibition of METH-evoked DA release was 

through an interaction with the DTBZ binding site on VMAT2.   

Interestingly, the in vitro finding that GZ-793A-induced inhibition of METH-

evoked DA release from striatal synaptic vesicles was surmounted by increasing 

concentrations of METH did not translate to the in vivo behavioral model as GZ-

793A-induced inhibition of METH self-administration in rats was not surmounted 

by increasing the dose of METH (Beckmann et al., 2011).  The vesicular DA 

release studies were performed as a mechanistic approach in vitro allowing us to 

use extreme concentrations of METH that are not going to be realized in vivo.  

Importantly, however, GZ-793A inhibited METH-evoked DA release from vesicles 

at concentrations that are proposed to be realized in vivo.    

IV. Mechanisms Underlying GZ-793A-induced Inhibition of METH-evoked 

DA Release from Striatal Slices. 

GZ-793A inhibits METH-evoked DA release from striatal slices in a 

concentration-dependent manner.  Consistent with these results, GZ-793A was 

found to decrease METH self-administration in rats, without affecting food-

maintained responding.  Thus, GZ-793A is inhibiting METH-evoked DA release 

to decrease the rewarding effects of METH.  One mechanism by which GZ-793A 

could inhibit METH-evoked DA release is through the redistribution of DA in the 
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presynaptic terminal.  Similar to lobeline, GZ-793A inhibits DA uptake at VMAT2 

and evokes DA release from synaptic vesicles, increasing cytosolic DA 

concentrations (Chapter 3, Horton et al., 2011b; Chapter 4, Horton et al., 2011c).  

In the presence of GZ-793A, cytosolic DA is metabolized into DOPAC since GZ-

793A is not expected to inhibit MAO as evidenced by the finding that high 

concentrations of GZ-793A increased DOPAC release in striatal slices rather 

than DA (unpublished observations). Thus, GZ-793A could be interacting with 

VMAT2 to increase cytosolic DA for metabolism, thereby limiting DA available for 

METH-evoked DA release through DAT.   

The observation that GZ-793A does not inhibit MAO activity is based upon 

the finding that GZ-793A treatment increases DOPAC concentrations.  While this 

is an indirect determination of a GZ-793A-MAO interaction, further enzymatic 

studies are needed to accurately assess the ability of GZ-793A to inhibit MAO 

activity. Furthermore, determination of the drug-drug interaction between METH 

and GZ-793A on MAO activity would be beneficial in further elucidating the 

underlying mechanism of GZ-793A-induced inhibition of METH’s effects. Unlike 

GZ-793A, which is not expected to inhibit MAO, pargyline increases DA content 

in striatal tissue and vesicles (Fekete et al., 1979; Buu and Lussier, 1989).  Thus, 

pargyline is not expected to be a suitable treatment to inhibit the effects of 

METH. Furthermore, pargyline would be expected to exacerbate the effect of 

METH since pargyline administration would increase DA available for release by 

METH.  Consistent with this hypothesis, previous research has shown that 
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pargyline pretreatment exacerbates METH-induced DA content depletion (Kita et 

al., 1995). 

In addition to redistributing DA from vesicles and increasing DA available 

for metabolism, GZ-793A could be inhibiting the ability of METH to release DA 

from vesicles, thereby limiting DA available for METH-induced reverse transport 

through DAT.  Results from the current study demonstrate that GZ-793A-induced 

inhibition of METH-evoked [3H]DA release from synaptic vesicles was consistent 

with a surmountable allosteric mechanism as discussed in the section above.  

Thus, GZ-793A interacts with VMAT2 to inhibit METH-evoked DA release from 

vesicles, resulting in decreased cytosolic DA available for METH-induced reverse 

transport through DAT.   

In addition to VMAT2, GZ-793A could be interacting with other presynaptic 

targets to inhibit METH-evoked DA release from striatal slices.  One alternative 

explanation could be that GZ-793A is inhibiting METH-evoked DA release 

through an interaction with nAChRs.  Lobeline acts as an antagonist at both 

α4β2* and α7* nAChRs (Briggs and McKenna, 1998; Miller et al., 2000; Dwoskin 

and Crooks, 2002).  Further, lobeline antagonizes the nAChRs mediating [3H]DA 

and [3H]NE release (Gallardo and Leslie, 1998; Miller et al., 2000; Miller et al., 

2005).  Chemical defunctionalization of the lobeline molecule afforded analogs, 

MTD and lobelane with diminished activity at nAChRs compared to lobeline 

(Miller et al., 2004).  GZ-793A, a lobelane analog exhibits low affinity for α4β2* 

and α7* nAChRs (Ki > 100 µM), as probed by displacement of [3H]NIC and 

[3H]MLA binding, respectively (unpublished observations).  Further, GZ-793A did 
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not alter nicotine-evoked DA release from striatal slices, demonstrating a lack of 

interaction with nAChRs mediating DA release.  Thus, it is unlikely that GZ-793A 

is interacting with nAChRs to inhibit METH-evoked DA release from striatal 

slices.   

An alternative explanation could be that GZ-793A is interacting with DAT 

to inhibit METH-evoked DA release from striatal slices.  GZ-793A exhibits affinity 

for DAT (Ki = 1.44 µM) within the same concentration range that inhibits METH-

evoked DA release from striatal slices.  Similar to DAT inhibitors such as cocaine 

and nomifensine, GZ-793A could decrease METH-evoked DA release through an 

inhibition of METH-induced reverse transport through DAT.  Unlike DAT 

inhibitors, however, GZ-793A does not support self-administration in rats, 

suggesting that inhibition of DAT is not the mechanism of action of GZ-793A 

(Beckman et al., 2011).  In addition, GZ-793A is 50-fold more potent at VMAT2 

compared to DAT, providing support for VMAT2 as the pharmacological target.  

Thus, it is unlikely that GZ-793A-induced inhibition of METH-evoked DA release 

is due to inhibition of DAT. 

 An alternative explanation for the ability of GZ-793A to inhibit METH-

evoked DA release could involve a redistribution of VMAT2 containing vesicles in 

the presynaptic terminal.  VMAT2-containing vesicles are thought to be localized 

to two distinct pools, a readily releasable pool located near the active zone of the 

synaptic cleft and a non-readily releasable pool located away from the synapse 

(Hua et al., 2011).  Readily releasable pools are involved in the release of DA 

following stimulation, while non-readily releasable pools are unaffected by 
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stimulation (Hua et al., 2011).  Through a redistribution in VMAT2 containing 

vesicles, METH treatment rapidly (within 1 hr) decreases [3H]DA uptake in striatal 

vesicles (Brown et al., 2000; Riddle et al., 2002).  The effect of GZ-793 on 

VMAT2 immunoreactivity and vesicular trafficking is not known.  GZ-793A could 

redistribute VMAT2-containing vesicles out of the presynaptic terminal thereby 

limiting the ability of METH to interact with VMAT2 to increase cytosolic DA 

available for reverse transport through DAT.  Future studies determining the 

effect of GZ-793A and METH on the localization of VMAT2-containing vesicles 

within the presynaptic terminal are needed.  Studies utilizing western blot 

analysis of VMAT2 immunoreactivity following GZ-793A and METH 

administration would be beneficial in determining the mechanism underlying GZ-

793A-induced inhibition of METH-evoked DA release from striatal slices. 

V.   Mechanisms underlying the increase in food-maintained responding 

following repeated GZ-793A treatment. 

While acute and repeated GZ-793A treatment did not decrease food-

maintained responding, repeated GZ-793A treatment significantly increased 

food-maintained responding (Beckmann et al., 2011).  One mechanism 

underlying the orexigenic effects of GZ-793A could be that GZ-793A increases 

metabolism to stimulate food intake. GZ-793A could interact with ghrelin 

signaling to increase food intake.  Ghrelin, a gut peptide hormone, stimulates 

energy metabolism and increase food intake (Patterson et al., 2011).  Further, 

GZ-793A could be interacting with melanocortin (MC3/4) receptors to stimulate 

food intake.  Previous research has shown that antagonism of the MC3/4 
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receptor increased food intake in rats (Hagan et al., 2000). Another potential 

explanation for the orexigenic effect of GZ-793A is that GZ-793A could be 

increasing food intake through a serotinergic mechanism.  The role of the 

serotonin system in food intake and appetite has long been established (for 

review, Halford et al., 2011).  While, GZ-793A inhibits SERT function with 

moderate potency (Ki = 9.36 µM; Chapter 3, Horton et al., 2011b), the ability of 

GZ-793A to interact with 5-HT receptors is not known.  Further studies 

determining the ability of GZ-793A to interact with 5-HT receptors would be 

beneficial in elucidating the potential mechanisms underlying the orexigenic 

effects of GZ-793A.    

VI. Mechanisms underlying the finding that GZ-793A-induced inhibition 

of METH-evoked DA release from synaptic vesicles was surmountable 

while GZ-793A-induced inhibition of METH self-administration was not 

surmounted by increasing doses of METH. 

Interestingly, GZ-793A-induced inhibition of METH-evoked DA release 

from synaptic vesicles was consistent with an allosteric, surmountable 

mechanism of inhibition (Chapter 4, Horton et al., 2011c), while systemic GZ-

793A pretreatment decreased METH self-administration which was not 

surmounted by increasing the METH dose (Beckmann et al., 2011).  One 

explanation for this is that other mechanisms could be involved in the ability of 

GZ-793A to inhibit the effects of METH.  The in vitro experiments in this study are 

performed in vesicle preparations while the in vivo experiments where conducted 

in the whole animal model.  In the whole animal model GZ-793A could interact 
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with multiple targets to inhibit the effects of METH.  While GZ-793A inhibits the 

action of METH at VMAT2 in a surmountable manner, GZ-793A could inhibit the 

effects of METH through different mechanisms which are not surmounted by 

increasing doses of METH in the whole animal. In addition to the abililty of GZ-

793A to inhibit the effects of METH on VMAT2, other mechanisms by which GZ-

793A inhibit the effects of METH may be involved.   

VII. Mechanisms Underlying the Finding that GZ-793A Treatment Does 

Not Alter Striatal DA Content. 

Acute and repeated treatment of a behaviorally active dose of GZ-793A 

(15 mg/kg; s.c.) did not alter DA content in striatal tissue and vesicles.  Even 

though GZ-793A inhibits [3H]DA uptake at VMAT2 with high affinity and promotes 

[3H]DA release from striatal vesicles, systemic GZ-793A treatment had no effect 

on DA content.  One possible explanation for this finding is that GZ-793A could 

act as a reversible inhibitor of VMAT2.  Unlike GZ-793A, reserpine acts as an 

irreversible inhibitor of DA uptake at VMAT2, which cannot be surmounted by 

increasing substrate concentrations (Yelin and Schuldiner, 2000).  As a result, in 

vivo treatment of reserpine corresponds to a long-lasting decrease in DA content 

(Yelin and Schuldiner, 2000).  Conversely, GZ-793A-induced inhibition of DA 

uptake at VMAT2 was surmounted by increasing concentrations of DA.  Thus, 

unlike reserpine, GZ-793A-induced inhibition of VMAT2 function is short-lasting.  

Consistent with this hypothesis, GZ-793A treatment did not alter DA content in 

striatal tissue or vesicles 0.3, 1, 8 and 24 hrs following treatment.  These results 

were similar to results found in DA content studies conducted with lobeline that 
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demonstrate that acute or repeated lobeline treatment (1-30 mg/kg, s.c.) did not 

alter striatal DA content (Miller et al., 2001).  

An alternative explanation for the lack of DA content depletion following 

GZ-793A treatment could be the effect of GZ-793A on DA synthesis.  GZ-793A 

could increase DA synthesis in presynaptic terminals to compensate for a 

presumed decrease in synaptic DA content resulting from DA release from 

vesicles and inhibition of DA uptake at VMAT2.  While an increase in DA content 

was not seen following GZ-793A treatment, studies examining the effect of GZ-

793A on TH activity would be beneficial to determine if GZ-793A is increasing DA 

synthesis.     

VIII. Mechanisms Underlying Attenuation of METH-induced Depletion of 

Striatal DA Content by GZ-793A Pretreatment. 

Acute and repeated GZ-793A pretreatment (15 mg/kg, s.c.) attenuated 

METH-induced depletion of striatal DA content.  One explanation is that GZ-793A 

interacts with VMAT2 to inhibit METH-evoked DA release.  GZ-793A interacts 

with VMAT2 to inhibit METH-evoked DA release from striatal vesicles decreasing 

cytosolic DA concentrations available for METH-induced reverse-transport 

through DAT.  Thus, GZ-793A inhibits METH-evoked DA release through an 

interaction with VMAT2, attenuating METH-induced depletions of DA content.   

Another explanation for GZ-793A-induced attenuation of METH-induced 

DA depletion could be a redistribution of VMAT2-containing vesicles within the 

presynaptic terminal.  Recent studies have shown that methylphenidate protects 
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DA neurons from METH-induced toxicity (Volz et al., 2008).  Methylphenidate 

acts primarily to increase extracellular DA concentrations though an inhibition of 

DAT (Schweri et al., 1985).  In addition, methylphenidate increases VMAT2 

immunoreactivity in cytoplasmic fractions in rat synaptosomes (Sandoval et al., 

2002).  Through an increase in vesicular trafficking to the cytoplasmic fraction, 

methylphenidate increases vesicular DA content to compensate for the DA 

depleted by METH.  Additionally, methylphenidate augments DA sequestration 

through an increase in VMAT2 function in the membrane-associated vesicles to 

protect against METH-induced decreases in DA content (Volz et al., 2007, 2008).  

In a similar manner, GZ-793A treatment could increase VMAT2 function and 

VMAT2 immunoreactivity to attenuate METH-induced DA content depletion.  

Additional studies determining the effect of systemic GZ-793A treatment on 

changes in VMAT2 function and localization of VMAT2-containing vesicles are 

needed. 

An alternative explanation is that GZ-793A could be inhibiting DAT to 

protect against METH-induced DA content depletion.  Through an inhibition of 

DAT function, GZ-793A could inhibit the transport of METH into presynaptic 

terminals and METH-induced reverse transport of DA through DAT.  Precedence 

for this mechanism of action is given by Marek and colleagues in demonstrating 

that DAT inhibitors, amfonelic acid, mazindol and buproprion protected against 

striatal DA content depletions by high doses of METH (100 mg/kg, s.c.; Marek et 

al., 1990).  Moreover, pretreatment with GBR-12909, a high affinity DAT inhibitor, 

protected against striatal DA content depletions following a neurotoxic regimen of 
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METH (Stephans and Yamamoto, 1994).  In a similar manner, GZ-793A could 

inhibit METH uptake and METH-evoked DA release through DAT to protect 

against METH-induced depletions in DA content.  Unlike DAT inhibitors, 

however, GZ-793A does not support self-administration in rats (Beckmann et al., 

2011), suggesting that DAT is not the pharmacological target involved in the 

mechanism of action of GZ-793A. 

Another possible explanation for GZ-793A-induced attenuation of METH-

induced striatal DA content depletion is that GZ-793A could protect against 

METH-induced hyperthermia.  METH administration induces hyperthermia, 

leading to striatal DA content depletion (Bowyer et al., 1994). GZ-793A could 

inhibit the effect of METH to increase body temperature thereby attenuating the 

effect of METH to deplete DA content through this mechanism. This explanation 

is unlikely however, as the ability of the parent analog, lobeline to attenuate 

METH-induced DA content depletion is not due to an effect on METH-induced 

hyperthermia (Eyerman and Yamamoto, 2005). Nonetheless, the effect of GZ-

793A on METH-induced increases in body temperature is unknown and future 

studies determining the effect of GZ-793A on METH-induced changes in body 

temperature would be beneficial in determining the underlying mechanism of GZ-

793A-induced attenuation of METH-induced DA content depletion.   

IX. Implications 

The results from this dissertation research imply that VMAT2 represents a 

pharmacological target to prevent the effects of METH in the development of 
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treatments for METH abuse.  GZ-793A selectively inhibits DA uptake at VMAT2 

and promotes a DA release from synaptic vesicles, resulting in a redistribution of 

DA from vesicles to the cytosol.  In addition, GZ-793A decreases METH-evoked 

DA release from synaptic vesicles through an interaction with VMAT2, thereby 

reducing cytosolic DA concentrations available for METH-induced reverse 

transport through DAT.  GZ-793A selectively inhibits METH-evoked DA release 

from striatal slices and GZ-793A pretreatment decreases METH self-

administration without altering food-maintained responding in rats (Beckmann et 

al., 2011).  GZ-793A-induced inhibition of METH self-administration is not 

surmounted by increasing the dose of METH and tolerance does not develop 

following repeated GZ-793A dosings (Beckmann et al., 2011).  Moreover, GZ-

793A pretreatment prevents the development of METH-induced conditioned 

place preference and inhibits METH cue-induced reinstatement (Beckmann et 

al., 2011; unpublished observations).  Thus, GZ-793A would be expected to 

inhibit METH-induced cravings in METH-addicted individuals.  In addition to 

inhibiting the behavioral effects of METH, GZ-793A does not support self-

administration in rats, suggesting limited abuse potential.  Thus, selective 

inhibition of VMAT2 by GZ-793A represents a valid target for the development of 

pharmacotherapies for METH abuse.   

GZ-793A exhibits a different pharmacological profile for interaction of 

VMAT2 compared to classic VMAT2 inhibitors, TBZ and reserpine.  First, while 

GZ-793A, TBZ and reserpine exhibited similar affinity for the DA uptake site on 

VMAT2, inhibition by GZ-793A and TBZ is surmountable (Chapter 3, Horton et 
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al., 2011b; Nickell et al., 2011), while reserpine-induced inhibition of DA uptake is 

not (Rudnick et al., 1990).  Second, these compounds interact with the DTBZ 

binding site on VMAT2 with different affinities (TBZ > reserpine > GZ-793A).  

Third, concentration-response curves for GZ-793A-evoked DA release was 

consistent with a two-site model of interaction, while the concentration-response 

curves for TBZ and reserpine to release DA fit a one-site model of interaction.  

To our knowledge, GZ-793A is the first compound shown to evoke vesicular DA 

release through an interaction with a Hi and Low affinity site.  Concentrations of 

GZ-793A that selectively interacted with the Hi affinity DA release site on VMAT2 

inhibited METH-evoked DA release through a surmountable allosteric 

mechanism.  While GZ-793A and TBZ inhibited METH-evoked DA release 

across similar concentration ranges, TBZ-induced inhibition of METH-evoked DA 

release is consistent with a competitive mechanism of action, unlike GZ-793A.   

Thus, GZ-793A exhibits a different pharmacological profile to interact with 

VMAT2 compared to TBZ and reserpine.   

Additional results from this research imply that selective inhibition of 

VMAT2 function by GZ-793A did not deplete striatal DA content.  Acute and 

repeated GZ-793A treatment, of a dose that inhibited the behavioral effects of 

METH (15 mg/kg), did not alter DA content in striatal tissue or vesicles.  These 

results suggest that GZ-793A acts differently than reserpine to inhibit VMAT2 

function, presumably in a short-acting, reversible manner.  Further, results 

showed that inhibition of VMAT2 function by GZ-793A did not exacerbate acute 

METH-induced depletions of DA content.  In fact, acute and repeated GZ-793A 
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pretreatment attenuated acute METH-induced DA content depletions.  With 

respect to multiple high doses of METH, GZ-793A pretreatment did not protect 

against nor exacerbate METH-induced striatal DA content depletions.  Thus, GZ-

793A treatment alone did not alter striatal DA content and GZ-793A pretreatment 

might offer neuroprotective benefits against the neurotoxic effects of METH.  

X. Limitations 

One limitation of the current research was the limited water solubility 

exhibited by UKMH-106, GZ-794A, and GZ-796A.  In determining the ability of 

the forementioned analogs to inhibit METH-evoked DA release from striatal 

slices, higher concentrations of analogs were needed to establish a full 

concentration-response curve.  As such, the Imax of these analogs to inhibit 

METH-evoked DA release has been estimated with the highest soluble analog 

concentration.  The use of other vehicles (such as PEG or DMSO), which would 

allow higher concentrations of analogs to be reached which would be beneficial 

in determining the ability of these analogs to inhibit METH-evoked DA release.   

Another limitation of the current research was that METH exhibited low 

potency (EC50 = 18.9 µM) to evoke [3H]DA release from striatal vesicles.  Due to 

the low potency of METH to release vesicular DA, maximal DA release occurs 

close to the highest METH concentrations tested (10 mM).  Since higher METH 

concentrations cannot be tested, the experiment is limited in the ability to fully 

characterize the plateau of maximal DA release.  Therefore our estimation of the 

Emax is limited in that it is based upon only 1 or 2 data points.  Since GZ-793A-
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induced inhibition of METH-evoked DA release from vesicles is characterized by 

a rightward shift in potency, the Emax of METH-evoked DA release in the 

presence of GZ-793A is even more difficult to ascertain than METH alone.  Since 

the Emax is difficult to determine in the presence of GZ-793A, it is therefore 

difficult to determine if the inhibitory effect of GZ-793A is surmounted by 

increasing concentrations of METH.  Thus, the low potency of METH to release 

DA from striatal vesicles limits the ability to classify inhibition as surmountable or 

unsurmountable in determining the mechanisms of action of inhibitors.  

The current research utilized in vitro models to determine the effect of 

lobeline analogs on VMAT2 selectivity and METH-evoked DA release from 

striatal vesicles and slices.  As such, assumptions are made that the analogs 

tested are reaching the pharmacological targets following systemic treatment, 

e.g., in striatal synaptosome preparations analogs will have greater access to 

plasma membrane transporters compared to striatal slice preparations.  

Mechanistic studies such as the vesicular DA release assay are performed in 

vitro which allows us to use extreme concentrations that are not going to be 

realized in vivo. Further, when considering affinity of analogs for transporters, it is 

important to note that these values were obtained via in vitro and ex vivo models 

characterized by tissue functioning in buffer and not in fully intact, physiological 

systems and conditions.   

XI. Future Directions 
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One of the main findings of this dissertation is that GZ-793A evokes 

[3H]DA release at low concentrations through an interaction with the Hi affinity 

site on VMAT2.   Support for this tenet arises from the finding that inhibition of 

VMAT2 function through known inhibitors TBZ and resepine inhibit GZ-793A 

evoked [3H]DA release at the Hi affinity site.  GZ-793A evoked DA release at the 

Low affinity site on VMAT2 is unaffected by TBZ or reserpine, however.  

Presumably, higher concentration of GZ-793A (> 1 µM) evoked [3H]DA release 

through a non-specific mechanism such as the weak base effect.  To test this 

hypothesis, the vesicular pH could be measured to determine if GZ-793A 

alkalinized the vesicular lumen leading to a disruption of pH gradients.  Recently, 

Sulzer and colleagues have developed pH-responsive fluorescent false 

neurotransmitters (FFNs) to measure vesicular pH in intact presynaptic terminals 

(Lee et al., 2010).  These FFNs act as VMAT2 substrates, being taken up into 

synaptic vesicles.  FFNs contain a built-in ratiometric fluorescent pH sensor 

which allows the optical in situ measurement of intravesicular pH.  By utilizing 

FFNs, the ability of high concentrations of GZ-793A to alter vesicular pH and 

non-specifically release vesicular DA from synaptic vesicles could be determined.  

In addition to using FFNs to determine the effect of GZ-793A on vesicular 

pH, the effect of GZ-793A on METH-induced changes of vesicular pH could also 

be determined.  METH is known to evoke DA release from vesicles at least in 

part through a weak base effect.  As a lipophilic weak base, METH gets 

protonated inside the vesicle, alkalinizing the interior pH and disrupting the pH 

gradient which is responsible for DA transport through VMAT2 (Sulzer et al., 
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2005).  By inhibiting the uptake of METH into synaptic vesicles, GZ-793A could 

inhibit the ability of METH to alter vesicular pH and thereby release vesicular DA.  

Utilizing FFNs, the ability of METH to alter vesicular pH could be measured in the 

absence and presence of GZ-793A.  While results from these experiments could 

be confounded by the ability of high concentrations of METH to passively diffuse 

across the vesicular membrane, these results could provide additional 

information about METH-evoked DA release through non-specific mechanisms.   

While results from the current research suggest that GZ-793A inhibits 

METH-evoked DA release primarily through an interaction with VMAT2, the effect 

of GZ-793A on DAT and VMAT2 trafficking is unknown.  Considering that METH 

interacts with DAT and VMAT2 to increase extracellular DA, modulating the 

expression and localization of these proteins could be a viable mechanism for 

inhibition of the effects of METH.  For example, GZ-793A could downregulate 

DAT surface expression through a trafficking-mediated mechanism, thereby 

decreasing the availability of one of the pharmacological targets of METH.  

Further, GZ-793A could increase VMAT2 function through an increase in 

trafficking of VMAT2-containing vesicles in the cytosol to inhibit the effects of 

METH and protect against METH-induced neurotoxicity, similar to the 

neuroprotective mechanism of methylphenidate (Volz et al., 2008). Thus the 

ability of GZ-793A to modulate DAT and VMAT2 function through trafficking 

would be beneficial in elucidating the mechanism of GZ-793A-induced inhibition 

of the effects of METH. 
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Considering the finding that METH administration increases body 

temperature leading to striatal DA content depletion, one potential mechanism 

underlying GZ-793A-induced attenuation of METH-induced striatal DA content 

depletion is the effect of GZ-793A on body temperature.  GZ-793A could be 

inhibiting the effect of METH to deplete DA content by protecting against METH-

induced increases in body temperature.  As such, additional studies determining 

the effect of GZ-793A pretreatment on METH-induced changes in body 

temperature would be beneficial in further elucidating the underlying mechanism 

of GZ-793A-induced attenuation of METH-induced striatal DA content depletion.  

XII.   Final Comments 

The results from this dissertation research report on the findings from an 

iterative drug discovery approach with the aim of developing VMAT2 selective 

lobeline analogs as treatments for METH abuse.  The current results 

demonstrate that the lead analog, GZ-793A inhibits the neurochemical effects of 

METH through a selective interaction with VMAT2.  This research shows that 

GZ-793A potently and selectively inhibits DA uptake at VMAT2 and promotes a 

release of DA from vesicles to redistribute DA from vesicles into the cytosol.  

Further, GZ-793A inhibits METH-evoked DA release from synaptic vesicles 

decreasing the cytosolic DA available for METH-induced reverse transport 

through DAT. Despite potent and selective inhibition of VMAT2 function, acute 

and repeated GZ-793A treatment does not alter striatal DA content.  Importantly, 

GZ-793A pretreatment protects against acute METH-induced DA content 

depletions.  Thus, results from this dissertation demonstrate that GZ-793A 
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represents an exciting preclinical lead in the development of novel 

pharmacotherapies to treat METH abuse.    
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LIST OF ABBREVIATIONS 

 

U.S., United States; DA, dopamine; DAT, dopamine transporter; METH, 
methamphetamine; AMPH, amphetamine; VMAT2, vesicular monoamine 
transporter-2; nAChRs, nicotinic acetylcholine receptors; MTD, meso-transdiene; 
CNS, central nervous system; NAc, nucleus accumbens; TH, tyrosine 
hydroxylase; L-DOPA, L-dihydroxylphenylalanine; LDVC, large dense core 
vesicles; SSV, small synaptic vesicles; TMD, transmembrane domain; cAMP, 
cyclic adensosine monophosphate; COMT, catechol-O-methyl transferase; MAO, 
monoamine oxidase; DOPAC, dihydroxyphenylacetic acid; MPP+, 1-methyl-4-
phenylpyridinium; NET, norepinephrine transporter; VTA, ventral tegmental area; 
SERT, serotonin transporter; KO, knock-out; WT, wild-type; PKC, protein kinase 
C; PKA, protein kinase A; 5-HT, serotonin; NE, norepinephrine; E, epinephrine; 
TBZ, tetrabenazine; AMPT, α-methyl-p-tyrosine; BBB, blood-brain barrier; CBT, 
cognitive behavioral therapy; CM, contingency management; MPD, 
methylphenidate; ADHD, attention deficit hyperactivity disorder; SSRIs, selective 
serotonin reuptake inhibitors; GABA, gamma-aminobutyric acid; ACh, 
acetylcholine; MLA, methyllycaconitine; DTBZ, dihydrotetrabenazine; diol, 
dihydroxypropyl; SAR, structure-activity relationships; EDTA, disodium 
ethylenediamine tetraacetate; EGTA, ethylene glycol tetraacetate; GBR 12909, 
1-(2-(bis-(4-fluorophenyl)methoxy)ethyl)-4-(3-phenylpropyl)piperazine; GBR 
12935, 1-(2-(diphenylmethoxy)ethyl)-4-(3-phenylpropyl)piperazine;WIN 35,428,  
[3H](–)-2-β-carbomethoxy-3-β-(4-fluorophenyl)tropane-1,5-napthalenedisulfonate; 
HEPES, N-[2-hydroxyethyl]piperazine-N’-[2-ethanesulfonic acid]; MgSO4, 

magnesium sulfate; PEI, polyethyleneimine; Ro-4-1284, (2R,3S,11bS)-2-ethyl-3-
isobutyl-9,10-dimethoxy-2,2,4,6,7,11b-hexahydro-1H-pyrido[2,1-a]isoquinolin-2-
ol; 6-OHDA, 6-hydroxydopamine; CaCl2, calcium chloride;  MgCl2, magnesium 
chloride; KCl, potassium chloride; K2PO4, potassium phosphate; NaHCO3, 
sodium bicarbonate; NaH2PO4, sodium phosphate; UKMH-101, (3Z,5E)-3,5-
dibenzylidene-1-methylpiperidine; UKMH-102, (3Z,5Z)-3,5-dibenzylidene-1-
methylpiperidine; UKMH-103, [(3Z,5E)-1-methyl-3,5-bis((E)-3-
phenylallylidene)piperidine; UKMH-104, (3Z,5Z)-1-methyl-3,5-bis((E)-3-
phenylallylidene)piperidine; UKMH-105, (3Z,5E)-3,5-bis(2,4-
dichlorobenzylidene)-1-methylpiperidine; UKMH-106, (3Z,5Z)-3,5-bis(2,4-
dichlorobenzylidene)-1-methylpiperidine; UKMH-107, (3Z,5Z)-3,5-bis(4-
methoxybenzylidene)-1-methylpiperidine; UKMH-108, (3Z,5Z)-1-methyl-3,5-
bis(4-methylbenzylidene)-piperidine; UKMH-109, (3Z,5Z)-1-methyl-3,5-
bis(thiophen-2-ylmethylene)piperidine; UKMH-110, (3Z,5Z)-1-methyl-3,5-
bis(thiophen-3-ylmethylene)piperidine; UKMH-111, (3Z,5Z)-3,5-bis(furan-2-
ylmethylene)-1-methylpiperidine; UKMH-112, (3Z,5Z)-3,5-bis(furan-3-
ylmethylene)-1-methylpiperidine GZ-252C, para-methoxyphenyl lobelane; GZ-
745A, (R)-3-(2,6-cis-diphenethylpiperidin-1-yl)propane-1,2-diol; GZ-745B, (S)-3-
(2,6-cis-diphenethylpiperidin-1-yl)propane-1,2-diol; GZ-790A, (R)-3-[2,6-cis-di(3-
methoxyphenethyl)piperidin-1-yl]propane-1,2-diol; GZ-790B, (S)-3-[2,6-cis-di(3-
methoxyphenethyl)piperidin-1-yl]propane-1,2-diol; GZ-791A, (R)-3-[2,6-cis-di(3-
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fluorophenethyl)piperidin-1-yl]propane-1,2-diol; GZ-791B, (S)-3-[2,6-cis-di(3-
fluorophenethyl)piperidin-1-yl]propane-1,2-diol; GZ- 792A, (R)-3-[2,6-cis-di(2-
methoxyphenethyl)piperidin-1-yl]propane-1,2-diol; GZ-792B, (S)-3-[2,6-cis-di(2-
methoxyphenethyl)piperidin-1-yl]propane-1,2-diol; GZ-793A, (R)-3-[2,6-cis-di(4-
methoxyphenethyl)piperidin-1-yl]propane-1,2-diol; GZ-793B, (S)-3-[2,6-cis-di(4-
methoxyphenethyl)piperidin-1-yl]propane-1,2- diol; GZ-794A, (R)-3-[2,6-cis-di(1-
naphthylethyl)piperidin-1-yl]propane-1,2-diol; GZ-794B, (S)-3-[2,6-cis-di(1-
naphthylethyl)piperidin-1-yl]propane-1,2-diol; GZ- 795A, (R)-3-[2,6-cis-di(2,4-
dichlorophenethyl)piperidin-1-yl]propane-1,2-diol; GZ-795B, (S)-3-[2,6-cis-di(2,4-
dichlorophenethyl)piperidin-1-yl]propane-1,2-diol; GZ-796A, (R)-3-[2,6-cis-di(4-
biphenylethyl)piperidin-1-yl]propane-1,2-diol; GZ-796B, (S)-3-[2,6-cis-di(4-
biphenylethyl)piperidin-1-yl]propane-1,2-diol; GZ-797A, (R)-3-[2,6-cis-di(3,4-
methylenedioxyphenethyl)piperidin-1-yl]propane-1,2-diol; GZ-797B, (S)-3-[2,6-
cis-di(3,4-methylenedioxyphenethyl)piperidin-1-yl]propane-1,2-diol; UKCP-110, 
cis-2,5-di-(2-phenethyl)-pyrrolidine hydrochloride; GZ-250C, 2,6-bis(2-(3,4-
methylenedioxyphenyl)ethyl)-1-methylpiperidine hydrochloride; GZ-252C, para-
methoxyphenyl lobelane or 2,6-bis(2-(4-methoxyphenyl)ethyl)-1-methylpiperidine 
hydrochloride; GZ-260C, 2,6-bis(2-(2,4-dichlorophenyl)ethyl)-1-methylpiperidine 
hydrochloride; GZ-261C, 2,6-bis(2-(3-methoxyphenyl)ethyl)-1-methylpiperidine 
hydrochloride; GZ-272C, 2,6-bis(2-(biphenyl-4-yl)ethyl)-1-methylpiperidine 
hydrochloride; GZ-273C, 2,6-bis(2-(2-methoxyphenyl)ethyl)-1-methylpiperidine 
hydrochloride; GZ-275C, 2,6-bis(2-(3-fluorophenyl)ethyl)-1-methylpiperidine 
hydrochloride 
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